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Identification of the optic disc and fovea is crucial for automating the diagnosis and screening of retinal diseas-
es. Based on quantitative calculations, this study presents a decision support system for doctors that automati-
cally detect optic nerve hypoplasia. For disease diagnosis, U-Net architecture is used, which uses a pre-trained 
ResNet encoder to segment the optic disc and fovea structures. An important aspect of the proposed technique 
is that pretrained ResNet and U-Net are used together, providing robust performance in the detection of optic 
nerve hypoplasia. Our proposed architecture was tested on retinal images from Messidor, Diaretdb1, DRIVE, 
HRF, APTOS, and IDRID. In addition, a special database called ONH-NET was created based on 189 retinal im-
ages obtained from Düzce University, Department of Ophthalmology. Messidor database test images showed, 
0. 9069 IOU Score, 0.9626 Sensitivity, 0.9411 Precision, 0.9974 Accuracy and 0.9505 dice-coefficient values in 
optic disc detection, and 0.8282 IOU score, 0.8442 sensitivity, 0.8252 precision, 0.8992 Accuracy, 0.7873 dice 
coefficient values were obtained in fovea detection. We computed diameter optic disc to macula radius ratios 
from segmented optic disc and fovea for screening optic nerve hypoplasia and achieved 100% success. 
KEYWORDS: Deep Learning, Image Segmentation, Optic Disc, Fovea, Macula, U-Net.

1. Introduction
An important layer of the eye is the retina, which can 
show signs of disease early. The majority of visual dis-
orders are caused by structural deterioration of vari-

ous structures in the retina layer of the eye (vessels, 
optic disc, macula, fovea, etc.) [2]. Fundus cameras 
with different settings are used to take retinal images. 
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There are three different modes for fundus cameras, 
including Color Fundus Retinal Imaging, Red-Free 
Imaging, and Fluorescent Angiography Imaging [4]. 
A fundus image provides insight into the anatomy 
of the eye’s crucial structures, including the optic 
disc, blood vessels, macula and fovea. An essential 
anatomical structure in retinal fundus images is the 
optic disc (OD). According to fundus images, the OD 
appears bright, yellowish, and almost circular. It is 
where the main blood vessels enter the retina. It is dif-
ficult to get an accurate location or outline of OD with 
segmentation techniques because of the distractions 
in the images, such as abnormal lesions, imprecise 
boundaries, and peripapillary atrophy, despite OD be-
ing an approximate circle and having high intensity 
characteristics [11].
In Figure 1, OD appears as a bright disc-shaped area at 
the point where blood vessels gather 3-4 mm from the 
fovea, the macula’s center. An area between superior 
and inferior temporal retinal arteries and veins that 
run tangential to OD is known as the macula. Figure 
1 shows the macula’s four topographic components: 
perifovea, parafovea, fovea, and foveolar [36]. The 
retina provides detailed central vision thanks to this 
small, highly sensitive area [35]. Located in the macu-
la’s center, the fovea is the most sensitive region of vi-
sion. This is part of the eye that controls central vision 
and colour vision. It has a diameter of about 1.5 mm. 
This region is a region where depression occurs at 
the center of the macula in the retina. In general, the 
depth of this region can vary from person to person by 
4.0 mm and 0.8 mm, but on average it is 0.25 mm. Fur-
ther, when evaluating and grading retinal diseases, 

Figure 1
Anatomical Structures of the Retina 

it is important to know the distance between the OD 
and the fovea. To determine and locate OD and fovea 
accurately and automatically, this distance is highly 
important [19]. In this study, a method was developed 
for the diagnosis of optic nerve hypoplasia, which is 
associated with detecting regional anatomical struc-
tures of the retina, including the OD, the macula and 
the fovea, where the effects of changes associated 
with many eye diseases can be observed early.
Optical nerve hypoplasia (ONH) occurs when the 
retinal ganglion cells and axons constituting the op-
tic nerve do not develop properly. This disease is also 
referred to as an optic disc that is smaller than nor-
mal, and it has been found to cause significant visual 
dysfunctions, particularly in children [30]. Statis-
tics indicate that ONH is among the leading causes 
of visual disorders in children worldwide [33]. The 
prevalence of ONH increased six-fold between 1970 
and 2000, reaching 1.1 per 10,000 children today. Be-
tween 1970 and 2000, ONH prevalence increased six 
fold, reaching the current estimate of 1.1 per 10,000 
children [12]. Especially in recent years, Mousa et al. 
reported an increase in children experiencing health 
problems related to visual disorders. It was stated 
that approximately 12% of visual impairment cas-
es in children in the US and Europe were caused by 
ONH [33]. Men and women are equally affected by 
ONH. Although the disease rarely occurs, it is cru-
cial to detect it accurately to prevent blindness from 
occurring. Every newborn child is therefore exam-
ined and calculated to determine whether or not 
they have this disease [12]. As shown in Figure 2, a 

Figure 2
Parameters Used for Morphometric Techniques in the 
Diagnosis of ONH
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smaller ratio than 0.3 exists in ONH images between 
the horizontal disc diameter (DD) and the distance 
between the fovea center and the temporal edge of 
the optic disc (DM). In normal retinal images, the ra-
tio is greater than 0.3 [30].
This study aimed to measure these parameters most 
accurately and quickly so that the diagnostic result 
had the smallest error margin possible. The diameter 
of the optic disc and its distance from the macula’s 
center are manually measured in ophthalmology, and 
a diagnosis is based on the ratios of these measure-
ments. Diagnosing this disease requires the use of a 
calculator or paper and pencil. 
This study aimed to measure these parameters most 
accurately and quickly so that the diagnostic result 
had the smallest error margin possible. In ophthal-
mology, the diameter of the optic disc and the dis-
tance between the optic disc edge and the umbo point 
located at the center of the macula are manually mea-
sured, and a diagnosis is made based on the ratios of 
these parameters. Diagnosing this disease requires 
the use of a calculator or paper and pencil. This study 
provides doctors with a useful tool for diagnosing op-
tic nerve hypoplasia, which had not been diagnosed 
before with deep learning methods. This paper makes 
the following major contributions:
 _ On retinal fundus images, boundaries of OD, OD 

diameter, and the umbo point, also called the mac-
ula center, were automatically detected to diagnose 
this disease.

 _ Calculations necessary for diagnosis were done 
automatically without the use of paper, pencil, or 
calculators.

 _ It takes a neural network less than a second to pre-
dict in an appropriate setting, while a doctor needs 
more time to comprehend and make a decision based 
on the image features. Also, deep neural networks do 
not get tired even if they perform the same tasks re-
peatedly. Thus, it helps eliminate disease risks that 
may have been overlooked during diagnosis.

