
Information Technology and Control 2024/1/5398

TSIC-CLIP: Traffic Scene Image
Captioning Model Based on Clip

ITC 1/53
Information Technology
and Control
Vol. 53 / No. 1 / 2024
pp.98-114
DOI 10.5755/j01.itc.53.1.35095

TSIC-CLIP: Traffic Scene Image Captioning Model Based on Clip

Received 2023/09/13 Accepted after revision 2023/11/24

HOW TO CITE: Zhang, H., Xu, C., Xu, B., Jian, M., Liu, H., Li, X. (2024). TSIC-CLIP: Traffic Scene
Image Captioning Model Based on Clip. Information Technology and Control, 53(1), 98-114. https://
doi.org/10.5755/j01.itc.53.1.35095

Corresponding author: xucheng@buu.edu.cn (C. Xu); xubingxin@buu.edu.cn (B. Xu)

Hao Zhang , Cheng Xu, Bingxin Xu
Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China;
Institute for Brain and Cognitive Sciences, College of Robotics, Beijing Union University, Beijing, China
e-mails: enjoyzh@foxmail.com; xucheng@buu.edu.cn; xubingxin@buu.edu.cn

Muwei Jiane
School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, China
e-mail: jianmuweihk@163.com

Hongzhe Liu, Xuewei Li
Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China;
Institute for Brain and Cognitive Sciences, College of Robotics, Beijing Union University, Beijing, China
e-mails: liuhongzhe@buu.edu.cn; lixuewei@buu.edu.cn

Image captioning in traffic scenes presents several challenges, including imprecise caption generation, lack of
personalization, and an unwieldy number of model parameters. We propose a new image captioning model for
traffic scenes to address these issues. The model incorporates an adapter-based fine-tuned feature extraction
part to enhance personalization and a caption generation module using global weighted attention pooling to
reduce model parameters and improve accuracy. The proposed model consists of four main stages. In the first
stage, the Image-Encoder extracts the global features of the input image and divides it into nine sub-regions,
encoding each sub-region separately. In the second stage, the Text-Encoder encodes the text dataset to obtain
text features. It then calculates the similarity between the image sub-region features and encoded text features,
selecting the text features with the highest similarity. Subsequently, the pre-trained Faster RCNN model ex-
tracts local image features. The model then splices together the text features, global image features, and local
image features to fuse the multimodal information. In the final stage, the extracted features are fed into the
Captioning model, which effectively fuses the different features using a novel global weighted attention pooling
layer. The Captioning model then generates natural language image captions. The proposed model is evaluated
on the MS-COCO dataset, Flickr 30K dataset, and BUUISE-Image dataset, using mainstream evaluation met-
rics. Experiments demonstrate significant improvements across all evaluation metrics on the public datasets
and strong performance on the BUUISE-Image traffic scene dataset.
KEYWORDS: Contrastive learning, Deep learning, Image captioning, Traffic scene, Transformer.

99Information Technology and Control 2024/1/53

1. Introduction
The image captioning task integrates computer vision
and natural language processing to generate descrip-
tive captions for visual inputs. With the development
of Artificial Intelligence, image captioning techniques
have been increasingly applied in various fields. Such
as medicine [5, 28], fashion and e-commerce [19],
aided industry [36], and tourism [4]. Moreover, this
technology shows immense potential in traffic appli-
cations. The traditional computer vision task mainly
detects and classifies targets such as pedestrians, ob-
stacles, signage, etc. It then enables traffic monitoring
[3], road condition analysis [24], and automated driv-
ing [9]. However, these methods lack an understand-
ing of relationships between detected entities. There-
fore, we propose converting traffic scene keyframes
into natural language captions and using richer se-
mantic information can replace detecting individual
entities. This approach shows promise for assisting
visually impaired individuals [12, 23], driving safety
[1], and describing traffic accidents [18].
Traditional image captioning methods rely on tem-
plate and rule-based methods, which cannot handle
context and generate diverse captions. Most current
mainstream image captioning methods are based on
deep learning, commonly adopting an encoding-de-
coding framework. The earliest deep learning-based
generalized image captioning model [33] extracts
image features by convolutional neural networks
and then inputs these features into recurrent neu-
ral networks to generate natural language captions,
significantly improving over traditional methods.
Therefore, the current mainstream image caption-
ing methods mainly focus on deep learning. We base
on Stefanini et al. [30] the title of the point of view of
the mainstream generalized image captioning model
for research and base the different decoders into two
categories, respectively, based on Long Short Term
Memory methods and based on the Transformer
methods. The image captioning methods mainly use
the structure of encoder and decoder, where the en-
coder is responsible for extracting the image features,
and the decoder is responsible for receiving the image
features and converting them into captions corre-
sponding to the image.
In 2015, Xu et al. [41] proposed an LSTM-based
method incorporating a visual attention mechanism

for the first time, which can selectively focus on the
image preference region. The model extracts the im-
age features by CNN and generates the Caption by
LSTM, which better solves the problem that RNN
(Recurrent Neural Network) Series Networks can
only maintain short-term memory. Building on prior
work, Anderson et al. [2]extract local target features
using a pre-trained Faster R-CNN model and com-
pute average feature representations to focus on sa-
lient image regions. Top-down Attention LSTM and
Language LSTM are then utilized to obtain averaged
and target-specific features for generating image cap-
tions. However, LSTM models are prone to vanishing
and exploding gradient issues when processing long
sequences due to the limited dimensionality of the
LSTM memory units. Following the success of Trans-
former models [32] for natural language processing
in 2017, numerous Transformer-based approaches
emerged for image captioning. Unlike LSTMs, Trans-
formers can directly capture long-range dependen-
cies across the full sequence via self-attention, bet-
ter capturing contextual information. Consequently,
most state-of-the-art image captioning methods now
utilize Transformer-based architectures. Zhu et al.
[45] first proposed a CNN-Transformer framework.
However, by only using global image features as in-
put to the decoder, this method fails to capture fine-
grained contextual details, instead encoding irrele-
vant information that yields inaccurate and verbose
captions. To address these limitations, Xian et al. [39]
propose a Transformer-based method that optimizes
region feature representations in the encoding stage
using mesh features and geometric information.
Wang et al. [37] pioneer the use of Swin Transform-
ers as encoders for image captioning, helping to ad-
dress prior limitations in this field. They incorporate
global visual features into each decoder block to en-
hance cross-modal interactions and more effective-
ly capture global context. Cornia et al. [6] aim at this
problem, encoding low-level and high-level object
features as prior knowledge and using prior knowl-
edge to assist in semantic captioning at different
levels in the decoding stage. Luo et al. [15] proposed
another transformer-based image captioning meth-
od using a diffusion model. A cross-modal retrieval
module first retrieves sentences highly similar to the

Information Technology and Control 2024/1/53100

image as semantic priors. Multiple diffusion trans-
formers are then stacked in a cascade. Each diffusion
transformer conditionally generates output based
on the previous model’s output to better capture de-
pendencies between words. Therefore, the current
transformer-based image captioning method calcu-
lates the interaction between each position due to
the self-attention mechanism, leading to many pa-
rameter models. Most of the above models use a sin-
gle visual local feature or visual global feature as the
input of the decoder, which may cause problems such
as inaccurate captions in complex traffic scenes. This
problem has been improved with the emergence of
contrastive learning methods, large-scale pre-train-
ing models break through the constraints between
text and image, and the categories of object detection
cover a larger amount. The image vector extraction
method based on CLIP (Contrastive Language-Image
Pre-training) has been widely used [25].
OpenAI proposes CLIP, and its core idea is to pre-
train utilizing comparative learning, which maps im-
age and text embeddings to a common feature space
by calculating the similarity between image and text.
Its application areas are wide, such as image clas-
sification, image retrieval, image description, etc.
Mokady et al. [17] first proposed a CLIP-based im-
age captioning method by extracting image features
from CLIP and using a mapping network to connect
the two modalities of image and language. They only
fine-tuned the mapping network and finally generat-
ed image captions from pre-trained GPT-2. Howev-
er, this method only extracted visual feature infor-
mation through CLIP and mapped it to the textual
space without considering the intrinsic contextual
semantic information of the image. As a result, the
generated captions lack details. Furthermore, using
a single mapping network to align the two modalities
needs further refinement. Subsequently, Nukrai et al.
[22] addressed this problem by proposing an image
captioning model that matches the two modalities’
mapping by injecting noise into the training process.
This results in a more accurate alignment of the two
modalities. However, their method still needs to con-
sider the contextual semantic information inherent
in the image. On the other hand, Dai et al. [8] proposed
a method to align CLIP’s multimodal encoder and
BART’s text encoder to the same multimodal space.
They used a cross-modal LM loss to harmonize the

performance of the BART encoder and decoder. Cho
et al. [7] proposed a training strategy to improve the
descriptive power by maximizing the multimodal
similarity score of CLIP and fine-tuning its text en-
coder. Current CLIP-based image captioning meth-
ods mostly use pre-trained weights directly, and the
model is fine-tuned directly on the dataset, or only
the final fully connected layer is trained. This could
produce overfitting and lead to forgetting the weights
when the dataset is too small. Therefore, the above
methods cannot maximize CLIP’s performance on
image captioning tasks for traffic scenes and need
more personalization.
To address the abovementioned challenges, we pro-
pose the Traffic Scene Image Captioning model based
on Contrastive Language-Image Pretraining (TSIC-
CLIP). The model consists of two main models. First-
ly, the feature extraction model utilizes a fine-tuned
CLIP model to extract global image features. It also
leverages a pre-trained Faster R-CNN to extract lo-
cal image features and a CLIP-based text retrieval
module to obtain textual features of image sub-region
descriptions. These feature vectors are then concat-
enated as inputs to the captioning model to combine
the local features with the global features and tex-
tual features of image sub-regions, enhancing the
effectiveness and efficiency of captioning. The tex-
tual features of image sub-regions enrich semantic
information, leading to more accurate captions with
fewer redundancies. Additionally, we freeze the CLIP
model parameters and design a novel adapter layer for
fine-tuning the model on both public and our traffic
scene datasets called BUUISE-Image. This ensures
the CLIP model’s robustness and generalizability
while adapting it to traffic scenes, resulting in a more
personalized model.
In the captioning model, we replace the attention
mechanism layer in the Transformer with a Global
Weighted Attention Pooling (WGA-Pooling) layer as
the token mixer. First, the features extracted from the
feature extraction model are word-embedded. These
embedded features are then fed into the WGA-Pool-
ing layer. The WGA-Pooling layer aims to mix feature
information while accounting for contextual depen-
dencies between sequences, which allows the model
to better capture long-range input relationships and
significantly reduce parameters. The pooled features
are fed into a series of fully connected layers. Ulti-

101Information Technology and Control 2024/1/53

mately, the model generates natural language text
captions that more closely align with the underlying
semantic information of the traffic scene.
Finally, we constructed the BUUISE-Image dataset,
which focuses specifically on traffic scene image cap-
tioning. We evaluated the proposed method on the
publicly available MS-COCO and Flickr30k datasets
and our BUUISE-Image dataset. The experimental
results demonstrate that the method performs excel-
lently on public and proprietary datasets.
The paper is structured into five sections. Section 1 is
the introduction, delineating the research background
of image captioning in traffic scenes. It thoroughly ex-
plores the strengths and weaknesses of the generic and
CLIP-based image captioning models. Furthermore, it
offers a comprehensive summarisation and analysis
of the encountered challenge. Lastly, the section high-
lights the innovations and enhancements incorporated
in our work. Section 2 is the related work. It involves
investigating and analyzing the potential and signif-
icance of image captioning techniques within traffic
scenes. The section also encapsulates a summary of
issues extracted from pertinent literature. In response
to these issues, we curate the BUUISE-Image dataset
tailored to traffic scenes, introducing the dataset itself.
Section 3 is the methodology part. First, we summarize
the framework of the model and outline its flow. Sec-
ond, we divide the model into feature extraction and
captioning models. On this basis, we detail the work’s
innovative aspects. Section 4 is the experiment and
discussion part. In detail, we introduce the experimen-
tal environment, parameter configurations, commonly
used datasets, evaluation metrics, and the self-built
BUUISE-Image dataset. We also analyze and discuss
the experimental results. Section 5 is the conclusions,
and we summarize the contributions of our work, pres-
ent the remaining deficiencies, and provide an outlook
on future research directions.

2. Related Work
2.1. Research Related to Image Captioning in
Traffic Scenes
With the rapid development of Artificial Intelligence,
image captioning shows broad application prospects
in many fields. Especially in the field of traffic, image
captioning is playing an important role. In this section,

image captioning in traffic scenes is investigated and
analyzed regarding application scenes and methods.
Li et al. [13] have demonstrated that image captioning
of traffic scenes can provide richer semantic informa-
tion for Advanced Driver Assistance Systems (ADAS)
to make decisions. Appropriate driving suggestions
generated from captions can improve driver safety.
Voykinska et al. [34] also suggested that a blind person
can obtain the necessary information to understand
the situation of an invisible target with the help of a
trusted friend who describes the target. Thus, image
captioning techniques can help blind people see the
information in a traffic scene and thus avoid danger-
ous situations. Unlike previous methods, Xu et al. [40]
proposed an end-to-end autonomous driving model.
The model takes a sequence of video frames as input to
train a model that maps visual information to driving
operations. The method can observe previous self-mo-
tion state and traffic scene conditions from a monocu-
lar camera to generate image captions of the vehicle’s
future motion behaviours. This informs the user in
advance and enhances the user’s safety and driving ex-
perience. On the other hand, Mori et al. [20] proposed
a method to alert drivers to risks by image captioning.
Based on previous research, Mori et al. [21] proposed
a method for interpreting automated driving decisions
based on in-vehicle cameras. The method fuses the
visual information captured by the camera and the ac-
celeration and angular velocity information from the
vehicle sensors. It uses them as inputs to the model,
and the output interprets the vehicle’s driving state.
The method can effectively reduce the psychological
burden on passengers and prevent accidents. Kim et al.
[11] proposed an image captioning model for interpret-
ing autonomous driving planning and control. Unlike
previous methods, their model also considers the driv-
er’s attention. It generates captions for interpreting
vehicle behavior by acquiring information about vehi-
cle control parameters and visual information. On the
contrary, Srihari et al. [29] proposed a semantic seg-
mentation-based model for image captioning of traffic
scenes, which can be used for labeling video captions
of traffic scenes and autonomous driving assistance.
Unlike others, Wu et al. [38] applied image captioning
to traffic scene modelling. They divided the image into
several sub-regions and generated corresponding cap-
tions. Finally, they performed modelling based on the
captions of each region.

Information Technology and Control 2024/1/53102

Overall, image captioning has shown great promise in
traffic scenes, not only for assisted driving but also for
improving the safety of the blind and the elderly and
helping human users better understand and monitor the
operating status of autonomous driving systems. In the
future, the technology will be able to analyze images and
videos taken by road surveillance cameras in real-time,
detect traffic conditions and events, and generate text
reports for traffic management authorities to analyze.
This could significantly improve the efficiency of moni-
toring and managing complex traffic environments.

2.2. Image Captioning Dataset in Traffic
Scenes
The traffic scene presents unique challenges due to
its complexity, specificity, diversity, and uncertainty
[16]. The complexity stems from the simultaneous
presence of diverse vehicles, pedestrians, and traffic
signals, variable road topologies, and highly interde-
pendent traffic flows. The specificity shows in differ-
ing traffic conditions across environments like cities,
villages, and highways and from weather, time of day,
and seasons. Diversity arises from the possibility of
multiple vehicle types, pedestrian behaviours, and
road conditions, even including unknown objects be-
yond target detection categories. Uncertainty comes

from random factors like weather, accidents, and un-
expected events. Therefore, training models on traf-
fic scene datasets remains essential for addressing
the unique challenges in this domain. Seifi et al. [27]
proposed a method to select ten classes of images in
traffic scenes and their corresponding descriptions
in the MS-COCO dataset and use them as a separate
dataset for model training and evaluation. Howev-
er, due to the complexity and diversity of the traffic
scenes, using only ten classes may cause limitations
of the model in practical applications. In contrast, Ro-
chel et al. [26] created a 5,000 images dataset of traffic
accidents, divided into 4,000 training and 1,000 test
images with five matched captions each. However, the
smaller size of datasets risks limitations in capturing
the full diversity of traffic accidents. During model
training and evaluation, the size of the dataset and the
richness of its samples affect generalization ability
and model performance.
A more extensive and diverse dataset may improve
model robustness and accuracy for such a com-
plex and variable domain. Therefore, we built the
BUUISE-Image dataset dedicated to image caption-
ing in traffic scenes, containing over 10,000 images,
each with five manually generated captions. As shown
in Figure 1, the BUUISE-Image dataset is self-col-

Figure1
BUUISE-Image Traffic Scene Image captioning Dataset

Figure1
BUUISE-Image Traffic Scene Image captioning Dataset

Annotation1: There is a traffic jam.
Annotation2: There is a car parked, with several motorcycles around it.
Annotation3: Several cars and motorcycles are driving.
Annotation4: A car is coming from the left front, and there is a car waiting straight ahead.
Annotation5: On the road, a car and a motorcycle are driving ahead, and in front of the
motorcycle, a bicycle is riding.

Annotation1: There are many vehicles driving ahead.
Annotation2: Heading towards the highway toll station with three cars directly ahead.
Annotation3: Ahead there is a No Parking sign, with three cars in motion.
Annotation4: Many cars are heading towards the highway toll station.
Annotation5: Driving towards the highway toll station, many cars are not far ahead.

Annotation1: Many cars are waiting.
Annotation2: There is a traffic jam.
Annotation3: Five cars are waiting ahead.
Annotation4: Many cars are driving ahead.
Annotation5: There is a car at a close distance straight ahead, and four cars to the right
front.

Annotation1: Five cars are driving ahead.
Annotation2: Many vehicles are ahead and there is a No Parking sign to the right front.
Annotation3: Many cars are turning.
Annotation4: Many vehicles are directly ahead.
Annotation5: Many vehicles are driving, and there is a No Parking sign by the road.

