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In order to make the incentive mechanism more suitable for the actual training situation and improve the efficien-
cy of the model, the robust incentive mechanism of federated leaning is proposed to deal with uncertainty of the 
data quality. (1) Firstly, the incentive mechanism of federated learning is constructed by the use of Stackelberg 
game to optimize the central server and data owner utilities, respectively. (2) Secondly, the uncertainty of data 
quality of the data owners is present by two robust uncertainty sets, and the corresponding incentive mechanism 
of the robust Stackelberg game is given. (3) Thirdly, the existence of equilibrium solution of the game is proved 
and the equilibrium solution of the whole game is derived. (4) Finally, the feasibility and robustness of the model 
are verified, and in the comparative experiments, the central server can select the optimal combination of pertur-
bation ratio and uncertainty level according to the preference for uncertainty risk to obtain the optimal incentive 
mechanism. The incentive mechanism designed in this article not only considers the uncertainty in actual train-
ing, but also has a good incentive effect on model training under different risk preferences.
KEYWORDS: Federated learning; Stackelberg game; Robust uncertainty sets; Nash equilibrium; Data quality 
uncertainty.

1. Introduction
Over the past few years, machine learning (ML) has 
expanded into a variety of applications [19, 31]. In 
most applications, the training data for machine 
learning is obtained by aggregating datasets, and the 

performance of a machine learning model is heav-
ily influenced by the size and quality of the dataset 
used for training. Nonetheless, many valuable data 
sets are often privately held and spread across dif-
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ferent individuals or institutions. These data owners 
are often unwilling to share their data, leading to the 
formation of isolated data islands. Federated learn-
ing is introduced as a novel approach to distributed 
machine learning [25], and multiple data owners of 
federated learning can cooperate to use their private 
data sets to train the same learning model provided by 
the center server, while ensuring the privacy of these 
data sets. Hence, federated learning is recognized as 
a powerful machine learning paradigm that has gar-
nered Signiant attention for its potential to overcome 
the limitations of “Isolated Data Islands.” Recently, 
federated learning mainly focusses on privacy protec-
tion [21, 22], wireless networks [3, 26] and algorithm 
improvement [1].
As we all known, the participants of federated learn-
ing model training are composed of the task pub-
lisher and multiple data owners [20]. Because of the 
difference in data quality of the data owners, the data 
owners are unwilling to put themselves in an unfair 
position when participating in federated learning [7]. 
Then, the incentive mechanism is introduced as an 
important means to improve the willingness of data 
owners to participate in federated learning.
In the design of incentive mechanism of federated 
learning, the data owner wants to get more rewards, 
while the task publisher wants to pay less budget 
with higher training utility in the design of incen-
tive mechanism of federated learning. Then this is 
a game behavior between the task publisher and the 
data owners, and there have been many researches on 
the incentive mechanism designed by game theory. 
For example, Khan et al. [14] proposed a Stackelberg 
game approach that allows data owners to strategi-
cally set the number of local iterations to maximize 

its utility, whose results prove that this approach is 
effective in modeling the interaction between the 
task publisher and edge device; Hu et al. [11] used a 
two-stage Stackelberg game approach to obtain the 
utility maximization strategy between the server and 
the user by solving the Stackelberg equilibrium; Zhan 
et al. [29] analyzed the uniqueness of the two phases 
of Stackelberg equilibrium and Nash equilibrium in 
the Stackelberg game, effectively solved the problem 
of how incentives affect the utility of task publishers, 
and proposed an incentive mechanism for solving the 
non DRL incentive mechanism faced by shared infor-
mation. The comparison between this paper and the 
existing federated learning incentive mechanism is 
shown in Table 1.
At present, research on federated learning has entered 
the application stage, such as medical imaging [6], the 
Internet of Things [12], intelligent traffic control [9], 
etc. Its real incentive effect and contract always has 
errors. This is because there are many factors in the 
training of federated learning models that cannot be 
determined by both parties, such as the quality of data 
provided by data owners, noise in parameter trans-
mission, and the gap in model training iteration cy-
cles. These are particularly important in the practical 
training of federated learning, but currently there are 
few considerations, which also pose significant ob-
stacles to the application of incentive mechanisms in 
federated learning. Moreover, due to the randomness 
[17] and unpre- dictability of these parameters, ob-
taining accurate probability distributions is difficult, 
and robust optimization is very effective in solving 
such parameter uncertainty problems [10, 24]. It can 
adjust the robustness of the model by setting uncer-
tainty levels based on the decision-maker’s risk pref-