 _ Combining pre-trained ResNet with U-Net pro-
vides robust performance for detecting optical 
nerve hypoplasia, which is a novel aspect of the 
proposed method.

 _ This method avoids overfitting by combining pre-
trained ResNet and U-Net, resulting in faster net-
work training with fewer epochs.

 _ We tested the proposed architecture on retinal im-
ages in Messidor, Diaretdb1, DRIVE, HRF, APTOS, 
and IDRID databases. Additionally, 189 retinal 
images obtained from Düzce University’s Depart-
ment of Ophthalmology were used to create a spe-
cial database called ONH-NET.

2. Related Work
Automated retinal image analysis begins with OD de-
tection. 
A general classification of OD segmentation methods 
is shape-based, template-matching, and deformable 
and active contour-based. A number of segmentation 
methods are used in the detection of anatomical struc-
tures for the diagnosis of ONH, including gradient in-
formation-based methods, thresholding methods, shape 
detection methods, edge detection methods, and active 
contour-based methods, as in other biomedical image 
segmentation tasks [31]. One of the most frequently en-
countered problems with conventional image process-
ing methods is that the method is valid only for a cer-
tain target dataset. As these methods have not worked 
in different environments and conditions, researchers 
are looking for a general solution with deep learning. 
Depending on the imaging conditions and assumptions 
about the acquired images, classical image segmenta-
tion techniques can be accurate [9]. Thus, automated 
systems based on these methods may not work for imag-
es with different properties. These issues can be solved 
by deep learning segmentation solutions that learn how 
to represent certain objects from various annotated im-
ages. Deep learning architectures can be improved to 
produce more reliable models through problem-specific 
improvement studies. This study showed the effects of 
such an improvement on segmenting anatomical struc-
tures like the optic disc and fovea in retinal images.
Especially in the fields of convolutional neural net-
works (CNNs) and medical image analysis, deep 
learning has shown noteworthy segmentation per-
formances in recent years [28, 65]. Anatomical struc-
tures of the retina are increasingly being segmented 
with deep learning methods [26, 29]. In Table 1, CNN 
methods for detecting anatomical structures in reti-
nal images are compared with existing methods. In 
CNN-related work, we learn how to map features in 
an image and use that knowledge to map them in more 
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Table 1 
Comparison of the CNN methodologies for the detection of Retinal Anatomical Structures with the existing methods in 
the literature

Authors Approach Detected  
Landmarks  Databases Success Rate

Fu et al. [9] M-Net Optic disc, optic 
cup ORIGA, SCES For ORIGA AUC = 0.8380

For SCES AUC = 0.8980

Wang et al. 
[59] U-Net Optic disc

DIARETDB0, DIARETDB1, 
DRIONSDB, DRIVE, MESSIDOR, 
ORGIA.

IOU=0.8910
DSC=0.9390

Gu et al.[14] CE-Net Optic Disc, 
Vessels ORIGA, MESSİDOR, RIMONE Sen= 0.8300,  Acc=0.9500, 

AUC=0.9700

Wang et al. 
[60] POSAL Optic disc, optic 

cup
DRİSHTİ-GS, RIM-ONE, 
REFUGE

Diceloss of disc=0.9500
Diceloss of cup=0.8800

Al-Bander et 
al. [3] CNN The center of the 

Optic disc, fovea MESSIDOR, KAGGLE Fov cen. Acc=0.9700
OD cen Acc=0.9670

Hasan et 
al.[17] DRNet The center of  

Optic disc, fovea
IDRiD, RIMONE, DRISHTI-GS, 
DRIVE

mIoU  =0.8400, mIoU =0.9000,
mIoU =0.9330, mIoU =0.9200

Sevastopolsky 
et all.[50] U-Net Optic disc, optic 

cup
DRIONS-DB, RIM-ONE v.3, 
DRISHTI-GS

OD IOU= 0.8900
OC IOU=0.7500

Serener et 
al.[49] GoogLeNet Optic disc RIM-ONE Acc=0.8600, Se=0.2100 for R.NET

Acc=0.8500, Se=02900 for G.NET

Fu et al. [10] DENet Optic disc SCES, SINDI

AUC=0.9100, Acc=0.8400, 
Se=0.8400, Sp=0.8300
AUC=0.8100, Acc=0.7400, 
Se=07800, Sp=0.7100

Li, et al. [27] RCNN Optic disc, fovea MESSIDOR Jaccard = 0.8018, dice index=0.8877

Guo et al. [15]
A novel 
network 
MESNet

Optic disc, optic 
cup, vessel DRIVE, STARE and CHASE

Acc=0.9667, Se=0.8200, Sp=0.9853, 
AUC=0.9853
Acc=0.9724, Se=0.8200, Sp=0.9897, 
AUC=0.9893
Acc=0.9697, Se=0.8100, Sp=0.9845, 
AUC=0.9869

Zhang et al. 
[71]

U-Net (TAU) 
model

Optic disc, optic 
cup

DRISHTIGS, RIM-ONE v3, and 
REFUGE

AUC=0.6200, AUC=0.7800, 
AUC=0.8700

Prastyo et al. 
[41] U-Net Optic disc ORIGA Dice coefficient score of  0. 9840, 

loss =0.1500

detail. Converting an image to a vector gives good re-
sults in classification problems. To segment an im-
age, the vector created after converting a feature map 
into a vector must be used to reconstruct the image. 
Creating an image from a vector is very challenging. 
It is based on this problem that U-Net architecture 
emerged. In the same way that an image is converted 

to a vector, the vector is also converted back into an 
image using the feature mapping used during conver-
sion. As a result, distortions in the image will be great-
ly reduced and the structural integrity of the image 
will be preserved. To detect the fovea and optic disc, 
this study used the U-net model, a deep learning tech-
nique commonly used in medical imaging.
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3. Proposed Methodology 
The purpose of this study was to develop a method 
to precisely segment the optic disc and fovea, which 
are both necessary to detect optic nerve hypoplasia. 
Our work is based on deep learning techniques, which 
have revolutionized computer vision in recent years 
and are providing state-of-the-art solutions for image 
classification, segmentation, and other tasks. Deep 
learning networks are trained differently from mod-
el to model, but the steps are the same. The greatest 
advantage of convolutional neural networks as deep 
learning tools is their universality since they are able 
to recognize many different patterns in various imag-
es and objects.
This study used U-Net-based semantic segmenta-
tion to segment the optic disc and fovea structures. 
The main benefit of U-net is the creation of highly 
detailed segmentation maps from a small number of 
trading samples. Having properly labelled images is 
very important in medical imaging, as there is a short-
age of properly labelled images. It is essential to have 
properly labelled images in medical imaging. The 
network can learn these variations without addition-
al labelled data by using random elastic deformation 
on the training data [2]. Separating touching objects 
of the same class is another challenge, which can be 
overcome using a weighted loss function that penal-
izes the model if it fails to separate them. Due to its 
context-based learning, U-net also trains much faster.
These two challenges are alleviated by U-Net. The 
following are the advantages of U-Net over other 
CNN models:
 _ Training a network requires a limited number of 

samples.
 _ Using multi-scale recognition and fusion to realize 

image features. 
 _ Structures that are simple and flexible.
 _ Achieving high-quality pixel-level segmentation.

