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There has recently been increasing attention paid to sulphur dioxide (SO2) pollution owing to its hazardous 
effect on both human health and atmospheric environment. To handle this problem, the wet flue gas desulphur-
ization (FGD) system has found wide applications in SO2 emitting industries. Accurate prediction of SO2 emis-
sions in treated flue gas serves the purpose of providing timely operating guidance for the FGD system. How-
ever, the wet FGD process is characterized by highly nonlinear dynamics and non-stationarity, which poses 
significant difficulties and limitations for traditional modeling methods. To address above issues, in this article, 
an integrated model is proposed to perform SO2 emission forecasting for an FGD process. Our integrated model 
comprises a multiplicity of techniques, including complete ensemble empirical mode decomposition (EMD)  
with adaptive noise CEEMDAN stacking ensemble learning (SEL) and permutation-based entropy (PEN). The 
CEEMDAN serves as decomposing SO2 emission signal, then the complexity of each decomposed sub-series is 
analyzed by PEN and ones with similar scores are combined, finally a stacking-based ensemble learning mod-
el which incorporates different types of member models are developed for modeling purposes. The proposed 
method was validated and evaluated by measurements of a real FGD system in a 600MW coal-fired unit, and 
experimental results illustrate the superiority of our method.
KEYWORDS: Wet flue gas desulfurization, Ensemble learning, Stacking, CEEMDAN-forecasting, Neural 
network.
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1. Introduction
Due to massive coal combustion in electricity-gener-
ating plants, SO2 contained in flue gas has become one 
of the primary atmospheric pollutants, which nega-
tively affects both human health and environment. To 
abate SO2 emissions arise from industrial processes, 
a series of strict SO2 emission standards have issued 
by governments worldwide, and the limit on the max-
imum concentration of outlet SO2 is determined to 
be 35mg∙m-3 in China [27]. To meet such an ultralow 
SO2 emission regulation, the post-combustion wet 
FGD technology is extensively employed in fossil-fu-
eled power stations owing to its cost-effectiveness 
and high SO2 removal efficiency. Accurate prediction 
of SO2 concentration in treated stack gas serves two 
purposes: 1) remind the public to take precautionary 
measures in cases where the predicted SO2 concen-
tration exceeds the limit and 2) provide guidance for 
the operation of an FGD system. However, the wet 
FGD process is characterized by nonlinear dynam-
ics of high complexity and non-stationarity, which 
pose great challenges to develop an accurate model 
used for FGD process description and further for SO2 
emissions prediction. The research for FGD process 
modeling is of fundamental importance to controller 
design and desulfurization system optimization. Ac-
cording to a wealth of studies carried out in this di-
rection, the modeling approach is broadly categorized 
into two groups: first-principles modeling approaches 
and black-box modeling approaches.
The first-principles modeling approach is physi-
cal-chemical relationship based, which includes 
reaction kinetics, thermodynamic, as well as mass/
energy conservation relationships. [9] developed a 
SO2 removal model with the use of double-film theo-
ry, chemical improvement coefficients and a control 
mechanism for sulfate concentration. Then the es-
tablished model was employed for predicting desul-
phurization efficiency, and experimental reselts show 
that predicted values closely approximate targets. A 
simplified model for wet FGD system with absorber 
was developed in [30], the model is built based upon 
movement equations of limestone slurry and mate-
rial balance, and used to simulate the mass transfer 
of SO2 in the absorption zone. Experimental results 
demonstrate the superiority of proposed modeling 
approach, which is also of great practical value for the 

FGD system design. [31] developed a Eulerian model 
on the basis of chemistry in the SO2 absorption phase, 
and the double-film theory was also incorporated 
into the model derivation process. The effectiveness 
of proposed model is verified by measurements of a 
real FGD process. A rate-based FGD system model 
is suggested by [32], where dynamic characteristics 
of the studied FGD process is derived based on the 
knowledge of gas-liquid equilibrium, and experimen-
tal studies were conducted to verify the established 
model. 
Due to high complexity of the FGD process, the prac-
tical implementation of mechanism-based model-
ing approaches is quite limited. On the other hand, 
advances in sensor technology enable acquisition of 
massive amounts of operation data. For above rea-
sons, data-driven approaches are paid wide attention 
in the FGD modeling field. Based on historical run-
ning data from a real FGD process, a regression model 
was developed in [11] with the least square approach. 
Then the resulting model was used for multi-objec-
tive programming purpose, so as to ensure the FGD 
system operates in a safe and economical fashion. 
Artificial neural network, as a universal nonlinearity 
approximator, is typically employed to model the FGD 
process. A combined control strategy is proposed in 
[22] to perform pH control in FGD plants, the strat-
egy incorporates a network-based controller and a 
feedback controller, and the network is introduced to 
approximate the nonlinear mapping from the manip-
ulated variable space to the controlled variable space. 
In [21], to model the FGD process under study, a neu-
ral model was constructed by taking multiple FGD 
process variables (e.g. inlet SO2 temperature) as in-
puts, and the established model was in turn used to in-
vestigate optimum operating ranges of FGD variables. 
[10] designed a combined FGD model that is com-
posed of a mechanistic model and a network-based 
model to predict SO2 emissions, experimental results 
suggest that satisfactory prediction performance can 
be achieved with the proposed method. 
Apart from the CEEMDAN method, empirical mode 
decomposition (EMD), ensemble empirical mode de-
composition (EEMD) and variational mode decom-
position (VMD) are representative of signal decom-
position techniques. The major distinction between 
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EMD based techniques and VMD is that the former 
performs the signal decomposition adaptively and 
in a data-driven fashion, while VMD is a nonrecur-
sive decomposition method and decomposed modes 
are tight their center frequency. Despite decomposi-
tion mechanisms for above-mentioned methods are 
slightly different, they all essentially serve to decom-
pose the signal into intrinsic mode functions (IMFs) 
and a residue with various frequencies and scales. In 
recent years, signal decomposition techniques are 
increasingly incorporated into a prediction model 
to handle time series modelling problems in differ-
ent contexts. Among these, to mention but a few, [1] 
adopted EMD technique to augment model training 
data, and a nonlinear auto-regressive network with 
exogenous inputs (NARX) is employed to validate this 
method. Experimental results show that predictive 
performance of NARX is improved with the EMD-
based data augmentation method. In [6], a noise can-
cellation method is innovatively designed based upon 
the EMD method, and the proposed approach is prov-
en to have better denoising performance than clas-
sical methods by jitter analysis. Authors in [8] pre-
sented an improved EMD method named BoostEMD, 
which has the ability to obtain IMFs with higher fre-
quencies, and electromyography signal is employed 
to verify its enhancement in denoising performance. 
VMD method is employed to process multi-frequen-
cy signals in [15] such that the satisfactory imaging 
effect could be achieved, and the proposed method is 
successfully applied to electrical impedance tomog-
raphy in practice. [20] integrated VMD, empirical 
wavelet transform (EWT) and long short-term mem-
ory (LSTM) to form a prediction model, which is used 
to predict cutterhead torque for shield tunneling ma-
chine, and high-precision prediction can be achieved 
with the hybrid model. 
In this study, a dynamic model of the flue gas desul-
furization process is developed, which innovative-
ly hybridizes the signal decomposition technique 
CEEMDAN, artificial intelligence (AI)-based models, 
permutation entropy and stacking ensemble learn-
ing (SEL), is proposed. To our knowledge, this is the 
first work to combine time-frequency data analysis 
method with SEL strategy and used for modeling a 
real FGD process. The outstanding forecasting per-
formance indicates that our approach can provide a 
promising solution for SO2 emission forecasting, be-

sides the significant flexibility structure of our mod-
el makes it applicable to various industrial process 
modeling scenarios.
This study is structured as follows. The “FGD pro-
cess description” section provides a comprehensive 
description of the wet FGD process under study. In 
“Methodology” section, we give a general descrip-
tion of related techniques utilized in our method. The 
design of proposed modeling framework is detailed 
in “Proposed modeling approach” section. “Exper-
iments and analysis” tests effectiveness of our ap-
proach through experiments designed based upon 
measurements of a real FGD process. Conclusions are 
drawn in the “Conclusion” section.

2. FGD Process Description
A schematic of a typical wet FGD process is shown in 
Figure 1 below, where key components are indicated 
in bold. The countercurrent spray tower plays a cen-
tral role in the flue gas cleaning system, according 
to chemical reactions taking place during the whole 
desulphurization process, the removal of SO2 in flue 
gas can be decomposed into four phases: calcium car-
bonate (CaCO3) dissolution, sulphur dioxide absorp-
tion, sulfite oxidation and calcium sulfate (CaSO4) 
crystallisation. The process of FGD can be summa-
rized as follows: The raw flue gas is first produced 
by a coal-fired boiler, then it passes through an elec-
trostatic precipitator so as to remove contained fine 
particles. After that, the flue gas with no dust flows 
into the gas-gas heat exchanger, where heat transfer 
is carried out between the inlet and treated stack gas. 
Specifically, the inlet stack gas temperature would de-
crease from around 100℃ to below 80℃, which can 
decrease PM2.5 produced in the FGD tower by a fac-
tor of about 10 to 100; and at the same time, tempera-
ture rise in the treated stack gas is beneficial to gyp-
sum rain elimination. Finally, the processed flue gas 
is fed to the desulphurizing tower from the top. As for 
the flue gas desulfurizer limestone, it is crushed and 
mixed with water to produce limestone slurry. The 
resulting slurry is stored in a slurry tank for subse-
quent feeding to the FGD tower, and it is transferred 
through slurry pumps that are mounted at the lower 
part of the spray scrubber. As it is shown, limestone 
desulfurizer is sprayed down via upper nozzles, while 
the stack gas flows countercurrently through slurry 
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Figure 1 
A schematic illustration of a wet FGD process

circulation pumps, then the chemical reaction be-
tween limestone and the SO2 in flue gas would take 
place. According to reaction shown in Equation (1), 
the primary product between SO2 and CaCO3 is hy-
drated 3CaSO .

  

3CaSO . 

2(g) 3(s) 2 (aq) 2(g)

3 2 (aq)

SO CaCO +0.5H O CO
CaSO 0.5H O

+ → +

⋅
   (1) 

At the bottom part of the absorber, the reaction 
product can be handled in two different ways: 
natural oxidation and forced oxidation. The 
main difference between two oxidation modes is 
whether oxygen is sparged into the scrubber 
purposely. As for nature-based oxidization, its 
primary products are 1

23 2CaSO H O⋅ and

4 2CaSO 2H O⋅  that are mixed in the sludge, 
rendering the dewatering task a truly challenge; 
by contrast, the end product of forced oxidation 
is 90% (see Equation (2)), which can minimize the 
scaling problem to the highest possible extent. 