Table 1 
Literature review table of federated learning incentive mechanism

References Critical technology Uncertainty handing Sub-problem

Ng [16] Contract theory Not consider Model training accuracy

Chen [4] Multi-dimensional contract theory Not consider Model training budget

Kang [13] Reputation+Contract theory Not consider Model utility

Zhang [30] Reinforcement Learning Not consider Model training accuracy

Sarikaya [28] Stackelberg game Not consider Model performance

This paper Stackelberg game Consider Model utility
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erence [2]. Therefore, considering the use of robust 
optimization to characterize parameter uncertainty, 
introducing different sets of uncertainty into the in-
centive mechanism of Stackelberg games can not only 
ensure the robustness of federated learning training, 
but also effectively stimulate the training effect. Our 
key contributions include:
1 We use the Stackelberg game to design a new in-

centive mechanism for asynchronous federated 
learning, which aims to enhance the model’s train-
ing rate while motivating data owners to enhance 
their efficiency.

2 We establish the existence and uniqueness of the 
equilibrium solution for the Stackelberg game, val-
idating the effectiveness of the incentive mecha-
nism we have devised.

By introducing the box uncertainty sets and polyhe-
dral uncertainty sets to characterize data quality un-
certainty, the new game models are constructed and 
equilibrium solutions are derived separately.
Simulation experiments show that the robust Stack-
elberg game enables the task publisher to choose the 
appropriate uncertainty level and perturbation ratio 
according to its risk preference, thus obtaining more 
appropriated equilibrium solutions. 
The rest of the paper is organized as follows: Section 
2 presents the federated learning system model, out-
lining its key components. In Section 3, we develop 
the federated learning incentive mechanism using 
the Stackelberg game, and provide a comprehensive 
proof for the equilibrium solution of the mechanism. 
Section 4 constructs the robust Stackelberg games 
with different uncertainty sets and gives the equilib-
rium solution method. Section 5 presents the analysis 
of experimental results, while Section 6 derives con-
clusions based on the findings.

2. System Model
A typical federated learning system consists of two 
entities, including the federated learning center serv-
er and the data owners, as shown in Figure 1. Each 
individual data owner possesses their own distinct 
private data, which is stored locally. Each data own-
er, following the guidelines set by the central server, 
utilizes their local data to train a model. Upon the 
completion of local model training, the data owner 

trans- mits the trained model parameters back to the 
central server within the federated learning system. 
The central server aggregates and integrates these 
updated parameters to update the global model. Af-
terwards, the central server communicates new iter-
ation requirements to the data owners. This iterative 
process persists until the de- sired performance level 
is achieved or a predefined number of iterations, as 
determined by the central server, is reached: 
Synchronous stochastic gradient descent (SGD) is 
considered in most federated learning, but high laten-
cy updates can affect global parameters, which in turn 
leads to less efficient algorithm operation. The feder-
ated learning scenario being discussed here pertains 
to an asynchronous federated learning framework, 
which involves a task publisher and multiple data 
owners [5, 15]. In this scenario, it is assumed that ev-
ery data owner n ∈ N has an identical local data sample 
size denoted as s for their participation in federated 
learning. For each data owner, represented as n, they 
utilize a distinct CPU cycle frequency denoted as fn 
during the training of their local model. The number 
of CPU cycles needed to complete one round of data 
training is denoted as cn. Therefore, the computation 
time required for local model training for data owner 
n can be calculated as Tn = scn/fn. Furthermore, the 
CPU energy consumed by the data owner in complet-
ing a local data training can be given by the equation:
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In the context of federated learning, each data owner 
is tasked with updating the global model by training 
their local data and contributing the updated param-
eters. The training efficiency of the data owners is 
influenced by the quality and accuracy of their local 
data, denoted as λn. The difference in data quality is 
mainly reflected in reliability and accuracy. Specifi-
cally, when the data quality is poor, federated learn-
ing needs to run more global iterations to achieve a 
certain model training accuracy. The lower bound on 
the number of iterations is usually used in federated 
learning algorithms log(1/λn) to represent local train-
ing data [30], for computational convenience, most 
applicants make it straightforward to denote the num-
ber of local training iterations. Based on this premise, 
the computation time for model updates during global 
iterations can be expressed as log(1/ )c

