
243Information Technology and Control 2024/1/53

An Efficient Deep Learning-based
Intrusion Detection System for
Internet of Things Networks with
Hybrid Feature Reduction and
Data Balancing Techniques

ITC 1/53
Information Technology
and Control
Vol. 53 / No. 1 / 2024
pp.243-261
DOI 10.5755/j01.itc.53.1.34933

An Efficient Deep Learning-based Intrusion Detection System for Internet of
Things Networks with Hybrid Feature Reduction and Data Balancing Techniques

Received 2023/08/25 Accepted after revision 2024/02/19

HOW TO CITE: Karamollaoğlu, H., Doğru, İ. A., Yücedağ, İ. (2024). An Efficient Deep Learning-
based Intrusion Detection System for Internet of Things Networks with Hybrid Feature Reduction
and Data Balancing Techniques. Information Technology and Control, 53(1), 243-261. https://doi.
org/10.5755/j01.itc.53.1.34933

Corresponding author: hkaramollaoglu@gmail.com

Hamdullah Karamollaoğlu
Department of Computer Engineering, Faculty of Engineering, Düzce University, 81620, Düzce, Turkey

İbrahim Alper Doğru
Department of Computer Engineering, Faculty of Technology, Gazi University, 06570, Ankara, Turkey

İbrahim Yücedağ
Department of Computer Engineering, Faculty of Engineering, Düzce University, 81620, Düzce, Turkey

With the increasing use of Internet of Things (IoT) technologies, cyber-attacks on IoT devices are also increasing
day by day. Detecting attacks on IoT networks before they cause any damage is crucial for ensuring the security of
the devices on these networks. In this study, a novel Intrusion Detection System (IDS) was developed for IoT net-
works. The IoTID20 and BoT-IoT datasets were utilized during the training phase and performance testing of the
proposed IDS. A hybrid method combining the Principal Component Analysis (PCA) and the Bat Optimization
(BAT) algorithm was proposed for dimensionality reduction on the datasets. The Synthetic Minority Over-Sam-
pling Technique (SMOTE) was used to address the problem of data imbalance in the classes of the datasets. The
Convolutional Neural Networks (CNN) model, a deep learning method, was employed for attack classification.
The proposed IDS achieved an accuracy rate of 99.97% for the IoTID20 dataset and 99.98% for the BoT-IoT data-
set in attack classification. Furthermore, detailed analyses were conducted to determine the effects of the dimen-
sionality reduction and data balancing models on the classification performance of the proposed IDS.
KEYWORDS: Intrusion detection system, deep learning, IoT networks, feature reduction, data balancing.

Information Technology and Control 2024/1/53244

1. Introduction
The Internet of Things (IoT) has witnessed substan-
tial growth in recent years, enabling various physical
devices and objects to connect to the internet and
exchange data. This technology has found applica-
tions in diverse fields, including education, health-
care, energy, military, manufacturing, agriculture and
transportation [15, 39]. It is projected that the global
number of interconnected IoT devices will surpass
30 billion by 2025, as reported by statista.com [22].
However, this rapid proliferation of IoT devices has
also led to an increase in cybersecurity threats. At-
tackers exploit vulnerabilities in IoT networks, aim-
ing to compromise critical or sensitive data through
activities such as data interception, modification,
or corruption [56]. The resource limitations of IoT
devices hinder the deployment of complex security
mechanisms that necessitate substantial memory
and computational power [23]. Consequently, IoT de-
vices remain susceptible to various cyber-attacks.
Intrusion Detection Systems (IDS) are designed to
identify potential attacks that could compromise the
security of a network, generating alerts or notifying
system administrators about incidents. In IoT net-
works, one of the primary objectives of IDS is to mini-
mize the false alarm rate in attack detection. IDS can be
categorized into two types based on their location: net-
work-based IDS and host-based IDS. Network-based
IDS analyze data traffic on the network to detect po-
tential attacks, while host-based IDS examine data
traffic on individual host computers [2, 17, 34]. IDS
can also be classified based on their detection method:
signature-based IDS and behavior-based IDS. Signa-
ture-based IDS compare network traffic against a data-
base of known attack signatures, while behavior-based
IDS develop a general behavior profile of the network
and identify any deviations from this profile as poten-
tial attacks [7, 25]. Behavior-based IDS are particularly
valuable as they can detect previously unknown attacks
[54]. Machine learning-based and deep learning-based
models are commonly employed in the design of IDS
due to their high accuracy in detecting security threats
[3]. However, the limited memory and processing ca-
pabilities of IoT devices pose challenges in the devel-
opment and deployment of IDS [5]. Overcoming these
challenges may involve applying dimensionality re-
duction and data balancing techniques to the datasets

used for training and performance testing of IDS. By
implementing such techniques, machine learning and
deep learning models trained on these datasets can ef-
fectively detect intrusion attempts, thereby enhancing
the overall performance of the IDS [52].
This study presents a novel approach to intrusion
detection in IoT networks, offering several signifi-
cant contributions. The proposed IDS model demon-
strates its effectiveness in accurately identifying
security threats with improved accuracy and perfor-
mance. To address the limitations associated with
IDS deployment on resource-constrained IoT devic-
es, the following strategies are employed:
 _ In order to reduce the dimensionality of the data

sets used in the study, a novel hybrid approach was
applied by integrating the Bat Optimization (BAT)
algorithm with the Principal Component Analysis
(PCA) method. This integration aims to effectively
reduce the computational complexity associated
with the proposed model.

 _ The SMOTE method was employed to tackle class
imbalance in the datasets, which helps prevent
bias towards majority classes and ensures that the
classification models used for intrusion detection
remain effective across different attack scenarios.

 _ The Grid Search method was utilized to determine
optimal hyperparameters for the Convolutional
Neural Networks (CNN) model used in the
classification stage of the proposed system. This
optimization process improves the classification
performance of the model, making it more robust in
identifying various types of attacks in IoT networks.

 _ The early stopping technique was employed during
the training phase of the CNN model to identify the
optimal number of iterations needed for effective
model training. This approach helps mitigate
overfitting and facilitates efficient training, while
taking into account the resource limitations of
IoT devices. Additionally, the study incorporated
the ReducLROnPlateau callback technique, which
dynamically adjusts the learning rate as training
advances, in conjunction with early stopping. This
combined strategy aims to optimize the training
process by contributing to improved convergence
and performance improvement.

245Information Technology and Control 2024/1/53

The study is structured as follows: the second section
provides a literature review of existing IDS systems
for IoT networks, highlighting the methodologies and
datasets used. The third section outlines the materials
and methods employed in the study. The fourth section
presents the experimental results and findings. Finally,
the fifth section evaluates the results, discusses future
research directions, and concludes the study.

2. Literature Review
In this section, the literature on IDS for IoT networks
is analyzed. The methods used for preprocessing and
classification in IDSs and the datasets used in perfor-
mance testing are examined. Additionally, details on
the accuracy rates of IDSs in attack classification are
presented.
In recent years, Intrusion Detection Systems (IDS)
have garnered significant attention in the realm of se-
curing Internet of Things (IoT) networks. Researchers
have made notable contributions by proposing various
methodologies and techniques to enhance the accura-
cy and effectiveness of IDS in detecting and classifying
attacks. Within the domain of deep learning-based ap-
proaches, Biswas and Roy [8] developed an IDS utiliz-
ing the Gated Recurrent Unit (GRU) method, achiev-
ing an impressive classification accuracy of 99.76%
on the BoT-IoT dataset. Similarly, Popoola et al. [41]
employed Long Short-Term Memory (LSTM) for at-
tack classification, attaining a commendable accuracy
rate of 97.29% on the BoT-IoT dataset. Ullah et al. [60]
explored the utilization of Deep Convolutional Neural
Networks (DCNNs), yielding promising results with an
accuracy rate of 98.12% on the IoTID20 dataset. Song
et al. [55] employed an Autoencoder (AE) to develop an
IDS, and its classification performance was measured
using the NSL-KDD, IoTID20, and N-BaIoT datasets.
The corresponding accuracy rates were 88.7%, 95.2%,
and 99.8%, respectively.
Ensemble learning-based techniques have also gar-
nered significant interest within the IDS research
domain. Khraisat et al. [27] proposed a stacking tech-
nique, combining C5.0 Decision Tree and One-Class
Support Vector Machines (One-Class SVMs), which
demonstrated exceptional accuracy rates of 99.97%
on the BoT-IoT dataset. Lian et al. [31] integrated the
Decision Tree (DT) algorithm with Recursive Feature

Elimination, resulting in notable enhancements in
IDS performance.
Feature reduction techniques have proven to be vital
in improving the efficiency of IDS. Alghanam et al.
[4] devised an IDS utilizing the Isolation Forest (iF-
orest) method, complemented by the Local Search
Algorithm-Pigeon-Inspired Optimization (LS-PIO)
hybrid method for feature reduction. Ramana et al.
[44] employed the Information Gain (IG) method for
feature selection, combined with the Reinforcement
Learning-Deep Q-Network (RL-DQN) method for
classification. Qaddoura et al. [43] integrated K-means
clustering for feature reduction and utilized Support
Vector Machine-Synthetic Minority Over-Sampling
Technique (SVM-SMOTE) to address imbalanced
data distribution.
Community learning approaches have gained prom-
inence in IDS research endeavors. Seth et al. [50] ad-
opted a community learning approach by combining
LightGBM and Histogram-Based Gradient Boosting
(HBGB) methods, alongside Random Forest (RF) and
Principal Component Analysis (PCA) for feature re-
duction.
Furthermore, researchers have proposed specialized
algorithms specifically tailored for IDS. Saba et al. [49]
presented an IDS based on the Enhanced Sequential
Algorithm (ESA), specifically designed for IoT net-
works, with evaluations conducted on the Network
Intrusion Detection (NID) and BoT-IoT datasets.
Yang and Shami [65] employed the Optimized Adap-
tive and Sliding Window (OASW) method, along with
Particle Swarm Optimization (PSO) and LightGBM,
for effective attack detection, yielding remarkable ac-
curacy rates on the NSL-KDD and IoTID20 datasets.
The literature indicates that IDSs have been proposed
for detecting attacks on IoT networks, and machine
learning and deep learning methods are commonly used
in the attack classification stage. Various feature re-
duction and attack classification techniques have been
proposed and evaluated on different datasets. However,
the implementation of IDSs on IoT devices presents
significant challenges due to the limited resources and
computing power of these devices. As a result, the de-
velopment of IDS algorithms that are both accurate and
lightweight is a crucial area of research for securing IoT
networks. In addition, IDSs may suffer from high false
positive rates, resulting in unnecessary alarms and dis-

Information Technology and Control 2024/1/53246

ruptions, when benign traffic is mistakenly classified as
malicious. Another significant challenge is the lack of
standardized datasets for evaluating IDS performance,
and many studies use different datasets that may not be
representative of real-world IoT network traffic. More-
over, new attack vectors and techniques are constantly
being developed, and IDSs need to be updated continu-
ously to detect these emerging threats.

3. Material and Method
In this section, comprehensive information regarding
the datasets utilized in the study was presented. Addi-
tionally, a comprehensive analysis of the methodolo-
gies implemented in the architecture of the proposed
IDS was provided, elaborating on their operational
principles.

3.1. Datasets Used in the Study
The proposed IDS in this study was trained and tested
on the IoTID20 and BoT-IoT datasets. The IoTID20
dataset was composed of data collected from various
IoT devices, while the BoT-IoT dataset was generated
in a controlled network environment. These datasets
were chosen due to their distinct attack types and var-
ied sizes, enabling a comprehensive evaluation of the
IDS’s performance across multiple scenarios. Using
two distinct datasets also enhances the generalizability
of the IDS’s performance across diverse IoT networks.
The IoTID20 dataset was generated using data col-
lected from a network consisting of SK Telecom
Nugu (Nu-100) smart assistant, EZVIZ wireless se-
curity camera, laptops, and smartphones. It contains

625,783 samples, of which 40,073 belong to the nor-
mal class, and 585,710 belong to the attack classes.
The dataset comprises 84 attributes, except for the
class label, which were obtained using the CICFlow-
Meter tool [29]. The IoTID20 dataset consists of five
main classes: Normal (no attack), MITM (man-in-
the-middle attack), DoS (denial of service attack),
Scan (scanning attack), and Mirai (botnet attack),
with 40,073, 35,377, 59,391, 75,265, and 415,677 sam-
ples, respectively [21, 59].
The BoT-IoT dataset, on the other hand, was generat-
ed by creating a realistic network environment at the
UNSW Canberra Cybersecurity Center and collecting
3,668,522 samples from this network. Of these sam-
ples, 477 belong to the normal class, and 3,668,045
belong to the attack classes. The dataset contains 42
attributes, excluding the class label. The BoT-IoT
dataset consists of five main classes: Normal, DoS,
DDoS (distributed denial of service attack), Recon-
naissance (reconnaissance attack), and Theft (infor-
mation theft attack), with 477, 1,650,260, 1,926,624,
91,082, and 79 samples, respectively [9, 28].

3.2. The Proposed Framework
This section presents a detailed description of the
IDS developed using the methodologies discussed in
the previous section. The study analyzes the results of
multi-class attack classification carried out on the IoT-
ID20 and BoT-IoT datasets using the proposed model.
The workflow of the proposed attack detection system
is illustrated in Figure 1. As depicted in Figure 1, the
proposed IDS comprises several stages, including data
preprocessing, feature reduction/selection, data split-
ting, data balancing, and attack classification.

Figure 1
The flow diagram for the proposed intrusion detection system

traffic. Moreover, new attack vectors and
techniques are constantly being developed, and
IDSs need to be updated continuously to detect
these emerging threats.

3. Material and Method
In this section, comprehensive information
regarding the datasets utilized in the study was
presented. Additionally, a comprehensive analysis
of the methodologies implemented in the
architecture of the proposed IDS was provided,
elaborating on their operational principles.

3.1. Datasets Used in the Study
The proposed IDS in this study was trained and
tested on the IoTID20 and BoT-IoT datasets. The
IoTID20 dataset was composed of data collected
from various IoT devices, while the BoT-IoT dataset
was generated in a controlled network
environment. These datasets were chosen due to
their distinct attack types and varied sizes, enabling
a comprehensive evaluation of the IDS's
performance across multiple scenarios. Using two
distinct datasets also enhances the generalizability
of the IDS's performance across diverse IoT
networks.

The IoTID20 dataset was generated using data
collected from a network consisting of SK Telecom
Nugu (Nu-100) smart assistant, EZVIZ wireless
security camera, laptops, and smartphones. It
contains 625,783 samples, of which 40,073 belong to
the normal class, and 585,710 belong to the attack
classes. The dataset comprises 84 attributes, except
for the class label, which were obtained using the

CICFlowMeter tool [29]. The IoTID20 dataset
consists of five main classes: Normal (no
attack), MITM (man-in-the-middle attack),
DoS (denial of service attack), Scan (scanning
attack), and Mirai (botnet attack), with 40,073,
35,377, 59,391, 75,265, and 415,677 samples,
respectively [21, 59].

The BoT-IoT dataset, on the other hand, was
generated by creating a realistic network
environment at the UNSW Canberra
Cybersecurity Center and collecting 3,668,522
samples from this network. Of these samples,
477 belong to the normal class, and 3,668,045
belong to the attack classes. The dataset
contains 42 attributes, excluding the class
label. The BoT-IoT dataset consists of five
main classes: Normal, DoS, DDoS (distributed
denial of service attack), Reconnaissance
(reconnaissance attack), and Theft
(information theft attack), with 477, 1,650,260,
1,926,624, 91,082, and 79 samples, respectively
[9, 28].

3.2. The Proposed Framework
This section presents a detailed description of
the IDS developed using the methodologies
discussed in the previous section. The study
analyzes the results of multi-class attack
classification carried out on the IoTID20 and
BoT-IoT datasets using the proposed model.
The workflow of the proposed attack detection
system is illustrated in Figure 1. As depicted in
Figure 1, the proposed IDS comprises several
stages, including data preprocessing, feature
reduction/selection, data splitting, data
balancing, and attack classification.

 Figure 1

 The flow diagram for the proposed intrusion detection system

247Information Technology and Control 2024/1/53

3.2.1. Data Preprocessing
During the data preprocessing stage, the “Flow_ID”,
“Dst_IP”, and “Src_IP” attributes in the IoTID20
dataset, as well as the “pkSeqID”, “daddr”, and “saddr”
attributes in the BoT-IoT dataset were removed since
they are identity-based attributes that do not affect
the classification performance. Categorical data in
the datasets were converted into numerical values us-
ing the “LabelEncoder” class of the “sklearn” library
[40]. In order to enhance the classification perfor-
mance of machine learning and deep learning models,
it is necessary to scale the data within a certain range
before presenting it to the models. The Z-score nor-
malization [35] method was used for data scaling in
this study, utilizing the “StandardScaler” class of the
“sklearn” library. Furthermore, the Z-score normal-
ization process was performed to normalize the dis-
tribution of the data, reducing their mutual influence.

3.2.2. Feature Reduction and Data Splitting
In this study, the PCA-BAT hybrid method was em-
ployed for feature reduction. The integration of PCA
and BAT methods in this study yields significant ad-
vantages for feature reduction. PCA effectively man-
ages noisy data, mitigates overfitting, and enhances
classification efficiency by simplifying computational
complexity. However, it has limitations in capturing
complex relationships in the data. To address this,
the BAT algorithm is introduced as a complementa-
ry approach. While PCA excels at capturing linear
relationships in data, BAT is proficient at capturing
non-linear relationships and complex interactions.
PCA maintains diversity by reducing correlations
among individuals in the feature space, preventing
premature convergence of the Bat Algorithm to local
optima, and enabling exploration of a wider solution
space. Additionally, PCA’s dimensionality reduction
streamlines the Bat Algorithm’s search space, en-
hancing efficiency and reducing the risk of getting
trapped in local optima [14].
PCA is a technique used to transform a high-dimen-
sional sample space, comprising multiple variables,
into a lower-dimensional subspace. This subspace is
constructed by generating linearly independent arti-
ficial variables known as principal components [26].
The primary objective of PCA is to reduce the dimen-
sionality of the data while preserving the essential
information contained in the original dataset. By re-
ducing the number of variables, PCA simplifies the

analysis process and enhances the visual representa-
tion of the data.
In Equation (1), matrix D represents a dataset con-
sisting of n samples and m features. To prevent bias
during the application of PCA, it is necessary to scale
the samples to a certain range [47]. For this purpose,
the study utilized the Standard Scaler method pre-
sented in Equation (2), which was obtained using
Equations (3)-(4).

3.2.1. Data Preprocessing

During the data preprocessing stage, the
“Flow_ID”, “Dst_IP”, and “Src_IP” attributes in the
IoTID20 dataset, as well as the “pkSeqID”, “daddr”,
and “saddr” attributes in the BoT-IoT dataset were
removed since they are identity-based attributes
that do not affect the classification performance.
Categorical data in the datasets were converted into
numerical values using the “LabelEncoder” class of
the “sklearn” library [40]. In order to enhance the
classification performance of machine learning and
deep learning models, it is necessary to scale the
data within a certain range before presenting it to
the models. The Z-score normalization [35] method
was used for data scaling in this study, utilizing the
“StandardScaler” class of the “sklearn” library.
Furthermore, the Z-score normalization process
was performed to normalize the distribution of the
data, reducing their mutual influence.