2(g) 3 2 (aq) 2 (aq)

4 2 (aq)

1 1 3O CaSO H O + H O
2 2 2
CaSO 2H O

+ ⋅ →

⋅
   (2) 

The reaction product is FGD-gypsum which is a 
synthetic solid byproduct, and finds applications 
in both plaster and wallboard manufacture. 
Moreover, the whole FGD process consumes 
considerable amounts of water, which includes 
crystallization water for gypsum and wash water 
for removing chlorides. As a consequence, 
cyclones are installed to separate gypsum from 
the water that is recycled and circulated around 
the FGD loop. 
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3. Methodology 
A timeseries is defined as observed values that 

are ordered based on chronological sequence of 
time. In this study, SO2 emissions processed by 
an FGD process is a univariate time series that 
can be represented as 0 1[ , , , ]T

NY y y y=  , where

ty denotes the observation at instant t. Suppose 
we are given an input sequence

0 1( , , , )T
NX x x x=  , we wish to predict 

corresponding outputs 0 1, , , Ny y y at each time. 
This is realized through some mathematical 
model, more formally, a sequence model is any 
mapping 1 1: + +→N Nf X Y that produces the 
mapping 0 1 0ˆ ˆ ˆ, , , ( , , )N Ny y y f x x=  . In the 
generic case f is approximated by only a single 
model, which greatly increases the risk of model 
insufficiency and misspecification. This paper 
presents a general methodology to establish 
forecasting model for SO2 emissions, the 
motivation behind it is twofold: 1) improve the 
forecasting ability by integrating AI-based 
models with the stacking ensemble learning, 2) 
decrease the forecasting difficulty with signal 
processing techniques and information theory. 
This section is devoted to providing brief 
introductions to core components in the 
proposed model. 

3.1 CEEMDAN 
CEEMDAN

EMD and ensemble
EMD . The EMD

IMFs ), then IMFs

EMD is proposed in [25], whose basic 
idea is to add varied realizations of white-noise 
signals to the signal to be decomposed and 
calculate mean IMFs. CEEMDAN  is an 
improvement of ensemble EMD , which can not 
only ensure decomposition completeness, but 
also reduce the sifting iteration number and 
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generic case f is approximated by only a single 
model, which greatly increases the risk of model 
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presents a general methodology to establish 
forecasting model for SO2 emissions, the 
motivation behind it is twofold: 1) improve the 
forecasting ability by integrating AI-based 
models with the stacking ensemble learning, 2) 
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calculate mean IMFs. CEEMDAN  is an 
improvement of ensemble EMD , which can not 
only ensure decomposition completeness, but 
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(2)

The reaction product is FGD-gypsum which is a syn-
thetic solid byproduct, and finds applications in both 
plaster and wallboard manufacture. Moreover, the 
whole FGD process consumes considerable amounts 
of water, which includes crystallization water for gyp-
sum and wash water for removing chlorides. As a con-
sequence, cyclones are installed to separate gypsum 
from the water that is recycled and circulated around 
the FGD loop.

3. Methodology
A timeseries is defined as observed values that are or-
dered based on chronological sequence of time. In this 
study, SO2 emissions processed by an FGD process is 
a univariate time series that can be represented as
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0 1[ , , , ]T
NY y y y=  , where ty denotes the observation 

at instant t. Suppose we are given an input sequence
0 1( , , , )T

NX x x x=  , we wish to predict correspond-
ing outputs 0 1, , , Ny y y at each time. This is realized 
through some mathematical model, more formally, a 
sequence model is any mapping 1 1: + +→N Nf X Y that 
produces the mapping 0 1 0ˆ̂̂ , , , ( , , )N Ny y y f x x=  . 
In the generic case f is approximated by only a single 
model, which greatly increases the risk of model in-
sufficiency and misspecification. This paper presents 
a general methodology to establish forecasting model 
for SO2 emissions, the motivation behind it is two-
fold: 1) improve the forecasting ability by integrating 
AI-based models with the stacking ensemble learn-
ing, 2) decrease the forecasting difficulty with signal 
processing techniques and information theory. This 
section is devoted to providing brief introductions to 
core components in the proposed model.

3.1. CEEMDAN
CEEMDAN is a data-driven approach for non-linear 
and nonstationary signal analysis, it is developed based 
upon EMD and ensemble EMD . The EMD and its 
variants take advantage of sifting processes to enable 
decomposition of the timeseries into a multiplicity of 
modulated subseries termed as intrinsic mode func-
tions ( IMFs ), then IMFs can be employed as bases 
to restore the original signal. From the perspective of 
time series modeling, IMF components are relatively 
stationary subseries and possess more regularity and 
stability than original series, which can substantially 
simplify the modeling problem and hence EMD-based 
modeling techniques find wide applications in various 
fields (e.g. wind power, crude oil and water quality). 
Despite EMD shows exceptional performance in sig-
nal decomposition, it always subject to “mode mixing” 
and “aliasing” problems. In order to handle above prob-
lems, ensemble EMD is proposed in [25], whose basic 
idea is to add varied realizations of white-noise signals 
to the signal to be decomposed and calculate mean 
IMFs. CEEMDAN  is an improvement of ensemble 
EMD , which can not only ensure decomposition com-
pleteness, but also reduce the sifting iteration number 
and computational cost. Let ( )jE ⋅ be an operator that 
calculates the jth mode by EMD, 
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kk
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represents the trend of time series ( )S t . 

3.2 Permutation-based Entropy 
As a statistical measure that is used for 
quantifying complexity of a signal, PEN [2] 
benefits from low computational cost, simplicity 
and robustness with respect to non–linear 
monotonous transformations, and thus has 
found wide applications in many research fields. 
Given a time series { ( ), 1, , }x i i N=  , according to 
the Takens–Maine theorem, its phase space is 
formulated as  

( ) { ( ), ( ), , ( ( 1) )}
1,2, , ( 1)

τ τ
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
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X i x i x i x i m
i N m

     (3) 

in which m andτ are the embedded dimension 
and time delay, respectively. As for each ( )X i , its 
m real valued elements are sorted in descending 
order as 

1 2{ ( ( 1) ) ( ( 1) )
( ( 1) )}m

x i j x i j
x i j

τ τ
τ

+ − ≤ + − ≤
≤ + −


     (4) 

In cases where elements in ( )X i are of the same 
value (e.g. 1( ( 1) )x i j τ+ − = 2( ( 1) )x i j τ+ − ), we have

1 2j j≤ , 1( ( 1) )x i j τ+ − ≤ 2( ( 1) )x i j τ+ − . As a result, 
a mapping between ( )X i and 1 2( , , )mj j j can be 
established, where 1 2( , , )mj j j is one of symbol 
permutations. With 1 2, , kP P P ( !k m≤ ) denoting 
the probability distribution for different 
symbols, then the PEN of order m for
{ ( ), 1, , }x i i N =  is defined as the Shannon 
entropy for K varied symbols [3] and computed 
as 

( ) ln= −∑
K

p l l
l

H m P P                      (5) 

( )pH m reaches its maximum value !ln( )m when 
all symbols have the same distribution as

!1 /lP m= . For convenience, ( )pH m is always 
normalized by !ln( )m and is written as

!0 / ln( ) 1p pH H m≤ = ≤ . pH can be employed to 
measure the randomness degree of
{ ( ), 1, , }x i i N=  , to be specific, pH equals unity 
when the time series is far from randomness 
while zero in the case where { ( )x i , 1, ,i N= 
}belongs to the white noise. 

3.3 Long short-term Memory Network 
The flue gas desulfurization process has 
characteristics of strongly nonlinear dynamics 
and large time delay, making it difficult to 
accurately model the FGD process. Long short-
term memory (LSTM) network, which was first 
proposed in [11] and benefited from three 
control gates (i.e. input gate, forget gate and 
output gate) and a memory cell, can effectively 
prevent the vanishing/ exploding gradient 
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and thus has found wide applications in many re-
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In cases where elements in ( )X i are of the same 
value (e.g. 1( ( 1) )x i j τ+ − = 2( ( 1) )x i j τ+ − ), we have
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all symbols have the same distribution as

!1 /lP m= . For convenience, ( )pH m is always 
normalized by !ln( )m and is written as

!0 / ln( ) 1p pH H m≤ = ≤ . pH can be employed to 
measure the randomness degree of
{ ( ), 1, , }x i i N=  , to be specific, pH equals unity 
when the time series is far from randomness 
while zero in the case where { ( )x i , 1, ,i N= 
}belongs to the white noise. 

3.3 Long short-term Memory Network 
The flue gas desulfurization process has 
characteristics of strongly nonlinear dynamics 
and large time delay, making it difficult to 
accurately model the FGD process. Long short-
term memory (LSTM) network, which was first 
proposed in [11] and benefited from three 
control gates (i.e. input gate, forget gate and 
output gate) and a memory cell, can effectively 
prevent the vanishing/ exploding gradient 
problem during the training process. Due to this 
fact, LSTM has powerful ability not only for 
learning nonlinear process, but also for 
capturing potential long-range dependencies, 
and consequently a desirable candidate for 
modeling the flue gas desulphurization process. 
Provided tx represents the input vector at the 
moment t, tc denotes a cell state, th and 1th − are, 
respectively, the output of the LSTM unit at time 
t and t-1. The schematic is shown in Figure 2, and 
detailed calculation formulae are shown in 
Equations (6)-(11) progressively. 

(1) Calculate candidate cell state tc

(3)

in which m and τ  are the embedded dimension and 
time delay, respectively. As for each ( )X i , its m real 
valued elements are sorted in descending order as

 
 

 

computational cost. Let ( )jE ⋅ be an operator that 
calculates the jth mode by EMD, ( ) (0,1)iw t N
denotes white noise with Gaussian distribution 
and ( )iS t is the time series to be processed. The is 
performed in the following steps: 

(1) Given a time series 0( ) ( ) ( )i iS t S t w tε= +  (
1,2, ,i I=  ), use EMD to extract its first mode 

IMF defined as 1 11
/I

ii
IMF IMF I

=
= ∑ , and 0ε is a 

noise coefficient. Then the first residue is 
calculated as 1 1( ) ( )r t S t IMF= − . 

(2) Construct the noise term on the basis of

1IMF , white noise ( )iw t and noise coefficient 1ε . 
Then add the noise term to 1( )r t and a new time 

series is built, the second mode 2IMF is extracted 
from the new time series as

2 1 1 1 11
( ( ) ( ( ))) /I

ii
IMF E r t E w t Iε

=
= +∑ , the second 

residue 2 1 2( ) ( )r t r t IMF= − . 

