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Multimodal Sentiment Analysis (MSA) has become an essential area of research to achieve more accurate sen-
timent analysis by integrating multiple perceptual modalities such as text, vision, and audio. However, most 
previous studies failed to align the various modalities well and ignored the differences in semantic informa-
tion, leading to inefficient fusion between modalities and generating redundant information. In order to solve 
the above problems, this paper proposes a transformer-based network model, Tri-CLT. Specifically, this paper 
designs Integrating Fusion Block to fuse modal features to enhance their semantic information and mitigate 
the secondary complexity of paired sequences in the transformer. Meanwhile, the cross-modal attention mech-
anism is utilized for complementary learning between modalities to enhance the model performance. In addi-
tion, contrastive learning is introduced to improve the model’s representation of learning ability. Finally, this 
paper conducts experiments on CMU-MOSEI aligned and unaligned data, and the experimental results show 
that the proposed method outperforms the existing methods.
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1. Introduction
The thriving development of digital communication, 
online platforms, and social media has given people 
increasingly diverse ways to express their emotions 
and opinions. In addition to traditional text, there 
are now various modalities of data, including audio 
and video. The proliferation of this multimodal data 
has spurred the rise of multimodal sentiment anal-
ysis [25]. Multimodal Sentiment Analysis (MSA) is 
an emerging field involving sentiment recognition 
techniques for multiple perceptual modalities (e.g., 
text, vision, and audio). Compared with unimodal 
sentiment recognition, multimodal sentiment inte-
grates multiple perceptual modalities to understand 
people’s emotional states more comprehensively and 
accurately. In addition, multimodal sentiment rec-
ognition is essential in application scenarios such as 
intelligent customer service, social robotics, mental 
health assistance, and online education [1]. Simulat-
ing the way of communication in human life helps to 
build a more natural and convincing human-comput-
er interaction experience.
In multimodal sentiment analysis tasks, effectively 
fusing features from visual (often contained in imag-
es or videos), audio (in the form of sound waves), and 
textual information (in the form of words) is crucial 
to improve performance. In existing fusion methods, 
simply splicing features from different modalities 
may not be able to fully capture inter-modal correla-
tion information, such as Early Fusion [5, 23] and Late 
Fusion [36]. In contrast, Intermediate Fusion [5] can 
capture a certain degree of cross-modal relationships 
at the intermediate level and retain a certain degree 
of modality-specific information. Meanwhile, Ten-
sor-based fusion methods [20] are getting more and 
more attention due to their high expressive ability 
across modalities. GAN [24] based methods can rep-
resent the correlation between multimodal data well 
and strengthen the inter-modal correlation informa-
tion, but the computational resource requirement is 
high. In addition, Graph [21, 34] based methods use 
graph fusion networks to fuse modalities, and fusion 
methods based on Attention Mechanism [13, 22] and 
Deep Neural Network Fusion [16] require the design 
of specific structures for different tasks, which is 
more complex to implement. Cross-modal attention 
[15, 22] is a practical approach for integrating textual, 

visual, and audio semantic features, which takes ad-
vantage of the complementarity between modalities 
by using one modality to learn the contextual infor-
mation of the other, thus obtaining a more expressive 
representation of the fused features. However, past 
approaches have often failed to align multimodal data 
effectively and ignored the differences in semantic 
information between modalities. According to recent 
findings [12], text is more important than audio and 
visual and contains advanced semantic information.
The essence of multimodal fusion is to integrate the 
features of different modalities into a unified em-
bedding space, project the inputs into a shared em-
bedding space, and capture the information between 
different modalities by representing different modali-
ties in the common embedding space. In recent years, 
transformers have achieved excellent results in the 
multimodal domain [31-32]. People have proposed 
using transformers to learn the embedding space, us-
ing multiple independent transformers [3, 18], or us-
ing one transformer to learn the embedding space on 
video data [2]. Contrastive learning has shown strong 
performance in representation learning [9, 14]. It 
projects positive and negative samples into the em-
bedding space to learn the encoding between modal-
ities through contrastive loss, which helps to improve 
multimodal representation. To effectively learn the 
multimodal embedding space, this paper projects the 
inputs into a shared embedding space, uses a trans-
former as an intermediate processing step, and drives 
co-occurring modal embeddings closer together in 
the shared space utilizing contrastive learning, thus 
reducing the risk of overfitting and improving the 
model’s representational learning ability. 
The paper proposes an effective fusion network 
model for learning tri-modal representations with 
contrastive learning and Transformer (Tri-CLT) for 
Multimodal Sentiment Analysis. Figure 1 presents an 
overall of the model. Specifically, the model presented 
in this paper takes raw visual, audio, and textual data 
as inputs and extracts high-level features from the 
raw input data using a network architecture specific 
to each modality. The transformer fuses the multi-
modal information, and we design the Integrating 
Fusion Block to restrict the information interactions 
between modalities to the module, thus alleviating 
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the secondary complexity of paired sequences in the 
transformer. The resulting fused features enhance 
the semantic information of the three modalities. 
Next, cross-modal attention is employed to enhance 
paired feature information, achieving information 
reinforcement and complementarity to improve the 
performance of sentiment recognition. Meanwhile, 
we leverage contrastive learning to integrate embed-
ding spaces from different modalities and map inputs 
with semantic similarity into each other’s compact 
representations, thereby improving performance. 
Unlike the transformer model’s existing architecture 
that uses the [cls] tokens’ output for classification, 
Tri-CLT uses averaging the entire output sequence 
for sentiment prediction. Finally, a linear layer sum-
marizes the fused feature information to obtain the 
sentiment prediction results. In this paper, we evalu-
ate Tri-CLT on CMU-MOSEI [37]. The main contri-
butions of this thesis can be summarized as follows:
This paper proposes the Tri-CLT model based on the 
transformer, which takes the combined data of the 
three modalities as input, fully utilizes the similarity 
and complementarity among modalities, and effec-
tively fuses the interaction information of the three 
modalities. The model learns fused representations of 
multimodal sentiment recognition  from CMU-MO-
SEI aligned and unaligned data. Experimental results 
show that Tri-CLT outperforms existing methods.
An Integrating Fusion Block module is designed to 
compensate for the difference in semantic informa-
tion between different modalities, slow down the sec-
ondary complexity of paired modalities in the trans-
former, reduce redundant information, and combine 
with cross-modal attention to handle cross-modal 
related information to achieve fair and effective com-
plementary learning.
Cross-modal contrastive learning is utilized to in-
tegrate the embedding space of different modal in-
formation, using a transformer as an intermediate 
processing step to improve the learning ability of 
multimodal embedding space.

