
1139Information Technology and Control 2024/4/53

Robust Incentive Mechanism
of Federated Learning for
Data Quality Uncertainty

ITC 4/53
Information Technology
and Control
Vol. 53 / No. 4/ 2024
pp. 1139-1151
DOI 10.5755/j01.itc.53.4.34907

Robust Incentive Mechanism of Federated Learning for Data Quality Uncertainty

Received 2023/08/22 Accepted after revision 2023/10/26

HOW TO CITE: Wang, C., Li, B., Yang, Y. (2024). Robust Incentive Mechanism of Federated
Learning for Data Quality Uncertainty. Information Technology and Control, 53(4), 1139-1151.
https://doi.org/10.5755/j01.itc.53.4.34907

Chao Wang
School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China

Bingze Li, Yang Yang
School of Management Engineering and Business, Hebei University of Engineering, Handan 056038, China

Corresponding author: li.bingz@outlook.com

In order to make the incentive mechanism more suitable for the actual training situation and improve the efficien-
cy of the model, the robust incentive mechanism of federated leaning is proposed to deal with uncertainty of the
data quality. (1) Firstly, the incentive mechanism of federated learning is constructed by the use of Stackelberg
game to optimize the central server and data owner utilities, respectively. (2) Secondly, the uncertainty of data
quality of the data owners is present by two robust uncertainty sets, and the corresponding incentive mechanism
of the robust Stackelberg game is given. (3) Thirdly, the existence of equilibrium solution of the game is proved
and the equilibrium solution of the whole game is derived. (4) Finally, the feasibility and robustness of the model
are verified, and in the comparative experiments, the central server can select the optimal combination of pertur-
bation ratio and uncertainty level according to the preference for uncertainty risk to obtain the optimal incentive
mechanism. The incentive mechanism designed in this article not only considers the uncertainty in actual train-
ing, but also has a good incentive effect on model training under different risk preferences.
KEYWORDS: Federated learning; Stackelberg game; Robust uncertainty sets; Nash equilibrium; Data quality
uncertainty.

1. Introduction
Over the past few years, machine learning (ML) has
expanded into a variety of applications [19, 31]. In
most applications, the training data for machine
learning is obtained by aggregating datasets, and the

performance of a machine learning model is heav-
ily influenced by the size and quality of the dataset
used for training. Nonetheless, many valuable data
sets are often privately held and spread across dif-

Information Technology and Control 2024/4/531140

ferent individuals or institutions. These data owners
are often unwilling to share their data, leading to the
formation of isolated data islands. Federated learn-
ing is introduced as a novel approach to distributed
machine learning [25], and multiple data owners of
federated learning can cooperate to use their private
data sets to train the same learning model provided by
the center server, while ensuring the privacy of these
data sets. Hence, federated learning is recognized as
a powerful machine learning paradigm that has gar-
nered Signiant attention for its potential to overcome
the limitations of “Isolated Data Islands.” Recently,
federated learning mainly focusses on privacy protec-
tion [21, 22], wireless networks [3, 26] and algorithm
improvement [1].
As we all known, the participants of federated learn-
ing model training are composed of the task pub-
lisher and multiple data owners [20]. Because of the
difference in data quality of the data owners, the data
owners are unwilling to put themselves in an unfair
position when participating in federated learning [7].
Then, the incentive mechanism is introduced as an
important means to improve the willingness of data
owners to participate in federated learning.
In the design of incentive mechanism of federated
learning, the data owner wants to get more rewards,
while the task publisher wants to pay less budget
with higher training utility in the design of incen-
tive mechanism of federated learning. Then this is
a game behavior between the task publisher and the
data owners, and there have been many researches on
the incentive mechanism designed by game theory.
For example, Khan et al. [14] proposed a Stackelberg
game approach that allows data owners to strategi-
cally set the number of local iterations to maximize

its utility, whose results prove that this approach is
effective in modeling the interaction between the
task publisher and edge device; Hu et al. [11] used a
two-stage Stackelberg game approach to obtain the
utility maximization strategy between the server and
the user by solving the Stackelberg equilibrium; Zhan
et al. [29] analyzed the uniqueness of the two phases
of Stackelberg equilibrium and Nash equilibrium in
the Stackelberg game, effectively solved the problem
of how incentives affect the utility of task publishers,
and proposed an incentive mechanism for solving the
non DRL incentive mechanism faced by shared infor-
mation. The comparison between this paper and the
existing federated learning incentive mechanism is
shown in Table 1.
At present, research on federated learning has entered
the application stage, such as medical imaging [6], the
Internet of Things [12], intelligent traffic control [9],
etc. Its real incentive effect and contract always has
errors. This is because there are many factors in the
training of federated learning models that cannot be
determined by both parties, such as the quality of data
provided by data owners, noise in parameter trans-
mission, and the gap in model training iteration cy-
cles. These are particularly important in the practical
training of federated learning, but currently there are
few considerations, which also pose significant ob-
stacles to the application of incentive mechanisms in
federated learning. Moreover, due to the randomness
[17] and unpre- dictability of these parameters, ob-
taining accurate probability distributions is difficult,
and robust optimization is very effective in solving
such parameter uncertainty problems [10, 24]. It can
adjust the robustness of the model by setting uncer-
tainty levels based on the decision-maker’s risk pref-

Table 1
Literature review table of federated learning incentive mechanism

References Critical technology Uncertainty handing Sub-problem

Ng [16] Contract theory Not consider Model training accuracy

Chen [4] Multi-dimensional contract theory Not consider Model training budget

Kang [13] Reputation+Contract theory Not consider Model utility

Zhang [30] Reinforcement Learning Not consider Model training accuracy

Sarikaya [28] Stackelberg game Not consider Model performance

This paper Stackelberg game Consider Model utility

1141Information Technology and Control 2024/4/53

erence [2]. Therefore, considering the use of robust
optimization to characterize parameter uncertainty,
introducing different sets of uncertainty into the in-
centive mechanism of Stackelberg games can not only
ensure the robustness of federated learning training,
but also effectively stimulate the training effect. Our
key contributions include:
1 We use the Stackelberg game to design a new in-

centive mechanism for asynchronous federated
learning, which aims to enhance the model’s train-
ing rate while motivating data owners to enhance
their efficiency.

2 We establish the existence and uniqueness of the
equilibrium solution for the Stackelberg game, val-
idating the effectiveness of the incentive mecha-
nism we have devised.

By introducing the box uncertainty sets and polyhe-
dral uncertainty sets to characterize data quality un-
certainty, the new game models are constructed and
equilibrium solutions are derived separately.
Simulation experiments show that the robust Stack-
elberg game enables the task publisher to choose the
appropriate uncertainty level and perturbation ratio
according to its risk preference, thus obtaining more
appropriated equilibrium solutions.
The rest of the paper is organized as follows: Section
2 presents the federated learning system model, out-
lining its key components. In Section 3, we develop
the federated learning incentive mechanism using
the Stackelberg game, and provide a comprehensive
proof for the equilibrium solution of the mechanism.
Section 4 constructs the robust Stackelberg games
with different uncertainty sets and gives the equilib-
rium solution method. Section 5 presents the analysis
of experimental results, while Section 6 derives con-
clusions based on the findings.

2. System Model
A typical federated learning system consists of two
entities, including the federated learning center serv-
er and the data owners, as shown in Figure 1. Each
individual data owner possesses their own distinct
private data, which is stored locally. Each data own-
er, following the guidelines set by the central server,
utilizes their local data to train a model. Upon the
completion of local model training, the data owner

trans- mits the trained model parameters back to the
central server within the federated learning system.
The central server aggregates and integrates these
updated parameters to update the global model. Af-
terwards, the central server communicates new iter-
ation requirements to the data owners. This iterative
process persists until the de- sired performance level
is achieved or a predefined number of iterations, as
determined by the central server, is reached:
Synchronous stochastic gradient descent (SGD) is
considered in most federated learning, but high laten-
cy updates can affect global parameters, which in turn
leads to less efficient algorithm operation. The feder-
ated learning scenario being discussed here pertains
to an asynchronous federated learning framework,
which involves a task publisher and multiple data
owners [5, 15]. In this scenario, it is assumed that ev-
ery data owner n ∈ N has an identical local data sample
size denoted as s for their participation in federated
learning. For each data owner, represented as n, they
utilize a distinct CPU cycle frequency denoted as fn
during the training of their local model. The number
of CPU cycles needed to complete one round of data
training is denoted as cn. Therefore, the computation
time required for local model training for data owner
n can be calculated as Tn = scn/fn. Furthermore, the
CPU energy consumed by the data owner in complet-
ing a local data training can be given by the equation:

of uncertainty into the incentive mechanism of
Stackelberg games can not only ensure the
robustness of federated learning training, but
also effectively stimulate the training effect. Our
key contributions include:

1. We use the Stackelberg game to design a new
incentive mechanism for asynchronous
federated learning, which aims to enhance the
model’s training rate while motivating data
owners to enhance their efficiency.

We establish the existence and uniqueness of the
equilibrium solution for the Stackelberg game,
validating the effectiveness of the incentive
mechanism we have devised.

By introducing the box uncertainty sets and
polyhedral uncertainty sets to characterize data
quality uncertainty, the new game models are
constructed and equilibrium solutions are
derived separately.

Simulation experiments show that the robust
Stackelberg game enables the task publisher to
choose the appropriate uncertainty level and
perturbation ratio according to its risk
preference, thus obtaining more appropriated
equilibrium solutions.

The rest of the paper is organized as follows:
Section 2 presents the federated learning system
model, outlining its key components. In Section
3, we develop the federated learning incentive
mechanism using the Stackelberg game, and
provide a comprehensive proof for the
equilibrium solution of the mechanism. Section 4
constructs the robust Stackelberg games with
different uncertainty sets and gives the
equilibrium solution method. Section 5 presents
the analysis of experimental results, while
Section 6 derives conclusions based on the
findings.

2. System Model

A typical federated learning system consists of

two entities, including the federated learning
center server and the data owners, as shown in
Figure 1. Each individual data owner possesses
their own distinct private data, which is stored
locally. Each data owner, following the
guidelines set by the central server, utilizes their
local data to train a model. Upon the completion
of local model training, the data owner trans-
mits the trained model parameters back to the
central server within the federated learning
system. The central server aggregates and
integrates these updated parameters to update
the global model. Afterwards, the central server
communicates new iteration requirements to the
data owners. This iterative process persists until
the de- sired performance level is achieved or a
predefined number of iterations, as determined
by the central server, is reached:

Synchronous stochastic gradient descent (SGD)
is considered in most federated learning, but
high latency updates can affect global
parameters, which in turn leads to less efficient
algorithm operation. The federated learning
scenario being discussed here pertains to an
asynchronous federated learning framework,
which involves a task publisher and multiple
data owners [5, 15]. In this scenario, it is assumed
that every data owner n ∈ N has an identical local
data sample size denoted as s for their
participation in federated learning. For each data
owner, represented as n, they utilize a distinct
CPU cycle frequency denoted as fn during the
training of their local model. The number of CPU
cycles needed to complete one round of data
training is denoted as cn. Therefore, the
computation time required for local model
training for data owner n can be calculated as Tn
= scn/fn. Furthermore, the CPU energy
consumed by the data owner in completing a
local data training can be given by the equation:

2()n n n nD f sc fε= . (1)

Figure 1

Federated learning work flow

(1)

In the context of federated learning, each data owner
is tasked with updating the global model by training
their local data and contributing the updated param-
eters. The training efficiency of the data owners is
influenced by the quality and accuracy of their local
data, denoted as λn. The difference in data quality is
mainly reflected in reliability and accuracy. Specifi-
cally, when the data quality is poor, federated learn-
ing needs to run more global iterations to achieve a
certain model training accuracy. The lower bound on
the number of iterations is usually used in federated
learning algorithms log(1/λn) to represent local train-
ing data [30], for computational convenience, most
applicants make it straightforward to denote the num-
ber of local training iterations. Based on this premise,
the computation time for model updates during global
iterations can be expressed as log(1/)c

n n nT Tλ= .