(3) As with step (2), with white noise ( )iw t (
1,2, ,i I=  ) and noise coefficient kε (
2,3, ,k K=  , K is the total number of IMFs), 

develop new noise terms and thus new time 
series to be decomposed. Then the kth IMF is 

1 1 1 11
( ( ) ( ( ))) /I

k k k k ii
IMF E r t E w t Iε− − −=

= +∑ and the 

corresponding residue 1( ) ( )k k kr t r t IMF−= − . 

(4) When the residue cannot be decomposed 
by EMD, the decomposition process terminates. 

The final residue is
1

( ) ( ) K
kk

R t S t IMF
=

= − ∑ , which 
represents the trend of time series ( )S t . 

3.2 Permutation-based Entropy 
As a statistical measure that is used for 
quantifying complexity of a signal, PEN [2] 
benefits from low computational cost, simplicity 
and robustness with respect to non–linear 
monotonous transformations, and thus has 
found wide applications in many research fields. 
Given a time series { ( ), 1, , }x i i N=  , according to 
the Takens–Maine theorem, its phase space is 
formulated as  

( ) { ( ), ( ), , ( ( 1) )}
1,2, , ( 1)

τ τ
τ

= + + −
= − −




X i x i x i x i m
i N m

     (3) 

in which m andτ are the embedded dimension 
and time delay, respectively. As for each ( )X i , its 
m real valued elements are sorted in descending 
order as 

1 2{ ( ( 1) ) ( ( 1) )
( ( 1) )}m

x i j x i j
x i j

τ τ
τ

+ − ≤ + − ≤
≤ + −


     (4) 

In cases where elements in ( )X i are of the same 
value (e.g. 1( ( 1) )x i j τ+ − = 2( ( 1) )x i j τ+ − ), we have

1 2j j≤ , 1( ( 1) )x i j τ+ − ≤ 2( ( 1) )x i j τ+ − . As a result, 
a mapping between ( )X i and 1 2( , , )mj j j can be 
established, where 1 2( , , )mj j j is one of symbol 
permutations. With 1 2, , kP P P ( !k m≤ ) denoting 
the probability distribution for different 
symbols, then the PEN of order m for
{ ( ), 1, , }x i i N =  is defined as the Shannon 
entropy for K varied symbols [3] and computed 
as 

( ) ln= −∑
K

p l l
l

H m P P                      (5) 

( )pH m reaches its maximum value !ln( )m when 
all symbols have the same distribution as

!1 /lP m= . For convenience, ( )pH m is always 
normalized by !ln( )m and is written as

!0 / ln( ) 1p pH H m≤ = ≤ . pH can be employed to 
measure the randomness degree of
{ ( ), 1, , }x i i N=  , to be specific, pH equals unity 
when the time series is far from randomness 
while zero in the case where { ( )x i , 1, ,i N= 
}belongs to the white noise. 

3.3 Long short-term Memory Network 
The flue gas desulfurization process has 
characteristics of strongly nonlinear dynamics 
and large time delay, making it difficult to 
accurately model the FGD process. Long short-
term memory (LSTM) network, which was first 
proposed in [11] and benefited from three 
control gates (i.e. input gate, forget gate and 
output gate) and a memory cell, can effectively 
prevent the vanishing/ exploding gradient 
problem during the training process. Due to this 
fact, LSTM has powerful ability not only for 
learning nonlinear process, but also for 
capturing potential long-range dependencies, 
and consequently a desirable candidate for 
modeling the flue gas desulphurization process. 
Provided tx represents the input vector at the 
moment t, tc denotes a cell state, th and 1th − are, 
respectively, the output of the LSTM unit at time 
t and t-1. The schematic is shown in Figure 2, and 
detailed calculation formulae are shown in 
Equations (6)-(11) progressively. 

(1) Calculate candidate cell state tc

(4)

In cases where elements in ( )X i  are of the same val-
ue (e.g. 1( ( 1) )x i j τ+ − = 2( ( 1) )x i j τ+ − ), we have 1 2j j≤ , 

1( ( 1) )x i j τ+ − ≤ 2( ( 1) )x i j τ+ − . As a result, a mapping 



851Information Technology and Control 2024/3/53

between ( )X i and 1 2( , , )mj j j  can be established, 
where 1 2( , , )mj j j is one of symbol permutations. 
With 1 2, , kP P P ( !k m≤ ) denoting the probability dis-
tribution for different symbols, then the PEN of order 
m for { ( ), 1, , }x i i N =   is defined as the Shannon en-
tropy for K varied symbols [3] and computed as

 
 

 

computational cost. Let ( )jE ⋅ be an operator that 
calculates the jth mode by EMD, ( ) (0,1)iw t N
denotes white noise with Gaussian distribution 
and ( )iS t is the time series to be processed. The is 
performed in the following steps: 

(1) Given a time series 0( ) ( ) ( )i iS t S t w tε= +  (
1,2, ,i I=  ), use EMD to extract its first mode 

IMF defined as 1 11
/I

ii
IMF IMF I

=
= ∑ , and 0ε is a 

noise coefficient. Then the first residue is 
calculated as 1 1( ) ( )r t S t IMF= − . 

(2) Construct the noise term on the basis of

1IMF , white noise ( )iw t and noise coefficient 1ε . 
Then add the noise term to 1( )r t and a new time 

series is built, the second mode 2IMF is extracted 
from the new time series as

2 1 1 1 11
( ( ) ( ( ))) /I

ii
IMF E r t E w t Iε

=
= +∑ , the second 

residue 2 1 2( ) ( )r t r t IMF= − . 

(3) As with step (2), with white noise ( )iw t (
1,2, ,i I=  ) and noise coefficient kε (
2,3, ,k K=  , K is the total number of IMFs), 

develop new noise terms and thus new time 
series to be decomposed. Then the kth IMF is 

1 1 1 11
( ( ) ( ( ))) /I

k k k k ii
IMF E r t E w t Iε− − −=

= +∑ and the 

corresponding residue 1( ) ( )k k kr t r t IMF−= − . 

(4) When the residue cannot be decomposed 
by EMD, the decomposition process terminates. 

The final residue is
1

( ) ( ) K
kk

R t S t IMF
=

= − ∑ , which 
represents the trend of time series ( )S t . 

3.2 Permutation-based Entropy 
As a statistical measure that is used for 
quantifying complexity of a signal, PEN [2] 
benefits from low computational cost, simplicity 
and robustness with respect to non–linear 
monotonous transformations, and thus has 
found wide applications in many research fields. 
Given a time series { ( ), 1, , }x i i N=  , according to 
the Takens–Maine theorem, its phase space is 
formulated as  

( ) { ( ), ( ), , ( ( 1) )}
1,2, , ( 1)

τ τ
τ

= + + −
= − −




X i x i x i x i m
i N m

     (3) 

in which m andτ are the embedded dimension 
and time delay, respectively. As for each ( )X i , its 
m real valued elements are sorted in descending 
order as 

1 2{ ( ( 1) ) ( ( 1) )
( ( 1) )}m

x i j x i j
x i j

τ τ
τ

+ − ≤ + − ≤
≤ + −


     (4) 

In cases where elements in ( )X i are of the same 
value (e.g. 1( ( 1) )x i j τ+ − = 2( ( 1) )x i j τ+ − ), we have

1 2j j≤ , 1( ( 1) )x i j τ+ − ≤ 2( ( 1) )x i j τ+ − . As a result, 
a mapping between ( )X i and 1 2( , , )mj j j can be 
established, where 1 2( , , )mj j j is one of symbol 
permutations. With 1 2, , kP P P ( !k m≤ ) denoting 
the probability distribution for different 
symbols, then the PEN of order m for
{ ( ), 1, , }x i i N =  is defined as the Shannon 
entropy for K varied symbols [3] and computed 
as 

( ) ln= −∑
K

p l l
l

H m P P                      (5) 

( )pH m reaches its maximum value !ln( )m when 
all symbols have the same distribution as

!1 /lP m= . For convenience, ( )pH m is always 
normalized by !ln( )m and is written as

!0 / ln( ) 1p pH H m≤ = ≤ . pH can be employed to 
measure the randomness degree of
{ ( ), 1, , }x i i N=  , to be specific, pH equals unity 
when the time series is far from randomness 
while zero in the case where { ( )x i , 1, ,i N= 
}belongs to the white noise. 

3.3 Long short-term Memory Network 
The flue gas desulfurization process has 
characteristics of strongly nonlinear dynamics 
and large time delay, making it difficult to 
accurately model the FGD process. Long short-
term memory (LSTM) network, which was first 
proposed in [11] and benefited from three 
control gates (i.e. input gate, forget gate and 
output gate) and a memory cell, can effectively 
prevent the vanishing/ exploding gradient 
problem during the training process. Due to this 
fact, LSTM has powerful ability not only for 
learning nonlinear process, but also for 
capturing potential long-range dependencies, 
and consequently a desirable candidate for 
modeling the flue gas desulphurization process. 
Provided tx represents the input vector at the 
moment t, tc denotes a cell state, th and 1th − are, 
respectively, the output of the LSTM unit at time 
t and t-1. The schematic is shown in Figure 2, and 
detailed calculation formulae are shown in 
Equations (6)-(11) progressively. 

(1) Calculate candidate cell state tc

(5)

( )pH m
 
reaches its maximum value !ln( )m  when all 

symbols have the same distribution as !1 /lP m= . 
For convenience, ( )pH m  is always normalized by

!ln( )m and is written as !0 / ln( ) 1p pH H m≤ = ≤ . pH
can be employed to measure the randomness degree 
of { ( ), 1, , }x i i N=  , to be specific, pH

 
equals unity 

when the time series is far from randomness while 
zero in the case where { ( )x i , 1, ,i N=  } belongs to 
the white noise.

3.3. Long Short-term Memory Network
The flue gas desulfurization process has character-
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process. Long short-term memory (LSTM) network, 
which was first proposed in [11] and benefited from 
three control gates (i.e. input gate, forget gate and out-
put gate) and a memory cell, can effectively prevent 
the vanishing/ exploding gradient problem during the 
training process. Due to this fact, LSTM has power-
ful ability not only for learning nonlinear process, but 
also for capturing potential long-range dependencies, 
and consequently a desirable candidate for modeling 
the flue gas desulphurization process. Provided tx
represents the input vector at the moment t, tc de-
notes a cell state, th  and 1th − are, respectively, the out-
put of the LSTM unit at time t and t-1. The schematic 
is shown in Figure 2, and detailed calculation formu-
lae are shown in Equations (6)-(11) progressively.
1 Calculate candidate cell state tc  using both weight

cW  and bias cb .