Aside from providing a flexible and extensible struc-
ture, the original U-Net is also effective for medical 
segmentation [43, 34]. By adapting to new tasks, the 
improved model will be able to meet a variety of needs 
[61,63].
In semantic segmentation processes, pixel-based 
classification can be done with little training data.  
Because the classification process is pixel-based, im-

ages to be used for education do not have to be split 
into fovea, disc, and background. All three classes can 
coexist in the training image. Semantic segmenta-
tion architectures can train on a pixel-by-pixel basis 
because the label image shows what class each pix-
el belongs to. In this study, at the training stage, the 
Messidor database was used. There are 1200 colour 
fundus images in this database taken with a The Top-
con TRC NW6 monocular retinography camera can 
be used for non-mydriatic retinography. It has a field 
of view of 45°. We divided the processed dataset into 
three subgroups, 900 for training, 180 for internal val-
idation, and 120 for independent testing, based on a 
ratio of 0.75:0.15:0.10 [58]. Segmenting retinal images 
requires annotating input images for segmentation 
training. In Ground truth for Messidor’s database, 
fovea was not provided. The ground truth for the 
annotation of the optic disc and fovea was obtained 
from a manual label made by an ophthalmologist, the 
third author of this paper. LabelMe [61], a free and 
open-source annotation tool developed by MIT, was 
used for marking optic disc and fovea boundaries and 
binding boxes for the segmentation of ground truth. 
LabelMe lets you label images and create annotated 
masks on the web. LabelMe has been used to map ret-
inal regions and then generate the image mask from 
the original image to annotate our retinal images.
As a pre-processing step, grayscale conversion and 
resizing processes were applied to the images before 
training began. U-Net is a convolutional neural net-
work segmentation architecture that is fully connect-
ed. (https://github.com/seva100/optic-nerve-cnn). 
Due to its shape, it was named after the letter U. En-
coders and decoders are the two parts of this archi-
tecture [51]. In the encoder part, discriminative fea-
tures are extracted from the image via convolutional 
layers. In the convolution layer, there are three 3*3 
filters, whereas the maximum pooling layer has two 
2*2 filters. Encoder part is an iterative convolution 
operation where the ReLU and max pooling (2x2 max 
pooling) operations are applied, followed by each con-
volution. The bottommost layer serves as a mediator 
between the encoder layer and the decoder layer. It 
consists of CNN layers followed by an upper convo-
lution layer. Feature information is increased while 
spatial information is decreased, thus enabling the 
architecture to learn complex structures more ef-
fectively during contracting. Expansion paths, also 
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known as decoders, are symmetrical paths in which 
precise localization is achieved by transposed con-
volutions. Therefore, it is a completely convolutional 
network from end to end, that is, it does not contain 
any dense layers, but only consists of convolution-
al layers. Therefore, it can be applied to any image. 
CNN layers receive input from the expansion lay-
er, which is then passed on to the upsampling layer. 
When the input is added (depth concatenation), the 
contraction layer’s attribute map corresponds to the 
current expansion layer. This action will ensure that 
the attributes learned when shrinking the image are 
used to reconstruct it. Additionally, the convolutional 
layer uses half as many feature maps after each block 
to maintain symmetry. There is the same number of 
expansion blocks as contraction blocks. After passing 
through these blocks, the resulting mapping is passed 
through a 3x3 CNN layer with as many cluster feature 
maps as there are clusters to be reached. Therefore, 
while solving the segmentation problem, multiclass 
classification is also performed at the same time, so 
that each pixel is classified accordingly [46].
Our U-Net architecture is shown in Figure 3 of this 
study. There are four blocks in the encoder phase of a 

proposed U-Net model, each containing two 3x3 con-
volutional layers. The output of each block is connected 
to a max pool layer. Like the encoder phase, the decoder 
phase uses the same blocks, except that the max-pool-
ing layers are replaced by upsampling layers. Batch Nor-
malization (BN) and ReLU layers are included in both 
the encoder and decoder stages. Using batch normaliza-
tion, a convolutional neural network can be made more 
regular. In other words, it normalizes the input layer by 
scaling the convolutional neural network, making the 
model more stable and faster. The ReLU function is 
nonlinear. For negative inputs, ReLU returns 0, while 
for positive inputs, x returns x. In the encoder part of the 
pooling layer, the weight parameters are transmitted to 
the next layer with the maximum pooling method. The 
unspooling layer can be expressed as performing this 
process in the decoder phase. A maximum value from 
each set is selected in the max-pooling layer to reduce 
the resolution of the image. Data size reduction was the 
main purpose of this layer.
The number of first feature maps was taken as 16 
and model training was carried out to increase to 32, 
64,128,256 throughout the layer. Lastly, the output 
layer calculated values between 0-1 using the sig-

Figure 3
Proposed U-Net Architecture used to find Optic Disc and Fovea



Information Technology and Control 2024/2/53528

Table 2
List of hyper-parameters and their ranges/values

Hyper-parameter Configuration

Learning rate
Number of epochs
Optimizer
Batch Size
Dropout rate
Filter
Loss Function
Metric

