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With the development of intelligent systems, the popularity of using micro aerial vehicles (MAV) increases 
significantly in the fields of rescue, photography, security, agriculture, and warfare. New modern solutions of 
machine learning like ChatGPT that are fine-tuned using reinforcement learning (RL) provides evidence of 
new trends in seeking general artificial intelligence. RL has already been proven to work as a flight controller 
for MAV performing better than Proportional Integral Derivative (PID)-based solutions. However, using nega-
tive Euclidean distance to the target point as the reward function is sufficient in obstacle-free spaces, e.g. in the 
air, but fails in special cases, e.g. when training near the ground. In this work, we address this issue by proposing 
a new reward function with early termination. It not only allows to successfully train Proximal Policy Optimi-
zation (PPO) algorithm to stabilize the quadrotor in the near-ground setting, but also achieves lower Euclidean 
distance error compared to the baseline setup.
KEYWORDS: quadrotor, stabilization, reinforcement learning, PPO, reward function for near ground flight.

1. Introduction
Over the recent decade the popularity of quadrotor 
MAVs has been increasing in various fields both in 
indoor and outdoor environments due to their sim-
plicity in design, small size, great dynamical maneu-
verability, and operations in 3D [3]. Quadrotor is con-
trolled by providing input to each of four rotors and 

its state is changed with respect to six degrees of free-
dom. Due to this fact, the quadrotor is an underactu-
ated system.
Maneuvering the quadrotor is a non-linear problem. 
It is a challenging task for humans and only experi-
enced operators are able to control MAV without an 
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additional stabilization [21]. Consequently, quadrotor 
control assistance is required to address the special-
ized MAV personnel demand issue.
For quadrotor stabilization, linear methods as PID, 
Linear Quadratic Regulator (LQR), and non-linear 
like Nonlinear Hierarchical Control Strategy (NHCS), 
Back-Stepping (BS), Dynamic Surface Control (DSC) 
are used [9]. However, those methods are not robust 
to system uncertainties or external disturbances 
[9]. Additionally, in case of cargo-carrying MAVs the 
model dynamics are changed with every different 
load [2]. Popular methods like PID-based control [7] 
require provision of their explicit parameters or com-
prehensive parameters tuning [23, 5]. Deep reinforce-
ment learning (DRL) appears to be a good candidate 
to address these issues [9] by providing a practical 
solution without an explicit need for knowledge about 
quadrotor dynamics, motion model and MAV control.
To compare with ground-based robots, MAVs operate 
in 6 degrees of freedom, use higher velocities, there-
fore, are more prone to damage. This makes practical 
experiments expensive. Therefore, model fitting and 
testing of the maneuvering algorithms are performed 
under a simulated environment.
Despite DRL being capable of solving the stabiliza-
tion problem, adding obstacles to the environment 
requires behavior correction, so reward engineering 
[7] is required. A solution to the stabilization problem 
when the obstacle lays under MAV like ground is the 
main outcome of this paper.
This paper begins with the latest literature review 
in MAV stabilization topic, then follows the section 
describing reinforcement learning approach and the 
method that is chosen in this work. Next, the details 
about experiment setup are provided and the section 
with the proposed approach of this paper. After that, 
the results of the proposed approach are compared to 
results of the baseline approach, following the discus-
sion section.

2. Related Works
Due to internal system uncertainties and external 
disturbances, the quadrotor might drift away from 
its set-point. The stabilization system task is to keep 
tracking the quadrotor’s state and, if necessary, nav-
igate it back to the setpoint. This process permits to 