  

cW and bias cb . 

1tanh( [ , ] )−= ⋅ +t c t t cc W h x b                   (6) 

(2) The input gate ti serves to control the cell 
state update by taking the unit output at time t-1 
and input at time t to a sigmoidal function σ , 
with weighting matrix iW and bias ib introduced, 
the above process is formulated as 

1( [ , ] )σ −= ⋅ +t i t t ii W h x b                    (7) 

(3) The forget gate tf is employed to quantify 
the content kept in the previous cell state, the 
corresponding weighting matrix and bias are 
respectively respresented as fW and

fb . 

1( [ , ] )σ −= ⋅ +t f t t ff W h x b                   (8) 

(4) The cell state at the current time tc is 
updated using tc and cell state at the previous 
moment 1tc − , which is controlled by both input 
and forget gate. 

1−= ∗ + ∗ t t t t tc f c i c                          (9) 

(5) The output gate to decides what 
information can be used as the output based on 
the cell state, oW is the connection weighting 
matrix and denotes the bias. 

1( [ , ] )σ −= ⋅ +t o t t oo W h x b               (10) 

(6) Finally, the output of LSTM unit th is 
calculated as 

tanh( )= ∗t t th o c                       (11) 

where tanh( )⋅ is the hyperbolic tangent function. 
In this research study, LSTM serves as one of 
base learners in the SEL-based framework that is 
discussed at length in the following section. 
Figure 2  

Schematic of an LSTM unit. 
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3.4 Elman Neural Network 
Unlike the traditional feedforward network, 
feedback configuration is introduced in a RNN 

which makes it particularly suited for the 
sequence learning task. In [18], it was proved 
that the RNN has the capability to make an 
approximation to any dynamical system with an 
arbitrary accuracy, and this was confirmed 
through many practical problems. The Elman 
neural network (ENN) is a local RNN which 
comprises the following units: a context unit, an 
input unit, a hidden unit and an output unit, 
where last three types of layers are exactly the 
same as those in a feedforward network; while 
the context layer receives outputs of the hidden 
layer in previous time steps, which can be treated 
as a one-step delay operator and thus ENN is 
endowed with the dynamic modeling capability. 
The output of the ith hidden unit ( )iH t is 
formulated in Equation (12) as:  

1 1
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with ( )jI t and ( )kC t being the output of jth input 
unit and kth context unit, respectively. ikV and

ikW represent corresponding weights with 
respect to the ith context unit, and ( )g ⋅ is a 
sigmoidal activation function. For simplicity we 
shall consider only one output, then we have 

1
( ) ( ( ) )

=
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K

i i
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y t f H t z ,                 (13) 

where iz is the ith output weight, ( )f ⋅ represents 
the output transfer function, which is typically 
chosen as a linear function. Figure 3 depicts the 
schematic architecture of an ENN. 
Figure 3 

A typical ENN architecture. 

∑

∕

∕

∑

1I
 

nI

 

Output layer
( 1)I k −



( )g ⋅

( )g ⋅



W

Hidden layer

( )y kV
u



ARIMA

ARIMA model, the 
output at any future time is realized by 
combining its past values and white noise terms 

(6)

2 The input gate ti  serves to control the cell state up-
date by taking the unit output at time t-1 and input 
at time t to a sigmoidal function σ , with weighting 
matrix iW  and bias ib  introduced, the above pro-
cess is formulated as

  

cW and bias cb . 

1tanh( [ , ] )−= ⋅ +t c t t cc W h x b                   (6) 

(2) The input gate ti serves to control the cell 
state update by taking the unit output at time t-1 
and input at time t to a sigmoidal function σ , 
with weighting matrix iW and bias ib introduced, 
the above process is formulated as 

1( [ , ] )σ −= ⋅ +t i t t ii W h x b                    (7) 

(3) The forget gate tf is employed to quantify 
the content kept in the previous cell state, the 
corresponding weighting matrix and bias are 
respectively respresented as fW and

fb . 

1( [ , ] )σ −= ⋅ +t f t t ff W h x b                   (8) 

(4) The cell state at the current time tc is 
updated using tc and cell state at the previous 
moment 1tc − , which is controlled by both input 
and forget gate. 

1−= ∗ + ∗ t t t t tc f c i c                          (9) 

(5) The output gate to decides what 
information can be used as the output based on 
the cell state, oW is the connection weighting 
matrix and denotes the bias. 

1( [ , ] )σ −= ⋅ +t o t t oo W h x b               (10) 

(6) Finally, the output of LSTM unit th is 
calculated as 

tanh( )= ∗t t th o c                       (11) 

where tanh( )⋅ is the hyperbolic tangent function. 
In this research study, LSTM serves as one of 
base learners in the SEL-based framework that is 
discussed at length in the following section. 
Figure 2  

Schematic of an LSTM unit. 

ct-1 •• 

σσ

+ht-1

xt

σσ tanh

•• 

+

σσ

•• ht

ct

tanh

tf ti
to

 
3.4 Elman Neural Network 
Unlike the traditional feedforward network, 
feedback configuration is introduced in a RNN 

which makes it particularly suited for the 
sequence learning task. In [18], it was proved 
that the RNN has the capability to make an 
approximation to any dynamical system with an 
arbitrary accuracy, and this was confirmed 
through many practical problems. The Elman 
neural network (ENN) is a local RNN which 
comprises the following units: a context unit, an 
input unit, a hidden unit and an output unit, 
where last three types of layers are exactly the 
same as those in a feedforward network; while 
the context layer receives outputs of the hidden 
layer in previous time steps, which can be treated 
as a one-step delay operator and thus ENN is 
endowed with the dynamic modeling capability. 
The output of the ith hidden unit ( )iH t is 
formulated in Equation (12) as:  

1 1
( ) ( 1) ( 1)

= =

 
= − + − 

 
∑ ∑

K J

i ik k ij j
k j

H t g W C t V I t  (12) 

with ( )jI t and ( )kC t being the output of jth input 
unit and kth context unit, respectively. ikV and

ikW represent corresponding weights with 
respect to the ith context unit, and ( )g ⋅ is a 
sigmoidal activation function. For simplicity we 
shall consider only one output, then we have 

1
( ) ( ( ) )

=

= ∑
K

i i
i

y t f H t z ,                 (13) 

where iz is the ith output weight, ( )f ⋅ represents 
the output transfer function, which is typically 
chosen as a linear function. Figure 3 depicts the 
schematic architecture of an ENN. 
Figure 3 

A typical ENN architecture. 

∑

∕

∕

∑

1I
 

nI

 

Output layer
( 1)I k −



( )g ⋅

( )g ⋅



W

Hidden layer

( )y kV
u



ARIMA

ARIMA model, the 
output at any future time is realized by 
combining its past values and white noise terms 

(7)

3 The forget gate tf  is employed to quantify the con-
tent kept in the previous cell state, the correspond-
ing weighting matrix and bias are respectively re-
spresented as fW

 
and fb .

  

cW and bias cb . 

1tanh( [ , ] )−= ⋅ +t c t t cc W h x b                   (6) 

(2) The input gate ti serves to control the cell 
state update by taking the unit output at time t-1 
and input at time t to a sigmoidal function σ , 
with weighting matrix iW and bias ib introduced, 
the above process is formulated as 

1( [ , ] )σ −= ⋅ +t i t t ii W h x b                    (7) 

(3) The forget gate tf is employed to quantify 
the content kept in the previous cell state, the 
corresponding weighting matrix and bias are 
respectively respresented as fW and

fb . 

1( [ , ] )σ −= ⋅ +t f t t ff W h x b                   (8) 

(4) The cell state at the current time tc is 
updated using tc and cell state at the previous 
moment 1tc − , which is controlled by both input 
and forget gate. 

1−= ∗ + ∗ t t t t tc f c i c                          (9) 

(5) The output gate to decides what 
information can be used as the output based on 
the cell state, oW is the connection weighting 
matrix and denotes the bias. 

1( [ , ] )σ −= ⋅ +t o t t oo W h x b               (10) 

(6) Finally, the output of LSTM unit th is 
calculated as 

tanh( )= ∗t t th o c                       (11) 

where tanh( )⋅ is the hyperbolic tangent function. 
In this research study, LSTM serves as one of 
base learners in the SEL-based framework that is 
discussed at length in the following section. 
Figure 2  

Schematic of an LSTM unit. 

ct-1 •• 

σσ

+ht-1

xt

σσ tanh

•• 

+

σσ

•• ht

ct

tanh

tf ti
to

 
3.4 Elman Neural Network 
Unlike the traditional feedforward network, 
feedback configuration is introduced in a RNN 

which makes it particularly suited for the 
sequence learning task. In [18], it was proved 
that the RNN has the capability to make an 
approximation to any dynamical system with an 
arbitrary accuracy, and this was confirmed 
through many practical problems. The Elman 
neural network (ENN) is a local RNN which 
comprises the following units: a context unit, an 
input unit, a hidden unit and an output unit, 
where last three types of layers are exactly the 
same as those in a feedforward network; while 
the context layer receives outputs of the hidden 
layer in previous time steps, which can be treated 
as a one-step delay operator and thus ENN is 
endowed with the dynamic modeling capability. 
The output of the ith hidden unit ( )iH t is 
formulated in Equation (12) as:  

1 1
( ) ( 1) ( 1)

= =

 
= − + − 

 
∑ ∑

K J

i ik k ij j
k j

H t g W C t V I t  (12) 

with ( )jI t and ( )kC t being the output of jth input 
unit and kth context unit, respectively. ikV and

ikW represent corresponding weights with 
respect to the ith context unit, and ( )g ⋅ is a 
sigmoidal activation function. For simplicity we 
shall consider only one output, then we have 

1
( ) ( ( ) )

=

= ∑
K

i i
i

y t f H t z ,                 (13) 

where iz is the ith output weight, ( )f ⋅ represents 
the output transfer function, which is typically 
chosen as a linear function. Figure 3 depicts the 
schematic architecture of an ENN. 
Figure 3 

A typical ENN architecture. 

∑

∕

∕

∑

1I
 

nI

 

Output layer
( 1)I k −



( )g ⋅

( )g ⋅



W

Hidden layer

( )y kV
u



ARIMA

ARIMA model, the 
output at any future time is realized by 
combining its past values and white noise terms 

(8)

4 The cell state at the current time tc  is updated using 
tc  and cell state at the previous moment 1tc − , which 

is controlled by both input and forget gate.

  

cW and bias cb . 

