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With the increasing use of Internet of Things (IoT) technologies, cyber-attacks on IoT devices are also increasing 
day by day. Detecting attacks on IoT networks before they cause any damage is crucial for ensuring the security of 
the devices on these networks. In this study, a novel Intrusion Detection System (IDS) was developed for IoT net-
works. The IoTID20 and BoT-IoT datasets were utilized during the training phase and performance testing of the 
proposed IDS. A hybrid method combining the Principal Component Analysis (PCA) and the Bat Optimization 
(BAT) algorithm was proposed for dimensionality reduction on the datasets. The Synthetic Minority Over-Sam-
pling Technique (SMOTE) was used to address the problem of data imbalance in the classes of the datasets. The 
Convolutional Neural Networks (CNN) model, a deep learning method, was employed for attack classification. 
The proposed IDS achieved an accuracy rate of 99.97% for the IoTID20 dataset and 99.98% for the BoT-IoT data-
set in attack classification. Furthermore, detailed analyses were conducted to determine the effects of the dimen-
sionality reduction and data balancing models on the classification performance of the proposed IDS.
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1. Introduction
The Internet of Things (IoT) has witnessed substan-
tial growth in recent years, enabling various physical 
devices and objects to connect to the internet and 
exchange data. This technology has found applica-
tions in diverse fields, including education, health-
care, energy, military, manufacturing, agriculture and 
transportation [15, 39]. It is projected that the global 
number of interconnected IoT devices will surpass 
30 billion by 2025, as reported by statista.com [22]. 
However, this rapid proliferation of IoT devices has 
also led to an increase in cybersecurity threats. At-
tackers exploit vulnerabilities in IoT networks, aim-
ing to compromise critical or sensitive data through 
activities such as data interception, modification, 
or corruption [56]. The resource limitations of IoT 
devices hinder the deployment of complex security 
mechanisms that necessitate substantial memory 
and computational power [23]. Consequently, IoT de-
vices remain susceptible to various cyber-attacks.
Intrusion Detection Systems (IDS) are designed to 
identify potential attacks that could compromise the 
security of a network, generating alerts or notifying 
system administrators about incidents. In IoT net-
works, one of the primary objectives of IDS is to mini-
mize the false alarm rate in attack detection. IDS can be 
categorized into two types based on their location: net-
work-based IDS and host-based IDS. Network-based 
IDS analyze data traffic on the network to detect po-
tential attacks, while host-based IDS examine data 
traffic on individual host computers [2, 17, 34]. IDS 
can also be classified based on their detection method: 
signature-based IDS and behavior-based IDS. Signa-
ture-based IDS compare network traffic against a data-
base of known attack signatures, while behavior-based 
IDS develop a general behavior profile of the network 
and identify any deviations from this profile as poten-
tial attacks [7, 25]. Behavior-based IDS are particularly 
valuable as they can detect previously unknown attacks 
[54]. Machine learning-based and deep learning-based 
models are commonly employed in the design of IDS 
due to their high accuracy in detecting security threats 
[3]. However, the limited memory and processing ca-
pabilities of IoT devices pose challenges in the devel-
opment and deployment of IDS [5]. Overcoming these 
challenges may involve applying dimensionality re-
duction and data balancing techniques to the datasets 

used for training and performance testing of IDS. By 
implementing such techniques, machine learning and 
deep learning models trained on these datasets can ef-
fectively detect intrusion attempts, thereby enhancing 
the overall performance of the IDS [52].
This study presents a novel approach to intrusion 
detection in IoT networks, offering several signifi-
cant contributions. The proposed IDS model demon-
strates its effectiveness in accurately identifying 
security threats with improved accuracy and perfor-
mance. To address the limitations associated with 
IDS deployment on resource-constrained IoT devic-
es, the following strategies are employed:
 _ In order to reduce the dimensionality of the data 

sets used in the study, a novel hybrid approach was 
applied by integrating the Bat Optimization (BAT) 
algorithm with the Principal Component Analysis 
(PCA) method. This integration aims to effectively 
reduce the computational complexity associated 
with the proposed model.

 _ The SMOTE method was employed to tackle class 
imbalance in the datasets, which helps prevent 
bias towards majority classes and ensures that the 
classification models used for intrusion detection 
remain effective across different attack scenarios.

 _ The Grid Search method was utilized to determine 
optimal hyperparameters for the Convolutional 
Neural Networks (CNN) model used in the 
classification stage of the proposed system. This 
optimization process improves the classification 
performance of the model, making it more robust in 
identifying various types of attacks in IoT networks.

 _ The early stopping technique was employed during 
the training phase of the CNN model to identify the 
optimal number of iterations needed for effective 
model training. This approach helps mitigate 
overfitting and facilitates efficient training, while 
taking into account the resource limitations of 
IoT devices. Additionally, the study incorporated 
the ReducLROnPlateau callback technique, which 
dynamically adjusts the learning rate as training 
advances, in conjunction with early stopping. This 
combined strategy aims to optimize the training 
process by contributing to improved convergence 
and performance improvement.
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The study is structured as follows: the second section 
provides a literature review of existing IDS systems 
for IoT networks, highlighting the methodologies and 
datasets used. The third section outlines the materials 
and methods employed in the study. The fourth section 
presents the experimental results and findings. Finally, 
the fifth section evaluates the results, discusses future 
research directions, and concludes the study.

2. Literature Review
In this section, the literature on IDS for IoT networks 
is analyzed. The methods used for preprocessing and 
classification in IDSs and the datasets used in perfor-
mance testing are examined. Additionally, details on 
the accuracy rates of IDSs in attack classification are 
presented.
In recent years, Intrusion Detection Systems (IDS) 
have garnered significant attention in the realm of se-
curing Internet of Things (IoT) networks. Researchers 
have made notable contributions by proposing various 
methodologies and techniques to enhance the accura-
cy and effectiveness of IDS in detecting and classifying 
attacks. Within the domain of deep learning-based ap-
proaches, Biswas and Roy [8] developed an IDS utiliz-
ing the Gated Recurrent Unit (GRU) method, achiev-
ing an impressive classification accuracy of 99.76% 
on the BoT-IoT dataset. Similarly, Popoola et al. [41] 
employed Long Short-Term Memory (LSTM) for at-
tack classification, attaining a commendable accuracy 
rate of 97.29% on the BoT-IoT dataset. Ullah et al. [60] 
explored the utilization of Deep Convolutional Neural 
Networks (DCNNs), yielding promising results with an 
accuracy rate of 98.12% on the IoTID20 dataset. Song 
et al. [55] employed an Autoencoder (AE) to develop an 
IDS, and its classification performance was measured 
using the NSL-KDD, IoTID20, and N-BaIoT datasets. 
The corresponding accuracy rates were 88.7%, 95.2%, 
and 99.8%, respectively.
Ensemble learning-based techniques have also gar-
nered significant interest within the IDS research 
domain. Khraisat et al. [27] proposed a stacking tech-
nique, combining C5.0 Decision Tree and One-Class 
Support Vector Machines (One-Class SVMs), which 
demonstrated exceptional accuracy rates of 99.97% 
on the BoT-IoT dataset. Lian et al. [31] integrated the 
Decision Tree (DT) algorithm with Recursive Feature 

Elimination, resulting in notable enhancements in 
IDS performance.
Feature reduction techniques have proven to be vital 
in improving the efficiency of IDS. Alghanam et al. 
[4] devised an IDS utilizing the Isolation Forest (iF-
orest) method, complemented by the Local Search 
Algorithm-Pigeon-Inspired Optimization (LS-PIO) 
hybrid method for feature reduction. Ramana et al. 
[44] employed the Information Gain (IG) method for 
feature selection, combined with the Reinforcement 
Learning-Deep Q-Network (RL-DQN) method for 
classification. Qaddoura et al. [43] integrated K-means 
clustering for feature reduction and utilized Support 
Vector Machine-Synthetic Minority Over-Sampling 
Technique (SVM-SMOTE) to address imbalanced 
data distribution.
Community learning approaches have gained prom-
inence in IDS research endeavors. Seth et al. [50] ad-
opted a community learning approach by combining 
LightGBM and Histogram-Based Gradient Boosting 
(HBGB) methods, alongside Random Forest (RF) and 
Principal Component Analysis (PCA) for feature re-
duction.
Furthermore, researchers have proposed specialized 
algorithms specifically tailored for IDS. Saba et al. [49] 
presented an IDS based on the Enhanced Sequential 
Algorithm (ESA), specifically designed for IoT net-
works, with evaluations conducted on the Network 
Intrusion Detection (NID) and BoT-IoT datasets. 
Yang and Shami [65] employed the Optimized Adap-
tive and Sliding Window (OASW) method, along with 
Particle Swarm Optimization (PSO) and LightGBM, 
for effective attack detection, yielding remarkable ac-
curacy rates on the NSL-KDD and IoTID20 datasets. 
The literature indicates that IDSs have been proposed 
for detecting attacks on IoT networks, and machine 
learning and deep learning methods are commonly used 
in the attack classification stage. Various feature re-
duction and attack classification techniques have been 
proposed and evaluated on different datasets. However, 
the implementation of IDSs on IoT devices presents 
significant challenges due to the limited resources and 
computing power of these devices. As a result, the de-
velopment of IDS algorithms that are both accurate and 
lightweight is a crucial area of research for securing IoT 
networks. In addition, IDSs may suffer from high false 
positive rates, resulting in unnecessary alarms and dis-
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ruptions, when benign traffic is mistakenly classified as 
malicious. Another significant challenge is the lack of 
standardized datasets for evaluating IDS performance, 
and many studies use different datasets that may not be 
representative of real-world IoT network traffic. More-
over, new attack vectors and techniques are constantly 
being developed, and IDSs need to be updated continu-
ously to detect these emerging threats.

3. Material and Method
In this section, comprehensive information regarding 
the datasets utilized in the study was presented. Addi-
tionally, a comprehensive analysis of the methodolo-
gies implemented in the architecture of the proposed 
IDS was provided, elaborating on their operational 
principles.