2. Related Work
This section will divide the work into Multimodal 
Transformers and Multimodal Sentiment Analysis. 
Each section will review the existing research work.

2.1. Multimodal Transformers
The remarkable success of transformer in natural 
language initially used in sequence-to-sequence ma-
chine translation tasks, VIT [7], and the proposed 
AST [10] have proven to be very effective in visual and 
audio modalities, making transformer [33] shine in 
different domains. Recently, Cheng et al. [6] designed 
a shared attention network for synchronizing audio 
and vision. Luo et al. [19] inherited their idea to learn 
the correspondence between audio and visual sam-
ples and proposed a transformer model that combines 
visual and text. Bain et al. [3] focused on temporal and 
spatial issues and processed modal information in two 
separate transformers. Recent studies use specialized 
transformer models applicable to different modalities 
and perform multimodal fusion by contrastive loss. 
Shvetsova et al. [27] proposed using a transformer 
encoder to represent three modalities and designed 
a contrastive loss considering multiple modal inputs. 
Akbari et al. [2] learned multimodal representations 
from raw data in a self-supervised environment. They 
designed a transformer-generalized multi-task archi-
tecture with combined visual-text and visual-audio 
for contrastive loss.
However, most of the work relies on complex fusion 
strategies that introduce more parameters and com-
putational costs and are prone to overfitting. Nagrani 
et al. [22] proposed a Multimodal Bottleneck Trans-
former (MBT), which restricts the exchange of infor-
mation between modalities during the fusion process. 
Inspired by their work, we will limit the information 
exchange between pairs of modal sequences within 
the transformer to avoid over-computation and re-
duce computational complexity.

2.2. Multimodal Sentiment Analysis
The continuous advancement of deep learning has 
made the processing of multimodal data more effi-
cient, leading to widespread attention to multimodal 
sentiment analysis [4, 28]. Researchers in the past pri-
marily embodied their work in designing complex mul-
timodal fusion strategies. At early stages, Early Fusion 
[5, 23] is a method that directly connects the features of 
different modalities to form a comprehensive feature 
vector for training and decision making. Late Fusion 
[36] makes decisions independently on each modality. 
Then, it fuses the decision results of different modal-
ities by weighted averaging. As fusion methods con-
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tinue to deepen, tensor-based fusion is highly expres-
sive regarding cross-modal dynamics. Zadeh et al. [35] 
designed the TFN to model the interaction between 
modes using tensor and perform geometric operations 
in feature space. Liu et al. [17] developed the LMF  to 
learn cross-modal dynamics using low-rank decompo-
sition. In recent research, Fu et al. [8] fuse visual and 
audio modalities by introducing NHFNet to enhance 
semantic features. Tsai et al. [31] proposed MulT, 
which performs cross-attention in paired modalities, 
for unaligned multimodal emotion recognition tasks. 
MISA presented by Hazarika [12] decomposes the 
modal features of the joint space, divides the modali-
ties into specific and invariant, and maps the modal-
ities to two subspaces. Rahman et al. [26] introduce 
MAG-BERT, which incorporates a fusion gate to learn 
the associations between the modalities using word 
boundary alignment, and Han et al. [11] use MMIM 
to maximize the multimodal information and apply 
the mutual knowledge on multimodal feature fusion, 
which in turn optimizes multimodal representations.  
While most previous works have achieved some per-
formance improvements in multimodal sentiment 
recognition, there still needs to be the problem of se-
mantic differences between the three modalities and 
the presence of redundant information in the fusion 
process. This paper proposes a new fusion network 
that reduces the semantic gap between modalities 
and information redundancy in the fusion process 
while obtaining better multimodal representation 
through contrastive learning to achieve more accu-
rate emotion prediction.

3. Methodology
The paper aims to design an efficient multimodal fu-
sion architecture that integrates different modal fea-
tures and projects different modalities into the multi-
modal embedding space to make their semantic inputs 
close to each other, thereby improving model perfor-
mance and achieving accurate sentiment prediction. 
This section describes the proposed method in detail.

3.1. Standardized Sequence

Tri-CLT receives text, audio, and visual data from a 
given video. We use the same feature extraction meth-
od as the baseline [12], using specific networks for dif-

ferent modalities to extract features of the respective 
modalities, obtaining three sets of unimodal sequenc-
es xm ∈ Rn×lm× dm. The standard batch size is denoted by 
n, and we use lm to represent the length of the input se-
quence, and m represents text, visual, and modalities. 
dm is the input dimension of the modal representation 
vector. We will individually pass the feature vectors 
extracted from each modality-specific backbone 
through the transformer encoder layer for feature ex-
traction. Three sets of tokens will be generated: text 
[ti1, ..., tim], visual [vi1, ..., vik], and audio [ai1, ..., ain]. In this 
process, we normalize the length of the sequence for 
each batch of inputs and convert the sequence into a 
standard input form that the transformer can accept 
as follows:

Figure 1 
The overall architecture of Tri-CLT.  
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However, Tri-CLT differs from the traditional 
transformer processing method [12, 22]. It does not add 
any category embedding information and does not add 
positional embedding at a standardized sequence. The 
reasons are as follows: We divide CMU-MOSEI into 
aligned and unaligned data in our work. Using position 
embedding to process aligned data can help the model 
capture the order and position information in the input 
data. However, when dealing with unaligned data, 
inconsistent temporal patterns may add noise to the 
training process and thus negatively affect the model. 
Therefore, omitting positional embedding is a better 
choice, and it helps to handle variable-length sequences 
in the actual inference process. Additionally, we often use 
[cls] tokens to represent the overall picture of the data. 
Since the token information extracted by their respective 
backbones already has their own "fingerprints," there is  

no need to use [cls] tokens, which will prove beneficial 
to the model during ablation experiments. 

3.2 Multi-Modal Fusion via Transformer 
Effectively fusing information from multiple modalities 
is the goal of this paper. Since textual feature 
representation is more intuitive and visual and audio 
contain a substantial amount of redundant information, 
taking into account the equitable interaction of multiple 
modalities within the transformer, we propose a 
transformer-based fusion strategy, where the extracted 
three sets of modal tokens are input to the transformer for 
pairwise fusion. Usually, the computational complexity 
of the transformer grows linearly with the length of the 
sequence because the attention layer in the transformer 
touches and processes each token, thus generating a large 
amount of computational waste and affecting the model's 
performance. In order to solve the above problems, this 
study proposes a transformer-based feature fusion 
approach, as shown in Figure 1. Based on [22], we 
constrain cross-modal connections to intermediate layers 
and define the Integrating Fusion Block module, denoted 
as Sf=Sf

1Sf
2…,Sf

c. Because Sf dimension is much smaller 
than the first two, the amount of computation from N2 to 
N. This operation ensures that all cross-modal attention 
flows in the model share information only through these 
Integrating Fusion Blocks, thereby reducing redundancy 
and effectively overcoming the secondary complexity of 
the transformer to deal with the paired modal sequence. 