1tanh( [ , ] )−= ⋅ +t c t t cc W h x b                   (6) 

(2) The input gate ti serves to control the cell 
state update by taking the unit output at time t-1 
and input at time t to a sigmoidal function σ , 
with weighting matrix iW and bias ib introduced, 
the above process is formulated as 

1( [ , ] )σ −= ⋅ +t i t t ii W h x b                    (7) 

(3) The forget gate tf is employed to quantify 
the content kept in the previous cell state, the 
corresponding weighting matrix and bias are 
respectively respresented as fW and

fb . 

1( [ , ] )σ −= ⋅ +t f t t ff W h x b                   (8) 

(4) The cell state at the current time tc is 
updated using tc and cell state at the previous 
moment 1tc − , which is controlled by both input 
and forget gate. 

1−= ∗ + ∗ t t t t tc f c i c                          (9) 

(5) The output gate to decides what 
information can be used as the output based on 
the cell state, oW is the connection weighting 
matrix and denotes the bias. 

1( [ , ] )σ −= ⋅ +t o t t oo W h x b               (10) 

(6) Finally, the output of LSTM unit th is 
calculated as 

tanh( )= ∗t t th o c                       (11) 

where tanh( )⋅ is the hyperbolic tangent function. 
In this research study, LSTM serves as one of 
base learners in the SEL-based framework that is 
discussed at length in the following section. 
Figure 2  

Schematic of an LSTM unit. 

ct-1 •• 

σσ

+ht-1

xt

σσ tanh

•• 

+

σσ

•• ht

ct

tanh

tf ti
to

 
3.4 Elman Neural Network 
Unlike the traditional feedforward network, 
feedback configuration is introduced in a RNN 

which makes it particularly suited for the 
sequence learning task. In [18], it was proved 
that the RNN has the capability to make an 
approximation to any dynamical system with an 
arbitrary accuracy, and this was confirmed 
through many practical problems. The Elman 
neural network (ENN) is a local RNN which 
comprises the following units: a context unit, an 
input unit, a hidden unit and an output unit, 
where last three types of layers are exactly the 
same as those in a feedforward network; while 
the context layer receives outputs of the hidden 
layer in previous time steps, which can be treated 
as a one-step delay operator and thus ENN is 
endowed with the dynamic modeling capability. 
The output of the ith hidden unit ( )iH t is 
formulated in Equation (12) as:  

1 1
( ) ( 1) ( 1)

= =

 
= − + − 

 
∑ ∑

K J

i ik k ij j
k j

H t g W C t V I t  (12) 

with ( )jI t and ( )kC t being the output of jth input 
unit and kth context unit, respectively. ikV and

ikW represent corresponding weights with 
respect to the ith context unit, and ( )g ⋅ is a 
sigmoidal activation function. For simplicity we 
shall consider only one output, then we have 

1
( ) ( ( ) )

=

= ∑
K

i i
i

y t f H t z ,                 (13) 

where iz is the ith output weight, ( )f ⋅ represents 
the output transfer function, which is typically 
chosen as a linear function. Figure 3 depicts the 
schematic architecture of an ENN. 
Figure 3 

A typical ENN architecture. 

∑

∕

∕

∑

1I
 

nI

 

Output layer
( 1)I k −



( )g ⋅

( )g ⋅



W

Hidden layer

( )y kV
u



ARIMA

ARIMA model, the 
output at any future time is realized by 
combining its past values and white noise terms 

(9)

5 The output gate to  decides what information can be 
used as the output based on the cell state, oW  is the 
connection weighting matrix and denotes the bias.

  

cW and bias cb . 

1tanh( [ , ] )−= ⋅ +t c t t cc W h x b                   (6) 

(2) The input gate ti serves to control the cell 
state update by taking the unit output at time t-1 
and input at time t to a sigmoidal function σ , 
with weighting matrix iW and bias ib introduced, 
the above process is formulated as 

1( [ , ] )σ −= ⋅ +t i t t ii W h x b                    (7) 

(3) The forget gate tf is employed to quantify 
the content kept in the previous cell state, the 
corresponding weighting matrix and bias are 
respectively respresented as fW and

fb . 

1( [ , ] )σ −= ⋅ +t f t t ff W h x b                   (8) 

(4) The cell state at the current time tc is 
updated using tc and cell state at the previous 
moment 1tc − , which is controlled by both input 
and forget gate. 

1−= ∗ + ∗ t t t t tc f c i c                          (9) 

(5) The output gate to decides what 
information can be used as the output based on 
the cell state, oW is the connection weighting 
matrix and denotes the bias. 

1( [ , ] )σ −= ⋅ +t o t t oo W h x b               (10) 

(6) Finally, the output of LSTM unit th is 
calculated as 

tanh( )= ∗t t th o c                       (11) 

where tanh( )⋅ is the hyperbolic tangent function. 
In this research study, LSTM serves as one of 
base learners in the SEL-based framework that is 
discussed at length in the following section. 
Figure 2  

Schematic of an LSTM unit. 

ct-1 •• 

σσ

+ht-1

xt

σσ tanh

•• 

+

σσ

•• ht

ct

tanh

tf ti
to

 
3.4 Elman Neural Network 
Unlike the traditional feedforward network, 
feedback configuration is introduced in a RNN 

which makes it particularly suited for the 
sequence learning task. In [18], it was proved 
that the RNN has the capability to make an 
approximation to any dynamical system with an 
arbitrary accuracy, and this was confirmed 
through many practical problems. The Elman 
neural network (ENN) is a local RNN which 
comprises the following units: a context unit, an 
input unit, a hidden unit and an output unit, 
where last three types of layers are exactly the 
same as those in a feedforward network; while 
the context layer receives outputs of the hidden 
layer in previous time steps, which can be treated 
as a one-step delay operator and thus ENN is 
endowed with the dynamic modeling capability. 
The output of the ith hidden unit ( )iH t is 
formulated in Equation (12) as:  

1 1
( ) ( 1) ( 1)

= =

 
= − + − 

 
∑ ∑

K J

i ik k ij j
k j

H t g W C t V I t  (12) 

with ( )jI t and ( )kC t being the output of jth input 
unit and kth context unit, respectively. ikV and

ikW represent corresponding weights with 
respect to the ith context unit, and ( )g ⋅ is a 
sigmoidal activation function. For simplicity we 
shall consider only one output, then we have 

1
( ) ( ( ) )

=

= ∑
K

i i
i

y t f H t z ,                 (13) 

where iz is the ith output weight, ( )f ⋅ represents 
the output transfer function, which is typically 
chosen as a linear function. Figure 3 depicts the 
schematic architecture of an ENN. 
Figure 3 

A typical ENN architecture. 

∑

∕

∕

∑

1I
 

nI

 

Output layer
( 1)I k −



( )g ⋅

( )g ⋅



W

Hidden layer

( )y kV
u



ARIMA

ARIMA model, the 
output at any future time is realized by 
combining its past values and white noise terms 

(10)

6 Finally, the output of LSTM unit th  is calculated as

  

cW and bias cb . 

1tanh( [ , ] )−= ⋅ +t c t t cc W h x b                   (6) 

(2) The input gate ti serves to control the cell 
state update by taking the unit output at time t-1 
and input at time t to a sigmoidal function σ , 
with weighting matrix iW and bias ib introduced, 
the above process is formulated as 

1( [ , ] )σ −= ⋅ +t i t t ii W h x b                    (7) 

(3) The forget gate tf is employed to quantify 
the content kept in the previous cell state, the 
corresponding weighting matrix and bias are 
respectively respresented as fW and

fb . 

1( [ , ] )σ −= ⋅ +t f t t ff W h x b                   (8) 

(4) The cell state at the current time tc is 
updated using tc and cell state at the previous 
moment 1tc − , which is controlled by both input 
and forget gate. 

1−= ∗ + ∗ t t t t tc f c i c                          (9) 

(5) The output gate to decides what 
information can be used as the output based on 
the cell state, oW is the connection weighting 
matrix and denotes the bias. 

1( [ , ] )σ −= ⋅ +t o t t oo W h x b               (10) 

(6) Finally, the output of LSTM unit th is 
calculated as 

tanh( )= ∗t t th o c                       (11) 

where tanh( )⋅ is the hyperbolic tangent function. 
In this research study, LSTM serves as one of 
base learners in the SEL-based framework that is 
discussed at length in the following section. 
Figure 2  

Schematic of an LSTM unit. 

ct-1 •• 

σσ

+ht-1

xt

σσ tanh

•• 

+

σσ

•• ht

ct

tanh

tf ti
to

 
3.4 Elman Neural Network 
Unlike the traditional feedforward network, 
feedback configuration is introduced in a RNN 

which makes it particularly suited for the 
sequence learning task. In [18], it was proved 
that the RNN has the capability to make an 
approximation to any dynamical system with an 
arbitrary accuracy, and this was confirmed 
through many practical problems. The Elman 
neural network (ENN) is a local RNN which 
comprises the following units: a context unit, an 
input unit, a hidden unit and an output unit, 
where last three types of layers are exactly the 
same as those in a feedforward network; while 
the context layer receives outputs of the hidden 
layer in previous time steps, which can be treated 
as a one-step delay operator and thus ENN is 
endowed with the dynamic modeling capability. 
The output of the ith hidden unit ( )iH t is 
formulated in Equation (12) as:  

1 1
( ) ( 1) ( 1)

= =

 
= − + − 

 
∑ ∑

K J

i ik k ij j
k j

H t g W C t V I t  (12) 

with ( )jI t and ( )kC t being the output of jth input 
unit and kth context unit, respectively. ikV and

ikW represent corresponding weights with 
respect to the ith context unit, and ( )g ⋅ is a 
sigmoidal activation function. For simplicity we 
shall consider only one output, then we have 

1
( ) ( ( ) )

=

= ∑
K

i i
i

y t f H t z ,                 (13) 

where iz is the ith output weight, ( )f ⋅ represents 
the output transfer function, which is typically 
chosen as a linear function. Figure 3 depicts the 
schematic architecture of an ENN. 
Figure 3 

A typical ENN architecture. 

∑

∕

∕

∑

1I
 

nI

 

Output layer
( 1)I k −



( )g ⋅

( )g ⋅



W

Hidden layer

( )y kV
u



ARIMA

ARIMA model, the 
output at any future time is realized by 
combining its past values and white noise terms 

(11)

where tanh( )⋅  is the hyperbolic tangent function. 
In this research study, LSTM serves as one of base 
learners in the SEL-based framework that is dis-
cussed at length in the following section.