frame the quadrotor stabilization problem as a type of 
quadrotor navigation problem where the next target 
is constantly a set-point.
Prior works addressing stabilization problem using 
RL can be categorized into those using additional 
methods like PID and those that are purely-based on 
RL.
In 2016, Sugimoto and Gouko [21] took a Q-learning 
approach to stabilize the quadrotor over a particular 
point and showed that it performs as well as a PID 
controller. Alrubyli and Bonarini [1] approached to 
stabilize the UAV in the z-axis by applying Q-learning 
for PID controller. Koch et al. [7] showed that training 
PPO algorithm for unmanned aerial vehicle (UAV) 
attitude control outperforms PID controller used in 
Betaflight software. These attempts show that RL can 
perform no worse than PID controller. The first one 
used 3x3 reward grid with highest reward at the cen-
ter to stabilize quadrotor at particular position, the 
second used negative next-timeframe altitude dis-
tance from the set-point as a reward function and the 
third normalized angular velocity error as a reward 
function to stabilize quadrotor at target attitude.
Hwangbo et al. [4] in use a deterministic on-poli-
cy method to learn quadrotor stabilization by using 
zero-bias and zero-variance samples. They demon-
strate that their learned policy performs two orders of 
magnitude faster than the common trajectory optimi-
zation algorithms. Instead of reward, they used a cost 
function and minimized the sum of position, angu-
lar velocity and linear velocities. Olaz et al. [13] used 
PPO and DDPG for stabilized taking-off and landing 
of the UAV in the windy environment. They made a 
decoupling by outputting target forces and momen-
tum from the actor neural network and then linearly 
transforming those to motor angular velocities. Ji-
ang and Lynch [6] trained hover stabilization policy 
using PPO considering full dynamics of quadrotor 
in model-free setting. They emitted a reward if the 
quadrotor is proximal to set-point and tested three 
reward settings - using velocity-only, by adding posi-
tion shift, and adding time as penalty. They show that 
such a policy can perform no worse than manually 
tuned PD controller. Lin et al. in [9] proved that RL-
based actor-critic policy can be employed to mitigate 
external disturbances like wind and demonstrated it 
in simulator experiments. They used a reward system 
including position, velocity and control inputs to the 
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engines. The set-point tracking can also be achieved 
using on-boarding actor-critic evaluated in Field Pro-
grammable Gate Arrays (FGPA) for energy efficient 
real-time control. Li et al. [8] in their work show that 
their approach achieves 58.14% less position error 
compared to PID approach. They used transformed 
Manhattan distance between the desired pose and the 
actual pose as a reward function. Dooraki and Lee [16] 
used a bio-inspired solution to replace conventional 
controller and implemented a PPO model-free flight 
controller that tracked the set-point. In their work, 
they did not explicitly provide the reward function, 
but stated that it was based on positions and attitudes, 
also added limits for pitch and roll angles considering 
them as terminal states, and added negative reward 
for bypassing limits of x, y, z components.
The review shows that a special case of near-ground 
setting has not yet been addressed.

3. Reinforcement Learning
Reinforcement learning is the third branch of machine 
learning after supervised and unsupervised learning. 
It increasingly gained popularity with a rise of neural 
networks as Google Brain using deep Q-network [12] 
taught agent to play Atari games from pixels, played 
games in human master level: GO [19] and chess [20].
The main distinction between reinforcement learning 
compared to supervised and unsupervised learning 
is learning from interaction [22]. The agent interacts 
with the environment by making actions and receives 
next observation and reward. Learning is done in epi-
sodes and one episode is described by trajectory. The 
goal of RL is to generate an interaction strategy called 
policy such that would maximize the cumulative re-
ward over time. An accumulative reward of one epi-
sode is also called return. The expected reward starting 
from the current state is called value. Its calculation is 
one of the principal RL problems, since having a value 
function would be sufficient to receive maximum re-
turn [22]. Worth to mention, the agent is usually forced 
to collect a reward as early as possible and for that mat-
ter, a discount rate is added to the return function.
Formally, RL is framed as Markov Decision Process 
(MDP). It inherits Markov property, so the state and 
the reward are only dependent on the previous state 
and the action taken. The process of taking an action 