3.1. Datasets Used in the Study
The proposed IDS in this study was trained and tested 
on the IoTID20 and BoT-IoT datasets. The IoTID20 
dataset was composed of data collected from various 
IoT devices, while the BoT-IoT dataset was generated 
in a controlled network environment. These datasets 
were chosen due to their distinct attack types and var-
ied sizes, enabling a comprehensive evaluation of the 
IDS’s performance across multiple scenarios. Using 
two distinct datasets also enhances the generalizability 
of the IDS’s performance across diverse IoT networks.
The IoTID20 dataset was generated using data col-
lected from a network consisting of SK Telecom 
Nugu (Nu-100) smart assistant, EZVIZ wireless se-
curity camera, laptops, and smartphones. It contains 

625,783 samples, of which 40,073 belong to the nor-
mal class, and 585,710 belong to the attack classes. 
The dataset comprises 84 attributes, except for the 
class label, which were obtained using the CICFlow-
Meter tool [29]. The IoTID20 dataset consists of five 
main classes: Normal (no attack), MITM (man-in-
the-middle attack), DoS (denial of service attack), 
Scan (scanning attack), and Mirai (botnet attack), 
with 40,073, 35,377, 59,391, 75,265, and 415,677 sam-
ples, respectively [21, 59].
The BoT-IoT dataset, on the other hand, was generat-
ed by creating a realistic network environment at the 
UNSW Canberra Cybersecurity Center and collecting 
3,668,522 samples from this network. Of these sam-
ples, 477 belong to the normal class, and 3,668,045 
belong to the attack classes. The dataset contains 42 
attributes, excluding the class label. The BoT-IoT 
dataset consists of five main classes: Normal, DoS, 
DDoS (distributed denial of service attack), Recon-
naissance (reconnaissance attack), and Theft (infor-
mation theft attack), with 477, 1,650,260, 1,926,624, 
91,082, and 79 samples, respectively [9, 28].

3.2. The Proposed Framework
This section presents a detailed description of the 
IDS developed using the methodologies discussed in 
the previous section. The study analyzes the results of 
multi-class attack classification carried out on the IoT-
ID20 and BoT-IoT datasets using the proposed model.  
The workflow of the proposed attack detection system 
is illustrated in Figure 1. As depicted in Figure 1, the 
proposed IDS comprises several stages, including data 
preprocessing, feature reduction/selection, data split-
ting, data balancing, and attack classification.

Figure 1 
The flow diagram for the proposed intrusion detection system
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3.2.1. Data Preprocessing
During the data preprocessing stage, the “Flow_ID”, 
“Dst_IP”, and “Src_IP” attributes in the IoTID20 
dataset, as well as the “pkSeqID”, “daddr”, and “saddr” 
attributes in the BoT-IoT dataset were removed since 
they are identity-based attributes that do not affect 
the classification performance. Categorical data in 
the datasets were converted into numerical values us-
ing the “LabelEncoder” class of the “sklearn” library 
[40]. In order to enhance the classification perfor-
mance of machine learning and deep learning models, 
it is necessary to scale the data within a certain range 
before presenting it to the models. The Z-score nor-
malization [35] method was used for data scaling in 
this study, utilizing the “StandardScaler” class of the 
“sklearn” library. Furthermore, the Z-score normal-
ization process was performed to normalize the dis-
tribution of the data, reducing their mutual influence.

3.2.2. Feature Reduction and Data Splitting
In this study, the PCA-BAT hybrid method was em-
ployed for feature reduction. The integration of PCA 
and BAT methods in this study yields significant ad-
vantages for feature reduction. PCA effectively man-
ages noisy data, mitigates overfitting, and enhances 
classification efficiency by simplifying computational 
complexity. However, it has limitations in capturing 
complex relationships in the data. To address this, 
the BAT algorithm is introduced as a complementa-
ry approach. While PCA excels at capturing linear 
relationships in data, BAT is proficient at capturing 
non-linear relationships and complex interactions. 
PCA maintains diversity by reducing correlations 
among individuals in the feature space, preventing 
premature convergence of the Bat Algorithm to local 
optima, and enabling exploration of a wider solution 
space. Additionally, PCA’s dimensionality reduction 
streamlines the Bat Algorithm’s search space, en-
hancing efficiency and reducing the risk of getting 
trapped in local optima [14].
PCA is a technique used to transform a high-dimen-
sional sample space, comprising multiple variables, 
into a lower-dimensional subspace. This subspace is 
constructed by generating linearly independent arti-
ficial variables known as principal components [26]. 
The primary objective of PCA is to reduce the dimen-
sionality of the data while preserving the essential 
information contained in the original dataset. By re-
ducing the number of variables, PCA simplifies the 

analysis process and enhances the visual representa-
tion of the data.
In Equation (1), matrix D represents a dataset con-
sisting of n samples and m features. To prevent bias 
during the application of PCA, it is necessary to scale 
the samples to a certain range [47]. For this purpose, 
the study utilized the Standard Scaler method pre-
sented in Equation (2), which was obtained using 
Equations (3)-(4).
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Scaling the data ensures that the dataset has a 
normal distribution with mean zero (0) and 
variance one (1). After normalization, the 
covariance matrix (𝑅𝑅) is calculated using 
Equation (5) to determine the correlation 
between the samples in the dataset. 
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To obtain the principal components of the 
samples in the dataset, the eigenvectors and 
eigenvalues of the covariance matrix obtained 
using Equation (5) must be calculated. This 
process is carried out using Equation (6), 
where 𝜆𝜆� represents the i-th eigenvalue of the 
covariance matrix and 𝑅𝑅� represents the 
corresponding eigenvector. The eigenvalues 
are sorted from largest to smallest and 𝑘𝑘 
eigenvectors corresponding to these 
eigenvalues are selected to perform 
dimensionality reduction on the original 𝐷𝐷 
matrix. Thus, a new 𝑊𝑊 matrix is obtained from 
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘 
uncorrelated principal components and 𝑛𝑛 
samples, with negligible loss of information 
[18, 63]. 

The threshold value for the total variance ratio 
that the principal components should explain 
was set to 0.99. This allowed for obtaining the 
principal components that can explain the 
highest possible total variance in the datasets 
with the least loss of information. The number 
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3.2.1. Data Preprocessing 

During the data preprocessing stage, the 
“Flow_ID”, “Dst_IP”, and “Src_IP” attributes in the 
IoTID20 dataset, as well as the “pkSeqID”, “daddr”, 
and “saddr” attributes in the BoT-IoT dataset were 
removed since they are identity-based attributes 
that do not affect the classification performance. 
Categorical data in the datasets were converted into 
numerical values using the “LabelEncoder” class of 
the “sklearn” library [40]. In order to enhance the 
classification performance of machine learning and 
deep learning models, it is necessary to scale the 
data within a certain range before presenting it to 
the models. The Z-score normalization [35] method 
was used for data scaling in this study, utilizing the 
“StandardScaler” class of the “sklearn” library. 
Furthermore, the Z-score normalization process 
was performed to normalize the distribution of the 
data, reducing their mutual influence. 

3.2.2. Feature Reduction and Data Splitting 

In this study, the PCA-BAT hybrid method was 
employed for feature reduction. The integration of 
PCA and BAT methods in this study yields 
significant advantages for feature reduction. PCA 
effectively manages noisy data, mitigates 
overfitting, and enhances classification efficiency by 
simplifying computational complexity. However, it 
has limitations in capturing complex relationships 
in the data. To address this, the BAT algorithm is 
introduced as a complementary approach. While 
PCA excels at capturing linear relationships in data, 
BAT is proficient at capturing non-linear 
relationships and complex interactions. PCA 
maintains diversity by reducing correlations among 
individuals in the feature space, preventing 
premature convergence of the Bat Algorithm to 
local optima, and enabling exploration of a wider 
solution space. Additionally, PCA's dimensionality 
reduction streamlines the Bat Algorithm's search 
space, enhancing efficiency and reducing the risk of 
getting trapped in local optima [14]. 

PCA is a technique used to transform a high-
dimensional sample space, comprising multiple 
variables, into a lower-dimensional subspace. This 
subspace is constructed by generating linearly 
independent artificial variables known as principal 
components [26]. The primary objective of PCA is 
to reduce the dimensionality of the data while 
preserving the essential information contained in 
the original dataset. By reducing the number of 
variables, PCA simplifies the analysis process and 
enhances the visual representation of the data. 

In Equation (1), matrix D represents a dataset 
consisting of n samples and m features. To prevent 

bias during the application of PCA, it is 
necessary to scale the samples to a certain 
range [47]. For this purpose, the study utilized 
the Standard Scaler method presented in 
Equation (2), which was obtained using 
Equations (3)-(4). 
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Here, 𝑥𝑥� represents the i-th sample in the 
dataset, 𝑧𝑧� represents the scaled data in the 
range of [-1, 1] after normalization, 𝜎𝜎 
represents the standard deviation of the 
samples in the dataset calculated using 
Equation (3), and 𝜇𝜇 represents the mean of the 
scaled samples obtained using Equation (4). 
Scaling the data ensures that the dataset has a 
normal distribution with mean zero (0) and 
variance one (1). After normalization, the 
covariance matrix (𝑅𝑅) is calculated using 
Equation (5) to determine the correlation 
between the samples in the dataset. 
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To obtain the principal components of the 
samples in the dataset, the eigenvectors and 
eigenvalues of the covariance matrix obtained 
using Equation (5) must be calculated. This 
process is carried out using Equation (6), 
where 𝜆𝜆� represents the i-th eigenvalue of the 
covariance matrix and 𝑅𝑅� represents the 
corresponding eigenvector. The eigenvalues 
are sorted from largest to smallest and 𝑘𝑘 
eigenvectors corresponding to these 
eigenvalues are selected to perform 
dimensionality reduction on the original 𝐷𝐷 
matrix. Thus, a new 𝑊𝑊 matrix is obtained from 
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘 
uncorrelated principal components and 𝑛𝑛 
samples, with negligible loss of information 
[18, 63]. 

The threshold value for the total variance ratio 
that the principal components should explain 
was set to 0.99. This allowed for obtaining the 
principal components that can explain the 
highest possible total variance in the datasets 
with the least loss of information. The number 
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3.2.1. Data Preprocessing 

During the data preprocessing stage, the 
“Flow_ID”, “Dst_IP”, and “Src_IP” attributes in the 
IoTID20 dataset, as well as the “pkSeqID”, “daddr”, 
and “saddr” attributes in the BoT-IoT dataset were 
removed since they are identity-based attributes 
that do not affect the classification performance. 
Categorical data in the datasets were converted into 
numerical values using the “LabelEncoder” class of 
the “sklearn” library [40]. In order to enhance the 
classification performance of machine learning and 
deep learning models, it is necessary to scale the 
data within a certain range before presenting it to 
the models. The Z-score normalization [35] method 
was used for data scaling in this study, utilizing the 
“StandardScaler” class of the “sklearn” library. 
Furthermore, the Z-score normalization process 
was performed to normalize the distribution of the 
data, reducing their mutual influence. 