0.001
100
Adam
64
30
32,64,128,256,512
dice_coef_loss
Intersection over Union (IOU), Accuracy

moid function. The Adam method was used as the 
optimization algorithm of the model, and all other 
hyper-parameter settings that were used in the model 
are shown in Table 2. In this study, the Adam meth-
od was used due to its ease of application, efficiency 
in calculation, low memory requirement, invariance 
to diagonal rescaling, and suitability for large data-
set problems [25]. This method can also be used for 
non-stationary objectives and noise- or sparse-gradi-
ent problems. The learning rate in Table 2 is user-de-
fined values that typically range from 0 to 1. Training 
and testing the model take longer if the learning rate is 
too slow. The learning rate, however, may not provide 
an optimal value at a certain point if it is too high. We 
tested the learning rate at 0.1, 0.01, 0.001 and 0.0001 
for this study, and the best result was 0.001.
In CNN models, millions of weights have to be learned 
in both the convolutional and fully connected layers. 
The training dataset needs to be big with a lot of im-
ages so that the weights can be optimized. It is hard to 
find such a dataset for problems like surface defect de-
tection, though. Typically, this problem is solved with 
pre-trained network architectures or by increasing the 
number of samples in the dataset with data augmenta-
tion methods. The use of data augmentation is particu-
larly useful when there are relatively few training sam-
ples. Large-scale models can be trained more robustly 
this way. In this way, the data augmentation process 
prevents problems caused by low numbers of data units 
and the model’s memory behavior [67]. This study uses 
various augmentation methods to increase the number 
of data points, including flipping, mirroring and crop-
ping. Although data augmentation methods add more 
samples to a data set, they can be insufficient, especially 
when there is a lot of similarity between classes. Fur-
thermore, when small defects are small and very sim-

ilar to the background, the disappearance of negative 
samples or blurring may not distinguish the surface 
error in data augmentation methods. When viewing ab-
normal fundus images, it can be challenging to segment 
the optic disc and fovea due to various distractions, 
such as variations in illumination, blurry boundaries, 
and occlusion of retinal vessels. In these situations, it 
will be more advantageous to use pre-trained network 
architecture [14]. For more accurate segmentation re-
sults, a modified U-Net architecture was developed that 
combines popular pre-trained ResNet-18 models with 
classical U-Net decoding layers as coding layers. For 
optic disc and fovea segmentation, ResNet pre-trained 
with ImageNet dataset is combined with UNet archi-
tecture. Using pre-trained ResNet weights as the de-
coding layers has several advantages. Firstly, a classical 
U-Net needs to be trained from scratch, which usually 
requires a longer training period. Comparatively, pre-
trained weights are used in the proposed architecture, 
thus requiring fewer training periods. 
ResNet won first place for classification, detection, and 
localization in an ImageNet competition [14]. By using 
residual convolutions, ResNet improves feature use 
and network performance. Furthermore, the residual 
mechanism maintains high performance while add-
ing depth to the network. As networks get deeper, this 
mechanism has also reduced gradient loss. A residual 
skip-connection has been proposed as a robust alterna-
tive to the U-Net skip-connection, which concatenates 
encoder features and decoder features. The ResNet-18 
model is adapted to U-Net by convolution of the previ-
ous layer’s output by 2x2 and the encoder part by 1x1 to 
obtain the decoding blocks. Before going into the next 
decoder block, the combined tensor is batch-normal-
ized. This final layer is also convolution-transposed 
with the same plane number as the target classes and 
with the same size as the output image.
Xiuqin and friends, proposed the ResUnet method, 
which combines U-Net with a residual learning strat-
egy, to segment retinal blood vessels accurately. As a 
result of the proposed algorithm, the complexity of the 
network decreased as well as the accuracy of segmen-
tation increased [66]. Based on retinal images, Baid 
and friends developed a Convolutional Neural Net-
work (CNN)-based system that predicts Pathological 
Myopia. Their novel Residual UNet architecture has 
also been used to segment the optic disc from the reti-
nal images [6]. As reported by Puchaicela-Lozano et al., 
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the researchers proposed a hybrid approach for glauco-
ma fundus image localization utilizing pre-trained re-
gion-based convolutional neural networks (R-CNNs) 
ResNet-50 and cup-to-disk segmentation [42]. The 
U-Net architecture was modified in order to develop 
a robust segmentation method for optic disc and fovea 
segmentation, combining widely used pre-trained seg-
mentation algorithms. The ResNet-34 model consists 
of encoding layers and classic U-Net decoding layers 
[68]. Compared to ground truth values, their correla-
tion agreement is over 80% and their mean absolute 
error is less than 0.08. The Weighted Res-UNet was 
proposed by Xiao and friends to address the challeng-
ing retinal vessel segmentation problem by incorporat-
ing weighted attention and skip-connecting strategies. 
A baseline model is implemented with no attention 
and without skip connections [64]. Our method differs 
from studies conducted with traditional U-net in the 
following ways:
 _ With the addition of ResNet’s residual learning 

module to the U-Net architecture, we propose 
Res-UNet, which increases learning ability and 
training efficiency. The network learns the optimal 
representational features through the filters, so no 
handcrafted features are required.

 _ Using the trained classifier, a segmentation map 
is obtained for each retinal image. A bright blob 
around the retinal image edge or lesions could 
be misinterpreted as an optic disc. Finally, post-

processing is performed on the segmentation map 
to eliminate disturbance pixels.

 _ Fovea boundaries become nonsharp due to poor 
or overexposed illumination, including light 
reflections from the light source of the camera. 
With the proposed method, segmentation of the 
real fovea region is achieved.

In addition, DropOut and batch normalization were 
applied with 0.3 probability to prevent overfitting. 
Moreover, using the early stopping function during 
training prevented the network from memorizing, al-
lowing the training to stop at the optimal point with 
this function, training stops if there are no differenc-
es in the loss function after 10 iterations. A model be-
tween actual and predicted values was analyzed using 
the dice_coef_loss function, which is defined in Equa-
tion 1.
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truth  class,  and  𝑝𝑝�  represents  the  probabilistic 
class. There  is a better effect on measuring small 
objectives  [21].  The  modelʹs  accuracy  and  loss 
curves are shown in Figure 4. 

 
                        
           

                                
 

Figure 4. Training and validation loss curve and accuracy curve 

(1)

The Dice coefficient, which is shown as DC in the 
equation represents the overlap between a probabi-
listic map and the ground truth that is used to deter-
mine the difference between the two. As shown in the 
equation, ti represents the ground truth class, and pi 
represents the probabilistic class. There is a better ef-
fect on measuring small objectives [21]. The model’s 
accuracy and loss curves are shown in Figure 4.

