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In the process of face attribute transfer, non-frontal and occluded face images often suffer from low genera-
tion quality, missing facial edges, and a lack of diversity. To address these challenges, we present the FES-Star-
GANv2, an unsupervised multi-domain face attribute transfer network. In the feature extraction phase, we 
incorporate an attention-guided feature fusion module aimed at enhancing image details while preserving the 
overall integrity of the transferred images. Moreover, a style code extraction module is presented, refining the 
style code of the target domain, enhancing the learning capabilities of the generator. To further augment image 
diversity and authenticity, a face image optimization module and a structural diversity loss function are inte-
grated. Experimental results reveal that, in comparison with the baseline StarGANv2, our approach achieves 
substantial improvements of 23% and 3.9% in FID and LPIPS metrics, respectively, attaining optimal 13 and 
0.453. Notably, in terms of visual quality, significant enhancements were observed, particularly in addressing 
issues of low image quality and edge deficiencies. The FES-StarGANv2 approach effectively addresses the 
challenges associated with non-frontal and occluded facial images.
KEYWORDS: Face Attribute Transfer, Unsupervised Learning, Feature Fusion, LSTM, SSIM.
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1. Introduction
Face attribute transfer is the work of image-domain to 
image-domain work. Specifically, learn texture features 
from another face image while retaining the original 
main content of the image to change special facial prop-
erties, such as hairstyle, skin color, age, and so on. This 
technique is crucial for assisting facial recognition and 
is frequently utilized in digital entertainment and social 
media. In the past, only supervised image transfer was 
possible. Still, the development of Generative Adver-
sarial Networks (GANs) [5] and their derivative models 
have enabled unsupervised image transfer without be-
ing constrained by one-to-one matching data.
Based on the mapping relationship between the source 
and target picture domains, unsupervised image trans-
fer is divided into single and multiple image domain 
transfers. Single image domain transfer is the process 
of transferring only between two image domains. For 
example, Perarnau et al., in [29], proposed the IcGAN, 
which introduces two encoders to decompose the ac-
tual image into content and attribute feature infor-
mation, and generate the specified image through the 
CGAN [25] framework. Zhu et al., in [39], proposed the 
CycleGAN, which reconstructs the generated transfer 
image using two pairs of generator and discriminator 
and constrains the image content by cycle consistency 
loss. An essential problem of single-domain transfer is 
that it can only learn the relationship between a pair of 
different image domains, and it is difficult to deal with 
the transformation between multiple image domains. 
When dealing with multi-domain image transfer, it 
needs to model and train each pair of image domains 
separately, which increases the difficulty and cost of 
training.
Multi-image domain transfer is an extension of sin-
gle-image domain transfer, that is, only one training 
process can complete the transfer between multi-
ple image domains. For example, Huang et al., in [7], 
proposed MUNIT, which considers latent vectors as 
content vectors and style vectors, and shares content 
vectors with different images to enhance image diver-
sity. Lee et al., in [20], proposed DRIT to embed imag-
es into invariant domain content and domain-specific 
attribute space to capture cross-domain shared infor-
mation to realize attribute transfer. Choi et al., in [1], 
proposed the StarGAN to transform multiple facial 
expressions and attributes only in a single GAN. He 
et al., in [8], proposed AttGAN, which takes the source 

image and the target attribute vector as input, and gen-
erates the image through the attribute classification 
constraint to ensure that the target attribute changes 
correctly. Liu et al., in [21], proposed STGAN, which 
uses Selective Transfer Units (STU) to transfer image 
content features from encoder to decoder so that the 
network can adaptively modify the features. Choi et 
al., in [2], proposed the StarGANv2 based on StarGAN, 
which provides multiple style information of the target 
domain without additional labels, reducing the depen-
dence of attribute labels. Yang et al., in [36], proposed 
L2M-GAN, which introduced the orthogonality loss, 
separated the target attribute’s associated style code 
from the unrelated style code, and carried out the at-
tribute transfer. Mao et al., in [26], proposed SAVI2I 
using signed attribute vectors to achieve cross-domain 
image attribute transfer.
The effectiveness of facial image is highly subjective, 
as the concept of beauty varies across different cul-
tures. These perceptions significantly influence the de-
sign and outcome of facial image processing. Diamant 
et al., in [28] proposed Bhoder-GAN, which generates 
facial images based on requested aesthetic scores. Wei 
et al., in [33], researched facial symmetry and attrac-
tiveness to quantify facial aesthetics. Donatas et al., in 
[22], using GAN to predict and enhance the aesthetic 
appeal of generated facial images, aiming to improve 
the prediction of facial attractiveness. Zheng et al., in 
[4], proposed FE-GAN, which incorporates emotions 
and expressions in facial generation, producing more 
distinctive images.
In the context of existing research, it becomes evident 
that the field of facial attribute transfer faces signifi-
cant challenges. These challenges primarily revolve 
around non-frontal facial images and faces with occlu-
sions, encompassing issues such as low image genera-
tion quality, attribute omissions, and a lack of diversity. 
These problems have hindered the effectiveness and 
scope of comprehensive facial attribute transfer.
This paper presents an innovative unsupervised 
multi-domain face attribute transfer network known 
as FES-StarGANv2, which is built upon the founda-
tion of StarGANv2. The objective is to tackle these 
significant challenges. Our primary contributions are 
summarized as follows:
1 We propose an attention-guided feature fusion 

module that combines feature fusion and attention 
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mechanisms to eliminate redundancies in low-lev-
el features while enrich the local key features ex-
tracted from the face images. 

2 To fully capture the style code of the target domain, 
we design a style code extraction module. It se-
lectively allocates attention and extracts the style 
code that reflect key facial texture features.

3 We add a face image optimization module to simu-
late random changes in the real world like hair and 
wrinkles. To enhance the visual realism of the gen-
erated image.

4 To enhance diversity in the generated images, we 
employe a structural diversity loss function to 
maximize dissimilarity between generated images.

The structure of this paper is organized as follows: 
Section 2 gives a review of related works on face at-
tribute transfer. Section 3 describes the proposed 
network model and a loss function in detail. Section 
4 presents the experiments implements, such as data-
sets, evaluation metrics and setting. Section 5 pres-
ents the results, and analysis of the experiments. The 
conclusion is drawn in the final section.