3.2.2. Feature Reduction and Data Splitting

In this study, the PCA-BAT hybrid method was
employed for feature reduction. The integration of
PCA and BAT methods in this study yields
significant advantages for feature reduction. PCA
effectively manages noisy data, mitigates
overfitting, and enhances classification efficiency by
simplifying computational complexity. However, it
has limitations in capturing complex relationships
in the data. To address this, the BAT algorithm is
introduced as a complementary approach. While
PCA excels at capturing linear relationships in data,
BAT is proficient at capturing non-linear
relationships and complex interactions. PCA
maintains diversity by reducing correlations among
individuals in the feature space, preventing
premature convergence of the Bat Algorithm to
local optima, and enabling exploration of a wider
solution space. Additionally, PCA's dimensionality
reduction streamlines the Bat Algorithm's search
space, enhancing efficiency and reducing the risk of
getting trapped in local optima [14].

PCA is a technique used to transform a high-
dimensional sample space, comprising multiple
variables, into a lower-dimensional subspace. This
subspace is constructed by generating linearly
independent artificial variables known as principal
components [26]. The primary objective of PCA is
to reduce the dimensionality of the data while
preserving the essential information contained in
the original dataset. By reducing the number of
variables, PCA simplifies the analysis process and
enhances the visual representation of the data.

In Equation (1), matrix D represents a dataset
consisting of n samples and m features. To prevent

bias during the application of PCA, it is
necessary to scale the samples to a certain
range [47]. For this purpose, the study utilized
the Standard Scaler method presented in
Equation (2), which was obtained using
Equations (3)-(4).

𝐷𝐷 = �

𝑥𝑥��
𝑥𝑥��

⋯
𝑥𝑥��
𝑥𝑥��

⋮ ⋱ ⋮
𝑥𝑥�� ⋯ 𝑥𝑥��

� = �

𝑥𝑥�
𝑥𝑥�
⋮

𝑥𝑥�

� = [𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�] (1)

𝑧𝑧� = ����
�

, 𝑖𝑖 = 1, 2, 3, … , 𝑛𝑛 (2)

𝜎𝜎 = ��
�

∑ (𝑥𝑥� − 𝜇𝜇)��
��� (3)

𝜇𝜇 = �
�

∑ 𝑧𝑧�
�
��� (4)

Here, 𝑥𝑥� represents the i-th sample in the
dataset, 𝑧𝑧� represents the scaled data in the
range of [-1, 1] after normalization, 𝜎𝜎
represents the standard deviation of the
samples in the dataset calculated using
Equation (3), and 𝜇𝜇 represents the mean of the
scaled samples obtained using Equation (4).
Scaling the data ensures that the dataset has a
normal distribution with mean zero (0) and
variance one (1). After normalization, the
covariance matrix (𝑅𝑅) is calculated using
Equation (5) to determine the correlation
between the samples in the dataset.

𝑅𝑅 = �
�

∑ (𝑧𝑧� − 𝜇𝜇)(𝑧𝑧� − 𝜇𝜇)��
��� (5)

𝑅𝑅𝑅𝑅� = 𝜆𝜆�𝑅𝑅�, 𝑖𝑖 = 1,2, … , 𝑚𝑚 (6)

To obtain the principal components of the
samples in the dataset, the eigenvectors and
eigenvalues of the covariance matrix obtained
using Equation (5) must be calculated. This
process is carried out using Equation (6),
where 𝜆𝜆� represents the i-th eigenvalue of the
covariance matrix and 𝑅𝑅� represents the
corresponding eigenvector. The eigenvalues
are sorted from largest to smallest and 𝑘𝑘
eigenvectors corresponding to these
eigenvalues are selected to perform
dimensionality reduction on the original 𝐷𝐷
matrix. Thus, a new 𝑊𝑊 matrix is obtained from
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘
uncorrelated principal components and 𝑛𝑛
samples, with negligible loss of information
[18, 63].

The threshold value for the total variance ratio
that the principal components should explain
was set to 0.99. This allowed for obtaining the
principal components that can explain the
highest possible total variance in the datasets
with the least loss of information. The number

(1)

3.2.1. Data Preprocessing

During the data preprocessing stage, the
“Flow_ID”, “Dst_IP”, and “Src_IP” attributes in the
IoTID20 dataset, as well as the “pkSeqID”, “daddr”,
and “saddr” attributes in the BoT-IoT dataset were
removed since they are identity-based attributes
that do not affect the classification performance.
Categorical data in the datasets were converted into
numerical values using the “LabelEncoder” class of
the “sklearn” library [40]. In order to enhance the
classification performance of machine learning and
deep learning models, it is necessary to scale the
data within a certain range before presenting it to
the models. The Z-score normalization [35] method
was used for data scaling in this study, utilizing the
“StandardScaler” class of the “sklearn” library.
Furthermore, the Z-score normalization process
was performed to normalize the distribution of the
data, reducing their mutual influence.

3.2.2. Feature Reduction and Data Splitting

In this study, the PCA-BAT hybrid method was
employed for feature reduction. The integration of
PCA and BAT methods in this study yields
significant advantages for feature reduction. PCA
effectively manages noisy data, mitigates
overfitting, and enhances classification efficiency by
simplifying computational complexity. However, it
has limitations in capturing complex relationships
in the data. To address this, the BAT algorithm is
introduced as a complementary approach. While
PCA excels at capturing linear relationships in data,
BAT is proficient at capturing non-linear
relationships and complex interactions. PCA
maintains diversity by reducing correlations among
individuals in the feature space, preventing
premature convergence of the Bat Algorithm to
local optima, and enabling exploration of a wider
solution space. Additionally, PCA's dimensionality
reduction streamlines the Bat Algorithm's search
space, enhancing efficiency and reducing the risk of
getting trapped in local optima [14].

PCA is a technique used to transform a high-
dimensional sample space, comprising multiple
variables, into a lower-dimensional subspace. This
subspace is constructed by generating linearly
independent artificial variables known as principal
components [26]. The primary objective of PCA is
to reduce the dimensionality of the data while
preserving the essential information contained in
the original dataset. By reducing the number of
variables, PCA simplifies the analysis process and
enhances the visual representation of the data.

In Equation (1), matrix D represents a dataset
consisting of n samples and m features. To prevent

bias during the application of PCA, it is
necessary to scale the samples to a certain
range [47]. For this purpose, the study utilized
the Standard Scaler method presented in
Equation (2), which was obtained using
Equations (3)-(4).

𝐷𝐷 = �

𝑥𝑥��
𝑥𝑥��

⋯
𝑥𝑥��
𝑥𝑥��

⋮ ⋱ ⋮
𝑥𝑥�� ⋯ 𝑥𝑥��

� = �

𝑥𝑥�
𝑥𝑥�
⋮

𝑥𝑥�

� = [𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�] (1)

𝑧𝑧� = ����
�

, 𝑖𝑖 = 1, 2, 3, … , 𝑛𝑛 (2)

𝜎𝜎 = ��
�

∑ (𝑥𝑥� − 𝜇𝜇)��
��� (3)

𝜇𝜇 = �
�

∑ 𝑧𝑧�
�
��� (4)

Here, 𝑥𝑥� represents the i-th sample in the
dataset, 𝑧𝑧� represents the scaled data in the
range of [-1, 1] after normalization, 𝜎𝜎
represents the standard deviation of the
samples in the dataset calculated using
Equation (3), and 𝜇𝜇 represents the mean of the
scaled samples obtained using Equation (4).
Scaling the data ensures that the dataset has a
normal distribution with mean zero (0) and
variance one (1). After normalization, the
covariance matrix (𝑅𝑅) is calculated using
Equation (5) to determine the correlation
between the samples in the dataset.

𝑅𝑅 = �
�

∑ (𝑧𝑧� − 𝜇𝜇)(𝑧𝑧� − 𝜇𝜇)��
��� (5)

𝑅𝑅𝑅𝑅� = 𝜆𝜆�𝑅𝑅�, 𝑖𝑖 = 1,2, … , 𝑚𝑚 (6)

To obtain the principal components of the
samples in the dataset, the eigenvectors and
eigenvalues of the covariance matrix obtained
using Equation (5) must be calculated. This
process is carried out using Equation (6),
where 𝜆𝜆� represents the i-th eigenvalue of the
covariance matrix and 𝑅𝑅� represents the
corresponding eigenvector. The eigenvalues
are sorted from largest to smallest and 𝑘𝑘
eigenvectors corresponding to these
eigenvalues are selected to perform
dimensionality reduction on the original 𝐷𝐷
matrix. Thus, a new 𝑊𝑊 matrix is obtained from
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘
uncorrelated principal components and 𝑛𝑛
samples, with negligible loss of information
[18, 63].

The threshold value for the total variance ratio
that the principal components should explain
was set to 0.99. This allowed for obtaining the
principal components that can explain the
highest possible total variance in the datasets
with the least loss of information. The number

(2)

3.2.1. Data Preprocessing

During the data preprocessing stage, the
“Flow_ID”, “Dst_IP”, and “Src_IP” attributes in the
IoTID20 dataset, as well as the “pkSeqID”, “daddr”,
and “saddr” attributes in the BoT-IoT dataset were
removed since they are identity-based attributes
that do not affect the classification performance.
Categorical data in the datasets were converted into
numerical values using the “LabelEncoder” class of
the “sklearn” library [40]. In order to enhance the
classification performance of machine learning and
deep learning models, it is necessary to scale the
data within a certain range before presenting it to
the models. The Z-score normalization [35] method
was used for data scaling in this study, utilizing the
“StandardScaler” class of the “sklearn” library.
Furthermore, the Z-score normalization process
was performed to normalize the distribution of the
data, reducing their mutual influence.

3.2.2. Feature Reduction and Data Splitting

In this study, the PCA-BAT hybrid method was
employed for feature reduction. The integration of
PCA and BAT methods in this study yields
significant advantages for feature reduction. PCA
effectively manages noisy data, mitigates
overfitting, and enhances classification efficiency by
simplifying computational complexity. However, it
has limitations in capturing complex relationships
in the data. To address this, the BAT algorithm is
introduced as a complementary approach. While
PCA excels at capturing linear relationships in data,
BAT is proficient at capturing non-linear
relationships and complex interactions. PCA
maintains diversity by reducing correlations among
individuals in the feature space, preventing
premature convergence of the Bat Algorithm to
local optima, and enabling exploration of a wider
solution space. Additionally, PCA's dimensionality
reduction streamlines the Bat Algorithm's search
space, enhancing efficiency and reducing the risk of
getting trapped in local optima [14].

PCA is a technique used to transform a high-
dimensional sample space, comprising multiple
variables, into a lower-dimensional subspace. This
subspace is constructed by generating linearly
independent artificial variables known as principal
components [26]. The primary objective of PCA is
to reduce the dimensionality of the data while
preserving the essential information contained in
the original dataset. By reducing the number of
variables, PCA simplifies the analysis process and
enhances the visual representation of the data.

In Equation (1), matrix D represents a dataset
consisting of n samples and m features. To prevent

bias during the application of PCA, it is
necessary to scale the samples to a certain
range [47]. For this purpose, the study utilized
the Standard Scaler method presented in
Equation (2), which was obtained using
Equations (3)-(4).

𝐷𝐷 = �

𝑥𝑥��
𝑥𝑥��

⋯
𝑥𝑥��
𝑥𝑥��

⋮ ⋱ ⋮
𝑥𝑥�� ⋯ 𝑥𝑥��

� = �

𝑥𝑥�
𝑥𝑥�
⋮

𝑥𝑥�

� = [𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�] (1)

𝑧𝑧� = ����
�

, 𝑖𝑖 = 1, 2, 3, … , 𝑛𝑛 (2)

𝜎𝜎 = ��
�

∑ (𝑥𝑥� − 𝜇𝜇)��
��� (3)

𝜇𝜇 = �
�

∑ 𝑧𝑧�
�
��� (4)

Here, 𝑥𝑥� represents the i-th sample in the
dataset, 𝑧𝑧� represents the scaled data in the
range of [-1, 1] after normalization, 𝜎𝜎
represents the standard deviation of the
samples in the dataset calculated using
Equation (3), and 𝜇𝜇 represents the mean of the
scaled samples obtained using Equation (4).
Scaling the data ensures that the dataset has a
normal distribution with mean zero (0) and
variance one (1). After normalization, the
covariance matrix (𝑅𝑅) is calculated using
Equation (5) to determine the correlation
between the samples in the dataset.

𝑅𝑅 = �
�

∑ (𝑧𝑧� − 𝜇𝜇)(𝑧𝑧� − 𝜇𝜇)��
��� (5)

𝑅𝑅𝑅𝑅� = 𝜆𝜆�𝑅𝑅�, 𝑖𝑖 = 1,2, … , 𝑚𝑚 (6)

To obtain the principal components of the
samples in the dataset, the eigenvectors and
eigenvalues of the covariance matrix obtained
using Equation (5) must be calculated. This
process is carried out using Equation (6),
where 𝜆𝜆� represents the i-th eigenvalue of the
covariance matrix and 𝑅𝑅� represents the
corresponding eigenvector. The eigenvalues
are sorted from largest to smallest and 𝑘𝑘
eigenvectors corresponding to these
eigenvalues are selected to perform
dimensionality reduction on the original 𝐷𝐷
matrix. Thus, a new 𝑊𝑊 matrix is obtained from
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘
uncorrelated principal components and 𝑛𝑛
samples, with negligible loss of information
[18, 63].

The threshold value for the total variance ratio
that the principal components should explain
was set to 0.99. This allowed for obtaining the
principal components that can explain the
highest possible total variance in the datasets
with the least loss of information. The number

(3)

3.2.1. Data Preprocessing

During the data preprocessing stage, the
“Flow_ID”, “Dst_IP”, and “Src_IP” attributes in the
IoTID20 dataset, as well as the “pkSeqID”, “daddr”,
and “saddr” attributes in the BoT-IoT dataset were
removed since they are identity-based attributes
that do not affect the classification performance.
Categorical data in the datasets were converted into
numerical values using the “LabelEncoder” class of
the “sklearn” library [40]. In order to enhance the
classification performance of machine learning and
deep learning models, it is necessary to scale the
data within a certain range before presenting it to
the models. The Z-score normalization [35] method
was used for data scaling in this study, utilizing the
“StandardScaler” class of the “sklearn” library.
Furthermore, the Z-score normalization process
was performed to normalize the distribution of the
data, reducing their mutual influence.

3.2.2. Feature Reduction and Data Splitting

In this study, the PCA-BAT hybrid method was
employed for feature reduction. The integration of
PCA and BAT methods in this study yields
significant advantages for feature reduction. PCA
effectively manages noisy data, mitigates
overfitting, and enhances classification efficiency by
simplifying computational complexity. However, it
has limitations in capturing complex relationships
in the data. To address this, the BAT algorithm is
introduced as a complementary approach. While
PCA excels at capturing linear relationships in data,
BAT is proficient at capturing non-linear
relationships and complex interactions. PCA
maintains diversity by reducing correlations among
individuals in the feature space, preventing
premature convergence of the Bat Algorithm to
local optima, and enabling exploration of a wider
solution space. Additionally, PCA's dimensionality
reduction streamlines the Bat Algorithm's search
space, enhancing efficiency and reducing the risk of
getting trapped in local optima [14].

PCA is a technique used to transform a high-
dimensional sample space, comprising multiple
variables, into a lower-dimensional subspace. This
subspace is constructed by generating linearly
independent artificial variables known as principal
components [26]. The primary objective of PCA is
to reduce the dimensionality of the data while
preserving the essential information contained in
the original dataset. By reducing the number of
variables, PCA simplifies the analysis process and
enhances the visual representation of the data.

In Equation (1), matrix D represents a dataset
consisting of n samples and m features. To prevent

bias during the application of PCA, it is
necessary to scale the samples to a certain
range [47]. For this purpose, the study utilized
the Standard Scaler method presented in
Equation (2), which was obtained using
Equations (3)-(4).

𝐷𝐷 = �

𝑥𝑥��
𝑥𝑥��

⋯
𝑥𝑥��
𝑥𝑥��

⋮ ⋱ ⋮
𝑥𝑥�� ⋯ 𝑥𝑥��

� = �

𝑥𝑥�
𝑥𝑥�
⋮

𝑥𝑥�

� = [𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�] (1)

𝑧𝑧� = ����
�

, 𝑖𝑖 = 1, 2, 3, … , 𝑛𝑛 (2)

𝜎𝜎 = ��
�

∑ (𝑥𝑥� − 𝜇𝜇)��
��� (3)

𝜇𝜇 = �
�

∑ 𝑧𝑧�
�
��� (4)

Here, 𝑥𝑥� represents the i-th sample in the
dataset, 𝑧𝑧� represents the scaled data in the
range of [-1, 1] after normalization, 𝜎𝜎
represents the standard deviation of the
samples in the dataset calculated using
Equation (3), and 𝜇𝜇 represents the mean of the
scaled samples obtained using Equation (4).
Scaling the data ensures that the dataset has a
normal distribution with mean zero (0) and
variance one (1). After normalization, the
covariance matrix (𝑅𝑅) is calculated using
Equation (5) to determine the correlation
between the samples in the dataset.

𝑅𝑅 = �
�

∑ (𝑧𝑧� − 𝜇𝜇)(𝑧𝑧� − 𝜇𝜇)��
��� (5)

𝑅𝑅𝑅𝑅� = 𝜆𝜆�𝑅𝑅�, 𝑖𝑖 = 1,2, … , 𝑚𝑚 (6)

To obtain the principal components of the
samples in the dataset, the eigenvectors and
eigenvalues of the covariance matrix obtained
using Equation (5) must be calculated. This
process is carried out using Equation (6),
where 𝜆𝜆� represents the i-th eigenvalue of the
covariance matrix and 𝑅𝑅� represents the
corresponding eigenvector. The eigenvalues
are sorted from largest to smallest and 𝑘𝑘
eigenvectors corresponding to these
eigenvalues are selected to perform
dimensionality reduction on the original 𝐷𝐷
matrix. Thus, a new 𝑊𝑊 matrix is obtained from
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘
uncorrelated principal components and 𝑛𝑛
samples, with negligible loss of information
[18, 63].

The threshold value for the total variance ratio
that the principal components should explain
was set to 0.99. This allowed for obtaining the
principal components that can explain the
highest possible total variance in the datasets
with the least loss of information. The number

(4)

Here, xi represents the i-th sample in the dataset, zi
represents the scaled data in the range of [-1, 1] after
normalization, σ represents the standard deviation of
the samples in the dataset calculated using Equation
(3), and μ represents the mean of the scaled samples
obtained using Equation (4). Scaling the data ensures
that the dataset has a normal distribution with mean
zero (0) and variance one (1). After normalization, the
covariance matrix (R) is calculated using Equation
(5) to determine the correlation between the samples
in the dataset.

3.2.1. Data Preprocessing

During the data preprocessing stage, the
“Flow_ID”, “Dst_IP”, and “Src_IP” attributes in the
IoTID20 dataset, as well as the “pkSeqID”, “daddr”,
and “saddr” attributes in the BoT-IoT dataset were
removed since they are identity-based attributes
that do not affect the classification performance.
Categorical data in the datasets were converted into
numerical values using the “LabelEncoder” class of
the “sklearn” library [40]. In order to enhance the
classification performance of machine learning and
deep learning models, it is necessary to scale the
data within a certain range before presenting it to
the models. The Z-score normalization [35] method
was used for data scaling in this study, utilizing the
“StandardScaler” class of the “sklearn” library.
Furthermore, the Z-score normalization process
was performed to normalize the distribution of the
data, reducing their mutual influence.

3.2.2. Feature Reduction and Data Splitting

In this study, the PCA-BAT hybrid method was
employed for feature reduction. The integration of
PCA and BAT methods in this study yields
significant advantages for feature reduction. PCA
effectively manages noisy data, mitigates
overfitting, and enhances classification efficiency by
simplifying computational complexity. However, it
has limitations in capturing complex relationships
in the data. To address this, the BAT algorithm is
introduced as a complementary approach. While
PCA excels at capturing linear relationships in data,
BAT is proficient at capturing non-linear
relationships and complex interactions. PCA
maintains diversity by reducing correlations among
individuals in the feature space, preventing
premature convergence of the Bat Algorithm to
local optima, and enabling exploration of a wider
solution space. Additionally, PCA's dimensionality
reduction streamlines the Bat Algorithm's search
space, enhancing efficiency and reducing the risk of
getting trapped in local optima [14].