Information Technology and Control 2024/4/531142

During the process of data transmission, it is common
for the downlink bandwidth to be significantly greater
than the uplink bandwidth. Thus, the downlink trans-
mission time between the task publisher and the data
owner can be deemed insignificant when compared to
the uplink time. The total time spent during the global
iteration is thus the sum of the iterative computation
time and the uplink communication time. In terms of
the communication time for the model updates [8], the
transmission rate of the data owners can be expressed
as rn = B ln (1 + (ρnhn/N0)), where B represents the
transmission bandwidth, 7n is the transmission power
of the data owner, and hn is the channel gain between
the data owner and the task publisher. N0 denotes the
background noise. With a fixed sample data size, the
transmission time for the local model update is given by

0/ (ln(1 /))t
n n nT s B h Nρ= + . Therefore, the total time re-

quired for a global model iteration can be calculated as:

n

In the context of federated learning, each data
owner is tasked with updating the global model
by training their local data and contributing the
updated parameters. The training efficiency of
the data owners is influenced by the quality and
accuracy of their local data, denoted as λn. The
difference in data quality is mainly reflected in
reliability and accuracy. Specifically, when the
data quality is poor, federated learning needs to
run more global iterations to achieve a certain
model training accuracy. The lower bound on
the number of iterations is usually used in
federated learning algorithms log(1/λn) to
represent local training data [30], for
computational convenience, most applicants
make it straightforward to denote the number of
local training iterations. Based on this premise,
the computation time for model updates during
global iterations can be expressed as

log(1/)c
n n nT Tλ= .

During the process of data transmission, it is
common for the downlink bandwidth to be
significantly greater than the uplink bandwidth.
Thus, the downlink transmission time between
the task publisher and the data owner can be
deemed insignificant when compared to the
uplink time. The total time spent during the
global iteration is thus the sum of the iterative
computation time and the uplink
communication time. In terms of the
communication time for the model updates [8],
the transmission rate of the data owners can be

expressed as rn = B ln (1 + (ρnhn/N0)), where B
represents the transmission bandwidth, ρn is the
transmission power of the data owner, and hn is
the channel gain between the data owner and the
task publisher. N0 denotes the background
noise. With a fixed sample data size, the
transmission time for the local model update is
given by 0/ (ln(1 /))t

n n nT s B h Nρ= + .
Therefore, the total time required for a global
model iteration can be calculated as:

 log(1/)total t

n n n nT T Tλ= + . (2)

According to [27], the energy consumption of data
owner n for transmitting updated parameters in a
global iteration can be expressed as Dt/N0)). The
total energy consumption of the data owner n in a
global iteration can be calculated as:

log(1/)total t
n n n nD D Dλ= + . (3)

Due to the information asymmetry between the
two parties involved in federated learning, task
publishers offer different data quality and CPU
frequency for federated learning model training to
generate profits. The task publisher, in turn,
provides pay- offs based on the different payoff
levels of the data owners. Assume that the data
owner receives paid as Rn=qnfn, where qn
represents the price per unit for the data owner to
utilize the CPU frequency fn. It is important to
highlight that a greater contribution of
computational resources by the data owner results
in a faster training of the local model, leading to a
higher payoff. The data owner can choose to sign

(2)

Figure 1
Federated learning work flow

According to [27], the energy consumption of data
owner n for transmitting updated parameters in a
global iteration can be expressed as Dt/N0)). The to-
tal energy consumption of the data owner n in a global
iteration can be calculated as:

n

In the context of federated learning, each data
owner is tasked with updating the global model
by training their local data and contributing the
updated parameters. The training efficiency of
the data owners is influenced by the quality and
accuracy of their local data, denoted as λn. The
difference in data quality is mainly reflected in
reliability and accuracy. Specifically, when the
data quality is poor, federated learning needs to
run more global iterations to achieve a certain
model training accuracy. The lower bound on
the number of iterations is usually used in
federated learning algorithms log(1/λn) to
represent local training data [30], for
computational convenience, most applicants
make it straightforward to denote the number of
local training iterations. Based on this premise,
the computation time for model updates during
global iterations can be expressed as

log(1/)c
n n nT Tλ= .

During the process of data transmission, it is
common for the downlink bandwidth to be
significantly greater than the uplink bandwidth.
Thus, the downlink transmission time between
the task publisher and the data owner can be
deemed insignificant when compared to the
uplink time. The total time spent during the
global iteration is thus the sum of the iterative
computation time and the uplink
communication time. In terms of the
communication time for the model updates [8],
the transmission rate of the data owners can be

expressed as rn = B ln (1 + (ρnhn/N0)), where B
represents the transmission bandwidth, ρn is the
transmission power of the data owner, and hn is
the channel gain between the data owner and the
task publisher. N0 denotes the background
noise. With a fixed sample data size, the
transmission time for the local model update is
given by 0/ (ln(1 /))t

n n nT s B h Nρ= + .
Therefore, the total time required for a global
model iteration can be calculated as:

 log(1/)total t

n n n nT T Tλ= + . (2)

According to [27], the energy consumption of data
owner n for transmitting updated parameters in a
global iteration can be expressed as Dt/N0)). The
total energy consumption of the data owner n in a
global iteration can be calculated as:

log(1/)total t
n n n nD D Dλ= + . (3)

Due to the information asymmetry between the
two parties involved in federated learning, task
publishers offer different data quality and CPU
frequency for federated learning model training to
generate profits. The task publisher, in turn,
provides pay- offs based on the different payoff
levels of the data owners. Assume that the data
owner receives paid as Rn=qnfn, where qn
represents the price per unit for the data owner to
utilize the CPU frequency fn. It is important to
highlight that a greater contribution of
computational resources by the data owner results
in a faster training of the local model, leading to a
higher payoff. The data owner can choose to sign

. (3)

Due to the information asymmetry between the two
parties involved in federated learning, task publish-
ers offer different data quality and CPU frequency for
federated learning model training to generate profits.
The task publisher, in turn, provides pay- offs based on
the different payoff levels of the data owners. Assume
that the data owner receives paid as Rn=qnfn, where
qn represents the price per unit for the data owner to
utilize the CPU frequency fn. It is important to high-
light that a greater contribution of computational re-
sources by the data owner results in a faster training
of the local model, leading to a higher payoff. The data
owner can choose to sign the contract to complete the

1143Information Technology and Control 2024/4/53

model training, but if the corresponding workload in
the contract is not completed, the data owner cannot
get the predetermined payment.
As noted above, the data owners share the same size
of sample data to process and the task publisher has
the same accuracy requirements for model training.
In this case, maximizing the federated learning util-
ity for the task publisher is to improve the efficiency
of the data owner. This paper uses game theory to
characterize the incentive mechanism, mainly con-
sidering the interaction between the task publisher
and each data owner. Due to the heterogeneity among
the data owners in asynchronous federated learning,
the development of an incentive mechanism becomes
necessary. In this context, we define the utility of the
task publisher as the duration of the global iteration:

log(1/) + t
T n n nU T Tλ= . (4)

Data owner n considers the energy loss associat-
ed with their participation in the learning process,
which is determined by the CPU power level, upon re-
ceiving the corresponding payment Rn from the task
publisher. The objective of each data owner is to max-
imize their profit:

the contract to complete the model training, but if
the corresponding workload in the contract is not
completed, the data owner cannot get the
predetermined payment.

As noted above, the data owners share the same
size of sample data to process and the task
publisher has the same accuracy requirements for
model training. In this case, maximizing the
federated learning utility for the task publisher is
to improve the efficiency of the data owner. This
paper uses game theory to characterize the
incentive mechanism, mainly considering the
interaction between the task publisher and each
data owner. Due to the heterogeneity among the
data owners in asynchronous federated learning,
the development of an incentive mechanism
becomes necessary. In this context, we define the
utility of the task publisher as the duration of the
global iteration:

log(1/) + t
T n n nU T Tλ= . (4)

Data owner n considers the energy loss associated
with their participation in the learning process,
which is determined by the CPU power level,
upon receiving the corresponding payment Rn
from the task publisher. The objective of each data
owner is to maximize their profit:

 = log(1/)

total
D n n

t
n n n n n

U R D
q f D D

µ

µ λ

= −

− +（ ） (5)

The equation provided earlier is subject to the
constraint fn ≤ fmax, where fmax represents the
upper limit of CPU power of the data owner.
Additionally, µ is a predefined weight parameter
that governs the influence of energy consumption.

3. Incentive Mechanism of
Federated Learning by
Stackelberg Game
As we all known, data owners in federated
learning use private data to participate in the
model training initiated by the task publisher. The
task publisher ranks the data owners according to
their data quality, so as to facilitate reasonable
incentives for the data owners. To ensure effective
incentives for participants with varying data
quality, the CPU power of the data owners is
bounded by the offered reward, which is capped.
Therefore, the data owners need to optimize their
CPU power to balance the cost and the benefit. The
task publisher hopes to improve model iteration
efficiency or reduce model iteration time by

providing rewards to the data owners. Therefore,
a Stackelberg game with two-level structure is
adopted to jointly optimize the utility of the upper
and lower games. The Stackelberg game
constructed in this paper is an interaction between
task publish and multiple data owner. When the
task publishers first make decisions as leaders, and
data owners as followers will make their own
decisions based on the task publisher’s decisions.
In this process, the task publisher and data owners
will adjust to each other’s decision until both can
maximize their benefits. Finally, the compensation
provided by the mission publisher is the
corresponding relationship between the data
provided by the data owner and the computing
power.

When the quality of the data provided by the data
owner is determined, a lower bound on the
number of iterations it can participate in the
learning process can be determined by gradient
descent. For computational convenience, this is
often analyzed directly as the number of iterations
of the data owner. And it is assumed that the iter-
ation time of the data owner satisfies the maximum
duration requirement of parameter aggregation.

Lower-level game model:

At the unit price qn for the CPU frequency of each
data owner, the Lower-level subgame focuses on
maximizing the profit of data owners, and the
problem is defined as follows:

max

max

s.t.
n

total
D n n nf

n

U q f D

f f

µ= −

≤ (6)

Upper-level Subgame:

Once the relationship between the CPU frequency
and the unit price of CPU usage for data owners
during the learning process is established, the
upper-level game focuses on minimizing the
iteration time. The problem is then formulated as
follows:

max

min log(1/) +

s.t.
n

t
T n n nq

n n

U T T

q f R

λ=

≤ , (7)

where Rmax is the maximum unit price of CPU
power that the task publisher can provide.

In general, the equilibrium of the Stackelberg game
is achieved by finding the optimal Nash
equilibrium. In the game described in this paper,
the unit price of CPU power for the data owners is
predetermined. The data owners engage in a non-

.
(5)

The equation provided earlier is subject to the con-
straint fn ≤ fmax, where fmax represents the upper
limit of CPU power of the data owner. Additionally, µ
is a predefined weight parameter that governs the in-
fluence of energy consumption.