2. Related Work
2.1. Face Attribute Transfer
Face attribute transfer is to change some attributes 
of a face image, such as age, gender, and facial ex-
pression, to maintain the same person while having 
new attribute characteristics. We can transform fa-
cial features from one person to another by training 
a network. This transformation can be modest, like 
changing hair color or lip shape, or more complex, like 
converting male to female facial features. The core 
concept of face attribute transfer lies in transferring 
the texture of the image.
Traditional image texture transfer is accomplished 
through non-parametric algorithms. Originally, 
Hertzmann et al., in [9] proposed an image texture 
synthesis and feature transfer algorithm based on an 
approximate nearest neighbor search nonparametric 
method, which involves resampling the source image 
to create a new texture. However, this non-paramet-
ric approach often results in the loss of high-level se-
mantic information in the image.
With the widespread adoption of deep learning, 
transfer models based on Convolutional Neural Net-

works (CNNs), as proposed by Gatys et al., in [6], have 
emerged. These models leverage CNNs to simultane-
ously extract and model both the underlying texture 
information and high-level semantic content of the 
image. Many subsequent texture transfer algorithms 
are also built upon this foundation [10, 18, 32]. Al-
though this method requires a lengthy training pro-
cess and can produce relatively uniform results.
The advent of Generative Adversarial Networks 
(GANs) has provided a powerful tool for manipulating 
facial attributes. GANs generate realistic, high-defi-
nition face images through adversarial training, and 
algorithms relying on GANs for image texture trans-
fer have emerged.  Initially, Mirz et al., in [25], intro-
duced conditional GAN (cGAN), which successfully 
use class labels to generate specific images random-
ly. After that, Pix2Pix [17], CycleGAN [39], DualGAN 
[37], and other networks are based on GAN to realize 
image texture transfer. These algorithms are super-
vised learning that requires paired data sets.
To overcome the limitations of datasets, numerous 
unsupervised algorithms relying on a single network 
to achieve texture transfer across multiple domains 
have emerged. Examples include MUNIT [7], DRIT 
[20], StarGAN [1], STGAN [8], AttGAN [21], L2M-
GAN [36], and I2 I[26], which employ generated ad-
versarial network for image texture migration. Choi et 
al., in [2], proposed StarGANv2 method represents an 
improved version of StarGAN, eliminating the need 
for labels while enabling transformations of multiple 
facial attributes through an MLP structure.
Both face attribute transfer and face recognition are 
important application areas in the field of face image 
processing. The former aims to modify face attributes, 
while the latter focuses on recognizing faces. Excel-
lent face recognition technology can greatly assist in 
face attribute transfer. Saeed et al., in [31] proposed a 
framework for recognition of facial expression using 
HOG features, which significantly improved accura-
cy in recognizing expressions. Zeebareeet al., in [40], 
proposed a face mask detection using Haar Cascades 
classifiers, which can reduce the cost of real-time 
identity verification. These advancements provide a 
foundational contribution to the development of fa-
cial attribute transfer in later stages.

2.2. Feature Fusion
In the realm of convolutional neural networks utilized 
for feature extraction, feature fusion stands as a prev-
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alent strategy to enhance model efficacy. There are 
primarily two techniques for fusing features: addition 
and concatenation. The method of feature concate-
nation involves amalgamating two or more feature 
maps along the channel dimension. Prominent mod-
els like DenseNet [11] and U-net [30] employ this ap-
proach, leveraging semantic data across feature maps 
of diverse scales to augment the number of channels, 
thereby elevating performance. On the other hand, 
feature addition entails a direct, pixel-wise summing 
of feature maps, as exemplified by models such as 
ResNet [12] and FPN [23]. This technique amplifies 
the descriptive power of the feature maps across each 
dimension without a change in dimensionality.

2.3. LSTM

The Long Short-Term Memory network (LSTM) [13] 
constitutes a specialized variant of Recurrent Neural 
Networks (RNNs) [14] tailored expressly for treating 
sequential data. In order to solve the problem of gradi-
ent disappearance and gradient explosion that affect 
the existence of traditional RNNs, the LSTM incor-
porates a nuanced gating mechanism. This mecha-

nism employs a cell state alongside three specific gat-
ed units: the forget gate, input gate, and output gate, 
thereby aptly capturing long-term dependencies. Ow-
ing to these characteristics, LSTMs are exceptionally 
well-suited for a wide range of applications, including 
Natural Language Processing (NLP) [3], speech rec-
ognition [27], and image processing [24, 38].

3. Approaches
3.1. Overall Architecture
The essence of face attribute transfer is to generate 
the desired image by changing some facial characteris-
tics while keeping others the same. Based on the Star-
GANv2 method proposed in [2], we design an unsuper-
vised multi-domain face attribute transfer network 
FES-StarGANv2 fusing feature enhancement and 
structural diversity loss function. FES-StarGANv2 has 
roughly four modules: Generator, Discriminator, Map-
ping Network, Style Encoder and specialized sub-mod-
ules, like Style Code Extraction module (SCE), Face 
Image Optimization module (FIO), etc. Figure 1 shows 
the overall structure of the network.

  

3.1. Overall Architecture 
The essence of face attribute transfer is to generate 
the desired image by changing some facial 
characteristics while keeping others the same. Based 
on the StarGANv2 method proposed in [2], we 
design an unsupervised multi-domain face attribute 
transfer network FES-StarGANv2 fusing feature 
enhancement and structural diversity loss function. 
FES-StarGANv2 has roughly four modules: 
Generator, Discriminator, Mapping Network, Style 
Encoder and specialized sub-modules, like Style 
Code Extraction module (SCE), Face Image 
Optimization module (FIO), etc. Figure 1 shows the 
overall structure of the network. 

The Style Encoder take a reference image and the 
domain associated with that image, then it learns the 
style of the reference image and generates a 
corresponding style code. The Mapping Network 
takes random latent code and a target domain as 
inputs. It learns the style of the target domain and 
outputs style codes that vary within that domain. 
These style codes are then fed into the Generator. 

The Generator employs an encoder-decoder 
architecture with six encoders and decoders. It 
receives the style codes generated by the Mapping 
Network and Style Encoder. The Generator then 
fabricates new images based on these style codes. 
The goal here is to alter specific facial attributes (like 
age, gender, hairstyle, etc.) while maintaining the 
integrity of other features.  

The Discriminator comprises six pre-activated 
residual blocks. Its primary function is to distinguish 
between real and generated fake data. 

The SCE module is designed to optimize the style 
codes, ensuring they accurately represent the desired 
attributes. The FIO module focuses on enhancing the 
diversity and fidelity of the generated images, 
making them more realistic and varied. The 
Attention Module: Improves the overall quality of 
the images by focusing on specific areas of the image 
that need refinement or greater detail. 

By integrating these modules, FES-StarGANv2 
efficiently accomplishes multi-domain face attribute 
transfers without needing paired data. 

Figure 1 
The overall structure of FES-StarGANv2. 

3.2. Attention-Guided Feature Fusion Module 
In image processing tasks, low-level features 
typically contain fine-grained details of the image, 
while high-level features contain more abstract 
semantic information. By combining low-level 
features with high-level features through skip 
connections, it ensures that the generated image 

retains fine details, thereby improving the quality of 
the generated image. 