PCA is a technique used to transform a high-
dimensional sample space, comprising multiple
variables, into a lower-dimensional subspace. This
subspace is constructed by generating linearly
independent artificial variables known as principal
components [26]. The primary objective of PCA is
to reduce the dimensionality of the data while
preserving the essential information contained in
the original dataset. By reducing the number of
variables, PCA simplifies the analysis process and
enhances the visual representation of the data.

In Equation (1), matrix D represents a dataset
consisting of n samples and m features. To prevent

bias during the application of PCA, it is
necessary to scale the samples to a certain
range [47]. For this purpose, the study utilized
the Standard Scaler method presented in
Equation (2), which was obtained using
Equations (3)-(4).

𝐷𝐷 = �

𝑥𝑥��
𝑥𝑥��

⋯
𝑥𝑥��
𝑥𝑥��

⋮ ⋱ ⋮
𝑥𝑥�� ⋯ 𝑥𝑥��

� = �

𝑥𝑥�
𝑥𝑥�
⋮

𝑥𝑥�

� = [𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�] (1)

𝑧𝑧� = ����
�

, 𝑖𝑖 = 1, 2, 3, … , 𝑛𝑛 (2)

𝜎𝜎 = ��
�

∑ (𝑥𝑥� − 𝜇𝜇)��
��� (3)

𝜇𝜇 = �
�

∑ 𝑧𝑧�
�
��� (4)

Here, 𝑥𝑥� represents the i-th sample in the
dataset, 𝑧𝑧� represents the scaled data in the
range of [-1, 1] after normalization, 𝜎𝜎
represents the standard deviation of the
samples in the dataset calculated using
Equation (3), and 𝜇𝜇 represents the mean of the
scaled samples obtained using Equation (4).
Scaling the data ensures that the dataset has a
normal distribution with mean zero (0) and
variance one (1). After normalization, the
covariance matrix (𝑅𝑅) is calculated using
Equation (5) to determine the correlation
between the samples in the dataset.

𝑅𝑅 = �
�

∑ (𝑧𝑧� − 𝜇𝜇)(𝑧𝑧� − 𝜇𝜇)��
��� (5)

𝑅𝑅𝑅𝑅� = 𝜆𝜆�𝑅𝑅�, 𝑖𝑖 = 1,2, … , 𝑚𝑚 (6)

To obtain the principal components of the
samples in the dataset, the eigenvectors and
eigenvalues of the covariance matrix obtained
using Equation (5) must be calculated. This
process is carried out using Equation (6),
where 𝜆𝜆� represents the i-th eigenvalue of the
covariance matrix and 𝑅𝑅� represents the
corresponding eigenvector. The eigenvalues
are sorted from largest to smallest and 𝑘𝑘
eigenvectors corresponding to these
eigenvalues are selected to perform
dimensionality reduction on the original 𝐷𝐷
matrix. Thus, a new 𝑊𝑊 matrix is obtained from
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘
uncorrelated principal components and 𝑛𝑛
samples, with negligible loss of information
[18, 63].

The threshold value for the total variance ratio
that the principal components should explain
was set to 0.99. This allowed for obtaining the
principal components that can explain the
highest possible total variance in the datasets
with the least loss of information. The number

(5)

3.2.1. Data Preprocessing

During the data preprocessing stage, the
“Flow_ID”, “Dst_IP”, and “Src_IP” attributes in the
IoTID20 dataset, as well as the “pkSeqID”, “daddr”,
and “saddr” attributes in the BoT-IoT dataset were
removed since they are identity-based attributes
that do not affect the classification performance.
Categorical data in the datasets were converted into
numerical values using the “LabelEncoder” class of
the “sklearn” library [40]. In order to enhance the
classification performance of machine learning and
deep learning models, it is necessary to scale the
data within a certain range before presenting it to
the models. The Z-score normalization [35] method
was used for data scaling in this study, utilizing the
“StandardScaler” class of the “sklearn” library.
Furthermore, the Z-score normalization process
was performed to normalize the distribution of the
data, reducing their mutual influence.

3.2.2. Feature Reduction and Data Splitting

In this study, the PCA-BAT hybrid method was
employed for feature reduction. The integration of
PCA and BAT methods in this study yields
significant advantages for feature reduction. PCA
effectively manages noisy data, mitigates
overfitting, and enhances classification efficiency by
simplifying computational complexity. However, it
has limitations in capturing complex relationships
in the data. To address this, the BAT algorithm is
introduced as a complementary approach. While
PCA excels at capturing linear relationships in data,
BAT is proficient at capturing non-linear
relationships and complex interactions. PCA
maintains diversity by reducing correlations among
individuals in the feature space, preventing
premature convergence of the Bat Algorithm to
local optima, and enabling exploration of a wider
solution space. Additionally, PCA's dimensionality
reduction streamlines the Bat Algorithm's search
space, enhancing efficiency and reducing the risk of
getting trapped in local optima [14].

PCA is a technique used to transform a high-
dimensional sample space, comprising multiple
variables, into a lower-dimensional subspace. This
subspace is constructed by generating linearly
independent artificial variables known as principal
components [26]. The primary objective of PCA is
to reduce the dimensionality of the data while
preserving the essential information contained in
the original dataset. By reducing the number of
variables, PCA simplifies the analysis process and
enhances the visual representation of the data.

In Equation (1), matrix D represents a dataset
consisting of n samples and m features. To prevent

bias during the application of PCA, it is
necessary to scale the samples to a certain
range [47]. For this purpose, the study utilized
the Standard Scaler method presented in
Equation (2), which was obtained using
Equations (3)-(4).

𝐷𝐷 = �

𝑥𝑥��
𝑥𝑥��

⋯
𝑥𝑥��
𝑥𝑥��

⋮ ⋱ ⋮
𝑥𝑥�� ⋯ 𝑥𝑥��

� = �

𝑥𝑥�
𝑥𝑥�
⋮

𝑥𝑥�

� = [𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�] (1)

𝑧𝑧� = ����
�

, 𝑖𝑖 = 1, 2, 3, … , 𝑛𝑛 (2)

𝜎𝜎 = ��
�

∑ (𝑥𝑥� − 𝜇𝜇)��
��� (3)

𝜇𝜇 = �
�

∑ 𝑧𝑧�
�
��� (4)

Here, 𝑥𝑥� represents the i-th sample in the
dataset, 𝑧𝑧� represents the scaled data in the
range of [-1, 1] after normalization, 𝜎𝜎
represents the standard deviation of the
samples in the dataset calculated using
Equation (3), and 𝜇𝜇 represents the mean of the
scaled samples obtained using Equation (4).
Scaling the data ensures that the dataset has a
normal distribution with mean zero (0) and
variance one (1). After normalization, the
covariance matrix (𝑅𝑅) is calculated using
Equation (5) to determine the correlation
between the samples in the dataset.

𝑅𝑅 = �
�

∑ (𝑧𝑧� − 𝜇𝜇)(𝑧𝑧� − 𝜇𝜇)��
��� (5)

𝑅𝑅𝑅𝑅� = 𝜆𝜆�𝑅𝑅�, 𝑖𝑖 = 1,2, … , 𝑚𝑚 (6)

To obtain the principal components of the
samples in the dataset, the eigenvectors and
eigenvalues of the covariance matrix obtained
using Equation (5) must be calculated. This
process is carried out using Equation (6),
where 𝜆𝜆� represents the i-th eigenvalue of the
covariance matrix and 𝑅𝑅� represents the
corresponding eigenvector. The eigenvalues
are sorted from largest to smallest and 𝑘𝑘
eigenvectors corresponding to these
eigenvalues are selected to perform
dimensionality reduction on the original 𝐷𝐷
matrix. Thus, a new 𝑊𝑊 matrix is obtained from
the original 𝐷𝐷 matrix, consisting of 𝑘𝑘
uncorrelated principal components and 𝑛𝑛
samples, with negligible loss of information
[18, 63].

The threshold value for the total variance ratio
that the principal components should explain
was set to 0.99. This allowed for obtaining the
principal components that can explain the
highest possible total variance in the datasets
with the least loss of information. The number

(6)

To obtain the principal components of the samples in
the dataset, the eigenvectors and eigenvalues of the
covariance matrix obtained using Equation (5) must
be calculated. This process is carried out using Equa-
tion (6), where λi represents the i-th eigenvalue of the
covariance matrix and vi represents the correspond-
ing eigenvector. The eigenvalues are sorted from larg-
est to smallest and k eigenvectors corresponding to
these eigenvalues are selected to perform dimension-
ality reduction on the original D matrix. Thus, a new
W matrix is obtained from the original D matrix, con-
sisting of k uncorrelated principal components and n
samples, with negligible loss of information [18, 63].

Information Technology and Control 2024/1/53248

The threshold value for the total variance ratio that
the principal components should explain was set to
0.99. This allowed for obtaining the principal compo-
nents that can explain the highest possible total vari-
ance in the datasets with the least loss of information.
The number of principal components calculated for
IoTID20 and BoT-IoT datasets, the variance ratios
explained by the principal components, and the total
variance explained by the principal components for
each dataset are presented in Figures 2-3, respec-
tively. The results shown in Figures 2-3 indicate that
even after applying the PCA method and reducing the

Figure 2
The variance ratios explained by the principal components
for the IoTID20 dataset

Figure 3
The variance ratios explained by the principal components
for the BoT-IoT dataset

of principal components calculated for IoTID20 and
BoT-IoT datasets, the variance ratios explained by
the principal components, and the total variance
explained by the principal components for each
dataset are presented in Figures 2-3, respectively.
The results shown in Figures 2-3 indicate that even
after applying the PCA method and reducing the
number of features, the total variance values that
explain the datasets remain at a high level.
Specifically, the number of features was reduced
from 84 to 34 for the IoTID20 dataset and from 42 to
24 for the BoT-IoT dataset. Upon applying PCA, the
obtained total explained variance values were
0.99071 for the IoTID20 dataset and 0.99106 for the
BoT-IoT dataset. These values indicate that a
substantial portion of the original datasets'
variability can be effectively captured by the
retained principal components.

Figure 2

The variance ratios explained by the principal
components for the IoTID20 dataset

Figure 3

The variance ratios explained by the principal
components for the BoT-IoT dataset

In the study, the BAT algorithm was used to
select the most important new features among
the features obtained by the PCA method. The
BAT algorithm is a population-based
metaheuristic method inspired by the
echolocation behavior of bats in catching their
prey. By iteratively adjusting the positions and
frequencies of bats, it efficiently explores the
search space and seeks optimal solutions. This
characteristic renders BAT algorithm
particularly well-suited for feature selection
tasks [19, 38].

Bats emit high and short sound pulses around
them. They use the echoes of these sound
pulses that bounce back from objects to
calculate the distance between objects, and
assume that each bat flies in a random position
(𝑥𝑥�) with a fixed frequency (𝑓𝑓�), variable
wavelength (𝜆𝜆) and loudness (𝐴𝐴) while
searching for its prey. Bats can adjust the
wavelength and the pulse emission rate (𝑟𝑟) of
the pulses they emit [1, 38]. The velocity and
position of the i-th bat at time step t are
calculated using Equations (7)-(9) [36].

𝑥𝑥�� = 𝑥𝑥���� + 𝑣𝑣�� (7)

𝑣𝑣�� = 𝑣𝑣���� + �𝑥𝑥���� − 𝑥𝑥������ �𝑓𝑓� (8)

𝑓𝑓� = 𝑓𝑓��� + (𝑓𝑓��� − 𝑓𝑓���)β, (9)

where 𝑓𝑓��� and 𝑓𝑓��� are the minimum and
maximum sound frequency, respectively. β is
a random vector obtained from a uniform
distribution in the range [0,1], and 𝑥𝑥������ is the
global best solution in the 𝑡𝑡-th iteration. After
obtaining the overall solution, a local random
walk is calculated using Equation (10) to
generate a new solution for each bat.

𝑥𝑥� = 𝑥𝑥������ + 𝜀𝜀𝐴𝐴�, (10)

where 𝐴𝐴� represents the average loudness of
all bats at time step 𝑡𝑡, and 𝜀𝜀 is a random
number in the range [-1,1]. The loudness 𝐴𝐴�
and the pulse emission rate 𝑟𝑟� are updated
using Equations (11)-(12) [36, 64]:

𝐴𝐴�
��� = 𝛼𝛼𝐴𝐴�

� (11)

𝑟𝑟���� = 𝑟𝑟��[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑡𝑡)], (12)

where 𝛼𝛼 is a constant in the range [0,1], and 𝛾𝛾
is a positive constant.

The proposed PCA-BAT hybrid method in the
study follows Algorithm 1, which outlines the
step-by-step procedure for integrating PCA
and the BAT algorithm to achieve improved
feature selection and representation.

of principal components calculated for IoTID20 and
BoT-IoT datasets, the variance ratios explained by
the principal components, and the total variance
explained by the principal components for each
dataset are presented in Figures 2-3, respectively.
The results shown in Figures 2-3 indicate that even
after applying the PCA method and reducing the
number of features, the total variance values that
explain the datasets remain at a high level.
Specifically, the number of features was reduced
from 84 to 34 for the IoTID20 dataset and from 42 to
24 for the BoT-IoT dataset. Upon applying PCA, the
obtained total explained variance values were
0.99071 for the IoTID20 dataset and 0.99106 for the
BoT-IoT dataset. These values indicate that a
substantial portion of the original datasets'
variability can be effectively captured by the
retained principal components.

Figure 2

The variance ratios explained by the principal
components for the IoTID20 dataset

Figure 3

The variance ratios explained by the principal
components for the BoT-IoT dataset

In the study, the BAT algorithm was used to
select the most important new features among
the features obtained by the PCA method. The
BAT algorithm is a population-based
metaheuristic method inspired by the
echolocation behavior of bats in catching their
prey. By iteratively adjusting the positions and
frequencies of bats, it efficiently explores the
search space and seeks optimal solutions. This
characteristic renders BAT algorithm
particularly well-suited for feature selection
tasks [19, 38].

Bats emit high and short sound pulses around
them. They use the echoes of these sound
pulses that bounce back from objects to
calculate the distance between objects, and
assume that each bat flies in a random position
(𝑥𝑥�) with a fixed frequency (𝑓𝑓�), variable
wavelength (𝜆𝜆) and loudness (𝐴𝐴) while
searching for its prey. Bats can adjust the
wavelength and the pulse emission rate (𝑟𝑟) of
the pulses they emit [1, 38]. The velocity and
position of the i-th bat at time step t are
calculated using Equations (7)-(9) [36].

𝑥𝑥�� = 𝑥𝑥���� + 𝑣𝑣�� (7)

𝑣𝑣�� = 𝑣𝑣���� + �𝑥𝑥���� − 𝑥𝑥������ �𝑓𝑓� (8)

𝑓𝑓� = 𝑓𝑓��� + (𝑓𝑓��� − 𝑓𝑓���)β, (9)

where 𝑓𝑓��� and 𝑓𝑓��� are the minimum and
maximum sound frequency, respectively. β is
a random vector obtained from a uniform
distribution in the range [0,1], and 𝑥𝑥������ is the
global best solution in the 𝑡𝑡-th iteration. After
obtaining the overall solution, a local random
walk is calculated using Equation (10) to
generate a new solution for each bat.

𝑥𝑥� = 𝑥𝑥������ + 𝜀𝜀𝐴𝐴�, (10)

where 𝐴𝐴� represents the average loudness of
all bats at time step 𝑡𝑡, and 𝜀𝜀 is a random
number in the range [-1,1]. The loudness 𝐴𝐴�
and the pulse emission rate 𝑟𝑟� are updated
using Equations (11)-(12) [36, 64]:

𝐴𝐴�
��� = 𝛼𝛼𝐴𝐴�

� (11)

𝑟𝑟���� = 𝑟𝑟��[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑡𝑡)], (12)

where 𝛼𝛼 is a constant in the range [0,1], and 𝛾𝛾
is a positive constant.

The proposed PCA-BAT hybrid method in the
study follows Algorithm 1, which outlines the
step-by-step procedure for integrating PCA
and the BAT algorithm to achieve improved
feature selection and representation.

number of features, the total variance values that ex-
plain the datasets remain at a high level. Specifically,
the number of features was reduced from 84 to 34 for
the IoTID20 dataset and from 42 to 24 for the BoT-
IoT dataset. Upon applying PCA, the obtained total
explained variance values were 0.99071 for the IoT-
ID20 dataset and 0.99106 for the BoT-IoT dataset.
These values indicate that a substantial portion of the
original datasets’ variability can be effectively cap-
tured by the retained principal components.
In the study, the BAT algorithm was used to select
the most important new features among the features
obtained by the PCA method. The BAT algorithm is
a population-based metaheuristic method inspired
by the echolocation behavior of bats in catching
their prey. By iteratively adjusting the positions and
frequencies of bats, it efficiently explores the search
space and seeks optimal solutions. This characteris-
tic renders BAT algorithm particularly well-suited for
feature selection tasks [19, 38].
Bats emit high and short sound pulses around them.
They use the echoes of these sound pulses that
bounce back from objects to calculate the distance be-
tween objects, and assume that each bat flies in a ran-
dom position (xi) with a fixed frequency (fi), variable
wavelength (λ) and loudness (A) while searching for
its prey. Bats can adjust the wavelength and the pulse
emission rate (r) of the pulses they emit [1, 38]. The
velocity and position of the i-th bat at time step t are
calculated using Equations (7)-(9) [36].

of principal components calculated for IoTID20 and
BoT-IoT datasets, the variance ratios explained by
the principal components, and the total variance
explained by the principal components for each
dataset are presented in Figures 2-3, respectively.
The results shown in Figures 2-3 indicate that even
after applying the PCA method and reducing the
number of features, the total variance values that
explain the datasets remain at a high level.
Specifically, the number of features was reduced
from 84 to 34 for the IoTID20 dataset and from 42 to
24 for the BoT-IoT dataset. Upon applying PCA, the
obtained total explained variance values were
0.99071 for the IoTID20 dataset and 0.99106 for the
BoT-IoT dataset. These values indicate that a
substantial portion of the original datasets'
variability can be effectively captured by the
retained principal components.

Figure 2

The variance ratios explained by the principal
components for the IoTID20 dataset

Figure 3

The variance ratios explained by the principal
components for the BoT-IoT dataset

In the study, the BAT algorithm was used to
select the most important new features among
the features obtained by the PCA method. The
BAT algorithm is a population-based
metaheuristic method inspired by the
echolocation behavior of bats in catching their
prey. By iteratively adjusting the positions and
frequencies of bats, it efficiently explores the
search space and seeks optimal solutions. This
characteristic renders BAT algorithm
particularly well-suited for feature selection
tasks [19, 38].

Bats emit high and short sound pulses around
them. They use the echoes of these sound
pulses that bounce back from objects to
calculate the distance between objects, and
assume that each bat flies in a random position
(𝑥𝑥�) with a fixed frequency (𝑓𝑓�), variable
wavelength (𝜆𝜆) and loudness (𝐴𝐴) while
searching for its prey. Bats can adjust the
wavelength and the pulse emission rate (𝑟𝑟) of
the pulses they emit [1, 38]. The velocity and
position of the i-th bat at time step t are
calculated using Equations (7)-(9) [36].