In this study, we use only the encoder part of the 
transformer for fusion. In the transformer, an entire 
encoder layer comprises the following components: a 
Multi-Head self-attention (MSA), two LayerNorm (LN) 

(1)

However, Tri-CLT differs from the traditional trans-
former processing method [12, 22]. It does not add 
any category embedding information and does not 
add positional embedding at a standardized sequence. 
The reasons are as follows: We divide CMU-MOSEI 
into aligned and unaligned data in our work. Using 
position embedding to process aligned data can help 
the model capture the order and position informa-
tion in the input data. However, when dealing with 
unaligned data, inconsistent temporal patterns may 
add noise to the training process and thus negative-
ly affect the model. Therefore, omitting positional 
embedding is a better choice, and it helps to handle 
variable-length sequences in the actual inference 
process. Additionally, we often use [cls] tokens to rep-
resent the overall picture of the data. Since the token 
information extracted by their respective backbones 
already has their own “fingerprints,” there is no need 
to use [cls] tokens, which will prove beneficial to the 
model during ablation experiments.

3.2. Multi-Modal Fusion via Transformer

Effectively fusing information from multiple modal-
ities is the goal of this paper. Since textual feature 
representation is more intuitive and visual and audio 
contain a substantial amount of redundant informa-
tion, taking into account the equitable interaction of 
multiple modalities within the transformer, we pro-
pose a transformer-based fusion strategy, where the 
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Figure 1
The overall architecture of Tri-CLT

extracted three sets of modal tokens are input to the 
transformer for pairwise fusion. Usually, the compu-
tational complexity of the transformer grows linearly 
with the length of the sequence because the attention 
layer in the transformer touches and processes each 
token, thus generating a large amount of computa-
tional waste and affecting the model’s performance. 
In order to solve the above problems, this study pro-
poses a transformer-based feature fusion approach, 
as shown in Figure 1. Based on [22], we constrain 
cross-modal connections to intermediate layers and 
define the Integrating Fusion Block module, denoted 
as Sf = Sf

1 Sf
2, ..., Sf . Because Sf dimension is much small-

er than the first two, the amount of computation from  
N2 to N. This operation ensures that all cross-modal 
attention flows in the model share information only 
through these Integrating Fusion Blocks, thereby re-
ducing redundancy and effectively overcoming the 
secondary complexity of the transformer to deal with 
the paired modal sequence.
In this study, we use only the encoder part of the 
transformer for fusion. In the transformer, an entire 

encoder layer comprises the following components: 
a Multi-Head self-attention (MSA), two Layer-
Norm (LN) transforms, and a Multilayer Perceptron 
(MLP), and these modules are connected sequentially 
through residual connections. Each layer representa-
tion is defined as Sm

1+1 =Transformer(Sm
l  ). The process 

equation is as follows:

transforms, and a Multilayer Perceptron (MLP), and 
these modules are connected sequentially through 
residual connections. Each layer representation is defined 
as Sm

l+1 =Transformer( Sm
l ). The process equation is as 

follows: 

yl=MSA �LN�Sm
l ��+Sm

l   m∈{visual, audio, text}.     (2)                   

Sm
l+1=MLP �LN�yl��+yl m∈{visual, audio, text}.      (3) 

In the MSA layer, Querys and Keys perform dot product 
attention operations to obtain the similarity between 
feature vectors. Because of the nature of the multi-headed 
attention mechanism, Querys, Keys, and Values are 
obtained from the same vector Sm by different mappings. 
MSA�Sm�=Attention(W QSm, W KSm, W VSm) . The 
MLP layer captures features in the input sequence and the 
dependencies between sequences by introducing a 
nonlinear activation function. 

We introduce the Integrating Fusion Block to fuse the 
modal features. In this paper, C (C is much smaller than 
lm) Integrating Fusion Blocks are introduced in the input 
sequence of the transformer. The input sequence (in the 
case of vision and audio fusion) is now: 

S=[Sv
1,…,Sv

d||Sf
1,…,Sf

c||Sa
1…Sa

d] .                                   (4) 

Where || represents the splice operation, we will update 
the Integrating Fusion Block between pairs of modalities 
twice. Each time, two modalities share information 
within the block, reducing redundancy and computational 
load and improving and maintaining model performance. 
For layer l, the computation process is as follows: 

[Si
l+1||S� fi

l+1]=Transformer�[Si
l||Sfi

l ];θi� .                          (5) 

This study considers three modal combinations: visual 
and text, text and audio, as well as visual and audio. The 
combined features of the visual and audio modalities are 
denoted as viai, the combined features of text and visual 
are represented as viti; and the combined features of text 
and audio are represented as tiai . During each training 
iteration, we apply the multimodal fusion Transformer 
three times to each sample i. To obtain the fused 
representation, we use a fused tokens list to represent, 
such as viti[vi1,…,vim fB

 1,…,fB
  cti1,…,tin]. The multimodal 

input data are fused by the transformer to get the 
augmented data viti� [v�i1

 vt,…,v�im
vt f�B  1,…f�B  ct̂i1 vt,…,t̂in

 vt] (where 
the superscript vt denotes attention to both modal visual 
and modal text). In this way, the modalities can learn 
from each other, making it possible to share information 
between the modalities and to fuse multimodal feature 
information effectively. 
 
�   

 

3.3 Multimodal Contrastive Learning  

Even though the modal information is augmented with 
each other by the above methods, the semantic 
information is still very different. Contrastive loss can 
be used for representation learning, where the basic 
idea is that anchors and positive samples are 
continually brought closer together in the embedding 
space, and anchors and negative samples are pushed 
farther away. This process projects semantically 
similar inputs between modalities to positions close to 
each other. Specifically, we normalize the single-
modal information [a, v, t] obtained through the 
transformer encoder layer and project it into the 
shared embedding space. We use this normalization 
process to align the magnitudes of the vectors, and 
only the angles between the vectors are considered 
when calculating the point similarity. For each anchor 
sample, its comparative loss formula is as follows: 