We add skip connections of element-wise addition 
between feature maps of different resolutions 
(128×128, 64×64, 32×32, and 16×16). This helps in 
preserving and transferring information from lower-
resolution feature maps to higher-resolution ones, 
can enhance the overall understanding of the image, 

Figure 1
The overall structure of FES-StarGANv2
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The Style Encoder take a reference image and the 
domain associated with that image, then it learns 
the style of the reference image and generates a cor-
responding style code. The Mapping Network takes 
random latent code and a target domain as inputs. It 
learns the style of the target domain and outputs style 
codes that vary within that domain. These style codes 
are then fed into the Generator.
The Generator employs an encoder-decoder architec-
ture with six encoders and decoders. It receives the 
style codes generated by the Mapping Network and 
Style Encoder. The Generator then fabricates new im-
ages based on these style codes. The goal here is to al-
ter specific facial attributes (like age, gender, hairstyle, 
etc.) while maintaining the integrity of other features. 
The Discriminator comprises six pre-activated resid-
ual blocks. Its primary function is to distinguish be-
tween real and generated fake data.
The SCE module is designed to optimize the style 
codes, ensuring they accurately represent the desired 
attributes. The FIO module focuses on enhancing the 
diversity and fidelity of the generated images, making 
them more realistic and varied. The Attention Mod-
ule: Improves the overall quality of the images by fo-
cusing on specific areas of the image that need refine-
ment or greater detail.
By integrating these modules, FES-StarGANv2 ef-
ficiently accomplishes multi-domain face attribute 
transfers without needing paired data.

3.2. Attention-Guided Feature Fusion Module

In image processing tasks, low-level features typi-
cally contain fine-grained details of the image, while 
high-level features contain more abstract semantic 
information. By combining low-level features with 
high-level features through skip connections, it en-
sures that the generated image retains fine details, 
thereby improving the quality of the generated image.
We add skip connections of element-wise addition be-
tween feature maps of different resolutions (128×128, 
64×64, 32×32, and 16×16). This helps in preserving 
and transferring information from lower-resolution 
feature maps to higher-resolution ones, can enhance 
the overall understanding of the image, which can be 
crucial for generating high-quality images.
Low-level features often contain a significant amount 
of redundant information, which may not be particu-
larly helpful for the task and may even disrupt the per-

formance of the model. To address this, we introduce 
an attention module into the first layer of down-sam-
pling (128×128 size, 128-channel feature map), which 
focus on task-related feature information. This fusion 
step enhances the precision and refinement of the 
features, making them more accurate. Figure 2 illus-
trates the improved encoder-decoder structure. 

Figure 2 
The encoder-decoder of Attention-guided feature fusion 
(AFF)
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redundant features. This emphasis on relevant 
information and suppression of redundant details 
ensures that the subsequent feature fusion module 
benefits from a refined and focused set of features, 
leading to improved precision and feature integration 
in the final output. 
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The encoder-decoder of Attention-guided feature fusion 
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The attention module is implemented using the 
Convolutional Block Attention Module (CBAM) 
[34], which comprises both a Channel Attention 
Module (CAM) and a Spatial Attention Module 
(SAM). This combination effectively identifies 
spatially significant facial features. The introduction 
of the attention-guided feature fusion module allows 
the network to concentrate on critical facial 
characteristics while efficiently filtering out less 
relevant peripheral areas. 

3.3. Style Code Extraction Module 
After the mapping network and the style encoder, we 
introduce the Style Code Extraction Module (SCE) 
with the aim of enhancing the accuracy and precision 
of the style code. This SCE module processes the 
style data to generate a more precise style code, 

assisting the generator in gaining a nuanced 
understanding of the stylistic characteristics of the 
target domain. The SCE module is based on LSTM, 
as depicted in Figure 3.  

The extracted style code is presented as a sequence. 
This sequence-based style code allows us to use 
LSTM to uncover the relationships among regional 
features. LSTM excels at capturing the temporal 
relationships within the sequence of target style 
codes, thus providing valuable contextual 
information about the target style image. By 
selectively extracting relevant information from the 
target image, without relying on additional 
supervision data, we enhance the accuracy of the 
style code representation. 
Figure 3  
The Style Code Extraction module (SCE). 

 
In the SCE module, LSTM is computed as follows: 
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where tx  is the input temporal sequence at the 
current time t, W and b are the weight matrix and 
bias vector; ti is the input gate, tf  is the forget gate, 

to  is the output gate, tg  is the output of the cell 
gate, tc  is the state of the cell at time t, th  is the 
hidden layer state at time. 

3.4. Face Image Optimization Module 
Conventional face attribute transfer models often 
produce similar images because they rely solely on 
latent codes, which might not capture the unique 
characteristics of each face image. As a result, the 
generated images can lack diversity and authenticity. 

Guided by the attention module, the network not only 
gains access to more informative features but also ef-
fectively filters out the adverse effects of redundant 
features. This emphasis on relevant information and 
suppression of redundant details ensures that the 
subsequent feature fusion module benefits from a re-
fined and focused set of features, leading to improved 
precision and feature integration in the final output.
The attention module is implemented using the Con-
volutional Block Attention Module (CBAM) [34], 
which comprises both a Channel Attention Module 
(CAM) and a Spatial Attention Module (SAM). This 
combination effectively identifies spatially signifi-
cant facial features. The introduction of the atten-
tion-guided feature fusion module allows the network 
to concentrate on critical facial characteristics while 
efficiently filtering out less relevant peripheral areas.

3.3. Style Code Extraction Module
After the mapping network and the style encoder, we 
introduce the Style Code Extraction Module (SCE) 
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with the aim of enhancing the accuracy and precision 
of the style code. This SCE module processes the style 
data to generate a more precise style code, assisting the 
generator in gaining a nuanced understanding of the 
stylistic characteristics of the target domain. The SCE 
module is based on LSTM, as depicted in Figure 3. 

Figure 3 
The Style Code Extraction module (SCE)

The extracted style code is presented as a sequence. 
This sequence-based style code allows us to use 
LSTM to uncover the relationships among regional 
features. LSTM excels at capturing the temporal re-
lationships within the sequence of target style codes, 
thus providing valuable contextual information about 
the target style image. By selectively extracting rele-
vant information from the target image, without re-
lying on additional supervision data, we enhance the 
accuracy of the style code representation.
In the SCE module, LSTM is computed as follows:
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~s , respectively.  

Introducing this loss function sdL  guides generator G 
to take into account more structural changes when 
generating new images, resulting in transferred 
images with enhanced expressive richness. In our 
specific implementation, we employ the Structure 
Similarity Index Measure (SSIM)[35] loss function to 
constrain the maximum inconsistency in color and 
edge texture structure between two transfer images 
generated by two distinct style codes. During 
training, we aim to maximize the structure diversity 
loss sdL . The SSIM metric quantifies the similarity 
of two images by considering factors like brightness, 
contrast, and structure. For two different images, 
denoted as x and y, the SSIM is defined as follows: 
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where xµ and yµ  are the means of x and y 

respectively, 2
xσ  and 2

yσ  are the variances of x and 
y respectively, xyσ  is the covariance of x and y, 1c  
and 2c  are constants. 