Figure 2 
Schematic of an LSTM unit

3.4. Elman Neural Network
Unlike the traditional feedforward network, feedback 
configuration is introduced in a RNN which makes it 
particularly suited for the sequence learning task. In 
[18], it was proved that the RNN has the capability to 
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make an approximation to any dynamical system with 
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the context layer receives outputs of the hidden layer 
in previous time steps, which can be treated as a one-
step delay operator and thus ENN is endowed with the 
dynamic modeling capability. The output of the ith hid-
den unit ( )iH t  is formulated in Equation (12) as: 
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a linear function. Figure 3 depicts the schematic ar-
chitecture of an ENN.
The ARIMA  model, proposed in [16], underlies near-
ly all statistical time series forecasting methods, and 
it shows superior short-term forecasting capability 
as compared with complex structural models. As for 
an ARIMA  model, the output at any future time is 
realized by combining its past values and white noise 

Figure 3
A typical ENN architecture

terms in a linear fashion, besides differencing of a 
certain order is utilized such that the stationarity of 
a time series is achieved. For notational convenience, 
the structure of an ARIMA  model is represented as 
ARIMA ( , , )p d q  through the rest of this research, 

where p represents auto-regressive order, d stands for 
differencing order and q for moving-average order.

3.5. Component Model Comparison
In our approach, the forecasting of SO2 emission is 
performed jointly by an LSTM, an ENN and an ARI-
MA model in a stacking ensemble learning frame-
work. As model diversity is a crucial factor to ensure 
the forecasting performance of an ensemble learning 
model, here characteristics of each component mod-
el are compared and discussed, which is beneficial to 
better understand strengths of the proposed model-
ing approach that will be elaborate upon later.
 _ As a linear dynamic model, ARIMA model is rel-

atively easy to interpret and explain, compared to 
non-linear approximators. On the other hand, its 
simple structure lends itself to parameter tuning. 
However, owing to its linear structure, it may per-
form poorly when modeling non-linear processes.

 _ Because of the existence of context layer, structural-
ly speaking, an ENN can be regarded both as a feed-
forward network and as a recurrent network. In this 
sense, ENN has the capability for memorizing both 
static and dynamic information of a process. How-
ever, as mentioned earlier, the recurrent network is 
subject to vanishing (or exploding) gradient issue 
which limits its ability to remember information 
that appears long time period earlier.

 _ LSTM, as a variant of RNN with gating mechanism 
and memory cells, is particularly suited to handle 
forecasting problems that requires the use of long 
range contextual information. However, LSTMs 
are computationally expensive and memory 
requirements for training are high.

The above discussion indicates that chosen compo-
nent models are structurally different which can en-
sure the diversity of ensemble model when combin-
ing them together. As each of component model has 
its unique merits and weaknesses, it is hoped that the 
proposed ensemble model could not only benefit from 
their advantages, but also alleviate their drawbacks, 
and our end goal is to establish a well-performing fore-
casting model for SO2 emissions in an FGD process.
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3.6. Proposed Modeling Approach
As indicated above, modeling SO2 emission in an FGD 
process is by no means a easy task. This section pres-
ents details of the CEEMDAN-PEN-SEL modeling 
approach proposed in this study. Prior to introducing 
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geneous. The SO2 emission for the desulfurized flue 
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should fully catch real dynamics of the process. It is 
known that past observations are primary source to 
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available and the selected forecasting model may not 
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ed around the exit of an FGD absorber so as to acquire 
SO2 emissions at different instants; LSTM, ENN and 
ARIMA are constituent base learners; A feedforward 
single-layer network serves as the meta-learner that 
takes outputs of all base learners as its inputs. Put 
formally, for the time series 1 2[ , , , ]T
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On the basis of concepts described above, the hybrid 
model proposed in this study can be developed. A picto-
rial description of our method is presented in Figure 5.

As the industrial FGD is a process with highly non-
linear dynamics and complexity, we attack the SO2 
emission forecasting problem from both the signal 
and model perspective. To be specific, the technique 
is first employed to decrease the complexity of SO2 
emission time series. which aims at decomposing 
original time series into some subseries with greater 
simplicity and stationarity. However, a forecasting 
model should be established for each IMF, which is 
computationally expensive. In our method, PEN is 
employed as a tool to evaluate the complexity of each 
decomposed IMFs, and it is shown in [22] that inte-
grate IMFs with similar complexity can effectively 
decrease the computational effort, speed up model-

Figure 5
A flowchart of the proposed CEEMDAN-PEN-SEL approach

ing and avoid overfitting problems. Quantitatively, 
the computational complexity for our method is de-
termined by three part: 1) signal decomposition with 
CEEMDAN, 2) calculation of signal complexity by 
PEN and 3) training of learners in the ensemble. As 
for CEEMDAN, it is shown in [23] that the computa-
tional complexity of empirical mode decomposition is

( log )O n n , where n denotes the total number of sam-
ple instants in the signal to be decomposed. CEEM-
DAN is the ensemble version of empirical mode de-
composition (EMD), which can effectively overcome 
the problem of mode mixing problem that frequently 
appears in EMD, and its computational complexi-
ty can be directly derived based on that of EMD by 
multiplying NE, where NE is the specified ensemble 
number. The computational complexity of PEN is 
expressed as ( ( 1) ) ( log ) ( )O N m O N m m O nkτ− − + ∗ +
[7], where design parameters m and represent respec-
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tively the embedding dimension and time delay, n is 
the dimension number and is taken as unity in our 
study, k corresponds to the number of possible permu-
tations in a delay vector and is equal to , N denotes the 
series length. There are a total of three types of learn-
ers in the ensemble, they are autoregressive integrat-
ed moving average (ARIMA) model, recurrent neu-
ral network and Long short-term memory (LSTM) 
network. According to [24], the computational com-
plexity of ARIMA modeling is 2( )O n T , where n is the 
number of parameters (i.e. the summation of auto-re-
gressive order, differencing order and moving-aver-
age order), and T is the length of the time series of 
interest. In [17], it is shown that the computational 
complexity of LSTM and recurrent neural network is 
identical and is expressed as 2( )h h iO Td Td d+ , where T 
is the sequence length, hd  and id  are dimensions of 
the hidden state and the input, respectively. The prin-
ciple for the reduction of computational cost with 
our method is that direct use of ensemble learning 
for each decomposed component is quite time-con-
suming and tedious, where three learners should be 
trained separately and recombined together. Howev-
er, when PEN is introduced to optimize the decom-
position component, the number of components to be 
modelled is greatly reduced, along with the fact that 
the computational complexity of PEN is consider-
ably less than that of training three types of learners 
for each IMF, and hence the required computational 
effort is significantly decreased with the proposed 
method. From the point of modeling, the SEL model 
(see Figure 4) is anticipated to achieve superior fore-
casting performance over the single model. With each 
reconstructed IMF and residue modeled by an SEL 
model, the predicted SO2 emissions is calculated as
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the point of modeling, the SEL model (see 
Figure 4) is anticipated to achieve superior 
forecasting performance over the single 
model. With each reconstructed IMF and 
residue modeled by an SEL model, the 
predicted SO2 emissions is calculated as 

  
1 2ˆ ˆIMF IMF IMF= + + + +k my r ,       (15) 

where at time instant k, IMFi represents the 
ith predicted IMF, and there are a total of m 
reconstructed IMFs. r̂ is the predicted residue. 
In our method, the signal decomposition 
technique serves to decrease the complexity of 
SO2 emission series, AI-based models are 
employed to learn and approximate FGD 
dynamics in a data-driven fashion, and 
stacking ensemble learning plays the role of 
enhancing model’s generalization 
performance and adaptivity in multiple 
process operating conditions. As for 
applicability of our approach, it can be readily 
extended to other industrial processes, which 
can be explained from two aspects: first of all, 
the proposed modeling approach is purely 
data-driven, easy-to-implement and easy-to-
understand, hence the corresponding model 
can be established straightforwardly by 
following the procedure introduced in our 
research with available measurements of the 
studied process Second, our method focuses 
on the complex and representative flue gas 
desulfurization process, whose characteristics 
(e.g. highly nonlinear dynamic, multiple 
working conditions, etc.) are shared or partly 
shared by most industrial processes, and 
hence same modeling difficulties would be 
encountered in those scenarios and can be 
handled effectively with our method. In this 
sense, the proposed method is sufficiently 
general and effective, making it applicable to 
different industrial processes, and desirable 
forecasting performance is expected to 
achieve just with minor modifications to 
associated hyper-parameters in the model. 
The pseudocode of the proposed CEEMDAN-
PEN-SEL method is presented below.  

4. Experiments and Analysis 
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4. Experiments and Analysis
In this part, the prediction performance of proposed 
modeling approach is evaluated, and comparative 
studies are conducted to demonstrate its superiority 
over models in existing works.

4.1. Data Description
To verify the model performance for SO2 emission 
prediction, a case study is performed on the basis of 
historical measurements from a real FGD system in 
a 600MW coal-fired power plant in Hebei Province, 
China. The photograph of absorber under study is 
shown in Figure 6 below. A total of 12962 SO2 emis-
sion samples from 05/09/2022-05/18/2022 with a 
sampling period of one minute are extracted from 
the continuous emission monitoring system, Table 1 
presents the statistical analysis result of the dataset. 
For notational brevity, in Table 1, Num denotes the 
total number of samples in each type of dataset; Min 
and Max respectively represent the minimum and 
maximum in the set; Ave and SD indicate the average 
and standard deviation of the data, respectively. Out 
of all experimental data, 70 percent were used for 
training, 15% for validation and 15% for test. Among 
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three types of datasets, the training dataset is used for 
parameter estimation for a given model structure; the 
validation set is used to provide the criterion for early 
stopping during the model training process, mean-
while its performance can provide guidance for se-
lecting optimal hyper-parameter combinations; The 
test set serves to evaluate the final model prediction 
performance. 

4.2. Experimental Settings
This part gives a detailed description of our experi-
mental settings, which includes hardware/software 
environments, performance metrics, model training 
and structure determination. All algorithms are pro-
grammed by Matlab 2023a and experiments are per-
formed on a PC server with an Intel® Core™ i7-10750 
at 2.60 GHz and 32GB RAM. To evaluate the pre-

Table 1
Statistical information of experimental data

Dataset Num Min Max Ave SD

Training set 9073 2.357 9.961 6.714 6.83

Validation set 1944 2.795 8.494 6.148 6.05

Testing set 1945 2.415 9.225 6.347 6.37

Figure 6
An FGD tower in the FGD process under study

diction performance of the presented model, mean 
squared error ( RMSE ), R squared ( 2R ) and mean 
absolute percent error (MAPE) are applied. They are 
written as

  

In this part, the prediction performance of proposed 
modeling approach is evaluated, and comparative 
studies are conducted to demonstrate its superiority 
over models in existing works. 