Figure2
TSIC-CLIP image captioning model

Linear Projection of Flattened Patches

 Image-Encoder （（Frozen））
 （（Frozen））

Object-Detector

Feature extraction Module

Captioning Module

 Adapter (Fine tune)

WGA-
PoolFormer

Encoder

WGA-
PoolFormer

Decoder

Text
Embedding

There are capture cameras and
many cars waiting on the road

Masked
Multi-Head
Attention

Add&Norm

Multi-Head
Attention

Add&Norm

Feed
Forward

Add&Norm

Softmax

Caption

Layers
Norm

WGA-Pooling

MLP

Layers
Norm

Add

Add&Norm

Adapter (Fine tune)

Concat Concat

 3. Research Methodology
The feature extraction model uses a pre-

103Information Technology and Control 2024/1/53

Figure2
TSIC-CLIP image captioning model

lected from Beijing, Tianjin, Vietnam, and other
cities and is screened and cleaned. The dataset
focuses on the accuracy and diversity of captions.
Each image has multiple captions covering dif-
ferent aspects of information, such as objects,
attributes, relationships, scenes, etc. In addition,
the dataset provides rich metadata information,
such as the time, location, and labeling of the
images, which can be used for a broader range of
image understanding tasks. The BUUISE-Image
dataset can be used to evaluate the performance
of image captioning and can also be used to devel-
op and train new image captioning algorithms.

3. Research Methodology
The feature extraction model uses a pre-trained
Faster R-CNN as Object-Dector to extract lo-
cal image features, focusing on the target object
efficiently and reducing irrelevant redundancy.
The model extracts global features from the im-
age using a fine-tuned CLIP Image Encoder as
the Image-Encoder. The CLIP text encoder as
Text-Encoder encodes the BUUISE-Image data-
set attribute relations to obtain encoded text fea-
tures. Then, the image divides into nine sub-re-
gions, each encoded by the Image Encoder. Image
features for each sub-region calculate similarity
with the encoded text to obtain the most similar
text features. Then, the most similar text features,
global image features, and local features concate-
nate together. Finally, the concatenated features
input into the WGA-PoolFormer captioning
model to generate corresponding image captions.
The methods mentioned above are shown in Fig-
ure 2, the TSIC-CLIP image captioning model.

3.1. Feature Extraction Model
The feature extraction model consists of the Ob-
ject-Detector module, the Image-Encoder mod-
ule and the Text Retrieval module.

3.1.1. Object-Detector
Object-Detector adopts the pre-trained Faster
R-CNN model. First, the image CI R H W× ×∈ is in-
put to Object-Detector to extract local features
such as vehicles and pedestrians in the image

trained Faster R-CNN as Object-Dector to extract
local image features, focusing on the target object
efficiently and reducing irrelevant redundancy.
The model extracts global features from the image
using a fine-tuned CLIP Image Encoder as the
Image-Encoder. The CLIP text encoder as Text-
Encoder encodes the BUUISE-Image dataset
attribute relations to obtain encoded text features.
Then, the image divides into nine sub-regions,
each encoded by the Image Encoder. Image
features for each sub-region calculate similarity
with the encoded text to obtain the most similar
text features. Then, the most similar text features,
global image features, and local features
concatenate together. Finally, the concatenated
features input into the WGA-PoolFormer
captioning model to generate corresponding image
captions. The methods mentioned above are
shown in Figure 2, the TSIC-CLIP image
captioning model.

3.1 Feature Extraction Model

The feature extraction model consists of the Object-
Detector module, the Image-Encoder module and
the Text Retrieval module.

3.1.1 Object-Detector
Object-Detector adopts the pre-trained Faster R-
CNN model. First, the image CI R H W is input to
Object-Detector to extract local features such as
vehicles and pedestrians in the image

1 2o { , }no o o= K , where H represents the image
height; W represents the image width; C
represents the number of channels 3; then. The
local features are concatenated with the global
image features extracted by Image-Encoder as
shown in Equation (1):

^
*((([,])))m o o m globalO drop fc nor o Vm= , (1)

where *Vglobal represents the global image feature
vector extracted by Image-Encoder; om represents
the target feature vector extracted by Object-
Detector; [,] represents the concatenation
operation; normo represents layer normalization;

ofc represents the fully connected layer; drop

represents the Dropout operation;
^

Om represents
the features for stitching the local and global
images; firstly, the features om are combined with
the features *Vglobal are concatenated. Their layers
are normalized and input to the fully connected
layer. And then the overfitting is reduced by
Dropout.

3.1.2 Image-Encoder
The Image-Encoder module utilizes an
adapter layer fine-tuned on the CLIP image
encoder to extract global features from the
image. The parameters of the pre-trained
CLIP model are frozen, with only the adapter
layer trained on the BUUISE-Image traffic
scene dataset. This approach ensures the
generalization of the CLIP model while
significantly reducing CLIP model training
costs. The image encoder is depicted in
Figure 3.

Figure 3

Adapter layer

The proposed Image-Encoder enables
capturing the semantics of the entire scene,
focusing the CLIP model on traffic scenes
through fine-tuning in the traffic dataset,
which makes the model more personalized
and helps to generate more contextualized
captions of the situation. For an input image
I , the Image-Encoder first encodes it to
obtain global features, as shown in Equation
(2):

globalV CLIP_image(I)= , (2)

where Clip_image denotes the pre-trained

CLIP image encoder and Vglobal represents the
extracted global image features.

Then, the extracted global image features are
fed into the adapter layer, as shown in
Equation (3):

()T
image global gl

I
obal 1

I
2FA (V) ELU V= W W , (3)

where I
1W and I

2W represent fully connected
layers used to adjust the original image
features and capture new relevant feature
information. ELU represents the activation
function. ELU takes an exponential form in
the negative region, producing larger

, where H represents the image
height; W represents the image width; C rep-

Figure1
BUUISE-Image Traffic Scene Image captioning Dataset

Annotation1: There is a traffic jam.
Annotation2: There is a car parked, with several motorcycles around it.
Annotation3: Several cars and motorcycles are driving.
Annotation4: A car is coming from the left front, and there is a car waiting straight ahead.
Annotation5: On the road, a car and a motorcycle are driving ahead, and in front of the
motorcycle, a bicycle is riding.

Annotation1: There are many vehicles driving ahead.
Annotation2: Heading towards the highway toll station with three cars directly ahead.
Annotation3: Ahead there is a No Parking sign, with three cars in motion.
Annotation4: Many cars are heading towards the highway toll station.
Annotation5: Driving towards the highway toll station, many cars are not far ahead.

Annotation1: Many cars are waiting.
Annotation2: There is a traffic jam.
Annotation3: Five cars are waiting ahead.
Annotation4: Many cars are driving ahead.
Annotation5: There is a car at a close distance straight ahead, and four cars to the right
front.

Annotation1: Five cars are driving ahead.
Annotation2: Many vehicles are ahead and there is a No Parking sign to the right front.
Annotation3: Many cars are turning.
Annotation4: Many vehicles are directly ahead.
Annotation5: Many vehicles are driving, and there is a No Parking sign by the road.

Figure2
TSIC-CLIP image captioning model

Linear Projection of Flattened Patches

 Image-Encoder （（Frozen））
 （（Frozen））

Object-Detector

Feature extraction Module

Captioning Module

 Adapter (Fine tune)

WGA-
PoolFormer

Encoder

WGA-
PoolFormer

Decoder

Text
Embedding

There are capture cameras and
many cars waiting on the road

Masked
Multi-Head
Attention

Add&Norm

Multi-Head
Attention

Add&Norm

Feed
Forward

Add&Norm

Softmax

Caption

Layers
Norm

WGA-Pooling

MLP

Layers
Norm

Add

Add&Norm

Adapter (Fine tune)

Concat Concat

 3. Research Methodology
The feature extraction model uses a pre-

resents the number of channels 3; then. The local features
are concatenated with the global image features extract-
ed by Image-Encoder as shown in Equation (1):

trained Faster R-CNN as Object-Dector to extract
local image features, focusing on the target object
efficiently and reducing irrelevant redundancy.
The model extracts global features from the image
using a fine-tuned CLIP Image Encoder as the
Image-Encoder. The CLIP text encoder as Text-
Encoder encodes the BUUISE-Image dataset
attribute relations to obtain encoded text features.
Then, the image divides into nine sub-regions,
each encoded by the Image Encoder. Image
features for each sub-region calculate similarity
with the encoded text to obtain the most similar
text features. Then, the most similar text features,
global image features, and local features
concatenate together. Finally, the concatenated
features input into the WGA-PoolFormer
captioning model to generate corresponding image
captions. The methods mentioned above are
shown in Figure 2, the TSIC-CLIP image
captioning model.

3.1 Feature Extraction Model

The feature extraction model consists of the Object-
Detector module, the Image-Encoder module and
the Text Retrieval module.

3.1.1 Object-Detector
Object-Detector adopts the pre-trained Faster R-
CNN model. First, the image CI R H W is input to
Object-Detector to extract local features such as
vehicles and pedestrians in the image

1 2o { , }no o o= K , where H represents the image
height; W represents the image width; C
represents the number of channels 3; then. The
local features are concatenated with the global
image features extracted by Image-Encoder as
shown in Equation (1):

^
*((([,])))m o o m globalO drop fc nor o Vm= , (1)

where *Vglobal represents the global image feature
vector extracted by Image-Encoder; om represents
the target feature vector extracted by Object-
Detector; [,] represents the concatenation
operation; normo represents layer normalization;

ofc represents the fully connected layer; drop

represents the Dropout operation;
^

Om represents
the features for stitching the local and global
images; firstly, the features om are combined with
the features *Vglobal are concatenated. Their layers
are normalized and input to the fully connected
layer. And then the overfitting is reduced by
Dropout.

3.1.2 Image-Encoder
The Image-Encoder module utilizes an
adapter layer fine-tuned on the CLIP image
encoder to extract global features from the
image. The parameters of the pre-trained
CLIP model are frozen, with only the adapter
layer trained on the BUUISE-Image traffic
scene dataset. This approach ensures the
generalization of the CLIP model while
significantly reducing CLIP model training
costs. The image encoder is depicted in
Figure 3.

Figure 3

Adapter layer

The proposed Image-Encoder enables
capturing the semantics of the entire scene,
focusing the CLIP model on traffic scenes
through fine-tuning in the traffic dataset,
which makes the model more personalized
and helps to generate more contextualized
captions of the situation. For an input image
I , the Image-Encoder first encodes it to
obtain global features, as shown in Equation
(2):

globalV CLIP_image(I)= , (2)

where Clip_image denotes the pre-trained

CLIP image encoder and Vglobal represents the
extracted global image features.

Then, the extracted global image features are
fed into the adapter layer, as shown in
Equation (3):

()T
image global gl

I
obal 1

I
2FA (V) ELU V= W W , (3)

where I
1W and I

2W represent fully connected
layers used to adjust the original image
features and capture new relevant feature
information. ELU represents the activation
function. ELU takes an exponential form in
the negative region, producing larger

, (1)

where *Vglobal represents the global image feature vector
extracted by Image-Encoder; om represents the target
feature vector extracted by Object-Detector; [,]⋅ ⋅ rep-
resents the concatenation operation; normo represents
layer normalization; ofc represents the fully connected
layer; drop represents the Dropout operation;

^

Om rep-
resents the features for stitching the local and global
images; firstly, the features om are combined with the
features *Vglobal are concatenated. Their layers are normal-
ized and input to the fully connected layer. And then the
overfitting is reduced by Dropout.

3.1.2. Image-Encoder
The Image-Encoder module utilizes an adapter layer
fine-tuned on the CLIP image encoder to extract glob-
al features from the image. The parameters of the pre-
trained CLIP model are frozen, with only the adapter
layer trained on the BUUISE-Image traffic scene dataset.
This approach ensures the generalization of the CLIP
model while significantly reducing CLIP model training
costs. The image encoder is depicted in Figure 3.

Information Technology and Control 2024/1/53104

The proposed Image-Encoder enables capturing the
semantics of the entire scene, focusing the CLIP mod-
el on traffic scenes through fine-tuning in the traffic
dataset, which makes the model more personalized
and helps to generate more contextualized captions of
the situation. For an input image I , the Image-Encod-
er first encodes it to obtain global features, as shown
in Equation (2):

trained Faster R-CNN as Object-Dector to extract
local image features, focusing on the target object
efficiently and reducing irrelevant redundancy.
The model extracts global features from the image
using a fine-tuned CLIP Image Encoder as the
Image-Encoder. The CLIP text encoder as Text-
Encoder encodes the BUUISE-Image dataset
attribute relations to obtain encoded text features.
Then, the image divides into nine sub-regions,
each encoded by the Image Encoder. Image
features for each sub-region calculate similarity
with the encoded text to obtain the most similar
text features. Then, the most similar text features,
global image features, and local features
concatenate together. Finally, the concatenated
features input into the WGA-PoolFormer
captioning model to generate corresponding image
captions. The methods mentioned above are
shown in Figure 2, the TSIC-CLIP image
captioning model.

3.1 Feature Extraction Model

The feature extraction model consists of the Object-
Detector module, the Image-Encoder module and
the Text Retrieval module.

3.1.1 Object-Detector
Object-Detector adopts the pre-trained Faster R-
CNN model. First, the image CI R H W is input to
Object-Detector to extract local features such as
vehicles and pedestrians in the image

1 2o { , }no o o= K , where H represents the image
height; W represents the image width; C
represents the number of channels 3; then. The
local features are concatenated with the global
image features extracted by Image-Encoder as
shown in Equation (1):

^
*((([,])))m o o m globalO drop fc nor o Vm= , (1)

where *Vglobal represents the global image feature
vector extracted by Image-Encoder; om represents
the target feature vector extracted by Object-
Detector; [,] represents the concatenation
operation; normo represents layer normalization;

ofc represents the fully connected layer; drop

represents the Dropout operation;
^

Om represents
the features for stitching the local and global
images; firstly, the features om are combined with
the features *Vglobal are concatenated. Their layers
are normalized and input to the fully connected
layer. And then the overfitting is reduced by
Dropout.

3.1.2 Image-Encoder
The Image-Encoder module utilizes an
adapter layer fine-tuned on the CLIP image
encoder to extract global features from the
image. The parameters of the pre-trained
CLIP model are frozen, with only the adapter
layer trained on the BUUISE-Image traffic
scene dataset. This approach ensures the
generalization of the CLIP model while
significantly reducing CLIP model training
costs. The image encoder is depicted in
Figure 3.

Figure 3

Adapter layer

The proposed Image-Encoder enables
capturing the semantics of the entire scene,
focusing the CLIP model on traffic scenes
through fine-tuning in the traffic dataset,
which makes the model more personalized
and helps to generate more contextualized
captions of the situation. For an input image
I , the Image-Encoder first encodes it to
obtain global features, as shown in Equation
(2):

globalV CLIP_image(I)= , (2)

where Clip_image denotes the pre-trained

CLIP image encoder and Vglobal represents the
extracted global image features.

Then, the extracted global image features are
fed into the adapter layer, as shown in
Equation (3):

()T
image global gl

I
obal 1

I
2FA (V) ELU V= W W , (3)

where I
1W and I

2W represent fully connected
layers used to adjust the original image
features and capture new relevant feature
information. ELU represents the activation
function. ELU takes an exponential form in
the negative region, producing larger

, (2)

where Clip_image denotes the pre-trained CLIP im-
age encoder and Vglobal represents the extracted global
image features.
Then, the extracted global image features are fed into
the adapter layer, as shown in Equation (3):

trained Faster R-CNN as Object-Dector to extract
local image features, focusing on the target object
efficiently and reducing irrelevant redundancy.
The model extracts global features from the image
using a fine-tuned CLIP Image Encoder as the
Image-Encoder. The CLIP text encoder as Text-
Encoder encodes the BUUISE-Image dataset
attribute relations to obtain encoded text features.
Then, the image divides into nine sub-regions,
each encoded by the Image Encoder. Image
features for each sub-region calculate similarity
with the encoded text to obtain the most similar
text features. Then, the most similar text features,
global image features, and local features
concatenate together. Finally, the concatenated
features input into the WGA-PoolFormer
captioning model to generate corresponding image
captions. The methods mentioned above are
shown in Figure 2, the TSIC-CLIP image
captioning model.

3.1 Feature Extraction Model

The feature extraction model consists of the Object-
Detector module, the Image-Encoder module and
the Text Retrieval module.

3.1.1 Object-Detector
Object-Detector adopts the pre-trained Faster R-
CNN model. First, the image CI R H W is input to
Object-Detector to extract local features such as
vehicles and pedestrians in the image

1 2o { , }no o o= K , where H represents the image
height; W represents the image width; C
represents the number of channels 3; then. The
local features are concatenated with the global
image features extracted by Image-Encoder as
shown in Equation (1):

^
*((([,])))m o o m globalO drop fc nor o Vm= , (1)

where *Vglobal represents the global image feature
vector extracted by Image-Encoder; om represents
the target feature vector extracted by Object-
Detector; [,] represents the concatenation
operation; normo represents layer normalization;

ofc represents the fully connected layer; drop

represents the Dropout operation;
^

Om represents
the features for stitching the local and global
images; firstly, the features om are combined with
the features *Vglobal are concatenated. Their layers
are normalized and input to the fully connected
layer. And then the overfitting is reduced by
Dropout.

3.1.2 Image-Encoder
The Image-Encoder module utilizes an
adapter layer fine-tuned on the CLIP image
encoder to extract global features from the
image. The parameters of the pre-trained
CLIP model are frozen, with only the adapter
layer trained on the BUUISE-Image traffic
scene dataset. This approach ensures the
generalization of the CLIP model while
significantly reducing CLIP model training
costs. The image encoder is depicted in
Figure 3.

Figure 3

Adapter layer

The proposed Image-Encoder enables
capturing the semantics of the entire scene,
focusing the CLIP model on traffic scenes
through fine-tuning in the traffic dataset,
which makes the model more personalized
and helps to generate more contextualized
captions of the situation. For an input image
I , the Image-Encoder first encodes it to
obtain global features, as shown in Equation
(2):

globalV CLIP_image(I)= , (2)

where Clip_image denotes the pre-trained

CLIP image encoder and Vglobal represents the
extracted global image features.