3.2.2. Feature Reduction and Data Splitting 

In this study, the PCA-BAT hybrid method was 
employed for feature reduction. The integration of 
PCA and BAT methods in this study yields 
significant advantages for feature reduction. PCA 
effectively manages noisy data, mitigates 
overfitting, and enhances classification efficiency by 
simplifying computational complexity. However, it 
has limitations in capturing complex relationships 
in the data. To address this, the BAT algorithm is 
introduced as a complementary approach. While 
PCA excels at capturing linear relationships in data, 
BAT is proficient at capturing non-linear 
relationships and complex interactions. PCA 
maintains diversity by reducing correlations among 
individuals in the feature space, preventing 
premature convergence of the Bat Algorithm to 
local optima, and enabling exploration of a wider 
solution space. Additionally, PCA's dimensionality 
reduction streamlines the Bat Algorithm's search 
space, enhancing efficiency and reducing the risk of 
getting trapped in local optima [14]. 

PCA is a technique used to transform a high-
dimensional sample space, comprising multiple 
variables, into a lower-dimensional subspace. This 
subspace is constructed by generating linearly 
independent artificial variables known as principal 
components [26]. The primary objective of PCA is 
to reduce the dimensionality of the data while 
preserving the essential information contained in 
the original dataset. By reducing the number of 
variables, PCA simplifies the analysis process and 
enhances the visual representation of the data. 

In Equation (1), matrix D represents a dataset 
consisting of n samples and m features. To prevent 

bias during the application of PCA, it is 
necessary to scale the samples to a certain 
range [47]. For this purpose, the study utilized 
the Standard Scaler method presented in 
Equation (2), which was obtained using 
Equations (3)-(4). 
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Here, 𝑥𝑥� represents the i-th sample in the 
dataset, 𝑧𝑧� represents the scaled data in the 
range of [-1, 1] after normalization, 𝜎𝜎 
represents the standard deviation of the 
samples in the dataset calculated using 
Equation (3), and 𝜇𝜇 represents the mean of the 
scaled samples obtained using Equation (4). 
Scaling the data ensures that the dataset has a 
normal distribution with mean zero (0) and 
variance one (1). After normalization, the 
covariance matrix (𝑅𝑅) is calculated using 
Equation (5) to determine the correlation 
between the samples in the dataset. 
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𝑅𝑅𝑅𝑅� =  𝜆𝜆�𝑅𝑅�, 𝑖𝑖 = 1,2, … , 𝑚𝑚          (6) 

To obtain the principal components of the 
samples in the dataset, the eigenvectors and 
eigenvalues of the covariance matrix obtained 
using Equation (5) must be calculated. This 
process is carried out using Equation (6), 
where 𝜆𝜆� represents the i-th eigenvalue of the 
covariance matrix and 𝑅𝑅� represents the 
corresponding eigenvector. The eigenvalues 
are sorted from largest to smallest and 𝑘𝑘 
eigenvectors corresponding to these 
eigenvalues are selected to perform 
dimensionality reduction on the original 𝐷𝐷 
matrix. Thus, a new 𝑊𝑊 matrix is obtained from 
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘 
uncorrelated principal components and 𝑛𝑛 
samples, with negligible loss of information 
[18, 63]. 

The threshold value for the total variance ratio 
that the principal components should explain 
was set to 0.99. This allowed for obtaining the 
principal components that can explain the 
highest possible total variance in the datasets 
with the least loss of information. The number 
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Here, xi represents the i-th sample in the dataset, zi 
represents the scaled data in the range of [-1, 1] after 
normalization, σ represents the standard deviation of 
the samples in the dataset calculated using Equation 
(3), and μ represents the mean of the scaled samples 
obtained using Equation (4). Scaling the data ensures 
that the dataset has a normal distribution with mean 
zero (0) and variance one (1). After normalization, the 
covariance matrix (R) is calculated using Equation 
(5) to determine the correlation between the samples 
in the dataset.

  

3.2.1. Data Preprocessing 

During the data preprocessing stage, the 
“Flow_ID”, “Dst_IP”, and “Src_IP” attributes in the 
IoTID20 dataset, as well as the “pkSeqID”, “daddr”, 
and “saddr” attributes in the BoT-IoT dataset were 
removed since they are identity-based attributes 
that do not affect the classification performance. 
Categorical data in the datasets were converted into 
numerical values using the “LabelEncoder” class of 
the “sklearn” library [40]. In order to enhance the 
classification performance of machine learning and 
deep learning models, it is necessary to scale the 
data within a certain range before presenting it to 
the models. The Z-score normalization [35] method 
was used for data scaling in this study, utilizing the 
“StandardScaler” class of the “sklearn” library. 
Furthermore, the Z-score normalization process 
was performed to normalize the distribution of the 
data, reducing their mutual influence. 

3.2.2. Feature Reduction and Data Splitting 

In this study, the PCA-BAT hybrid method was 
employed for feature reduction. The integration of 
PCA and BAT methods in this study yields 
significant advantages for feature reduction. PCA 
effectively manages noisy data, mitigates 
overfitting, and enhances classification efficiency by 
simplifying computational complexity. However, it 
has limitations in capturing complex relationships 
in the data. To address this, the BAT algorithm is 
introduced as a complementary approach. While 
PCA excels at capturing linear relationships in data, 
BAT is proficient at capturing non-linear 
relationships and complex interactions. PCA 
maintains diversity by reducing correlations among 
individuals in the feature space, preventing 
premature convergence of the Bat Algorithm to 
local optima, and enabling exploration of a wider 
solution space. Additionally, PCA's dimensionality 
reduction streamlines the Bat Algorithm's search 
space, enhancing efficiency and reducing the risk of 
getting trapped in local optima [14]. 

PCA is a technique used to transform a high-
dimensional sample space, comprising multiple 
variables, into a lower-dimensional subspace. This 
subspace is constructed by generating linearly 
independent artificial variables known as principal 
components [26]. The primary objective of PCA is 
to reduce the dimensionality of the data while 
preserving the essential information contained in 
the original dataset. By reducing the number of 
variables, PCA simplifies the analysis process and 
enhances the visual representation of the data. 

In Equation (1), matrix D represents a dataset 
consisting of n samples and m features. To prevent 

bias during the application of PCA, it is 
necessary to scale the samples to a certain 
range [47]. For this purpose, the study utilized 
the Standard Scaler method presented in 
Equation (2), which was obtained using 
Equations (3)-(4). 
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Here, 𝑥𝑥� represents the i-th sample in the 
dataset, 𝑧𝑧� represents the scaled data in the 
range of [-1, 1] after normalization, 𝜎𝜎 
represents the standard deviation of the 
samples in the dataset calculated using 
Equation (3), and 𝜇𝜇 represents the mean of the 
scaled samples obtained using Equation (4). 
Scaling the data ensures that the dataset has a 
normal distribution with mean zero (0) and 
variance one (1). After normalization, the 
covariance matrix (𝑅𝑅) is calculated using 
Equation (5) to determine the correlation 
between the samples in the dataset. 
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To obtain the principal components of the 
samples in the dataset, the eigenvectors and 
eigenvalues of the covariance matrix obtained 
using Equation (5) must be calculated. This 
process is carried out using Equation (6), 
where 𝜆𝜆� represents the i-th eigenvalue of the 
covariance matrix and 𝑅𝑅� represents the 
corresponding eigenvector. The eigenvalues 
are sorted from largest to smallest and 𝑘𝑘 
eigenvectors corresponding to these 
eigenvalues are selected to perform 
dimensionality reduction on the original 𝐷𝐷 
matrix. Thus, a new 𝑊𝑊 matrix is obtained from 
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘 
uncorrelated principal components and 𝑛𝑛 
samples, with negligible loss of information 
[18, 63]. 

The threshold value for the total variance ratio 
that the principal components should explain 
was set to 0.99. This allowed for obtaining the 
principal components that can explain the 
highest possible total variance in the datasets 
with the least loss of information. The number 
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3.2.1. Data Preprocessing 

During the data preprocessing stage, the 
“Flow_ID”, “Dst_IP”, and “Src_IP” attributes in the 
IoTID20 dataset, as well as the “pkSeqID”, “daddr”, 
and “saddr” attributes in the BoT-IoT dataset were 
removed since they are identity-based attributes 
that do not affect the classification performance. 
Categorical data in the datasets were converted into 
numerical values using the “LabelEncoder” class of 
the “sklearn” library [40]. In order to enhance the 
classification performance of machine learning and 
deep learning models, it is necessary to scale the 
data within a certain range before presenting it to 
the models. The Z-score normalization [35] method 
was used for data scaling in this study, utilizing the 
“StandardScaler” class of the “sklearn” library. 
Furthermore, the Z-score normalization process 
was performed to normalize the distribution of the 
data, reducing their mutual influence. 

3.2.2. Feature Reduction and Data Splitting 

In this study, the PCA-BAT hybrid method was 
employed for feature reduction. The integration of 
PCA and BAT methods in this study yields 
significant advantages for feature reduction. PCA 
effectively manages noisy data, mitigates 
overfitting, and enhances classification efficiency by 
simplifying computational complexity. However, it 
has limitations in capturing complex relationships 
in the data. To address this, the BAT algorithm is 
introduced as a complementary approach. While 
PCA excels at capturing linear relationships in data, 
BAT is proficient at capturing non-linear 
relationships and complex interactions. PCA 
maintains diversity by reducing correlations among 
individuals in the feature space, preventing 
premature convergence of the Bat Algorithm to 
local optima, and enabling exploration of a wider 
solution space. Additionally, PCA's dimensionality 
reduction streamlines the Bat Algorithm's search 
space, enhancing efficiency and reducing the risk of 
getting trapped in local optima [14]. 

PCA is a technique used to transform a high-
dimensional sample space, comprising multiple 
variables, into a lower-dimensional subspace. This 
subspace is constructed by generating linearly 
independent artificial variables known as principal 
components [26]. The primary objective of PCA is 
to reduce the dimensionality of the data while 
preserving the essential information contained in 
the original dataset. By reducing the number of 
variables, PCA simplifies the analysis process and 
enhances the visual representation of the data. 

In Equation (1), matrix D represents a dataset 
consisting of n samples and m features. To prevent 

bias during the application of PCA, it is 
necessary to scale the samples to a certain 
range [47]. For this purpose, the study utilized 
the Standard Scaler method presented in 
Equation (2), which was obtained using 
Equations (3)-(4). 
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Here, 𝑥𝑥� represents the i-th sample in the 
dataset, 𝑧𝑧� represents the scaled data in the 
range of [-1, 1] after normalization, 𝜎𝜎 
represents the standard deviation of the 
samples in the dataset calculated using 
Equation (3), and 𝜇𝜇 represents the mean of the 
scaled samples obtained using Equation (4). 
Scaling the data ensures that the dataset has a 
normal distribution with mean zero (0) and 
variance one (1). After normalization, the 
covariance matrix (𝑅𝑅) is calculated using 
Equation (5) to determine the correlation 
between the samples in the dataset. 
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To obtain the principal components of the 
samples in the dataset, the eigenvectors and 
eigenvalues of the covariance matrix obtained 
using Equation (5) must be calculated. This 
process is carried out using Equation (6), 
where 𝜆𝜆� represents the i-th eigenvalue of the 
covariance matrix and 𝑅𝑅� represents the 
corresponding eigenvector. The eigenvalues 
are sorted from largest to smallest and 𝑘𝑘 
eigenvectors corresponding to these 
eigenvalues are selected to perform 
dimensionality reduction on the original 𝐷𝐷 
matrix. Thus, a new 𝑊𝑊 matrix is obtained from 
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘 
uncorrelated principal components and 𝑛𝑛 
samples, with negligible loss of information 
[18, 63]. 