n n nT Tλ= .
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During the process of data transmission, it is common 
for the downlink bandwidth to be significantly greater 
than the uplink bandwidth. Thus, the downlink trans-
mission time between the task publisher and the data 
owner can be deemed insignificant when compared to 
the uplink time. The total time spent during the global 
iteration is thus the sum of the iterative computation 
time and the uplink communication time. In terms of 
the communication time for the model updates [8], the 
transmission rate of the data owners can be expressed 
as rn = B ln (1 + (ρnhn/N0)), where B represents the 
transmission bandwidth, 7n is the transmission power 
of the data owner, and hn is the channel gain between 
the data owner and the task publisher. N0 denotes the 
background noise. With a fixed sample data size, the 
transmission time for the local model update is given by 

0/ ( ln(1 / ))t
n n nT s B h Nρ= + . Therefore, the total time re-

quired for a global model iteration can be calculated as:
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two parties involved in federated learning, task 
publishers offer different data quality and CPU 
frequency for federated learning model training to 
generate profits. The task publisher, in turn, 
provides pay- offs based on the different payoff 
levels of the data owners. Assume that the data 
owner receives paid as Rn=qnfn, where qn 
represents the price per unit for the data owner to 
utilize the CPU frequency fn. It is important to 
highlight that a greater contribution of 
computational resources by the data owner results 
in a faster training of the local model, leading to a 
higher payoff. The data owner can choose to sign 
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Due to the information asymmetry between the two 
parties involved in federated learning, task publish-
ers offer different data quality and CPU frequency for 
federated learning model training to generate profits. 
The task publisher, in turn, provides pay- offs based on 
the different payoff levels of the data owners. Assume 
that the data owner receives paid as Rn=qnfn, where 
qn represents the price per unit for the data owner to 
utilize the CPU frequency fn. It is important to high-
light that a greater contribution of computational re-
sources by the data owner results in a faster training 
of the local model, leading to a higher payoff. The data 
owner can choose to sign the contract to complete the 
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model training, but if the corresponding workload in 
the contract is not completed, the data owner cannot 
get the predetermined payment.
As noted above, the data owners share the same size 
of sample data to process and the task publisher has 
the same accuracy requirements for model training. 
In this case, maximizing the federated learning util-
ity for the task publisher is to improve the efficiency 
of the data owner. This paper uses game theory to 
characterize the incentive mechanism, mainly con-
sidering the interaction between the task publisher 
and each data owner. Due to the heterogeneity among 
the data owners in asynchronous federated learning, 
the development of an incentive mechanism becomes 
necessary. In this context, we define the utility of the 
task publisher as the duration of the global iteration:

log(1/ ) + t
T n n nU T Tλ= . (4)

Data owner n considers the energy loss associat-
ed with their participation in the learning process, 
which is determined by the CPU power level, upon re-
ceiving the corresponding payment Rn from the task 
publisher. The objective of each data owner is to max-
imize their profit:
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The equation provided earlier is subject to the 
constraint fn ≤ fmax, where fmax represents the 
upper limit of CPU power of the data owner. 
Additionally, µ is a predefined weight parameter 
that governs the influence of energy consumption. 
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where Rmax is the maximum unit price of CPU power 
that the task publisher can provide.
In general, the equilibrium of the Stackelberg game 
is achieved by finding the optimal Nash equilibrium. 
In the game described in this paper, the unit price of 
CPU power for the data owners is predetermined. The 
data owners engage in a non-cooperative game envi-
ronment, where the Nash equilibrium is defined as a 
state in which no player can improve their payoff by 
unilaterally changing their strategy.
In the game described in this paper, the number of 
participants is limited, and the optimal unit price of 
CPU power, as set by each central server, is restrict-
ed to a bounded closed set in the Euclidean space. 
The utility function of the lower-level subgame ex-
hibits continuous variation with respect to the in-
dependent variables, and the profit function UD of 
the lower-level subgame displays concave proper-
ties, and its first-order derivative and second-order 
partial derivative with respect to CPU power can be 
expressed using the following estimation equation:
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In the constructed Stackelberg game with data quality 
uncertainty as mentioned above, backward induction 
is employed to determine the equilibrium solutions for 
both the upper and lower games. Initially, the equilibri-
um solution for the lower game is determined by consid-
ering the first-order optimality condition. Subsequently, 
the lower equilibrium solution is incorporated into the 
upper game to find the overall solution of the game.