Then, the extracted global image features are
fed into the adapter layer, as shown in
Equation (3):

()T
image global gl

I
obal 1

I
2FA (V) ELU V= W W , (3)

where I
1W and I

2W represent fully connected
layers used to adjust the original image
features and capture new relevant feature
information. ELU represents the activation
function. ELU takes an exponential form in
the negative region, producing larger

, (3)

where I
1W and I

2W represent fully connected layers
used to adjust the original image features and capture
new relevant feature information. ELU represents
the activation function. ELU takes an exponential
form in the negative region, producing larger gra-
dients to avoid vanishing gradients. Furthermore,
ELU’s near-zero mean and constant variance accel-
erate neural network convergence speed and enhance
model robustness. imageFA represents the adapter layer.
The features adjusted by the adapter layer are fed
into the residual block, and the Equation as shown in
Equation (4):

Figure 3
Adapter layer

trained Faster R-CNN as Object-Dector to extract
local image features, focusing on the target object
efficiently and reducing irrelevant redundancy.
The model extracts global features from the image
using a fine-tuned CLIP Image Encoder as the
Image-Encoder. The CLIP text encoder as Text-
Encoder encodes the BUUISE-Image dataset
attribute relations to obtain encoded text features.
Then, the image divides into nine sub-regions,
each encoded by the Image Encoder. Image
features for each sub-region calculate similarity
with the encoded text to obtain the most similar
text features. Then, the most similar text features,
global image features, and local features
concatenate together. Finally, the concatenated
features input into the WGA-PoolFormer
captioning model to generate corresponding image
captions. The methods mentioned above are
shown in Figure 2, the TSIC-CLIP image
captioning model.

3.1 Feature Extraction Model

The feature extraction model consists of the Object-
Detector module, the Image-Encoder module and
the Text Retrieval module.

3.1.1 Object-Detector
Object-Detector adopts the pre-trained Faster R-
CNN model. First, the image CI R H W is input to
Object-Detector to extract local features such as
vehicles and pedestrians in the image

1 2o { , }no o o= K , where H represents the image
height; W represents the image width; C
represents the number of channels 3; then. The
local features are concatenated with the global
image features extracted by Image-Encoder as
shown in Equation (1):

^
*((([,])))m o o m globalO drop fc nor o Vm= , (1)

where *Vglobal represents the global image feature
vector extracted by Image-Encoder; om represents
the target feature vector extracted by Object-
Detector; [,] represents the concatenation
operation; normo represents layer normalization;

ofc represents the fully connected layer; drop

represents the Dropout operation;
^

Om represents
the features for stitching the local and global
images; firstly, the features om are combined with
the features *Vglobal are concatenated. Their layers
are normalized and input to the fully connected
layer. And then the overfitting is reduced by
Dropout.

3.1.2 Image-Encoder
The Image-Encoder module utilizes an
adapter layer fine-tuned on the CLIP image
encoder to extract global features from the
image. The parameters of the pre-trained
CLIP model are frozen, with only the adapter
layer trained on the BUUISE-Image traffic
scene dataset. This approach ensures the
generalization of the CLIP model while
significantly reducing CLIP model training
costs. The image encoder is depicted in
Figure 3.

Figure 3

Adapter layer

The proposed Image-Encoder enables
capturing the semantics of the entire scene,
focusing the CLIP model on traffic scenes
through fine-tuning in the traffic dataset,
which makes the model more personalized
and helps to generate more contextualized
captions of the situation. For an input image
I , the Image-Encoder first encodes it to
obtain global features, as shown in Equation
(2):

globalV CLIP_image(I)= , (2)

where Clip_image denotes the pre-trained

CLIP image encoder and Vglobal represents the
extracted global image features.

Then, the extracted global image features are
fed into the adapter layer, as shown in
Equation (3):

()T
image global gl

I
obal 1

I
2FA (V) ELU V= W W , (3)

where I
1W and I

2W represent fully connected
layers used to adjust the original image
features and capture new relevant feature
information. ELU represents the activation
function. ELU takes an exponential form in
the negative region, producing larger

(a) Adapter (b) Clip-Encoder (c) Adapter+Clip-Encoder

gradients to avoid vanishing gradients.
Furthermore, ELU's near-zero mean and constant
variance accelerate neural network convergence
speed and enhance model robustness. imageFA
represents the adapter layer.

The features adjusted by the adapter layer are fed
into the residual block, and the Equation as shown

in Equation (4):
*
global global globaliV FA (V) (1)VT

mage = + − , (4)

where represents the residual ratio, which
is used to adjust the original features; *

globalV
represents the global image features after
adapter layer adjustment.

Figure 4

Text retrieval module

、、

、、

、、

Top-k text vectors with the highest similarity

Figure 5

Comparison between Transformer model and WGA-PoolFormer model

Multi-Head
Attention

Feed
Forward

Add&Norm

Add&Norm

Text
Embedding

Masked
Multi-Head
Attention

Add&Norm

Multi-Head
Attention

Add&Norm

Feed
Forward

Add&Norm

Layers
Norm

WGA-Pooling

MLP

Layers
Norm

Add

Add&Norm

Text
Embedding

Masked
Multi-Head
Attention

Add&Norm

Multi-Head
Attention

Add&Norm

Feed
Forward

Add&Norm

（a）Transformer （b）WGA-PoolFormer

Linear

Softmax

Linear

Softmax

, (4)

where α represents the residual ratio, which is used
to adjust the original features; *

globalV represents the
global image features after adapter layer adjustment.

3.1.1. Text-Encoder
The text encoder utilizes the pre-trained CLIP text
encoder, and the weights of the predictive classifi-
er are adjusted using the adapter layer as shown in
Equation (5):

3.1.1 Text-Encoder
The text encoder utilizes the pre-trained CLIP text
encoder, and the weights of the predictive
classifier are adjusted using the adapter layer as
shown in Equation (5):

()context 1 2FA (W) ELU W W WC CT= , (5)

where W represents the classifier weights; contextFA
represents the adapter layer used to fine-tune the
CLIP text encoder.

The classifier weights are first fed into the adapter
layer to map the features to the new space used to
obtain the relevant features. Then, they are fed into
the residual block for adjustment, as shown in
Equation (6):

contextW FA (W) (1)WT = + −å , (6)

where is the residual ratio; Cå represents the
weights adjusted by the adapter layer.

Then the features encoded by Image-Encoder *
globalV

and the classifier weights of Text-Encoder *W are
used to calculate the class probability of the image
by softmax as shown in Equation (7):

* *
i global

i N * *
j globalj 1

exp((W) V) /
p

exp((W) V) /

T

T

=

=

, (7)

where exp() represents the exponential

function; *
iW represents the weight corresponding

to the i th output unit; *
globalV represents the global

image features; and represents the temperature
parameter used to adjust the softmax, which
controls the smoothing degree of the probability
distribution. Here, i represents the i th class; N
represents the total number of classes; ip
represents the predicted probability of the i th
category.

Finally, the Image-Encoder and Text-Encoder are
optimized by cross-entropy loss function as shown
in Equation (8):

()
N

ip ii c

M

1

1L log p
N

y
=

= − , (8)

where N represents the total number of samples;
M represents the number of classes; ip represents
the probability that the sample i belongs to the
predicted class p ; ipy represents the true labeling
of the sample i for the class p , and if the sample
i belongs to the class p , then ipy 1= , else it will be
0; L represents the loss function.

3.1.4 Text Retrieval Module

The text retrieval module is used to calculate
and get the text features that have the highest
similarity with the nine sub-regions of the
image, and its model is shown in Figure 4
Text Retrieval Module.

The input image is first split into nine sub-
regions in the text retrieval module. Each
image sub-region is then encoded by the
Image-Encoder, as shown in Equation (9):

x subv ImageEncoder(I)= , (9)

where the vector xv is the x th image
subregion feature, which is taken as the query
key.

Then, Text-Encoder encodes

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation
(10):

q BUUu TextEncoder(T)= . (10)

The cosine similarity is calculated between
the query image feature xv and each text

feature qu as shown in Equation (11):

x q
x j

x q

v u
sim(v ,u)

v u

=

. (11)

Finally, the k text features j,kt with the

highest similarity to xV are returned, as
shown in Equation (12):

j, x qt topK(sim(v u))k = . (12)

The image sub-region features xv are then
concatenated with the caption vectors j,kt
having the highest similarity to their
corresponding sub-regions. This combined
representation is processed through fully
connected layers, layer normalization, and
dropout, as shown in Equation (13):

^

j,k t j,k xt drop(fc (norm ([t , v])))t= , (13)

where j,kt is the text feature with the highest
similarity; j represents the numbering of the
image sub-regions; k represents the top k
text descriptions with the highest cosine
similarity; and finally the model will be fused
by the Object-Detector to the feature vector

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K are concatenated with the

fused vectors
^ ^

j,kT {t | j, k}= from the text
retrieval module to obtain the target with

, (5)

where W represents the classifier weights; contextFA
represents the adapter layer used to fine-tune the
CLIP text encoder.
The classifier weights are first fed into the adapter lay-
er to map the features to the new space used to obtain
the relevant features. Then, they are fed into the resid-
ual block for adjustment, as shown in Equation (6):

3.1.1 Text-Encoder
The text encoder utilizes the pre-trained CLIP text
encoder, and the weights of the predictive
classifier are adjusted using the adapter layer as
shown in Equation (5):

()context 1 2FA (W) ELU W W WC CT= , (5)

where W represents the classifier weights; contextFA
represents the adapter layer used to fine-tune the
CLIP text encoder.

The classifier weights are first fed into the adapter
layer to map the features to the new space used to
obtain the relevant features. Then, they are fed into
the residual block for adjustment, as shown in
Equation (6):

contextW FA (W) (1)WT = + −å , (6)

where is the residual ratio; Cå represents the
weights adjusted by the adapter layer.

Then the features encoded by Image-Encoder *
globalV

and the classifier weights of Text-Encoder *W are
used to calculate the class probability of the image
by softmax as shown in Equation (7):

* *
i global

i N * *
j globalj 1

exp((W) V) /
p

exp((W) V) /

T

T

=

=

, (7)

where exp() represents the exponential

function; *
iW represents the weight corresponding

to the i th output unit; *
globalV represents the global

image features; and represents the temperature
parameter used to adjust the softmax, which
controls the smoothing degree of the probability
distribution. Here, i represents the i th class; N
represents the total number of classes; ip
represents the predicted probability of the i th
category.

Finally, the Image-Encoder and Text-Encoder are
optimized by cross-entropy loss function as shown
in Equation (8):

()
N

ip ii c

M

1

1L log p
N

y
=

= − , (8)

where N represents the total number of samples;
M represents the number of classes; ip represents
the probability that the sample i belongs to the
predicted class p ; ipy represents the true labeling
of the sample i for the class p , and if the sample
i belongs to the class p , then ipy 1= , else it will be
0; L represents the loss function.

3.1.4 Text Retrieval Module

The text retrieval module is used to calculate
and get the text features that have the highest
similarity with the nine sub-regions of the
image, and its model is shown in Figure 4
Text Retrieval Module.

The input image is first split into nine sub-
regions in the text retrieval module. Each
image sub-region is then encoded by the
Image-Encoder, as shown in Equation (9):

x subv ImageEncoder(I)= , (9)

where the vector xv is the x th image
subregion feature, which is taken as the query
key.

Then, Text-Encoder encodes

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation
(10):

q BUUu TextEncoder(T)= . (10)

The cosine similarity is calculated between
the query image feature xv and each text

feature qu as shown in Equation (11):

x q
x j

x q

v u
sim(v ,u)

v u

=

. (11)

Finally, the k text features j,kt with the

highest similarity to xV are returned, as
shown in Equation (12):

j, x qt topK(sim(v u))k = . (12)

The image sub-region features xv are then
concatenated with the caption vectors j,kt
having the highest similarity to their
corresponding sub-regions. This combined
representation is processed through fully
connected layers, layer normalization, and
dropout, as shown in Equation (13):

^

j,k t j,k xt drop(fc (norm ([t , v])))t= , (13)

where j,kt is the text feature with the highest
similarity; j represents the numbering of the
image sub-regions; k represents the top k
text descriptions with the highest cosine
similarity; and finally the model will be fused
by the Object-Detector to the feature vector

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K are concatenated with the

fused vectors
^ ^

j,kT {t | j, k}= from the text
retrieval module to obtain the target with

, (6)

where β is the residual ratio; Cå
 represents the

weights adjusted by the adapter layer.
Then the features encoded by Image-Encoder *

globalV
and the classifier weights of Text-Encoder *W are
used to calculate the class probability of the image by
softmax as shown in Equation (7):

3.1.1 Text-Encoder
The text encoder utilizes the pre-trained CLIP text
encoder, and the weights of the predictive
classifier are adjusted using the adapter layer as
shown in Equation (5):

()context 1 2FA (W) ELU W W WC CT= , (5)

where W represents the classifier weights; contextFA
represents the adapter layer used to fine-tune the
CLIP text encoder.

The classifier weights are first fed into the adapter
layer to map the features to the new space used to
obtain the relevant features. Then, they are fed into
the residual block for adjustment, as shown in
Equation (6):

contextW FA (W) (1)WT = + −å , (6)

where is the residual ratio; Cå represents the
weights adjusted by the adapter layer.

Then the features encoded by Image-Encoder *
globalV

and the classifier weights of Text-Encoder *W are
used to calculate the class probability of the image
by softmax as shown in Equation (7):

* *
i global

i N * *
j globalj 1

exp((W) V) /
p

exp((W) V) /

T

T

=

=

, (7)

where exp() represents the exponential

function; *
iW represents the weight corresponding

to the i th output unit; *
globalV represents the global

image features; and represents the temperature
parameter used to adjust the softmax, which
controls the smoothing degree of the probability
distribution. Here, i represents the i th class; N
represents the total number of classes; ip
represents the predicted probability of the i th
category.

Finally, the Image-Encoder and Text-Encoder are
optimized by cross-entropy loss function as shown
in Equation (8):

()
N

ip ii c

M

1

1L log p
N

y
=

= − , (8)

where N represents the total number of samples;
M represents the number of classes; ip represents
the probability that the sample i belongs to the
predicted class p ; ipy represents the true labeling
of the sample i for the class p , and if the sample
i belongs to the class p , then ipy 1= , else it will be
0; L represents the loss function.

3.1.4 Text Retrieval Module

The text retrieval module is used to calculate
and get the text features that have the highest
similarity with the nine sub-regions of the
image, and its model is shown in Figure 4
Text Retrieval Module.

The input image is first split into nine sub-
regions in the text retrieval module. Each
image sub-region is then encoded by the
Image-Encoder, as shown in Equation (9):

x subv ImageEncoder(I)= , (9)

where the vector xv is the x th image
subregion feature, which is taken as the query
key.

Then, Text-Encoder encodes

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation
(10):

q BUUu TextEncoder(T)= . (10)

The cosine similarity is calculated between
the query image feature xv and each text

feature qu as shown in Equation (11):

x q
x j

x q

v u
sim(v ,u)

v u

=

. (11)

Finally, the k text features j,kt with the

highest similarity to xV are returned, as
shown in Equation (12):

j, x qt topK(sim(v u))k = . (12)

The image sub-region features xv are then
concatenated with the caption vectors j,kt
having the highest similarity to their
corresponding sub-regions. This combined
representation is processed through fully
connected layers, layer normalization, and
dropout, as shown in Equation (13):

^

j,k t j,k xt drop(fc (norm ([t , v])))t= , (13)

where j,kt is the text feature with the highest
similarity; j represents the numbering of the
image sub-regions; k represents the top k
text descriptions with the highest cosine
similarity; and finally the model will be fused
by the Object-Detector to the feature vector

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K are concatenated with the

fused vectors
^ ^

j,kT {t | j, k}= from the text
retrieval module to obtain the target with

,
(7)

where exp()⋅ represents the exponential function; *
iW represents the weight corresponding to the ith output

unit; *
globalV represents the global image features; and τ

represents the temperature parameter used to adjust
the softmax, which controls the smoothing degree of
the probability distribution. Here, i represents the ith
class; N represents the total number of classes; pi rep-
resents the predicted probability of the ith category.
Finally, the Image-Encoder and Text-Encoder are
optimized by cross-entropy loss function as shown in
Equation (8):

3.1.1 Text-Encoder
The text encoder utilizes the pre-trained CLIP text
encoder, and the weights of the predictive
classifier are adjusted using the adapter layer as
shown in Equation (5):

()context 1 2FA (W) ELU W W WC CT= , (5)

where W represents the classifier weights; contextFA
represents the adapter layer used to fine-tune the
CLIP text encoder.

The classifier weights are first fed into the adapter
layer to map the features to the new space used to
obtain the relevant features. Then, they are fed into
the residual block for adjustment, as shown in
Equation (6):

contextW FA (W) (1)WT = + −å , (6)

where is the residual ratio; Cå represents the
weights adjusted by the adapter layer.

Then the features encoded by Image-Encoder *
globalV

and the classifier weights of Text-Encoder *W are
used to calculate the class probability of the image
by softmax as shown in Equation (7):

* *
i global

i N * *
j globalj 1

exp((W) V) /
p

exp((W) V) /

T

T

=

=

, (7)

where exp() represents the exponential

function; *
iW represents the weight corresponding

to the i th output unit; *
globalV represents the global

image features; and represents the temperature
parameter used to adjust the softmax, which
controls the smoothing degree of the probability
distribution. Here, i represents the i th class; N
represents the total number of classes; ip
represents the predicted probability of the i th
category.

Finally, the Image-Encoder and Text-Encoder are
optimized by cross-entropy loss function as shown
in Equation (8):

()
N

ip ii c

M

1

1L log p
N

y
=

= − , (8)

where N represents the total number of samples;
M represents the number of classes; ip represents
the probability that the sample i belongs to the
predicted class p ; ipy represents the true labeling
of the sample i for the class p , and if the sample
i belongs to the class p , then ipy 1= , else it will be
0; L represents the loss function.

3.1.4 Text Retrieval Module

The text retrieval module is used to calculate
and get the text features that have the highest
similarity with the nine sub-regions of the
image, and its model is shown in Figure 4
Text Retrieval Module.

The input image is first split into nine sub-
regions in the text retrieval module. Each
image sub-region is then encoded by the
Image-Encoder, as shown in Equation (9):

x subv ImageEncoder(I)= , (9)

where the vector xv is the x th image
subregion feature, which is taken as the query
key.