𝑥𝑥�� = 𝑥𝑥���� + 𝑣𝑣�� (7)

𝑣𝑣�� = 𝑣𝑣���� + �𝑥𝑥���� − 𝑥𝑥������ �𝑓𝑓� (8)

𝑓𝑓� = 𝑓𝑓��� + (𝑓𝑓��� − 𝑓𝑓���)β, (9)

where 𝑓𝑓��� and 𝑓𝑓��� are the minimum and
maximum sound frequency, respectively. β is
a random vector obtained from a uniform
distribution in the range [0,1], and 𝑥𝑥������ is the
global best solution in the 𝑡𝑡-th iteration. After
obtaining the overall solution, a local random
walk is calculated using Equation (10) to
generate a new solution for each bat.

𝑥𝑥� = 𝑥𝑥������ + 𝜀𝜀𝐴𝐴�, (10)

where 𝐴𝐴� represents the average loudness of
all bats at time step 𝑡𝑡, and 𝜀𝜀 is a random
number in the range [-1,1]. The loudness 𝐴𝐴�
and the pulse emission rate 𝑟𝑟� are updated
using Equations (11)-(12) [36, 64]:

𝐴𝐴�
��� = 𝛼𝛼𝐴𝐴�

� (11)

𝑟𝑟���� = 𝑟𝑟��[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑡𝑡)], (12)

where 𝛼𝛼 is a constant in the range [0,1], and 𝛾𝛾
is a positive constant.

The proposed PCA-BAT hybrid method in the
study follows Algorithm 1, which outlines the
step-by-step procedure for integrating PCA
and the BAT algorithm to achieve improved
feature selection and representation.

(7)

of principal components calculated for IoTID20 and
BoT-IoT datasets, the variance ratios explained by
the principal components, and the total variance
explained by the principal components for each
dataset are presented in Figures 2-3, respectively.
The results shown in Figures 2-3 indicate that even
after applying the PCA method and reducing the
number of features, the total variance values that
explain the datasets remain at a high level.
Specifically, the number of features was reduced
from 84 to 34 for the IoTID20 dataset and from 42 to
24 for the BoT-IoT dataset. Upon applying PCA, the
obtained total explained variance values were
0.99071 for the IoTID20 dataset and 0.99106 for the
BoT-IoT dataset. These values indicate that a
substantial portion of the original datasets'
variability can be effectively captured by the
retained principal components.

Figure 2

The variance ratios explained by the principal
components for the IoTID20 dataset

Figure 3

The variance ratios explained by the principal
components for the BoT-IoT dataset

In the study, the BAT algorithm was used to
select the most important new features among
the features obtained by the PCA method. The
BAT algorithm is a population-based
metaheuristic method inspired by the
echolocation behavior of bats in catching their
prey. By iteratively adjusting the positions and
frequencies of bats, it efficiently explores the
search space and seeks optimal solutions. This
characteristic renders BAT algorithm
particularly well-suited for feature selection
tasks [19, 38].

Bats emit high and short sound pulses around
them. They use the echoes of these sound
pulses that bounce back from objects to
calculate the distance between objects, and
assume that each bat flies in a random position
(𝑥𝑥�) with a fixed frequency (𝑓𝑓�), variable
wavelength (𝜆𝜆) and loudness (𝐴𝐴) while
searching for its prey. Bats can adjust the
wavelength and the pulse emission rate (𝑟𝑟) of
the pulses they emit [1, 38]. The velocity and
position of the i-th bat at time step t are
calculated using Equations (7)-(9) [36].

𝑥𝑥�� = 𝑥𝑥���� + 𝑣𝑣�� (7)

𝑣𝑣�� = 𝑣𝑣���� + �𝑥𝑥���� − 𝑥𝑥������ �𝑓𝑓� (8)

𝑓𝑓� = 𝑓𝑓��� + (𝑓𝑓��� − 𝑓𝑓���)β, (9)

where 𝑓𝑓��� and 𝑓𝑓��� are the minimum and
maximum sound frequency, respectively. β is
a random vector obtained from a uniform
distribution in the range [0,1], and 𝑥𝑥������ is the
global best solution in the 𝑡𝑡-th iteration. After
obtaining the overall solution, a local random
walk is calculated using Equation (10) to
generate a new solution for each bat.

𝑥𝑥� = 𝑥𝑥������ + 𝜀𝜀𝐴𝐴�, (10)

where 𝐴𝐴� represents the average loudness of
all bats at time step 𝑡𝑡, and 𝜀𝜀 is a random
number in the range [-1,1]. The loudness 𝐴𝐴�
and the pulse emission rate 𝑟𝑟� are updated
using Equations (11)-(12) [36, 64]:

𝐴𝐴�
��� = 𝛼𝛼𝐴𝐴�

� (11)

𝑟𝑟���� = 𝑟𝑟��[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑡𝑡)], (12)

where 𝛼𝛼 is a constant in the range [0,1], and 𝛾𝛾
is a positive constant.

The proposed PCA-BAT hybrid method in the
study follows Algorithm 1, which outlines the
step-by-step procedure for integrating PCA
and the BAT algorithm to achieve improved
feature selection and representation.

(8)

of principal components calculated for IoTID20 and
BoT-IoT datasets, the variance ratios explained by
the principal components, and the total variance
explained by the principal components for each
dataset are presented in Figures 2-3, respectively.
The results shown in Figures 2-3 indicate that even
after applying the PCA method and reducing the
number of features, the total variance values that
explain the datasets remain at a high level.
Specifically, the number of features was reduced
from 84 to 34 for the IoTID20 dataset and from 42 to
24 for the BoT-IoT dataset. Upon applying PCA, the
obtained total explained variance values were
0.99071 for the IoTID20 dataset and 0.99106 for the
BoT-IoT dataset. These values indicate that a
substantial portion of the original datasets'
variability can be effectively captured by the
retained principal components.

Figure 2

The variance ratios explained by the principal
components for the IoTID20 dataset

Figure 3

The variance ratios explained by the principal
components for the BoT-IoT dataset

In the study, the BAT algorithm was used to
select the most important new features among
the features obtained by the PCA method. The
BAT algorithm is a population-based
metaheuristic method inspired by the
echolocation behavior of bats in catching their
prey. By iteratively adjusting the positions and
frequencies of bats, it efficiently explores the
search space and seeks optimal solutions. This
characteristic renders BAT algorithm
particularly well-suited for feature selection
tasks [19, 38].

Bats emit high and short sound pulses around
them. They use the echoes of these sound
pulses that bounce back from objects to
calculate the distance between objects, and
assume that each bat flies in a random position
(𝑥𝑥�) with a fixed frequency (𝑓𝑓�), variable
wavelength (𝜆𝜆) and loudness (𝐴𝐴) while
searching for its prey. Bats can adjust the
wavelength and the pulse emission rate (𝑟𝑟) of
the pulses they emit [1, 38]. The velocity and
position of the i-th bat at time step t are
calculated using Equations (7)-(9) [36].

𝑥𝑥�� = 𝑥𝑥���� + 𝑣𝑣�� (7)

𝑣𝑣�� = 𝑣𝑣���� + �𝑥𝑥���� − 𝑥𝑥������ �𝑓𝑓� (8)

𝑓𝑓� = 𝑓𝑓��� + (𝑓𝑓��� − 𝑓𝑓���)β, (9)

where 𝑓𝑓��� and 𝑓𝑓��� are the minimum and
maximum sound frequency, respectively. β is
a random vector obtained from a uniform
distribution in the range [0,1], and 𝑥𝑥������ is the
global best solution in the 𝑡𝑡-th iteration. After
obtaining the overall solution, a local random
walk is calculated using Equation (10) to
generate a new solution for each bat.

𝑥𝑥� = 𝑥𝑥������ + 𝜀𝜀𝐴𝐴�, (10)

where 𝐴𝐴� represents the average loudness of
all bats at time step 𝑡𝑡, and 𝜀𝜀 is a random
number in the range [-1,1]. The loudness 𝐴𝐴�
and the pulse emission rate 𝑟𝑟� are updated
using Equations (11)-(12) [36, 64]:

𝐴𝐴�
��� = 𝛼𝛼𝐴𝐴�

� (11)

𝑟𝑟���� = 𝑟𝑟��[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑡𝑡)], (12)

where 𝛼𝛼 is a constant in the range [0,1], and 𝛾𝛾
is a positive constant.

The proposed PCA-BAT hybrid method in the
study follows Algorithm 1, which outlines the
step-by-step procedure for integrating PCA
and the BAT algorithm to achieve improved
feature selection and representation.

, (9)

where fmin and fmax are the minimum and maximum
sound frequency, respectively. β is a random vector
obtained from a uniform distribution in the range
[0,1], and xt

gbest is the global best solution in the t-th
iteration. After obtaining the overall solution, a local
random walk is calculated using Equation (10) to gen-
erate a new solution for each bat.

of principal components calculated for IoTID20 and
BoT-IoT datasets, the variance ratios explained by
the principal components, and the total variance
explained by the principal components for each
dataset are presented in Figures 2-3, respectively.
The results shown in Figures 2-3 indicate that even
after applying the PCA method and reducing the
number of features, the total variance values that
explain the datasets remain at a high level.
Specifically, the number of features was reduced
from 84 to 34 for the IoTID20 dataset and from 42 to
24 for the BoT-IoT dataset. Upon applying PCA, the
obtained total explained variance values were
0.99071 for the IoTID20 dataset and 0.99106 for the
BoT-IoT dataset. These values indicate that a
substantial portion of the original datasets'
variability can be effectively captured by the
retained principal components.

Figure 2

The variance ratios explained by the principal
components for the IoTID20 dataset

Figure 3

The variance ratios explained by the principal
components for the BoT-IoT dataset

In the study, the BAT algorithm was used to
select the most important new features among
the features obtained by the PCA method. The
BAT algorithm is a population-based
metaheuristic method inspired by the
echolocation behavior of bats in catching their
prey. By iteratively adjusting the positions and
frequencies of bats, it efficiently explores the
search space and seeks optimal solutions. This
characteristic renders BAT algorithm
particularly well-suited for feature selection
tasks [19, 38].

Bats emit high and short sound pulses around
them. They use the echoes of these sound
pulses that bounce back from objects to
calculate the distance between objects, and
assume that each bat flies in a random position
(𝑥𝑥�) with a fixed frequency (𝑓𝑓�), variable
wavelength (𝜆𝜆) and loudness (𝐴𝐴) while
searching for its prey. Bats can adjust the
wavelength and the pulse emission rate (𝑟𝑟) of
the pulses they emit [1, 38]. The velocity and
position of the i-th bat at time step t are
calculated using Equations (7)-(9) [36].

𝑥𝑥�� = 𝑥𝑥���� + 𝑣𝑣�� (7)

𝑣𝑣�� = 𝑣𝑣���� + �𝑥𝑥���� − 𝑥𝑥������ �𝑓𝑓� (8)

𝑓𝑓� = 𝑓𝑓��� + (𝑓𝑓��� − 𝑓𝑓���)β, (9)

where 𝑓𝑓��� and 𝑓𝑓��� are the minimum and
maximum sound frequency, respectively. β is
a random vector obtained from a uniform
distribution in the range [0,1], and 𝑥𝑥������ is the
global best solution in the 𝑡𝑡-th iteration. After
obtaining the overall solution, a local random
walk is calculated using Equation (10) to
generate a new solution for each bat.

𝑥𝑥� = 𝑥𝑥������ + 𝜀𝜀𝐴𝐴�, (10)

where 𝐴𝐴� represents the average loudness of
all bats at time step 𝑡𝑡, and 𝜀𝜀 is a random
number in the range [-1,1]. The loudness 𝐴𝐴�
and the pulse emission rate 𝑟𝑟� are updated
using Equations (11)-(12) [36, 64]:

𝐴𝐴�
��� = 𝛼𝛼𝐴𝐴�

� (11)

𝑟𝑟���� = 𝑟𝑟��[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑡𝑡)], (12)

where 𝛼𝛼 is a constant in the range [0,1], and 𝛾𝛾
is a positive constant.

The proposed PCA-BAT hybrid method in the
study follows Algorithm 1, which outlines the
step-by-step procedure for integrating PCA
and the BAT algorithm to achieve improved
feature selection and representation.

, (10)

where At represents the average loudness of all bats
at time step t, and ε is a random number in the range

249Information Technology and Control 2024/1/53

[-1,1]. The loudness Ai and the pulse emission rate ri
are updated using Equations (11)-(12) [36, 64]:

of principal components calculated for IoTID20 and
BoT-IoT datasets, the variance ratios explained by
the principal components, and the total variance
explained by the principal components for each
dataset are presented in Figures 2-3, respectively.
The results shown in Figures 2-3 indicate that even
after applying the PCA method and reducing the
number of features, the total variance values that
explain the datasets remain at a high level.
Specifically, the number of features was reduced
from 84 to 34 for the IoTID20 dataset and from 42 to
24 for the BoT-IoT dataset. Upon applying PCA, the
obtained total explained variance values were
0.99071 for the IoTID20 dataset and 0.99106 for the
BoT-IoT dataset. These values indicate that a
substantial portion of the original datasets'
variability can be effectively captured by the
retained principal components.

Figure 2

The variance ratios explained by the principal
components for the IoTID20 dataset

Figure 3

The variance ratios explained by the principal
components for the BoT-IoT dataset

In the study, the BAT algorithm was used to
select the most important new features among
the features obtained by the PCA method. The
BAT algorithm is a population-based
metaheuristic method inspired by the
echolocation behavior of bats in catching their
prey. By iteratively adjusting the positions and
frequencies of bats, it efficiently explores the
search space and seeks optimal solutions. This
characteristic renders BAT algorithm
particularly well-suited for feature selection
tasks [19, 38].

Bats emit high and short sound pulses around
them. They use the echoes of these sound
pulses that bounce back from objects to
calculate the distance between objects, and
assume that each bat flies in a random position
(𝑥𝑥�) with a fixed frequency (𝑓𝑓�), variable
wavelength (𝜆𝜆) and loudness (𝐴𝐴) while
searching for its prey. Bats can adjust the
wavelength and the pulse emission rate (𝑟𝑟) of
the pulses they emit [1, 38]. The velocity and
position of the i-th bat at time step t are
calculated using Equations (7)-(9) [36].

𝑥𝑥�� = 𝑥𝑥���� + 𝑣𝑣�� (7)

𝑣𝑣�� = 𝑣𝑣���� + �𝑥𝑥���� − 𝑥𝑥������ �𝑓𝑓� (8)

𝑓𝑓� = 𝑓𝑓��� + (𝑓𝑓��� − 𝑓𝑓���)β, (9)

where 𝑓𝑓��� and 𝑓𝑓��� are the minimum and
maximum sound frequency, respectively. β is
a random vector obtained from a uniform
distribution in the range [0,1], and 𝑥𝑥������ is the
global best solution in the 𝑡𝑡-th iteration. After
obtaining the overall solution, a local random
walk is calculated using Equation (10) to
generate a new solution for each bat.

𝑥𝑥� = 𝑥𝑥������ + 𝜀𝜀𝐴𝐴�, (10)

where 𝐴𝐴� represents the average loudness of
all bats at time step 𝑡𝑡, and 𝜀𝜀 is a random
number in the range [-1,1]. The loudness 𝐴𝐴�
and the pulse emission rate 𝑟𝑟� are updated
using Equations (11)-(12) [36, 64]:

𝐴𝐴�
��� = 𝛼𝛼𝐴𝐴�

� (11)

𝑟𝑟���� = 𝑟𝑟��[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑡𝑡)], (12)

where 𝛼𝛼 is a constant in the range [0,1], and 𝛾𝛾
is a positive constant.

The proposed PCA-BAT hybrid method in the
study follows Algorithm 1, which outlines the
step-by-step procedure for integrating PCA
and the BAT algorithm to achieve improved
feature selection and representation.

(11)

of principal components calculated for IoTID20 and
BoT-IoT datasets, the variance ratios explained by
the principal components, and the total variance
explained by the principal components for each
dataset are presented in Figures 2-3, respectively.
The results shown in Figures 2-3 indicate that even
after applying the PCA method and reducing the
number of features, the total variance values that
explain the datasets remain at a high level.
Specifically, the number of features was reduced
from 84 to 34 for the IoTID20 dataset and from 42 to
24 for the BoT-IoT dataset. Upon applying PCA, the
obtained total explained variance values were
0.99071 for the IoTID20 dataset and 0.99106 for the
BoT-IoT dataset. These values indicate that a
substantial portion of the original datasets'
variability can be effectively captured by the
retained principal components.

Figure 2

The variance ratios explained by the principal
components for the IoTID20 dataset

Figure 3

The variance ratios explained by the principal
components for the BoT-IoT dataset

In the study, the BAT algorithm was used to
select the most important new features among
the features obtained by the PCA method. The
BAT algorithm is a population-based
metaheuristic method inspired by the
echolocation behavior of bats in catching their
prey. By iteratively adjusting the positions and
frequencies of bats, it efficiently explores the
search space and seeks optimal solutions. This
characteristic renders BAT algorithm
particularly well-suited for feature selection
tasks [19, 38].

Bats emit high and short sound pulses around
them. They use the echoes of these sound
pulses that bounce back from objects to
calculate the distance between objects, and
assume that each bat flies in a random position
(𝑥𝑥�) with a fixed frequency (𝑓𝑓�), variable
wavelength (𝜆𝜆) and loudness (𝐴𝐴) while
searching for its prey. Bats can adjust the
wavelength and the pulse emission rate (𝑟𝑟) of
the pulses they emit [1, 38]. The velocity and
position of the i-th bat at time step t are
calculated using Equations (7)-(9) [36].

𝑥𝑥�� = 𝑥𝑥���� + 𝑣𝑣�� (7)

𝑣𝑣�� = 𝑣𝑣���� + �𝑥𝑥���� − 𝑥𝑥������ �𝑓𝑓� (8)

𝑓𝑓� = 𝑓𝑓��� + (𝑓𝑓��� − 𝑓𝑓���)β, (9)

where 𝑓𝑓��� and 𝑓𝑓��� are the minimum and
maximum sound frequency, respectively. β is
a random vector obtained from a uniform
distribution in the range [0,1], and 𝑥𝑥������ is the
global best solution in the 𝑡𝑡-th iteration. After
obtaining the overall solution, a local random
walk is calculated using Equation (10) to
generate a new solution for each bat.

𝑥𝑥� = 𝑥𝑥������ + 𝜀𝜀𝐴𝐴�, (10)

where 𝐴𝐴� represents the average loudness of
all bats at time step 𝑡𝑡, and 𝜀𝜀 is a random
number in the range [-1,1]. The loudness 𝐴𝐴�
and the pulse emission rate 𝑟𝑟� are updated
using Equations (11)-(12) [36, 64]:

𝐴𝐴�
��� = 𝛼𝛼𝐴𝐴�

� (11)

𝑟𝑟���� = 𝑟𝑟��[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−𝛾𝛾𝑡𝑡)], (12)

where 𝛼𝛼 is a constant in the range [0,1], and 𝛾𝛾
is a positive constant.

The proposed PCA-BAT hybrid method in the
study follows Algorithm 1, which outlines the
step-by-step procedure for integrating PCA
and the BAT algorithm to achieve improved
feature selection and representation.

, (12)

where α is a constant in the range [0,1], and γ is a pos-
itive constant.
The proposed PCA-BAT hybrid method in the study fol-
lows Algorithm 1, which outlines the step-by-step pro-
cedure for integrating PCA and the BAT algorithm to
achieve improved feature selection and representation.