Finally, our comprehensive objective function can be 
summarized as follows: 
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where advL  is the adversarial loss, which measures 
the difference between the fake data and the real. 

styL  is the style reconstruction loss, constricting the 
generator G to better preserve the image style upon 
attribute transfer. dsL  and sdL  are the diversity 
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respectively, which increase the diversity expression 
of the generated image. cycL  is a cycle consistency 
loss, which guarantees the consistency of the 
generated image with the content of the source 
image. styλ , dsλ , sdλ  and cycλ  are hyperparameters 
for each term. 
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where advL  is the adversarial loss, which measures 
the difference between the fake data and the real. 

styL  is the style reconstruction loss, constricting the 
generator G to better preserve the image style upon 
attribute transfer. Lds  and Lsd  are the diversity sensi-
tive loss and the structural diversity loss, respective-
ly, which increase the diversity expression of the gen-
erated image. cycL  is a cycle consistency loss, which 
guarantees the consistency of the generated image 
with the content of the source image. styλ , λds, λsd and 

cycλ  are hyperparameters for each term.

4. Implementation of Experiments 
4.1. Datasets
We use the CelebA-HQ dataset for training and val-
idation, which is an advanced version of the CelebA 

dataset that contains 30K high-quality face images 
with a maximum resolution of 1024x1024.
During training, the dataset is divided into male and 
female domains, consisting of 28,000 training images 
and 2,000 validation images. To maintain consistency 
in our experiments, we consistently utilized 256x256 
resolution images.

4.2. Evaluation Metrics
The CelebA-HQ dataset uses FID [16] and LPIPS [41] 
as the evaluation metrics of model, which measure 
the accuracy and diversity of the generated images, 
respectively.

4.2.1. FID
FID (Fréchet Inception Distance) is a metric used to 
assess the disparity between two image distributions 
(typically between real and generated images). It is 
commonly employed to evaluate the quality of images 
produced by GANs.
Use the Inception-v3 model to extract features from 
an intermediate layer for both the real and generated 
images.  This results in a feature vector for each im-
age. Calculate the mean and covariance of the feature 
vectors for the real images and the generated images. 
We define the Gaussian distribution of the real im-
ages is defined as ）（ CmX ,~1 , and the Gaussian dis-
tribution of the generated images is ）（ ωω CmX ,~2 , 
The FID calculation is formulated as:
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In the best case scenario, FID is 0, indicating that the 
two sets of images are identical. A lower FID is 
highly correlated with higher quality generated 
images. 

 
4.2.1 LPIPS 
LPIPS (Learned Perceptual Image Patch Similarity) 
is a metric used to evaluate the perceptual 
differences between two images from a human visual 
perspective. LPIPS calculates the discrepancies 
between outputs from various layers of a pretrained 
AlexNet network. By weighting these differences, 
LPIPS yields a scalar value that measures the 
perceptual disparity between the two images. The 
larger the LPIPS, the higher the diversity of the 
generated images. Define two generated images as x 
and 0x , and the LPIPS calculation is formulated as: 
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4.3. Training Details 
The experimental hardware environment is made of 
Intel i9-10980XE CPU, 64GB, and NVIDIA 
GeForceRTX3090, 24GB. The software contains 
Python3.6.5, CUDA11.3, cuDNN8.8.0, PyTorch11.3 
framework, and Ubuntu22.04 operating system. 

In terms of hyper-parameter, the batch size is set to 
8, and the total number of iterations is set to 100K. 
The learning rate of the Generator, Discriminator, 
and Style Encoder is set to 0.0001, and the learning 
rate of the Mapping Network is set to 0.00001. In 
model optimization training, Adam is used as the 
gradient descent algorithm, with 1β  and 2β  set to 0 
and 0.99. In terms of weight selection, set styλ , dsλ , 

sdλ  and cycλ  to 1, and for stable training, dsλ  and 

sdλ  linearly decays to zero in 100K iterations. Table 
1 shows the influence of dsλ on the experimental 
effect, so dsλ  is set to 1. 

Table 1 

The influence of dsλ  on LPIPS, LPIPS is related to image 
diversity. 
the value of sdλ  LPIPS_latent↑ LPIPS_reference↑ 

sdλ =0 0.436 0.383 

sdλ =0.5 0.445 0.379 

sdλ =1 0.453 0.389 

In the testing and validation experiments of this 
study, target domain images are chosen to 
significantly differ from the source domain images. 
This includes selecting images with substantial skin 
color differences, vivid hair colors (like blonde or 
white), and faces with distinct attributes such as 
numerous wrinkles. This approach helps to better 
assess the capability of the network to handle and 
transform images with various attributes. 

 
5. The Results 
To validate the efficacy of the experiment, we 
conducted comparisons between the FES-
StarGANv2 method and other face attribute transfer 
techniques, performing both qualitative and 
quantitative experiments. We analyze experimental 
data and image visualization results from two 
viewpoints: latent code-guided image generation and 
reference image-guided image generation. 

5.1. Latent Code-Guided Generation 
We present a quantitative comparison between our 
method and other approaches in Table 2. The FID 
value, inversely related to image quality, and the 
LPIPS value, directly linked to image diversity, our 
method achieves lower FID and higher LPIPS values 
compared to other methods, indicating its excellence 
in generating images of superior quality and 
diversity. Compared with the baseline StarGANv2, 
our method achieves an FID value of 13, a reduction 
of 11%, and an LPIPS value of 0.453, an 
improvement of 3.9%. 
Table 2 
Quantitative comparison of latent code-guided generation. 

Datasets Methods FID↓ LPIPS↑ 

CelebA-HQ 

MUNIT 31.4 0.363 
DRIT 52.1 0.178 

MSGAB 33.1 0.389 
StarGANv2 14.6 0.436 

SAVI2I 48.3 0.311 

ours 13.0 0.453 

We also present the visualizations results of three 
methods applied to local occlusion and non-frontal 
face images in the Figure 5. Figure 5(a) displays the 
visualization results for local occlusion face images, 
while Figure 5(b) illustrates results for non-frontal 
face images.  

Observing the visualizations in Figure 5, it becomes 
apparent that when the MUNIT and SAVI2I methods 
learn random image styles, the transferred images it 
generates fail to change attributes such as hairstyle 
and hat. Similarly, the images generated by the 
StarGANv2 method exhibiting noticeable 
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In the best case scenario, FID is 0, indicating that the 
two sets of images are identical. A lower FID is highly 
correlated with higher quality generated images.