Figure 4 
Training and validation loss curve and accuracy curve
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Table 3
Most frequently used databases for the detection of anatomical structures

Dataset 
Name

Number 
of mages Resolution Camera Availability Source

Messidor 1200
1440×960,
2240×1488
2304×1536

Topcon TRC NW6 with a color video 3CCD 
camera, non-mydriatic retinography device 
with FOV 45◦

Available on 
registration

Decenciere et al. 
[8]

IDRID 516 4288×2848 The Kowa VX-10 alpha digital fundus 
camera, FOV 50◦ Available online Porwal et al. [40]

DIARETDB0 130 1500×1152 Unknown camera settings on digital fundus 
cameras, FOV 50◦ Available online Kauppi et al. [24]

DIARETDB1 89 1500×1152 ZEISS FF , with a 50-degree field of view 
fundus camera Available online Kauppi et al. [23]

STARE 400 700×605 FOV 35° for TRV50 fundus camera Available online Hoover et al. [18]

DRIVE 40 768×584 Non-mydriatic Canon CR5 3CCD camera 
with 45° FOV Available online Staal et al. [53]

HRF 45 3504×2336 The Canon CR-1 fundus camera has a 
45-degree field of view Available online Budai et al. [7]

APTOS-2019 5590 Varying Varying Available online Tsiknakis et al. [55]

4. Experimental Results for U-Net 
Model
In the literature, there are several open-access da-
tabases on which disease analysis can be made from 
fundus images. In this study, the test stage took place 
on images in the Messidor, IDRID, STARE, DRIVE, DI-
ARETDB0 and DIARETDB1, HRF, and APTOS data-
bases shown in Table 3. In addition, a special database 
called ONH-NET was created based on 189 retinal 
images obtained from Düzce University, Department 
of Ophthalmology. In order to use these images in this 
study, an ethics committee report was obtained from 
Duzce University Department of Ophthalmology.
By using our method, each segmentation is quanti-
fied in terms of Sensitivity, Recall, Precision, F-score 
(Dice Coefficient), and IOU (Jaccard Index). Table 4 
defines these performance metrics. A True Positive 
(TP) indicates how many pixels are correctly predict-
ed to be OD pixels; a True Negative (TN) indicates 
how many pixels are correctly detected to be non-OD 
pixels; a False Positive (FP) indicates pixels that are 
incorrectly identified as OD pixels; and a False Neg-
ative (FN) indicates pixels that are incorrectly iden-
tified as non-OD pixels. All accuracy criteria listed 

above were calculated for the OD measurement of  
colour retinal images found in different databases. 
For evaluating the model’s performance, accuracy 
criteria were calculated, after first training the pro-
posed model and then testing it a few times. Using the 
images from MESSIDOR, IDRID, DIARETDB1, HRF, 
DRIVE, and APTOS databases, as well as images ob-
tained from the Düzce University Research Hospital’s 
Department of Ophthalmology, Table 5 shows the 
model’s accuracy metric criteria. 
In Table 6, the study’s model is compared to other 
methods according to the metrics shown in Table 5. A 
review of the literature summarizes the results of OD 
segmentation using different methods on the same 
dataset in Table 6. A comparison is made based on 
Specificity, Recall, Precision, and F-score (Dice Coef-
ficient), IOU (Jaccard Index). Comparing our method 
with previous approaches, we find that we outper-
form most previous approaches on most metrics and 
have comparable quality with other approaches.
In this study, applications about the segmentation of 
the fovea which is known as the center of the macula, 
which is difficult to detect with the naked eye, were 
also carried out. Figure 5 shows the segmented imag-
es of OD and fovea.



531Information Technology and Control 2024/2/53

Table 4
Performance Measure Formulas

 Performance Measure Formula

IOU=Jaccard Index [13]
Dice Coefficient=F1 Score[13]

Precision[69]
Accuracy [69]
Sensitivity=Recall [69]

TP/(TP+FP+FN)    
2*Precision*Recall/(Precision+Recall) or
(2*TP)/(2*TP+FP+FN)
TP/(TP+FP)
(TP+TN)/(TP+TN+FP+FN)
TP/(TP+FN)

Table 5
Performance metric measurements for disc and cup  segmentation

 Accuracy Metrics

IOU Sensitivity Dice Coefficient Precision

MESSIDOR
IDRID
DIARETDB1
HRF
DRIVE
APTOS
ONH-NET

0.9069
0.8613
0.8527
0.8912
0.7940
0.8937
0.8619

0.9626
0.8968
0.8892
0.9248
0.8510
0.9588
0.8816

0.9505
0.9071
0.8919
0.9422
0.8690
0.9393
0.9241

0.9411
0.9612
0.9608
0.9629
0.9094
0.9320
0.9751

Table 6
Comparative performance of optic disc boundary segmentation to previous methods

STUDİES
 MESSİDOR

Jaccard Dice Coefficient    Accuracy Precision Sensitivity

Wang et al. [58]
Morales et al. [32]
Abdullah et al. 1]
Al-Bander et al. [3]
Roychowdhury et al. [47]
Wang et al. [59]
Araújo et al. [5]
Zou et al. [72]
Our Method

0.9326
0.8228
-
-
-
0.8940
0.8800
0.8483
0.9069

0.9646
-

0.9339
-
-

0.9400
0.9300

-
0.9505

-
0.9949
0.9989
0.9689
0.9956
0.9700

-
0.9981
0.9974

-
-
-
-
-
-
-
-

0.9411

-
0.8950
0.8954

-
0.9043
0.9420

-
0.9119

0.9626

IDRID

Jaccard Dice Coefficient    Accuracy Precision Sensitivity

Hasan et al. [17]
Porwal et al. [39]
Oza et al. [37]
Siddiquee et al. [52]
Our Method

0.8450
0.7117
-
-
0.8613

-
0.8023

-
0.9275
0.9071

0.9970
-
-

0.9970
0.9974

-
-

0.9815
-

0.9612

0.8990
-
-
-

0.8968



Information Technology and Control 2024/2/53532

Figure 5
 a - Segmentation Images of Optic Disc b- Segmentation Images of Fovea 

DRIVE

Jaccard Dice Coefficient    Accuracy Precision Sensitivity

Wang et al. [59]
Morales et al. [32]
Abdullah et al. [1]
Salazar-Gonzalez et al. [48]
Welfer et al. [62]
Our Method

0.7780
0.7163
-
-
-
0.7940

0.8630
-

0.8720
-
-

0.8690

0.8950
0.9903
0.9672
0.9412

-
0.9661

-
-
-
-

0.8938
0.9094

0.7900
0.8169
0.8187
0.7512
0.8354
0.8510

DIARETDB1

Jaccard Dice Coefficient    Accuracy Precision Sensitivity

Wang et al. [59]
Abdullah et al. [1]
Oza et al. [37]
Harangi et al. [16]
Our Method

0.8330
-
-
-
0.8527

0.9040
0.8910

-
-

0.8919

0.9340
0.9772

-
-

0.9773

-
-

0.9775
0.9888
0.9608

0.8690
0.8510

-
-

0.8892

HRF

Jaccard Dice Coefficient Accuracy Precision Sensitivity

Zahoor et al. [70]
Rodrigues et al. [45]
Ramani et al. [44]
Our Method

-
-
-
0.8912

0.9282
-

0.8713
0.9422

0.9774
0.9472
0.9667
0.9683

0.9408
-
-

0.9629

0.9233
0.7223
0.8456
0.9248

APTOS

Jaccard Dice Coefficient Accuracy Precision Sensitivity

Karki et al. [22]
Our Method

-
0.8937

0.6700
0.9393

0.8200
0.9781

-
0.9320

-
0.9588

(a) (b)