3. Incentive Mechanism of Federated
Learning by Stackelberg Game
As we all known, data owners in federated learning
use private data to participate in the model training
initiated by the task publisher. The task publisher
ranks the data owners according to their data qual-
ity, so as to facilitate reasonable incentives for the
data owners. To ensure effective incentives for par-
ticipants with varying data quality, the CPU power
of the data owners is bounded by the offered reward,

which is capped. Therefore, the data owners need to
optimize their CPU power to balance the cost and the
benefit. The task publisher hopes to improve model
iteration efficiency or reduce model iteration time by
providing rewards to the data owners. Therefore, a
Stackelberg game with two-level structure is adopted
to jointly optimize the utility of the upper and lower
games. The Stackelberg game constructed in this pa-
per is an interaction between task publish and multi-
ple data owner. When the task publishers first make
decisions as leaders, and data owners as followers will
make their own decisions based on the task publish-
er’s decisions. In this process, the task publisher and
data owners will adjust to each other’s decision until
both can maximize their benefits. Finally, the com-
pensation provided by the mission publisher is the
corresponding relationship between the data provid-
ed by the data owner and the computing power.
When the quality of the data provided by the data
owner is determined, a lower bound on the number
of iterations it can participate in the learning process
can be determined by gradient descent. For computa-
tional convenience, this is often analyzed directly as
the number of iterations of the data owner. And it is
assumed that the iter- ation time of the data owner
satisfies the maximum duration requirement of pa-
rameter aggregation.
 _ Lower-level game model:

At the unit price qn for the CPU frequency of each
data owner, the Lower-level subgame focuses on max-
imizing the profit of data owners, and the problem is
defined as follows:

max

max

s.t.
n

total
D n n nf

n

U q f D

f f

µ= −

≤

(6)

 _ Upper-level Subgame:
Once the relationship between the CPU frequen-
cy and the unit price of CPU usage for data owners
during the learning process is established, the up-
per-level game focuses on minimizing the iteration
time. The problem is then formulated as follows:

max

min log(1/) +

s.t.
n

t
T n n nq

n n

U T T

q f R

λ=

≤ ,
(7)

Information Technology and Control 2024/4/531144

where Rmax is the maximum unit price of CPU power
that the task publisher can provide.
In general, the equilibrium of the Stackelberg game
is achieved by finding the optimal Nash equilibrium.
In the game described in this paper, the unit price of
CPU power for the data owners is predetermined. The
data owners engage in a non-cooperative game envi-
ronment, where the Nash equilibrium is defined as a
state in which no player can improve their payoff by
unilaterally changing their strategy.
In the game described in this paper, the number of
participants is limited, and the optimal unit price of
CPU power, as set by each central server, is restrict-
ed to a bounded closed set in the Euclidean space.
The utility function of the lower-level subgame ex-
hibits continuous variation with respect to the in-
dependent variables, and the profit function UD of
the lower-level subgame displays concave proper-
ties, and its first-order derivative and second-order
partial derivative with respect to CPU power can be
expressed using the following estimation equation:

cooperative game environment, where the Nash
equilibrium is defined as a state in which no player
can improve their payoff by unilaterally changing
their strategy.

In the game described in this paper, the number of
participants is limited, and the optimal unit price
of CPU power, as set by each central server, is
restricted to a bounded closed set in the Euclidean
space. The utility function of the lower-level
subgame exhibits continuous variation with
respect to the independent variables, and the profit
function UD of the lower-level subgame displays
concave properties, and its first-order derivative
and second-order partial derivative with respect to
CPU power can be expressed using the following
estimation equation:

2

2

2

[log(1/)]

 2 log(1/)

2 log(1/)

t
n n n n n nD

n n

n n n n

D
n n

n

q f c f DU
f f

q c f
U c
f

λ µε

λ µε

λ µε

∂ − −∂
=

∂ ∂
= −

∂
= −

∂
 (8)

The solution demonstrates that the second-order
partial derivative is negative, indicating that the
profit function UD exhibits a strict concave
property. Consequently, the subgame Nash
equilibrium solution exists the Stackelberg game
model [18].

In the game model described above, our objective
is to identify the Stackelberg equilibrium solution
for both the task publisher and the data owner.
Considering the situation where data quality is
unknown in the context of the Stackelberg game,
we determine the equilibrium solutions for the
upper and lower games using the backward
induction method. The process starts by
identifying the equilibrium solution for the lower-
level subgame based on the first-order optimality
condition. Subsequently, the lower equilibrium
solution is incorporated into the upper-level
subgame to derive the overall game solution.

4. Robust Incentive Mechanism
for Stackelberg Games with
Data Quality Uncertainty
In the process of contract selection and
participation of data owners in learning based on
their data quality, the data quality is usually
inferred by the data owner from limited data and
provided to the task publisher. However, the real

value of data quality is influenced by various
factors and cannot be accurately derived.
Therefore, the impact of this uncertainty on the
effectiveness of the federated learning incentives
can be reduced by applying the idea of robust
optimization so that the real value of data quality
is disturbed within a certain range around the
nominal value provided by the data owner. The
data quality is mainly reflected in the number of
iterations in the upper and lower games, i.e:

log(1/)n
n

ϕλ
ω

=
, (9)

where the data quality ωn is uncertainty and ϕ is a
deterministic parameter for the number of
iterations influenced by the data quality. Larger
ωn implies better data quality and higher accuracy
and data reliability [23], which can reduce the
number of local iterations for model training. In
order to facilitate the solving processing the data
quality, we assume

n
n

ϕ σ
ω

=
, (10)

where σn is data quality parameter.

4.1 Robust Incentive Mechanisms for
Stackelberg Games Under Boxed
Uncertainty in Data Quality
We first consider the worst-case uncertainty
model, the introduction of a boxed un- certainty
set, where the data quality parameters σn
uncertainty variables are assumed to be a given
uncertainty set. The boxed uncertainty set is
introduced to model the data quality uncertainty
parameters. Then

_en _ [_n � _bn; _n + _bn],

where _n is the data quality parameter in the
nominal model and bn is its perturbation. When
the data quality is a boxed uncertainty set, the
lower-level subgame is:



2

max

max () / (ln(1

s.t.
n

n nD n n n n n n nf

n

U q f sc f s B h

f f

σ σ µε ρ ρ= − + + +

≤
 (11)

The upper-level subgame is:



0

max

min ()(/)+ / (ln (1+(h /N)))

s.t.
n

n nT n n n nq

n n

U sc f s B

q f R

σ σ ρ= +

≤
 (12)

(8)

The solution demonstrates that the second-order
partial derivative is negative, indicating that the
profit function UD exhibits a strict concave property.
Consequently, the subgame Nash equilibrium solu-
tion exists the Stackelberg game model [18].
In the game model described above, our objective is
to identify the Stackelberg equilibrium solution for
both the task publisher and the data owner. Consid-
ering the situation where data quality is unknown
in the context of the Stackelberg game, we deter-
mine the equilibrium solutions for the upper and
lower games using the backward induction meth-
od. The process starts by identifying the equilibri-
um solution for the lower-level subgame based on
the first-order optimality condition. Subsequently,
the lower equilibrium solution is incorporated into
the upper-level subgame to derive the overall game
solution.

4. Robust Incentive Mechanism
for Stackelberg Games with Data
Quality Uncertainty
In the process of contract selection and participation
of data owners in learning based on their data quality,
the data quality is usually inferred by the data owner
from limited data and provided to the task publisher.
However, the real value of data quality is influenced
by various factors and cannot be accurately derived.
Therefore, the impact of this uncertainty on the effec-
tiveness of the federated learning incentives can be
reduced by applying the idea of robust optimization
so that the real value of data quality is disturbed with-
in a certain range around the nominal value provided
by the data owner. The data quality is mainly reflect-
ed in the number of iterations in the upper and lower
games, i.e:

cooperative game environment, where the Nash
equilibrium is defined as a state in which no player
can improve their payoff by unilaterally changing
their strategy.

In the game described in this paper, the number of
participants is limited, and the optimal unit price
of CPU power, as set by each central server, is
restricted to a bounded closed set in the Euclidean
space. The utility function of the lower-level
subgame exhibits continuous variation with
respect to the independent variables, and the profit
function UD of the lower-level subgame displays
concave properties, and its first-order derivative
and second-order partial derivative with respect to
CPU power can be expressed using the following
estimation equation:

2

2

2

[log(1/)]

 2 log(1/)

2 log(1/)

t
n n n n n nD

n n

n n n n

D
n n

n

q f c f DU
f f

q c f
U c
f

λ µε

λ µε

λ µε

∂ − −∂
=

∂ ∂
= −

∂
= −

∂
 (8)

The solution demonstrates that the second-order
partial derivative is negative, indicating that the
profit function UD exhibits a strict concave
property. Consequently, the subgame Nash
equilibrium solution exists the Stackelberg game
model [18].

In the game model described above, our objective
is to identify the Stackelberg equilibrium solution
for both the task publisher and the data owner.
Considering the situation where data quality is
unknown in the context of the Stackelberg game,
we determine the equilibrium solutions for the
upper and lower games using the backward
induction method. The process starts by
identifying the equilibrium solution for the lower-
level subgame based on the first-order optimality
condition. Subsequently, the lower equilibrium
solution is incorporated into the upper-level
subgame to derive the overall game solution.

4. Robust Incentive Mechanism
for Stackelberg Games with
Data Quality Uncertainty
In the process of contract selection and
participation of data owners in learning based on
their data quality, the data quality is usually
inferred by the data owner from limited data and
provided to the task publisher. However, the real

value of data quality is influenced by various
factors and cannot be accurately derived.
Therefore, the impact of this uncertainty on the
effectiveness of the federated learning incentives
can be reduced by applying the idea of robust
optimization so that the real value of data quality
is disturbed within a certain range around the
nominal value provided by the data owner. The
data quality is mainly reflected in the number of
iterations in the upper and lower games, i.e:

log(1/)n
n

ϕλ
ω

= ,
 (9)

where the data quality ωn is uncertainty and ϕ is a
deterministic parameter for the number of
iterations influenced by the data quality. Larger
ωn implies better data quality and higher accuracy
and data reliability [23], which can reduce the
number of local iterations for model training. In
order to facilitate the solving processing the data
quality, we assume

n
n

ϕ σ
ω

=
, (10)

where σn is data quality parameter.

4.1 Robust Incentive Mechanisms for
Stackelberg Games Under Boxed
Uncertainty in Data Quality
We first consider the worst-case uncertainty
model, the introduction of a boxed un- certainty
set, where the data quality parameters σn
uncertainty variables are assumed to be a given
uncertainty set. The boxed uncertainty set is
introduced to model the data quality uncertainty
parameters. Then

_en _ [_n � _bn; _n + _bn],

where _n is the data quality parameter in the
nominal model and bn is its perturbation. When
the data quality is a boxed uncertainty set, the
lower-level subgame is:



2

max

max () / (ln(1

s.t.
n

n nD n n n n n n nf

n

U q f sc f s B h

f f

σ σ µε ρ ρ= − + + +

≤
 (11)

The upper-level subgame is:



0

max

min ()(/)+ / (ln (1+(h /N)))

s.t.
n

n nT n n n nq

n n

U sc f s B

q f R

σ σ ρ= +

≤
 (12)

(9)

where the data quality ωn is uncertainty and ϕ is a de-
terministic parameter for the number of iterations in-
fluenced by the data quality. Larger ωn implies better
data quality and higher accuracy and data reliability
[23], which can reduce the number of local iterations
for model training. In order to facilitate the solving
processing the data quality, we assume

n
n

ϕ σω = , (10)

where σn is data quality parameter.

4.1. Robust Incentive Mechanisms for
Stackelberg Games Under Boxed Uncertainty
in Data Quality
We first consider the worst-case uncertainty model,
the introduction of a boxed un- certainty set, where
the data quality parameters σn uncertainty variables
are assumed to be a given uncertainty set. The boxed
uncertainty set is introduced to model the data quali-
ty uncertainty parameters. Then
_en _ [_n � _bn; _n + _bn],
where _n is the data quality parameter in the nominal
model and bn is its perturbation. When the data quality
is a boxed uncertainty set, the lower-level subgame is:

1145Information Technology and Control 2024/4/53

2

max

max ()
/ (ln(1

s.t.

n
n nD n n n n

n n n

f

n

U q f sc f
s B h

f f

σ σ µε
ρ ρ

= − + +

+

≤
(11)

The upper-level subgame is:



0

max

min ()(/)+ /(ln (1+(h /N)))

s.t.
n

n nT n n n nq

n n

U sc f s B

q f R

σ σ ρ= +

≤
(12)

In the constructed Stackelberg game with data quality
uncertainty as mentioned above, backward induction
is employed to determine the equilibrium solutions for
both the upper and lower games. Initially, the equilibri-
um solution for the lower game is determined by consid-
ering the first-order optimality condition. Subsequently,
the lower equilibrium solution is incorporated into the
upper game to find the overall solution of the game.