Then, Text-Encoder encodes

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation
(10):

q BUUu TextEncoder(T)= . (10)

The cosine similarity is calculated between
the query image feature xv and each text

feature qu as shown in Equation (11):

x q
x j

x q

v u
sim(v ,u)

v u

=

. (11)

Finally, the k text features j,kt with the

highest similarity to xV are returned, as
shown in Equation (12):

j, x qt topK(sim(v u))k = . (12)

The image sub-region features xv are then
concatenated with the caption vectors j,kt
having the highest similarity to their
corresponding sub-regions. This combined
representation is processed through fully
connected layers, layer normalization, and
dropout, as shown in Equation (13):

^

j,k t j,k xt drop(fc (norm ([t , v])))t= , (13)

where j,kt is the text feature with the highest
similarity; j represents the numbering of the
image sub-regions; k represents the top k
text descriptions with the highest cosine
similarity; and finally the model will be fused
by the Object-Detector to the feature vector

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K are concatenated with the

fused vectors
^ ^

j,kT {t | j, k}= from the text
retrieval module to obtain the target with

, (8)

105Information Technology and Control 2024/1/53

Figure 4
Text retrieval module

where N represents the total number of samples; M
represents the number of classes; ip represents the
probability that the sample i belongs to the predicted
class p; ipy represents the true labeling of the sample i
for the class p, and if the sample i belongs to the class
p, then

ipy 1= , else it will be 0; L represents the loss
function.

3.1.4. Text Retrieval Module
The text retrieval module is used to calculate and get
the text features that have the highest similarity with
the nine sub-regions of the image, and its model is
shown in Figure 4 Text Retrieval Module.
The input image is first split into nine sub-regions
in the text retrieval module. Each image sub-region
is then encoded by the Image-Encoder, as shown in
Equation (9):

3.1.1 Text-Encoder
The text encoder utilizes the pre-trained CLIP text
encoder, and the weights of the predictive
classifier are adjusted using the adapter layer as
shown in Equation (5):

()context 1 2FA (W) ELU W W WC CT= , (5)

where W represents the classifier weights; contextFA
represents the adapter layer used to fine-tune the
CLIP text encoder.

The classifier weights are first fed into the adapter
layer to map the features to the new space used to
obtain the relevant features. Then, they are fed into
the residual block for adjustment, as shown in
Equation (6):

contextW FA (W) (1)WT = + −å , (6)

where is the residual ratio; Cå represents the
weights adjusted by the adapter layer.

Then the features encoded by Image-Encoder *
globalV

and the classifier weights of Text-Encoder *W are
used to calculate the class probability of the image
by softmax as shown in Equation (7):

* *
i global

i N * *
j globalj 1

exp((W) V) /
p

exp((W) V) /

T

T

=

=

, (7)

where exp() represents the exponential

function; *
iW represents the weight corresponding

to the i th output unit; *
globalV represents the global

image features; and represents the temperature
parameter used to adjust the softmax, which
controls the smoothing degree of the probability
distribution. Here, i represents the i th class; N
represents the total number of classes; ip
represents the predicted probability of the i th
category.

Finally, the Image-Encoder and Text-Encoder are
optimized by cross-entropy loss function as shown
in Equation (8):

()
N

ip ii c

M

1

1L log p
N

y
=

= − , (8)

where N represents the total number of samples;
M represents the number of classes; ip represents
the probability that the sample i belongs to the
predicted class p ; ipy represents the true labeling
of the sample i for the class p , and if the sample
i belongs to the class p , then ipy 1= , else it will be
0; L represents the loss function.

3.1.4 Text Retrieval Module

The text retrieval module is used to calculate
and get the text features that have the highest
similarity with the nine sub-regions of the
image, and its model is shown in Figure 4
Text Retrieval Module.

The input image is first split into nine sub-
regions in the text retrieval module. Each
image sub-region is then encoded by the
Image-Encoder, as shown in Equation (9):

x subv ImageEncoder(I)= , (9)

where the vector xv is the x th image
subregion feature, which is taken as the query
key.

Then, Text-Encoder encodes

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation
(10):

q BUUu TextEncoder(T)= . (10)

The cosine similarity is calculated between
the query image feature xv and each text

feature qu as shown in Equation (11):

x q
x j

x q

v u
sim(v ,u)

v u

=

. (11)

Finally, the k text features j,kt with the

highest similarity to xV are returned, as
shown in Equation (12):

j, x qt topK(sim(v u))k = . (12)

The image sub-region features xv are then
concatenated with the caption vectors j,kt
having the highest similarity to their
corresponding sub-regions. This combined
representation is processed through fully
connected layers, layer normalization, and
dropout, as shown in Equation (13):

^

j,k t j,k xt drop(fc (norm ([t , v])))t= , (13)

where j,kt is the text feature with the highest
similarity; j represents the numbering of the
image sub-regions; k represents the top k
text descriptions with the highest cosine
similarity; and finally the model will be fused
by the Object-Detector to the feature vector

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K are concatenated with the

fused vectors
^ ^

j,kT {t | j, k}= from the text
retrieval module to obtain the target with

, (9)

where the vector xv is the x th image subregion fea-
ture, which is taken as the query key.
Then, Text-Encoder encodes BUU 1 2T {T ,T ,...,T }n= ,
as shown in Equation (10):

3.1.1 Text-Encoder
The text encoder utilizes the pre-trained CLIP text
encoder, and the weights of the predictive
classifier are adjusted using the adapter layer as
shown in Equation (5):

()context 1 2FA (W) ELU W W WC CT= , (5)

where W represents the classifier weights; contextFA
represents the adapter layer used to fine-tune the
CLIP text encoder.

The classifier weights are first fed into the adapter
layer to map the features to the new space used to
obtain the relevant features. Then, they are fed into
the residual block for adjustment, as shown in
Equation (6):

contextW FA (W) (1)WT = + −å , (6)

where is the residual ratio; Cå represents the
weights adjusted by the adapter layer.

Then the features encoded by Image-Encoder *
globalV

and the classifier weights of Text-Encoder *W are
used to calculate the class probability of the image
by softmax as shown in Equation (7):

* *
i global

i N * *
j globalj 1

exp((W) V) /
p

exp((W) V) /

T

T

=

=

, (7)

where exp() represents the exponential

function; *
iW represents the weight corresponding

to the i th output unit; *
globalV represents the global

image features; and represents the temperature
parameter used to adjust the softmax, which
controls the smoothing degree of the probability
distribution. Here, i represents the i th class; N
represents the total number of classes; ip
represents the predicted probability of the i th
category.

Finally, the Image-Encoder and Text-Encoder are
optimized by cross-entropy loss function as shown
in Equation (8):

()
N

ip ii c

M

1

1L log p
N

y
=

= − , (8)

where N represents the total number of samples;
M represents the number of classes; ip represents
the probability that the sample i belongs to the
predicted class p ; ipy represents the true labeling
of the sample i for the class p , and if the sample
i belongs to the class p , then ipy 1= , else it will be
0; L represents the loss function.

3.1.4 Text Retrieval Module

The text retrieval module is used to calculate
and get the text features that have the highest
similarity with the nine sub-regions of the
image, and its model is shown in Figure 4
Text Retrieval Module.

The input image is first split into nine sub-
regions in the text retrieval module. Each
image sub-region is then encoded by the
Image-Encoder, as shown in Equation (9):

x subv ImageEncoder(I)= , (9)

where the vector xv is the x th image
subregion feature, which is taken as the query
key.

Then, Text-Encoder encodes

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation
(10):

q BUUu TextEncoder(T)= . (10)

The cosine similarity is calculated between
the query image feature xv and each text

feature qu as shown in Equation (11):

x q
x j

x q

v u
sim(v ,u)

v u

=

. (11)

Finally, the k text features j,kt with the

highest similarity to xV are returned, as
shown in Equation (12):

j, x qt topK(sim(v u))k = . (12)

The image sub-region features xv are then
concatenated with the caption vectors j,kt
having the highest similarity to their
corresponding sub-regions. This combined
representation is processed through fully
connected layers, layer normalization, and
dropout, as shown in Equation (13):

^

j,k t j,k xt drop(fc (norm ([t , v])))t= , (13)

where j,kt is the text feature with the highest
similarity; j represents the numbering of the
image sub-regions; k represents the top k
text descriptions with the highest cosine
similarity; and finally the model will be fused
by the Object-Detector to the feature vector

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K are concatenated with the

fused vectors
^ ^

j,kT {t | j, k}= from the text
retrieval module to obtain the target with

(10)

gradients to avoid vanishing gradients.
Furthermore, ELU's near-zero mean and constant
variance accelerate neural network convergence
speed and enhance model robustness. imageFA
represents the adapter layer.

The features adjusted by the adapter layer are fed
into the residual block, and the Equation as shown

in Equation (4):
*
global global globaliV FA (V) (1)VT

mage = + − , (4)

where represents the residual ratio, which
is used to adjust the original features; *

globalV
represents the global image features after
adapter layer adjustment.

Figure 4

Text retrieval module

、、

、、

、、

Top-k text vectors with the highest similarity

Figure 5

Comparison between Transformer model and WGA-PoolFormer model

Multi-Head
Attention

Feed
Forward

Add&Norm

Add&Norm

Text
Embedding

Masked
Multi-Head
Attention

Add&Norm

Multi-Head
Attention

Add&Norm

Feed
Forward

Add&Norm

Layers
Norm

WGA-Pooling

MLP

Layers
Norm

Add

Add&Norm

Text
Embedding

Masked
Multi-Head
Attention

Add&Norm

Multi-Head
Attention

Add&Norm

Feed
Forward

Add&Norm

（a）Transformer （b）WGA-PoolFormer

Linear

Softmax

Linear

Softmax

The cosine similarity is calculated between the query
image feature xv and each text feature qu as shown in
Equation (11):

3.1.1 Text-Encoder
The text encoder utilizes the pre-trained CLIP text
encoder, and the weights of the predictive
classifier are adjusted using the adapter layer as
shown in Equation (5):

()context 1 2FA (W) ELU W W WC CT= , (5)

where W represents the classifier weights; contextFA
represents the adapter layer used to fine-tune the
CLIP text encoder.

The classifier weights are first fed into the adapter
layer to map the features to the new space used to
obtain the relevant features. Then, they are fed into
the residual block for adjustment, as shown in
Equation (6):

contextW FA (W) (1)WT = + −å , (6)

where is the residual ratio; Cå represents the
weights adjusted by the adapter layer.

Then the features encoded by Image-Encoder *
globalV

and the classifier weights of Text-Encoder *W are
used to calculate the class probability of the image
by softmax as shown in Equation (7):

* *
i global

i N * *
j globalj 1

exp((W) V) /
p

exp((W) V) /

T

T

=

=

, (7)

where exp() represents the exponential

function; *
iW represents the weight corresponding

to the i th output unit; *
globalV represents the global

image features; and represents the temperature
parameter used to adjust the softmax, which
controls the smoothing degree of the probability
distribution. Here, i represents the i th class; N
represents the total number of classes; ip
represents the predicted probability of the i th
category.

Finally, the Image-Encoder and Text-Encoder are
optimized by cross-entropy loss function as shown
in Equation (8):

()
N

ip ii c

M

1

1L log p
N

y
=

= − , (8)

where N represents the total number of samples;
M represents the number of classes; ip represents
the probability that the sample i belongs to the
predicted class p ; ipy represents the true labeling
of the sample i for the class p , and if the sample
i belongs to the class p , then ipy 1= , else it will be
0; L represents the loss function.

3.1.4 Text Retrieval Module

The text retrieval module is used to calculate
and get the text features that have the highest
similarity with the nine sub-regions of the
image, and its model is shown in Figure 4
Text Retrieval Module.

The input image is first split into nine sub-
regions in the text retrieval module. Each
image sub-region is then encoded by the
Image-Encoder, as shown in Equation (9):

x subv ImageEncoder(I)= , (9)

where the vector xv is the x th image
subregion feature, which is taken as the query
key.

Then, Text-Encoder encodes

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation
(10):

q BUUu TextEncoder(T)= . (10)

The cosine similarity is calculated between
the query image feature xv and each text

feature qu as shown in Equation (11):

x q
x j

x q

v u
sim(v ,u)

v u

=

. (11)

Finally, the k text features j,kt with the

highest similarity to xV are returned, as
shown in Equation (12):

j, x qt topK(sim(v u))k = . (12)

The image sub-region features xv are then
concatenated with the caption vectors j,kt
having the highest similarity to their
corresponding sub-regions. This combined
representation is processed through fully
connected layers, layer normalization, and
dropout, as shown in Equation (13):

^

j,k t j,k xt drop(fc (norm ([t , v])))t= , (13)

where j,kt is the text feature with the highest
similarity; j represents the numbering of the
image sub-regions; k represents the top k
text descriptions with the highest cosine
similarity; and finally the model will be fused
by the Object-Detector to the feature vector

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K are concatenated with the

fused vectors
^ ^

j,kT {t | j, k}= from the text
retrieval module to obtain the target with

(11)

Finally, the k text features j,kt with the highest simi-
larity to xV are returned, as shown in Equation (12):

3.1.1 Text-Encoder
The text encoder utilizes the pre-trained CLIP text
encoder, and the weights of the predictive
classifier are adjusted using the adapter layer as
shown in Equation (5):

()context 1 2FA (W) ELU W W WC CT= , (5)

where W represents the classifier weights; contextFA
represents the adapter layer used to fine-tune the
CLIP text encoder.

The classifier weights are first fed into the adapter
layer to map the features to the new space used to
obtain the relevant features. Then, they are fed into
the residual block for adjustment, as shown in
Equation (6):

contextW FA (W) (1)WT = + −å , (6)

where is the residual ratio; Cå represents the
weights adjusted by the adapter layer.

Then the features encoded by Image-Encoder *
globalV

and the classifier weights of Text-Encoder *W are
used to calculate the class probability of the image
by softmax as shown in Equation (7):

* *
i global

i N * *
j globalj 1

exp((W) V) /
p

exp((W) V) /

T

T

=

=

, (7)

where exp() represents the exponential

function; *
iW represents the weight corresponding

to the i th output unit; *
globalV represents the global

image features; and represents the temperature
parameter used to adjust the softmax, which
controls the smoothing degree of the probability
distribution. Here, i represents the i th class; N
represents the total number of classes; ip
represents the predicted probability of the i th
category.

Finally, the Image-Encoder and Text-Encoder are
optimized by cross-entropy loss function as shown
in Equation (8):

()
N

ip ii c

M

1

1L log p
N

y
=

= − , (8)

where N represents the total number of samples;
M represents the number of classes; ip represents
the probability that the sample i belongs to the
predicted class p ; ipy represents the true labeling
of the sample i for the class p , and if the sample
i belongs to the class p , then ipy 1= , else it will be
0; L represents the loss function.

3.1.4 Text Retrieval Module

The text retrieval module is used to calculate
and get the text features that have the highest
similarity with the nine sub-regions of the
image, and its model is shown in Figure 4
Text Retrieval Module.

The input image is first split into nine sub-
regions in the text retrieval module. Each
image sub-region is then encoded by the
Image-Encoder, as shown in Equation (9):

x subv ImageEncoder(I)= , (9)

where the vector xv is the x th image
subregion feature, which is taken as the query
key.

Then, Text-Encoder encodes

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation
(10):

q BUUu TextEncoder(T)= . (10)

The cosine similarity is calculated between
the query image feature xv and each text

feature qu as shown in Equation (11):

x q
x j

x q

v u
sim(v ,u)

v u

=

. (11)

Finally, the k text features j,kt with the

highest similarity to xV are returned, as
shown in Equation (12):

j, x qt topK(sim(v u))k = . (12)

The image sub-region features xv are then
concatenated with the caption vectors j,kt
having the highest similarity to their
corresponding sub-regions. This combined
representation is processed through fully
connected layers, layer normalization, and
dropout, as shown in Equation (13):

^

j,k t j,k xt drop(fc (norm ([t , v])))t= , (13)

where j,kt is the text feature with the highest
similarity; j represents the numbering of the
image sub-regions; k represents the top k
text descriptions with the highest cosine
similarity; and finally the model will be fused
by the Object-Detector to the feature vector

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K are concatenated with the

fused vectors
^ ^

j,kT {t | j, k}= from the text
retrieval module to obtain the target with

(12)

The image sub-region features xv are then concate-
nated with the caption vectors j,kt having the highest
similarity to their corresponding sub-regions. This
combined representation is processed through fully
connected layers, layer normalization, and dropout,
as shown in Equation (13):

3.1.1 Text-Encoder
The text encoder utilizes the pre-trained CLIP text
encoder, and the weights of the predictive
classifier are adjusted using the adapter layer as
shown in Equation (5):

()context 1 2FA (W) ELU W W WC CT= , (5)

where W represents the classifier weights; contextFA
represents the adapter layer used to fine-tune the
CLIP text encoder.

The classifier weights are first fed into the adapter
layer to map the features to the new space used to
obtain the relevant features. Then, they are fed into
the residual block for adjustment, as shown in
Equation (6):

contextW FA (W) (1)WT = + −å , (6)

where is the residual ratio; Cå represents the
weights adjusted by the adapter layer.

Then the features encoded by Image-Encoder *
globalV

and the classifier weights of Text-Encoder *W are
used to calculate the class probability of the image
by softmax as shown in Equation (7):

* *
i global

i N * *
j globalj 1

exp((W) V) /
p

exp((W) V) /

T

T

=

=

, (7)

where exp() represents the exponential

function; *
iW represents the weight corresponding

to the i th output unit; *
globalV represents the global

image features; and represents the temperature
parameter used to adjust the softmax, which
controls the smoothing degree of the probability
distribution. Here, i represents the i th class; N
represents the total number of classes; ip
represents the predicted probability of the i th
category.

Finally, the Image-Encoder and Text-Encoder are
optimized by cross-entropy loss function as shown
in Equation (8):

()
N

ip ii c

M

1

1L log p
N

y
=

= − , (8)

where N represents the total number of samples;
M represents the number of classes; ip represents
the probability that the sample i belongs to the
predicted class p ; ipy represents the true labeling
of the sample i for the class p , and if the sample
i belongs to the class p , then ipy 1= , else it will be
0; L represents the loss function.

3.1.4 Text Retrieval Module

The text retrieval module is used to calculate
and get the text features that have the highest
similarity with the nine sub-regions of the
image, and its model is shown in Figure 4
Text Retrieval Module.

The input image is first split into nine sub-
regions in the text retrieval module. Each
image sub-region is then encoded by the
Image-Encoder, as shown in Equation (9):

x subv ImageEncoder(I)= , (9)

where the vector xv is the x th image
subregion feature, which is taken as the query
key.