533Information Technology and Control 2024/2/53

5. Post-Processing for Diagnosing 
Optic Nerve Hypoplasia
Parameters such as the diameter of OD, boundaries 
of OD and the distance between OD and the center of 
the fovea are parameters that are required for the de-
tection of ONH. Two separate models obtained with a 
U-Net-based semantic segmentation operation were 
loaded onto the system as shown in Figure 7. Image 
moments were used to determine different features 
of contours like the area, circumference, center and 
bounding box belonging to OD and the fovea. As used 
in image processing, computer vision, and other re-
lated fields, an image moment is a weighted average 
of the intensity of pixels in the image or a function of 
such moments. Such moments are usually selected 
because they have some attractive property or inter-
pretation. f(x, y), which is a continuous 2-dimension-
al function has the moment of the order (p + q) is de-
fined in equation 2 below [52].
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In Table 6, the studyʹs model is compared to other 
methods according to the metrics shown in Table 
5.  A  review  of  the  literature  summarizes  the 
results  of  OD  segmentation  using  different 
methods  on  the  same  dataset  in  Table  6.  A 
comparison  is made based on Specificity, Recall, 
Precision,  and  F‐score  (Dice  Coefficient),  IOU 
(Jaccard  Index).    Comparing  our  method  with 
previous approaches, we find that we outperform 
most  previous  approaches  on most metrics  and 
have comparable quality with other approaches. 
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of  the  fovea which  is known as  the center of  the 
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eye, were  also  carried  out.  Figure  5  shows  the 
segmented images of OD and fovea. 

 

5. Post‐Processing  for  Diagnosing  Optic 
Nerve Hypoplasia 

Parameters  such  as  the  diameter  of  OD, 

boundaries of OD and  the distance between OD 
and the center of the fovea are parameters that are 
required for the detection of ONH. Two separate 
models  obtained  with  a  U‐Net‐based  semantic 
segmentation  operation  were  loaded  onto  the 
system as shown in Figure 7. Image moments were 
used  to determine different  features of  contours 
like the area, circumference, center and bounding 
box belonging  to OD  and  the  fovea. As used  in 
image  processing,  computer  vision,  and  other 
related  fields,  an  image moment  is  a weighted 
average of the intensity of pixels in the image or a 
function  of  such  moments.  Such  moments  are 
usually selected because they have some attractive 
property  or  interpretation.  f(x,  y),  which  is  a 
continuous  2‐dimensional  function  has  the 
moment of the order (p + q) is defined in equation 
2 below [52]. 

 
𝑀𝑀�� � � � 𝑥𝑥�𝑦𝑦�𝑓𝑓�𝑥𝑥, 𝑦𝑦�𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦�

��
�
��              (2)

 
                   

 
                                                              (a)                                                                                       (b)   

Figure 5. a ‐ Segmentation Images of Optic Disc b‐ Segmentation Images of Fovea
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In some cases, it may be possible to calculate this 
by considering the image as a probability density 

function, e.g., by dividing the above by 
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Nerve Hypoplasia 

Parameters  such  as  the  diameter  of  OD, 

boundaries of OD and  the distance between OD 
and the center of the fovea are parameters that are 
required for the detection of ONH. Two separate 
models  obtained  with  a  U‐Net‐based  semantic 
segmentation  operation  were  loaded  onto  the 
system as shown in Figure 7. Image moments were 
used  to determine different  features of  contours 
like the area, circumference, center and bounding 
box belonging  to OD  and  the  fovea. As used  in 
image  processing,  computer  vision,  and  other 
related  fields,  an  image moment  is  a weighted 
average of the intensity of pixels in the image or a 
function  of  such  moments.  Such  moments  are 
usually selected because they have some attractive 
property  or  interpretation.  f(x,  y),  which  is  a 
continuous  2‐dimensional  function  has  the 
moment of the order (p + q) is defined in equation 
2 below [52]. 

 
𝑀𝑀�� � � � 𝑥𝑥�𝑦𝑦�𝑓𝑓�𝑥𝑥, 𝑦𝑦�𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦�

��
�
��              (2)

 
                   

 
                                                              (a)                                                                                       (b)   

Figure 5. a ‐ Segmentation Images of Optic Disc b‐ Segmentation Images of Fovea

for  p,q  =  0,1,2,...  Adapting  this  to  a  scalar 
(grayscale) image with pixel intensities I(x,y), the 
raw image moments Mij are calculated by 
𝑀𝑀�� � ∑ ∑ 𝑥𝑥�𝑦𝑦���𝑥𝑥,𝑦𝑦��� .                           (3) 

In some cases, it may be possible to calculate this 
by considering the image as a probability density 

function, e.g., by dividing the above by 

 
∑ ∑ ��𝑥𝑥, 𝑦𝑦���                                               (4) 

Area of binary images = M00 .                           (5) 
This  way,  the  central  coordinates  and  radius 
information of OD and  the  fovea were obtained. 

(5)

This way, the central coordinates and radius informa-
tion of OD and the fovea were obtained. After these 
operations, by drawing circles for which we knew 
the center points and radii as shown in figure 6, the 
boundaries of OD and the fovea were obtained. To be 
able to draw the macula region in the image, the dis-
tance between the central coordinates of OD and the 
central coordinates of the fovea is calculated using 
the formula 

 

 

After  these  operations,  by  drawing  circles  for 
which we  knew  the  center  points  and  radii  as 
shown in figure 6, the boundaries of OD and the 
fovea  were  obtained.  To  be  able  to  draw  the 
macula region in the image, the distance between 
the  central  coordinates  of  OD  and  the  central 
coordinates  of  the  fovea  is  calculated  using  the 

formula  ��𝑂𝑂𝑂𝑂� � ���� � �𝑂𝑂𝑂𝑂� � ����.  In  this 

formula, 𝑂𝑂𝑂𝑂�  is  the  central y‐coordinate of OD,  
𝑂𝑂𝑂𝑂�  is  the  central  x‐coordinate of OD, Fy  is  the 
central  y‐coordinate  of  the  fovea,  and  Fx    is  the 
central  x‐coordinate  of  the  fovea.  From  the 
difference  between  the distance  found here  and 
the diameter of OD,  the  radius of  the macula  is 
found. 