The threshold value for the total variance ratio 
that the principal components should explain 
was set to 0.99. This allowed for obtaining the 
principal components that can explain the 
highest possible total variance in the datasets 
with the least loss of information. The number 
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To obtain the principal components of the samples in 
the dataset, the eigenvectors and eigenvalues of the 
covariance matrix obtained using Equation (5) must 
be calculated. This process is carried out using Equa-
tion (6), where λi represents the i-th eigenvalue of the 
covariance matrix and vi represents the correspond-
ing eigenvector. The eigenvalues are sorted from larg-
est to smallest and k eigenvectors corresponding to 
these eigenvalues are selected to perform dimension-
ality reduction on the original D matrix. Thus, a new  
W matrix is obtained from the original D matrix, con-
sisting of k uncorrelated principal components and n  
samples, with negligible loss of information [18, 63].
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The threshold value for the total variance ratio that 
the principal components should explain was set to 
0.99. This allowed for obtaining the principal compo-
nents that can explain the highest possible total vari-
ance in the datasets with the least loss of information. 
The number of principal components calculated for 
IoTID20 and BoT-IoT datasets, the variance ratios 
explained by the principal components, and the total 
variance explained by the principal components for 
each dataset are presented in Figures 2-3, respec-
tively. The results shown in Figures 2-3 indicate that 
even after applying the PCA method and reducing the 

Figure 2
The variance ratios explained by the principal components 
for the IoTID20 dataset

Figure 3
The variance ratios explained by the principal components 
for the BoT-IoT dataset

  

of principal components calculated for IoTID20 and 
BoT-IoT datasets, the variance ratios explained by 
the principal components, and the total variance 
explained by the principal components for each 
dataset are presented in Figures 2-3, respectively. 
The results shown in Figures 2-3 indicate that even 
after applying the PCA method and reducing the 
number of features, the total variance values that 
explain the datasets remain at a high level. 
Specifically, the number of features was reduced 
from 84 to 34 for the IoTID20 dataset and from 42 to 
24 for the BoT-IoT dataset.  Upon applying PCA, the 
obtained total explained variance values were 
0.99071 for the IoTID20 dataset and 0.99106 for the 
BoT-IoT dataset. These values indicate that a 
substantial portion of the original datasets' 
variability can be effectively captured by the 
retained principal components. 

Figure 2 

The variance ratios explained by the principal 
components for the IoTID20 dataset 

 
Figure 3 

The variance ratios explained by the principal 
components for the BoT-IoT dataset 

 

In the study, the BAT algorithm was used to 
select the most important new features among 
the features obtained by the PCA method. The 
BAT algorithm is a population-based 
metaheuristic method inspired by the 
echolocation behavior of bats in catching their 
prey. By iteratively adjusting the positions and 
frequencies of bats, it efficiently explores the 
search space and seeks optimal solutions. This 
characteristic renders BAT algorithm 
particularly well-suited for feature selection 
tasks [19, 38]. 

Bats emit high and short sound pulses around 
them. They use the echoes of these sound 
pulses that bounce back from objects to 
calculate the distance between objects, and 
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where At represents the average loudness of all bats 
at time step t, and ε is a random number in the range 
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searching for its prey. Bats can adjust the 
wavelength and the pulse emission rate (𝑟𝑟) of 
the pulses they emit [1, 38]. The velocity and 
position of the i-th bat at time step t are 
calculated using Equations (7)-(9) [36]. 
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where 𝑓𝑓��� and 𝑓𝑓��� are the minimum and 
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distribution in the range [0,1], and 𝑥𝑥������  is the 
global best solution in the 𝑡𝑡-th iteration. After 
obtaining the overall solution, a local random 
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generate a new solution for each bat. 
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study follows Algorithm 1, which outlines the 
step-by-step procedure for integrating PCA 
and the BAT algorithm to achieve improved 
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the principal components, and the total variance 
explained by the principal components for each 
dataset are presented in Figures 2-3, respectively. 
The results shown in Figures 2-3 indicate that even 
after applying the PCA method and reducing the 
number of features, the total variance values that 
explain the datasets remain at a high level. 
Specifically, the number of features was reduced 
from 84 to 34 for the IoTID20 dataset and from 42 to 
24 for the BoT-IoT dataset.  Upon applying PCA, the 
obtained total explained variance values were 
0.99071 for the IoTID20 dataset and 0.99106 for the 
BoT-IoT dataset. These values indicate that a 
substantial portion of the original datasets' 
variability can be effectively captured by the 
retained principal components. 

Figure 2 

The variance ratios explained by the principal 
components for the IoTID20 dataset 

 
Figure 3 

The variance ratios explained by the principal 
components for the BoT-IoT dataset 
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where α is a constant in the range [0,1], and γ is a pos-
itive constant.
The proposed PCA-BAT hybrid method in the study fol-
lows Algorithm 1, which outlines the step-by-step pro-
cedure for integrating PCA and the BAT algorithm to 
achieve improved feature selection and representation.

Algorithm 1. The hybrid PCA-BAT model for feature 
reduction
Input: Dataset D consisting of n samples and m fea-
tures, Number of principal components: k, Maximum 
number of iterations: max_iter, Termination criteri-
on: max_iter
Define_function PCA (D): Apply the PCA optimiza-
tion algorithm to the D matrix.
1: Normalize the dataset using the Standard Scaler 
method (Equations (2)-(4));
2: Calculate the covariance matrix (R) using Equation (5);
3: Obtain the eigenvectors and eigenvalues of the co-
variance matrix using Equation (6);
4: Sort the eigenvalues in descending order and select 
k eigenvectors corresponding to these eigenvalues;
5: Construct the projection matrix W consisting of the 
selected k eigenvectors;
Define_function BAT (W): Apply the BAT optimiza-
tion algorithm to the W matrix.
6: Fitness function f(x), x=(x1,…,xd)T, Initialize the 
bats’ positions (xi), frequencies (fi), wavelengths (λi), 
and sound intensities (Ai);
7: Evaluate all the elements in the population by fit-
ness function f(x);
8: Calculate the velocity (vi) and position (xi) of each 
bat using Equations (7)-(9);
9: If the random number (rand (0,1)) is greater than 
pulse emission rate (ri), calculate the average loudness 
(At) and update the bats’ positions using Equation (10);
10: If the random number (rand (0,1)) is lower than Ai 
and f(xi)<f(xgbest) Update the loudness (Ai) and pulse 
emission rate (ri) using Equations (11) and (12);
11: Repeat Steps 8-10 until convergence (max_iter);
Output: Reduced dataset D’

As seen in Algorithm 1, The PCA method is first used 
to extract the principal components that capture the 
maximum possible variance in the dataset with mini-
mal information loss. Then, the BAT optimization al-
gorithm is applied to further reduce the dimensional-
ity of the data by selecting the most relevant features 
based on the fitness function. This approach allows 
for efficient and effective feature reduction, which 
can lead to improved model performance and reduced 
computational complexity.
In the study, the Grid Search method [30] was used 
to determine the hyperparameter values used in the 
BAT algorithm. The “GridSearchCV” function of the 
“scikit-learn” library was used to perform this meth-
od. After the grid search process, the hyperparameter 
values obtained for the BAT algorithm are shown in 
Table 1.

Table 1
Hyperparameter values of the BAT method

Hyperparameter Selected value

Lowest frequency 0

Highest frequency 2

Loudness 1.00

Sound wavelength 0.15

Alpha 0.95

Gamma 0.5

Number of bats used 30

Number of iterations 50

Applying the BAT algorithm for each dataset using 
the hyperparameter values in Table 1, the highest fit-
ness rates and corresponding feature sets that led to 
these rates were obtained and presented in Table 2.

Table 2
The features obtained after the BAT algorithm

Dataset Fitness rate Features

IoTID20 0.96728720 PC0, PC3, PC8, PC9, PC10, PC20, 
PC22, PC25, PC28, PC29

BoT-IoT 0.97078535 PC3, PC8, PC11, PC13, PC15, 
PC16, PC20
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As seen in Table 2, the highest fitness rate after 50 it-
erations was achieved using 10 features for the IoT-
ID20 dataset and 7 features for the BoT-IoT dataset 
through the PCA-BAT algorithm. As a result, the 
number of features was reduced from 84 to 10 for the 
IoTID20 dataset and from 42 to 7 for the BoT-IoT 
dataset.
In this study, the “train_test_split” function of the 
“sklearn” library was used to randomly divide the 
samples in the datasets into 75% training and 25% 
testing sets. The number of samples in the resulting 
training and testing sets can be seen in Tables 3-4, re-
spectively.

3.2.3. Handling Imbalanced Data
The imbalanced distribution of samples in the classes 
of the datasets causes the majority classes to be more 
represented than the minority classes. This can cause 
bias in the classification model towards the more rep-
resented class, leading to a decrease in the classifica-
tion performance of the model, particularly for the 
minority classes. The imbalance ratios of the datasets 
considered in the study were calculated using Equa-
tion (13) which expresses the ratio of the number of 
samples belonging to the majority class to the number 
of samples belonging to the minority class.

  

 Figure 4 

 The general structure of the proposed CNN model 

Table 4 

The number of samples in the training and test 
datasets for the BoT-IoT dataset 

Class Training 
dataset 

Test 
dataset 

Total Rate 
(%) 

DDoS 1,444,775 481,849 1,926,624 52.518 
DoS 1,237,720 412,540 1,650,260 44.984 
Normal 358 119 477 0.013 
Reconna-
issance 

68,476 22,606 91,082 2.483 

Theft  62 17 79 0.002 

In this study, the “train_test_split” function of the 
“sklearn” library was used to randomly divide the 
samples in the datasets into 75% training and 25% 
testing sets. The number of samples in the resulting 
training and testing sets can be seen in Tables 3-4, 
respectively. 

Upon examination of Tables 3-4, it is evident that 
the data within the classes of both the training and 
testing sets are distributed unevenly. This 
imbalanced distribution could potentially affect the 
classification performance of the IDS model used in 
the study, especially for minority classes. 