4.1 Data Description 
To verify the model performance for SO2 emission 
prediction, a case study is performed on the basis of 
historical measurements from a real FGD system in 
a 600MW coal-fired power plant in Hebei Province, 
China. The photograph of absorber under study is 
shown in Figure 6 below. A total of 12962 SO2 
emission samples from 05/09/2022-05/18/2022 with 
a sampling period of one minute are extracted from 
the continuous emission monitoring system, Table 
1 presents the statistical analysis result of the 
dataset. For notational brevity, in Table 1, Num 
denotes the total number of samples in each type of 
dataset; Min and Max respectively represent the 
minimum and maximum in the set; Ave and SD 
indicate the average and standard deviation of the 
data, respectively. Out of all experimental data, 70 
percent were used for training, 15% for validation 
and 15% for test. Among three types of datasets, the 
training dataset is used for parameter estimation 
for a given model structure; the validation set is 
used to provide the criterion for early stopping 
during the model training process, meanwhile its 
performance can provide guidance for selecting 
optimal hyper-parameter combinations; The test set 
serves to evaluate the final model prediction 
performance.  

Table 1 

Statistical information of experimental data 
Dataset Num Min Max Ave SD 

Training 
set 

9073 2.357 9.961 6.714 6.83 

Validatio
n set 

1944 2.795 8.494 6.148 6.05 

Testing 
set 

1945 2.415 9.225 6.347 6.37 

 

 

 

Figure 6 

An FGD tower in the FGD process under study. 

 
4.2 Experimental Settings 

This part gives a detailed description of our 
experimental settings, which includes 
hardware/software environments, 
performance metrics, model training and 
structure determination. All algorithms are 
programmed by Matlab 2023a and 
experiments are performed on a PC server 
with an Intel® Core™ i7-10750 at 2.60 GHz 
and 32GB RAM. To evaluate the prediction 
performance of the presented model, mean 
squared error ( RMSE ), R squared ( 2R ) and 
mean absolute percent error (MAPE) are 
applied. They are written as 

2

1

1RMSE ( )
=

= ∑
n

i
e i

n
                    (16) 

1

1 ( )MAPE
( )=

= ∑
n

i

e i
n y i

                      (17) 

2
2 1

1

ˆ( ( ) ( ))
R 1

( ( ) ( ))
=

=

−
= −

−
∑
∑

n

i
n

i

y i y i

y i y i
   

1

1 ( )
=

= ∑
n

i
y y i

n
,  (18) 

where ( )e i = ˆ( ) ( )y i y i− , ( )y i and ˆ( )y i are 
respectively actual and forecast values at 
instant i; n is the sample size. Among three 
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goodness-of-fit of a prediction model, it takes 
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(closer to 1) suggests a good fit to the data. 
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the real value, and a lower RMSE score implies 
a higher data approximation ability of the 
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In this part, the prediction performance of proposed 
modeling approach is evaluated, and comparative 
studies are conducted to demonstrate its superiority 
over models in existing works. 

4.1 Data Description 
To verify the model performance for SO2 emission 
prediction, a case study is performed on the basis of 
historical measurements from a real FGD system in 
a 600MW coal-fired power plant in Hebei Province, 
China. The photograph of absorber under study is 
shown in Figure 6 below. A total of 12962 SO2 
emission samples from 05/09/2022-05/18/2022 with 
a sampling period of one minute are extracted from 
the continuous emission monitoring system, Table 
1 presents the statistical analysis result of the 
dataset. For notational brevity, in Table 1, Num 
denotes the total number of samples in each type of 
dataset; Min and Max respectively represent the 
minimum and maximum in the set; Ave and SD 
indicate the average and standard deviation of the 
data, respectively. Out of all experimental data, 70 
percent were used for training, 15% for validation 
and 15% for test. Among three types of datasets, the 
training dataset is used for parameter estimation 
for a given model structure; the validation set is 
used to provide the criterion for early stopping 
during the model training process, meanwhile its 
performance can provide guidance for selecting 
optimal hyper-parameter combinations; The test set 
serves to evaluate the final model prediction 
performance.  

Table 1 

Statistical information of experimental data 
Dataset Num Min Max Ave SD 

Training 
set 

9073 2.357 9.961 6.714 6.83 

Validatio
n set 

1944 2.795 8.494 6.148 6.05 

Testing 
set 

1945 2.415 9.225 6.347 6.37 

 

 

 

Figure 6 

An FGD tower in the FGD process under study. 

 
4.2 Experimental Settings 

This part gives a detailed description of our 
experimental settings, which includes 
hardware/software environments, 
performance metrics, model training and 
structure determination. All algorithms are 
programmed by Matlab 2023a and 
experiments are performed on a PC server 
with an Intel® Core™ i7-10750 at 2.60 GHz 
and 32GB RAM. To evaluate the prediction 
performance of the presented model, mean 
squared error ( RMSE ), R squared ( 2R ) and 
mean absolute percent error (MAPE) are 
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(closer to 1) suggests a good fit to the data. 
RMSE, as a basic forecasting performance 
indicator, can reflect the degree of deviation 
between the predicted value of the model and 
the real value, and a lower RMSE score implies 
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where ( )e i = ˆ( ) ( )y i y i− , ( )y i and ˆ( )y i are respectively 
actual and forecast values at instant i; n is the sam-
ple size. Among three metrics, R2 is a measure to in-
dicate the goodness-of-fit of a prediction model, it 
takes a value between 0 and 1, and a greater R2 (clos-
er to 1) suggests a good fit to the data. RMSE, as a 
basic forecasting performance indicator, can reflect 
the degree of deviation between the predicted value 
of the model and the real value, and a lower RMSE 
score implies a higher data approximation ability 
of the model. MAPE is the average of absolute per-
centage error, it is one of the most extensively used 
accuracy measure of forecast accuracy which has 
benefits of scale-independency and interpretabili-
ty. As with RMSE, the forecasting performance of a 
model increases with the decreasing MAPE value. 
In our approach, LSTM, ENN and ARIMA are con-
stituent models, and maximum likelihood estima-
tion method is employed for parameter estimation 
of an ARIMA model. As for neural models, the Adam 
optimizer, which adapts the learning gain for each 
parameter on the basis of gradients is employed; be-
sides the backpropagation through time approach  
should be employed when training an ENN. Mini-
batch training, with a batch size of 64, was used, and 
mean squared error is chosen as the loss function to 
be optimized. The learning gain is set equal to 0.002. 
One of problems that typically arise during neural 
network training is called overfitting, which implies 
the network offers outstanding performance on the 
training set but performs poorly on the test set. Early 
stopping is one of the commonly used regularization 
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techniques to address the over-fitting problem and 
enhance model’s generalization performance, and 
it has been successfully employed in many applica-
tions, such as natural language processing, emotion 
recognition, and so on. With the early-stopping tech-
nique, a portion of experimental data is assigned as 
the validation set, and the validation error is mon-
itored during the model training. During the initial 
stage of training, the validation and training error 
is dropped simultaneously; but when overfitting 
begins, the training error is constantly decrescent 
while the validation error start to rise in subsequent 
epochs. Once continuous increase in validation er-
ror is monitored, the training terminates and model 
is determined as the one with the smallest validation 
error. In our experimental study, 15% of experimen-
tal data is chosen to constitute the validation set, 
and the training process of each learner is terminat-
ed provided the error on the validation set does not 
drop for six consecutive epochs. In addition, initial 
weights are randomized in the range [-0.1, 0.1] and 
the training data were normalized between -1 and 1 
so as to bring faster convergence.
The hyperparameters play a crucial role in the model 
performance, to obtain the optimal architecture of a 
model, the grid search technique is adopted here. The 
grid search enables an exhaustive evaluation of all 
possible hyperparameter combinations within a pre-
scribed hyper-space. With preliminary experiments, 
rough boundaries for different hyperparameters can 
be obtained. As for LSTM network, hyper-parame-
ters and the corresponding range are listed as follows: 
the size of sliding window = {1,2,3,5},ws LSTM lay-
er units {8,16,32,64}uL = and stacked layer number

{1,2,3,4}nl = . For ENN, number of hidden layers
= {1,2,3},dn hidden units number {4,8,16,32}uh = . 

In the ARIMA case, autoregressive polynomial degree 
{2,3,4,5}p = , differencing order {0,1,2}d = , and mov-

ing average polynomial degree {2,3,4}q = . For each 
parameter combination, we run 10 trials and in each 
trial different weights are assigned, then calculate the 
MAPE score on the validation set for each run. Then 
scores are averaged to give the final evaluation out-
come, and the model structure with the best result is 
chosen. By this approach, the chosen hyper-parame-
ter combinations of three base learners are shown in 
Table 2 below.

Table 2
Optimal structure for each base learner

Model type Hyper-parameters

ARIMA p=4, d=1, q=3

LSTM sw=3, {8,32,64}uL = , 3nl =

ENN 3dn = , {16,32,8}uh =

Note: The notation {n1,n2,…,nm} denotes the network has 
hidden layers containing n1, n2, …, nm units, respectively.

4.3. SO2 Emission Series Decomposition and 
Optimization

Due to properties of non-stationarity and complexity, 
the original SO2 emission series cannot be satisfactori-
ly modeled by a single predicting model. Consequently,
CEEMDAN  method is applied to make the decompo-

sition of the SO2 emission series such that multiple and 
a residual part are generated. The standard deviation 
of Gaussian white noise, ensemble size and maximum 
sifting iteration number are set equal to 0.2, 100 and 
infinity. Figure 7 presents the SO2 emission series and 
its decomposed parts, 8 IMFs and a residue from top to 
bottom, and it is easily seen that the fluctuation degree 
of IMFs gradually decreases. As mentioned before, the 
redundancy problem may arise if decomposed modes 
are directly used for model development. Consequent-
ly, our study makes use of the PEN index to measure 
each IMF’s complexity, then decrease the redundancy 
of decomposed modes by aggregating modes with ap-
proximate complexity. With embedded dimension m 
and time delayτ respectively setting equal to 3 and 2, 
the PEN score for each mode is calculated and summa-
rized in Table 3 below. Based upon PEN values of each 
mode, it is observed that scores of the first three modes 
far exceed others’, and thus possess relatively high com-
plexity. By comparison, scores of last three modes are 
all below 0.40, suggesting trend information of the orig-
inal SO2 emission series is reflected by them. Scores of 
remaining three modes IMF4-IMF6 are close to each 
other, and hence can be integrated into one mode. At 
this point, three optimized portions (modes) are estab-
lished: high-frequency portion OIMF1, low-frequency 
portion OIMF2 and trend portion OIMF3. Optimiza-
tion results are presented in both Table 3 and Figure 8.
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Figure 7
CEEMDAN result for SO2 emission series