 
 

Table 6. Comparative performance of optic disc boundary segmentation to previous methods 
 

STUDİES 
                                                 MESSİDOR 

Jaccard Dice Coefficient    Accuracy    Precision  Sensitivity 
Wang et al. [58] 
Morales et al. [32] 
Abdullah et al. 1] 
Al-Bander et al. [3] 
Roychowdhury et al. [47] 
Wang et al. [59] 
Araújo et al. [5] 
Zou et al. [72] 
Our Method 

0.9326 
0.8228 
- 
- 
- 
0.8940 
0.8800 
0.8483 
0.9069 

0.9646 
- 

0.9339 
- 
- 

0.9400 
0.9300 

- 
0.9505 

- 
0.9949 
0.9989 
0.9689 
0.9956 
0.9700 

- 
0.9981 
0.9974 

- 
- 
- 
- 
- 
- 
- 
- 

0.9411 

- 
0.8950 
0.8954 

- 
0.9043 
0.9420 

- 
0.9119 
0.9626 

                                                IDRID 
Jaccard Dice Coefficient    Accuracy Precision  Sensitivity 

Hasan et al. [17] 
Porwal et al. [39] 
Oza et al. [37] 
Siddiquee et al. [52] 
Our Method 

0.8450 
0.7117 
- 
- 
0.8613 

- 
0.8023 

- 
0.9275 
0.9071 

0.9970 
- 
- 

0.9970 
0.9974 

- 
- 

0.9815 
- 

0.9612 

0.8990 
- 
- 
- 

0.8968 
                                               DRIVE 

Jaccard Dice Coefficient    Accuracy     Precision   Sensitivity 
Wang et al. [59] 
Morales et al. [32] 
Abdullah et al. [1] 
Salazar-Gonzalez et al. [48] 
Welfer et al. [62] 
Our Method 

0.7780 
0.7163 
- 
- 
- 
0.7940 

0.8630 
- 

0.8720 
- 
- 

0.8690 

0.8950 
0.9903 
0.9672 
0.9412 

- 
0.9661 

- 
- 
- 
- 

0.8938 
0.9094 

0.7900 
0.8169 
0.8187 
0.7512 
0.8354 
0.8510 

                                              DIARETDB1 
Jaccard Dice Coefficient    Accuracy                  Precision   Sensitivity 

Wang et al. [59] 
Abdullah et al. [1] 
Oza et al. [37] 
Harangi et al. [16] 
Our Method 

0.8330 
- 
- 
- 
0.8527 

0.9040 
0.8910 

- 
- 

0.8919 

0.9340 
0.9772 

- 
- 

0.9773 

- 
- 

0.9775 
0.9888 
0.9608 

0.8690 
0.8510 

- 
- 

0.8892 
                                                      HRF 

Jaccard Dice Coefficient        Accuracy                Precision   Sensitivity 
Zahoor et al. [70] 
Rodrigues et al. [45] 
Ramani et al. [44] 
Our Method 

- 
- 
- 
0.8912 

0.9282 
- 

0.8713 
0.9422 

0.9774 
0.9472 
0.9667 
0.9683 

0.9408 
- 
- 

0.9629 

0.9233 
0.7223 
0.8456 
0.9248 

                                                  APTOS 
Jaccard Dice Coefficient        Accuracy                Precision    Sensitivity 

Karki et al. [22] 
Our Method 

- 
0.8937 

0.6700 
0.9393 

0.8200 
0.9781 

- 
0.9320 

- 
0.9588 

 
With  this  operation,  as  shown  in  Figure  6,  the 
boundaries  of  the  macula  were  also  obtained. 
Hence, all information required for the diagnosis 
of the disease was acquired. In light of these data, 
the diagnosis of the disease was decided based on 

the ratio of the OD diameter to the macula radius. 
If this ratio was smaller than 0.3, it was concluded 
that  the  image  showed  ONH.  Therefore,  the 
images where ONH was present were determined 

. In this for-
mula, ODy is the central y-coordinate of OD, ODx  is the 

central x-coordinate of OD, Fy is the central y-coordi-
nate of the fovea, and Fx  is the central x-coordinate of 
the fovea. From the difference between the distance 
found here and the diameter of OD, the radius of the 
macula is found. 
With this operation, as shown in Figure 6, the bound-
aries of the macula were also obtained. Hence, all in-
formation required for the diagnosis of the disease 
was acquired. In light of these data, the diagnosis of 
the disease was decided based on the ratio of the OD 
diameter to the macula radius. If this ratio was small-
er than 0.3, it was concluded that the image showed 
ONH. Therefore, the images where ONH was present 
were determined by looking at the diameter of OD and 
the distance of the fovea center to the boundary of OD.
Hence, all information required for the diagnosis of 
the disease was acquired. In light of these data, the di-
agnosis of the disease was decided based on the ratio 
of the OD diameter to the macula radius. If this ratio 
was smaller than 0.3, it was concluded that the image 
showed ONH. Therefore, the images where ONH was 
present were determined by looking at the diame-
ter of OD and the distance of the fovea center to the 
boundary of OD.

Figure 6
Structures detected in ONH disease diagnosis

The results of applying the classical u-net model and 
the modified u-net model to images in the Messidor 
database are shown in Table 7. According to the re-
sults, the res-net architecture modified with u-net 
resulted in more successful results for both the fove-
al area and the optic disc. Figure 8 shows the images 
obtained with the ONH algorithm that we developed 
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Table 7
Results for Optic Disc and Fovea Segmentation

Figure 7
Flow Chart Diagram for the Diagnosis of Optic Nerve 
Hypoplasia

Method
OPTIC DISC FOVEA

IOU Sensitivity Dice Coefficient Precision IOU Sensitivity Dice Coefficient Precision

Modified U-net 0.9069 0.9626 0.9505 0.9411 0.8282 0.8442 0.7873 0.8252

Original U-Net 0.8613 0.8968 0.9071 0.9612 0.7268 0.76678 0.7546 0.8456

in this study. In the literature, several methods that 
are used for automatically extracting various features 
from retinal image. Most of these methods focus on 
detecting or segmenting only one feature. In our study, 
the boundary of OD, the center of OD, the boundary of 
the fovea, the center of the fovea and the distance be-
tween the centres of OD and the fovea were detected. 
Table 8 presents a summary of anatomical structures 
that were found in studies previously conducted on 
retinal images.
When the studies on this subject are examined, 
methods have been developed to find only the optic 
disc boundaries in some studies and only the foveal 
boundaries in some studies. In our study, the optic 
disc boundaries, center, radius value, foveal boundar-
ies, central coordinate, macular radius and boundar-
ies in the retina images were obtained.