The lower game solving:
To find the equilibrium solution of the data owner in
the lower-level game, the first order derivative of the
profit function with respect to the CPU power fn in
the lower game can be specified as follows:





2
0(() / (ln(1 /)))

 2()

n nn n n n n n nD

n n

n nn n n

q f sc f s B h NU
f f

q sc f

σ σ µε ρ ρ

σ σ µε

∂ − + + +∂
=

∂ ∂
= − +

(13)

If the above equation is zero, the CPU power of the
data owner is as follows:

In the constructed Stackelberg game with data
quality uncertainty as mentioned above, backward
induction is employed to determine the
equilibrium solutions for both the upper and lower
games. Initially, the equilibrium solution for the
lower game is determined by considering the first-
order optimality condition. Subsequently, the
lower equilibrium solution is incorporated into the
upper game to find the overall solution of the
game.

The lower game solving:
To find the equilibrium solution of the data owner
in the lower-level game, the first order derivative
of the profit function with respect to the CPU
power fn in the lower game can be specified as
follows:





2
0(() / (ln(1 /)))

 2()

n nn n n n n n nD

n n

n nn n n

q f sc f s B h NU
f f

q sc f

σ σ µε ρ ρ

σ σ µε

∂ − + + +∂
=

∂ ∂

= − +
 (13)

If the above equation is zero, the CPU power of the
data owner is as follows:

 

max*

max

2 () 2 ()

n n

n n n nn n n

q qif f
f sc sc

f otherwise
µε σ σ µε σ σ

 ≤= + +



 (14)

The upper game solving:
Once an equilibrium solution is reached in the
lower-level game, the optimal CPU power of the
data owner is substituted into the utility
maximization problem of the upper-level game.
As the constraints of the upper-level game
problem are linear, the Lagrangian function can be
expressed as follows:





2

max(,) () + ()
2 ()

t n
n n n n

n nn

qL q T T R
sc

α σ σ α
µε σ σ

= + + −
+

 (15)

where α denotes the Lagrangian multiplier.

The first order derivative of the above Lagrangian
function is derived as follows:



(,) = ()
()

nT

n nn n n

qUL q
q q sc
α α

µε σ σ
∂∂

+
∂ ∂ + (16)

Then, the first derivative given above is equal to
zero, the value of Lagrange multi- plier value α, at
the optimal point can be obtained by solving the
Lagrange optimality conditions:

()= n nnT

n n

scU
q q

µε σ σα +∂
−
∂ (17)

In order to find the range of values of α, the first
order derivative of the utility function of the upper
game yields:

 

n

()
(()(/)) 2 ()= =

n

n n n nn n n nT T

n n n n

q
f sc f scU U

q f q f q
σ σ µε σ σ

∂
∂ ∂ + +∂ ∂

⋅
∂ ∂ ∂ ∂ ∂

 (18)

positive influence. Additionally, the second term is
always positive, further contributing to the
positive relationship. Therefore, it can be inferred
that the Lagrange multiplier α > 0.

In combination with the above KKT conditions:



2

max 0
2 ()

n

n nn

q R
sc

α
µε σ σ

− =
+

（ ）

 (19)

Therefore, the equilibrium solution of the upper
level game is:



*
max2 ()n nn nq sc Rµε σ σ= +

 (20)

4.2 Robust Incentive Mechanisms for
Stackelberg Games Under Polyhedron
Uncertainty in Data Quality
In order to take into account the robustness of data
quality uncertainty while maximizing the benefits
for both sides of the upper and lower level games,
a polyhedron uncertainty set is therefore
considered to characterize data quality
uncertainty.

The uncertainty type variables of the data quality
parameters σn are assumed to be a given
uncertainty set, and the polyhedron uncertainty
set is introduced, then σnψn], where σn is the data
quality parameter in the nominal model, σn is its
perturbation. Its uncertainty set is Ψ={ψ : ψn ≤ Γn,

(14)

The upper game solving:
Once an equilibrium solution is reached in the low-
er-level game, the optimal CPU power of the data
owner is substituted into the utility maximization
problem of the upper-level game. As the constraints
of the upper-level game problem are linear, the La-
grangian function can be expressed as follows:

In the constructed Stackelberg game with data
quality uncertainty as mentioned above, backward
induction is employed to determine the
equilibrium solutions for both the upper and lower
games. Initially, the equilibrium solution for the
lower game is determined by considering the first-
order optimality condition. Subsequently, the
lower equilibrium solution is incorporated into the
upper game to find the overall solution of the
game.

The lower game solving:
To find the equilibrium solution of the data owner
in the lower-level game, the first order derivative
of the profit function with respect to the CPU
power fn in the lower game can be specified as
follows:





2
0(() / (ln(1 /)))

 2()

n nn n n n n n nD

n n

n nn n n

q f sc f s B h NU
f f

q sc f

σ σ µε ρ ρ

σ σ µε

∂ − + + +∂
=

∂ ∂

= − +
 (13)

If the above equation is zero, the CPU power of the
data owner is as follows:

 

max*

max

2 () 2 ()

n n

n n n nn n n

q qif f
f sc sc

f otherwise
µε σ σ µε σ σ

 ≤= + +



 (14)

The upper game solving:
Once an equilibrium solution is reached in the
lower-level game, the optimal CPU power of the
data owner is substituted into the utility
maximization problem of the upper-level game.
As the constraints of the upper-level game
problem are linear, the Lagrangian function can be
expressed as follows:





2

max(,) () + ()
2 ()

t n
n n n n

n nn

qL q T T R
sc

α σ σ α
µε σ σ

= + + −
+

 (15)

where α denotes the Lagrangian multiplier.

The first order derivative of the above Lagrangian
function is derived as follows:



(,) = ()
()

nT

n nn n n

qUL q
q q sc
α α

µε σ σ
∂∂

+
∂ ∂ + (16)

Then, the first derivative given above is equal to
zero, the value of Lagrange multi- plier value α, at
the optimal point can be obtained by solving the
Lagrange optimality conditions:

()= n nnT

n n

scU
q q

µε σ σα +∂
−
∂ (17)

In order to find the range of values of α, the first
order derivative of the utility function of the upper
game yields:

 

n

()
(()(/)) 2 ()= =

n

n n n nn n n nT T

n n n n

q
f sc f scU U

q f q f q
σ σ µε σ σ

∂
∂ ∂ + +∂ ∂

⋅
∂ ∂ ∂ ∂ ∂

 (18)

positive influence. Additionally, the second term is
always positive, further contributing to the
positive relationship. Therefore, it can be inferred
that the Lagrange multiplier α > 0.

In combination with the above KKT conditions:



2

max 0
2 ()

n

n nn

q R
sc

α
µε σ σ

− =
+

（ ）

 (19)

Therefore, the equilibrium solution of the upper
level game is:



*
max2 ()n nn nq sc Rµε σ σ= +

 (20)

4.2 Robust Incentive Mechanisms for
Stackelberg Games Under Polyhedron
Uncertainty in Data Quality
In order to take into account the robustness of data
quality uncertainty while maximizing the benefits
for both sides of the upper and lower level games,
a polyhedron uncertainty set is therefore
considered to characterize data quality
uncertainty.

The uncertainty type variables of the data quality
parameters σn are assumed to be a given
uncertainty set, and the polyhedron uncertainty
set is introduced, then σnψn], where σn is the data
quality parameter in the nominal model, σn is its
perturbation. Its uncertainty set is Ψ={ψ : ψn ≤ Γn,

(15)

where α denotes the Lagrangian multiplier.
The first order derivative of the above Lagrangian
function is derived as follows:

In the constructed Stackelberg game with data
quality uncertainty as mentioned above, backward
induction is employed to determine the
equilibrium solutions for both the upper and lower
games. Initially, the equilibrium solution for the
lower game is determined by considering the first-
order optimality condition. Subsequently, the
lower equilibrium solution is incorporated into the
upper game to find the overall solution of the
game.

The lower game solving:
To find the equilibrium solution of the data owner
in the lower-level game, the first order derivative
of the profit function with respect to the CPU
power fn in the lower game can be specified as
follows:





2
0(() / (ln(1 /)))

 2()

n nn n n n n n nD

n n

n nn n n

q f sc f s B h NU
f f

q sc f

σ σ µε ρ ρ

σ σ µε

∂ − + + +∂
=

∂ ∂

= − +
 (13)

If the above equation is zero, the CPU power of the
data owner is as follows:

 

max*

max

2 () 2 ()

n n

n n n nn n n

q qif f
f sc sc

f otherwise
µε σ σ µε σ σ

 ≤= + +



 (14)

The upper game solving:
Once an equilibrium solution is reached in the
lower-level game, the optimal CPU power of the
data owner is substituted into the utility
maximization problem of the upper-level game.
As the constraints of the upper-level game
problem are linear, the Lagrangian function can be
expressed as follows:





2

max(,) () + ()
2 ()

t n
n n n n

n nn

qL q T T R
sc

α σ σ α
µε σ σ

= + + −
+

 (15)

where α denotes the Lagrangian multiplier.

The first order derivative of the above Lagrangian
function is derived as follows:



(,) = ()
()

nT

n nn n n

qUL q
q q sc
α α

µε σ σ
∂∂

+
∂ ∂ + (16)

Then, the first derivative given above is equal to
zero, the value of Lagrange multi- plier value α, at
the optimal point can be obtained by solving the
Lagrange optimality conditions:

()= n nnT

n n

scU
q q

µε σ σα +∂
−
∂ (17)

In order to find the range of values of α, the first
order derivative of the utility function of the upper
game yields:

 

n

()
(()(/)) 2 ()= =

n

n n n nn n n nT T

n n n n

q
f sc f scU U

q f q f q
σ σ µε σ σ

∂
∂ ∂ + +∂ ∂

⋅
∂ ∂ ∂ ∂ ∂

 (18)

positive influence. Additionally, the second term is
always positive, further contributing to the
positive relationship. Therefore, it can be inferred
that the Lagrange multiplier α > 0.

In combination with the above KKT conditions:



2

max 0
2 ()

n

n nn

q R
sc

α
µε σ σ

− =
+

（ ）

 (19)

Therefore, the equilibrium solution of the upper
level game is:



*
max2 ()n nn nq sc Rµε σ σ= +

 (20)

4.2 Robust Incentive Mechanisms for
Stackelberg Games Under Polyhedron
Uncertainty in Data Quality
In order to take into account the robustness of data
quality uncertainty while maximizing the benefits
for both sides of the upper and lower level games,
a polyhedron uncertainty set is therefore
considered to characterize data quality
uncertainty.

The uncertainty type variables of the data quality
parameters σn are assumed to be a given
uncertainty set, and the polyhedron uncertainty
set is introduced, then σnψn], where σn is the data
quality parameter in the nominal model, σn is its
perturbation. Its uncertainty set is Ψ={ψ : ψn ≤ Γn,

(16)

Then, the first derivative given above is equal to zero,
the value of Lagrange multi- plier value α, at the op-
timal point can be obtained by solving the Lagrange
optimality conditions:

In the constructed Stackelberg game with data
quality uncertainty as mentioned above, backward
induction is employed to determine the
equilibrium solutions for both the upper and lower
games. Initially, the equilibrium solution for the
lower game is determined by considering the first-
order optimality condition. Subsequently, the
lower equilibrium solution is incorporated into the
upper game to find the overall solution of the
game.