Then, Text-Encoder encodes

BUU 1 2T {T ,T ,...,T }n= , as shown in Equation
(10):

q BUUu TextEncoder(T)= . (10)

The cosine similarity is calculated between
the query image feature xv and each text

feature qu as shown in Equation (11):

x q
x j

x q

v u
sim(v ,u)

v u

=

. (11)

Finally, the k text features j,kt with the

highest similarity to xV are returned, as
shown in Equation (12):

j, x qt topK(sim(v u))k = . (12)

The image sub-region features xv are then
concatenated with the caption vectors j,kt
having the highest similarity to their
corresponding sub-regions. This combined
representation is processed through fully
connected layers, layer normalization, and
dropout, as shown in Equation (13):

^

j,k t j,k xt drop(fc (norm ([t , v])))t= , (13)

where j,kt is the text feature with the highest
similarity; j represents the numbering of the
image sub-regions; k represents the top k
text descriptions with the highest cosine
similarity; and finally the model will be fused
by the Object-Detector to the feature vector

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K are concatenated with the

fused vectors
^ ^

j,kT {t | j, k}= from the text
retrieval module to obtain the target with

, (13)

where j,kt is the text feature with the highest similarity;
j represents the numbering of the image sub-regions;
k represents the top k text descriptions with the high-
est cosine similarity; and finally the model will be
fused by the Object-Detector to the feature vector

^ ^ ^ ^

1 2 nO {o ,o , ,o }= K are concatenated with the fused

Information Technology and Control 2024/1/53106

vectors
^ ^

j,kT {t | j, k}= ∀ from the text retrieval module
to obtain the target with global features, respectively.
In order to obtain the detection feature vector and the
text retrieval encoded feature vector with global fea-
tures, respectively, the dimension is adjusted by the
fully connected layer and the two are concatenated
to obtain the feature information V, which is used to
be fed into the image captioning module. Compared
with traditional image captioning models based on
object detection, fine-tuning the pre-trained CLIP
model with an adapter layer can minimize model pa-
rameters while maintaining the generalization ability
of the pre-trained CLIP model. The CLIP model can
quickly adapt to new downstream tasks by replacing
task-specific adapters, enabling more effective image
captioning for traffic scenes.

3.2. WGA-PoolFormer
3.2.1. WGA-PoolFormer Encoder
Traditional Transformer models often have a large
number of parameters, which can lead to overfitting
when trained on small datasets. To address this, we
propose a model called WGA-PoolFormer (Weight-
ed Global Attention PoolFormer) based on MetaFor-
mer [42]. As shown in Figure 5, (a) is the traditional

Transformer, and (b) is the proposed WGA-Pool-
Former. Compared to the traditional Transformer,
we replace the original multi-head self-attention in
the encoder with a new WGA-Pooling layer to fuse
through token mixing. This replacement reduc-
es model parameters while retaining the ability to
model semantic information, enabling the model to
capture key features.
First, the feature vector V, output from the feature
extraction model, is input into the WGA-Poolformer
for layer normalization. Next, the weighted attention
pooling layer (WGA-Pooling) performs token mixing
to aggregate the spatial information between tokens
at different locations. Subsequently, the residual con-
nection sums the weighted attention pooling features
with the original features, followed by layer normal-
ization. Finally, the residual connection is performed
after passing through the fully connected layer, as
shown in Equation (14):

global features, respectively. In order to obtain the
detection feature vector and the text retrieval
encoded feature vector with global features,
respectively, the dimension is adjusted by the fully
connected layer and the two are concatenated to
obtain the feature information V , which is used to
be fed into the image captioning module.
Compared with traditional image captioning
models based on object detection, fine-tuning the
pre-trained CLIP model with an adapter layer can
minimize model parameters while maintaining the
generalization ability of the pre-trained CLIP
model. The CLIP model can quickly adapt to new
downstream tasks by replacing task-specific
adapters, enabling more effective image captioning
for traffic scenes.

3.2 WGA-PoolFormer
3.2.1 WGA-PoolFormer Encoder
Traditional Transformer models often have a large
number of parameters, which can lead to
overfitting when trained on small datasets. To
address this, we propose a model called WGA-
PoolFormer (Weighted Global Attention
PoolFormer) based on MetaFormer [42]. As shown
in Figure 5, (a) is the traditional Transformer, and
(b) is the proposed WGA-PoolFormer. Compared
to the traditional Transformer, we replace the
original multi-head self-attention in the encoder
with a new WGA-Pooling layer to fuse through
token mixing. This replacement reduces model
parameters while retaining the ability to model
semantic information, enabling the model to
capture key features.

First, the feature vector V , output from the
feature extraction model, is input into the WGA-
Poolformer for layer normalization. Next, the
weighted attention pooling layer (WGA-Pooling)
performs token mixing to aggregate the spatial
information between tokens at different locations.
Subsequently, the residual connection sums the
weighted attention pooling features with the
original features, followed by layer normalization.
 Finally, the residual connection is
performed after passing through the fully
connected layer, as shown in Equation (14):

g WGApool(norm(V))+V= , (14)

where, norm() is the layer normalization, and
WGApool() represents the Weighted Global
Attention Pooling module for mixing the spatial
information of all word tokens within the window,
as shown in Equation (15):

:,i , j

K'
p,q k 1 k 1 :,i,jp,q=1 i p , j q

2 2

1V M V V
K K + +

+ − + −
=

 （ - ）,

(15)

where K is the pooling window size; M is a
learnable K K weight matrix, which
assigns different weights to features at
different positions; p and q are the row and
column indices of the weight matrix M ,
respectively; '

:,i, jV is the output feature

matrix; :,i, jV is the input feature matrix; i,j
indicate the position of the feature mapping.
In Equation (12), the summation goes through
each position in the K K pooling window,
computing the difference between the input
feature V at each position and the centre
position (i, j) , weighted by the learnable
weight matrix M .This allows aggregating
spatial information by obtaining a weighted
fusion of the features around the centre
location.

The feature g aggregated with spatial
information via WGA-Pooling is fed into the
next sub-module. First, layer normalization is
applied. g is then input to a fully connected
layer for dimension adjustment, followed by
ReLU activation to filter features. Another
fully connected layer further adjusts
dimensions. Finally, a residual connection is
added with the original feature vector, as
shown in Formula (16), generating an
enhanced feature representation:

1 2z Re LU(norm()W)W gg= + , (16)

where, 1W and 2W represent fully connected
layers; norm represents the layer
normalization operation; and g represents
the features obtained by WGA-Pooling.

This paper introduces a learnable weight
matrix M to learn the relationships between
neighbouring features, thereby modelling
local spatial information. The weight
parameters in M can weigh different
positional features and learn their
importance. In the weighted summation
process, global features are considered, and
surrounding local features are aggregated so
that the model can capture the mutual
relationships between local and global
features. This delicate spatial information
modelling enhances the model's semantic
judgment and key information extraction
abilities. This method can better analyze the
intrinsic correlations between data from
different modalities in cross-modal tasks and

, (14)

where, norm()⋅ is the layer normalization, and
WGApool()⋅ represents the Weighted Global Atten-
tion Pooling module for mixing the spatial informa-

Figure 5
Comparison between Transformer model and WGA-PoolFormer model

gradients to avoid vanishing gradients.
Furthermore, ELU's near-zero mean and constant
variance accelerate neural network convergence
speed and enhance model robustness. imageFA
represents the adapter layer.

The features adjusted by the adapter layer are fed
into the residual block, and the Equation as shown

in Equation (4):
*
global global globaliV FA (V) (1)VT

mage = + − , (4)

where represents the residual ratio, which
is used to adjust the original features; *

globalV
represents the global image features after
adapter layer adjustment.

Figure 4

Text retrieval module

、、

、、

、、

Top-k text vectors with the highest similarity

Figure 5

Comparison between Transformer model and WGA-PoolFormer model

Multi-Head
Attention

Feed
Forward

Add&Norm

Add&Norm

Text
Embedding

Masked
Multi-Head
Attention

Add&Norm

Multi-Head
Attention

Add&Norm

Feed
Forward

Add&Norm

Layers
Norm

WGA-Pooling

MLP

Layers
Norm

Add

Add&Norm

Text
Embedding

Masked
Multi-Head
Attention

Add&Norm

Multi-Head
Attention

Add&Norm

Feed
Forward

Add&Norm

（a）Transformer （b）WGA-PoolFormer

Linear

Softmax

Linear

Softmax

(a) Transformer (b) WGA-PoolFormer

107Information Technology and Control 2024/1/53

tion of all word tokens within the window, as shown
in Equation (15):

global features, respectively. In order to obtain the
detection feature vector and the text retrieval
encoded feature vector with global features,
respectively, the dimension is adjusted by the fully
connected layer and the two are concatenated to
obtain the feature information V , which is used to
be fed into the image captioning module.
Compared with traditional image captioning
models based on object detection, fine-tuning the
pre-trained CLIP model with an adapter layer can
minimize model parameters while maintaining the
generalization ability of the pre-trained CLIP
model. The CLIP model can quickly adapt to new
downstream tasks by replacing task-specific
adapters, enabling more effective image captioning
for traffic scenes.

3.2 WGA-PoolFormer
3.2.1 WGA-PoolFormer Encoder
Traditional Transformer models often have a large
number of parameters, which can lead to
overfitting when trained on small datasets. To
address this, we propose a model called WGA-
PoolFormer (Weighted Global Attention
PoolFormer) based on MetaFormer [42]. As shown
in Figure 5, (a) is the traditional Transformer, and
(b) is the proposed WGA-PoolFormer. Compared
to the traditional Transformer, we replace the
original multi-head self-attention in the encoder
with a new WGA-Pooling layer to fuse through
token mixing. This replacement reduces model
parameters while retaining the ability to model
semantic information, enabling the model to
capture key features.

First, the feature vector V , output from the
feature extraction model, is input into the WGA-
Poolformer for layer normalization. Next, the
weighted attention pooling layer (WGA-Pooling)
performs token mixing to aggregate the spatial
information between tokens at different locations.
Subsequently, the residual connection sums the
weighted attention pooling features with the
original features, followed by layer normalization.
 Finally, the residual connection is
performed after passing through the fully
connected layer, as shown in Equation (14):

g WGApool(norm(V))+V= , (14)

where, norm() is the layer normalization, and
WGApool() represents the Weighted Global
Attention Pooling module for mixing the spatial
information of all word tokens within the window,
as shown in Equation (15):

:,i , j

K'
p,q k 1 k 1 :,i,jp,q=1 i p , j q

2 2

1V M V V
K K + +

+ − + −
=

 （ - ）,

(15)

where K is the pooling window size; M is a
learnable K K weight matrix, which
assigns different weights to features at
different positions; p and q are the row and
column indices of the weight matrix M ,
respectively; '

:,i, jV is the output feature

matrix; :,i, jV is the input feature matrix; i,j
indicate the position of the feature mapping.
In Equation (12), the summation goes through
each position in the K K pooling window,
computing the difference between the input
feature V at each position and the centre
position (i, j) , weighted by the learnable
weight matrix M .This allows aggregating
spatial information by obtaining a weighted
fusion of the features around the centre
location.

The feature g aggregated with spatial
information via WGA-Pooling is fed into the
next sub-module. First, layer normalization is
applied. g is then input to a fully connected
layer for dimension adjustment, followed by
ReLU activation to filter features. Another
fully connected layer further adjusts
dimensions. Finally, a residual connection is
added with the original feature vector, as
shown in Formula (16), generating an
enhanced feature representation:

1 2z Re LU(norm()W)W gg= + , (16)

where, 1W and 2W represent fully connected
layers; norm represents the layer
normalization operation; and g represents
the features obtained by WGA-Pooling.

This paper introduces a learnable weight
matrix M to learn the relationships between
neighbouring features, thereby modelling
local spatial information. The weight
parameters in M can weigh different
positional features and learn their
importance. In the weighted summation
process, global features are considered, and
surrounding local features are aggregated so
that the model can capture the mutual
relationships between local and global
features. This delicate spatial information
modelling enhances the model's semantic
judgment and key information extraction
abilities. This method can better analyze the
intrinsic correlations between data from
different modalities in cross-modal tasks and , (15)

where K is the pooling window size; M is a learnable
K K× weight matrix, which assigns different weights
to features at different positions; p and q are the row
and column indices of the weight matrix M, respec-
tively; '

:,i, jV is the output feature matrix;
:,i, jV

is the in-
put feature matrix; i, j indicate the position of the fea-
ture mapping. In Equation (12), the summation goes
through each position in the K K× pooling window,
computing the difference between the input feature V
at each position and the centre position (i, j), weighted
by the learnable weight matrix M. This allows aggre-
gating spatial information by obtaining a weighted fu-
sion of the features around the centre location.
The feature g aggregated with spatial information via
WGA-Pooling is fed into the next sub-module. First,
layer normalization is applied. g is then input to a fully
connected layer for dimension adjustment, followed
by ReLU activation to filter features. Another fully
connected layer further adjusts dimensions. Finally,
a residual connection is added with the original fea-
ture vector, as shown in Formula (16), generating an
enhanced feature representation:

global features, respectively. In order to obtain the
detection feature vector and the text retrieval
encoded feature vector with global features,
respectively, the dimension is adjusted by the fully
connected layer and the two are concatenated to
obtain the feature information V , which is used to
be fed into the image captioning module.
Compared with traditional image captioning
models based on object detection, fine-tuning the
pre-trained CLIP model with an adapter layer can
minimize model parameters while maintaining the
generalization ability of the pre-trained CLIP
model. The CLIP model can quickly adapt to new
downstream tasks by replacing task-specific
adapters, enabling more effective image captioning
for traffic scenes.

3.2 WGA-PoolFormer
3.2.1 WGA-PoolFormer Encoder
Traditional Transformer models often have a large
number of parameters, which can lead to
overfitting when trained on small datasets. To
address this, we propose a model called WGA-
PoolFormer (Weighted Global Attention
PoolFormer) based on MetaFormer [42]. As shown
in Figure 5, (a) is the traditional Transformer, and
(b) is the proposed WGA-PoolFormer. Compared
to the traditional Transformer, we replace the
original multi-head self-attention in the encoder
with a new WGA-Pooling layer to fuse through
token mixing. This replacement reduces model
parameters while retaining the ability to model
semantic information, enabling the model to
capture key features.

First, the feature vector V , output from the
feature extraction model, is input into the WGA-
Poolformer for layer normalization. Next, the
weighted attention pooling layer (WGA-Pooling)
performs token mixing to aggregate the spatial
information between tokens at different locations.
Subsequently, the residual connection sums the
weighted attention pooling features with the
original features, followed by layer normalization.
 Finally, the residual connection is
performed after passing through the fully
connected layer, as shown in Equation (14):

g WGApool(norm(V))+V= , (14)

where, norm() is the layer normalization, and
WGApool() represents the Weighted Global
Attention Pooling module for mixing the spatial
information of all word tokens within the window,
as shown in Equation (15):

:,i , j

K'
p,q k 1 k 1 :,i,jp,q=1 i p , j q

2 2

1V M V V
K K + +

+ − + −
=

 （ - ）,

(15)

where K is the pooling window size; M is a
learnable K K weight matrix, which
assigns different weights to features at
different positions; p and q are the row and
column indices of the weight matrix M ,
respectively; '

:,i, jV is the output feature

matrix; :,i, jV is the input feature matrix; i,j
indicate the position of the feature mapping.
In Equation (12), the summation goes through
each position in the K K pooling window,
computing the difference between the input
feature V at each position and the centre
position (i, j) , weighted by the learnable
weight matrix M .This allows aggregating
spatial information by obtaining a weighted
fusion of the features around the centre
location.

The feature g aggregated with spatial
information via WGA-Pooling is fed into the
next sub-module. First, layer normalization is
applied. g is then input to a fully connected
layer for dimension adjustment, followed by
ReLU activation to filter features. Another
fully connected layer further adjusts
dimensions. Finally, a residual connection is
added with the original feature vector, as
shown in Formula (16), generating an
enhanced feature representation:

1 2z Re LU(norm()W)W gg= + , (16)

where, 1W and 2W represent fully connected
layers; norm represents the layer
normalization operation; and g represents
the features obtained by WGA-Pooling.

This paper introduces a learnable weight
matrix M to learn the relationships between
neighbouring features, thereby modelling
local spatial information. The weight
parameters in M can weigh different
positional features and learn their
importance. In the weighted summation
process, global features are considered, and
surrounding local features are aggregated so
that the model can capture the mutual
relationships between local and global
features. This delicate spatial information
modelling enhances the model's semantic
judgment and key information extraction
abilities. This method can better analyze the
intrinsic correlations between data from
different modalities in cross-modal tasks and

, (16)

where, W1 and W2 represent fully connected layers;
norm represents the layer normalization operation;
and g represents the features obtained by WGA-Pool-
ing.
This paper introduces a learnable weight matrix M
to learn the relationships between neighbouring fea-
tures, thereby modelling local spatial information.
The weight parameters in M can weigh different po-
sitional features and learn their importance. In the
weighted summation process, global features are con-
sidered, and surrounding local features are aggregat-
ed so that the model can capture the mutual relation-
ships between local and global features. This delicate
spatial information modelling enhances the model’s
semantic judgment and key information extraction
abilities. This method can better analyze the intrinsic
correlations between data from different modalities

in cross-modal tasks and effectively improve the mod-
el’s joint representation learning and downstream
task performance. In summary, this paper achieves
an adaptive fusion of local and global features through
learnable weights, strengthening the feature expres-
sion ability of the model in cross-modal tasks.

3.2.2. WGA-PoolFormer Decoder
In the WGA-PoolFormer Decoder, the model embeds
text captions 1 2 tt (, , ,)ω ω ω ω≤ = to obtain embed-
ded vectors 1 2 te t (e ,e , , e)≤ = . These vectors and the
encoder output z are input to the model.
First, the query vector Q, key vector K, and value vec-
tor V are computed as shown in Equation (17):

effectively improve the model's joint
representation learning and downstream task
performance. In summary, this paper achieves an
adaptive fusion of local and global features
through learnable weights, strengthening the
feature expression ability of the model in cross-
modal tasks.

3.2.2 WGA-PoolFormer Decoder
In the WGA-PoolFormer Decoder, the model
embeds text captions 1 2 tt (, , ,) = to

obtain embedded vectors 1 2 te t (e ,e , , e) = .
These vectors and the encoder output z are input
to the model.

First, the query vector Q , key vector K , and value
vector V are computed as shown in Equation (17):

0 0 0Q K VQ eW ,K eW ,V eW= = = , (17)

where e is the vector by word embedding;
0QW ,

0KW , and
0VW are the learned weight matrices.