Algorithm 1. The hybrid PCA-BAT model for feature
reduction
Input: Dataset D consisting of n samples and m fea-
tures, Number of principal components: k, Maximum
number of iterations: max_iter, Termination criteri-
on: max_iter
Define_function PCA (D): Apply the PCA optimiza-
tion algorithm to the D matrix.
1: Normalize the dataset using the Standard Scaler
method (Equations (2)-(4));
2: Calculate the covariance matrix (R) using Equation (5);
3: Obtain the eigenvectors and eigenvalues of the co-
variance matrix using Equation (6);
4: Sort the eigenvalues in descending order and select
k eigenvectors corresponding to these eigenvalues;
5: Construct the projection matrix W consisting of the
selected k eigenvectors;
Define_function BAT (W): Apply the BAT optimiza-
tion algorithm to the W matrix.
6: Fitness function f(x), x=(x1,…,xd)T, Initialize the
bats’ positions (xi), frequencies (fi), wavelengths (λi),
and sound intensities (Ai);
7: Evaluate all the elements in the population by fit-
ness function f(x);
8: Calculate the velocity (vi) and position (xi) of each
bat using Equations (7)-(9);
9: If the random number (rand (0,1)) is greater than
pulse emission rate (ri), calculate the average loudness
(At) and update the bats’ positions using Equation (10);
10: If the random number (rand (0,1)) is lower than Ai
and f(xi)<f(xgbest) Update the loudness (Ai) and pulse
emission rate (ri) using Equations (11) and (12);
11: Repeat Steps 8-10 until convergence (max_iter);
Output: Reduced dataset D’

As seen in Algorithm 1, The PCA method is first used
to extract the principal components that capture the
maximum possible variance in the dataset with mini-
mal information loss. Then, the BAT optimization al-
gorithm is applied to further reduce the dimensional-
ity of the data by selecting the most relevant features
based on the fitness function. This approach allows
for efficient and effective feature reduction, which
can lead to improved model performance and reduced
computational complexity.
In the study, the Grid Search method [30] was used
to determine the hyperparameter values used in the
BAT algorithm. The “GridSearchCV” function of the
“scikit-learn” library was used to perform this meth-
od. After the grid search process, the hyperparameter
values obtained for the BAT algorithm are shown in
Table 1.

Table 1
Hyperparameter values of the BAT method

Hyperparameter Selected value

Lowest frequency 0

Highest frequency 2

Loudness 1.00

Sound wavelength 0.15

Alpha 0.95

Gamma 0.5

Number of bats used 30

Number of iterations 50

Applying the BAT algorithm for each dataset using
the hyperparameter values in Table 1, the highest fit-
ness rates and corresponding feature sets that led to
these rates were obtained and presented in Table 2.

Table 2
The features obtained after the BAT algorithm

Dataset Fitness rate Features

IoTID20 0.96728720 PC0, PC3, PC8, PC9, PC10, PC20,
PC22, PC25, PC28, PC29

BoT-IoT 0.97078535 PC3, PC8, PC11, PC13, PC15,
PC16, PC20

Information Technology and Control 2024/1/53250

As seen in Table 2, the highest fitness rate after 50 it-
erations was achieved using 10 features for the IoT-
ID20 dataset and 7 features for the BoT-IoT dataset
through the PCA-BAT algorithm. As a result, the
number of features was reduced from 84 to 10 for the
IoTID20 dataset and from 42 to 7 for the BoT-IoT
dataset.
In this study, the “train_test_split” function of the
“sklearn” library was used to randomly divide the
samples in the datasets into 75% training and 25%
testing sets. The number of samples in the resulting
training and testing sets can be seen in Tables 3-4, re-
spectively.

3.2.3. Handling Imbalanced Data
The imbalanced distribution of samples in the classes
of the datasets causes the majority classes to be more
represented than the minority classes. This can cause
bias in the classification model towards the more rep-
resented class, leading to a decrease in the classifica-
tion performance of the model, particularly for the
minority classes. The imbalance ratios of the datasets
considered in the study were calculated using Equa-
tion (13) which expresses the ratio of the number of
samples belonging to the majority class to the number
of samples belonging to the minority class.

 Figure 4

 The general structure of the proposed CNN model

Table 4

The number of samples in the training and test
datasets for the BoT-IoT dataset

Class Training
dataset

Test
dataset

Total Rate
(%)

DDoS 1,444,775 481,849 1,926,624 52.518
DoS 1,237,720 412,540 1,650,260 44.984
Normal 358 119 477 0.013
Reconna-
issance

68,476 22,606 91,082 2.483

Theft 62 17 79 0.002

In this study, the “train_test_split” function of the
“sklearn” library was used to randomly divide the
samples in the datasets into 75% training and 25%
testing sets. The number of samples in the resulting
training and testing sets can be seen in Tables 3-4,
respectively.

Upon examination of Tables 3-4, it is evident that
the data within the classes of both the training and
testing sets are distributed unevenly. This
imbalanced distribution could potentially affect the
classification performance of the IDS model used in
the study, especially for minority classes.

3.2.3. Handling Imbalanced Data

The imbalanced distribution of samples in the
classes of the datasets causes the majority classes to
be more represented than the minority classes. This
can cause bias in the classification model towards
the more represented class, leading to a decrease in

the classification performance of the model,
particularly for the minority classes. The
imbalance ratios of the datasets considered in
the study were calculated using Equation (13)
which expresses the ratio of the number of
samples belonging to the majority class to the
number of samples belonging to the minority
class.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 �_��������
�_��������

, (13)

where 𝑁𝑁_𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁 represents the number of
samples in the majority class and 𝑁𝑁_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁
represents the number of samples in the
minority class [11]. As a result of the
calculations using Equation (13), the
imbalance ratio was obtained as 11.74 for the
IoTID20 dataset and 24387.64 for the BoT-IoT
dataset.

Table 5

The number of samples in the IoTID20 training
dataset after applying the SMOTE method

Class Before
SMOTE

After
SMOTE

DoS 44,284 311,993
MITM 26,670 311,993
Mirai 311,993 311,993
Normal 30,136 311,993
Scan 56,254 311,993
Total number of
samples

469,337 1,559,965

, (13)

where N_majority represents the number of samples
in the majority class and N_minority represents the
number of samples in the minority class [11]. As a re-
sult of the calculations using Equation (13), the im-
balance ratio was obtained as 11.74 for the IoTID20
dataset and 24387.64 for the BoT-IoT dataset.
Considering the calculation results, it can be ob-
served that there is a significant imbalance between
the classes, especially in the BoT-IoT dataset. To ad-
dress this data imbalance issue, The Synthetic Mi-
nority Over-Sampling Technique (SMOTE) method
was used in the study. SMOTE is a technique that
generates new synthetic samples through linear in-
terpolation between each sample (xi) in the minori-
ty class and its k-nearest minority class neighbors.
This method enables the creation of a new balanced
dataset with equal numbers of samples from each
class by oversampling the minority class in datasets
with imbalanced class distributions. This prepares
the ground for a classification model that better rec-
ognizes the classes in the dataset by preventing the
bias that can be exhibited towards the majority class
[57, 67]. In SMOTE, the k-nearest minority neighbors
of xi are determined by calculating the Euclidean
distance between xi and each sample in the minority
class. Random samples are selected from among the
k-nearest minority neighbors of xi until the number of
samples in each class is equal. New synthetic samples
are obtained through the calculations performed us-
ing Equation (14).

Table 6

The number of samples in the BoT-IoT training
dataset after applying the SMOTE method

Class Before
SMOTE

After
SMOTE

DDoS 1,444,775 1,444,775
DoS 1,237,720 1,444,775
Normal 358 1,444,775
Reconnaissance 68,476 1,444,775
Theft 62 1,444,775
Total number of
samples

2,751,391 7,223,875

Considering the calculation results, it can be
observed that there is a significant imbalance
between the classes, especially in the BoT-IoT
dataset. To address this data imbalance issue, The
Synthetic Minority Over-Sampling Technique
(SMOTE) method was used in the study. SMOTE is
a technique that generates new synthetic samples
through linear interpolation between each sample
(𝑥𝑥�) in the minority class and its k-nearest minority
class neighbors. This method enables the creation of
a new balanced dataset with equal numbers of
samples from each class by oversampling the
minority class in datasets with imbalanced class
distributions. This prepares the ground for a
classification model that better recognizes the
classes in the dataset by preventing the bias that can
be exhibited towards the majority class [57, 67]. In
SMOTE, the k-nearest minority neighbors of 𝑥𝑥� are
determined by calculating the Euclidean distance
between 𝑥𝑥� and each sample in the minority class.
Random samples are selected from among the k-
nearest minority neighbors of 𝑥𝑥� until the number of
samples in each class is equal. New synthetic
samples are obtained through the calculations
performed using Equation (14).

𝑥𝑥�������� = 𝑥𝑥� + (�̅�𝑥 − 𝑥𝑥�) ∙ 𝑟𝑟. (14)

Here, 𝑥𝑥�������� represents the new synthetic sample
generated, 𝑥𝑥� represents the feature vector of the i-
th sample in the minority class, �̅�𝑥 represents a
randomly selected sample from the k-nearest
minority class neighbors of 𝑥𝑥, and 𝑟𝑟 represents a
random number between 0 and 1 [12, 16].

In this context, the SMOTE method was applied to
the IoTID20 and BoT-IoT training sets to generate
synthetic new samples, which helped to balance the
number of samples between classes. The number of
new samples in the training sets after applying the
SMOTE method is presented in Tables 5-6. As
indicated in Tables 5-6, the SMOTE technique was
employed to oversample the minority classes in the
datasets, generating new synthetic samples and
equalizing the sample sizes across all classes. In this

way, the problem of class imbalance in the
datasets was alleviated.

3.2.4. Attack Classification

In the attack classification phase of the study,
the CNN method was employed. CNNs are
deep learning methods that have found
widespread application in various domains.
The CNN approach offers several important
advantages, including robust fault tolerance,
parallel processing capabilities, local
connection, weight sharing during
convolution operations, and autonomous
learning abilities. Furthermore, it excels at
accurately extracting features from data while
undergoing rapid training. These attributes
make CNNs well-suited for addressing the
challenges related to network intrusion
detection in IoT environments. By utilizing
CNNs, intrusion detection systems can
effectively identify abnormal behavior and
promptly detect emerging threats in real-time.
These advanced systems provide enhanced
accuracy, scalability, and adaptability, making
them a promising solution for strengthening
network security and mitigating the risks
associated with evolving cyber threats [20, 32,
61].

Typically, a CNN architecture comprises
convolutional layers, activation layers,
pooling layers, flattening layers, and fully
connected layers [6, 33]. In the convolutional
layer, a series of numerical filters called
kernels are convolved with the input data to
extract relevant features, leading to the
creation of a feature map. The mathematical
formulation for discrete-time and one-
dimensional convolution operation is given by
Equation (15).

𝑦𝑦(𝑡𝑡) = ∑ 𝑥𝑥(𝑎𝑎)𝑤𝑤(𝑡𝑡 − 𝑎𝑎)�
���� + 𝑏𝑏. (15)

Here, the input data is represented by 𝑥𝑥, and
the kernel by 𝑤𝑤. The bias value is denoted by
𝑏𝑏, while time is represented by 𝑡𝑡. The
convolution operation is denoted by the
symbol ∗, and the resulting output is
represented by 𝑦𝑦(𝑡𝑡) [45, 62].

Activation functions are applied to the output
of the convolutional layer in the activation
layer. Sigmoid, 𝑡𝑡𝑎𝑎𝑡𝑡ℎ (hyperbolic tangent), and
rectified linear unit (ReLU) are commonly
used activation functions. However, ReLU is
preferred due to its ability to prevent the
gradient from vanishing, thus making the
network easier to train [24, 37]. ReLU is
defined mathematically using Equation (16).

(14)

Table 3
The number of samples in the training and test datasets for
the IoTID20 dataset

Class Training
dataset

Test
dataset Total Rate (%)

DoS 44,284 15,107 59,391 9.491

MITM 26,670 8,707 35,377 5.653

Mirai 311,993 103,684 415,677 66.425

Normal 30,136 9,937 40,073 6.404

Scan 56,254 19,011 75,265 12.027

Table 4
The number of samples in the training and test datasets for
the BoT-IoT dataset

Class Training
dataset

Test
dataset Total Rate

(%)

DDoS 1,444,775 481,849 1,926,624 52.518

DoS 1,237,720 412,540 1,650,260 44.984

Normal 358 119 477 0.013

Reconna-issance 68,476 22,606 91,082 2.483

Theft 62 17 79 0.002

Upon examination of Tables 3-4, it is evident that the
data within the classes of both the training and test-
ing sets are distributed unevenly. This imbalanced
distribution could potentially affect the classification
performance of the IDS model used in the study, espe-
cially for minority classes.

251Information Technology and Control 2024/1/53

Here, xsentetik represents the new synthetic sample
generated, xi represents the feature vector of the i-th
sample in the minority class, _x represents a random-
ly selected sample from the k-nearest minority class
neighbors of x, and r represents a random number be-
tween 0 and 1 [12, 16].

Table 5
The number of samples in the IoTID20 training dataset
after applying the SMOTE method

Class Before SMOTE After SMOTE

DoS 44,284 311,993

MITM 26,670 311,993

Mirai 311,993 311,993

Normal 30,136 311,993

Scan 56,254 311,993

Total number of samples 469,337 1,559,965

Table 6
The number of samples in the BoT-IoT training dataset
after applying the SMOTE method

Class Before SMOTE After SMOTE

DDoS 1,444,775 1,444,775

DoS 1,237,720 1,444,775

Normal 358 1,444,775

Reconnaissance 68,476 1,444,775

Theft 62 1,444,775

Total number of samples 2,751,391 7,223,875

In this context, the SMOTE method was applied to
the IoTID20 and BoT-IoT training sets to gener-
ate synthetic new samples, which helped to balance
the number of samples between classes. The num-
ber of new samples in the training sets after apply-
ing the SMOTE method is presented in Tables 5-6.
As indicated in Tables 5-6, the SMOTE technique
was employed to oversample the minority classes in
the datasets, generating new synthetic samples and
equalizing the sample sizes across all classes. In this
way, the problem of class imbalance in the datasets
was alleviated.

3.2.4. Attack Classification
In the attack classification phase of the study, the
CNN method was employed. CNNs are deep learning
methods that have found widespread application in
various domains. The CNN approach offers several
important advantages, including robust fault toler-
ance, parallel processing capabilities, local connec-
tion, weight sharing during convolution operations,
and autonomous learning abilities. Furthermore, it
excels at accurately extracting features from data
while undergoing rapid training. These attributes
make CNNs well-suited for addressing the challeng-
es related to network intrusion detection in IoT en-
vironments. By utilizing CNNs, intrusion detection
systems can effectively identify abnormal behavior
and promptly detect emerging threats in real-time.
These advanced systems provide enhanced accuracy,
scalability, and adaptability, making them a promis-
ing solution for strengthening network security and
mitigating the risks associated with evolving cyber
threats [20, 32, 61].
Typically, a CNN architecture comprises convolu-
tional layers, activation layers, pooling layers, flat-
tening layers, and fully connected layers [6, 33]. In
the convolutional layer, a series of numerical filters
called kernels are convolved with the input data to
extract relevant features, leading to the creation of a
feature map. The mathematical formulation for dis-
crete-time and one-dimensional convolution opera-
tion is given by Equation (15).

Table 6

The number of samples in the BoT-IoT training
dataset after applying the SMOTE method

Class Before
SMOTE

After
SMOTE

DDoS 1,444,775 1,444,775
DoS 1,237,720 1,444,775
Normal 358 1,444,775
Reconnaissance 68,476 1,444,775
Theft 62 1,444,775
Total number of
samples

2,751,391 7,223,875

Considering the calculation results, it can be
observed that there is a significant imbalance
between the classes, especially in the BoT-IoT
dataset. To address this data imbalance issue, The
Synthetic Minority Over-Sampling Technique
(SMOTE) method was used in the study. SMOTE is
a technique that generates new synthetic samples
through linear interpolation between each sample
(𝑥𝑥�) in the minority class and its k-nearest minority
class neighbors. This method enables the creation of
a new balanced dataset with equal numbers of
samples from each class by oversampling the
minority class in datasets with imbalanced class
distributions. This prepares the ground for a
classification model that better recognizes the
classes in the dataset by preventing the bias that can
be exhibited towards the majority class [57, 67]. In
SMOTE, the k-nearest minority neighbors of 𝑥𝑥� are
determined by calculating the Euclidean distance
between 𝑥𝑥� and each sample in the minority class.
Random samples are selected from among the k-
nearest minority neighbors of 𝑥𝑥� until the number of
samples in each class is equal. New synthetic
samples are obtained through the calculations
performed using Equation (14).

𝑥𝑥�������� = 𝑥𝑥� + (�̅�𝑥 − 𝑥𝑥�) ∙ 𝑟𝑟. (14)

Here, 𝑥𝑥�������� represents the new synthetic sample
generated, 𝑥𝑥� represents the feature vector of the i-
th sample in the minority class, �̅�𝑥 represents a
randomly selected sample from the k-nearest
minority class neighbors of 𝑥𝑥, and 𝑟𝑟 represents a
random number between 0 and 1 [12, 16].

In this context, the SMOTE method was applied to
the IoTID20 and BoT-IoT training sets to generate
synthetic new samples, which helped to balance the
number of samples between classes. The number of
new samples in the training sets after applying the
SMOTE method is presented in Tables 5-6. As
indicated in Tables 5-6, the SMOTE technique was
employed to oversample the minority classes in the
datasets, generating new synthetic samples and
equalizing the sample sizes across all classes. In this

way, the problem of class imbalance in the
datasets was alleviated.

3.2.4. Attack Classification

In the attack classification phase of the study,
the CNN method was employed. CNNs are
deep learning methods that have found
widespread application in various domains.
The CNN approach offers several important
advantages, including robust fault tolerance,
parallel processing capabilities, local
connection, weight sharing during
convolution operations, and autonomous
learning abilities. Furthermore, it excels at
accurately extracting features from data while
undergoing rapid training. These attributes
make CNNs well-suited for addressing the
challenges related to network intrusion
detection in IoT environments. By utilizing
CNNs, intrusion detection systems can
effectively identify abnormal behavior and
promptly detect emerging threats in real-time.
These advanced systems provide enhanced
accuracy, scalability, and adaptability, making
them a promising solution for strengthening
network security and mitigating the risks
associated with evolving cyber threats [20, 32,
61].

Typically, a CNN architecture comprises
convolutional layers, activation layers,
pooling layers, flattening layers, and fully
connected layers [6, 33]. In the convolutional
layer, a series of numerical filters called
kernels are convolved with the input data to
extract relevant features, leading to the
creation of a feature map. The mathematical
formulation for discrete-time and one-
dimensional convolution operation is given by
Equation (15).

𝑦𝑦(𝑡𝑡) = ∑ 𝑥𝑥(𝑎𝑎)𝑤𝑤(𝑡𝑡 − 𝑎𝑎)�
���� + 𝑏𝑏. (15)

Here, the input data is represented by 𝑥𝑥, and
the kernel by 𝑤𝑤. The bias value is denoted by
𝑏𝑏, while time is represented by 𝑡𝑡. The
convolution operation is denoted by the
symbol ∗, and the resulting output is
represented by 𝑦𝑦(𝑡𝑡) [45, 62].

Activation functions are applied to the output
of the convolutional layer in the activation
layer. Sigmoid, 𝑡𝑡𝑎𝑎𝑡𝑡ℎ (hyperbolic tangent), and
rectified linear unit (ReLU) are commonly
used activation functions. However, ReLU is
preferred due to its ability to prevent the
gradient from vanishing, thus making the
network easier to train [24, 37]. ReLU is
defined mathematically using Equation (16).

(15)

Here, the input data is represented by x, and the ker-
nel by w. The bias value is denoted by b, while time is
represented by t. The convolution operation is denot-
ed by the symbol *, and the resulting output is repre-
sented by y(t) [45, 62].
Activation functions are applied to the output of
the convolutional layer in the activation layer. Sig-
moid, tanh (hyperbolic tangent), and rectified linear
unit (ReLU) are commonly used activation func-
tions. However, ReLU is preferred due to its ability
to prevent the gradient from vanishing, thus making
the network easier to train [24, 37]. ReLU is defined
mathematically using Equation (16).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝛽𝛽), (16)

where 𝛽𝛽 is the input to the activation function, and
the output is the maximum of 0 and the input 𝛽𝛽.