The lower game solving:
To find the equilibrium solution of the data owner
in the lower-level game, the first order derivative
of the profit function with respect to the CPU
power fn in the lower game can be specified as
follows:





2
0(() / (ln(1 /)))

 2()

n nn n n n n n nD

n n

n nn n n

q f sc f s B h NU
f f

q sc f

σ σ µε ρ ρ

σ σ µε

∂ − + + +∂
=

∂ ∂

= − +
 (13)

If the above equation is zero, the CPU power of the
data owner is as follows:

 

max*

max

2 () 2 ()

n n

n n n nn n n

q qif f
f sc sc

f otherwise
µε σ σ µε σ σ

 ≤= + +



 (14)

The upper game solving:
Once an equilibrium solution is reached in the
lower-level game, the optimal CPU power of the
data owner is substituted into the utility
maximization problem of the upper-level game.
As the constraints of the upper-level game
problem are linear, the Lagrangian function can be
expressed as follows:





2

max(,) () + ()
2 ()

t n
n n n n

n nn

qL q T T R
sc

α σ σ α
µε σ σ

= + + −
+

 (15)

where α denotes the Lagrangian multiplier.

The first order derivative of the above Lagrangian
function is derived as follows:



(,) = ()
()

nT

n nn n n

qUL q
q q sc
α α

µε σ σ
∂∂

+
∂ ∂ + (16)

Then, the first derivative given above is equal to
zero, the value of Lagrange multi- plier value α, at
the optimal point can be obtained by solving the
Lagrange optimality conditions:

()= n nnT

n n

scU
q q

µε σ σα +∂
−
∂ (17)

In order to find the range of values of α, the first
order derivative of the utility function of the upper
game yields:

 

n

()
(()(/)) 2 ()= =

n

n n n nn n n nT T

n n n n

q
f sc f scU U

q f q f q
σ σ µε σ σ

∂
∂ ∂ + +∂ ∂

⋅
∂ ∂ ∂ ∂ ∂

 (18)

positive influence. Additionally, the second term is
always positive, further contributing to the
positive relationship. Therefore, it can be inferred
that the Lagrange multiplier α > 0.

In combination with the above KKT conditions:



2

max 0
2 ()

n

n nn

q R
sc

α
µε σ σ

− =
+

（ ）

 (19)

Therefore, the equilibrium solution of the upper
level game is:



*
max2 ()n nn nq sc Rµε σ σ= +

 (20)

4.2 Robust Incentive Mechanisms for
Stackelberg Games Under Polyhedron
Uncertainty in Data Quality
In order to take into account the robustness of data
quality uncertainty while maximizing the benefits
for both sides of the upper and lower level games,
a polyhedron uncertainty set is therefore
considered to characterize data quality
uncertainty.

The uncertainty type variables of the data quality
parameters σn are assumed to be a given
uncertainty set, and the polyhedron uncertainty
set is introduced, then σnψn], where σn is the data
quality parameter in the nominal model, σn is its
perturbation. Its uncertainty set is Ψ={ψ : ψn ≤ Γn,

(17)

In order to find the range of values of α, the first order
derivative of the utility function of the upper game
yields:

In the constructed Stackelberg game with data
quality uncertainty as mentioned above, backward
induction is employed to determine the
equilibrium solutions for both the upper and lower
games. Initially, the equilibrium solution for the
lower game is determined by considering the first-
order optimality condition. Subsequently, the
lower equilibrium solution is incorporated into the
upper game to find the overall solution of the
game.

The lower game solving:
To find the equilibrium solution of the data owner
in the lower-level game, the first order derivative
of the profit function with respect to the CPU
power fn in the lower game can be specified as
follows:





2
0(() / (ln(1 /)))

 2()

n nn n n n n n nD

n n

n nn n n

q f sc f s B h NU
f f

q sc f

σ σ µε ρ ρ

σ σ µε

∂ − + + +∂
=

∂ ∂

= − +
 (13)

If the above equation is zero, the CPU power of the
data owner is as follows:

 

max*

max

2 () 2 ()

n n

n n n nn n n

q qif f
f sc sc

f otherwise
µε σ σ µε σ σ

 ≤= + +



 (14)

The upper game solving:
Once an equilibrium solution is reached in the
lower-level game, the optimal CPU power of the
data owner is substituted into the utility
maximization problem of the upper-level game.
As the constraints of the upper-level game
problem are linear, the Lagrangian function can be
expressed as follows:





2

max(,) () + ()
2 ()

t n
n n n n

n nn

qL q T T R
sc

α σ σ α
µε σ σ

= + + −
+

 (15)

where α denotes the Lagrangian multiplier.

The first order derivative of the above Lagrangian
function is derived as follows:



(,) = ()
()

nT

n nn n n

qUL q
q q sc
α α

µε σ σ
∂∂

+
∂ ∂ + (16)

Then, the first derivative given above is equal to
zero, the value of Lagrange multi- plier value α, at
the optimal point can be obtained by solving the
Lagrange optimality conditions:

()= n nnT

n n

scU
q q

µε σ σα +∂
−
∂ (17)

In order to find the range of values of α, the first
order derivative of the utility function of the upper
game yields:

 

n

()
(()(/)) 2 ()= =

n

n n n nn n n nT T

n n n n

q
f sc f scU U

q f q f q
σ σ µε σ σ

∂
∂ ∂ + +∂ ∂

⋅
∂ ∂ ∂ ∂ ∂

 (18)

positive influence. Additionally, the second term is
always positive, further contributing to the
positive relationship. Therefore, it can be inferred
that the Lagrange multiplier α > 0.

In combination with the above KKT conditions:



2

max 0
2 ()

n

n nn

q R
sc

α
µε σ σ

− =
+

（ ）

 (19)

Therefore, the equilibrium solution of the upper
level game is:



*
max2 ()n nn nq sc Rµε σ σ= +

 (20)

4.2 Robust Incentive Mechanisms for
Stackelberg Games Under Polyhedron
Uncertainty in Data Quality
In order to take into account the robustness of data
quality uncertainty while maximizing the benefits
for both sides of the upper and lower level games,
a polyhedron uncertainty set is therefore
considered to characterize data quality
uncertainty.

The uncertainty type variables of the data quality
parameters σn are assumed to be a given
uncertainty set, and the polyhedron uncertainty
set is introduced, then σnψn], where σn is the data
quality parameter in the nominal model, σn is its
perturbation. Its uncertainty set is Ψ={ψ : ψn ≤ Γn,

(18)

In the above equation, it is clear that the upper-level
game utility function is negatively correlated with the
CPU power fn provided by the data owner. Further-
more, based on the equation, there exists a positive
correlation between the price per unit of CPU power
and the CPU power provided by the data owner. The
first term on the right-hand side of the equation is
positive, indicating a positive influence. Additionally,
the second term is always positive, further contribut-
ing to the positive relationship. Therefore, it can be
inferred that the Lagrange multiplier α > 0.
In combination with the above KKT conditions:

In the constructed Stackelberg game with data
quality uncertainty as mentioned above, backward
induction is employed to determine the
equilibrium solutions for both the upper and lower
games. Initially, the equilibrium solution for the
lower game is determined by considering the first-
order optimality condition. Subsequently, the
lower equilibrium solution is incorporated into the
upper game to find the overall solution of the
game.

The lower game solving:
To find the equilibrium solution of the data owner
in the lower-level game, the first order derivative
of the profit function with respect to the CPU
power fn in the lower game can be specified as
follows:





2
0(() / (ln(1 /)))

 2()

n nn n n n n n nD

n n

n nn n n

q f sc f s B h NU
f f

q sc f

σ σ µε ρ ρ

σ σ µε

∂ − + + +∂
=

∂ ∂

= − +
 (13)

If the above equation is zero, the CPU power of the
data owner is as follows:

 

max*

max

2 () 2 ()

n n

n n n nn n n

q qif f
f sc sc

f otherwise
µε σ σ µε σ σ

 ≤= + +



 (14)

The upper game solving:
Once an equilibrium solution is reached in the
lower-level game, the optimal CPU power of the
data owner is substituted into the utility
maximization problem of the upper-level game.
As the constraints of the upper-level game
problem are linear, the Lagrangian function can be
expressed as follows:





2

max(,) () + ()
2 ()

t n
n n n n

n nn

qL q T T R
sc

α σ σ α
µε σ σ

= + + −
+

 (15)

where α denotes the Lagrangian multiplier.

The first order derivative of the above Lagrangian
function is derived as follows:



(,) = ()
()

nT

n nn n n

qUL q
q q sc
α α

µε σ σ
∂∂

+
∂ ∂ + (16)

Then, the first derivative given above is equal to
zero, the value of Lagrange multi- plier value α, at
the optimal point can be obtained by solving the
Lagrange optimality conditions:

()= n nnT

n n

scU
q q

µε σ σα +∂
−
∂ (17)

In order to find the range of values of α, the first
order derivative of the utility function of the upper
game yields:

 

n

()
(()(/)) 2 ()= =

n

n n n nn n n nT T

n n n n

q
f sc f scU U

q f q f q
σ σ µε σ σ

∂
∂ ∂ + +∂ ∂

⋅
∂ ∂ ∂ ∂ ∂

 (18)

positive influence. Additionally, the second term is
always positive, further contributing to the
positive relationship. Therefore, it can be inferred
that the Lagrange multiplier α > 0.

In combination with the above KKT conditions:



2

max 0
2 ()

n

n nn

q R
sc

α
µε σ σ

− =
+

（ ）

 (19)

Therefore, the equilibrium solution of the upper
level game is:



*
max2 ()n nn nq sc Rµε σ σ= +

 (20)

4.2 Robust Incentive Mechanisms for
Stackelberg Games Under Polyhedron
Uncertainty in Data Quality
In order to take into account the robustness of data
quality uncertainty while maximizing the benefits
for both sides of the upper and lower level games,
a polyhedron uncertainty set is therefore
considered to characterize data quality
uncertainty.

The uncertainty type variables of the data quality
parameters σn are assumed to be a given
uncertainty set, and the polyhedron uncertainty
set is introduced, then σnψn], where σn is the data
quality parameter in the nominal model, σn is its
perturbation. Its uncertainty set is Ψ={ψ : ψn ≤ Γn,

(19)

Therefore, the equilibrium solution of the upper level
game is:

In the constructed Stackelberg game with data
quality uncertainty as mentioned above, backward
induction is employed to determine the
equilibrium solutions for both the upper and lower
games. Initially, the equilibrium solution for the
lower game is determined by considering the first-
order optimality condition. Subsequently, the
lower equilibrium solution is incorporated into the
upper game to find the overall solution of the
game.

The lower game solving:
To find the equilibrium solution of the data owner
in the lower-level game, the first order derivative
of the profit function with respect to the CPU
power fn in the lower game can be specified as
follows:





2
0(() / (ln(1 /)))

 2()

n nn n n n n n nD

n n

n nn n n

q f sc f s B h NU
f f

q sc f

σ σ µε ρ ρ

σ σ µε

∂ − + + +∂
=

∂ ∂

= − +
 (13)

If the above equation is zero, the CPU power of the
data owner is as follows:

 

max*

max

2 () 2 ()

n n

n n n nn n n

q qif f
f sc sc

f otherwise
µε σ σ µε σ σ

 ≤= + +



 (14)

The upper game solving:
Once an equilibrium solution is reached in the
lower-level game, the optimal CPU power of the
data owner is substituted into the utility
maximization problem of the upper-level game.
As the constraints of the upper-level game
problem are linear, the Lagrangian function can be
expressed as follows:





2

max(,) () + ()
2 ()

t n
n n n n

n nn

qL q T T R
sc

α σ σ α
µε σ σ

= + + −
+

 (15)

where α denotes the Lagrangian multiplier.