The lower game solving:
To find the equilibrium solution of the data owner in 
the lower-level game, the first order derivative of the 
profit function with respect to the CPU power fn in 
the lower game can be specified as follows:
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If the above equation is zero, the CPU power of the 
data owner is as follows:
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The upper game solving: 
Once an equilibrium solution is reached in the 
lower-level game, the optimal CPU power of the 
data owner is substituted into the utility 
maximization problem of the upper-level game. 
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problem are linear, the Lagrangian function can be 
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where α denotes the Lagrangian multiplier. 
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positive influence. Additionally, the second term is 
always positive, further contributing to the 
positive relationship. Therefore, it can be inferred 
that the Lagrange multiplier α > 0. 

In combination with the above KKT conditions: 
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Therefore, the equilibrium solution of the upper 
level game is: 
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positive influence. Additionally, the second term is 
always positive, further contributing to the 
positive relationship. Therefore, it can be inferred 
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4.2. Robust Incentive Mechanisms for 
Stackelberg Games Under Polyhedron 
Uncertainty in Data Quality
In order to take into account the robustness of data 
quality uncertainty while maximizing the benefits 
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for both sides of the upper and lower level games, a 
polyhedron uncertainty set is therefore considered to 
characterize data quality uncertainty.
The uncertainty type variables of the data quality pa-
rameters σn are assumed to be a given uncertainty set, 
and the polyhedron uncertainty set is introduced, then 
σnψn], where σn is the data quality parameter in the 
nominal model, σn is its perturbation. Its uncertainty 
set is Ψ={ψ : ψn ≤ Γn, 0 ≤ ψn ≤ 1}, n∈N; where smaller 
Γn denotes the level of uncertainty in this uncertainty 
set and is used as an objective measure of how conser-
vative the uncertainty in data quality is, thus reflect-
ing the degree of risk appetite of the task publisher, 
with smaller Γn values indicating a higher degree of 
risk-seeking preference by the task publisher.
The lower level game constructed under this condi-
tion is:
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Based on the robust construct proposed by Bertsimas, 
the robust optimization model is transformed into 
an equivalent optimization model that is more eas-
ily solvable for the upper-level subgame. The trans-
formed model is formulated as follows:
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The lower subgame is:
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The Lagrangian function corresponding to the lower 
level game is:
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The KKT condition for the lower subgame can be ex-
pressed as:
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Based on the robust construct proposed by 
Bertsimas, the robust optimization model is 
transformed into an equivalent optimization 
model that is more easily solvable for the upper-
level subgame. The transformed model is 
formulated as follows: 
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The Lagrangian function corresponding to the 
lower level game is: 
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The KKT condition for the lower subgame can be 
expressed as: 
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From the optimization principle it follows, the 
optimal solution of the lower subgame satisfies the 
set of inequalities formed by the KKT conditions 
above: 
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Using backward induction, the calculated 
frequencies fn of the model from the lower game 
are brought into the upper game, and the 
equilibrium solution is obtained by analyzing the 
solution of the upper subgame. 

The Lagrangian function for the upper subgame is: 
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The upper game is solved by applying the KKT 
conditional transformation, and since the solution 
function of the upper game is convex in the range 
of independent variables, the feasible solution is 
the optimal solution when discussing the values of 
the Lagrange multipliers. 

(26)
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inequalities formed by the KKT conditions above:
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The Lagrangian function corresponding to the 
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The KKT condition for the lower subgame can be 
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From the optimization principle it follows, the 
optimal solution of the lower subgame satisfies the 
set of inequalities formed by the KKT conditions 
above: 
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Using backward induction, the calculated 
frequencies fn of the model from the lower game 
are brought into the upper game, and the 
equilibrium solution is obtained by analyzing the 
solution of the upper subgame. 