4.2.1. LPIPS
LPIPS (Learned Perceptual Image Patch Similarity) 
is a metric used to evaluate the perceptual differences 
between two images from a human visual perspective. 
LPIPS calculates the discrepancies between outputs 
from various layers of a pretrained AlexNet network. 
By weighting these differences, LPIPS yields a scalar 
value that measures the perceptual disparity between 
the two images. The larger the LPIPS, the higher the 
diversity of the generated images. Define two gener-
ated images as x and 0x , and the LPIPS calculation is 
formulated as:
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learn random image styles, the transferred images it 
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and hat. Similarly, the images generated by the 
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4.3. Training Details
The experimental hardware environment is made 
of Intel i9-10980XE CPU, 64GB, and NVIDIA Ge-
ForceRTX3090, 24GB. The software contains Py-
thon3.6.5, CUDA11.3, cuDNN8.8.0, PyTorch11.3 
framework, and Ubuntu22.04 operating system.
In terms of hyper-parameter, the batch size is set to 8, 
and the total number of iterations is set to 100K. The 
learning rate of the Generator, Discriminator, and 
Style Encoder is set to 0.0001, and the learning rate 
of the Mapping Network is set to 0.00001. In model 
optimization training, Adam is used as the gradient 
descent algorithm, with 1β  and 2β  set to 0 and 0.99. 
In terms of weight selection, set styλ , λds, λsd and cycλ  
to 1, and for stable training, λds and  λsd linearly decays 
to zero in 100K iterations. Table 1 shows the influence 
of λds on the experimental effect, so λds is set to 1.

performing both qualitative and quantitative exper-
iments. We analyze experimental data and image 
visualization results from two viewpoints: latent 
code-guided image generation and reference im-
age-guided image generation.

5.1. Latent Code-Guided Generation
We present a quantitative comparison between our 
method and other approaches in Table 2. The FID val-
ue, inversely related to image quality, and the LPIPS 
value, directly linked to image diversity, our method 
achieves lower FID and higher LPIPS values com-
pared to other methods, indicating its excellence in 
generating images of superior quality and diversity. 
Compared with the baseline StarGANv2, our method 
achieves an FID value of 13, a reduction of 11%, and an 
LPIPS value of 0.453, an improvement of 3.9%.

Table 1
The influence of λds on LPIPS, LPIPS is related to image 
diversity

the value of λsd LPIPS_latent↑ LPIPS_reference↑

λsd =0 0.436 0.383

λsd =0.5 0.445 0.379

λsd =1 0.453 0.389

In the testing and validation experiments of this study, 
target domain images are chosen to significantly differ 
from the source domain images. This includes select-
ing images with substantial skin color differences, vivid 
hair colors (like blonde or white), and faces with distinct 
attributes such as numerous wrinkles. This approach 
helps to better assess the capability of the network to 
handle and transform images with various attributes.

5. The Results
To validate the efficacy of the experiment, we con-
ducted comparisons between the FES-StarGANv2 
method and other face attribute transfer techniques, 

Table 2
Quantitative comparison of latent code-guided generation

Datasets Methods FID↓ LPIPS↑

CelebA-HQ

MUNIT 31.4 0.363

DRIT 52.1 0.178

MSGAB 33.1 0.389

StarGANv2 14.6 0.436

SAVI2I 48.3 0.311

ours 13.0 0.453

We also present the visualizations results of three 
methods applied to local occlusion and non-frontal 
face images in the Figure 5. Figure 5(a) displays the 
visualization results for local occlusion face images, 
while Figure 5(b) illustrates results for non-frontal 
face images. 
Observing the visualizations in Figure 5, it becomes 
apparent that when the MUNIT and SAVI2I methods 
learn random image styles, the transferred images it 
generates fail to change attributes such as hairstyle 
and hat. Similarly, the images generated by the Star-
GANv2 method exhibiting noticeable deficiencies in 
facial edges, hairstyles, and overall realism. In con-
trast, our FES-StarGANv2 method excels, producing 
higher-quality images that effectively mitigate the is-
sue of incomplete generation. These images success-
fully modify attributes like hairstyle and hat, with 



Information Technology and Control 2024/3/53968

  

deficiencies in facial edges, hairstyles, and overall 
realism. In contrast, our FES-StarGANv2 method 
excels, producing higher-quality images that 
effectively mitigate the issue of incomplete 
generation. These images successfully modify 

attributes like hairstyle and hat, with complete and 
accurate facial edges and hairstyles. This 
demonstrates the advantages of our method in the 
domain of face attribute transfer. 

Figure 5  
Qualitative comparison of latent code-guided image generation. 
The first column is the source image, and the second is the latent code. The source image is transferred to the target domain using 
a random sample of the latent code. And the third, fourth, fifth and the sixth columns are the transferred images generated by the 
MUNIT, StarGANv2, SAVI2I, and FES-StarGANv2(ours), respectively. 

 
(a) local occlusion face images 
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Qualitative comparison of latent code-guided image generation

 
 

 

 
(b) non-frontal face images 

5.2. Reference Image-Guided Generation 
Table 3 presents a quantitative comparison of 
reference image-guided image generation on the 
CelebA-HQ datasets. FES-StarGANv2 methods 
(ours) achieves better FID and LPIPS values. With 
an FID value of 20.2, our method outperforms the 
baseline network by 23%. Additionally, our LPIPS 
score reaches 0.389, marking a 1.6% improvement 
over the baseline. 

Furthermore, we visualize the experimental results of 
the MUNIT, StarGANv2, SAVI2I and FES-
StarGANv2 methods on local occlusion and non-
frontal face images in Figure 6. Figure 6(a) and 6(b) 
depict the visualization results for local occlusion 
and non-frontal face images, respectively.  

Comparing and observing the visualizations in 
Figure 6, the MUNIT and SAVI2I method struggle 
to learn the target image style, resulting in 
transferred images that exhibit little attribute change 
and substantial face distortion. Whereas the 
StarGANv2 method correctly learns the target image 

style, it still faces issues such as missing face edges 
and ghosting in the generated images.  
In contrast, our FES-StarGANv2 method excels both 
in terms of visual quality and functionality.  It 
effectively learns the target domain's style to achieve 
attribute transfer while preserving the distinct 
characteristics of the source image. The generated 
images are comprehensive, devoid of ghosting or 
missing elements, and boast lifelike features.  These 
results strongly affirm the substantial advantages of 
FES-StarGANv2 in the field of face attribute 
transfer. 
Table 3 

Quantitative comparison of reference image-guided 
generation. 

Datasets Methods FID↓ LPIPS↑ 

CelebA-HQ 

MUNIT 107.1 0.176 
DRIT 53.3 0.311 

MSGAB 39.6 0.312 
StarGANv2 26.2 0.383 

SAVI2I 40.1 0.287 

ours 20.2 0.389 

Figure 5  
Qualitative comparison of reference image-guided image generation.  
The source image is transferred to the target domain by reference images that belong to the target domain. 

(a) local occlusion face images

(b) non-frontal face images 
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complete and accurate facial edges and hairstyles. 
This demonstrates the advantages of our method in 
the domain of face attribute transfer.
The first column is the source image, and the second 
is the latent code. The source image is transferred to 
the target domain using a random sample of the latent 
code. And the third, fourth, fifth and the sixth columns 
are the transferred images generated by the MUNIT, 
StarGANv2, SAVI2I, and FES-StarGANv2(ours), re-
spectively.