may be framed as a stochastic process, in that case the 
next observation is a random variable defined by the 
transition function.
With the rise of neural networks, policy gradient 
methods gained popularity as they are capable of 
working in stochastic action selection, and also sup-
ports continuous action spaces. This expands their 
applicability, moreover implicitly addresses the ex-
ploration-exploitation dilemma. Apart from that, 
policy gradient methods tend to suffer from high 
variance. To mitigate it, various variance reduction 
techniques were applied. One successful approach is 
taken in the actor-critic framework. In this setup, the 
critic learns the value of the action given a state, and 
that value is compared with the actual return collect-
ed by the actor. It gives an advantage setting measur-
ing how a better actor performs compared to previous 
iterations and so is called an advantage actor critic 
(A2C) framework [11].
Another important issue of reinforcement learning is 
drift off the learnt. It is common when a slight change 
in policy completely changes the trajectory distribu-
tion, and consequently the actor falls into low-reward 
trajectories space and its policy degrades. To mitigate 
this issue, various distribution change control tech-
niques are proposed. Few successful approaches were 
Trust Policy Region Optimization (TRPO) [17] and 
PPO [18]. The TRPO aims to limit change in action 
distribution by KL-divergence constraint, PPO clips 
the change of distribution that is higher than the set 
ratio. The latter was most popular among reviewed 
papers [7, 6, 16, 10], therefore it is employed as a policy 
training algorithm in this paper.
Besides optimal policy search, shaping of the reward 
function is important to instruct agent which states 
and/or states are expected by providing high reward 
and which not by providing low reward. In this work, 
the importance of reward function is addressed and 
shown that the naive form of reward function can 
lead to an unlearned algorithm and an improvement 
to that function is proposed.

4. Experiment Setup
Bullet simulator was used within the gym-pybul-
let-drones library [14]. For the quadrotor model, the 
Bitcraze’s Crazyflie 2.x nano-quadrotor was chosen 
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that has motor-to-motor dimensions of 92x92x-
29mm, it is by default implemented in the gym-py-
bullet-drones library. The simple drag, ground effect, 
and down-wash models are present in the gym-pybul-
let-drones library. 
The agent had an observation consisting of position, 
orientation and difference in position and orienta-
tion from the last time step, so o ∈ R12. Action space 
is continuous, it corresponds to speed in revolutions 
per minute (rpm) for each rotor, a ∈ [0; 21702.64].
In each episode the quadrotor set-point (stabilization 
position) was kept constant [1;1;1]. The starting po-
sition was taken randomly x, y ∈ [−1, 1] to make sure 
agent learns to achieve set-point from different po-
sitions, starting altitude was kept constant z = 0.1 in 
order to begin near ground.
For the RL part, the advantage of actor-critic archi-
tecture was used with PPO training solution.
For the baseline setup the reward function was neg-
ative Euclidean distance from the quadrotor to the 
set-point:
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Figure 2 
Mean Euclidean distance from quadrotor to set-point 
throughout the episode during training of PPO using baseline 
reward function rbaseline. The results show that the mean 
episode distance does not fall below 0.894, showing that the 
model used not to reach the target and the learning failed
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On the contrast, using the proposed reward function 
rproposed, the average distance from the set-point during 
the episode was approximately 0.15 meter (see figure 3). 
The algorithm converges in approximately 2.7-3M 
timesteps (see figure 4). Since the episode was taking 10 
seconds, this number means the quadrotor was launching 
up from the current state, reached the target and 
stabilized. 
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7. Conclusions 
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control is not an easy task, even using state-of-the-art 
algorithms. The importance of the reward function with 
early termination was stressed in this work. 
In this work it was shown that using a proposed reward 
function with early termination gives more than 4x 
shorter average distance from set-point in near-ground 

setup compared to negative Euclidean distance 
function. This approach will help to advance the 
research topic of reinforcement learning in 
quadrotor control by addressing the issue of policy 
optimization falling into local minima in the near-
ground setting. To conclude, using the suggested 
approach the quadrotor reaches the stabilization 
point within 1.2M timesteps on average, whereas 
the baseline method does not reach the stabilization 
point within 2.7-3M timesteps. 
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The mean episode return (accumulative reward) during 
PPO training using the proposed reward function rproposed 
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tion. This approach will help to advance the research 
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