3.2.3. Handling Imbalanced Data 

The imbalanced distribution of samples in the 
classes of the datasets causes the majority classes to 
be more represented than the minority classes. This 
can cause bias in the classification model towards 
the more represented class, leading to a decrease in 

the classification performance of the model, 
particularly for the minority classes. The 
imbalance ratios of the datasets considered in 
the study were calculated using Equation (13) 
which expresses the ratio of the number of 
samples belonging to the majority class to the 
number of samples belonging to the minority 
class. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 �_��������
�_��������

,        (13) 

where 𝑁𝑁_𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁 represents the number of 
samples in the majority class and 𝑁𝑁_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁 
represents the number of samples in the 
minority class [11]. As a result of the 
calculations using Equation (13), the 
imbalance ratio was obtained as 11.74 for the 
IoTID20 dataset and 24387.64 for the BoT-IoT 
dataset.  

Table 5 

The number of samples in the IoTID20 training 
dataset after applying the SMOTE method 

Class Before 
SMOTE 

After 
SMOTE 

DoS 44,284 311,993 
MITM 26,670 311,993 
Mirai 311,993 311,993 
Normal 30,136 311,993 
Scan 56,254 311,993 
Total number of 
samples 

469,337 1,559,965 

 
, (13)

where  N_majority represents the number of samples 
in the majority class and N_minority represents the 
number of samples in the minority class [11]. As a re-
sult of the calculations using Equation (13), the im-
balance ratio was obtained as 11.74 for the IoTID20 
dataset and 24387.64 for the BoT-IoT dataset. 
Considering the calculation results, it can be ob-
served that there is a significant imbalance between 
the classes, especially in the BoT-IoT dataset. To ad-
dress this data imbalance issue, The Synthetic Mi-
nority Over-Sampling Technique (SMOTE) method 
was used in the study. SMOTE is a technique that 
generates new synthetic samples through linear in-
terpolation between each sample (xi) in the minori-
ty class and its k-nearest minority class neighbors. 
This method enables the creation of a new balanced 
dataset with equal numbers of samples from each 
class by oversampling the minority class in datasets 
with imbalanced class distributions. This prepares 
the ground for a classification model that better rec-
ognizes the classes in the dataset by preventing the 
bias that can be exhibited towards the majority class 
[57, 67]. In SMOTE, the k-nearest minority neighbors 
of  xi  are determined by calculating the Euclidean 
distance between xi and each sample in the minority 
class. Random samples are selected from among the 
k-nearest minority neighbors of xi until the number of 
samples in each class is equal. New synthetic samples 
are obtained through the calculations performed us-
ing Equation (14).

  

Table 6 

The number of samples in the BoT-IoT training 
dataset after applying the SMOTE method 

Class Before 
SMOTE 

After 
SMOTE 

DDoS 1,444,775 1,444,775 
DoS 1,237,720 1,444,775 
Normal 358 1,444,775 
Reconnaissance 68,476 1,444,775 
Theft  62 1,444,775 
Total number of 
samples 

2,751,391 7,223,875 

Considering the calculation results, it can be 
observed that there is a significant imbalance 
between the classes, especially in the BoT-IoT 
dataset. To address this data imbalance issue, The 
Synthetic Minority Over-Sampling Technique 
(SMOTE) method was used in the study. SMOTE is 
a technique that generates new synthetic samples 
through linear interpolation between each sample 
(𝑥𝑥�) in the minority class and its k-nearest minority 
class neighbors. This method enables the creation of 
a new balanced dataset with equal numbers of 
samples from each class by oversampling the 
minority class in datasets with imbalanced class 
distributions. This prepares the ground for a 
classification model that better recognizes the 
classes in the dataset by preventing the bias that can 
be exhibited towards the majority class [57, 67]. In 
SMOTE, the k-nearest minority neighbors of 𝑥𝑥� are 
determined by calculating the Euclidean distance 
between 𝑥𝑥� and each sample in the minority class. 
Random samples are selected from among the k-
nearest minority neighbors of 𝑥𝑥� until the number of 
samples in each class is equal. New synthetic 
samples are obtained through the calculations 
performed using Equation (14). 

𝑥𝑥�������� = 𝑥𝑥� + (�̅�𝑥 − 𝑥𝑥�) ∙ 𝑟𝑟.     (14) 

Here, 𝑥𝑥�������� represents the new synthetic sample 
generated, 𝑥𝑥� represents the feature vector of the i-
th sample in the minority class, �̅�𝑥 represents a 
randomly selected sample from the k-nearest 
minority class neighbors of 𝑥𝑥, and 𝑟𝑟 represents a 
random number between 0 and 1 [12, 16]. 

In this context, the SMOTE method was applied to 
the IoTID20 and BoT-IoT training sets to generate 
synthetic new samples, which helped to balance the 
number of samples between classes. The number of 
new samples in the training sets after applying the 
SMOTE method is presented in Tables 5-6. As 
indicated in Tables 5-6, the SMOTE technique was 
employed to oversample the minority classes in the 
datasets, generating new synthetic samples and 
equalizing the sample sizes across all classes. In this 

way, the problem of class imbalance in the 
datasets was alleviated. 

3.2.4. Attack Classification 

In the attack classification phase of the study, 
the CNN method was employed. CNNs are 
deep learning methods that have found 
widespread application in various domains. 
The CNN approach offers several important 
advantages, including robust fault tolerance, 
parallel processing capabilities, local 
connection, weight sharing during 
convolution operations, and autonomous 
learning abilities. Furthermore, it excels at 
accurately extracting features from data while 
undergoing rapid training. These attributes 
make CNNs well-suited for addressing the 
challenges related to network intrusion 
detection in IoT environments. By utilizing 
CNNs, intrusion detection systems can 
effectively identify abnormal behavior and 
promptly detect emerging threats in real-time. 
These advanced systems provide enhanced 
accuracy, scalability, and adaptability, making 
them a promising solution for strengthening 
network security and mitigating the risks 
associated with evolving cyber threats [20, 32, 
61]. 

Typically, a CNN architecture comprises 
convolutional layers, activation layers, 
pooling layers, flattening layers, and fully 
connected layers [6, 33]. In the convolutional 
layer, a series of numerical filters called 
kernels are convolved with the input data to 
extract relevant features, leading to the 
creation of a feature map. The mathematical 
formulation for discrete-time and one-
dimensional convolution operation is given by 
Equation (15). 

𝑦𝑦(𝑡𝑡) = ∑ 𝑥𝑥(𝑎𝑎)𝑤𝑤(𝑡𝑡 − 𝑎𝑎)�
���� + 𝑏𝑏.       (15) 

Here, the input data is represented by 𝑥𝑥, and 
the kernel by 𝑤𝑤. The bias value is denoted by 
𝑏𝑏, while time is represented by 𝑡𝑡. The 
convolution operation is denoted by the 
symbol ∗, and the resulting output is 
represented by 𝑦𝑦(𝑡𝑡) [45, 62]. 

Activation functions are applied to the output 
of the convolutional layer in the activation 
layer. Sigmoid, 𝑡𝑡𝑎𝑎𝑡𝑡ℎ (hyperbolic tangent), and 
rectified linear unit (ReLU) are commonly 
used activation functions. However, ReLU is 
preferred due to its ability to prevent the 
gradient from vanishing, thus making the 
network easier to train [24, 37]. ReLU is 
defined mathematically using Equation (16). 

(14)

Table 3
The number of samples in the training and test datasets for 
the IoTID20 dataset

Class Training 
dataset

Test 
dataset Total Rate (%)

DoS 44,284 15,107 59,391 9.491

MITM 26,670 8,707 35,377 5.653

Mirai 311,993 103,684 415,677 66.425

Normal 30,136 9,937 40,073 6.404

Scan 56,254 19,011 75,265 12.027

Table 4
The number of samples in the training and test datasets for 
the BoT-IoT dataset

Class Training 
dataset

Test 
dataset Total Rate 

(%)

DDoS 1,444,775 481,849 1,926,624 52.518

DoS 1,237,720 412,540 1,650,260 44.984

Normal 358 119 477 0.013

Reconna-issance 68,476 22,606 91,082 2.483

Theft 62 17 79 0.002

Upon examination of Tables 3-4, it is evident that the 
data within the classes of both the training and test-
ing sets are distributed unevenly. This imbalanced 
distribution could potentially affect the classification 
performance of the IDS model used in the study, espe-
cially for minority classes.
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Here, xsentetik represents the new synthetic sample 
generated, xi represents the feature vector of the i-th 
sample in the minority class, _x represents a random-
ly selected sample from the k-nearest minority class 
neighbors of x, and r represents a random number be-
tween 0 and 1 [12, 16].

Table 5
The number of samples in the IoTID20 training dataset 
after applying the SMOTE method

Class Before SMOTE After SMOTE

DoS 44,284 311,993

MITM 26,670 311,993

Mirai 311,993 311,993

Normal 30,136 311,993

Scan 56,254 311,993

Total number of samples 469,337 1,559,965

Table 6
The number of samples in the BoT-IoT training dataset 
after applying the SMOTE method

Class Before SMOTE After SMOTE

DDoS 1,444,775 1,444,775

DoS 1,237,720 1,444,775

Normal 358 1,444,775

Reconnaissance 68,476 1,444,775

Theft 62 1,444,775

Total number of samples 2,751,391 7,223,875

In this context, the SMOTE method was applied to 
the IoTID20 and BoT-IoT training sets to gener-
ate synthetic new samples, which helped to balance 
the number of samples between classes. The num-
ber of new samples in the training sets after apply-
ing the SMOTE method is presented in Tables 5-6. 
As indicated in Tables 5-6, the SMOTE technique 
was employed to oversample the minority classes in 
the datasets, generating new synthetic samples and 
equalizing the sample sizes across all classes. In this 
way, the problem of class imbalance in the datasets 
was alleviated.

3.2.4. Attack Classification
In the attack classification phase of the study, the 
CNN method was employed. CNNs are deep learning 
methods that have found widespread application in 
various domains. The CNN approach offers several 
important advantages, including robust fault toler-
ance, parallel processing capabilities, local connec-
tion, weight sharing during convolution operations, 
and autonomous learning abilities. Furthermore, it 
excels at accurately extracting features from data 
while undergoing rapid training. These attributes 
make CNNs well-suited for addressing the challeng-
es related to network intrusion detection in IoT en-
vironments. By utilizing CNNs, intrusion detection 
systems can effectively identify abnormal behavior 
and promptly detect emerging threats in real-time. 
These advanced systems provide enhanced accuracy, 
scalability, and adaptability, making them a promis-
ing solution for strengthening network security and 
mitigating the risks associated with evolving cyber 
threats [20, 32, 61].
Typically, a CNN architecture comprises convolu-
tional layers, activation layers, pooling layers, flat-
tening layers, and fully connected layers [6, 33]. In 
the convolutional layer, a series of numerical filters 
called kernels are convolved with the input data to 
extract relevant features, leading to the creation of a 
feature map. The mathematical formulation for dis-
crete-time and one-dimensional convolution opera-
tion is given by Equation (15).