5.2. Reference Image-Guided Generation
Table 3 presents a quantitative comparison of ref-
erence image-guided image generation on the Cele-
bA-HQ datasets. FES-StarGANv2 methods (ours) 
achieves better FID and LPIPS values. With an FID 
value of 20.2, our method outperforms the base-
line network by 23%. Additionally, our LPIPS score 
reaches 0.389, marking a 1.6% improvement over the 
baseline.
Furthermore, we visualize the experimental results 
of the MUNIT, StarGANv2, SAVI2I and FES-Star-
GANv2 methods on local occlusion and non-fron-
tal face images in Figure 6. Figure 6(a) and 6(b) de-
pict the visualization results for local occlusion and 
non-frontal face images, respectively. 
Comparing and observing the visualizations in Figure 
6, the MUNIT and SAVI2I method struggle to learn 
the target image style, resulting in transferred imag-
es that exhibit little attribute change and substantial 
face distortion. Whereas the StarGANv2 method cor-
rectly learns the target image style, it still faces issues 
such as missing face edges and ghosting in the gener-
ated images. 

In contrast, our FES-StarGANv2 method excels both 
in terms of visual quality and functionality.  It ef-
fectively learns the target domain’s style to achieve 
attribute transfer while preserving the distinct 
characteristics of the source image. The generat-
ed images are comprehensive, devoid of ghosting or 
missing elements, and boast lifelike features.  These 
results strongly affirm the substantial advantages of 
FES-StarGANv2 in the field of face attribute transfer.
The source image is transferred to the target domain 
by reference images that belong to the target domain.

5.3. Robustness Analysis

To thoroughly validate the robustness and gener-
alization capabilities of our model, we conducted a 
comprehensive elasticity test of the FES-StarGANv2 
method.
This involved extending the application of the meth-
od beyond the CelebA-HQ dataset to include the 
FFHQ dataset, specifically focusing on challenging 
scenarios. We deliberately selected non-frontal face 
images and facial occlusions (such as such as faces 
with hats) from the FFHQ dataset, which included 
images of both men and women.  The generated imag-
es exhibited clear outlines and no missing facial fea-
tures, demonstrating strong robustness of the method 
in handling complex conditions, as seen in Figure 7.
In addition to this, we applied five different types of 
distortions, including Gaussian blur, image satura-
tion changes, image contrast changes, etc., to test the 
ability of the model to cope with real-world pertur-
bations. These perturbations were designed to mim-
ic real-world scenarios more accurately, as shown in 
Figure 8. Figure 8(a) shows images processed with 
real-world perturbations that were fed into the gen-
erator as source images. Figure 8(b) shows the image 
generated after the processed image is fed into the 
model. As can be seen from Figure 8(b), most of the 
images generated after processing are good and com-
plete, and the most important thing is that the gener-
ated image effect is not significantly different from the 
original image. However, the image generated by the 
internal occlusion perturbation processing does not 
perform as well at the nose, where the original black 
spot is still present. Nevertheless, the excellent per-
formance of other images also proves the adaptability 
and effectiveness of the FES-StarGANv2 method in 
handling various data types.

Table 3
Quantitative comparison of reference image-guided 
generation

Datasets Methods FID↓ LPIPS↑

CelebA-HQ

MUNIT 107.1 0.176

DRIT 53.3 0.311

MSGAB 39.6 0.312

StarGANv2 26.2 0.383

SAVI2I 40.1 0.287

ours 20.2 0.389
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(a) local occlusion face images

(b) non-frontal face images
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5.3. Robustness Analysis 
To thoroughly validate the robustness and 
generalization capabilities of our model, we 
conducted a comprehensive elasticity test of the 
FES-StarGANv2 method. 

This involved extending the application of the 
method beyond the CelebA-HQ dataset to include 
the FFHQ dataset, specifically focusing on 
challenging scenarios. We deliberately selected non-
frontal face images and facial occlusions (such as 

Figure 6 
Qualitative comparison of reference image-guided image generation
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such as faces with hats) from the FFHQ dataset, 
which included images of both men and women.  
The generated images exhibited clear outlines and no 
missing facial features, demonstrating strong 
robustness of the method in handling complex 
conditions, as seen in Figure 6. 

In addition to this, we applied five different types of 
distortions, including Gaussian blur, image 
saturation changes, image contrast changes, etc., to 
test the ability of the model to cope with real-world 
perturbations. These perturbations were designed to 
mimic real-world scenarios more accurately, as 
shown in Figure 7. Figure 7(a) shows images 
processed with real-world perturbations that were fed 
into the generator as source images. Figure 7(b) 
shows the image generated after the processed image 
is fed into the model. As can be seen from Figure 
7(b), most of the images generated after processing 

are good and complete, and the most important thing 
is that the generated image effect is not significantly 
different from the original image. However, the 
image generated by the internal occlusion 
perturbation processing does not perform as well at 
the nose, where the original black spot is still 
present. Nevertheless, the excellent performance of 
other images also proves the adaptability and 
effectiveness of the FES-StarGANv2 method in 
handling various data types. 

In summary, the FES-StarGANv2 method exhibits 
strong robustness and generalization capabilities, 
performing well on challenging datasets, complex 
scenarios, and real-world disturbances.  This 
suggests its potential to be applied in various 
applications, including face recognition, facial 
expression analysis, and facial attribute editing, with 
high accuracy and reliability.

Figure 6  
FES-StarGANv2 method on the FFHQ dataset. 
The top row is the source image, the first column is the reference image. 

 
Figure 7  
Real-World Perturbation. 

Figure 7 
FES-StarGANv2 method on the FFHQ dataset

Figure 8 
Real-World Perturbation  

 
(a)Images processed with real-world perturbations 

 
(b)The generated image of the processed with real-world perturbations 

5.4. User Survey Evaluation 
The qualitative experiment weas enriched through 
user evaluation to ensure the fairness and scientific 
nature. 30 students were randomly selected to rate 
the images generated using different methods. These 
shared images consist of 20 sets of evaluation 
samples, and each collection contains three 
transferred images generated by 3 methods based on 
the same input. In this setting, we can obtain 
30×20=600 sets of subjective evaluation results. 

Calculate the proportion of data obtained from 600 
questionnaire evaluation data groups; Tables 4-5 
show the results. The user criteria for selecting the 
best image are as follows (in choosing the best image 
generated by the latent code-guided, not to consider 
the target style expression): 

1. Image Quality: The best image should have 
precise details such as complete contour edges, hair, 
and facial features. 

2. Visual Perception: The best image should look 
like a human. 

3. Target Style Expression: The best image should be 
consistent with the target image domain features to 
the greatest extent, without other unrelated region 
changes. 