The pooling layer is used to reduce the
dimensionality of the feature maps obtained from
the convolutional layer. Maximum pooling is
typically preferred over average pooling in CNNs
[67]. The pooling layer reduces the input feature
map's dimensionality by considering a pooling
window, performing a maximum operation, and
replacing the values with the maximum value. This
preserves the most important features of the input
data, leading to faster learning and preventing
overfitting. The mathematical formulation for one-
dimensional maximum pooling is given by
Equation (17).

𝑂𝑂𝑚𝑚𝑂𝑂𝑂𝑂𝑚𝑚𝑂𝑂[𝑚𝑚] = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼𝐼𝐼𝑂𝑂𝑚𝑚𝑂𝑂[𝑠𝑠 ∗ 𝑚𝑚 ∶ 𝑠𝑠 ∗ 𝑚𝑚 + 𝑓𝑓]), (17)

where 𝑚𝑚 is the index of the output feature map, 𝑓𝑓 is
the pooling window size, and 𝑠𝑠 is the pooling stride
[58, 66].

In the flattening layer, multidimensional data from
the previous layers are converted into one-
dimensional data by rearranging the data into a
sequence of one-dimensional elements. This step
prepares the data for the fully connected layer,
which operates on one-dimensional data [33].

The fully connected layer, also referred to as the
dense layer, plays a fundamental role in numerous
deep learning architectures. It establishes
connections between all the neurons in the current
layer and those in the preceding layer, enabling the
extraction of intricate features from high-
dimensional data. Within this layer, the input data
undergoes a multiplication operation with weights
acquired by the model, followed by the addition of
a bias value, prior to being fed through an activation
function. The outcome of this layer is employed to
obtain the ultimate classification result [24, 37].

The general structure and process steps of the CNN
method used in the study are presented in Figure 4.
In the proposed CNN model, as seen in Figure 4,
there are three convolutional layers. After each
convolutional layer, data normalization is
performed using batch normalization to improve
the network's performance and processing speed
during training, as well as to prevent the problems
of gradient explosion and vanishing gradient.
Following the batch normalization process, an
activation layer and a pooling layer are used in the
proposed model. ReLU is used as the activation
function, and maximum pooling is used for the
pooling process. After the data is flattened by the
flatten layer, it is made suitable for the fully

connected layer. Three fully connected layers
are used, and after each fully connected layer,
an activation layer is used. ReLU is used as the
activation function in the first two activation
layers, while Softmax activation function is
used in the last activation layer with the
number of neurons equal to the number of
classes in the dataset. The hyperparameter
configuration of the CNN method is
determined using Grid Search method and the
experimental studies in the literature. The
hyperparameters used in the layers of CNN in
the study and their corresponding values are
presented in Table 7.

 Table 7

 Hyperparameters used in the CNN model
Hyperparameter Selected value

Kernel size (Convolution
layer)

6

Activation function
(Convolution layer)

ReLU

Number of filters
(Convolution layer)

64

Stride (Convolution layer) 1
Momentum 0.9
Epsilon 0.0001
Number of neurons (Fully
connected layer)

64 (first two
layers), 5 (last
layer)

Activation function (Fully
connected layer)

ReLU (first two
layers), Softmax
(last layer)

Optimization method Adam (learning
rate: 0.001)

Loss function
Categorical cross
entropy

Batch size 64
Number of epochs 500

In addition to the hyperparameters detailed in
Table 7, the “early stop” function of the
“Keras” library [13, 42] was used in this study.
The training process was initialized with 500
epochs and the “early stop” mechanism was
implemented using a predefined threshold of
20. This approach aims to minimize the risk of
overfitting by terminating the training process
when the model reaches the epoch value of a
certain performance threshold. Within the
training dataset, a special subset containing
20% of the samples is reserved as validation
data. At any point in the training phase, the
training process was terminated if no
reduction in “validation loss” was observed
during the previous 20 epochs.

(16)

Information Technology and Control 2024/1/53252

where β is the input to the activation function, and the
output is the maximum of 0 and the input β.
The pooling layer is used to reduce the dimensionality
of the feature maps obtained from the convolutional
layer. Maximum pooling is typically preferred over av-
erage pooling in CNNs [67]. The pooling layer reduces
the input feature map’s dimensionality by consider-
ing a pooling window, performing a maximum opera-
tion, and replacing the values with the maximum val-
ue. This preserves the most important features of the
input data, leading to faster learning and preventing
overfitting. The mathematical formulation for one-di-
mensional maximum pooling is given by Equation (17).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝛽𝛽), (16)

where 𝛽𝛽 is the input to the activation function, and
the output is the maximum of 0 and the input 𝛽𝛽.

The pooling layer is used to reduce the
dimensionality of the feature maps obtained from
the convolutional layer. Maximum pooling is
typically preferred over average pooling in CNNs
[67]. The pooling layer reduces the input feature
map's dimensionality by considering a pooling
window, performing a maximum operation, and
replacing the values with the maximum value. This
preserves the most important features of the input
data, leading to faster learning and preventing
overfitting. The mathematical formulation for one-
dimensional maximum pooling is given by
Equation (17).

𝑂𝑂𝑚𝑚𝑂𝑂𝑂𝑂𝑚𝑚𝑂𝑂[𝑚𝑚] = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼𝐼𝐼𝑂𝑂𝑚𝑚𝑂𝑂[𝑠𝑠 ∗ 𝑚𝑚 ∶ 𝑠𝑠 ∗ 𝑚𝑚 + 𝑓𝑓]), (17)

where 𝑚𝑚 is the index of the output feature map, 𝑓𝑓 is
the pooling window size, and 𝑠𝑠 is the pooling stride
[58, 66].

In the flattening layer, multidimensional data from
the previous layers are converted into one-
dimensional data by rearranging the data into a
sequence of one-dimensional elements. This step
prepares the data for the fully connected layer,
which operates on one-dimensional data [33].

The fully connected layer, also referred to as the
dense layer, plays a fundamental role in numerous
deep learning architectures. It establishes
connections between all the neurons in the current
layer and those in the preceding layer, enabling the
extraction of intricate features from high-
dimensional data. Within this layer, the input data
undergoes a multiplication operation with weights
acquired by the model, followed by the addition of
a bias value, prior to being fed through an activation
function. The outcome of this layer is employed to
obtain the ultimate classification result [24, 37].

The general structure and process steps of the CNN
method used in the study are presented in Figure 4.
In the proposed CNN model, as seen in Figure 4,
there are three convolutional layers. After each
convolutional layer, data normalization is
performed using batch normalization to improve
the network's performance and processing speed
during training, as well as to prevent the problems
of gradient explosion and vanishing gradient.
Following the batch normalization process, an
activation layer and a pooling layer are used in the
proposed model. ReLU is used as the activation
function, and maximum pooling is used for the
pooling process. After the data is flattened by the
flatten layer, it is made suitable for the fully

connected layer. Three fully connected layers
are used, and after each fully connected layer,
an activation layer is used. ReLU is used as the
activation function in the first two activation
layers, while Softmax activation function is
used in the last activation layer with the
number of neurons equal to the number of
classes in the dataset. The hyperparameter
configuration of the CNN method is
determined using Grid Search method and the
experimental studies in the literature. The
hyperparameters used in the layers of CNN in
the study and their corresponding values are
presented in Table 7.

 Table 7

 Hyperparameters used in the CNN model
Hyperparameter Selected value

Kernel size (Convolution
layer)

6

Activation function
(Convolution layer)

ReLU

Number of filters
(Convolution layer)

64

Stride (Convolution layer) 1
Momentum 0.9
Epsilon 0.0001
Number of neurons (Fully
connected layer)

64 (first two
layers), 5 (last
layer)

Activation function (Fully
connected layer)

ReLU (first two
layers), Softmax
(last layer)

Optimization method Adam (learning
rate: 0.001)

Loss function
Categorical cross
entropy

Batch size 64
Number of epochs 500

In addition to the hyperparameters detailed in
Table 7, the “early stop” function of the
“Keras” library [13, 42] was used in this study.
The training process was initialized with 500
epochs and the “early stop” mechanism was
implemented using a predefined threshold of
20. This approach aims to minimize the risk of
overfitting by terminating the training process
when the model reaches the epoch value of a
certain performance threshold. Within the
training dataset, a special subset containing
20% of the samples is reserved as validation
data. At any point in the training phase, the
training process was terminated if no
reduction in “validation loss” was observed
during the previous 20 epochs.

, (17)

where i is the index of the output feature map, f is the
pooling window size, and s is the pooling stride [58, 66].
In the flattening layer, multidimensional data from
the previous layers are converted into one-dimen-
sional data by rearranging the data into a sequence
of one-dimensional elements. This step prepares the
data for the fully connected layer, which operates on
one-dimensional data [33].

Figure 4
The general structure of the proposed CNN model

 Figure 4

 The general structure of the proposed CNN model

Table 4

The number of samples in the training and test
datasets for the BoT-IoT dataset

Class Training
dataset

Test
dataset

Total Rate
(%)

DDoS 1,444,775 481,849 1,926,624 52.518
DoS 1,237,720 412,540 1,650,260 44.984
Normal 358 119 477 0.013
Reconna-
issance

68,476 22,606 91,082 2.483

Theft 62 17 79 0.002

In this study, the “train_test_split” function of the
“sklearn” library was used to randomly divide the
samples in the datasets into 75% training and 25%
testing sets. The number of samples in the resulting
training and testing sets can be seen in Tables 3-4,
respectively.

Upon examination of Tables 3-4, it is evident that
the data within the classes of both the training and
testing sets are distributed unevenly. This
imbalanced distribution could potentially affect the
classification performance of the IDS model used in
the study, especially for minority classes.

3.2.3. Handling Imbalanced Data

The imbalanced distribution of samples in the
classes of the datasets causes the majority classes to
be more represented than the minority classes. This
can cause bias in the classification model towards
the more represented class, leading to a decrease in

the classification performance of the model,
particularly for the minority classes. The
imbalance ratios of the datasets considered in
the study were calculated using Equation (13)
which expresses the ratio of the number of
samples belonging to the majority class to the
number of samples belonging to the minority
class.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 �_��������
�_��������

, (13)

where 𝑁𝑁_𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁 represents the number of
samples in the majority class and 𝑁𝑁_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁
represents the number of samples in the
minority class [11]. As a result of the
calculations using Equation (13), the
imbalance ratio was obtained as 11.74 for the
IoTID20 dataset and 24387.64 for the BoT-IoT
dataset.

Table 5

The number of samples in the IoTID20 training
dataset after applying the SMOTE method

Class Before
SMOTE

After
SMOTE

DoS 44,284 311,993
MITM 26,670 311,993
Mirai 311,993 311,993
Normal 30,136 311,993
Scan 56,254 311,993
Total number of
samples

469,337 1,559,965

The fully connected layer, also referred to as the dense
layer, plays a fundamental role in numerous deep
learning architectures. It establishes connections be-
tween all the neurons in the current layer and those
in the preceding layer, enabling the extraction of in-
tricate features from high-dimensional data. Within
this layer, the input data undergoes a multiplication
operation with weights acquired by the model, fol-
lowed by the addition of a bias value, prior to being fed
through an activation function. The outcome of this
layer is employed to obtain the ultimate classification
result [24, 37].
The general structure and process steps of the CNN
method used in the study are presented in Figure 4.
In the proposed CNN model, as seen in Figure 4, there
are three convolutional layers. After each convolu-
tional layer, data normalization is performed using
batch normalization to improve the network’s perfor-
mance and processing speed during training, as well
as to prevent the problems of gradient explosion and
vanishing gradient. Following the batch normaliza-
tion process, an activation layer and a pooling layer
are used in the proposed model. ReLU is used as the

253Information Technology and Control 2024/1/53

activation function, and maximum pooling is used for
the pooling process. After the data is flattened by the
flatten layer, it is made suitable for the fully connect-
ed layer. Three fully connected layers are used, and
after each fully connected layer, an activation layer
is used. ReLU is used as the activation function in the
first two activation layers, while Softmax activation
function is used in the last activation layer with the
number of neurons equal to the number of classes in
the dataset. The hyperparameter configuration of the
CNN method is determined using Grid Search meth-
od and the experimental studies in the literature. The
hyperparameters used in the layers of CNN in the
study and their corresponding values are presented in
Table 7.
In addition to the hyperparameters detailed in Ta-
ble 7, the “early stop” function of the “Keras” library
[13, 42] was used in this study. The training process
was initialized with 500 epochs and the “early stop”
mechanism was implemented using a predefined
threshold of 20. This approach aims to minimize the

Hyperparameter Selected value

Kernel size (Convolution layer) 6

Activation function
(Convolution layer)

ReLU

Number of filters (Convolution
layer)

64

Stride (Convolution layer) 1

Momentum 0.9

Epsilon 0.0001

Number of neurons (Fully
connected layer)

64 (first two layers), 5
(last layer)

Activation function (Fully
connected layer)

ReLU (first two layers),
Softmax (last layer)

Optimization method Adam (learning rate:
0.001)

Loss function Categorical cross
entropy

Batch size 64

Number of epochs 500

Table 7
Hyperparameters used in the CNN model

risk of overfitting by terminating the training process
when the model reaches the epoch value of a certain
performance threshold. Within the training dataset,
a special subset containing 20% of the samples is re-
served as validation data. At any point in the training
phase, the training process was terminated if no re-
duction in “validation loss” was observed during the
previous 20 epochs.
In order to comprehensively evaluate the recom-
mended classification model, k-fold cross-validation
method [46] was employed on the training dataset.
Taking into account the resource constraints often
encountered in IoT networks the default k=5 value
provided by the scikit-learn library was preferred in
this study instead of a higher k value to avoid unnec-
essary computational complexity and cost [51, 53].
The training data was divided into 5 distinct folds,
each of which served for an individual experiment.

4. Performance Evaluation and
Experimental Results
The proposed IDS in this study was developed using
a personal computer equipped with an AMD Ryzen
Pro 3.70 GHz processor, 32 GB RAM, and a 64-bit
Windows operating system, using the Python pro-
gramming language through the Anaconda platform
[48]. The performance of the proposed model was
evaluated using several metrics, including accuracy,
precision, recall, and F1-score, which were calculated
using Equations (18)-(21), respectively.

In order to comprehensively evaluate the
recommended classification model, k-fold cross-
validation method [46] was employed on the
training dataset. Taking into account the resource
constraints often encountered in IoT networks the
default k=5 value provided by the scikit-learn
library was preferred in this study instead of a
higher k value to avoid unnecessary computational
complexity and cost [51, 53]. The training data was
divided into 5 distinct folds, each of which served
for an individual experiment.

4. Performance Evaluation and
Experimental Results

The proposed IDS in this study was developed
using a personal computer equipped with an AMD
Ryzen Pro 3.70 GHz processor, 32 GB RAM, and a
64-bit Windows operating system, using the Python
programming language through the Anaconda
platform [48]. The performance of the proposed
model was evaluated using several metrics,
including accuracy, precision, recall, and F1-score,
which were calculated using Equations (18)-(21),
respectively.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �����
����������

 (18)

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ��
�����

 (19)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = ��
����

 (20)

𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 ∗ ���������∗������
����������������

. (21)

Here, TP (True Positive) represents the number of
samples that are correctly classified as positive by
the model and are actually positive, FP (False
Positive) represents the number of samples that are
incorrectly classified as positive by the model but
are actually negative, FN (False Negative)

represents the number of samples that are
incorrectly classified as negative by the model
but are actually positive, and TN (True
Negative) represents the number of samples
that are correctly classified as negative by the
model and are actually negative. Figures 5-6
display confusion matrices, while Tables 8-9
present performance metrics of the proposed
IDS for the IoTID20 and BoT-IoT datasets,
respectively.

In addition, the study analyzed the effects of
feature reduction and data balancing methods
used in the proposed IDS on classification
performance by applying two different
scenarios on the IoTID20 and BoT-IoT
datasets. For Scenario 1, the attack
classification was tested by applying only the
feature reduction process without data
balancing on the relevant datasets. For
Scenario 2, the attack classification was tested
without applying data balancing and feature
reduction processes on the datasets. The
results obtained by applying Scenario 1 and
Scenario 2 on the IoTID20 dataset are
presented in Tables 10-11, respectively.
Similarly, the results obtained by applying
Scenario 1 and Scenario 2 on the BoT-IoT
dataset are presented in Tables 12-13,
respectively. When comparing the
performance results in Tables 10-13 for
Scenarios 1-2 with the performance results in
Tables 8-9 for the proposed IDS in the study, it
can be seen that performing classification
without data balancing significantly reduces
precision, recall, and F1-score values,
especially for minority classes such as the
Theft. Additionally, it is observed that feature
reduction significantly reduces training time,
while data balancing increases training time
due to oversampling.

Table 8

Classification performance metric values of the proposed model for the IoTID20 dataset

Table 9

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Number of
samples

Training
time (s)

Model 99.967 99.790 99.696 99.743 156,354 13,818
DoS 99.980 99.960 99.828 99.894 14,848

MITM 99.956 99.655 99.552 99.604 8,844
Mirai 99.820 99.865 99.863 99.864 103,828
Normal 99.879 98.594 99.507 99.048 10,018
Scan 99.880 99.668 99.348 99.507 18,816

(18)

In order to comprehensively evaluate the
recommended classification model, k-fold cross-
validation method [46] was employed on the
training dataset. Taking into account the resource
constraints often encountered in IoT networks the
default k=5 value provided by the scikit-learn
library was preferred in this study instead of a
higher k value to avoid unnecessary computational
complexity and cost [51, 53]. The training data was
divided into 5 distinct folds, each of which served
for an individual experiment.

4. Performance Evaluation and
Experimental Results

The proposed IDS in this study was developed
using a personal computer equipped with an AMD
Ryzen Pro 3.70 GHz processor, 32 GB RAM, and a
64-bit Windows operating system, using the Python
programming language through the Anaconda
platform [48]. The performance of the proposed
model was evaluated using several metrics,
including accuracy, precision, recall, and F1-score,
which were calculated using Equations (18)-(21),
respectively.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �����
����������

 (18)

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ��
�����

 (19)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = ��
����

 (20)

𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 ∗ ���������∗������
����������������

. (21)

Here, TP (True Positive) represents the number of
samples that are correctly classified as positive by
the model and are actually positive, FP (False
Positive) represents the number of samples that are
incorrectly classified as positive by the model but
are actually negative, FN (False Negative)

represents the number of samples that are
incorrectly classified as negative by the model
but are actually positive, and TN (True
Negative) represents the number of samples
that are correctly classified as negative by the
model and are actually negative. Figures 5-6
display confusion matrices, while Tables 8-9
present performance metrics of the proposed
IDS for the IoTID20 and BoT-IoT datasets,
respectively.

In addition, the study analyzed the effects of
feature reduction and data balancing methods
used in the proposed IDS on classification
performance by applying two different
scenarios on the IoTID20 and BoT-IoT
datasets. For Scenario 1, the attack
classification was tested by applying only the
feature reduction process without data
balancing on the relevant datasets. For
Scenario 2, the attack classification was tested
without applying data balancing and feature
reduction processes on the datasets. The
results obtained by applying Scenario 1 and
Scenario 2 on the IoTID20 dataset are
presented in Tables 10-11, respectively.
Similarly, the results obtained by applying
Scenario 1 and Scenario 2 on the BoT-IoT
dataset are presented in Tables 12-13,
respectively. When comparing the
performance results in Tables 10-13 for
Scenarios 1-2 with the performance results in
Tables 8-9 for the proposed IDS in the study, it
can be seen that performing classification
without data balancing significantly reduces
precision, recall, and F1-score values,
especially for minority classes such as the
Theft. Additionally, it is observed that feature
reduction significantly reduces training time,
while data balancing increases training time
due to oversampling.