  

Table 6 

The number of samples in the BoT-IoT training 
dataset after applying the SMOTE method 

Class Before 
SMOTE 

After 
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DDoS 1,444,775 1,444,775 
DoS 1,237,720 1,444,775 
Normal 358 1,444,775 
Reconnaissance 68,476 1,444,775 
Theft  62 1,444,775 
Total number of 
samples 

2,751,391 7,223,875 

Considering the calculation results, it can be 
observed that there is a significant imbalance 
between the classes, especially in the BoT-IoT 
dataset. To address this data imbalance issue, The 
Synthetic Minority Over-Sampling Technique 
(SMOTE) method was used in the study. SMOTE is 
a technique that generates new synthetic samples 
through linear interpolation between each sample 
(𝑥𝑥�) in the minority class and its k-nearest minority 
class neighbors. This method enables the creation of 
a new balanced dataset with equal numbers of 
samples from each class by oversampling the 
minority class in datasets with imbalanced class 
distributions. This prepares the ground for a 
classification model that better recognizes the 
classes in the dataset by preventing the bias that can 
be exhibited towards the majority class [57, 67]. In 
SMOTE, the k-nearest minority neighbors of 𝑥𝑥� are 
determined by calculating the Euclidean distance 
between 𝑥𝑥� and each sample in the minority class. 
Random samples are selected from among the k-
nearest minority neighbors of 𝑥𝑥� until the number of 
samples in each class is equal. New synthetic 
samples are obtained through the calculations 
performed using Equation (14). 

𝑥𝑥�������� = 𝑥𝑥� + (�̅�𝑥 − 𝑥𝑥�) ∙ 𝑟𝑟.     (14) 

Here, 𝑥𝑥�������� represents the new synthetic sample 
generated, 𝑥𝑥� represents the feature vector of the i-
th sample in the minority class, �̅�𝑥 represents a 
randomly selected sample from the k-nearest 
minority class neighbors of 𝑥𝑥, and 𝑟𝑟 represents a 
random number between 0 and 1 [12, 16]. 

In this context, the SMOTE method was applied to 
the IoTID20 and BoT-IoT training sets to generate 
synthetic new samples, which helped to balance the 
number of samples between classes. The number of 
new samples in the training sets after applying the 
SMOTE method is presented in Tables 5-6. As 
indicated in Tables 5-6, the SMOTE technique was 
employed to oversample the minority classes in the 
datasets, generating new synthetic samples and 
equalizing the sample sizes across all classes. In this 

way, the problem of class imbalance in the 
datasets was alleviated. 

3.2.4. Attack Classification 

In the attack classification phase of the study, 
the CNN method was employed. CNNs are 
deep learning methods that have found 
widespread application in various domains. 
The CNN approach offers several important 
advantages, including robust fault tolerance, 
parallel processing capabilities, local 
connection, weight sharing during 
convolution operations, and autonomous 
learning abilities. Furthermore, it excels at 
accurately extracting features from data while 
undergoing rapid training. These attributes 
make CNNs well-suited for addressing the 
challenges related to network intrusion 
detection in IoT environments. By utilizing 
CNNs, intrusion detection systems can 
effectively identify abnormal behavior and 
promptly detect emerging threats in real-time. 
These advanced systems provide enhanced 
accuracy, scalability, and adaptability, making 
them a promising solution for strengthening 
network security and mitigating the risks 
associated with evolving cyber threats [20, 32, 
61]. 

Typically, a CNN architecture comprises 
convolutional layers, activation layers, 
pooling layers, flattening layers, and fully 
connected layers [6, 33]. In the convolutional 
layer, a series of numerical filters called 
kernels are convolved with the input data to 
extract relevant features, leading to the 
creation of a feature map. The mathematical 
formulation for discrete-time and one-
dimensional convolution operation is given by 
Equation (15). 

𝑦𝑦(𝑡𝑡) = ∑ 𝑥𝑥(𝑎𝑎)𝑤𝑤(𝑡𝑡 − 𝑎𝑎)�
���� + 𝑏𝑏.       (15) 

Here, the input data is represented by 𝑥𝑥, and 
the kernel by 𝑤𝑤. The bias value is denoted by 
𝑏𝑏, while time is represented by 𝑡𝑡. The 
convolution operation is denoted by the 
symbol ∗, and the resulting output is 
represented by 𝑦𝑦(𝑡𝑡) [45, 62]. 

Activation functions are applied to the output 
of the convolutional layer in the activation 
layer. Sigmoid, 𝑡𝑡𝑎𝑎𝑡𝑡ℎ (hyperbolic tangent), and 
rectified linear unit (ReLU) are commonly 
used activation functions. However, ReLU is 
preferred due to its ability to prevent the 
gradient from vanishing, thus making the 
network easier to train [24, 37]. ReLU is 
defined mathematically using Equation (16). 
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to prevent the gradient from vanishing, thus making 
the network easier to train [24, 37]. ReLU is defined 
mathematically using Equation (16).
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where 𝛽𝛽 is the input to the activation function, and 
the output is the maximum of 0 and the input 𝛽𝛽. 

The pooling layer is used to reduce the 
dimensionality of the feature maps obtained from 
the convolutional layer. Maximum pooling is 
typically preferred over average pooling in CNNs 
[67]. The pooling layer reduces the input feature 
map's dimensionality by considering a pooling 
window, performing a maximum operation, and 
replacing the values with the maximum value. This 
preserves the most important features of the input 
data, leading to faster learning and preventing 
overfitting. The mathematical formulation for one-
dimensional maximum pooling is given by 
Equation (17).  

𝑂𝑂𝑚𝑚𝑂𝑂𝑂𝑂𝑚𝑚𝑂𝑂[𝑚𝑚] =  𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼𝐼𝐼𝑂𝑂𝑚𝑚𝑂𝑂[𝑠𝑠 ∗ 𝑚𝑚 ∶  𝑠𝑠 ∗ 𝑚𝑚 + 𝑓𝑓]),  (17) 

where 𝑚𝑚 is the index of the output feature map, 𝑓𝑓 is 
the pooling window size, and 𝑠𝑠 is the pooling stride 
[58, 66]. 

In the flattening layer, multidimensional data from 
the previous layers are converted into one-
dimensional data by rearranging the data into a 
sequence of one-dimensional elements. This step 
prepares the data for the fully connected layer, 
which operates on one-dimensional data [33]. 

The fully connected layer, also referred to as the 
dense layer, plays a fundamental role in numerous 
deep learning architectures. It establishes 
connections between all the neurons in the current 
layer and those in the preceding layer, enabling the 
extraction of intricate features from high-
dimensional data. Within this layer, the input data 
undergoes a multiplication operation with weights 
acquired by the model, followed by the addition of 
a bias value, prior to being fed through an activation 
function. The outcome of this layer is employed to 
obtain the ultimate classification result [24, 37].  

The general structure and process steps of the CNN 
method used in the study are presented in Figure 4. 
In the proposed CNN model, as seen in Figure 4, 
there are three convolutional layers. After each 
convolutional layer, data normalization is 
performed using batch normalization to improve 
the network's performance and processing speed 
during training, as well as to prevent the problems 
of gradient explosion and vanishing gradient. 
Following the batch normalization process, an 
activation layer and a pooling layer are used in the 
proposed model. ReLU is used as the activation 
function, and maximum pooling is used for the 
pooling process. After the data is flattened by the 
flatten layer, it is made suitable for the fully 

connected layer. Three fully connected layers 
are used, and after each fully connected layer, 
an activation layer is used. ReLU is used as the 
activation function in the first two activation 
layers, while Softmax activation function is 
used in the last activation layer with the 
number of neurons equal to the number of 
classes in the dataset. The hyperparameter 
configuration of the CNN method is 
determined using Grid Search method and the 
experimental studies in the literature. The 
hyperparameters used in the layers of CNN in 
the study and their corresponding values are 
presented in Table 7.  

  Table 7 

  Hyperparameters used in the CNN model 
Hyperparameter Selected value 

Kernel size (Convolution 
layer) 

6 

Activation function 
(Convolution layer) 

ReLU 

Number of filters 
(Convolution layer) 

64 

Stride (Convolution layer) 1 
Momentum 0.9 
Epsilon 0.0001 
Number of neurons (Fully 
connected layer) 

64 (first two 
layers), 5 (last 
layer) 

Activation function (Fully 
connected layer) 

ReLU (first two 
layers), Softmax 
(last layer) 

Optimization method Adam (learning 
rate: 0.001) 

Loss function 
Categorical cross 
entropy 

Batch size 64 
Number of epochs 500 

In addition to the hyperparameters detailed in 
Table 7, the “early stop” function of the 
“Keras” library [13, 42] was used in this study. 
The training process was initialized with 500 
epochs and the “early stop” mechanism was 
implemented using a predefined threshold of 
20. This approach aims to minimize the risk of 
overfitting by terminating the training process 
when the model reaches the epoch value of a 
certain performance threshold. Within the 
training dataset, a special subset containing 
20% of the samples is reserved as validation 
data. At any point in the training phase, the 
training process was terminated if no 
reduction in “validation loss” was observed 
during the previous 20 epochs.  

(16)
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where β is the input to the activation function, and the 
output is the maximum of 0 and the input β.
The pooling layer is used to reduce the dimensionality 
of the feature maps obtained from the convolutional 
layer. Maximum pooling is typically preferred over av-
erage pooling in CNNs [67]. The pooling layer reduces 
the input feature map’s dimensionality by consider-
ing a pooling window, performing a maximum opera-
tion, and replacing the values with the maximum val-
ue. This preserves the most important features of the 
input data, leading to faster learning and preventing 
overfitting. The mathematical formulation for one-di-
mensional maximum pooling is given by Equation (17). 
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where 𝑚𝑚 is the index of the output feature map, 𝑓𝑓 is 
the pooling window size, and 𝑠𝑠 is the pooling stride 
[58, 66]. 

In the flattening layer, multidimensional data from 
the previous layers are converted into one-
dimensional data by rearranging the data into a 
sequence of one-dimensional elements. This step 
prepares the data for the fully connected layer, 
which operates on one-dimensional data [33]. 

The fully connected layer, also referred to as the 
dense layer, plays a fundamental role in numerous 
deep learning architectures. It establishes 
connections between all the neurons in the current 
layer and those in the preceding layer, enabling the 
extraction of intricate features from high-
dimensional data. Within this layer, the input data 
undergoes a multiplication operation with weights 
acquired by the model, followed by the addition of 
a bias value, prior to being fed through an activation 
function. The outcome of this layer is employed to 
obtain the ultimate classification result [24, 37].  