The Lagrangian function for the upper subgame is: 
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The upper game is solved by applying the KKT 
conditional transformation, and since the solution 
function of the upper game is convex in the range 
of independent variables, the feasible solution is 
the optimal solution when discussing the values of 
the Lagrange multipliers. 
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The upper game is solved by applying the KKT con-
ditional transformation, and since the solution func-
tion of the upper game is convex in the range of inde-
pendent variables, the feasible solution is the optimal 
solution when discussing the values of the Lagrange 
multipliers.
Combined with the KKT condition, it follows that:
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The derivative of the Lagrangian function with re-
spect to the dyadic variables nv  is given by:
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The derivative of the Lagrangian function with 
respect to the dyadic variables nv  is given by: 
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If the above equation _1n = 0, a feasible solution 
can be found, at which point the solution is: 


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5. Experimental Results 

 
In the simulation experiments, we assess the 
proposed incentive scheme by utilizing the 
MNIST dataset and the widely used TensorFlow 
software environment for numerical 
classification tasks. In the simulation 
experiments, we consider a federated learning 
model training scenario involving 10 task 
publishers and 100 data owners. The data owners 
are classified into 10 groups based on the 
nominal value of data quality, while also 
considering the uncertainty associated with the 
provided data quality. To accurately represent 
the heterogeneity among data owners during 
local model training, we randomly select 
participating data owners, considering the 
number of training repetitions. For the 
simulation experiments, we set a maximum CPU 
power of 15 for each data owner fmax, and a 
maximum CPU frequency unit price of 100 for 
the task publisher qmax. Other parameters used 
in the simulation experiments are detailed in 
Table 2. 

 
Table 2 

Parameter setting in simulation experiment 
Parameter name Value 

Transmission time of the local model t
nT  0.5 

Weight parameter for energy consumption µ 0.1 
Local data sample size s 20 

Data owner CPU cycles cn 5 
Effective capacitance parameter for the data owner ε 2 

Accuracy of the local data λn [0.2, 0.9] 

 15 
 100 

 
As shown in the Figure 2. When Γ = 0, the robust 
Stackelberg game is equivalent to the Stackelberg 
game with known data quality. When Γ > 0, the 
optimal CPU frequency of the data owner 
decreases as the uncertainty level parameter Γ 
increases, and this decrease is further amplified 
with a larger perturbation ratio. This observation 
arises from the fact that higher levels of 
uncertainty result in increased uncertainty 
regarding the data quality provided by the data 
owner. To ensure the robustness of the model, 
the optimal CPU power offered by the data 
owner in the game is consequently lower. 

The above experiments analyzed the impact of 
uncertain levels on the optimal CPU frequency of 
data owners under the proportion of different 
disturbances. According to the analysis of the 
above experimental results, at the same level of 
uncertain level, as the proportion of disturbances 
increases, the optimal CPU frequency of the data 
owner has continued to decrease, and as the level 
of uncertain level increases, the disturbance ratio 
to the optimal CPU frequency the influence is 
constantly increasing. The proportion of 
disturbances represents the data quality of each 
data owner around the size of the nominal value 
fluctuation range, and the uncertain level 
increases, so that the quality of data with 
uncertainty is more. The impact of excellent CPU 
frequency has continued to increase. 

When the maximum value is denoted by Γ, the 
polyhedron uncertainty set is trans- formed into 
a boxed uncertainty set, representing the most 
robust case. The uncertainty level Γ also serves as 
a measure of the task publisher’s risk preference 
to some extent. Therefore, task publishers can 
select the optimal combination of uncertainty 
level and perturbation ratio based on their 
preference for uncertainty risk. If a data owner 
exhibits a risk-seeking preference, they can opt 
for a higher uncertainty level and perturbation 
ratio. However, this choice entails bearing 
potential losses resulting from uncertainty. 
Conversely, if a data owner has a risk-averse 
preference, they may choose a lower uncertainty 
level and perturbation ratio, prioritizing a greater 
likelihood of efficiently feasible robust 
Stackelberg game while potentially sacrificing 
federated learning utility. Ultimately, a 
compromise can be made for data owners who 
are risk- neutral. 
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arises from the fact that higher levels of 
uncertainty result in increased uncertainty 
regarding the data quality provided by the data 
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the optimal CPU power offered by the data 
owner in the game is consequently lower. 
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disturbances represents the data quality of each 
data owner around the size of the nominal value 
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increases, so that the quality of data with 
uncertainty is more. The impact of excellent CPU 
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5. Experimental Results
In the simulation experiments, we assess the proposed 
incentive scheme by utilizing the MNIST dataset and 
the widely used TensorFlow software environment 
for numerical classification tasks. In the simulation 
experiments, we consider a federated learning mod-
el training scenario involving 10 task publishers and 