The first order derivative of the above Lagrangian
function is derived as follows:



(,) = ()
()

nT

n nn n n

qUL q
q q sc
α α

µε σ σ
∂∂

+
∂ ∂ + (16)

Then, the first derivative given above is equal to
zero, the value of Lagrange multi- plier value α, at
the optimal point can be obtained by solving the
Lagrange optimality conditions:

()= n nnT

n n

scU
q q

µε σ σα +∂
−
∂ (17)

In order to find the range of values of α, the first
order derivative of the utility function of the upper
game yields:

 

n

()
(()(/)) 2 ()= =

n

n n n nn n n nT T

n n n n

q
f sc f scU U

q f q f q
σ σ µε σ σ

∂
∂ ∂ + +∂ ∂

⋅
∂ ∂ ∂ ∂ ∂

 (18)

positive influence. Additionally, the second term is
always positive, further contributing to the
positive relationship. Therefore, it can be inferred
that the Lagrange multiplier α > 0.

In combination with the above KKT conditions:



2

max 0
2 ()

n

n nn

q R
sc

α
µε σ σ

− =
+

（ ）

 (19)

Therefore, the equilibrium solution of the upper
level game is:



*
max2 ()n nn nq sc Rµε σ σ= +

 (20)

4.2 Robust Incentive Mechanisms for
Stackelberg Games Under Polyhedron
Uncertainty in Data Quality
In order to take into account the robustness of data
quality uncertainty while maximizing the benefits
for both sides of the upper and lower level games,
a polyhedron uncertainty set is therefore
considered to characterize data quality
uncertainty.

The uncertainty type variables of the data quality
parameters σn are assumed to be a given
uncertainty set, and the polyhedron uncertainty
set is introduced, then σnψn], where σn is the data
quality parameter in the nominal model, σn is its
perturbation. Its uncertainty set is Ψ={ψ : ψn ≤ Γn,

(20)

4.2. Robust Incentive Mechanisms for
Stackelberg Games Under Polyhedron
Uncertainty in Data Quality
In order to take into account the robustness of data
quality uncertainty while maximizing the benefits

Information Technology and Control 2024/4/531146

for both sides of the upper and lower level games, a
polyhedron uncertainty set is therefore considered to
characterize data quality uncertainty.
The uncertainty type variables of the data quality pa-
rameters σn are assumed to be a given uncertainty set,
and the polyhedron uncertainty set is introduced, then
σnψn], where σn is the data quality parameter in the
nominal model, σn is its perturbation. Its uncertainty
set is Ψ={ψ : ψn ≤ Γn, 0 ≤ ψn ≤ 1}, n∈N; where smaller
Γn denotes the level of uncertainty in this uncertainty
set and is used as an objective measure of how conser-
vative the uncertainty in data quality is, thus reflect-
ing the degree of risk appetite of the task publisher,
with smaller Γn values indicating a higher degree of
risk-seeking preference by the task publisher.
The lower level game constructed under this condi-
tion is:



2

max

max ()
s.t.

n

t
n nD n n n n n nf

n

U q f sc f D
f f

σ σ ψ µε= − + −

≤

(21

(21)

The upper level game is:



0

max

min ()(/)+ /(ln(1+(h /N))

s.t.
n

n
n nT n n n nq

n n

U sc f s B

q f R

σ σ ψ ρ= +

≤

(22) (22)

Based on the robust construct proposed by Bertsimas,
the robust optimization model is transformed into
an equivalent optimization model that is more eas-
ily solvable for the upper-level subgame. The trans-
formed model is formulated as follows:

, , ,

'
0

1

0

max

min

. . / + / (ln(1+(h /N)))

 / / (ln(1+(h /N)))
 0
 0

n n n nq c v
N

n n n n n
n

n n n n n n

n

n n

s t sc f s B u v

u v s c f s B
u
v
q f R

σ
ω

ρ ω

σ ρ
=

−Γ − ≤

+ ≥ +
≥
≥
≤

∑
(23)

The lower subgame is:

, , ,
2

12

max

max

. . ()

()

 0
 0
 0

n n n nf c v N
t

n n n n n n n
nt

n n n n n n n

n

n

D

s t q f sc f D u v D

u v q f sc f D
f f

u
v

σ

µ σ ε

µ σ ε
=

− − −Γ − ≥

+ ≥ − −
≤ ≤
≥
≥

∑
(24)

The Lagrangian function corresponding to the lower
level game is:



1 2 3 4

2
1

1
2

2 3 max 4

(, , , ,)

 (())

 () ()

n n n n n
N

t
n n n n n n n n

n

nn n n n n n n n

L f

D q f sc f D u v D

u v sc f f f f

λ λ λ λ

λ µ σ ε

λ σ µε λ λ
=

= + − − − Γ − −

+ + − + − +

∑

(25)

The KKT condition for the lower subgame can be ex-
pressed as:

0 ≤ ψn ≤ 1}, n∈N; where smaller Γn denotes the
level of uncertainty in this uncertainty set and is
used as an objective measure of how conservative
the uncertainty in data quality is, thus reflecting
the degree of risk appetite of the task publisher,
with smaller Γn values indicating a higher degree
of risk-seeking preference by the task publisher.

The lower level game constructed under this
condition is:



2

max

max ()

s.t.
n

t
n nD n n n n n nf

n

U q f sc f D

f f

σ σ ψ µε= − + −

≤
 (21)

The upper level game is:



0

max

min ()(/)+ / (ln(1+(h /N))

s.t.
n

n
n nT n n n nq

n n

U sc f s B

q f R

σ σ ψ ρ= +

≤
 (22)

Based on the robust construct proposed by
Bertsimas, the robust optimization model is
transformed into an equivalent optimization
model that is more easily solvable for the upper-
level subgame. The transformed model is
formulated as follows:

, , ,

'
0

1

0

max

min

. . / + / (ln(1+(h /N)))

 / / (ln(1+(h /N)))
 0
 0

n n n nq c v

N

n n n n n
n

n n n n n n

n

n n

s t sc f s B u v

u v s c f s B
u
v
q f R

σ
ω

ρ ω

σ ρ
=

−Γ − ≤

+ ≥ +
≥
≥
≤

∑

 (23)

The lower subgame is:

, , ,

2

1
2

max

max

. . ()

 ()
 0
 0
 0

n n n nf c v

N
t

n n n n n n n
n

t
n n n n n n n

n

n

D

s t q f sc f D u v D

u v q f sc f D
f f

u
v

σ

µ σ ε

µ σ ε
=

− − −Γ − ≥

+ ≥ − −
≤ ≤
≥
≥

∑

 (24)

The Lagrangian function corresponding to the
lower level game is:



1 2 3 4

2
1

1

2
2 3 max 4

(, , , ,)

 (())

 () ()

n n n n n
N

t
n n n n n n n n

n

nn n n n n n n n

L f

D q f sc f D u v D

u v sc f f f f

λ λ λ λ

λ µ σ ε

λ σ µε λ λ
=

= + − − − Γ − −

+ + − + − +

∑

 (25)

The KKT condition for the lower subgame can be
expressed as:





1 2 3 4

2

1

2

max

3 max

4

(2) 2 0

() 0

0
0

() 0
0

0, 1,2,....
0, 1, 2,3, 4, 1,2,....

nn n n n n n n n n n

N
t

n n n n n n n
n

nn n n

n

n n

n n

n

in

q sc f sc f

q f sc f D u v D

u v sc f
f f

f f
f

f n N
i n N

λ σ µε λ σ µε λ λ

µ σ ε

σ µε

λ
λ

λ

=

 − − − + =

 − + −Γ − − =

 + − =

 − ≤
 − =
 =


≥ =
 ≥ = =

∑

 (26)

From the optimization principle it follows, the
optimal solution of the lower subgame satisfies the
set of inequalities formed by the KKT conditions
above:





max

max

/ 2 (sc +) sc

 / 2 (sc +) sc

 otherwise

t
nn n n n n

t
nn n n n n

n

q D N

if q D N ff
f

µ σ µε σ µε

µ σ µε σ µε

 +

 + ≤= 




 (27)

Using backward induction, the calculated
frequencies fn of the model from the lower game
are brought into the upper game, and the
equilibrium solution is obtained by analyzing the
solution of the upper subgame.

The Lagrangian function for the upper subgame is:


 

1 2 3 4 1

0
1

2

2 (sc +) sc(, , , ,) (

 / (ln(1 /)))

(2 () (

t
nn n n n n n

n n n n n n
n

N

n n n
n

t
n nn n n n

n

s c D NL q
q

s B h N u v

s c sc D N

µ σ σ ε σ µε
φ φ φ φ φ

ρ

σ µ σ ε σ µ
φ

=

+
= ∆ +

+ + − Γ − − ∆

+ +
+

∑



2

3 max 4

)

 ()
2 (sc +) sc)

n
n

n

n
n n nt

nn n n n

sc u v
q

q R q
D N

ε

φ φ
µ σ ε σ µε

− −

+ − −
+

 (28)

The upper game is solved by applying the KKT
conditional transformation, and since the solution
function of the upper game is convex in the range
of independent variables, the feasible solution is
the optimal solution when discussing the values of
the Lagrange multipliers.

(26)

From the optimization principle it follows, the opti-
mal solution of the lower subgame satisfies the set of
inequalities formed by the KKT conditions above:

0 ≤ ψn ≤ 1}, n∈N; where smaller Γn denotes the
level of uncertainty in this uncertainty set and is
used as an objective measure of how conservative
the uncertainty in data quality is, thus reflecting
the degree of risk appetite of the task publisher,
with smaller Γn values indicating a higher degree
of risk-seeking preference by the task publisher.

The lower level game constructed under this
condition is:



2

max

max ()

s.t.
n

t
n nD n n n n n nf

n

U q f sc f D

f f

σ σ ψ µε= − + −

≤
 (21)

The upper level game is:



0

max

min ()(/)+ / (ln(1+(h /N))

s.t.
n

n
n nT n n n nq

n n

U sc f s B

q f R

σ σ ψ ρ= +

≤
 (22)

Based on the robust construct proposed by
Bertsimas, the robust optimization model is
transformed into an equivalent optimization
model that is more easily solvable for the upper-
level subgame. The transformed model is
formulated as follows:

, , ,

'
0

1

0

max

min

. . / + / (ln(1+(h /N)))

 / / (ln(1+(h /N)))
 0
 0

n n n nq c v

N

n n n n n
n

n n n n n n

n

n n

s t sc f s B u v

u v s c f s B
u
v
q f R

σ
ω

ρ ω

σ ρ
=

−Γ − ≤

+ ≥ +
≥
≥
≤

∑

 (23)

The lower subgame is:

, , ,

2

1
2

max

max

. . ()

 ()
 0
 0
 0

n n n nf c v

N
t

n n n n n n n
n

t
n n n n n n n

n

n

D

s t q f sc f D u v D

u v q f sc f D
f f

u
v

σ

µ σ ε

µ σ ε
=

− − −Γ − ≥

+ ≥ − −
≤ ≤
≥
≥

∑

 (24)

The Lagrangian function corresponding to the
lower level game is:



1 2 3 4

2
1

1

2
2 3 max 4

(, , , ,)

 (())

 () ()

n n n n n
N

t
n n n n n n n n

n

nn n n n n n n n

L f

D q f sc f D u v D

u v sc f f f f

λ λ λ λ

λ µ σ ε

λ σ µε λ λ
=

= + − − − Γ − −

+ + − + − +

∑

 (25)

The KKT condition for the lower subgame can be
expressed as:





1 2 3 4

2

1

2

max

3 max

4

(2) 2 0

() 0

0
0

() 0
0

0, 1,2,....
0, 1, 2,3, 4, 1, 2,....

nn n n n n n n n n n

N
t

n n n n n n n
n

nn n n

n

n n

n n

n

in

q sc f sc f

q f sc f D u v D

u v sc f
f f

f f
f

f n N
i n N

λ σ µε λ σ µε λ λ

µ σ ε

σ µε

λ
λ

λ

=

 − − − + =

 − + −Γ − − =

 + − =

 − ≤
 − =
 =


≥ =
 ≥ = =

∑

 (26)

From the optimization principle it follows, the
optimal solution of the lower subgame satisfies the
set of inequalities formed by the KKT conditions
above:





max

max

/ 2 (sc +) sc

 / 2 (sc +) sc

 otherwise

t
nn n n n n

t
nn n n n n

n

q D N

if q D N ff
f

µ σ µε σ µε

µ σ µε σ µε

 +

 + ≤= 




 (27)

Using backward induction, the calculated
frequencies fn of the model from the lower game
are brought into the upper game, and the
equilibrium solution is obtained by analyzing the
solution of the upper subgame.