As indicated in Table 4, our method excels in both 
image quality and visual perception. Specifically: 

1. Image Quality: Our approach produces images 
with exceptional image quality. 

2. Visual Perception: The performance of our 
method is closely with the baseline method. The 
striking precision in the edge contours of our 
generated images can sometimes lead observers to 
believe that these images are the creations of AI. 
Table 4 
User survey evaluation results for latent code-guided 
generated images. 

Methods 
proportion 

Quality Visual Overall 

MUNIT 0.01 0.02 0.015 
StarGANv2 0.37 0.55 0.460 

ours 0.62 0.43 0.525 

These observations underscore the effectiveness and 
precision of our method in generating high-quality 
images that are visually compelling and closely 
resemble real human subjects. 

As depicted in Table 5, our method excels in three 
crucial aspects when it comes to reference image-
guided image generation: 
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striking precision in the edge contours of our 
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believe that these images are the creations of AI. 
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In summary, the FES-StarGANv2 method exhibits 
strong robustness and generalization capabilities, per-
forming well on challenging datasets, complex scenar-
ios, and real-world disturbances.  This suggests its po-
tential to be applied in various applications, including 
face recognition, facial expression analysis, and facial 
attribute editing, with high accuracy and reliability.
The top row is the source image, the first column is 
the reference image.

5.4. User Survey Evaluation
The qualitative experiment weas enriched through 
user evaluation to ensure the fairness and scientific 
nature. 30 students were randomly selected to rate 
the images generated using different methods. These 
shared images consist of 20 sets of evaluation sam-
ples, and each collection contains three transferred 
images generated by 3 methods based on the same in-
put. In this setting, we can obtain 30×20=600 sets of 
subjective evaluation results.
Calculate the proportion of data obtained from 600 
questionnaire evaluation data groups; Tables 4-5 
show the results. The user criteria for selecting the 
best image are as follows (in choosing the best image 
generated by the latent code-guided, not to consider 
the target style expression):
1 Image Quality: The best image should have precise 

details such as complete contour edges, hair, and 
facial features.

2 Visual Perception: The best image should look like 
a human.

3 Target Style Expression: The best image should be 
consistent with the target image domain features 
to the greatest extent, without other unrelated re-
gion changes.

As indicated in Table 4, our method excels in both im-
age quality and visual perception. Specifically:
1 Image Quality: Our approach produces images 

with exceptional image quality.
2 Visual Perception: The performance of our method 

is closely with the baseline method. The striking 
precision in the edge contours of our generated im-
ages can sometimes lead observers to believe that 
these images are the creations of AI.

These observations underscore the effectiveness and 
precision of our method in generating high-quality 

images that are visually compelling and closely re-
semble real human subjects.
As depicted in Table 5, our method excels in three cru-
cial aspects when it comes to reference image-guided 
image generation:
1 Image Quality: Our method consistently delivers 

high-quality images. These images exhibit clarity 
in terms of contour edges, hair, and facial features.

2 Visual Perception: The images generated by our 
method are highly visually appealing. They closely 
resemble real human subjects.

3 Target Style Expression: Our method effectively 
captures and embodies the texture features of the 
target domain image. This results in images that 
not only maintain high quality but also exhibit a 
strong adherence to the desired style of the target 
domain.

Table 4
User survey evaluation results for latent code-guided 
generated images

Methods
proportion

Quality Visual Overall

MUNIT 0.01 0.02 0.015

StarGANv2 0.37 0.55 0.460

ours 0.62 0.43 0.525

Table 5
User survey evaluation results for latent code-guided 
generated images

Methods
proportion

Quality Visual Style Overall

MUNIT 0.005 0.002 0 0.0023

StarGANv2 0.375 0.306 0.388 0.3563

ours 0.620 0.692 0.612 0.6413

Overall, our method demonstrates remarkable capa-
bilities in producing images that are not only aesthet-
ically pleasing but also represent the style and details 
of the target domain, including contour edges, hair, 
and facial features.
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5.5. Ablation Study
We conducted separate assessments to validate the 
effects of different modules (AFF, SCE FIO) and the 
structural diversity loss on image quality and diversi-
ty. We still analyze experimental data from two view-
points: latent code-guided image generation and ref-
erence image-guided image generation.
In our experimental setup, we conducted three con-
trol trials to assess the effectiveness of the AFF and 
the SCE. The results are presented in Table 6.

Both FIO and the structural diversity loss function 
share a common goal, which is to enhance image di-
versity. This means they are designed to make sure 
that the generated images are not repetitive or too 
similar to each other. Two sets of experiments were 
conducted to assess the effectiveness of FIO and the 
structural diversity loss function. The details of these 
experiments are displayed in Table 7.

Table 6
Ablation study on CelebA-HQ

Methods
Latent Reference

FID↓ LPIPS↑ FID↓ LPIPS↑

Baseline [10] 14.6 0.436 26.2 0.383

+ AFF 14.3 0.432 21.3 0.370

+ SCE 13.8 0.442 21.0 0.382

+ AFF + SCE 14.0 0.450 19.7 0.380

When the AFF module was added, the FID value de-
creased, indicating an improvement in image qual-
ity. Lower FID values suggest better image quality. 
However, AFF primarily focuses on image quality and 
does not impact image diversity, as indicated by the 
unchanged LPIPS score. When the SCE module was 
added, there was a significant decrease in FID val-
ues, indicating an improvement in image quality. The 
LPIPS score either improved or remained unchanged. 
This suggests that SCE’s style code extraction effec-
tively captures the style of the target domain, con-
tributing to higher-quality images. When both AFF 
and SCE modules were added simultaneously, they 
collectively addressed the limitations of only adding 
AFF in terms of image diversity. The FID value was 
superior to the baseline, indicating improved image 
quality and diversity. This combination enhanced 
both image quality (due to AFF) and style accuracy 
(due to SCE).
The above result confirms that AFF enhances image 
quality, while SCE accurately captures the style of the 
target domain. When combined, AFF and SCE con-
tribute to improved image quality and diversity com-
pared to the baseline method StarGANv2.