100 data owners. The data owners are classified into 
10 groups based on the nominal value of data quali-
ty, while also considering the uncertainty associated 
with the provided data quality. To accurately repre-
sent the heterogeneity among data owners during 
local model training, we randomly select participat-
ing data owners, considering the number of training 
repetitions. For the simulation experiments, we set a 
maximum CPU power of 15 for each data owner fmax, 
and a maximum CPU frequency unit price of 100 for 
the task publisher qmax. Other parameters used in 
the simulation experiments are detailed in Table 2.
As shown in the Figure 2. When Γ = 0, the robust 
Stackelberg game is equivalent to the Stackelberg 
game with known data quality. When Γ > 0, the op-
timal CPU frequency of the data owner decreases as 
the uncertainty level parameter Γ increases, and this 
decrease is further amplified with a larger perturba-
tion ratio. This observation arises from the fact that 
higher levels of uncertainty result in increased uncer-
tainty regarding the data quality provided by the data 
owner. To ensure the robustness of the model, the 
optimal CPU power offered by the data owner in the 
game is consequently lower.
The above experiments analyzed the impact of un-
certain levels on the optimal CPU frequency of data 
owners under the proportion of different disturbanc-
es. According to the analysis of the above experimen-
tal results, at the same level of uncertain level, as the 
proportion of disturbances increases, the optimal CPU 
frequency of the data owner has continued to decrease, 
and as the level of uncertain level increases, the distur-
bance ratio to the optimal CPU frequency the influence 
is constantly increasing. The proportion of distur-
bances represents the data quality of each data owner 
around the size of the nominal value fluctuation range, 
and the uncertain level increases, so that the quality of 
data with uncertainty is more. The impact of excellent 
CPU frequency has continued to increase.
When the maximum value is denoted by Γ, the polyhe-
dron uncertainty set is trans- formed into a boxed un-
certainty set, representing the most robust case. The 
uncertainty level Γ also serves as a measure of the task 
publisher’s risk preference to some extent. Therefore, 
task publishers can select the optimal combination of 
uncertainty level and perturbation ratio based on their 
preference for uncertainty risk. If a data owner exhib-
its a risk-seeking preference, they can opt for a higher 
uncertainty level and perturbation ratio. However, 

Table 2
Parameter setting in simulation experiment

Parameter name Value

Transmission time of the local model t
nT 0.5

Weight parameter for energy consumption µ 0.1

Local data sample size s 20

Data owner CPU cycles cn 5

Effective capacitance parameter for the data 
owner ε 2

Accuracy of the local data λn [0.2, 0.9]

Maximum CPU power fmax 15

Maximum CPU frequency unit price qmax 100
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this choice entails bearing potential 
losses resulting from uncertainty. 
Conversely, if a data owner has a risk-
averse preference, they may choose a 
lower uncertainty level and perturba-
tion ratio, prioritizing a greater like-
lihood of efficiently feasible robust 
Stackelberg game while potentially 
sacrificing federated learning utili-
ty. Ultimately, a compromise can be 
made for data owners who are risk- 
neutral.
In this simulation experiment, the 
uncertainty levels of the box uncer-
tainty set and the polyhedron un-
certainty set and the model iteration 
lengths are compared with those of 
the case where the data quality is 
known. In Figure 3, Γ = 0 denotes the 
case where the data quality is known, 
Γ = 9 denotes the case of the iteration 
length for the box uncertainty set, 
and the middle value is taken to be 
the polyhedron uncertainty set. It can 
be seen that with the same propor-
tion of perturbations, an increase in 
the uncertainty level simultaneously 
extends the iteration length. Since 
the number of data owners with pos-
sible uncertain data quality perturba-
tions is increasing and to ensure the 
robustness of the model, the worst 
case of uncertain data should be con-
sidered. The results also indicate that 
compared with the polyhedron un-
certainty set, the boxing uncertainty 
set is more robust, but it always has 
the longest iteration length and is less 
beneficial to the game sponsor.
The purpose of the above experiment 
is to reflect the impact of its impact on 
the effective use of the upper layer by 
the effects of the disturbance ratio on 
the time of the global iteration. As the 
proportion of disturbances contin-
ues to increase, the more uncertain 
level of data owners will grow faster 
to complete the global iteration. The 