L(m,m� )=-log( exp(mTm� /τ)
∑ exp(mi

Tm� j/τ)B
i=1

) ,                                         (6) 

where L(m,m� ) , τ  and B represent the contrastive loss 
between modality m and modality m� , temperature and 
batch size, respectively. In this work, we apply 
contrastive learning to these three modalities to enhance 
their interactions and increase the distinctiveness of fused 
representations among samples. Moreover, the 
contrastive loss Lv_t , Lt_a and Lv_a  between the three 
unimodal information is obtained, Lv_t  corresponds to 
(v,t), Lt_a  corresponds to (t,a), and Lv_a  corresponds to 
(v,a). Combining the above representations, the three loss 
results are combined and output: 
L=ωv_tLv_t+ωt_aLt_a+ωv_aLv_a ,                                      (7) 

where ωm_m�  denotes the weighting factor of mode (m,m� ). 
3.4 Cross-modal Attention  
The cross-modal attention mechanism can exploit the 
complementarity between modalities to reinforce each 
other by learning each other's feature information. To this 
end, we will define a cross-transformer layer that allows 
the information to interact through the attention layer, 
reinforcing the three sets of fused features with each 
other. 
Figure 2 shows an overview of the cross-transformer. 
Here, we exemplify the mutual reinforcement between va 
and vt: 

Sva
l+1=Cross-Transformer�Sva

l ,Svt
l ;θva� .                         (8) 

Svt
l+1=Cross-Transformer�Svt

l ,Sva
l ;θvt� .                          (9) 

Figure 2  
Cross-Transformer. 
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In the MSA layer, Querys and Keys perform dot prod-
uct attention operations to obtain the similarity be-
tween feature vectors. Because of the nature of the 
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and Values are obtained from the same vector Sm by 
different mappings. MSA(Sm) = Attention (WQSm, 
WKSm, WVSm). The MLP layer captures features in the 
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We introduce the Integrating Fusion Block to fuse the 
modal features. In this paper, C (C is much smaller 
than lm) Integrating Fusion Blocks are introduced in 
the input sequence of the transformer. The input se-
quence (in the case of vision and audio fusion) is now:

transforms, and a Multilayer Perceptron (MLP), and 
these modules are connected sequentially through 
residual connections. Each layer representation is defined 
as Sm

l+1 =Transformer( Sm
l ). The process equation is as 

follows: 

yl=MSA �LN�Sm
l ��+Sm

l   m∈{visual, audio, text}.     (2)                   

Sm
l+1=MLP �LN�yl��+yl m∈{visual, audio, text}.      (3) 

In the MSA layer, Querys and Keys perform dot product 
attention operations to obtain the similarity between 
feature vectors. Because of the nature of the multi-headed 
attention mechanism, Querys, Keys, and Values are 
obtained from the same vector Sm by different mappings. 
MSA�Sm�=Attention(W QSm, W KSm, W VSm) . The 
MLP layer captures features in the input sequence and the 
dependencies between sequences by introducing a 
nonlinear activation function. 

We introduce the Integrating Fusion Block to fuse the 
modal features. In this paper, C (C is much smaller than 
lm) Integrating Fusion Blocks are introduced in the input 
sequence of the transformer. The input sequence (in the 
case of vision and audio fusion) is now: 

S=[Sv
1,…,Sv

d||Sf
1,…,Sf

c||Sa
1…Sa

d] .                                   (4) 

Where || represents the splice operation, we will update 
the Integrating Fusion Block between pairs of modalities 
twice. Each time, two modalities share information 
within the block, reducing redundancy and computational 
load and improving and maintaining model performance. 
For layer l, the computation process is as follows: 

[Si
l+1||S� fi

l+1]=Transformer�[Si
l||Sfi

l ];θi� .                          (5) 

This study considers three modal combinations: visual 
and text, text and audio, as well as visual and audio. The 
combined features of the visual and audio modalities are 
denoted as viai, the combined features of text and visual 
are represented as viti; and the combined features of text 
and audio are represented as tiai . During each training 
iteration, we apply the multimodal fusion Transformer 
three times to each sample i. To obtain the fused 
representation, we use a fused tokens list to represent, 
such as viti[vi1,…,vim fB

 1,…,fB
  cti1,…,tin]. The multimodal 

input data are fused by the transformer to get the 
augmented data viti� [v�i1

 vt,…,v�im
vt f�B  1,…f�B  ct̂i1 vt,…,t̂in

 vt] (where 
the superscript vt denotes attention to both modal visual 
and modal text). In this way, the modalities can learn 
from each other, making it possible to share information 
between the modalities and to fuse multimodal feature 
information effectively. 
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3.3 Multimodal Contrastive Learning  

Even though the modal information is augmented with 
each other by the above methods, the semantic 
information is still very different. Contrastive loss can 
be used for representation learning, where the basic 
idea is that anchors and positive samples are 
continually brought closer together in the embedding 
space, and anchors and negative samples are pushed 
farther away. This process projects semantically 
similar inputs between modalities to positions close to 
each other. Specifically, we normalize the single-
modal information [a, v, t] obtained through the 
transformer encoder layer and project it into the 
shared embedding space. We use this normalization 
process to align the magnitudes of the vectors, and 
only the angles between the vectors are considered 
when calculating the point similarity. For each anchor 
sample, its comparative loss formula is as follows: 

L(m,m� )=-log( exp(mTm� /τ)
∑ exp(mi
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where L(m,m� ) , τ  and B represent the contrastive loss 
between modality m and modality m� , temperature and 
batch size, respectively. In this work, we apply 
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their interactions and increase the distinctiveness of fused 
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unimodal information is obtained, Lv_t  corresponds to 
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(v,a). Combining the above representations, the three loss 
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where ωm_m�  denotes the weighting factor of mode (m,m� ). 
3.4 Cross-modal Attention  
The cross-modal attention mechanism can exploit the 
complementarity between modalities to reinforce each 
other by learning each other's feature information. To this 
end, we will define a cross-transformer layer that allows 
the information to interact through the attention layer, 
reinforcing the three sets of fused features with each 
other. 
Figure 2 shows an overview of the cross-transformer. 
Here, we exemplify the mutual reinforcement between va 
and vt: 

Sva
l+1=Cross-Transformer�Sva
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l ;θva� .                         (8) 
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This study considers three modal combinations: visual 
and text, text and audio, as well as visual and audio. The 
combined features of the visual and audio modalities are 
denoted as viai, the combined features of text and visual 
are represented as viti; and the combined features of text 
and audio are represented as tiai . During each training 
iteration, we apply the multimodal fusion Transformer 
three times to each sample i. To obtain the fused 
representation, we use a fused tokens list to represent, 
such as viti[vi1,…,vim fB

 1,…,fB
  cti1,…,tin]. The multimodal 

input data are fused by the transformer to get the 
augmented data viti� [v�i1
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 vt] (where 
the superscript vt denotes attention to both modal visual 
and modal text). In this way, the modalities can learn 
from each other, making it possible to share information 
between the modalities and to fuse multimodal feature 
information effectively. 
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3.3 Multimodal Contrastive Learning  