The masked multi-attention mechanism is then
employed, taking as input the vectors obtained
from the computation, as shown in Equation (18):

O MaskedMultiHead(Q,K,V,M)= ,
(18)

where Q , K , V are the Query, Key, and Value
computed through the embedding layer and linear
mapping, and M is the mask matrix to prevent
information leakage;

Next, layer normalization and residual connection
are performed on the masked multi-attention
output O , which is then input to the decoder's
second sublayer, as shown in Equations (19)-(20):

'O WGApool(norm(O)) O= + (19)
T

'' '
z

z' z
z

k

'O Q KAttention(Q ,K ,O) soft max()O
d

= = (20)

z zz KzQQ zW ,K zW= = , (21)

where 'O is the output vector of the masked
multi-head attention mechanism. The matrices zQ

and zK are obtained by linear mapping of the
encoder output feature z as shown in Equation
(21), where

zQW and
zKW are learnable weight

matrices that map encoder features z to the query
and key vector spaces, generating the query and
key matrices required for the attention mechanism.

'O is obtained from the Masked Multi-Head

Attention output.

Finally, the feature vector '''O is obtained by
FFN and residual layer processing, and after
adjusting the length of the vocabulary list by
a linear layer, it is inputted into the softmax
function to generate the word probability,
whose formula is shown in (22):

'
output

' 'O Soft max)O(Linear()= , (22)

where outputO is the word generated at the

current timestamp, and '''O is the vector
output by the decoder. The model repeats the
decoding step until generating the complete
textual caption for the image.

4. Experiment and Results
Discussion

4.1 Experimental Environment and
Parameter Configuration
The experiments were conducted using
Ubuntu 18.04, an Intel Xeon E5-2637 v4 CPU,
32GB Samsung RAM, and four NVIDIA Titan
V GPUs. The software stack comprised
PyTorch 1.10, Python 3.7, CUDA 11.4 and
cuDNN 8.2.4. To ensure effective
experiments, batchsize was set to 200 and
epochs to 60 during training. Training
proceeded in two phases: cross-entropy and
reinforcement learning. The learning rate was
1e-4 for cross-entropy and 5e-6 for
reinforcement learning. Model optimization
used the AdamW optimizer.

4.2 General Dataset Introduction and
Evaluation Metrics
4.2.1 MS-COCO
The MS-COCO (Microsoft Common Objects
in Context) dataset [14] is widely used for
image recognition and captioning, containing
over 330,000 images annotated with at least
five manually generated captions each. These
diverse captions, created by different
annotators, cover scenes involving people,
animals, transportation, furniture, food, and
more. Each caption contains about ten words
that can describe objects, attributes, actions,
etc., in the image. MS-COCO provides
instance segmentation, semantic
segmentation, and keypoint annotations,
enabling diverse image understanding tasks.
This rich annotation has been invaluable for

, (17)

where e is the vector by word embedding;
0QW ,

0KW ,
and

0VW are the learned weight matrices.
The masked multi-attention mechanism is then em-
ployed, taking as input the vectors obtained from the
computation, as shown in Equation (18):

effectively improve the model's joint
representation learning and downstream task
performance. In summary, this paper achieves an
adaptive fusion of local and global features
through learnable weights, strengthening the
feature expression ability of the model in cross-
modal tasks.

3.2.2 WGA-PoolFormer Decoder
In the WGA-PoolFormer Decoder, the model
embeds text captions 1 2 tt (, , ,) = to

obtain embedded vectors 1 2 te t (e ,e , , e) = .
These vectors and the encoder output z are input
to the model.

First, the query vector Q , key vector K , and value
vector V are computed as shown in Equation (17):

0 0 0Q K VQ eW ,K eW ,V eW= = = , (17)

where e is the vector by word embedding;
0QW ,

0KW , and
0VW are the learned weight matrices.

The masked multi-attention mechanism is then
employed, taking as input the vectors obtained
from the computation, as shown in Equation (18):

O MaskedMultiHead(Q,K,V,M)= ,
(18)

where Q , K , V are the Query, Key, and Value
computed through the embedding layer and linear
mapping, and M is the mask matrix to prevent
information leakage;

Next, layer normalization and residual connection
are performed on the masked multi-attention
output O , which is then input to the decoder's
second sublayer, as shown in Equations (19)-(20):

'O WGApool(norm(O)) O= + (19)
T

'' '
z

z' z
z

k

'O Q KAttention(Q ,K ,O) soft max()O
d

= = (20)

z zz KzQQ zW ,K zW= = , (21)

where 'O is the output vector of the masked
multi-head attention mechanism. The matrices zQ

and zK are obtained by linear mapping of the
encoder output feature z as shown in Equation
(21), where

zQW and
zKW are learnable weight

matrices that map encoder features z to the query
and key vector spaces, generating the query and
key matrices required for the attention mechanism.

'O is obtained from the Masked Multi-Head

Attention output.

Finally, the feature vector '''O is obtained by
FFN and residual layer processing, and after
adjusting the length of the vocabulary list by
a linear layer, it is inputted into the softmax
function to generate the word probability,
whose formula is shown in (22):

'
output

' 'O Soft max)O(Linear()= , (22)

where outputO is the word generated at the

current timestamp, and '''O is the vector
output by the decoder. The model repeats the
decoding step until generating the complete
textual caption for the image.

4. Experiment and Results
Discussion

4.1 Experimental Environment and
Parameter Configuration
The experiments were conducted using
Ubuntu 18.04, an Intel Xeon E5-2637 v4 CPU,
32GB Samsung RAM, and four NVIDIA Titan
V GPUs. The software stack comprised
PyTorch 1.10, Python 3.7, CUDA 11.4 and
cuDNN 8.2.4. To ensure effective
experiments, batchsize was set to 200 and
epochs to 60 during training. Training
proceeded in two phases: cross-entropy and
reinforcement learning. The learning rate was
1e-4 for cross-entropy and 5e-6 for
reinforcement learning. Model optimization
used the AdamW optimizer.

4.2 General Dataset Introduction and
Evaluation Metrics
4.2.1 MS-COCO
The MS-COCO (Microsoft Common Objects
in Context) dataset [14] is widely used for
image recognition and captioning, containing
over 330,000 images annotated with at least
five manually generated captions each. These
diverse captions, created by different
annotators, cover scenes involving people,
animals, transportation, furniture, food, and
more. Each caption contains about ten words
that can describe objects, attributes, actions,
etc., in the image. MS-COCO provides
instance segmentation, semantic
segmentation, and keypoint annotations,
enabling diverse image understanding tasks.
This rich annotation has been invaluable for

, (18)

where Q, K, V are the Query, Key, and Value computed
through the embedding layer and linear mapping, and
M is the mask matrix to prevent information leakage;
Next, layer normalization and residual connection
are performed on the masked multi-attention output
O, which is then input to the decoder’s second sublay-
er, as shown in Equations (19)-(20):

effectively improve the model's joint
representation learning and downstream task
performance. In summary, this paper achieves an
adaptive fusion of local and global features
through learnable weights, strengthening the
feature expression ability of the model in cross-
modal tasks.

3.2.2 WGA-PoolFormer Decoder
In the WGA-PoolFormer Decoder, the model
embeds text captions 1 2 tt (, , ,) = to

obtain embedded vectors 1 2 te t (e ,e , , e) = .
These vectors and the encoder output z are input
to the model.

First, the query vector Q , key vector K , and value
vector V are computed as shown in Equation (17):

0 0 0Q K VQ eW ,K eW ,V eW= = = , (17)

where e is the vector by word embedding;
0QW ,

0KW , and
0VW are the learned weight matrices.

The masked multi-attention mechanism is then
employed, taking as input the vectors obtained
from the computation, as shown in Equation (18):

O MaskedMultiHead(Q,K,V,M)= ,
(18)

where Q , K , V are the Query, Key, and Value
computed through the embedding layer and linear
mapping, and M is the mask matrix to prevent
information leakage;

Next, layer normalization and residual connection
are performed on the masked multi-attention
output O , which is then input to the decoder's
second sublayer, as shown in Equations (19)-(20):

'O WGApool(norm(O)) O= + (19)
T

'' '
z

z' z
z

k

'O Q KAttention(Q ,K ,O) soft max()O
d

= = (20)

z zz KzQQ zW ,K zW= = , (21)

where 'O is the output vector of the masked
multi-head attention mechanism. The matrices zQ

and zK are obtained by linear mapping of the
encoder output feature z as shown in Equation
(21), where

zQW and
zKW are learnable weight

matrices that map encoder features z to the query
and key vector spaces, generating the query and
key matrices required for the attention mechanism.

'O is obtained from the Masked Multi-Head

Attention output.

Finally, the feature vector '''O is obtained by
FFN and residual layer processing, and after
adjusting the length of the vocabulary list by
a linear layer, it is inputted into the softmax
function to generate the word probability,
whose formula is shown in (22):

'
output

' 'O Soft max)O(Linear()= , (22)

where outputO is the word generated at the

current timestamp, and '''O is the vector
output by the decoder. The model repeats the
decoding step until generating the complete
textual caption for the image.

4. Experiment and Results
Discussion

4.1 Experimental Environment and
Parameter Configuration
The experiments were conducted using
Ubuntu 18.04, an Intel Xeon E5-2637 v4 CPU,
32GB Samsung RAM, and four NVIDIA Titan
V GPUs. The software stack comprised
PyTorch 1.10, Python 3.7, CUDA 11.4 and
cuDNN 8.2.4. To ensure effective
experiments, batchsize was set to 200 and
epochs to 60 during training. Training
proceeded in two phases: cross-entropy and
reinforcement learning. The learning rate was
1e-4 for cross-entropy and 5e-6 for
reinforcement learning. Model optimization
used the AdamW optimizer.

4.2 General Dataset Introduction and
Evaluation Metrics
4.2.1 MS-COCO
The MS-COCO (Microsoft Common Objects
in Context) dataset [14] is widely used for
image recognition and captioning, containing
over 330,000 images annotated with at least
five manually generated captions each. These
diverse captions, created by different
annotators, cover scenes involving people,
animals, transportation, furniture, food, and
more. Each caption contains about ten words
that can describe objects, attributes, actions,
etc., in the image. MS-COCO provides
instance segmentation, semantic
segmentation, and keypoint annotations,
enabling diverse image understanding tasks.
This rich annotation has been invaluable for

(19)

effectively improve the model's joint
representation learning and downstream task
performance. In summary, this paper achieves an
adaptive fusion of local and global features
through learnable weights, strengthening the
feature expression ability of the model in cross-
modal tasks.

3.2.2 WGA-PoolFormer Decoder
In the WGA-PoolFormer Decoder, the model
embeds text captions 1 2 tt (, , ,) = to

obtain embedded vectors 1 2 te t (e ,e , , e) = .
These vectors and the encoder output z are input
to the model.

First, the query vector Q , key vector K , and value
vector V are computed as shown in Equation (17):

0 0 0Q K VQ eW ,K eW ,V eW= = = , (17)

where e is the vector by word embedding;
0QW ,

0KW , and
0VW are the learned weight matrices.

The masked multi-attention mechanism is then
employed, taking as input the vectors obtained
from the computation, as shown in Equation (18):

O MaskedMultiHead(Q,K,V,M)= ,
(18)

where Q , K , V are the Query, Key, and Value
computed through the embedding layer and linear
mapping, and M is the mask matrix to prevent
information leakage;

Next, layer normalization and residual connection
are performed on the masked multi-attention
output O , which is then input to the decoder's
second sublayer, as shown in Equations (19)-(20):

'O WGApool(norm(O)) O= + (19)
T

'' '
z

z' z
z

k

'O Q KAttention(Q ,K ,O) soft max()O
d

= = (20)

z zz KzQQ zW ,K zW= = , (21)

where 'O is the output vector of the masked
multi-head attention mechanism. The matrices zQ

and zK are obtained by linear mapping of the
encoder output feature z as shown in Equation
(21), where

zQW and
zKW are learnable weight

matrices that map encoder features z to the query
and key vector spaces, generating the query and
key matrices required for the attention mechanism.

'O is obtained from the Masked Multi-Head

Attention output.

Finally, the feature vector '''O is obtained by
FFN and residual layer processing, and after
adjusting the length of the vocabulary list by
a linear layer, it is inputted into the softmax
function to generate the word probability,
whose formula is shown in (22):

'
output

' 'O Soft max)O(Linear()= , (22)

where outputO is the word generated at the

current timestamp, and '''O is the vector
output by the decoder. The model repeats the
decoding step until generating the complete
textual caption for the image.

4. Experiment and Results
Discussion

4.1 Experimental Environment and
Parameter Configuration
The experiments were conducted using
Ubuntu 18.04, an Intel Xeon E5-2637 v4 CPU,
32GB Samsung RAM, and four NVIDIA Titan
V GPUs. The software stack comprised
PyTorch 1.10, Python 3.7, CUDA 11.4 and
cuDNN 8.2.4. To ensure effective
experiments, batchsize was set to 200 and
epochs to 60 during training. Training
proceeded in two phases: cross-entropy and
reinforcement learning. The learning rate was
1e-4 for cross-entropy and 5e-6 for
reinforcement learning. Model optimization
used the AdamW optimizer.

4.2 General Dataset Introduction and
Evaluation Metrics
4.2.1 MS-COCO
The MS-COCO (Microsoft Common Objects
in Context) dataset [14] is widely used for
image recognition and captioning, containing
over 330,000 images annotated with at least
five manually generated captions each. These
diverse captions, created by different
annotators, cover scenes involving people,
animals, transportation, furniture, food, and
more. Each caption contains about ten words
that can describe objects, attributes, actions,
etc., in the image. MS-COCO provides
instance segmentation, semantic
segmentation, and keypoint annotations,
enabling diverse image understanding tasks.
This rich annotation has been invaluable for

(20)

effectively improve the model's joint
representation learning and downstream task
performance. In summary, this paper achieves an
adaptive fusion of local and global features
through learnable weights, strengthening the
feature expression ability of the model in cross-
modal tasks.

3.2.2 WGA-PoolFormer Decoder
In the WGA-PoolFormer Decoder, the model
embeds text captions 1 2 tt (, , ,) = to

obtain embedded vectors 1 2 te t (e ,e , , e) = .
These vectors and the encoder output z are input
to the model.

First, the query vector Q , key vector K , and value
vector V are computed as shown in Equation (17):

0 0 0Q K VQ eW ,K eW ,V eW= = = , (17)

where e is the vector by word embedding;
0QW ,

0KW , and
0VW are the learned weight matrices.

The masked multi-attention mechanism is then
employed, taking as input the vectors obtained
from the computation, as shown in Equation (18):

O MaskedMultiHead(Q,K,V,M)= ,
(18)

where Q , K , V are the Query, Key, and Value
computed through the embedding layer and linear
mapping, and M is the mask matrix to prevent
information leakage;

Next, layer normalization and residual connection
are performed on the masked multi-attention
output O , which is then input to the decoder's
second sublayer, as shown in Equations (19)-(20):

'O WGApool(norm(O)) O= + (19)
T

'' '
z

z' z
z

k

'O Q KAttention(Q ,K ,O) soft max()O
d

= = (20)

z zz KzQQ zW ,K zW= = , (21)

where 'O is the output vector of the masked
multi-head attention mechanism. The matrices zQ

and zK are obtained by linear mapping of the
encoder output feature z as shown in Equation
(21), where

zQW and
zKW are learnable weight

matrices that map encoder features z to the query
and key vector spaces, generating the query and
key matrices required for the attention mechanism.

'O is obtained from the Masked Multi-Head

Attention output.

Finally, the feature vector '''O is obtained by
FFN and residual layer processing, and after
adjusting the length of the vocabulary list by
a linear layer, it is inputted into the softmax
function to generate the word probability,
whose formula is shown in (22):

'
output

' 'O Soft max)O(Linear()= , (22)

where outputO is the word generated at the

current timestamp, and '''O is the vector
output by the decoder. The model repeats the
decoding step until generating the complete
textual caption for the image.

4. Experiment and Results
Discussion

4.1 Experimental Environment and
Parameter Configuration
The experiments were conducted using
Ubuntu 18.04, an Intel Xeon E5-2637 v4 CPU,
32GB Samsung RAM, and four NVIDIA Titan
V GPUs. The software stack comprised
PyTorch 1.10, Python 3.7, CUDA 11.4 and
cuDNN 8.2.4. To ensure effective
experiments, batchsize was set to 200 and
epochs to 60 during training. Training
proceeded in two phases: cross-entropy and
reinforcement learning. The learning rate was
1e-4 for cross-entropy and 5e-6 for
reinforcement learning. Model optimization
used the AdamW optimizer.

4.2 General Dataset Introduction and
Evaluation Metrics
4.2.1 MS-COCO
The MS-COCO (Microsoft Common Objects
in Context) dataset [14] is widely used for
image recognition and captioning, containing
over 330,000 images annotated with at least
five manually generated captions each. These
diverse captions, created by different
annotators, cover scenes involving people,
animals, transportation, furniture, food, and
more. Each caption contains about ten words
that can describe objects, attributes, actions,
etc., in the image. MS-COCO provides
instance segmentation, semantic
segmentation, and keypoint annotations,
enabling diverse image understanding tasks.
This rich annotation has been invaluable for

, (21)

where 'O is the output vector of the masked multi-
head attention mechanism. The matrices zQ and zK
are obtained by linear mapping of the encoder output
feature z as shown in Equation (21), where

zQW and
zKW are learnable weight matrices that map encoder

features z to the query and key vector spaces, gener-
ating the query and key matrices required for the at-

Information Technology and Control 2024/1/53108

tention mechanism. 'O is obtained from the Masked
Multi-Head Attention output.
Finally, the feature vector '''O is obtained by FFN and
residual layer processing, and after adjusting the
length of the vocabulary list by a linear layer, it is in-
putted into the softmax function to generate the word
probability, whose formula is shown in (22):

effectively improve the model's joint
representation learning and downstream task
performance. In summary, this paper achieves an
adaptive fusion of local and global features
through learnable weights, strengthening the
feature expression ability of the model in cross-
modal tasks.

3.2.2 WGA-PoolFormer Decoder
In the WGA-PoolFormer Decoder, the model
embeds text captions 1 2 tt (, , ,) = to

obtain embedded vectors 1 2 te t (e ,e , , e) = .
These vectors and the encoder output z are input
to the model.