Table 7
Ablation study on CelebA-HQ

Methods
Latent Reference

FID↓ LPIPS↑ FID↓ LPIPS↑

Baseline [10] 14.6 0.436 26.2 0.383

+FIO, Lsd 13.2 0.451 22.0 0.396

+ AFF + SCE +FIO, Lsd 13.0 0.453 20.2 0.389

Upon adding both FIO and the structural diversity 
loss function to the system, there was a significant 
improvement in the LPIPS value. LPIPS is often used 
to measure the similarity between two images from a 
perceptual perspective, so an improvement suggests 
that the generated images became more diverse. That 
indicates that FIO and the structural diversity loss 
function effectively contribute to increasing the ex-
pressive diversity of the generated images.
To further demonstrate the influence of FIO on im-
age agility, Figure 9 shows the influence of the FIO on 
image authenticity. As can be seen from Figure 9, the 

Figure 9
The influence of the FIO on image authenticity

  

achieved by combining AFF, SCE, FIO, and sdL . In 
this configuration, both FID and LPIPS reached their 
respective optima, surpassing the performance of the 
baseline method. This demonstrates the synergistic 
effect of integrating these components in improving 
both image quality and diversity. 
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6. Limitations 
Unsupervised facial attribute transfer typically relies 
on existing datasets, and its ability to achieve 
attribute transfer depends on the attributes included 
in that dataset. Due to dataset limitations, facial 
attribute transfer cannot achieve complete freedom in 
transferring various attributes. If the dataset lacks 
substantial information about certain attributes, such 
as glasses or freckles, attribute transfer for these 
attributes may not perform well because the model 
lacks sufficient training data to learn and understand 
the details of these attributes. 

The diversity and coverage of attributes in the 
dataset are crucial for the success of unsupervised 
facial attribute transfer. If the dataset contains 
samples with various attributes, and the range of 
variations in these attributes is sufficiently wide, 
unsupervised facial attribute transfer models will be 
better able to learn and achieve the transfer of these 
attributes. However, if the dataset lacks samples of 
certain attributes or if the variations in these 
attributes are limited, attribute transfer for those 
attributes may be constrained. 

Therefore, for future endeavors, it is advisable to 
choose or create a dataset that encompasses diversity 
and offers a wide range of attribute coverage when 
conducting unsupervised facial attribute transfer. 
Additionally, when dealing with uncommon or rare 
attributes, it is recommended to consider utilizing 
more data to train the model and enhance its 
performance. 
7. Conclusion 

This paper addresses the common challenges faced 
in face attribute transfer for non-frontal and 
obstructed facial images, such as low-quality images, 
artifacts, missing facial details, and a lack of 
diversity. We introduce several key modules 
designed to enhance the overall quality and 
performance of the generated images. 

The AFF module is integrated into the generator to 
tackle the aforementioned problems. It effectively 
enhances the quality of generated images by guiding 
the fusion of important features, resulting in clearer 
and more realistic images. The SCE module 
optimizes the style coding of the target domain. 
Improving the way the generator learns from target 
domain images, contributes to generating more style-
consistent images. The FIO module and sdL are 
designed to improve the overall flexibility and 
diversity of the generated images. It works in 
conjunction with the structural diversity function to 
ensure that the generated faces exhibit a wider range 
of attributes and characteristics. 

In experiments on the CelebA-HQ dataset, the FES-
StarGANv2 method outperforms other algorithms by 
enhancing image quality, reducing artifacts, and 
increasing diversity, effectively addressing common 
face attribute transfer challenges. 

There are also limitations to our approach. Due to 
limitations in our dataset, there were several 
attributes, such as glasses, freckles, etc., that we 
could not adequately address during training, 
inevitably leading to certain oversights. In the future, 
we plan to select or create more extensive datasets 
for training, focusing specifically on uncommon or 
rare attributes. However, there are not too many 
datasets for specific domains, the FES-StarGANv2 
method may not be entirely fair or representative 
when generalized to entirely new domains. In the 
future, we plan to explore the application of the FES-
StarGANv2 method be generalized to other fields 
such as animals and automobiles.  
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facial details of the image generated by the addition of 
the FIO module are more realistic and more like real 
people compared to the baseline. This suggests that 
FIO plays a role in determining how authentic or gen-
uine the generated images appear.
Overall, these findings suggest that integrating FIO 
and the structural diversity loss function into the 
system has a positive impact on the diversity and au-
thenticity of the generated images, as evidenced by 
the improvement in LPIPS values and the observed 
correlation between image diversity and LPIPS.
Ultimately, the best overall performance was achieved 
by combining AFF, SCE, FIO, and Lsd. In this configu-
ration, both FID and LPIPS reached their respective 
optima, surpassing the performance of the baseline 
method. This demonstrates the synergistic effect of 
integrating these components in improving both im-
age quality and diversity.

6. Limitations
Unsupervised facial attribute transfer typically relies 
on existing datasets, and its ability to achieve attri-
bute transfer depends on the attributes included in 
that dataset. Due to dataset limitations, facial attri-
bute transfer cannot achieve complete freedom in 
transferring various attributes. If the dataset lacks 
substantial information about certain attributes, 
such as glasses or freckles, attribute transfer for these 
attributes may not perform well because the model 
lacks sufficient training data to learn and understand 
the details of these attributes.
The diversity and coverage of attributes in the dataset 
are crucial for the success of unsupervised facial at-
tribute transfer. If the dataset contains samples with 
various attributes, and the range of variations in these 
attributes is sufficiently wide, unsupervised facial 
attribute transfer models will be better able to learn 
and achieve the transfer of these attributes. Howev-
er, if the dataset lacks samples of certain attributes or 
if the variations in these attributes are limited, attri-
bute transfer for those attributes may be constrained.
Therefore, for future endeavors, it is advisable to 
choose or create a dataset that encompasses diversi-
ty and offers a wide range of attribute coverage when 
conducting unsupervised facial attribute transfer. Ad-
ditionally, when dealing with uncommon or rare attri-

butes, it is recommended to consider utilizing more 
data to train the model and enhance its performance.

7. Conclusion
This paper addresses the common challenges faced in 
face attribute transfer for non-frontal and obstructed 
facial images, such as low-quality images, artifacts, 
missing facial details, and a lack of diversity. We in-
troduce several key modules designed to enhance the 
overall quality and performance of the generated im-
ages.
The AFF module is integrated into the generator to 
tackle the aforementioned problems. It effectively en-
hances the quality of generated images by guiding the 
fusion of important features, resulting in clearer and 
more realistic images. The SCE module optimizes the 
style coding of the target domain. Improving the way 
the generator learns from target domain images, con-
tributes to generating more style-consistent images. 
The FIO module and sdL are designed to improve the 
overall flexibility and diversity of the generated imag-
es. It works in conjunction with the structural diver-
sity function to ensure that the generated faces exhib-
it a wider range of attributes and characteristics.
In experiments on the CelebA-HQ dataset, the 
FES-StarGANv2 method outperforms other algo-
rithms by enhancing image quality, reducing arti-
facts, and increasing diversity, effectively addressing 
common face attribute transfer challenges.
There are also limitations to our approach. Due to lim-
itations in our dataset, there were several attributes, 
such as glasses, freckles, etc., that we could not ade-
quately address during training, inevitably leading to 
certain oversights. In the future, we plan to select or 
create more extensive datasets for training, focusing 
specifically on uncommon or rare attributes. However, 
there are not too many datasets for specific domains, 
the FES-StarGANv2 method may not be entirely fair 
or representative when generalized to entirely new do-
mains. In the future, we plan to explore the application 
of the FES-StarGANv2 method be generalized to other 
fields such as animals and automobiles. 
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