Even though the modal information is augmented with 
each other by the above methods, the semantic 
information is still very different. Contrastive loss can 
be used for representation learning, where the basic 
idea is that anchors and positive samples are 
continually brought closer together in the embedding 
space, and anchors and negative samples are pushed 
farther away. This process projects semantically 
similar inputs between modalities to positions close to 
each other. Specifically, we normalize the single-
modal information [a, v, t] obtained through the 
transformer encoder layer and project it into the 
shared embedding space. We use this normalization 
process to align the magnitudes of the vectors, and 
only the angles between the vectors are considered 
when calculating the point similarity. For each anchor 
sample, its comparative loss formula is as follows: 
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where L(m,m� ) , τ  and B represent the contrastive loss 
between modality m and modality m� , temperature and 
batch size, respectively. In this work, we apply 
contrastive learning to these three modalities to enhance 
their interactions and increase the distinctiveness of fused 
representations among samples. Moreover, the 
contrastive loss Lv_t , Lt_a and Lv_a  between the three 
unimodal information is obtained, Lv_t  corresponds to 
(v,t), Lt_a  corresponds to (t,a), and Lv_a  corresponds to 
(v,a). Combining the above representations, the three loss 
results are combined and output: 
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where ωm_m�  denotes the weighting factor of mode (m,m� ). 
3.4 Cross-modal Attention  
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complementarity between modalities to reinforce each 
other by learning each other's feature information. To this 
end, we will define a cross-transformer layer that allows 
the information to interact through the attention layer, 
reinforcing the three sets of fused features with each 
other. 
Figure 2 shows an overview of the cross-transformer. 
Here, we exemplify the mutual reinforcement between va 
and vt: 
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This paper defines tensor X and tensor Y for Multi-
Headed Cross Attention (MCA), with X serving as the 
query, while the other tensor is employed as keys and 
values for weighted queries, defined as MCA(X, Y) = 
Attention (WQX, WKY, WVY). The paired fusion fea-
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Figure 2 
Cross-Transformer

tures va and vt will follow the operations of the origi-
nal transformer, but Equation (2) will become:

 
This paper defines tensor X and tensor Y for 
MultiHeaded Cross Attention (MCA), with X serving as 
the query, while the other tensor is employed as keys and 
values for weighted queries, defined as 
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original transformer, but Equation (2) will become: 
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3.5 Prediction 
Eventually, we separately obtain the unimodal text 
features t, audio features a, visual features v, and paired 
fusion enhanced visual-text features vt�  

va and vt�  
ta, visual-

audio features va�  
vt  and va�  

ta  , and text-audio features 
ta�  

vaand ta�  
vt. The unimodal features are enhanced through 

the self-attention mechanism, resulting in enhanced text 
feature t̂, enhanced visual feature v�, and enhanced audio 
feature a�.These output features are averaged and summed 
P= a�average+ v�average+ t̂average+ vt� average

 + va� average
 + 

ta�average
 (vt� average

 denotes taking the mean for the fusion 
features vt�  

va  and vt�  
ta ). We feed the final information 

obtained into a linear layer to obtain the corresponding 
sentiment score. 
 

 
4. Experiments 
First, this section discusses the selection of datasets and 
the setup of experimental details. Second, Tri-CLT is 
compared with other recent work to evaluate its 
performance. Furthermore, to verify the effectiveness of 
each module and hyperparameters of Tri-CLT, we 
conducted ablation experiments for each 
task. Meanwhile, we discussed the setting of the 
hyperparameter  ω . Finally, we visually analyze the 
multimodal representations to verify the method's 
effectiveness. A single RTX3080 is used to train the 
model in this work during the experiments. 

4.1 Datasets 
We have chosen to evaluate the model's performance on 
CMU-MOSEI in this paper. CMU-MOSEI is a 
mainstream dataset for Multimodal Sentiment Analysis 
developed by the MultiComp Lab at Carnegie Mellon 
University. CMU-MOSEI is a large human dataset that 
contains 23,453 sentences from YouTube videos on 1000 
different speakers and 250 topics. The sentences were 

sourced from online video-sharing sites and included 
expressions of opinion on topics such as movies. 
There was a balanced gender distribution in the 
dataset (57% male, 43% female), and the average 
sentence length was 7.28 seconds. In the CMU-
MOSEI dataset, a human artificially labeled each 
sample using an affective score ranging between -3 
and 3. These scores represent different levels of 
emotion, from negative to positive. The dataset 
division includes training, validation, and test  

sets containing 16,322, 1,871, and 4,659 samples. 
According to recent studies, evaluation metrics include 
mean absolute error (MAE), Pearson's correlation 
coefficient (corr), F-score, and dichotomous and 
multiclassification accuracy. In dichotomization, (-3, 0) 
is considered negative, and (0, 3) is positive. 

4.2.1Backbone 
This paper follows the previous baseline network setup 
[12] to ensure model comparability. For the visual 
modality, we use FaceNet to obtain facial sentiment 
features. For the audio modality, we extract acoustic 
features from COVAERP. These low-level statistical 
features include MFCC, pitch, voiced/unvoiced 
segmentation features, sound quality features, and other 
emotion-related features. For the text modality, pre-
trained BERT was used as the text feature extractor, and 
these backbones were fixed and not fine-tuned on the 
dataset. Finally, 768-dimensional features are obtained 
for text, 35-dimensional features for vision, and 74-
dimensional features for audio. 

4.2.2 Experimental Settings 
This paper divided the CMU-MOSEI data into aligned 
and unaligned data. Tri-CLT will be experimented with 
both sets of data separately. Regarding the processing of 
aligned data, the data is processed using CMU 
MultimodalSDK v1.2.0 to obtain aligned data, and for the 
setup of unaligned data, the unaligned data is processed 
directly. Hyperparameters employed during the training 
and testing of CMU-MOSEI are presented in Table 1.  

The model is optimized with the MSE loss Ltask and the 
combined contrastive loss Lcl . A more considerable 
weight is set in Equation (7) for the corresponding loss of 
the text: ωt_v=ωt_a=1,ωv_a=0.1 , which is beneficial for 
training on CMU-MOSEI. We set the overall loss 
function as follows: LTotal=Ltask+ωLcl, with ω=0.7. 

4.3 Comparsion with Baselines 
This section compares Tri-CLT with baselines using 
aligned and unaligned data on the CMU-MOSEI, 
respectively. We show quantitative results between Tri-
CLT and other baselines in Tables 2-3. The results 
demonstrate that Tri-CLT performs better than previous 
methods for some metrics on the CMU-MOSEI dataset. 
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Where || represents the splice operation, we will update 
the Integrating Fusion Block between pairs of modalities 
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are represented as viti; and the combined features of text 
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Figure 2  
Cross-Transformer. 