The general structure and process steps of the CNN 
method used in the study are presented in Figure 4. 
In the proposed CNN model, as seen in Figure 4, 
there are three convolutional layers. After each 
convolutional layer, data normalization is 
performed using batch normalization to improve 
the network's performance and processing speed 
during training, as well as to prevent the problems 
of gradient explosion and vanishing gradient. 
Following the batch normalization process, an 
activation layer and a pooling layer are used in the 
proposed model. ReLU is used as the activation 
function, and maximum pooling is used for the 
pooling process. After the data is flattened by the 
flatten layer, it is made suitable for the fully 

connected layer. Three fully connected layers 
are used, and after each fully connected layer, 
an activation layer is used. ReLU is used as the 
activation function in the first two activation 
layers, while Softmax activation function is 
used in the last activation layer with the 
number of neurons equal to the number of 
classes in the dataset. The hyperparameter 
configuration of the CNN method is 
determined using Grid Search method and the 
experimental studies in the literature. The 
hyperparameters used in the layers of CNN in 
the study and their corresponding values are 
presented in Table 7.  
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Hyperparameter Selected value 

Kernel size (Convolution 
layer) 
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Activation function 
(Convolution layer) 
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(Convolution layer) 
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Momentum 0.9 
Epsilon 0.0001 
Number of neurons (Fully 
connected layer) 

64 (first two 
layers), 5 (last 
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Activation function (Fully 
connected layer) 

ReLU (first two 
layers), Softmax 
(last layer) 

Optimization method Adam (learning 
rate: 0.001) 

Loss function 
Categorical cross 
entropy 

Batch size 64 
Number of epochs 500 

In addition to the hyperparameters detailed in 
Table 7, the “early stop” function of the 
“Keras” library [13, 42] was used in this study. 
The training process was initialized with 500 
epochs and the “early stop” mechanism was 
implemented using a predefined threshold of 
20. This approach aims to minimize the risk of 
overfitting by terminating the training process 
when the model reaches the epoch value of a 
certain performance threshold. Within the 
training dataset, a special subset containing 
20% of the samples is reserved as validation 
data. At any point in the training phase, the 
training process was terminated if no 
reduction in “validation loss” was observed 
during the previous 20 epochs.  
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where i is the index of the output feature map, f is the 
pooling window size, and s is the pooling stride [58, 66].
In the flattening layer, multidimensional data from 
the previous layers are converted into one-dimen-
sional data by rearranging the data into a sequence 
of one-dimensional elements. This step prepares the 
data for the fully connected layer, which operates on 
one-dimensional data [33].

Figure 4
The general structure of the proposed CNN model

  

 Figure 4 

 The general structure of the proposed CNN model 

Table 4 

The number of samples in the training and test 
datasets for the BoT-IoT dataset 

Class Training 
dataset 

Test 
dataset 

Total Rate 
(%) 

DDoS 1,444,775 481,849 1,926,624 52.518 
DoS 1,237,720 412,540 1,650,260 44.984 
Normal 358 119 477 0.013 
Reconna-
issance 

68,476 22,606 91,082 2.483 

Theft  62 17 79 0.002 

In this study, the “train_test_split” function of the 
“sklearn” library was used to randomly divide the 
samples in the datasets into 75% training and 25% 
testing sets. The number of samples in the resulting 
training and testing sets can be seen in Tables 3-4, 
respectively. 

Upon examination of Tables 3-4, it is evident that 
the data within the classes of both the training and 
testing sets are distributed unevenly. This 
imbalanced distribution could potentially affect the 
classification performance of the IDS model used in 
the study, especially for minority classes. 

3.2.3. Handling Imbalanced Data 

The imbalanced distribution of samples in the 
classes of the datasets causes the majority classes to 
be more represented than the minority classes. This 
can cause bias in the classification model towards 
the more represented class, leading to a decrease in 

the classification performance of the model, 
particularly for the minority classes. The 
imbalance ratios of the datasets considered in 
the study were calculated using Equation (13) 
which expresses the ratio of the number of 
samples belonging to the majority class to the 
number of samples belonging to the minority 
class. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 �_��������
�_��������

,        (13) 

where 𝑁𝑁_𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁 represents the number of 
samples in the majority class and 𝑁𝑁_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁 
represents the number of samples in the 
minority class [11]. As a result of the 
calculations using Equation (13), the 
imbalance ratio was obtained as 11.74 for the 
IoTID20 dataset and 24387.64 for the BoT-IoT 
dataset.  

Table 5 

The number of samples in the IoTID20 training 
dataset after applying the SMOTE method 

Class Before 
SMOTE 

After 
SMOTE 

DoS 44,284 311,993 
MITM 26,670 311,993 
Mirai 311,993 311,993 
Normal 30,136 311,993 
Scan 56,254 311,993 
Total number of 
samples 

469,337 1,559,965 

The fully connected layer, also referred to as the dense 
layer, plays a fundamental role in numerous deep 
learning architectures. It establishes connections be-
tween all the neurons in the current layer and those 
in the preceding layer, enabling the extraction of in-
tricate features from high-dimensional data. Within 
this layer, the input data undergoes a multiplication 
operation with weights acquired by the model, fol-
lowed by the addition of a bias value, prior to being fed 
through an activation function. The outcome of this 
layer is employed to obtain the ultimate classification 
result [24, 37]. 
The general structure and process steps of the CNN 
method used in the study are presented in Figure 4. 
In the proposed CNN model, as seen in Figure 4, there 
are three convolutional layers. After each convolu-
tional layer, data normalization is performed using 
batch normalization to improve the network’s perfor-
mance and processing speed during training, as well 
as to prevent the problems of gradient explosion and 
vanishing gradient. Following the batch normaliza-
tion process, an activation layer and a pooling layer 
are used in the proposed model. ReLU is used as the 
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activation function, and maximum pooling is used for 
the pooling process. After the data is flattened by the 
flatten layer, it is made suitable for the fully connect-
ed layer. Three fully connected layers are used, and 
after each fully connected layer, an activation layer 
is used. ReLU is used as the activation function in the 
first two activation layers, while Softmax activation 
function is used in the last activation layer with the 
number of neurons equal to the number of classes in 
the dataset. The hyperparameter configuration of the 
CNN method is determined using Grid Search meth-
od and the experimental studies in the literature. The 
hyperparameters used in the layers of CNN in the 
study and their corresponding values are presented in 
Table 7. 
In addition to the hyperparameters detailed in Ta-
ble 7, the “early stop” function of the “Keras” library 
[13, 42] was used in this study. The training process 
was initialized with 500 epochs and the “early stop” 
mechanism was implemented using a predefined 
threshold of 20. This approach aims to minimize the 

Hyperparameter Selected value

Kernel size (Convolution layer) 6

Activation function 
(Convolution layer)

ReLU

Number of filters (Convolution 
layer)

64

Stride (Convolution layer) 1

Momentum 0.9

Epsilon 0.0001

Number of neurons (Fully 
connected layer)

64 (first two layers), 5 
(last layer)

Activation function (Fully 
connected layer)

ReLU (first two layers), 
Softmax (last layer)

Optimization method Adam (learning rate: 
0.001)

Loss function Categorical cross 
entropy

Batch size 64

Number of epochs 500

Table 7
Hyperparameters used in the CNN model

risk of overfitting by terminating the training process 
when the model reaches the epoch value of a certain 
performance threshold. Within the training dataset, 
a special subset containing 20% of the samples is re-
served as validation data. At any point in the training 
phase, the training process was terminated if no re-
duction in “validation loss” was observed during the 
previous 20 epochs. 
In order to comprehensively evaluate the recom-
mended classification model, k-fold cross-validation 
method [46] was employed on the training dataset. 
Taking into account the resource constraints often 
encountered in IoT networks the default k=5 value 
provided by the scikit-learn library was preferred in 
this study instead of a higher k value to avoid unnec-
essary computational complexity and cost [51, 53]. 
The training data was divided into 5 distinct folds, 
each of which served for an individual experiment.

4. Performance Evaluation and 
Experimental Results
The proposed IDS in this study was developed using 
a personal computer equipped with an AMD Ryzen 
Pro 3.70 GHz processor, 32 GB RAM, and a 64-bit 
Windows operating system, using the Python pro-
gramming language through the Anaconda platform 
[48]. The performance of the proposed model was 
evaluated using several metrics, including accuracy, 
precision, recall, and F1-score, which were calculated 
using Equations (18)-(21), respectively.
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.   (21) 

Here, TP (True Positive) represents the number of 
samples that are correctly classified as positive by 
the model and are actually positive, FP (False 
Positive) represents the number of samples that are 
incorrectly classified as positive by the model but 
are actually negative, FN (False Negative) 

represents the number of samples that are 
incorrectly classified as negative by the model 
but are actually positive, and TN (True 
Negative) represents the number of samples 
that are correctly classified as negative by the 
model and are actually negative. Figures 5-6 
display confusion matrices, while Tables 8-9 
present performance metrics of the proposed 
IDS for the IoTID20 and BoT-IoT datasets, 
respectively.  

In addition, the study analyzed the effects of 
feature reduction and data balancing methods 
used in the proposed IDS on classification 
performance by applying two different 
scenarios on the IoTID20 and BoT-IoT 
datasets. For Scenario 1, the attack 
classification was tested by applying only the 
feature reduction process without data 
balancing on the relevant datasets. For 
Scenario 2, the attack classification was tested 
without applying data balancing and feature 
reduction processes on the datasets. The 
results obtained by applying Scenario 1 and 
Scenario 2 on the IoTID20 dataset are 
presented in Tables 10-11, respectively. 
Similarly, the results obtained by applying 
Scenario 1 and Scenario 2 on the BoT-IoT 
dataset are presented in Tables 12-13, 
respectively. When comparing the 
performance results in Tables 10-13 for 
Scenarios 1-2 with the performance results in 
Tables 8-9 for the proposed IDS in the study, it 
can be seen that performing classification 
without data balancing significantly reduces 
precision, recall, and F1-score values, 
especially for minority classes such as the 
Theft. Additionally, it is observed that feature 
reduction significantly reduces training time, 
while data balancing increases training time 
due to oversampling. 