Table 8

Classification performance metric values of the proposed model for the IoTID20 dataset

Table 9

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Number of
samples

Training
time (s)

Model 99.967 99.790 99.696 99.743 156,354 13,818
DoS 99.980 99.960 99.828 99.894 14,848

MITM 99.956 99.655 99.552 99.604 8,844
Mirai 99.820 99.865 99.863 99.864 103,828
Normal 99.879 98.594 99.507 99.048 10,018
Scan 99.880 99.668 99.348 99.507 18,816

(19)

In order to comprehensively evaluate the
recommended classification model, k-fold cross-
validation method [46] was employed on the
training dataset. Taking into account the resource
constraints often encountered in IoT networks the
default k=5 value provided by the scikit-learn
library was preferred in this study instead of a
higher k value to avoid unnecessary computational
complexity and cost [51, 53]. The training data was
divided into 5 distinct folds, each of which served
for an individual experiment.

4. Performance Evaluation and
Experimental Results

The proposed IDS in this study was developed
using a personal computer equipped with an AMD
Ryzen Pro 3.70 GHz processor, 32 GB RAM, and a
64-bit Windows operating system, using the Python
programming language through the Anaconda
platform [48]. The performance of the proposed
model was evaluated using several metrics,
including accuracy, precision, recall, and F1-score,
which were calculated using Equations (18)-(21),
respectively.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �����
����������

 (18)

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ��
�����

 (19)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = ��
����

 (20)

𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 ∗ ���������∗������
����������������

. (21)

Here, TP (True Positive) represents the number of
samples that are correctly classified as positive by
the model and are actually positive, FP (False
Positive) represents the number of samples that are
incorrectly classified as positive by the model but
are actually negative, FN (False Negative)

represents the number of samples that are
incorrectly classified as negative by the model
but are actually positive, and TN (True
Negative) represents the number of samples
that are correctly classified as negative by the
model and are actually negative. Figures 5-6
display confusion matrices, while Tables 8-9
present performance metrics of the proposed
IDS for the IoTID20 and BoT-IoT datasets,
respectively.

In addition, the study analyzed the effects of
feature reduction and data balancing methods
used in the proposed IDS on classification
performance by applying two different
scenarios on the IoTID20 and BoT-IoT
datasets. For Scenario 1, the attack
classification was tested by applying only the
feature reduction process without data
balancing on the relevant datasets. For
Scenario 2, the attack classification was tested
without applying data balancing and feature
reduction processes on the datasets. The
results obtained by applying Scenario 1 and
Scenario 2 on the IoTID20 dataset are
presented in Tables 10-11, respectively.
Similarly, the results obtained by applying
Scenario 1 and Scenario 2 on the BoT-IoT
dataset are presented in Tables 12-13,
respectively. When comparing the
performance results in Tables 10-13 for
Scenarios 1-2 with the performance results in
Tables 8-9 for the proposed IDS in the study, it
can be seen that performing classification
without data balancing significantly reduces
precision, recall, and F1-score values,
especially for minority classes such as the
Theft. Additionally, it is observed that feature
reduction significantly reduces training time,
while data balancing increases training time
due to oversampling.

Table 8

Classification performance metric values of the proposed model for the IoTID20 dataset

Table 9

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Number of
samples

Training
time (s)

Model 99.967 99.790 99.696 99.743 156,354 13,818
DoS 99.980 99.960 99.828 99.894 14,848

MITM 99.956 99.655 99.552 99.604 8,844
Mirai 99.820 99.865 99.863 99.864 103,828
Normal 99.879 98.594 99.507 99.048 10,018
Scan 99.880 99.668 99.348 99.507 18,816

(20)

In order to comprehensively evaluate the
recommended classification model, k-fold cross-
validation method [46] was employed on the
training dataset. Taking into account the resource
constraints often encountered in IoT networks the
default k=5 value provided by the scikit-learn
library was preferred in this study instead of a
higher k value to avoid unnecessary computational
complexity and cost [51, 53]. The training data was
divided into 5 distinct folds, each of which served
for an individual experiment.

4. Performance Evaluation and
Experimental Results

The proposed IDS in this study was developed
using a personal computer equipped with an AMD
Ryzen Pro 3.70 GHz processor, 32 GB RAM, and a
64-bit Windows operating system, using the Python
programming language through the Anaconda
platform [48]. The performance of the proposed
model was evaluated using several metrics,
including accuracy, precision, recall, and F1-score,
which were calculated using Equations (18)-(21),
respectively.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �����
����������

 (18)

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ��
�����

 (19)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = ��
����

 (20)

𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 ∗ ���������∗������
����������������

. (21)

Here, TP (True Positive) represents the number of
samples that are correctly classified as positive by
the model and are actually positive, FP (False
Positive) represents the number of samples that are
incorrectly classified as positive by the model but
are actually negative, FN (False Negative)

represents the number of samples that are
incorrectly classified as negative by the model
but are actually positive, and TN (True
Negative) represents the number of samples
that are correctly classified as negative by the
model and are actually negative. Figures 5-6
display confusion matrices, while Tables 8-9
present performance metrics of the proposed
IDS for the IoTID20 and BoT-IoT datasets,
respectively.

In addition, the study analyzed the effects of
feature reduction and data balancing methods
used in the proposed IDS on classification
performance by applying two different
scenarios on the IoTID20 and BoT-IoT
datasets. For Scenario 1, the attack
classification was tested by applying only the
feature reduction process without data
balancing on the relevant datasets. For
Scenario 2, the attack classification was tested
without applying data balancing and feature
reduction processes on the datasets. The
results obtained by applying Scenario 1 and
Scenario 2 on the IoTID20 dataset are
presented in Tables 10-11, respectively.
Similarly, the results obtained by applying
Scenario 1 and Scenario 2 on the BoT-IoT
dataset are presented in Tables 12-13,
respectively. When comparing the
performance results in Tables 10-13 for
Scenarios 1-2 with the performance results in
Tables 8-9 for the proposed IDS in the study, it
can be seen that performing classification
without data balancing significantly reduces
precision, recall, and F1-score values,
especially for minority classes such as the
Theft. Additionally, it is observed that feature
reduction significantly reduces training time,
while data balancing increases training time
due to oversampling.

Table 8

Classification performance metric values of the proposed model for the IoTID20 dataset

Table 9

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Number of
samples

Training
time (s)

Model 99.967 99.790 99.696 99.743 156,354 13,818
DoS 99.980 99.960 99.828 99.894 14,848

MITM 99.956 99.655 99.552 99.604 8,844
Mirai 99.820 99.865 99.863 99.864 103,828
Normal 99.879 98.594 99.507 99.048 10,018
Scan 99.880 99.668 99.348 99.507 18,816

(21)

Here, TP (True Positive) represents the number of
samples that are correctly classified as positive by the
model and are actually positive, FP (False Positive)
represents the number of samples that are incorrect-
ly classified as positive by the model but are actually

Information Technology and Control 2024/1/53254

negative, FN (False Negative) represents the number
of samples that are incorrectly classified as negative
by the model but are actually positive, and TN (True
Negative) represents the number of samples that are
correctly classified as negative by the model and are
actually negative. Figures 5-6 display confusion ma-
trices, while Tables 8-9 present performance metrics
of the proposed IDS for the IoTID20 and BoT-IoT
datasets, respectively.
In addition, the study analyzed the effects of feature
reduction and data balancing methods used in the
proposed IDS on classification performance by ap-
plying two different scenarios on the IoTID20 and
BoT-IoT datasets. For Scenario 1, the attack clas-
sification was tested by applying only the feature
reduction process without data balancing on the
relevant datasets. For Scenario 2, the attack classi-
fication was tested without applying data balancing
and feature reduction processes on the datasets.

Table 8
Classification performance metric values of the proposed model for the IoTID20 dataset

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Number of
samples

Training
time (s)

Model 99.967 99.790 99.696 99.743 156,354 13,818

DoS 99.980 99.960 99.828 99.894 14,848

MITM 99.956 99.655 99.552 99.604 8,844

Mirai 99.820 99.865 99.863 99.864 103,828

Normal 99.879 98.594 99.507 99.048 10,018

Scan 99.880 99.668 99.348 99.507 18,816

Table 9
Classification performance metric values of the proposed model for the BoT-IoT dataset

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Number of
samples

Training
time (s)

Model 99.984 99.982 99.982 99.982 917,131 20,466

DDoS 99.984 99.992 99.978 99.985 481,849

DoS 99.983 99.974 99.988 99.981 412,540

Reconnaissance 99.999 95.161 99.160 97.119 119

Normal 99.997 99.920 99.978 99.949 22,606

Theft 99.999 99.999 76.471 86.667 17

Figure 5
Confusion matrix of the proposed IDS for the IoTID20 dataset

Confusion matrix of the proposed IDS for the IoTID20
dataset

Figure 6

Confusion matrix of the proposed IDS for the BoT-IoT
dataset

In this study, a comprehensive comparison was
made with different state-of-the-art machine
learning methods including DT, AdaBoost, Logistic
Regression (LR), Gaussian Naive Bayes (Gaussian
NB), K-Nearest Neighbors (KNN), SVM, and RF
[10] to evaluate the performance of the CNN
method used for the attack classification of the
proposed IDS. This evaluation was carried out on
IoTID20 and BoT-IoT datasets, which were
subjected to feature reduction with PCA-BAT
hybrid technique and data stabilization with
SMOTE method. The results obtained from this
evaluation are presented in Figures 7-8. The
comparative analysis results shown in Figures 7-8
reveal that the CNN method used in the proposed
IDS outperforms other state-of-the-art techniques.
Moreover, Tables 14-15 provide a comprehensive

evaluation of the accuracy performance of the
proposed IDS in comparison to the IDSs
utilized in previous studies on the IoTID20
and BoT-IoT datasets for attack classification.
Upon analyzing Tables 14-15, it is seen that the
IDS model proposed in this study outperforms
previous IDS studies on IoTID20 and BoT-IoT
datasets in terms of classification accuracy.

Figure 7

The performance comparison for IoTID20 dataset

Figure 8

The performance comparison for BoT-IoT dataset

Table 14

255Information Technology and Control 2024/1/53

The results obtained by applying Scenario 1 and
Scenario 2 on the IoTID20 dataset are presented
in Tables 10-11, respectively. Similarly, the results
obtained by applying Scenario 1 and Scenario 2 on
the BoT-IoT dataset are presented in Tables 12-13,
respectively. When comparing the performance re-
sults in Tables 10-13 for Scenarios 1-2 with the per-
formance results in Tables 8-9 for the proposed IDS
in the study, it can be seen that performing classifi-
cation without data balancing significantly reduces
precision, recall, and F1-score values, especially for
minority classes such as the Theft. Additionally, it
is observed that feature reduction significantly re-
duces training time, while data balancing increases
training time due to oversampling.
In this study, a comprehensive comparison was
made with different state-of-the-art machine learn-
ing methods including DT, AdaBoost, Logistic Re-
gression (LR), Gaussian Naive Bayes (Gaussian NB),

Table 10
Performance metrics obtained as a result of the implementation of Scenario 1 for the IoTID20 dataset

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Number of
samples

Training time
(s)

Model 99.720 99.569 99.570 99.569 156,354 7,154

DoS 99.973 99.914 99.808 99.861 14,848

MITM 99.889 99.023 98.989 99.006 8,844

Mirai 99.643 99.677 99.785 99.731 103,828

Normal 99.822 98.768 98.420 98.594 10,018

Scan 99.813 99.383 99.079 99.231 18,816

Table 11
Performance metrics obtained as a result of the implementation of Scenario 2 for the IoTID20 dataset

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Number of
samples

Training time
(s)

Model 98.146 97.480 97.254 97.290 156,354 16,378

DoS 99.962 99.993 99.616 99.804 14,848

MITM 99.240 99.828 86.494 92.684 8,844

Mirai 97.563 98.894 97.413 98.148 103,828

Normal 98.601 83.118 97.856 89.887 10,018

Scan 99.172 94.241 99.248 96.680 18,816

Figure 6
Confusion matrix of the proposed IDS for the BoT-IoT dataset

Confusion matrix of the proposed IDS for the IoTID20
dataset

Figure 6

Confusion matrix of the proposed IDS for the BoT-IoT
dataset

In this study, a comprehensive comparison was
made with different state-of-the-art machine
learning methods including DT, AdaBoost, Logistic
Regression (LR), Gaussian Naive Bayes (Gaussian
NB), K-Nearest Neighbors (KNN), SVM, and RF
[10] to evaluate the performance of the CNN
method used for the attack classification of the
proposed IDS. This evaluation was carried out on
IoTID20 and BoT-IoT datasets, which were
subjected to feature reduction with PCA-BAT
hybrid technique and data stabilization with
SMOTE method. The results obtained from this
evaluation are presented in Figures 7-8. The
comparative analysis results shown in Figures 7-8
reveal that the CNN method used in the proposed
IDS outperforms other state-of-the-art techniques.
Moreover, Tables 14-15 provide a comprehensive

evaluation of the accuracy performance of the
proposed IDS in comparison to the IDSs
utilized in previous studies on the IoTID20
and BoT-IoT datasets for attack classification.
Upon analyzing Tables 14-15, it is seen that the
IDS model proposed in this study outperforms
previous IDS studies on IoTID20 and BoT-IoT
datasets in terms of classification accuracy.

Figure 7

The performance comparison for IoTID20 dataset

Figure 8

The performance comparison for BoT-IoT dataset

Table 14

Information Technology and Control 2024/1/53256

Table 13
Performance metrics obtained as a result of the implementation of Scenario 2 for the BoT-IoT dataset

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Number of
samples

Training time
(s)

Model 99.991 92.405 67.306 76.774 917,131 27,334

DDoS 99.971 99.965 99.980 99.973 481,849

DoS 99.966 99.973 99.952 99.962 412,540

Reconnaissance 99.994 88.571 61.386 72.515 119

Normal 99.989 99.989 99.567 99.777 22,606

Theft 99.999 99.999 41.667 58.824 17

Figure 7
The performance comparison for IoTID20 dataset

Figure 8
The performance comparison for BoT-IoT dataset

Table 12
Performance metrics obtained as a result of the implementation of Scenario 1 for the BoT-IoT dataset

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Number of
samples

Training time
(s)

Model 99.994 83.227 75.204 78.396 917,131 5,386

DDoS 99.997 99.999 99.996 99.997 481,849

DoS 99.982 99.961 99.999 99.980 412,540

Reconnaissance 99.994 76.786 72.269 74.459 119

Normal 99.989 99.713 99.845 99.779 22,606

Theft 99.999 88.889 47.059 61.538 17

Confusion matrix of the proposed IDS for the IoTID20
dataset

Figure 6

Confusion matrix of the proposed IDS for the BoT-IoT
dataset

In this study, a comprehensive comparison was
made with different state-of-the-art machine
learning methods including DT, AdaBoost, Logistic
Regression (LR), Gaussian Naive Bayes (Gaussian
NB), K-Nearest Neighbors (KNN), SVM, and RF
[10] to evaluate the performance of the CNN
method used for the attack classification of the
proposed IDS. This evaluation was carried out on
IoTID20 and BoT-IoT datasets, which were
subjected to feature reduction with PCA-BAT
hybrid technique and data stabilization with
SMOTE method. The results obtained from this
evaluation are presented in Figures 7-8. The
comparative analysis results shown in Figures 7-8
reveal that the CNN method used in the proposed
IDS outperforms other state-of-the-art techniques.
Moreover, Tables 14-15 provide a comprehensive

evaluation of the accuracy performance of the
proposed IDS in comparison to the IDSs
utilized in previous studies on the IoTID20
and BoT-IoT datasets for attack classification.
Upon analyzing Tables 14-15, it is seen that the
IDS model proposed in this study outperforms
previous IDS studies on IoTID20 and BoT-IoT
datasets in terms of classification accuracy.

Figure 7

The performance comparison for IoTID20 dataset

Figure 8

The performance comparison for BoT-IoT dataset

Table 14

Confusion matrix of the proposed IDS for the IoTID20
dataset

Figure 6

Confusion matrix of the proposed IDS for the BoT-IoT
dataset

In this study, a comprehensive comparison was
made with different state-of-the-art machine
learning methods including DT, AdaBoost, Logistic
Regression (LR), Gaussian Naive Bayes (Gaussian
NB), K-Nearest Neighbors (KNN), SVM, and RF
[10] to evaluate the performance of the CNN
method used for the attack classification of the
proposed IDS. This evaluation was carried out on
IoTID20 and BoT-IoT datasets, which were
subjected to feature reduction with PCA-BAT
hybrid technique and data stabilization with
SMOTE method. The results obtained from this
evaluation are presented in Figures 7-8. The
comparative analysis results shown in Figures 7-8
reveal that the CNN method used in the proposed
IDS outperforms other state-of-the-art techniques.
Moreover, Tables 14-15 provide a comprehensive

evaluation of the accuracy performance of the
proposed IDS in comparison to the IDSs
utilized in previous studies on the IoTID20
and BoT-IoT datasets for attack classification.
Upon analyzing Tables 14-15, it is seen that the
IDS model proposed in this study outperforms
previous IDS studies on IoTID20 and BoT-IoT
datasets in terms of classification accuracy.

Figure 7

The performance comparison for IoTID20 dataset

Figure 8

The performance comparison for BoT-IoT dataset

Table 14

257Information Technology and Control 2024/1/53

Table 14
Accuracy comparison for the IoTID20 dataset

Study The method(s) used Accuracy (%)

Qaddoura et al. [43] SLFN 93.51

Song at al. [55] AE 95.20

Ullah et al. [60] DCNN 98.12

Ramana et al. [44] IG, RL-DQN 99.40

Yang and Shami [65] OASW, PSO,
LightGBM 99.92

Proposed model PCA, BAT,
SMOTE, CNN 99.97

Table 15
Accuracy comparison for the BoT-IoT dataset

Study The method(s) used Accuracy (%)

Saba et al. [49] CNN 95.55

Popoola et al. [41] LAE, LSTM 97.29

Alghanam et al. [4] LS-PIO, iForest 97.37

Biswas and Roy [8] GRU 99.76

Khraisat et al. [27] IG, C5.0 DT,
One-Class SVM 99.97

Proposed method PCA, BAT,
SMOTE, CNN 99.98

K-Nearest Neighbors (KNN), SVM, and RF [10] to
evaluate the performance of the CNN method used
for the attack classification of the proposed IDS. This
evaluation was carried out on IoTID20 and BoT-IoT
datasets, which were subjected to feature reduction
with PCA-BAT hybrid technique and data stabiliza-
tion with SMOTE method. The results obtained from
this evaluation are presented in Figures 7-8. The com-
parative analysis results shown in Figures 7-8 reveal
that the CNN method used in the proposed IDS out-
performs other state-of-the-art techniques. More-

over, Tables 14-15 provide a comprehensive evalua-
tion of the accuracy performance of the proposed IDS
in comparison to the IDSs utilized in previous studies
on the IoTID20 and BoT-IoT datasets for attack clas-
sification. Upon analyzing Tables 14-15, it is seen that
the IDS model proposed in this study outperforms
previous IDS studies on IoTID20 and BoT-IoT data-
sets in terms of classification accuracy.