Figure 8
Retinal structure obtained with the ONH algorithm

6. Conclusion
To automate diagnosis, it is highly important to find 
and identify retinal anatomical structures such as 
the optic disc, macula, and fovea at the retina, which 
allows early observation of changes related to many 
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Table 8
A comparison between the proposed methodology for optic disc (OD) and fovea (F) detection and previously used methods

Authors Year Approach

Detected Landmarks

Boundary      
of Optic 

Disc

Boundary 
of  Fovea

Center 
of Optic 

Disc

Center 
of Fovea 

Boundary 
of Macula Database

Xie et al. 
[65] 2021

Fully convolutional net-
work called SU-Net and 
its combination with 
the Viterbi algorithm

✔ X ✔ X X Messidor
Drishti-GS

Tang et al. 
[54] 2021 HBA-U-Ne ✔ X X X X REFUGE , IDRID

Yu et al. 
[68] 2019 ResNet and U-Net ✔ X X X X

RIGA, 
RIM-ONE  
Drishti-GS

Parkhi et 
al. [38] 2023 Deeplabv3 ✔ - ✔ X X DRISHTI, ORIGA, 

and RIMONE

Wang  [57] 2023 EE-UNet  ✔ X ✔ X X

REFUGE, GAMMA, 
Drishti-GS1, and 

RIM-ONE-v3, 
DRIONS-DB,  

RIM-ONE IDRID

Veena et al. 
[56] 2021 CNN model ✔ X X X X DRISHTI – GS

Mohan et 
al. [31] 2019

P-Net, which is ar-
ranged in cascade with 
the Fine-Net

✔ X X X X Messidor rishti-GS
Drions-DB

Yamashita 
et al. [67] 2018

The convolutional 
autoencoder (CAE) 
network

✔ X X X X
Kaggle

DRISHTI GS  
RIM-ONE

Li et al. 
[27] 2018

Faster-RCNN and 
SVM, then RPI-based 
faster-RCNN

✔ ✔ X X X IDRID

Al-Bander 
et al. [15] 2018

A deep multi-scale se-
quential convolutional 
neural network (CNN)

X X ✔ ✔ X Messidor
Kaggle

Hasan et 
al. [17] 2021

An end-to-end encod-
er-decoder network, 
named DR-Net

✔ ✔ ✔ ✔ X
IDRID RIMONE 

DRISHTI-GS 
DRIVE

Hussain  et 
al. [20] 2023 UTNet ✔ X X X X

DRISHTI-GS,
RIM-ONE R3, and 

REFUGE

Tang et al. 
[5] 2021 HBA-U-Net ✔ ✔ X X X AMD, REFUGE, 

IDRiD

Our 
Method U-Net Architecture ✔ ✔ ✔ ✔ ✔

Messidor, HRF, 
APTOS

IDRID, DRIVE, 
DIARETDB1 
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ophthalmological diseases. The method proposed in 
this study not only dealt with the subject of detecting 
structures like the optic disc, macula and fovea but 
also presented a decision support system to help doc-
tors by allowing the automated operation of proce-
dures required for the diagnosis of the disease known 
as optic nerve hypoplasia that can be diagnosed with 
quantitative calculations. The algorithm we call 
ONH-NET, developed for optic nerve hypoplasia 
disease, which has never been diagnosed using deep 
learning methods before, makes the study completely 
original. Diagnosing optic nerve hypoplasia requires 
measurements such as the diameter of the optic disc, 
its boundaries, and the distance between the centers 
of the optic disc and the macula. In this study, it was 
aimed to measure these parameters most accurate-
ly and shortly and obtain diagnostic results with the 
smallest error margins. Existing techniques of optical 
disc and fovea segmentation have several problems, 
including variations in illumination, blurry bound-
aries, occlusion of retinal vessels, large bright lesions 
that obscure the fovea segmentation, and incorrect 
segmentation of pathological information. With the 
improved deep learning U-Net model, we developed 
a method for segmenting optic discs and fovea. An 
improved U-Net algorithm combined the encod-
ing layers of the pre-trained ResNet-18 model with 
the decoding layers of the classical U-Net algorithm 
was presented in this study as a robust segmentation 
method for optic discs and foveas. In order to solve the 
problem of the traditional deep learning U-Net mod-
el requiring more depth, we added a residual module. 
As a result of the improved deep learning U-Net mod-
el, low-level information sharing can be prevented 
and performance degradation can be solved in deep 
convolutional neural networks under extreme depth 
conditions by connecting the outputs of the convo-
lutional layer with the outputs of the deconvolution 
layer. Combining pre-trained ResNet with U-Net 
is the advantage of the proposed method. Using this 
method, the network is not trained from scratch, so 
fewer iterations are required, which prevents overfit-
ting. After a semantic segmentation operation based 
on U-Net, the diameter and central coordinate infor-
mation of the detected optic disc and fovea regions 
was reached. In line with these data, the diagnosis of 
the disease was decided by looking at the ratio of the 
optic disc diameter to the distance between the optic 
disc and the center of the macula. In the case that this 

ratio was smaller than 0.3, it was concluded that op-
tic nerve hypoplasia was present. In the study, colour 
retinal images in the Messidor, Diaretdb1, DRIVE, 
HRF, APTOS and IDRID databases were used as the 
dataset. Additionally, the application was also tested 
on retinal images obtained from the Department of 
Ophthalmology at Düzce University Research Hos-
pital. The performance values of all operations were 
tested using similarity indices such as the Dice and 
Jaccard indices, as well as sensitivity, specificity and 
accuracy performance criteria. An assistive tool was 
provided for doctors by automatically making the di-
agnosis of optic nerve hypoplasia, which had not been 
made using deep learning methods before. Hence, the 
calculations required for the boundaries of the optic 
disc, the diameter of the optic disc, the center of the 
fovea and the distance between the diameter of the 
optic disc and the radius of the macula were made in 
an automated manner without needing paper, pencils 
or calculators. Thus, ophthalmology, deep learning, 
and image processing skills and expertise have been 
successfully combined in this study for retinal image 
analysis and developing disease diagnosis methods. 
Despite the performance of the proposed method, 
some limitations remain. Res-UNet’s probability map 
is sometimes discontinuous due to blood, lesions, and 
nerve fiber layers surrounding the OD, while some in-
correct pixels may be included. It is possible to reduce 
the real OD region when interferences are removed 
by the proposed post processing. For a more reliable 
segmentation result, graph cut algorithms may be in-
corporated into post-processing, including filling OD 
region gaps and smoothing edges.
The retinal image analysis methods that were devel-
oped in this study were not only limited to the detec-
tion of certain anatomical structures, but they also 
presented a decision support system to help doctors 
by conducting the automated implementation of the 
procedures required for the diagnosis of optic nerve 
hypoplasia. The proposed deep learning-based ap-
proach will also be a valuable tool that could also be 
used for other retinal diseases.
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