 

4.1. Datasets
We have chosen to evaluate the model’s performance 
on CMU-MOSEI  in this paper. CMU-MOSEI is a 
mainstream dataset for Multimodal Sentiment Anal-
ysis developed by the MultiComp Lab at Carnegie 
Mellon University. CMU-MOSEI is a large human 
dataset that contains 23,453 sentences from YouTube 
videos on 1000 different speakers and 250 topics. The 
sentences were sourced from online video-sharing 
sites and included expressions of opinion on topics 
such as movies. There was a balanced gender distri-
bution in the dataset (57% male, 43% female), and 
the average sentence length was 7.28 seconds. In the 
CMU-MOSEI dataset, a human artificially labeled 
each sample using an affective score ranging between 
-3 and 3. These scores represent different levels of 
emotion, from negative to positive. The dataset divi-
sion includes training, validation, and test sets con-
taining 16,322, 1,871, and 4,659 samples. According to 
recent studies, evaluation metrics include mean ab-
solute error (MAE), Pearson’s correlation coefficient 
(corr), F-score, and dichotomous and multiclassifi-
cation accuracy. In dichotomization, (-3, 0) is consid-
ered negative, and (0, 3) is positive.

4.2.1. Backbone
This paper follows the previous baseline network set-
up [12] to ensure model comparability. For the visual 
modality, we use FaceNet to obtain facial sentiment 
features. For the audio modality, we extract acoustic 
features from COVAERP. These low-level statistical 
features include MFCC, pitch, voiced/unvoiced seg-
mentation features, sound quality features, and other 
emotion-related features. For the text modality, pre-
trained BERT was used as the text feature extractor, 
and these backbones were fixed and not fine-tuned 
on the dataset. Finally, 768-dimensional features are 
obtained for text, 35-dimensional features for vision, 
and 74-dimensional features for audio.

4.2.2. Experimental Settings
This paper divided the CMU-MOSEI data into aligned 
and unaligned data. Tri-CLT will be experimented with 
both sets of data separately. Regarding the processing 
of aligned data, the data is processed using CMU Multi-
modalSDK v1.2.0 to obtain aligned data, and for the set-
up of unaligned data, the unaligned data is processed di-
rectly. Hyperparameters employed during the training 
and testing of CMU-MOSEI are presented in Table 1. 
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Table 1
Hyper Parameter Setting

Setting CUM-MOSEI

Optimizer Adam

Batch Size 16

Learning rate 1e-3

Attention head 8

Transformer Layer 4

Sequence length 50

Feature size 32

Table 2
Results on CMU-MOSEI under aligned data, comparison with baselines and existing methods

Model F1 Corr Acc-2 Acc-7 MAE

EF-LSTM 79.74 0.624 79.31 46.6 0.622

LF-LSTM 80.60 0.652 80.65 49.6 0.656

MFM[30] 84.31 0.703 84.42 51.3 0.568

MulT[31] 82.31 0.713 82.51 51.8 0.580

ICCN[29] 84.15 0.713 84.18 51.58 0.565

MFN[38] 80.63 0.670 79.60 49.1 0.618

MISA[12] 83.97 0.724 84.23 52.20 0.568

MAG-BERT[26] 84.71 0.778 85.21 51.9 0.548

Tri-CLT (Ours) 85.33 0.750 85.55 52.18 0.568

Table 3
Results on CMU-MOSEI with unaligned data, compared to 
baselines and existing methods

Model F1 Corr Acc-2 Acc-7 MAE

TFN[35] 82.09 0.704 82.66 50.13 0.60

MulT[31] 81.9 0.699 81.48 50.6 0.591

LMF[17] 82.44 0.656 82.06 49.33 0.611

MMIM[11] 84.68 0.743 84.61 53.11 0.552

MISA[12] 81.1 - 81.7 52.1 -

Tri-CLT 85.12 0.741 85.22 51.94 0.560

The model is optimized with the MSE loss Ltask and 
the combined contrastive loss Lcl. A more considerable 
weight is set in Equation (7) for the corresponding loss 
of the text: ωt_v = ωt_a = 1, ωv_a = 0.1, which is beneficial for 
training on CMU-MOSEI. We set the overall loss func-
tion as follows: LTotal = Ltask + ωLcl, with ω= 0.7.

4.3. Comparsion with Baselines
This section compares Tri-CLT with baselines using 
aligned and unaligned data on the CMU-MOSEI, respec-
tively. We show quantitative results between Tri-CLT 
and other baselines in Tables 2-3.  The results demon-
strate that Tri-CLT performs better than previous meth-
ods for some metrics on the CMU-MOSEI dataset.

Tri-CLT outperforms all baselines in the aligned data 
with an F1 score of 85.33% and Acc-2 of 85.55%. In 
Table 2, we categorize existing methods as follows: 1) 
In earlier work, Early Fusion LSTM (EF-LSTM) fus-
es the input data features before inputting them into 
the LSTM network, and then the fused features are 
inputted into the LSTM for processing. Late Fusion 
LSTM (LF-LSTM) extracts each modal feature sep-
arately to make decision inference, and the different 
modal information of different modalities is fused 
through the voting mechanism. Tri-CLT improved by 
about 5% on F1 values and Acc-2 scores and by about 
4.5% and 2.5% on Acc-7, respectively. 2) MFM [30] 
utilizes multimodal information and performs factor 
decomposition in the joint representation of different 
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modalities. The correlation between modes is captured 
efficiently. Tri-CLT improves the F1 value, Acc-2, and 
Acc-7 scores by 1%, 1.1%, and 0.8%, respectively. 3) In 
a Cross-modal attention-based approach to multimod-
al fusion, MulT [31] uses a cross-modal transformer 
to learn multimodal representations, and ICCN [29] 
obtains two bimodal representations and feeds them 
into a network to generate trimodal representations 
and make predictions. Tri-CLT has significant im-
provements over these two architectures and achieves 
superior performance. 4) MFN [38], which uses del-
ta-attention modules for interaction and summariza-
tion through multi-view gating networks. Compared 
with it, the F1 value, Acc-2 and Acc-7 scores of Tri-
CLT were improved by 5%, 6%, and 3%, respectively. 
5) MISA [12] is a method that focuses on modal invari-
ance and specificity, which controls the representation 
space, while Tri-CLT focuses more on modal feature 
representation and achieves better results. 6) MAG-
BERT [26], a method using multi-modal adaptive fu-
sion gates, can achieve more than 85% on ACC-2, but 
Tri-CLT performs better than it.
In addition, this paper also tests on unaligned data. 
Some of the metrics of Tri-CLT outperform the base-
line. among them, the F1 scores 85.12%, and the Acc-2 
is 85.22%. We draw the following conclusions based 
on the results in Table 3.   1) Methods TFN [35] and 
LMF [17] created fused joint representations, and 
compared to these two methods, Tri-CLT improved 
the F1 value and Acc-2 by approximately 3%. 2) Com-
pared with MISA and MulT in unaligned data, Tri-
CLT can show better performance. 3) The method 
MMIM [11], which maximizes the interactive infor-
mation between modes, can effectively control the 
modal representation space. Our method improves by 
about 0.6% on F1 and Acc-2. 
Moreover, this paper also compares the efficiency of 
multiple models, and Tri-CLT shows excellent per-
formance in smaller models. As shown in Figure 3, we 
compared the parameters of the fusion network and 
Acc-2, where the parameters of the unimodal feature 
extraction network are not included in the number of 
parameters. It demonstrates that the proposed fusion 
network on CMU-MOSEI can achieve higher accura-
cy with fewer parameters, achieving an excellent bal-
ance between parameters and performance. 
Tri-CLT outperforms all other baselines in efficiency, 
which suggests that the proposed lightweight net-