The Lagrangian function for the upper subgame is:


 

1 2 3 4 1

0
1

2

2 (sc +) sc(, , , ,) (

 / (ln(1 /)))

(2 () (

t
nn n n n n n

n n n n n n
n

N

n n n
n

t
n nn n n n

n

s c D NL q
q

s B h N u v

s c sc D N

µ σ σ ε σ µε
φ φ φ φ φ

ρ

σ µ σ ε σ µ
φ

=

+
= ∆ +

+ + − Γ − − ∆

+ +
+

∑



2

3 max 4

)

 ()
2 (sc +) sc)

n
n

n

n
n n nt

nn n n n

sc u v
q

q R q
D N

ε

φ φ
µ σ ε σ µε

− −

+ − −
+

 (28)

The upper game is solved by applying the KKT
conditional transformation, and since the solution
function of the upper game is convex in the range
of independent variables, the feasible solution is
the optimal solution when discussing the values of
the Lagrange multipliers.

(27)

Using backward induction, the calculated frequencies
fn of the model from the lower game are brought into
the upper game, and the equilibrium solution is ob-
tained by analyzing the solution of the upper subgame.
The Lagrangian function for the upper subgame is:



 

1 2 3 4 1

0
1

2

2 (sc +) sc(, , , ,) (

 / (ln(1 /)))

(2 ()
 (

t
nn n n n n n

n n n n n n
n

N

n n n
n

t
n nn n n n

n

s c D NL q
q

s B h N u v

s c sc D N

µ σ σ ε σ µε
φ φ φ φ φ

ρ

σ µ σ ε σ µ
φ

=

+
= ∆ +

+ + − Γ − − ∆

+ +
+

∑



2

3 max 4

)

 ()
2 (sc +) sc)

n
n

n

n
n n nt

nn n n n

sc u v
q

q R q
D N

ε

φ φ
µ σ ε σ µε

− −

+ − −
+

(28)

1147Information Technology and Control 2024/4/53

The upper game is solved by applying the KKT con-
ditional transformation, and since the solution func-
tion of the upper game is convex in the range of inde-
pendent variables, the feasible solution is the optimal
solution when discussing the values of the Lagrange
multipliers.
Combined with the KKT condition, it follows that:



2

1 2 3 42 2 2
2 0

(2 (sc +) sc)
n n n n n

n n n nt
nn n n n n n

sc sc q
q q D N
σ σ

φ φ φ φ
µ σ ε σ µε

+ − + =
+

(29)

(29)

The derivative of the Lagrangian function with re-
spect to the dyadic variables nv is given by:

Combined with the KKT condition, it follows that:



2

1 2 3 42 2 2
2 0

(2 (sc +) sc)
n n n n n

n n n nt
nn n n n n n

sc sc q
q q D N
σ σ

φ φ φ φ
µ σ ε σ µε

+ − + =
+

 (29)

The derivative of the Lagrangian function with
respect to the dyadic variables nv is given by:



2

1 3 42 2
(1) 2

(2 (sc +) sc)
n n n

n n nt
nn n n n n

sc qN
q D N
σ

φ φ φ
µ σ ε σ µε

+ = −
+

 (30)

If the above equation _1n = 0, a feasible solution
can be found, at which point the solution is:



*
max((2 +))t

nn n n n nq sc D N sc Rσ µε σ ε= +
 (31)

5. Experimental Results

In the simulation experiments, we assess the
proposed incentive scheme by utilizing the
MNIST dataset and the widely used TensorFlow
software environment for numerical
classification tasks. In the simulation
experiments, we consider a federated learning
model training scenario involving 10 task
publishers and 100 data owners. The data owners
are classified into 10 groups based on the
nominal value of data quality, while also
considering the uncertainty associated with the
provided data quality. To accurately represent
the heterogeneity among data owners during
local model training, we randomly select
participating data owners, considering the
number of training repetitions. For the
simulation experiments, we set a maximum CPU
power of 15 for each data owner fmax, and a
maximum CPU frequency unit price of 100 for
the task publisher qmax. Other parameters used
in the simulation experiments are detailed in
Table 2.

Table 2

Parameter setting in simulation experiment
Parameter name Value

Transmission time of the local model t
nT 0.5

Weight parameter for energy consumption µ 0.1
Local data sample size s 20

Data owner CPU cycles cn 5
Effective capacitance parameter for the data owner ε 2

Accuracy of the local data λn [0.2, 0.9]

 15
 100

As shown in the Figure 2. When Γ = 0, the robust
Stackelberg game is equivalent to the Stackelberg
game with known data quality. When Γ > 0, the
optimal CPU frequency of the data owner
decreases as the uncertainty level parameter Γ
increases, and this decrease is further amplified
with a larger perturbation ratio. This observation
arises from the fact that higher levels of
uncertainty result in increased uncertainty
regarding the data quality provided by the data
owner. To ensure the robustness of the model,
the optimal CPU power offered by the data
owner in the game is consequently lower.

The above experiments analyzed the impact of
uncertain levels on the optimal CPU frequency of
data owners under the proportion of different
disturbances. According to the analysis of the
above experimental results, at the same level of
uncertain level, as the proportion of disturbances
increases, the optimal CPU frequency of the data
owner has continued to decrease, and as the level
of uncertain level increases, the disturbance ratio
to the optimal CPU frequency the influence is
constantly increasing. The proportion of
disturbances represents the data quality of each
data owner around the size of the nominal value
fluctuation range, and the uncertain level
increases, so that the quality of data with
uncertainty is more. The impact of excellent CPU
frequency has continued to increase.

When the maximum value is denoted by Γ, the
polyhedron uncertainty set is trans- formed into
a boxed uncertainty set, representing the most
robust case. The uncertainty level Γ also serves as
a measure of the task publisher’s risk preference
to some extent. Therefore, task publishers can
select the optimal combination of uncertainty
level and perturbation ratio based on their
preference for uncertainty risk. If a data owner
exhibits a risk-seeking preference, they can opt
for a higher uncertainty level and perturbation
ratio. However, this choice entails bearing
potential losses resulting from uncertainty.
Conversely, if a data owner has a risk-averse
preference, they may choose a lower uncertainty
level and perturbation ratio, prioritizing a greater
likelihood of efficiently feasible robust
Stackelberg game while potentially sacrificing
federated learning utility. Ultimately, a
compromise can be made for data owners who
are risk- neutral.

(30)

If the above equation _1n = 0, a feasible solution can be
found, at which point the solution is:

Combined with the KKT condition, it follows that:



2

1 2 3 42 2 2
2 0

(2 (sc +) sc)
n n n n n

n n n nt
nn n n n n n

sc sc q
q q D N
σ σ

φ φ φ φ
µ σ ε σ µε

+ − + =
+

 (29)

The derivative of the Lagrangian function with
respect to the dyadic variables nv is given by:



2

1 3 42 2
(1) 2

(2 (sc +) sc)
n n n

n n nt
nn n n n n

sc qN
q D N
σ

φ φ φ
µ σ ε σ µε

+ = −
+

 (30)

If the above equation _1n = 0, a feasible solution
can be found, at which point the solution is:



*
max((2 +))t

nn n n n nq sc D N sc Rσ µε σ ε= +
 (31)

5. Experimental Results

In the simulation experiments, we assess the
proposed incentive scheme by utilizing the
MNIST dataset and the widely used TensorFlow
software environment for numerical
classification tasks. In the simulation
experiments, we consider a federated learning
model training scenario involving 10 task
publishers and 100 data owners. The data owners
are classified into 10 groups based on the
nominal value of data quality, while also
considering the uncertainty associated with the
provided data quality. To accurately represent
the heterogeneity among data owners during
local model training, we randomly select
participating data owners, considering the
number of training repetitions. For the
simulation experiments, we set a maximum CPU
power of 15 for each data owner fmax, and a
maximum CPU frequency unit price of 100 for
the task publisher qmax. Other parameters used
in the simulation experiments are detailed in
Table 2.

Table 2

Parameter setting in simulation experiment
Parameter name Value

Transmission time of the local model t
nT 0.5

Weight parameter for energy consumption µ 0.1
Local data sample size s 20

Data owner CPU cycles cn 5
Effective capacitance parameter for the data owner ε 2

Accuracy of the local data λn [0.2, 0.9]

 15
 100

As shown in the Figure 2. When Γ = 0, the robust
Stackelberg game is equivalent to the Stackelberg
game with known data quality. When Γ > 0, the
optimal CPU frequency of the data owner
decreases as the uncertainty level parameter Γ
increases, and this decrease is further amplified
with a larger perturbation ratio. This observation
arises from the fact that higher levels of
uncertainty result in increased uncertainty
regarding the data quality provided by the data
owner. To ensure the robustness of the model,
the optimal CPU power offered by the data
owner in the game is consequently lower.

The above experiments analyzed the impact of
uncertain levels on the optimal CPU frequency of
data owners under the proportion of different
disturbances. According to the analysis of the
above experimental results, at the same level of
uncertain level, as the proportion of disturbances
increases, the optimal CPU frequency of the data
owner has continued to decrease, and as the level
of uncertain level increases, the disturbance ratio
to the optimal CPU frequency the influence is
constantly increasing. The proportion of
disturbances represents the data quality of each
data owner around the size of the nominal value
fluctuation range, and the uncertain level
increases, so that the quality of data with
uncertainty is more. The impact of excellent CPU
frequency has continued to increase.

When the maximum value is denoted by Γ, the
polyhedron uncertainty set is trans- formed into
a boxed uncertainty set, representing the most
robust case. The uncertainty level Γ also serves as
a measure of the task publisher’s risk preference
to some extent. Therefore, task publishers can
select the optimal combination of uncertainty
level and perturbation ratio based on their
preference for uncertainty risk. If a data owner
exhibits a risk-seeking preference, they can opt
for a higher uncertainty level and perturbation
ratio. However, this choice entails bearing
potential losses resulting from uncertainty.
Conversely, if a data owner has a risk-averse
preference, they may choose a lower uncertainty
level and perturbation ratio, prioritizing a greater
likelihood of efficiently feasible robust
Stackelberg game while potentially sacrificing
federated learning utility. Ultimately, a
compromise can be made for data owners who
are risk- neutral.