Figure 2
Variation of optimal CPU frequency with Γ for different disturbance ratios

Figure 3
Variation of global iteration duration with disturbance ratio for different data 
owners
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higher the level of data quality is allowed, the quality of 
the data that allows uncertainty to allow uncertainty. 
In order to ensure the effectiveness of the incentive, 
the worst case is considered. The number of data qual-
ity will inevitably increase, and with the increasing 
disturbance ratio, the impact on the length of the global 
iteration also gradually becomes larger.
In the upper-level game, the objective of the utility 
function is to minimize the global iteration length. As 
reflected in Figure 3, the iteration length may be more 
concentrated and robust when the perturbation ra-
tio is small, and more scattered, less robust and more 
time consuming overall when the perturbation ratio 
is large. This is because the increase in the perturba-
tion ratio leads to the rise of the uncertainty of data 
quality for each data owner. At the same time, seek-
ing to ensure the robustness of the model, the feasible 
range of model training iteration length is expanded, 
which results in the increase of iteration time.
The following experiment is to explain the impact of 
uncertainty on the cost of model training of different 
data owners, so as to obtain the best unit price change 
that can be obtained at an uncertain level at the CPU 

Figure 4
Variation of the optimal unit price obtained by different data owners with the level of uncertainty

frequency. Figure 4 displays the variation of the op-
timal CPU power unit price offered by the task pub-
lisher for data owners in categories 2, 4, 6 and 8, sub-
ject to the level of uncertainty. The optimal unit price 
for each class of data owner increases with the level 
of uncertainty, but at a decreasing rate. For a data 
owner with poor data quality, the optimal unit price 
is high and increasing rapidly in order to provide the 
owner with optimal CPU power. As can be seen from 
the graph, the unit price of the optimal CPU power of-
fered by the central server is concave as the data qual-
ity increases, so for the sake of robustness, it is par-
ticularly important for the task publisher to select the 
data quality of the data owners and avoid participants 
with low data quality as much as possible.

6. Conclusions
In this work, the uncertainty of the data quality of data 
owner in federated learning is studied, a kind of robust 
incentive mechanism of federated learning based on 
Stackel- berg game is proposed to deal with the above 
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uncertainty, the existence and uniqueness of robust 
Stackelberg equilibrium are theoretically proved, and 
corresponding solutions are designed for Stackelberg 
games with different robust uncertainty sets. Experi-
mental results demonstrate that the robust incentive 
mechanism is capable of effectively capturing the risk 
preference of the task publisher. It enables the task 
publisher to select the optimal level of uncertainty
The federated learning incentive mechanism based 
on the robust Stackelberg game constructed in this 
paper not only processes the data quality of the data 
owner in the model, but also the different solutions of 
the robust Stackelberg game when the data quality is 
box uncertainty and polyhedron uncertainty, it has a 
certain reference significance for introducing the idea 
of optimizing the ride optimization and the uncertain 
parameter to the Stackelberg game. More important-
ly, in this paper, the robust optimization is introduced 
into the incentive mechanism to characterize the pa-
rameter uncertainty in the model training, and the 
robustness game model of federated learning is con-
structed. It is helpful to implement federated learn-
ing effectively in medical and financial application 
scenarios, and has practical significance to further 
expand the application fields of federated learning.

This work only considers the robust incentive mecha-
nism for unknown data quality to improve the perfor-
mance of federated learning. In practical problems, 
the CPU power supplied by the data owner may also 
change with iteration length, and even the transmis-
sion time for updating parameters may be uncertain 
due to the channel instability, which is also one of key 
factors of influencing the performance of federated 
learning. And this paper does not focus on the impact 
of malicious attackers on modeltraining.
In future research, we can consider the uncertainty of 
other parameters in the actual situation of federated 
learning model training to ensure that the incentive 
effect is more in line with the actual training. We can 
also consider introducing other methods of process-
ing parameters into the design of incentive mecha-
nisms for federated learning, such as random optimi-
zation and fuzzy number processing.
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