work is more suitable for real-world scenarios. The 
advantages of this lightweight network have the po-
tential for optimization  and provide strong support 
for solving real-world problems.
Without fine-tuning the backbone, these results show 
that the proposed multimodal fusion model exhibits 
effectiveness in sentiment analysis. It also provides 
f urther evidence of the need to consider semantic 
differences between modalities and emphasizes the 
importance of learning multimodal representations 
in the fusion process.

4.4. Ablation Study
This section conducts a series of ablation studies on the 
CMU-MOSEI. First, this paper conducts unimodal ex-
periments to verify the semantic differences between 
the three modalities. We use text, visual, and audio data 
for prediction and show the experimental results in Ta-
ble 4. The results show that visual and audio modalities 
have significant differences in F1 and Acc-2 metrics 
compared to textual modalities, which indicates that 
visual and audio modalities have lower-level semantic 
features than textual modalities, and there is a certain 
difference. Therefore, it is necessary to consider en-
hancing the semantic information of modalities to re-
duce the differences between them.
Next, this paper verifies the effect of multimodality on 
model performance by eliminating one modality. The 

Figure 3 
Comparison of different models Acc-2 and number of 
parameters on CMU-MOSEI

 

this lightweight network have the potential for 
optimization and provide strong support for solving real-
world problems. 

Without fine-tuning the backbone, these results show that 
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importance of learning multimodal representations in the 
fusion process. 

4.4 Ablation Study 
This section conducts a series of ablation studies on the 
CMU-MOSEI. First, this paper conducts unimodal 
experiments to verify the semantic differences between 
the three modalities. We use text, visual, and audio data 
for prediction and show the experimental results in Table 
4. The results show that visual and audio modalities have 
significant differences in F1 and Acc-2 metrics compared 
to textual modalities, which indicates that visual and 
audio modalities have lower-level semantic features than 
textual modalities, and there is a certain difference. 
Therefore, it is necessary to consider enhancing the 
semantic information of modalities to reduce the 
differences between them. 

Next, this paper verifies the effect of multimodality on 
model performance by eliminating one modality. The 
experimental results show that eliminating each modality 
leads to a decrease in the model performance, which 
indicates that the three modalities are essential for solving 
the task of MSA. 
Meanwhile, it can be demonstrated through the results in 
Table 4 that the pairwise fusion of features from three 
different modalities can significantly improve the 
model's overall performance. Specifically, A-V Fusion, 
T-A Fusion, and T-V Fusion refer to Integrating Fusion 
Blocks to fuse different modal features for direct 
sentiment prediction. By comparing the performance 
when using audio and visual alone, it can be seen that the 

A-V Fusion improves by approximately 8% in the F1 
value. The T-A Fusion and T-V Fusion, on the other 
hand, fuse audio and vision with text modality, 
respectively, and achieve an improvement of 
approximately 1.1% in F1 values when comparing the 
performance when text is used alone. The above 
analysis illustrates that incorporating the Integrating 
Fusion Block module during the fusion process 
enhances feature information, reduces semantic 
differences, and decreases information redundancy. 
In addition, to study the effect of different parts on the 
performance, the following experiments were 
performed in this paper: 1) Removing the contrastive 
learning (CL) component, the results show an 
improvement in Acc-2 metrics but a decrease in Corr 
and F1 values, which proves the effectiveness of 
contrastive learning in multi- 

Table 4 
Ablation experiments using CMU-MOSEI alignment data. 

Model Corr Acc-2 F1 
Tri-CLT 0.75 85.55 85.33 

Text 
Visual 
Audio 

0.71 83.6 83.3 
0.26 64.2 63.4 
0.21 65.2 62.9 

w/o T  
w/o V 
w/o A 

0.33 70.31 69.13 
0.73 84.52 84.21 
0.73 84.55 84.61 

A-V Fusion 
T-A fusion 

T-V fusion 

0.30 69.93 70.23 
0.73 84.50 84.30 
0.73 84.68 84.58 

w/ [CLS] 
w/o CL 
w/o ω  

w/o CMA 

0.74 85.01 85.09 
0.74 85.61 85.12 
0.74 85.17 84.86 
0.74 84.88 84.99 

modal representation learning. 2) The experiment further 
evaluated the effect of [cls]  tokens aggregation 
information on the model. The experiment used the 
output [cls]  tokens from the multimodal fusion 
transformer as the result of sentiment prediction, and the 
result showed that not using [cls] tokens in the sequence 
processing stage was effective in predicting the result of 
the model. 3) w/o CMA indicates that cross-modal 
attention module was not used, and direct usage of fused 
features for sentiment analysis. The results show that 
using cross-modal attention to consider the 
complementarity and semantic distinctiveness between 
modalities gives better results. 4) When ω is not taken 
into account (concerning the case of w/o ω , where ω is 
set to 1), the results show that it is necessary to take ω 
into account in the overall loss. ω  Being too large or too 
small affects the experimental results. In summary, better 
performance and information transfer capability can be 
obtained by these methods, which is of great significance 
for the further application and development of 
multimodal fusion technology.  