Table 8 

Classification performance metric values of the proposed model for the IoTID20 dataset 

 

 

 

 
 

 

 

Table 9

Category Accuracy 
(%) 

Precision 
(%) 

Recall  
(%) 

F1-Score  
(%) 

Number of 
samples 

Training 
time (s) 

Model 99.967 99.790 99.696 99.743 156,354 13,818 
DoS 99.980 99.960 99.828 99.894 14,848 

 
MITM 99.956 99.655 99.552 99.604 8,844 
Mirai 99.820 99.865 99.863 99.864 103,828 
Normal 99.879 98.594 99.507 99.048 10,018 
Scan 99.880 99.668 99.348 99.507 18,816 

(18)
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can be seen that performing classification 
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Theft. Additionally, it is observed that feature 
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Here, TP (True Positive) represents the number of 
samples that are correctly classified as positive by the 
model and are actually positive, FP (False Positive) 
represents the number of samples that are incorrect-
ly classified as positive by the model but are actually 
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negative, FN (False Negative) represents the number 
of samples that are incorrectly classified as negative 
by the model but are actually positive, and TN (True 
Negative) represents the number of samples that are 
correctly classified as negative by the model and are 
actually negative. Figures 5-6 display confusion ma-
trices, while Tables 8-9 present performance metrics 
of the proposed IDS for the IoTID20 and BoT-IoT 
datasets, respectively. 
In addition, the study analyzed the effects of feature 
reduction and data balancing methods used in the 
proposed IDS on classification performance by ap-
plying two different scenarios on the IoTID20 and 
BoT-IoT datasets. For Scenario 1, the attack clas-
sification was tested by applying only the feature 
reduction process without data balancing on the 
relevant datasets. For Scenario 2, the attack classi-
fication was tested without applying data balancing 
and feature reduction processes on the datasets. 

Table 8
Classification performance metric values of the proposed model for the IoTID20 dataset

Category Accuracy  
(%)

Precision  
(%)

Recall 
(%)

F1-Score 
(%)

Number of 
samples

Training  
time (s)

Model 99.967 99.790 99.696 99.743 156,354 13,818

DoS 99.980 99.960 99.828 99.894 14,848

MITM 99.956 99.655 99.552 99.604 8,844

Mirai 99.820 99.865 99.863 99.864 103,828

Normal 99.879 98.594 99.507 99.048 10,018

Scan 99.880 99.668 99.348 99.507 18,816

Table 9
Classification performance metric values of the proposed model for the BoT-IoT dataset

Category Accuracy  
(%)

Precision  
(%)

Recall 
(%)

F1-Score 
(%)

Number of 
samples

Training  
time (s)

Model 99.984 99.982 99.982 99.982 917,131 20,466

DDoS 99.984 99.992 99.978 99.985 481,849

DoS 99.983 99.974 99.988 99.981 412,540

Reconnaissance 99.999 95.161 99.160 97.119 119

Normal 99.997 99.920 99.978 99.949 22,606

Theft 99.999 99.999 76.471 86.667 17

Figure 5
Confusion matrix of the proposed IDS for the IoTID20 dataset
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In this study, a comprehensive comparison was 
made with different state-of-the-art machine 
learning methods including DT, AdaBoost, Logistic 
Regression (LR), Gaussian Naive Bayes (Gaussian 
NB), K-Nearest Neighbors (KNN), SVM, and RF 
[10] to evaluate the performance of the CNN 
method used for the attack classification of the 
proposed IDS. This evaluation was carried out on 
IoTID20 and BoT-IoT datasets, which were 
subjected to feature reduction with PCA-BAT 
hybrid technique and data stabilization with 
SMOTE method. The results obtained from this 
evaluation are presented in Figures 7-8. The 
comparative analysis results shown in Figures 7-8 
reveal that the CNN method used in the proposed 
IDS outperforms other state-of-the-art techniques. 
Moreover, Tables 14-15 provide a comprehensive 

evaluation of the accuracy performance of the 
proposed IDS in comparison to the IDSs 
utilized in previous studies on the IoTID20 
and BoT-IoT datasets for attack classification. 
Upon analyzing Tables 14-15, it is seen that the 
IDS model proposed in this study outperforms 
previous IDS studies on IoTID20 and BoT-IoT 
datasets in terms of classification accuracy. 
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The results obtained by applying Scenario 1 and 
Scenario 2 on the IoTID20 dataset are presented 
in Tables 10-11, respectively. Similarly, the results 
obtained by applying Scenario 1 and Scenario 2 on 
the BoT-IoT dataset are presented in Tables 12-13, 
respectively. When comparing the performance re-
sults in Tables 10-13 for Scenarios 1-2 with the per-
formance results in Tables 8-9 for the proposed IDS 
in the study, it can be seen that performing classifi-
cation without data balancing significantly reduces 
precision, recall, and F1-score values, especially for 
minority classes such as the Theft. Additionally, it 
is observed that feature reduction significantly re-
duces training time, while data balancing increases 
training time due to oversampling.
In this study, a comprehensive comparison was 
made with different state-of-the-art machine learn-
ing methods including DT, AdaBoost, Logistic Re-
gression (LR), Gaussian Naive Bayes (Gaussian NB), 

Table 10
Performance metrics obtained as a result of the implementation of Scenario 1 for the IoTID20 dataset

Category Accuracy  
(%)

Precision  
(%)

Recall 
(%)

F1-Score 
(%)

Number of 
samples

Training time 
(s)

Model 99.720 99.569 99.570 99.569 156,354 7,154

DoS 99.973 99.914 99.808 99.861 14,848

MITM 99.889 99.023 98.989 99.006 8,844

Mirai 99.643 99.677 99.785 99.731 103,828

Normal 99.822 98.768 98.420 98.594 10,018

Scan 99.813 99.383 99.079 99.231 18,816

Table 11
Performance metrics obtained as a result of the implementation of Scenario 2 for the IoTID20 dataset

Category Accuracy  
(%)

Precision  
(%)

Recall 
(%)

F1-Score 
(%)

Number of 
samples

Training time 
(s)

Model 98.146 97.480 97.254 97.290 156,354 16,378

DoS 99.962 99.993 99.616 99.804 14,848

MITM 99.240 99.828 86.494 92.684 8,844

Mirai 97.563 98.894 97.413 98.148 103,828

Normal 98.601 83.118 97.856 89.887 10,018

Scan 99.172 94.241 99.248 96.680 18,816

Figure 6
Confusion matrix of the proposed IDS for the BoT-IoT dataset
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Table 13
Performance metrics obtained as a result of the implementation of Scenario 2 for the BoT-IoT dataset

Category Accuracy  
(%)

Precision  
(%)

Recall 
(%)

F1-Score 
(%)

Number of 
samples

Training time 
(s)

Model 99.991 92.405 67.306 76.774 917,131 27,334

DDoS 99.971 99.965 99.980 99.973 481,849

DoS 99.966 99.973 99.952 99.962 412,540

Reconnaissance 99.994 88.571 61.386 72.515 119

Normal 99.989 99.989 99.567 99.777 22,606

Theft 99.999 99.999 41.667 58.824 17

Figure 7
The performance comparison for IoTID20 dataset

Figure 8
The performance comparison for BoT-IoT dataset

Table 12
Performance metrics obtained as a result of the implementation of Scenario 1 for the BoT-IoT dataset

Category Accuracy  
(%)

Precision  
(%)

Recall 
(%)

F1-Score
(%)

Number of 
samples

Training time 
(s)

Model 99.994 83.227 75.204 78.396 917,131 5,386

DDoS 99.997 99.999 99.996 99.997 481,849

DoS 99.982 99.961 99.999 99.980 412,540

Reconnaissance 99.994 76.786 72.269 74.459 119

Normal 99.989 99.713 99.845 99.779 22,606

Theft 99.999 88.889 47.059 61.538 17
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Table 14
Accuracy comparison for the IoTID20 dataset

Study The method(s) used Accuracy (%)

Qaddoura et al. [43] SLFN 93.51

Song at al. [55] AE 95.20

Ullah et al. [60] DCNN 98.12

Ramana et al. [44] IG, RL-DQN 99.40

Yang and Shami [65] OASW, PSO, 
LightGBM 99.92

Proposed model PCA, BAT, 
SMOTE, CNN 99.97

Table 15
Accuracy comparison for the BoT-IoT dataset

Study The method(s) used Accuracy (%)

Saba et al. [49] CNN 95.55

Popoola et al. [41] LAE, LSTM 97.29

Alghanam et al. [4] LS-PIO, iForest 97.37

Biswas and Roy [8] GRU 99.76

Khraisat et al. [27] IG, C5.0 DT,  
One-Class SVM 99.97

Proposed method PCA, BAT, 
SMOTE, CNN 99.98

K-Nearest Neighbors (KNN), SVM, and RF [10] to 
evaluate the performance of the CNN method used 
for the attack classification of the proposed IDS. This 
evaluation was carried out on IoTID20 and BoT-IoT 
datasets, which were subjected to feature reduction 
with PCA-BAT hybrid technique and data stabiliza-
tion with SMOTE method. The results obtained from 
this evaluation are presented in Figures 7-8. The com-
parative analysis results shown in Figures 7-8 reveal 
that the CNN method used in the proposed IDS out-
performs other state-of-the-art techniques. More-

over, Tables 14-15 provide a comprehensive evalua-
tion of the accuracy performance of the proposed IDS 
in comparison to the IDSs utilized in previous studies 
on the IoTID20 and BoT-IoT datasets for attack clas-
sification. Upon analyzing Tables 14-15, it is seen that 
the IDS model proposed in this study outperforms 
previous IDS studies on IoTID20 and BoT-IoT data-
sets in terms of classification accuracy.

5. Conclusions
This study presents a novel IDS model for IoT network 
which was developed and evaluated using the BoT-IoT 
and IoTID20 datasets, which consist of various attack 
types, including MITM, Mirai, Scan, DoS, DDoS, Re-
connaissance, and Theft. The findings suggest that im-
plementing the proposed CNN method in combination 
with PCA-BAT feature reduction and SMOTE data bal-
ancing techniques can significantly enhance the detec-
tion performance of IoT network attacks. Specifically, 
for the IoT-IoT dataset, the proposed IDS achieved an 
accuracy of 99.967%, a precision of 99.790%, a recall of 
99.696%, and an F1-score of 99.743%. Likewise, for the 
BoT-IoT dataset, it achieved an accuracy of 99.984%, 
a precision of 99.982%, a recall of 99.982%, and an F1-
score of 99.982. These results demonstrate the effec-
tiveness of the proposed model for detecting intrusion 
in IoT networks, while addressing the challenge of lim-
ited hardware resources.
In addition, the study evaluated the performance of 
the proposed model by comparing it with state-of-
the-art machine learning techniques, including DT, 
AdaBoost, LR, Gaussian NB, KNN, SVM, and RF, as 
well as previous studies focusing on IDS using the 
BoT-IoT and IoTID20 datasets. The results demon-
strated that the proposed model outperformed these 
machine learning methods and previous studies in 
terms of critical evaluation metrics, including accu-
racy, precision, recall, and F1-score.
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