First, the query vector Q , key vector K , and value
vector V are computed as shown in Equation (17):

0 0 0Q K VQ eW ,K eW ,V eW= = = , (17)

where e is the vector by word embedding;
0QW ,

0KW , and
0VW are the learned weight matrices.

The masked multi-attention mechanism is then
employed, taking as input the vectors obtained
from the computation, as shown in Equation (18):

O MaskedMultiHead(Q,K,V,M)= ,
(18)

where Q , K , V are the Query, Key, and Value
computed through the embedding layer and linear
mapping, and M is the mask matrix to prevent
information leakage;

Next, layer normalization and residual connection
are performed on the masked multi-attention
output O , which is then input to the decoder's
second sublayer, as shown in Equations (19)-(20):

'O WGApool(norm(O)) O= + (19)
T

'' '
z

z' z
z

k

'O Q KAttention(Q ,K ,O) soft max()O
d

= = (20)

z zz KzQQ zW ,K zW= = , (21)

where 'O is the output vector of the masked
multi-head attention mechanism. The matrices zQ

and zK are obtained by linear mapping of the
encoder output feature z as shown in Equation
(21), where

zQW and
zKW are learnable weight

matrices that map encoder features z to the query
and key vector spaces, generating the query and
key matrices required for the attention mechanism.

'O is obtained from the Masked Multi-Head

Attention output.

Finally, the feature vector '''O is obtained by
FFN and residual layer processing, and after
adjusting the length of the vocabulary list by
a linear layer, it is inputted into the softmax
function to generate the word probability,
whose formula is shown in (22):

'
output

' 'O Soft max)O(Linear()= , (22)

where outputO is the word generated at the

current timestamp, and '''O is the vector
output by the decoder. The model repeats the
decoding step until generating the complete
textual caption for the image.

4. Experiment and Results
Discussion

4.1 Experimental Environment and
Parameter Configuration
The experiments were conducted using
Ubuntu 18.04, an Intel Xeon E5-2637 v4 CPU,
32GB Samsung RAM, and four NVIDIA Titan
V GPUs. The software stack comprised
PyTorch 1.10, Python 3.7, CUDA 11.4 and
cuDNN 8.2.4. To ensure effective
experiments, batchsize was set to 200 and
epochs to 60 during training. Training
proceeded in two phases: cross-entropy and
reinforcement learning. The learning rate was
1e-4 for cross-entropy and 5e-6 for
reinforcement learning. Model optimization
used the AdamW optimizer.

4.2 General Dataset Introduction and
Evaluation Metrics
4.2.1 MS-COCO
The MS-COCO (Microsoft Common Objects
in Context) dataset [14] is widely used for
image recognition and captioning, containing
over 330,000 images annotated with at least
five manually generated captions each. These
diverse captions, created by different
annotators, cover scenes involving people,
animals, transportation, furniture, food, and
more. Each caption contains about ten words
that can describe objects, attributes, actions,
etc., in the image. MS-COCO provides
instance segmentation, semantic
segmentation, and keypoint annotations,
enabling diverse image understanding tasks.
This rich annotation has been invaluable for

, (22)

where outputO is the word generated at the current time-
stamp, and '''O is the vector output by the decoder. The
model repeats the decoding step until generating the
complete textual caption for the image.

4. Experiment and Results Discussion
4.1. Experimental Environment and
Parameter Configuration
The experiments were conducted using Ubuntu 18.04,
an Intel Xeon E5-2637 v4 CPU, 32GB Samsung RAM,
and four NVIDIA Titan V GPUs. The software stack
comprised PyTorch 1.10, Python 3.7, CUDA 11.4 and
cuDNN 8.2.4. To ensure effective experiments, batch-
size was set to 200 and epochs to 60 during training.
Training proceeded in two phases: cross-entropy and
reinforcement learning. The learning rate was 1e-4
for cross-entropy and 5e-6 for reinforcement learn-
ing. Model optimization used the AdamW optimizer.

4.2. General Dataset Introduction and
Evaluation Metrics
4.2.1. MS-COCO
The MS-COCO (Microsoft Common Objects in Con-
text) dataset [14] is widely used for image recognition
and captioning, containing over 330,000 images an-
notated with at least five manually generated captions
each. These diverse captions, created by different
annotators, cover scenes involving people, animals,
transportation, furniture, food, and more. Each cap-
tion contains about ten words that can describe ob-
jects, attributes, actions, etc., in the image. MS-COCO
provides instance segmentation, semantic segmen-
tation, and keypoint annotations, enabling diverse
image understanding tasks. This rich annotation has
been invaluable for advancing image understanding
algorithms.

4.2.2. MS-COCO
The Flickr 30K dataset brings about 31,000 real-world
images from the Flickr image-sharing platform, pro-
viding five high-quality text captions for each image.
Created by human annotators, these captions capture
not only the objects, scenes, and situations in the im-
ages but also rich information such as emotions and
contexts. Thus, one of the features of this dataset is
the diversity of image-text pairs covering a wide range
of scenes, objects and situations.

4.2.3. Evaluation Metrics
We use four commonly used evaluation metrics in
image captioning to evaluate the proposed model:
BLEU-4, METEOR, ROUGE-L and CIDEr.
BLEU-4 measures n-gram overlap between the gen-
erated and reference captions to evaluate accuracy,
using up to 4-gram information.
METEOR incorporates semantic information by
considering synonyms and stem matching instead of
purely exact word matching, better capturing seman-
tic consistency.
ROUGE-L computes the longest common subse-
quence between captions, reflecting similarity.
CIDEr leverages n-gram co-occurrence statistics
between generated and reference captions to assess
accuracy and diversity. Higher CIDEr scores indicate
greater conformance to human captions.

4.3. Experimental Results Discussion and
Comparison

The MS-COCO, Flickr 30k, and BUUISE-Image traffic
scene datasets were utilized for training and evaluation
to fully validate the model’s performance. The model’s
performance was quantitatively analyzed using com-
mon evaluation metrics: BLEU-4 (B@4), METEOR
(M), ROUGE-L (R), and CIDEr (C). To verify the model’s
generalizability, we first evaluated it on the MS-COCO
dataset; the results are shown in Table 1. Different algo-
rithms were evaluated on MS-COCO and compared to
other image captioning models. The results demonstrate
the proposed method obtained effective scores across
all metrics, achieving the highest scores compared to
the second-ranked S2 model. Specifically, the proposed
method scored 40.3% for BLEU-4, 0.2% higher; 30.1%
for METEOR, 0.5% higher; 59.6% for ROUGE-L, 0.1%
higher; and 137.9 for CIDEr, 5.3% higher.

109Information Technology and Control 2024/1/53

Flickr 30K evaluation results are shown in Table 2,
comparing the proposed model against other im-
age captioning methods. Our model achieves state-
of-the-art performance on BLEU-4, METEOR,
ROUGE-L, and CIDEr, with scores of 26.8%, 23.3%,
48.1%, and 63.4%, respectively. Compared to the sec-
ond-best TRANSKG model, our model shows im-
provements of 0.3% on BLEU-4, 1.6% on METEOR,
0.2% on ROUGE-L, and 6.8% on CIDEr.

Table 1
Evaluation results of different algorithms on the
MS-COCO dataset

 Metrics
Methods B@4 M R C

VLKD [8] 36.5 29.1 - 117.1

CTE [7] 38.2 28.7 58.5 124.9

LWDSFUSION [31] 31.3 25.7 54.0 99.9

GAT [35] 39.9 - 59.1 129.8

S2 [43] 40.1 29.6 59.5 132.6

TRANSKG [44] 34.4 27.7 56.3 112.6

ClipCap [17] 33.5 27.4 - 113.0

OURS 40.3 30.1 59.6 137.9

Table 2
Evaluation results of different algorithms on Flickr 30k
dataset

 Metrics
Methods B@4 M R C

MetaLM [10] - - - 43.3

LWDSFUSION 23.8 20.5 47.0 50.8

TRANSKG 26.5 21.7 47.9 56.6

ClipCap 21.7 22.1 47.3 53.5

OURS 26.8 23.3 48.1 63.4

In order to verify the ability of the CLIP-based image
captioning model (TSIC-Clip) proposed in this paper
to generate image captions in traffic scenes, we trained
and evaluated the method based on pre-trained CLIP
on the BUUISE-Image dataset, and the results are
shown in Table 3. The evaluation results show that,

compared with other image captioning methods
based on pre-trained CLIP, the methods in this paper
have obvious advantages by adding an adapter lay-
er to CLIP to fine-tune the BUUISE-Image dataset
for traffic scenes and by proposing a decoder based
on WGA-Poolformer. These methods perform bet-
ter than the global image feature encoder using only
CLIP. Specifically, the model in this paper achieves a
score of 39.6% in BLEU-4, 29.7% in METEOR, 59.3%
in ROUGE-L, and 136.5% in CIDEr. Compared with
the second-ranked CTE model, the model in this pa-
per improves the BLEU-4 by 2.8%, the METEOR by
0.1%, the ROUGE-L by 3.1%, and the CIDEr by 16.1%.
The method proposed in this paper is more effective
in generating image captions in traffic scenes.

Table 3
Evaluation results of different algorithms on the BUUISE-
image dataset

Metrics

Methods
Feature

Extractor B@4 M R C

ClipCap CLIP-encoder 32.6 26.4 47.2 117.1

CTE CLIP-encoder 36.8 29.6 56.2 120.4

VLKD CLIP-encoder 35.7 29.6 53.2 114.3

OURS CLIP-encoder 39.6 29.7 59.3 136.5

The number of parameters of the WGA-PoolForm-
er model proposed in this paper is validated on the
BUUISE-Image dataset and compared with three
models, CTE, VLKD and Clipcap, which also use the
Transformer structure. As shown in Table 4 demon-
strates the comparison of different decoders and
their parameters under the CLIP-based approach.
Under the same visual feature extractor CLIP, the
WGA-Poolformer decoder proposed in this paper
not only enhances the feature representation capa-
bility but also reduces the number of parameters to
a certain extent by introducing a learnable weighted
full-attention pooling layer for adaptive fusion of lo-
cal and global features. Specifically, the number of pa-
rameters of the model proposed in this paper is 41M,
which is 2M lower than that of the Clipcap model with
the smallest number of parameters. The number of
parameters is 82M lower than that of the CTE model
with the second highest scores in the four evaluation

Information Technology and Control 2024/1/53110

Table 4
Comparison of different decoders and their parameters
under the CLIP method

Metrics

Methods
Feature

Extractor Decoder Params

CTE CLIP-encoder Transformer+GPT2 123M

VLKD CLIP-encoder BART 86M

ClipCap CLIP-encoder Transformer+GPT2 43M

OURS CLIP-encoder WGA-Poolformer 41M

indexes of BLEU-4, METEOR, ROUGE-L, and CIDEr
in Table 3, which shows that the method of this pa-
per is effective in reducing the number of parameters
while ensuring the quality of the caption. Reduces the
number of parameters.
Figure 6 presents a comparison among different CLIP-
based methods in terms of parameter count, BLEU-4
scores, and CIDEr values. The graph employs a Carte-
sian coordinate system, where the horizontal axis rep-
resents CIDEr scores, the vertical axis signifies BLEU-
4 scores, and the size of each bubble correlates with
the corresponding parameter count. Within Figure
4, our model is depicted by a yellow bubble, the CTE
model by an orange one, and the CLIPcap model by a
blue one. Notably, our model excels in both the hori-

Figure 6
Comparison of the number of parameters with BLEU4 and
CIDEr values for different CLIP-based methods

perform better than the global image feature
encoder using only CLIP. Specifically, the model in
this paper achieves a score of 39.6% in BLEU-4,
29.7% in METEOR, 59.3% in ROUGE-L, and
136.5% in CIDEr. Compared with the second-
ranked CTE model, the model in this paper
improves the BLEU-4 by 2.8%, the METEOR by
0.1%, the ROUGE-L by 3.1%, and the CIDEr by
16.1%. The method proposed in this paper is more
effective in generating image captions in traffic
scenes.

Table 3

Evaluation results of different algorithms on the
BUUISE-image dataset

Metrics

Methods

Feature
Extractor

B@4 M R C

ClipCap CLIP-
encoder 32.6 26.4 47.2 117.1

CTE CLIP-
encoder 36.8 29.6 56.2 120.4

VLKD CLIP-
encoder 35.7 29.6 53.2 114.3

OURS CLIP-
encoder 39.6 29.7 59.3 136.5

Table 4

Comparison of different decoders and their
parameters under the CLIP method

Metrics

Methods

Feature
Extractor

Decoder Params

CTE CLIP-
encoder Transformer+GPT2 123M

VLKD CLIP-
encoder BART 86M

ClipCap CLIP-
encoder Transformer+GPT2 43M

OURS CLIP-
encoder WGA-Poolformer 41M

The number of parameters of the WGA-
PoolFormer model proposed in this paper is
validated on the BUUISE-Image dataset and
compared with three models, CTE, VLKD and
Clipcap, which also use the Transformer structure.
As shown in Table 4 demonstrates the comparison
of different decoders and their parameters under
the CLIP-based approach. Under the same visual
feature extractor CLIP, the WGA-Poolformer
decoder proposed in this paper not only enhances
the feature representation capability but also
reduces the number of parameters to a certain
extent by introducing a learnable weighted full-
attention pooling layer for adaptive fusion of local
and global features. Specifically, the number of

parameters of the model proposed in this
paper is 41M, which is 2M lower than that of
the Clipcap model with the smallest number
of parameters. The number of parameters is
82M lower than that of the CTE model with
the second highest scores in the four
evaluation indexes of BLEU-4, METEOR,
ROUGE-L, and CIDEr in Table 3, which
shows that the method of this paper is
effective in reducing the number of
parameters while ensuring the quality of the
caption. Reduces the number of parameters.

Figure 6 presents a comparison among
different CLIP-based methods in terms of
parameter count, BLEU-4 scores, and CIDEr
values. The graph employs a Cartesian
coordinate system, where the horizontal axis
represents CIDEr scores, the vertical axis
signifies BLEU-4 scores, and the size of each
bubble correlates with the corresponding
parameter count. Within Figure 4, our model
is depicted by a yellow bubble, the CTE
model by an orange one, and the CLIPcap
model by a blue one. Notably, our model
excels in both the horizontal (CIDEr) and
vertical (BLEU-4) coordinates. Furthermore,
when considering bubble size (indicating
parameter count), our proposed model boasts
the smallest area ,and thus ,the lowest
parameter count.

Figure 6

Comparison of the number of parameters
with BLEU4 and CIDEr values for different
CLIP-based methods

In order to further evaluate and analyze the
captioning performance of the proposed
model in this paper on traffic scenes, four
images were randomly selected from the
BUUISE-Image dataset, and the manually
labelled ground truth of each image was
provided for evaluation. The results of
comparing this paper's model with the same
Transformer architecture-based approach are
visualized in Figure 7. It can be observed that

Figure 7
Example of image captioning in traffic scenes

Vit/b16 MSA Full 37.5 28.7 56.5 127.1 151M
Vit/b16 WGA-POOL Full 37.1 28.3 55.5 126.5 116M
Vit/b16 WGA-POOL Adapter 37.9 29.1 58.2 130.5 33.7M

CLIP-encoder MSA Freezing 39.7 29.4 59.0 135.3 66M
CLIP-encoder WGA-POOL Freezing 39.2 29.2 58.6 134.5 33.5M
CLIP-encoder WGA-POOL Adapter 40.3 30.1 59.6 137.9 33.7M

Figure 7

Example of image captioning in traffic scenes

CClipcap: A car is parked on the side of the road.
OURS:Five cars are parked along the road with one parked under a
tree.
manual annotation:There are four cars parked on the roadside and
one car parked under a tree.

Clipcap: A man and woman walking down a street with a dog.
OURS:Two people walk along a railing while another sits under a
parasol.
manual annotation:A rail ahead, two people walking, one sitting
under an umbrella.

Clipcap: A car driving down a street next to a highway sign.
OURS:Three cars speed forward on the highway.
manual annotation：：Three cars driving fast on the highway

Clipcap: A busy street with cars and a lot of traffic.
OURS:A bus and cars stuck in traffic with a stoplight.
manual annotation:There is a bus and five cars parked in front of a
stoplight.

(a)

(b)

(c)

(d)

5. Conclusions
In this paper, we propose a CLIP-based image
captioning model for traffic scenes to solve current
problems of image captioning in traffic scenes,
such as imprecise captions, large model sizes, and
lack of personalization. In this work, by adding an
adapter layer to the CLIP model and fine-tuning
public and BUUISE-Image datasets, the CLIP
model is adjusted to enable personalized traffic
scene captioning while ensuring generalization.
Furthermore, considering the large parameter size
of Transformer-based image captioning models,
we propose a new model, WGA-PoolFormer,
replacing the self-attention mechanism in the
Transformer with a global weighted attention
pooling layer. This allows effective fusion of
different features and capturing multi-level, multi-
perspective information while reducing model
parameters, further improving performance.

However, real-time deployment of image
captioning models is still a problem in practical

applications. Future work should continue to
focus on model reduction and lightweighting
approaches, such as knowledge distillation
and pruning, to reduce model size and
computation. This will help the models to be
deployed on resource-constrained mobile or
embedded devices. On the other hand, in
order to enhance the generalisation ability of
the model, future work should also continue
to expand the size and scene coverage of the
image captioning dataset of traffic scenes, and
collect images containing different regions,
time of day, weather, etc., so as to adapt the
model to a wider range of real-world usage
scenarios and improve robustness. The in-
depth study of these directions will help to
advance the generation of traffic scene image
captioning to practical applications.