Table 3
PEN scores and optimization results of CEEMDAN modes

Result
Decomposed Mode

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 Residue

PEN score 0.998  0.957  0.782  0.534 0.471 0.423 0.369 0.335 0.317

Optimization IMF1+IMF2+IMF3 IMF4+IMF5+IMF6 IMF7+IMF8+ Residue

New mode OIMF1  OIMF2 OIMF3
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Figure 8
Optimized modes by PEN

4.4. Forecasting Results of CEEMDAN-PEN-
SEL Model
In this part, the performance of proposed 
CEEMDAN-PEN-SEL model is evaluated and an-
alyzed. According to the procedure of establishing
CEEMDAN-PEN-SEL model described earlier, SEL 
model should be developed for each optimized mode 
OMF1, OMF2 and OMF3. The determination of com-
ponent model structure in each SEL model follows 
the same procedure as discussed in the Experimental 
settings part, where the grid search strategy is adopt-
ed on the basis model performance on the validation 
set, and the final model structure for each optimized 
mode are presented in Table 4. 
Figure 9(a)-(c) present prediction results of opti-
mized modes on the test set. it can be clearly observed 
that our established SEL model can effectively cap-
ture the temporal dependencies of each mode. Spe-
cifically, despite high-frequency mode OIMF1 has 
higher complexity than the other modes, the predic-
tion result is still in good agreement with the actual 

Table 4
Optimal SEL model structure for each mode

Mode ARIMA LSTM ENN Meta-learner

OMF1
p = 3,  
d = 0,  
q = 2

sw=3, 
Lu = {64, 32}, 

ln = 2

nd = 2, 
hu = {16, 32} hd = 6

OMF2
p = 2,  
d = 0,  
q = 2

sw=2, 
Lu = {8, 16}, 

ln = 2 

nd = 1, 
hu = {16} hd = 4

OMF3
p = 1,  
d = 1,  
q = 1

sw=2, 
Lu = {16}, 

ln = 1

nd = 1, 
hu = {8} hd = 3

series. As for OIMF2 and OIMF3, the SEL model can 
provide outstanding prediction performance, and 
perfect fit is nearly achieved. By integrating all op-
timized modes together, the final forecasting result 
of SO2 emissions can thus be obtained (see Figure 
9 (d)). It can be observed that the forecast made by
CEEMDAN-PEN-SEL model closely approximates 
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Figure 9
Prediction results of each optimized mode and SO2 emissions

real values, which shows its effectiveness with re-
spect to SO2 emissions forecasting.

4.5. Performance Comparison of the Models

In this part, the proposed model is contrasted with 
component models which are also mainstream mod-
els used for SO2 emission forecast, so as to verify its 
superiority. All comparative models have appeared in 
past research works concerning SO2 emission predic-
tion, e.g. ARIMA, ENN and BP network. In addition, 
the SEL model proposed in our study is also involved. 
The structure for three component models are pre-
sented in Table 2, and the structure of BP network is 
determined as 16-64-32 (i.e. a network contains three 
hidden layer with 16, 64 and 32 units, respectively) 
using the same hyper-parameter optimization meth-
od introduced as before. Moreover,Ew we evaluate the 
performance of the proposed method versus current 
state-of-the-art SO2 emission prediction models, they 

are LSTM network with attention mechanism (AM) 
in [15], CNN-LSTM-AM model in [28] and CNN-BiL-
STM model in [13]. The hyperparameters of compar-
ison models are set as recommended in original stud-
ies and some of key parameters are presented below. 
AM-LSTM: Adam optimizer is adopted, four layers 
in LSTM are respectively used with 256, 256, 128, 64 
units, the dropout rate and learning rate is equal to 
0.001 and 0.4, respectively; CNN-LSTM-AM: two lay-
ers in LSTM are respectively employed with 128 and 
64 neurons, the number of neurons in the CNN layers 
is set as 80 and Adam optimizer is used; CNN-BiL-
STM: two layers in CNN are respectively used with 48 
and 32 filters, and corresponding filter sizes are [4,4] 
and [2,2], the number of units in three LSTM layers is 
200, 100 and 100, respectively. The learning rate is set 
equal to 0.1 and Adam optimizer is applied during the 
model training process. The SO2 emission prediction 
results of all experimental models on the test set are 
summarized in Table 5. 
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Algorithm. CEEMDAN-PEN-SEL forecasting 
method

Input: temporal sequence { ( )}x t , hyper-parameters 
for three types of base learners: ARIMA: 
autoregressive polynomial degree p, differencing 
order d, moving average polynomial degree q; LSTM: 

stacked layer number nl , units number uL , sliding 
window size ws ; ENN: hidden layer number dn , 

hidden units number uh

Output: forecasting sequence ˆ{ ( )}x t

1 Preprocess the series { ( )}x t with Pauta criterion 
to detect and eliminate outliers, Lagrange inter-
polation for missing data imputation and min-max 
normalization for mapping values within the range 
of [0,1].

2 Decompose the preprocessed time series into sub-
series (IMF1, IMF2, …, IMFn), whose frequencies 
are sorted in descending order, and a residue with 
the CEEMADAN technique.

3 Evaluate the complexity of each decomposed mode 
by calculating the PEN score, and modes with sim-
ilar PEN scores are aggregated to form optimized 
modes (OIMF1, OIMF2, …, OIMFm)(m<n).

4 For each optimized mode OIMFi (i=1,2…,m), train 
the base learner LSTM, ARIMA and ENN sep-
arately with specified hyper-parameters. With 
developed base learners, complete the training 
of meta-learner using series OIMFi. Finally, the 
stacking ensemble model for OIMFi is established 
using well-trained base learners and meta-learner.

5 Compute the forecasting sequence ˆ{ ( )}x t using the 
following equation
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(i=1,2…,m) denotes the output of i-th 
stacking ensemble model.

6 Evaluate the established stacking ensemble model 
on the test set using metrics like R squared ( 2R ), 
mean absolute percent error (MAPE) and root 
mean squared error ( RMSE ).

As seen from Table 5, both ARIMA model and BP 
network performs poorly on the SO2 emission fore-
casting problem, whose MAPE and RMSE scores 
are higher than the other models’. This is mainly due 
to the fact that FGD is a process with highly nonlin-
ear dynamics, and the ARIMA model has the ability 
to characterize linear dynamics but cannot handle 
the nonlinearity efffectively; BP network, as a static 
model, does a good job of approximating nonlineatity 
while works inefficiently for capturing dynamical re-
lationship in a series. As for ENN model, in compari-
son with ARIMA and BP network, the MAPE score is 
respectively decreased by 26.76% and 24.09%, while 
the R2 is respectively increased by 31.11% and 21.78%. 
A serious drawback of ENN is that its gradient either 
vanishes nor explodes when memorizing long-term 
context in a time series, prohibiting it from achiev-
ing outstanding prediction performance for SO2 
emissions. Common for all three state-of-the-art SO2 
emission prediction methods is that deep learning 
models and techniques are incorporated, which can 
effectively capture long-span temporal dependencies 
and complex dynamics in an FGD process, and thus 
is seen to performs considerably better than RNN 
which is the best-performing traditional SO2 emis-
sion prediction model. Specifically, CNN-LSTM-AM 
achieves the best prediction performance, followed 
by CNN-BiLSTM and LSTM-AM, whose MAPE and 
RMSE score respectively achieve 0.0196 and 0.1535 
while R2 reachs a high value of 0.9683. As compared 
to CNN-LSTM-AM, our method attains a better pre-
diction performance and experimental results show 
that MAPE and RMSE are respectively decreased by 
35.21% and 36.22%, while R2 is increased to 97.12%. 
Above results indicate that the proposed model 
has the best scores with respect to all three metrics 
among experimental models, suggesting it is the mod-
el that suits best for SO2 emissions forecasting. Figure 
10 summarizes the error histogram of the proposed 
method for the test set. It is observed from Figure 10 
that the total error range produced by the proposed 
method has been partitioned into 20 bins, and the er-
ror varies between -0.3927 (leftmost bin) and 0.4135 
(rightmost bin). To be specific, a total of 341 instanc-
es are within the range (-0.0320, 0.0104), followed by 
326 and 311 instances are respectively in the range of 
(0.0104, 0.0528) and (-0.0320, -0.0744). All values in 
above three intervals closely approximates zero and 
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Figure 10
Histogram of the error with all experimental models

Table 5
Comparison of performance indicators of different forecasting models

Metrics ARIMA BPNN ENN CNN-BiLSTM LSTM-AM CNN-LSTM-AM CEEMDAN-PEN-SEL

MAPE (%) 0.0908 0.0876 0.0665 0.0221 0.0358 0.0196 0.0127

RMSE 0.6938 0.6545 0.5158 0.1736 0.2711 0.1535 0.0979
R2 0.5899 0.6351 0.7734 0.9613 0.9374 0.9683 0.9712

the total instance number therein accounts for more 
than a half of the total number of instances. On the 
whole, a significant portion of forecasting errors are 
distributed within a satisfactory range around zero, 
indicating the superiority of our approach.

5. Conclusions
SO2 emission forecasting is of significant importance 
in an FGD process, which serves to offer early warn-
ing for the public as well as provide timely operating 
guidance for the desulfurizing system. However, the 
FGD is a process with highly nonlinear dynamics 
and high time delay, which makes the problem of SO2 
emission forecasting a formidable challenge. In this 
research, CEEMDAN technique is first adopted to 
extract modes at different scales, which are easier to 

be modeled. Then PEN is employed to quantify the 
complexity of each mode, and modes with approx-
imate scores are integrated together to reduce the 
computational cost. Finally, SEL consisting of ARI-
MA, LSTM and ENN is developed and used to mod-
el each mode. The experimental results suggest that 
the proposed CEEMDAN-PEN-SEL has exceptional 
forecasting performance for SO2 emissions. Using 
metrics like MAPE, RMSE and R squared, the perfor-
mance of commonly used models and proposed model 
is evaluated quantitatively. According to experimental 
results, it is found that MAPE, RMSE and R2 scores of 
our model can respectively achieve 0.0127, 0.0979 and 
0.9712, all of which are best among all models. On this 
base, the effectiveness of the proposed hybrid model 
is thoroughly verified and it has a great utility for SO2 
emission forecasting in an FGD process. Although the 



863Information Technology and Control 2024/3/53

proposed approach achieved excellent performance 
in forecasting SO2 emissions for a flue gas desulphur-
ization process, the methods also present some po-
tential limitations, such as difficulties in determining 
appropriate values of associated hyper-parameters in 
a rapid but effective method, incapability to handle 
multivariate sequences, and so on.
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