5. Conclusions
This study presents a novel IDS model for IoT network
which was developed and evaluated using the BoT-IoT
and IoTID20 datasets, which consist of various attack
types, including MITM, Mirai, Scan, DoS, DDoS, Re-
connaissance, and Theft. The findings suggest that im-
plementing the proposed CNN method in combination
with PCA-BAT feature reduction and SMOTE data bal-
ancing techniques can significantly enhance the detec-
tion performance of IoT network attacks. Specifically,
for the IoT-IoT dataset, the proposed IDS achieved an
accuracy of 99.967%, a precision of 99.790%, a recall of
99.696%, and an F1-score of 99.743%. Likewise, for the
BoT-IoT dataset, it achieved an accuracy of 99.984%,
a precision of 99.982%, a recall of 99.982%, and an F1-
score of 99.982. These results demonstrate the effec-
tiveness of the proposed model for detecting intrusion
in IoT networks, while addressing the challenge of lim-
ited hardware resources.
In addition, the study evaluated the performance of
the proposed model by comparing it with state-of-
the-art machine learning techniques, including DT,
AdaBoost, LR, Gaussian NB, KNN, SVM, and RF, as
well as previous studies focusing on IDS using the
BoT-IoT and IoTID20 datasets. The results demon-
strated that the proposed model outperformed these
machine learning methods and previous studies in
terms of critical evaluation metrics, including accu-
racy, precision, recall, and F1-score.

References
1. Agarwal, T., Kumar, V. A Systematic Review on Bat

Algorithm: Theoretical Foundation, Variants, and
Applications. Archives of Computational Methods
in Engineering, 2022, 29, 2707-2736. https://doi.
org/10.1007/s11831-021-09673-9

2. Agrawal, S., Sarkar, S., Aouedi, O., Yenduri, G.,
Piamrat, K., Alazab, M., Bhattacharya, S., Maddikun-
ta, P. K. R., Gadekallu, T. R. Federated Learning for
Intrusion Detection System: Concepts, Challenges
and Future Directions. Computer Communications,

Information Technology and Control 2024/1/53258

2022, 195, 346-361. https://doi.org/10.1016/j.com-
com.2022.09.012

3. Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J.,
Ahmad, F. Network Intrusion Detection System: A Sys-
tematic Study of Machine Learning and Deep Learning
Approaches. Transactions on Emerging Telecommu-
nications Technologies, 2021, 32(1), e4150. https://doi.
org/10.1002/ett.4150

4. Alghanam, O. A., Almobaideen, W., Saadeh, M., Ad-
wan, O. An Improved PIO Feature Selection Algorithm
for IoT Network Intrusion Detection System Based
on Ensemble Learning. Expert Systems with Appli-
cations, 2023, 213, 118745. https://doi.org/10.1016/j.
eswa.2022.118745

5. Alkadi, S., Al-Ahmadi, S., Ben Ismail, M. M. Toward Im-
proved Machine Learning-Based Intrusion Detection
for Internet of Things Traffic. Computers, 2023, 12(8),
148. https://doi.org/10.3390/computers12080148

6. Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A.,
Duan, Y., Al-Shamma, O., Al-Amidie, M., Farhan, L. Re-
view of Deep Learning: Concepts, CNN Architectures,
Challenges, Applications, Future Directions. Journal of
Big Data, 2021, 8, 1-74. https://doi.org/10.1186/s40537-
021-00444-8

7. Bhavsar, M., Roy, K., Kelly, J., Olusola, O. Anomaly-ba-
sed Intrusion Detection System for IoT Application.
Discover Internet of Things, 2023, 3(1), 5. https://doi.
org/10.1007/s43926-023-00034-5

8. Biswas, R., Roy, S. Botnet Traffic Identification Using
Neural Networks. Multimedia Tools and Applications,
2021, 80(16), 24147-24171. https://doi.org/10.1007/
s11042 -021-10765-8

9. BoT-IoT Dataset. https://ieee-dataport.org/docu-
ments/ bot-iot-dataset. Accessed on October 10, 2023.

10. Buczak, A. L., Guven, E. A Survey of Data Mining and
Machine Learning Methods for Cyber Security Intru-
sion Detection. IEEE Communications surveys and tu-
torials, 2015, 18(2), 1153-1176. https://doi.org/10.1109/
COMST.2015.2494502

11. Buda, M., Maki, A., Mazurowski, M. A Systematic Study
of the Class Imbalance Problem in Convolutional Neu-
ral Networks. Neural Networks, 2018, 106, 249-259.
https://doi.org/10.1016/j.neunet.2018.07.011

12. Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer W.
P. SMOTE: Synthetic Minority Over-sampling Tech-
nique. Journal of Artificial Intelligence Research, 2022,
16, 321-357. https://doi.org/10.1613/jair.953

13. Chollet, F. Deep Learning with Python. Simon and
Schuster, New York, 2021.

14. Cui, Z., Li, F., Zhang, W. Bat Algorithm with Principal
Component Analysis. International Journal of Machi-
ne Learning and Cybernetics, 2019, 10, 603-622. https://
doi.org/10.1007/s13042-018-0888-4

15. Dina, A. S., Siddique, A. B., Manivannan, D. A Deep
Learning Approach for Intrusion Detection in Inter-
net of Things Using Focal Loss Function. Internet of
Things, 2023, 22, 100699. https://doi.org/10.1016/j.
iot.2023.100699

16. Elreedy, D., Atiya, A. F. A Comprehensive Analysis of
Synthetic Minority Oversampling Technique (SMO-
TE) for Handling Class Imbalance. Information Sci-
ences, 2019, 505, 32-64. https://doi.org/10.1016/j.
ins.2019.07.070

17. Gamage, S., Samarabandu, J. Deep Learning Methods
in Network Intrusion Detection: A Survey and an
Objective Comparison. Journal of Network and Com-
puter Applications, 2020, 169, 102767. https://doi.or-
g/10.1016/j.jnca.2020.102767

18. Gao, J., Chai, S., Zhang, B., Xia, Y. Research on Network
Intrusion Detection Based on Incremental Extreme
Learning Machine and Adaptive Principal Compo-
nent Analysis. Energies, 2019, 12(7), 1223. https://doi.
org/10.3390/en12071223

19. Ghanem, W. A. H., Ghaleb, S. A. A., Jantan, A., Nasser, A.
B., Saleh, S. A. M., Ngah, A., Abiodun, O. I. Cyber Intrusi-
on Detection System Based on a Multiobjective Binary
Bat Algorithm for Feature Selection and Enhanced Bat
Algorithm for Parameter Optimization in Neural Ne-
tworks. IEEE Access, 2022, 10, 76318-76339. https://
doi.org/10.1109/ACCESS.2022.3192472

20. Habib, G., Qureshi, S. Optimization and Acceleration
of Convolutional Neural Networks: A Survey. Journal
of King Saud University-Computer and Informati-
on Sciences, 2022, 34(7), 4244-4268. https://doi.or-
g/10.1016/j.jksuci.2020.10.004

21. Network Intrusion Dataset. https://ieee-dataport.org/
open-access/iot-network-intrusion-dataset. Accessed
on October 10, 2023.

22. IoT Number of Connected Devices Worldwide. https://
www.statista.com /statistics /1101442/iot-num-
ber-of-connected-devices-worldwide. Accessed on Oc-
tober 10, 2023.

23. Jullian, O., Otero, B., Rodrigue, E., Gutierrez, N., Anto-
na, H., Canal, R. Deep-Learning Based Detection for Cy-

259Information Technology and Control 2024/1/53

ber-Attacks in IoT Networks: A Distributed Attack De-
tection Framework. Journal of Network and Systems
Management, 2023, 31(2), 33. https://doi.org/10.1007/
s10922-023-09722-7

24. Kabakus, A. T. DroidMalwareDetector: A Novel An-
droid Malware Detection Framework Based on Convo-
lutional Neural Network. Expert Systems with Appli-
cations, 2022, 206, 117833. https://doi.org/10.1016/j.
eswa.2022.117833

25. Khanna, A., Rani, P., Garg, P., Singh, P. K., Khamparia
A. An Enhanced Crow Search Inspired Feature Selec-
tion Technique for Intrusion Detection Based Wireless
Network System. Wireless Personal Communicati-
ons, 2022, 127(3), 2021-2038. https://doi.org/10.1007/
s11277-021-08766-9

26. Kherif, F., Latypova, A. Principal Component Analysis.
In: Machine Learning, Academic Press, 2020, 209-225.
https://doi.org/10.1016/B978-0-12-815739-8.00012-2

27. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.,
Alazab A. A Novel Ensemble of Hybrid Intrusion Detec-
tion System for Detecting Internet of Things Attacks.
Electronics, 2019, 8(11), 1210. https://doi.org/10.3390/
electronics8111210

28. Koroniotis, N., Nour, M., Elena S., Benjamin, T. To-
wards the Development of Realistic Botnet Dataset in
the Internet of Things for Network Forensic Analytics:
Bot-IoT Dataset. Future Generation Computer Sys-
tems, 2019, 100, 779-796. https://doi.org/10.1016/j.futu-
re.2019.05.041

29. Lashkari, A. H., Draper-Gil, G., Mamun, M. S. I., Ghorba-
ni, A. A. Characterization of Tor Traffic Using Time Ba-
sed Features. International Conference on Information
Systems Security and Privacy, 2017, 253-262. https://
doi.org/10. 5220/0006105602530262

30. Lerman, P. M. Fitting Segmented Regression Models by
Grid Search. Journal of the Royal Statistical Society Se-
ries C: Applied Statistics, 1980, 29(1), 77-84. https://doi.
org/10.2307/2346413

31. Lian, W., Nie, G., Jia, B., Shi, D., Fan, Q., Liang, Y. An In-
trusion Detection Method Based on Decision Tree-Re-
cursive Feature Elimination in Ensemble Learning.
Mathematical Problems in Engineering, 2020, 1-15.
https://doi.org/10.1155/2020/2835023

32. Liu, J., Shi, Q., Han, R., Yang, J. A Hybrid GA-PSO-CNN
Model for Ultra-Short-Term Wind Power Forecasting.
Energies, 2021, 14(20), 6500. https://doi.org/10.3390/
en14206500

33. Mahadik, S., Pawar, P. M., Muthalagu, R. Efficient In-
telligent Intrusion Detection System for Heterogene-
ous Internet of Things (HetIoT). Journal of Network
and Systems Management, 2023, 31(1), 2. https://doi.
org/10.1007/s10922-022-09697-x

34. Martins, I., Resende, J. S., Sousa, P. R., Silva, S., Antunes,
L., Gama, J. Host-Based IDS: A Review and Open Issues
of an Anomaly Detection System in IoT. Future Genera-
tion Computer Systems, 2022, 133, 95-113. https://doi.
org/10.1016/j.future.2022.03.001

35. Milligan, G. W., Cooper, M. C. A Study of Standardizati-
on of Variables in Cluster Analysis. Journal of Classi-
fication, 1988, 5(2), 181-204. https://doi.org/10.1007/
BF01897163

36. Mirjalili, S., Mirjalili, S. M., Yang, X. S. Binary Bat Algo-
rithm. Neural Computing and Applications, 2014, 25(3),
663-681. https://doi.org/10.1007/s00521-013-1525-5

37. Nair, V., Hinton, G. E. Rectified Linear Units Improve
Restricted Boltzmann Machines. 27th International
Conference on Machine Learning, 2010, 807-814.

38. Natesan, P., Rajalaxmi, R. R., Gowrison, G., Balasubra-
manie, P. Hadoop Based Parallel Binary Bat Algorithm
for Network Intrusion Detection. International Jour-
nal of Parallel Programming, 2017, 45(5), 1194-1213.
https://doi.org/10.1007/s10766-016-0456-z

39. Nguyen, T. N., Ngo, Q. D., Nguyen, H. T., Nguyen, G. L. An
Advanced Computing Approach for IoT-Botnet Detec-
tion in Industrial Internet of Things. IEEE Transacti-
ons on Industrial Informatics, 2022, 18(11), 8298-8306.
https://doi.org/10.1109/TII.2022.3152814

40. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Du-
chesnay, E. Scikit-Learn: Machine Learning in Python.
The Journal of Machine Learning Research, 2011, 12,
2825-2830. https://doi.org/10.48550/arXiv.1201.0490

41. Popoola, S. I., Adebisi, B., Hammoudeh, M., Gui, G.,
Gacanin, H. Hybrid Deep Learning for Botnet Attack
Detection in the Internet-of-Things Networks. IEEE
Internet of Things Journal, 2020, 8(6), 4944-4956.
https://doi.org/10.1109/JIOT.2020.3034156

42. Prechelt, L. Automatic Early Stopping Using Cross Va-
lidation: Quantifying the Criteria. Neural Networks,
1988, 11(4), 761-767. https://doi.org/10.1016/S0893-
6080(98)00010-0

43. Qaddoura, R., Al-Zoubi, A. M., Almomani, I., Faris, H.
A Multi-Stage Classification Approach for IoT Intru-

Information Technology and Control 2024/1/53260

sion Detection Based on Clustering with Oversam-
pling. Applied Sciences, 2021, 11(7), 3022. https://doi.
org/10.3390/app11073022

44. Ramana, T. V., Thirunavukkarasan, M., Mohammed,
A. S., Devarajan, G. G., Nagarajan, S. M. Ambient Intel-
ligence Approach: Internet of Things Based Decision
Performance Analysis for Intrusion Detection. Com-
puter Communications, 2022, 195, 315-322. https://doi.
org/10.1016/j.comcom.2022.09.007

45. Riyaz, B., Ganapathy, S. A Deep Learning Approach for
Effective Intrusion Detection in Wireless Networks
Using CNN. Soft Computing, 2020, 24, 17265-17278.
https://doi.org/10.1007/s00500-020-05017-0

46. Rodriguez, J. D., Perez, A., Lozano, J. A. Sensitivity Ana-
lysis of K-Fold Cross Validation in Prediction Error Es-
timation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2009, 32(3), 569-575. https://doi.
org/10.1109/TPAMI.2009.187

47. Roy, S., Li, J., Choi, B. J., Bai, Y. A Lightweight Supervi-
sed Intrusion Detection Mechanism for IoT Networks.
Future Generation Computer Systems, 2022, 127, 276-
285. https://doi.org/10.1016/j.future.2021.09.027

48. Rolon-Mérette, D., Ross, M., Rolon-Mérette, T., Church,
K. Introduction to Anaconda and Python: Installati-
on and Setup. Python Res. Psychol, 2016, 16(5), 3-11.
https://doi.org/10.20982/tqmp.16.5.S003

49. Saba, T., Rehman, A., Sadad, T., Kolivand, H., Bahaj, S.
A. Anomaly-Based Intrusion Detection System for IoT
Networks Through Deep Learning Model. Computers
and Electrical Engineering, 2022, 99, 107810. https://
doi.org/10.1016/j.compeleceng.2022.107810

50. Seth, S., Chahal, K. K., Singh, G. A Novel Ensemble
Framework for an Intelligent Intrusion Detection Sys-
tem. IEEE Access, 2021, 9, 138451-138467. https://doi.
org/10.1109/ACCESS.2021.3116219

51. Sevinç, E. An Empowered AdaBoost Algorithm Imple-
mentation: A COVID-19 Dataset Study. Computers and
Industrial Engineering, 2022, 165, 107912. https://doi.
org/10.1016/j.cie.2021.107912

52. Sharma, B., Sharma, L., Lal, C., Roy, S. Anomaly Based
Network Intrusion Detection for IoT Attacks Using
Deep Learning Technique. Computers and Electri-
cal Engineering, 2023, 107, 108626. https://doi.or-
g/10.1016/j.compeleceng.2023.108626

53. Sklearn K-Folds Cross-Validator. https://scikit-learn.
org/stable/modules/generated/sklearn.model_selecti-
on.KFold.html. Accessed on October 10, 2023.

54. Sommestad, T., Holm, H., Steinvall, D. Variables Influ-
encing the Effectiveness of Signature-Based Network
Intrusion Detection Systems. Information Security
Journal: A Global Perspective, 2022, 31(6), 711-728.
https://doi.org/10.1080/19393555.2021.1975853

55. Song, Y., Hyun, S., Cheong, Y. G. Analysis of Autoenco-
ders for Network Intrusion Detection. Sensors, 2021,
21(13), 4294. https://doi.org/10.3390/s21134294

56. Talukder, M. A., Hasan, K. F., Islam, M. M., Uddin, M.
A., Akhter, A., Yousuf, M. A., Alharbi, F., Moni, M. A. A
Dependable Hybrid Machine Learning Model for Ne-
twork Intrusion Detection. Journal of Information Se-
curity and Applications, 2023, 72, 103405. https://doi.
org/10.1016/j.jisa.2022.103405

57. Tan, X., Su, S., Huang, Z., Guo, X., Zuo, Z., Sun, X., Li, L.
Wireless Sensor Networks Intrusion Detection Based
on SMOTE and the Random Forest Algorithm. Sensors,
2019, 19(1), 203. https://doi.org/10.3390/s19010203

58. Tolias, G., Sicre, R., Jégou, H. Particular Object Retrie-
val with Integral Max-Pooling of CNN Activations.
arXiv Preprint arXiv:1511.05879, 2015. https://doi.
org/10.48550/arXiv.1511.05879

59. Ullah, I., Mahmoud, Q. H. A Scheme for Generating a
Dataset for Anomalous Activity Detection in IoT Ne-
tworks. Canadian Conference on Artificial Intelligen-
ce, 2020, 508-520. https://doi.org/10.1007/978-3-030-
47358-7_52

60. Ullah, S., Ahmad, J., Khan, M. A., Alkhammash, E. H.,
Hadjouni M., Ghadi, Y. Y., Saeed, F., Pitropakis, N. A New
Intrusion Detection System for the Internet of Things
via Deep Convolutional Neural Network and Feature
Engineering. Sensors, 2022, 22(10), 3607. https://doi.
org/10.3390/s22103607

61. Wu, Y., Nie, L., Wang, S., Ning, Z., Li, S. Intelligent In-
trusion Detection for Internet of Things Security:
A Deep Convolutional Generative Adversarial Ne-
twork-Enabled Approach. IEEE Internet of Things
Journal, 2023, 10, 3094-3106. https://doi.org/10.1109/
JIOT.2021.3112159

62. Wu, J. M. T., Li, Z., Herencsar, N., Vo, B., Lin, J. C. W.
A Graph-Based CNN-LSTM Stock Price Prediction
Algorithm with Leading Indicators. Multimedia Sys-
tems, 2021, 1-20. https://doi.org/10.1007/s00530-021-
00758-w

63. Xiao, Y., Xing, C., Zhang, T., Zhao, Z. An Intrusion Detec-
tion Model Based on Feature Reduction and Convolu-
tional Neural Networks. IEEE Access, 2019, 7, 42210-
42219. https://doi.org/10.1109/ACCESS.2019.2904620

261Information Technology and Control 2024/1/53

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

64. Yang, B., Lu, Y., Zhu, K., Yang, G., Liu, J., Yin, H. Fe-
ature Selection Based on Modified Bat Algorithm.
IEICE Transactions on Information and Systems,
2017, 100(8), 1860-1869. https://doi.org/10.1587/tran-
sinf.2016EDP7471

65. Yang, L., Shami, A. A Lightweight Concept Drift Detec-
tion and Adaptation Framework for IoT Data Streams.
IEEE Internet of Things Magazine, 2021, 4(2), 96-101.
https://doi.org/10.1109/IOTM.0001.2100012

66. Zafar, A., Aamir, M., Mohd Nawi, N., Arshad, A., Riaz, S.,
Alruban, A., ..., Almotairi, S. A Comparison of Pooling
Methods for Convolutional Neural Networks. Applied
Sciences, 2022, 12(17), 8643. https://doi.org/10.3390/
app12178643

67. Zhang, H., Huang, L., Wu, C. Q., Li, Z. An Effective
Convolutional Neural Network Based on SMOTE and
Gaussian Mixture Model for Intrusion Detection in
Imbalanced Dataset. Computer Networks, 2020, 177,
107315. https://doi.org/10.1016/j.comnet.2020.107315