4.5 Discussion on the Selection of ω  
After verifying the validity of the overall loss function 
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experimental results show that eliminating each mo-
dality leads to a decrease in the model performance, 
which indicates that the three modalities are essen-
tial for solving the task of MSA.
Meanwhile, it can be demonstrated through the re-
sults in Table 4 that the pairwise fusion of features 
from three different modalities can significantly im-
prove the model’s overall performance. Specifically, 
A-V Fusion, T-A Fusion, and T-V Fusion refer to Inte-
grating Fusion Blocks to fuse different modal features 
for direct sentiment prediction. By comparing the 
performance when using audio and visual alone, it 
can be seen that the A-V Fusion improves by approx-
imately 8% in the F1 value. The T-A Fusion and T-V 
Fusion, on the other hand, fuse audio and vision with 
text modality, respectively, and achieve an improve-
ment of approximately 1.1% in F1 values when com-
paring the performance when text is used alone. The 
above analysis illustrates that incorporating the Inte-
grating Fusion Block module during the fusion pro-
cess enhances feature information, reduces semantic 
differences, and decreases information redundancy.
In addition, to study the effect of different parts on the 
performance, the following experiments were per-
formed in this paper: 

Table 4
Ablation experiments using CMU-MOSEI alignment data

Model Corr Acc-2 F1

Tri-CLT 0.75 85.55 85.33

Text 0.71 83.6 83.3

Visual 0.26 64.2 63.4

Audio 0.21 65.2 62.9

w/o T 0.33 70.31 69.13

w/o V 0.73 84.52 84.21

w/o A 0.73 84.55 84.61

A-V Fusion 0.30 69.93 70.23

T-A fusion 0.73 84.50 84.30

T-V fusion 0.73 84.68 84.58

w/[CLS] 0.74 85.01 85.09

w/o CL 0.74 85.61 85.12

w/o ω 0.74 85.17 84.86

w/o CMA 0.74 84.88 84.99

1 Removing the contrastive learning (CL) compo-
nent, the results show an improvement in Acc-2 
metrics but a decrease in Corr and F1 values, which 
proves the effectiveness of contrastive learning in 
multi-modal representation learning. 

2 The experiment further evaluated the effect of [cls] 
tokens aggregation information on the model. The 
experiment used the output[cls] tokens from the 
multimodal fusion transformer as the result of sen-
timent prediction, and the result showed that not 
using [cls] tokens in the sequence processing stage 
was effective in predicting the result of the model.

3 w/o CMA indicates that cross-modal attention 
module was not used, and direct usage of fused 
features for sentiment analysis. The results show 
that using cross-modal attention to consider the 
complementarity and semantic distinctiveness be-
tween modalities gives better results. 

4 When ω is not taken into account (concerning the 
case of w/o ω, where ω is set to 1), the results show 
that it is necessary to take ω into account in the 
overall loss. ω Being too large or too small affects 
the experimental results. In summary, better per-
formance and information transfer capability can 
be obtained by these methods, which is of great sig-
nificance for the further application and develop-
ment of multimodal fusion technology. 

4.5. Discussion on the Selection of  ω 
After verifying the validity of the overall loss func-
tion parameter ω, this paper conducts further experi-
ments to investigate the effect of different ω values on 
the model performance. We present the experimental 
results in Table 5.

Table 5
Discussion on the selection of ω on CMU-MOSEI

F1 Corr Acc-2 Acc-7 MAE

ω= 0.3 84.90 0.746 85.20 51.13 0.571

ω= 0.4 84.85 0.744 85.00 51.06 0.569

ω= 0.5 85.26 0.746 85.44 52.79 0.572

ω= 0.6 84.55 0.75 84.87 51.58 0.573

ω= 0.7 85.33 0.751 85.55 52.18 0.568

ω= 0.8 84.95 0.741 85.14 50.59 0.576
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Tri-CLT performs best when ω is set to 0.7. Howev-
er, the accuracy of Tri-CLT decreases when ω is set 
above or below 0.7. It shows that the choice of ω is vital 
for the model to reach the optimal solution.

4.6. Visualization
This section visualizes the multimodal embedding 
space of each batch of data to demonstrate the im-
pact of contrastive learning on multimodal repre-
sentation.
We show the embedding space without contrastive 
learning in the left panel of Figure 4 and the embed-
ding space of the model with contrastive learning in 
the right panel. We selected Positive and Negative 
Sentiment samples from the CMU-MOSEI dataset, 
and multimodal representations were converted into 
feature points for visualization using the T-SNE algo-
rithm. When contrastive learning is not used, the dis-
tribution of feature points tends to be very spread out, 
making it impossible to form distinguishable clusters. 
However, adding contrastive learning leads to precise 
categorization between feature points. It indicates 
that we map semantically similar inputs to similar 
locations, which proves beneficial for classifier pre-
diction.

5. Conclusion
This paper proposes a transformer-based network 
architecture, Tri-CLT, which aims to fuse audio, visu-

Figure 4 
Visualize each batch with a set size 256 for the data in 
each batch
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model to reach the optimal solution. 

4.6 Visualization 
This section visualizes the multimodal embedding space 
of each batch of data to demonstrate the impact of 
contrastive learning on multimodal representation. 
We show the embedding space without contrastive 
learning in the left panel of Figure 4 and the embedding 
space of the model with contrastive learning in the right 
panel. We selected Positive and Negative Sentiment 
samples from the CMU-MOSEI dataset, and multimodal 
representations were converted into feature points for 
visualization using the T-SNE algorithm. When 
contrastive learning is not used, the distribution of feature 
points tends to be very spread out, making it impossible 
to form distinguishable clusters. However, adding 
contrastive learning leads to precise categorization 
between feature points. It indicates that we map 
semantically similar inputs to similar locations, which 
proves beneficial for classifier prediction. 

 
5. Conclusion 
This paper proposes a transformer-based network 
architecture, Tri-CLT, which aims to fuse audio, 
visual, and textual modal features to achieve 
multimodal sentiment recognition. Specifically, this 
paper considers the semantic differences and 
complementarities among the three modalities. It 
fuses the three modalities to enhance low-level 
semantic features and effectively red- 

uce the semantic differences among the modalities. 
Firstly, the proposed Integrating Fusion Block 
successfully overcomes the secondary complexity when 
dealing with paired sequences in the transformer, 
reducing computational complexity. The obtained fusion 
features achieve the enhancement of the three modal 
features. Secondly, considering the complementarity 
between modalities, the introduction of cross-modal 
attention enhances the fused features of the three 
modalities, achieving complementary learning between 
modalities. In addition, this paper introduces inter-modal 
contrastive learning to train the system so that the 
network learns a robust multimodal embedding space and 
improves the model's representation learning capability. 
Ultimately, extensive experiments on the CMU-MOSEI 
dataset were conducted to demonstrate the effectiveness 
of the proposed model. 
Although Tri-CLT performs well on the CMU-MOSEI 
dataset, the work in this paper has some limitations. 
When confronted with multimodal data with different 
acquisition modalities, Tri-CLT may struggle to achieve 
the desired results, and better fusion strategies may lead 
to a degradation of the generalization ability on 
multimodal data. Future work will improve these 
limitations, and more modalities will be introduced for 
learning. 
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