Appendix A
The download addresses of the four datasets
used in this article are as follows:

MS-COCO: https://cocodataset.org/

zontal (CIDEr) and vertical (BLEU-4) coordinates.
Furthermore, when considering bubble size (indicat-
ing parameter count), our proposed model boasts the
smallest area ,and thus ,the lowest parameter count.
In order to further evaluate and analyze the caption-
ing performance of the proposed model in this paper
on traffic scenes, four images were randomly selected
from the BUUISE-Image dataset, and the manual-
ly labelled ground truth of each image was provided
for evaluation. The results of comparing this paper’s
model with the same Transformer architecture-based
approach are visualized in Figure 7. It can be observed

111Information Technology and Control 2024/1/53

that on the traffic scene dataset, the model proposed
in this paper generates richer semantic information
in the image captions compared to the same meth-
od based on CLIP and Transformer architectures. As
shown in example (a) in Figure 5, Clipcap can accurate-
ly recognize “A car is parked on the side of the road” but
ignores the details of other vehicles on the side of the
road and a car parked under a tree, which leads to in-
accurate captions as highlighted in a yellow font in the
figure. The method in this paper, as highlighted in red
font, can accurately describe the number of vehicles
in the figure and provide specific details (a car parked
under a tree). Furthermore, as depicted in Figure 5(b),
Clipcap’s method generates inaccurate descriptions, as
highlighted in yellow, since no dog or woman is in the
figure. In contrast, the method proposed in this paper
accurately states the existence of a railing, a person
sitting under an umbrella, and two people walking, as
highlighted in red font.
The above analysis demonstrates that compared to
the same method based on CLIP and Transformer ar-
chitectures, the image captioning method proposed in
this paper benefits from fine-tuning via adapter layers
on BUUISE-Image, which captures the key informa-
tion in the image more precisely and deepens the un-
derstanding of the image. Additionally, token mixing
using the weighted global attention pooling module
incorporates global and local feature information,
making fuller use of semantic information. This en-
ables the generated descriptions to focus on the key
parts of the image and describe them more accurately.

4.4. Ablation Experiments

Our approach has two main innovations: First, in the
image encoder module, CLIP is adopted as the feature

extractor with frozen model parameters, and the CLIP
model is fine-tuned by inserting an adapter layer.
This enables learning new features from fewer traffic
scene samples. Second, a novel WGA-Pooling layer is
proposed in the image captioning module to replace
the traditional multi-head self-attention layer, re-
ducing model parameters while maintaining perfor-
mance. To validate the efficacy of these innovations in
the proposed TSIC-Clip model, ablation experiments
were conducted on the MS-COCO dataset. The re-
sults are shown in Table 5 ablation Experiments.
In the first experiment, the feature extractor was fixed
as Vit/b16, and the token mixer was the only variable.
Methods using WGA-Pooling and MSA (Multi-Head
Self-Attention) as the token mixer were compared.
Results show that the WGA-Pooling-based method
scores slightly lower than the MSA method on the
B@4, M, R, and C metrics, with a value of about 1% dif-
ference. However, the WGA-Pooling had 35M fewer
parameters than the MSA. Thus, WGA-PoolFormer
reduces parameters while maintaining performance,
validating WGA-Pooling.
In the second experiment, Vit/b16 was fixed as the
feature extractor, WGA-Pooling as the token mixer,
and fine-tuning as the only variable. Results show
adapter-based fine-tuning had 33.7M parameters; full
training had 116M; thus, the adapter reduced param-
eters by 82.3M. Additionally, adapter-based fine-tun-
ing improved all metrics over full training, with
gains of 0.8% in BLEU-4, 0.8% in METEOR, 2.7% in
ROUGE-L and 4% in CIDEr.
In the third experiment, the CLIP encoder was fixed
as the feature extractor with all parameters frozen,
and the token mixer was the only variable.

Table 5
Ablation experiments

Feature Extractor Token mixer Fine tuning B@4 M R C Params

Vit/b16 MSA Full 37.5 28.7 56.5 127.1 151M

Vit/b16 WGA-POOL Full 37.1 28.3 55.5 126.5 116M

Vit/b16 WGA-POOL Adapter 37.9 29.1 58.2 130.5 33.7M

CLIP-encoder MSA Freezing 39.7 29.4 59.0 135.3 66M

CLIP-encoder WGA-POOL Freezing 39.2 29.2 58.6 134.5 33.5M

CLIP-encoder WGA-POOL Adapter 40.3 30.1 59.6 137.9 33.7M

Information Technology and Control 2024/1/53112

Results show WGA-Pooling had 33.5M parameters
versus 66M for MSA. Thus, WGA-Pooling had 32.5M
fewer parameters than MSA, with minimal metric
fluctuations, maintaining performance.
In the fourth experiment, the CLIP encoder was fixed
as a feature extractor, all parameters were frozen,
WGA-Pooling was the token mixer, and fine-tuning
was the only variable. Results show that adapter-based
CLIP fine-tuning improved all metrics over direct
CLIP freezing, with gains of 1.1% in BLEU-4, 0.9% in
METEOR, 1% in ROUGE-L, and 3.4% in CIDEr.
In summary, ablation experiments verified the effi-
cacy of the two proposed innovations in TSIC-Clip -
adapter fine-tuning and the WGA-Pooling layer.

5. Conclusions
In this paper, we propose a CLIP-based image caption-
ing model for traffic scenes to solve current problems
of image captioning in traffic scenes, such as impre-
cise captions, large model sizes, and lack of personal-
ization. In this work, by adding an adapter layer to the
CLIP model and fine-tuning public and BUUISE-Im-
age datasets, the CLIP model is adjusted to enable
personalized traffic scene captioning while ensuring
generalization. Furthermore, considering the large
parameter size of Transformer-based image cap-
tioning models, we propose a new model, WGA-Pool-
Former, replacing the self-attention mechanism in
the Transformer with a global weighted attention
pooling layer. This allows effective fusion of different
features and capturing multi-level, multi-perspective
information while reducing model parameters, fur-
ther improving performance.
However, real-time deployment of image captioning
models is still a problem in practical applications. Fu-

ture work should continue to focus on model reduc-
tion and lightweighting approaches, such as knowl-
edge distillation and pruning, to reduce model size
and computation. This will help the models to be de-
ployed on resource-constrained mobile or embedded
devices. On the other hand, in order to enhance the
generalisation ability of the model, future work should
also continue to expand the size and scene coverage
of the image captioning dataset of traffic scenes, and
collect images containing different regions, time of
day, weather, etc., so as to adapt the model to a wider
range of real-world usage scenarios and improve ro-
bustness. The in-depth study of these directions will
help to advance the generation of traffic scene image
captioning to practical applications.

Appendix A
The download addresses of the four datasets used in
this article are as follows:
MS-COCO: https://cocodataset.org/
Flickr 30K: http://web.engr.illinois.edu/577~b-
plumme2/Flickr30kEntities/
BUUISE-Image: The dataset involve state-owned en-
terprise confidentiality cannot be disclosed publicly.

Acknowledgement
This work was supported, the National Natural Sci-
ence Foundation of China (Grant No. 62006020,
62102033, 62171042), the R&D Program of Bei-
jing Municipal Education Commission (Grant No.
KZ202211417048), The Project of Construction and
Support for high-level Innovative Teams of Beijing
Municipal Institutions (Grant No. BPHR20220121),
Beijing Natural Science Foundation (Grant No.
4232026), the Academic Research Projects of Beijing
Union University (No. ZKZD202302).

References
1. Ahmadian, N., Khosravi, A., Sarhadi, P. Driver Assistant

Yaw Stability Control via Integration of AFS and DYC.
Vehicle System Dynamics, 2022, 60(5), 1742-1762.
https://doi.org/10.1080/00423114.2021.1879390

2. Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M.,
Gould, S., Zhang, L. Bottom-Up and Top-Down Attenti-
on for Image Captioning and Visual Question Answe-

ring. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, 6077-6086.
https://doi.org/10.1109/CVPR.2018.00636

3. Bisio, I., Garibotto, C., Haleem, H., Lavagetto, F., Sci-
arrone, A. A Systematic Review of Drone-Based Road
Traffic Monitoring System. IEEE Access, 2022. https://
doi.org/10.1109/ACCESS.2022.3207282

113Information Technology and Control 2024/1/53

4. Bounab, Y., Oussalah, M., Ferdenache, A. Reconciling Ima-
ge Captioning and User‘s Comments for Urban Tourism.
In 2020 Tenth International Conference on Image Pro-
cessing Theory, Tools and Applications, 2020, 1-6. IEEE.
https://doi.org/10.1109/IPTA50016.2020.9286602

5. Chai, Y., Liu, H., Xu, J., Samtani, S., Jiang, Y., Liu, H. A
Multi-Label Classification with an Adversarial-Based
Denoising Autoencoder for Medical Image Annotation.
ACM Transactions on Management Information Sys-
tems 2023, 14(2), 1-21. https://doi.org/10.1145/3561653

6. Cornia, M., Stefanini, M., Baraldi, L., Cucchiara, R.
Meshed-Memory Transformer for Image Captioning. In
Proceedings of the IEEE/CVF Conference on Compu-
ter Vision and Pattern Recognition, 2020, 10578-10587.
https://doi.org/10.1109/CVPR42600.2020.01059

7. Cho, J., Yoon, S., Kale, A., Dernoncourt, F., Bui, T., Ban-
sal, M. Fine-Grained Image Captioning with Clip Re-
ward. arXiv preprint arXiv:2205.13115, 2022. https://
doi.org/10.18653/v1/2022.findings-naacl.39

8. Dai, W., Hou, L., Shang, L., Jiang, X., Liu, Q., Fung, P.
Enabling Multimodal Generation on CLIP via Visi-
on-Language Knowledge Distillation. arXiv preprint
arXiv:2203.06386, 2022. https://doi.org/10.18653/
v1/2022.findings-acl.187

9. Gupta, A., Anpalagan, A., Guan, L., Khwaja, A. S. Deep
Learning for Object Detection and Scene Perception
in Self-Driving Cars: Survey, Challenges, and Open Is-
sues. Array, 2021, 10, 100057. https://doi.org/10.1016/j.
array.2021.100057

10. Hao, Y., Song, H., Dong, L., Huang, S., Chi, Z., Wang, W.,
Wei, F. Language Models Are General-Purpose Interfa-
ces. arXiv preprint arXiv:2206.06336, 2022.

11. Kim, J., Rohrbach, A., Darrell, T., Canny, J., Akata, Z.
Textual Explanations for Self-Driving Vehicles. In Pro-
ceedings of the European Conference on Computer
Vision, 2018, 563-578. https://doi.org/10.1007/978-3-
030-01216-8_35

12. Li, M., Zhang, H., Xu, C., Yan, C., Liu, H., Li, X. MFVC:
Urban Traffic Scene Video Caption Based on Multimo-
dal Fusion. Electronics, 2022, 11(19), 2999. https://doi.
org/10.3390/electronics11192999

13. Li, W., Qu, Z., Song, H., Wang, P., Xue, B. The Traffic Sce-
ne Understanding and Prediction Based on Image Cap-
tioning. IEEE Access, 2020, 9, 1420-1427. https://doi.
org/10.1109/ACCESS.2020.3047091

14. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., Zitnick, C. L. Microsoft COCO:
Common Objects in Context. In Computer Vision-ECCV

2014: 13th European Conference, 2014, Part V 13, 740-
755. https://doi.org/10.1007/978-3-319-10602-1_48

15. Luo, J., Li, Y., Pan, Y., Yao, T., Feng, J., Chao, H., Mei, T. Se-
mantic-Conditional Diffusion Networks for Image Cap-
tioning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, 23359-
23368. https://doi.org/10.1109/CVPR52729.2023.02237

16. Medina-Salgado, B., Sanchez-DelaCruz, E., Pozos-Par-
ra, P., Sierra, J. E. Urban Traffic Flow Prediction
Techniques: A Review. Sustainable Computing: Infor-
matics and Systems, 2022, 35, 100739. https://doi.or-
g/10.1016/j.suscom.2022.100739

17. Mokady, R., Hertz, A., Bermano, A. H. Clipcap: Clip Prefix
for Image Captioning. arXiv preprint arXiv:2111.09734,
2021.

18. Mohammed, S.I. An Overview of Traffic Accident In-
vestigation Using Different Techniques. Automotive
Experiences, 2023, 6(1), 68-79. doi: 10.31603/ae.7913.
https://doi.org/10.31603/ae.7913

19. Moratelli, N., Barraco, M., Morelli, D., Cornia, M., Ba-
raldi, L., Cucchiara, R. Fashion-Oriented Image Cap-
tioning with External Knowledge Retrieval and Fully
Attentive Gates. Sensors, 2023, 23(3), 1286. https://doi.
org/10.3390/s23031286

20. Mori, Y., Fukui, H., Hirakawa, T., Nishiyama, J., Ya-
mashita, T., Fujiyoshi, H. Attention Neural Baby
Talk: Captioning of Risk Factors While Driving. In
2019 IEEE Intelligent Transportation Systems Con-
ference (ITSC), 2019, 4317-4322. IEEE. https://doi.
org/10.1109/ITSC.2019.8917187

21. Mori, Y., Hirakawa, T., Yamashita, T., Fujiyoshi, H. Ima-
ge Captioning for Near-Future Events from Vehicle
Camera Images and Motion Information. In 2021 IEEE
Intelligent Vehicles Symposium, 2021, 1378-1384.
IEEE. https://doi.org/10.1109/IV48863.2021.9575562

22. Nukrai, D., Mokady, R., Globerson, A. Text-Only Trai-
ning for Image Captioning Using Noise-Injected Clip.
arXiv preprint arXiv:2211.00575, 2022. https://doi.
org/10.18653/v1/2022.findings-emnlp.299

23. Ouali, I., Halima, M. B., Wali, A. An Augmented Reality
for an Arabic Text Reading and Visualization Assistant
for the Visually Impaired. Multimedia Tools and Appli-
cations, 2023, 1-29. https://doi.org/10.1007/s11042-
023-14880-6

24. Ranyal, E., Sadhu, A., Jain, K. Road Condition Moni-
toring Using Smart Sensing and Artificial Intelligen-
ce: A Review. Sensors, 2022, 22(8), 3044. https://doi.
org/10.3390/s22083044

Information Technology and Control 2024/1/53114

25. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
Krueger, G., Sutskever, I. Learning Transferable Visual
Models from Natural Language Supervision. Procee-
dings of the International Conference on Machine Le-
arning, July 2021, 8748-8763

26. Rochel, S. N. S., Luc, R. J., Thomas, M., Victor, M. Deep
Learning: Traffic Accident Captioning Model in Ma-
dagascar Mother Language. In 2022 8th Internatio-
nal Conference on Control, Decision and Information
Technologies, 2022, 1, 996-1001. IEEE. https://doi.
org/10.1109/CoDIT55151.2022.9804080

27. Seifi, P., Chalechale, A. Traffic Captioning: Deep Lear-
ning-Based Method to Understand and Describe Traffic
Images. In 2022 8th Iranian Conference on Signal
Processing and Intelligent Systems, 2022, 1-6. IEEE.
https://doi.org/10.1109/ICSPIS56952.2022.10044082

28. Selivanov, A., Rogov, O. Y., Chesakov, D., Shelmanov, A., Fe-
dulova, I., Dylov, D. V. Medical Image Captioning via Gene-
rative Pretrained Transformers. Scientific Reports, 2023,
13(1), 4171. https://doi.org/10.1038/s41598-023-31223-5

29. Srihari, K., Sikha, O. K. Partially Supervised Image
Captioning Model for Urban Road Views. In Intelligent
Data Communication Technologies and Internet of
Things: Proceedings of ICICI 2021, 2022. https://doi.
org/10.1007/978-981-16-7610-9_5

30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jo-
nes, L., Gomez, A.N., Polosukhin, I. Attention Is All You
Need. Advances in Neural Information Processing Sys-
tems, 2017, 30.

31. Vinyals, O., Toshev, A., Bengio, S., Erhan, D. Show and
Tell: A Neural Image Caption Generator. In Procee-
dings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, 3156-3164. https://doi.
org/10.1109/CVPR.2015.7298935

32. Voykinska, V., Azenkot, S., Wu, S., Leshed, G. How Blind
People Interact with Visual Content on Social Networ-
king Services. In Proceedings of the 19th ACM Con-
ference on Computer-Supported Cooperative Work
& Social Computing, 2016, 1584-1595. https://doi.
org/10.1145/2818048.2820013

33. Wang, C., Shen, Y., Ji, L. Geometry Attention Transfor-
mer with Position-Aware LSTMs for Image Captioning.
Expert Systems with Applications, 2022, 201, 117174.
https://doi.org/10.1016/j.eswa.2022.117174

34. Wang, S., Zeng, Q., Ni, W., Cheng, C., Wang, Y.
ODP-Transformer: Interpretation of Pest Classification
Results Using Image Caption Generation Techniques.
Computers and Electronics in Agriculture, 2023, 209,
107863. https://doi.org/10.1016/j.compag.2023.107863

35. Wang, Y., Xu, J., Sun, Y. End-to-End Transformer-Ba-
sed Model for Image Captioning. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2022, 36(3),
2585-2594. https://doi.org/10.1609/aaai.v36i3.20160

36. Wu, C., Li, Y., Li, L., Wang, L., Liu, Y. Caption Generation
from Road Images for Traffic Scene Construction. In 2020
IEEE Intelligent Vehicles Symposium, 2020, 1271-1276.
IEEE. https://doi.org/10.1109/IV47402.2020.9304746

37. Xian, T., Li, Z., Zhang, C., Ma, H. Dual Global Enhanced
Transformer for Image Captioning. Neural Networks,
2022, 148, 129-141. https://doi.org/10.1016/j.neu-
net.2022.01.011

38. Xu, H., Gao, Y., Yu, F., Darrell, T. End-to-End Learning
of Driving Models from Large-Scale Video Datasets. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017, 2174-2182. https://
doi.org/10.1109/CVPR.2017.376

39. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudi-
nov, R., Zemel, R., Bengio, Y. Show, Attend and Tell: Neu-
ral Image Caption Generation with Visual Attention. In
International Conference on Machine Learning, 2015,
2048-2057.

40. Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X.,
Feng, J., Yan, S. Metaformer Is Actually What You
Need for Vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Reco-
gnition, 2022, 10819-10829. https://doi.org/10.1109/
CVPR52688.2022.01055

41. Zeng, P., Zhang, H., Song, J., Gao, L. S2 Transformer for
Image Captioning. In Proceedings of the International
Joint Conferences on Artificial Intelligence, 2022, 5.
https://doi.org/10.24963/ijcai.2022/224

42. Zhang, Y., Shi, X., Mi, S., Yang, X. Image Captioning with
Transformer and Knowledge Graph. Pattern Recogniti-
on Letters, 2021, 143, 43-49. https://doi.org/10.1016/j.
patrec.2020.12.020

43. Zhu, X., Li, L., Liu, J., Peng, H., Niu, X. Captioning
Transformer with Stacked Attention Modules. Applied
Sciences, 2018, 8(5), 739. https://doi.org/10.3390/
app8050739

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