(31)

5. Experimental Results
In the simulation experiments, we assess the proposed
incentive scheme by utilizing the MNIST dataset and
the widely used TensorFlow software environment
for numerical classification tasks. In the simulation
experiments, we consider a federated learning mod-
el training scenario involving 10 task publishers and

100 data owners. The data owners are classified into
10 groups based on the nominal value of data quali-
ty, while also considering the uncertainty associated
with the provided data quality. To accurately repre-
sent the heterogeneity among data owners during
local model training, we randomly select participat-
ing data owners, considering the number of training
repetitions. For the simulation experiments, we set a
maximum CPU power of 15 for each data owner fmax,
and a maximum CPU frequency unit price of 100 for
the task publisher qmax. Other parameters used in
the simulation experiments are detailed in Table 2.
As shown in the Figure 2. When Γ = 0, the robust
Stackelberg game is equivalent to the Stackelberg
game with known data quality. When Γ > 0, the op-
timal CPU frequency of the data owner decreases as
the uncertainty level parameter Γ increases, and this
decrease is further amplified with a larger perturba-
tion ratio. This observation arises from the fact that
higher levels of uncertainty result in increased uncer-
tainty regarding the data quality provided by the data
owner. To ensure the robustness of the model, the
optimal CPU power offered by the data owner in the
game is consequently lower.
The above experiments analyzed the impact of un-
certain levels on the optimal CPU frequency of data
owners under the proportion of different disturbanc-
es. According to the analysis of the above experimen-
tal results, at the same level of uncertain level, as the
proportion of disturbances increases, the optimal CPU
frequency of the data owner has continued to decrease,
and as the level of uncertain level increases, the distur-
bance ratio to the optimal CPU frequency the influence
is constantly increasing. The proportion of distur-
bances represents the data quality of each data owner
around the size of the nominal value fluctuation range,
and the uncertain level increases, so that the quality of
data with uncertainty is more. The impact of excellent
CPU frequency has continued to increase.
When the maximum value is denoted by Γ, the polyhe-
dron uncertainty set is trans- formed into a boxed un-
certainty set, representing the most robust case. The
uncertainty level Γ also serves as a measure of the task
publisher’s risk preference to some extent. Therefore,
task publishers can select the optimal combination of
uncertainty level and perturbation ratio based on their
preference for uncertainty risk. If a data owner exhib-
its a risk-seeking preference, they can opt for a higher
uncertainty level and perturbation ratio. However,

Table 2
Parameter setting in simulation experiment

Parameter name Value

Transmission time of the local model t
nT 0.5

Weight parameter for energy consumption µ 0.1

Local data sample size s 20

Data owner CPU cycles cn 5

Effective capacitance parameter for the data
owner ε 2

Accuracy of the local data λn [0.2, 0.9]

Maximum CPU power fmax 15

Maximum CPU frequency unit price qmax 100

Information Technology and Control 2024/4/531148

this choice entails bearing potential
losses resulting from uncertainty.
Conversely, if a data owner has a risk-
averse preference, they may choose a
lower uncertainty level and perturba-
tion ratio, prioritizing a greater like-
lihood of efficiently feasible robust
Stackelberg game while potentially
sacrificing federated learning utili-
ty. Ultimately, a compromise can be
made for data owners who are risk-
neutral.
In this simulation experiment, the
uncertainty levels of the box uncer-
tainty set and the polyhedron un-
certainty set and the model iteration
lengths are compared with those of
the case where the data quality is
known. In Figure 3, Γ = 0 denotes the
case where the data quality is known,
Γ = 9 denotes the case of the iteration
length for the box uncertainty set,
and the middle value is taken to be
the polyhedron uncertainty set. It can
be seen that with the same propor-
tion of perturbations, an increase in
the uncertainty level simultaneously
extends the iteration length. Since
the number of data owners with pos-
sible uncertain data quality perturba-
tions is increasing and to ensure the
robustness of the model, the worst
case of uncertain data should be con-
sidered. The results also indicate that
compared with the polyhedron un-
certainty set, the boxing uncertainty
set is more robust, but it always has
the longest iteration length and is less
beneficial to the game sponsor.
The purpose of the above experiment
is to reflect the impact of its impact on
the effective use of the upper layer by
the effects of the disturbance ratio on
the time of the global iteration. As the
proportion of disturbances contin-
ues to increase, the more uncertain
level of data owners will grow faster
to complete the global iteration. The

Figure 2
Variation of optimal CPU frequency with Γ for different disturbance ratios

Figure 3
Variation of global iteration duration with disturbance ratio for different data
owners

1149Information Technology and Control 2024/4/53

higher the level of data quality is allowed, the quality of
the data that allows uncertainty to allow uncertainty.
In order to ensure the effectiveness of the incentive,
the worst case is considered. The number of data qual-
ity will inevitably increase, and with the increasing
disturbance ratio, the impact on the length of the global
iteration also gradually becomes larger.
In the upper-level game, the objective of the utility
function is to minimize the global iteration length. As
reflected in Figure 3, the iteration length may be more
concentrated and robust when the perturbation ra-
tio is small, and more scattered, less robust and more
time consuming overall when the perturbation ratio
is large. This is because the increase in the perturba-
tion ratio leads to the rise of the uncertainty of data
quality for each data owner. At the same time, seek-
ing to ensure the robustness of the model, the feasible
range of model training iteration length is expanded,
which results in the increase of iteration time.
The following experiment is to explain the impact of
uncertainty on the cost of model training of different
data owners, so as to obtain the best unit price change
that can be obtained at an uncertain level at the CPU

Figure 4
Variation of the optimal unit price obtained by different data owners with the level of uncertainty

frequency. Figure 4 displays the variation of the op-
timal CPU power unit price offered by the task pub-
lisher for data owners in categories 2, 4, 6 and 8, sub-
ject to the level of uncertainty. The optimal unit price
for each class of data owner increases with the level
of uncertainty, but at a decreasing rate. For a data
owner with poor data quality, the optimal unit price
is high and increasing rapidly in order to provide the
owner with optimal CPU power. As can be seen from
the graph, the unit price of the optimal CPU power of-
fered by the central server is concave as the data qual-
ity increases, so for the sake of robustness, it is par-
ticularly important for the task publisher to select the
data quality of the data owners and avoid participants
with low data quality as much as possible.

6. Conclusions
In this work, the uncertainty of the data quality of data
owner in federated learning is studied, a kind of robust
incentive mechanism of federated learning based on
Stackel- berg game is proposed to deal with the above

Information Technology and Control 2024/4/531150

uncertainty, the existence and uniqueness of robust
Stackelberg equilibrium are theoretically proved, and
corresponding solutions are designed for Stackelberg
games with different robust uncertainty sets. Experi-
mental results demonstrate that the robust incentive
mechanism is capable of effectively capturing the risk
preference of the task publisher. It enables the task
publisher to select the optimal level of uncertainty
The federated learning incentive mechanism based
on the robust Stackelberg game constructed in this
paper not only processes the data quality of the data
owner in the model, but also the different solutions of
the robust Stackelberg game when the data quality is
box uncertainty and polyhedron uncertainty, it has a
certain reference significance for introducing the idea
of optimizing the ride optimization and the uncertain
parameter to the Stackelberg game. More important-
ly, in this paper, the robust optimization is introduced
into the incentive mechanism to characterize the pa-
rameter uncertainty in the model training, and the
robustness game model of federated learning is con-
structed. It is helpful to implement federated learn-
ing effectively in medical and financial application
scenarios, and has practical significance to further
expand the application fields of federated learning.

This work only considers the robust incentive mecha-
nism for unknown data quality to improve the perfor-
mance of federated learning. In practical problems,
the CPU power supplied by the data owner may also
change with iteration length, and even the transmis-
sion time for updating parameters may be uncertain
due to the channel instability, which is also one of key
factors of influencing the performance of federated
learning. And this paper does not focus on the impact
of malicious attackers on modeltraining.
In future research, we can consider the uncertainty of
other parameters in the actual situation of federated
learning model training to ensure that the incentive
effect is more in line with the actual training. We can
also consider introducing other methods of process-
ing parameters into the design of incentive mecha-
nisms for federated learning, such as random optimi-
zation and fuzzy number processing.

Acknowledgement

This research has been supported by the National
Natural Science Foundation of China (Grant number
11626079), the Natural Science Foundation of Hebei
Province (Grant number A2020402013).

References
1. Alferaidi, A., Yadav, K. Federated Learning Algorithms

to Optimize the Client and Cost Selections. Mathe-
matical Problems in Engineering, 2022. https://doi.
org/10.1155/2022/8514562

2. Bertsimas, D., Sim, M. The Price of Robustness. Opera-
tions Research, 2004, 52, 35-53. https://doi.org/10.1287/
opre.1030.0065

3. Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H. V., Cui, S.
A Joint Learning and Communications Framework for
Federated Learning Over Wireless Networks. IEEE
Transactions on Wireless Communications, 2020, 20,
269-283. https://doi.org/10.1109/TWC.2020.3024629

4. Chen, Y. R., Zhang, Y. Y., Wang, S., Wang, F., Li, Y., Jiang, Y.
DIM-DS: Dynamic Incentive Model for Data Sharing in
Federated Learning Based on Smart Contracts and Evo-
lutionary Game Theory. IEEE Internet of Things Jour-
nal, 2022, 9(23), 24572-24584. https://doi.org/10.1109/
JIOT.2022.3191671

5. Chen, Y., Sun, X. Communication-Efficient Federated
Deep Learning with Layerwise Asynchronous Model

Update and Temporally Weighted Aggregations. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 2020, 31, 4229-4238. https://doi.org/10.1109/TN-
NLS.2019.2953131

6. Darzidehkalani, E., Ghasemi-Rad, M., van Ooijen, P.
M. A. Federated Learning in Medical Imaging: Part II:
Methods, Challenges, and Considerations. Journal of
the American College of Radiology: JACR, 2022, 19(08),
975-982. https://doi.org/10.1016/j.jacr.2022.03.001

7. Deng, Y. H., Lyu, F., Ren, J. Improving Federated
Learning with Quality-Aware User Incentive and Au-
to-Weighted Model Aggregation. IEEE Transactions on
Parallel and Distributed Systems, 2022, 33, 4515-4529.
https://doi.org/10.1109/TPDS.2022.3195207

8. Dinh, C., Tran, N., Nguyen, H. Federated Learning over
Wireless Networks: Convergence Analysis and Re-
source Allocation. IEEE/ACM Transactions on Net-
working, 2021, 29, 398-409. https://doi.org/10.1109/
TNET.2020.3035770

9. Fadlullah, Z. M., Kato, N. HCP: Heterogeneous Comput-
ing Platform for Federated Learning Based Collaborative

1151Information Technology and Control 2024/4/53

Content Caching Towards 6G Networks. IEEE Transac-
tions on Emerging Topics in Computing, 2022, 10(02),
112-123. https://doi.org/10.1109/TETC.2020.2986238

10. Golpira, H., Javanmardan, A. Robust Optimization of
Sustainable Closed-Loop Supply Chain Considering
Carbon Emission Schemes. Sustainable Production
and Consumption, 2022, 30(3), 640-656. https://doi.
org/10.1016/j.spc.2022.05.007

11. Hu, R., Gong, Y. Trading Data for Learning: Incentive
Mechanism for On-Device Federated Learning. In Pro-
ceedings of the 2020 IEEE Global Communications
Conference, 2020, 1-6. https://doi.org/10.1109/GLOBE-
COM42002.2020.9322593

12. Huang, W. X., Tiropanis, T., Konstantinidis, G. Federat-
ed Learning-Based IoT Intrusion Detection on Non-IID
Data. Internet of Things, 2022, 13(14), 326-337. https://
doi.org/10.1007/978-3-031-20936-9_26

13. Kang, J. W., Xiong, Z. H., Niyato, D., Zou, Y., Zhang, Y.,
Guizani, M. Reliable Federated Learning for Mobile Net-
works. IEEE Wireless Communications, 2020, 27(02),
72-80. https://doi.org/10.1109/MWC.001.1900119

14. Khan, L., Pandey, S., Tran, N. Federated Learning for
Edge Networks: Resource Optimization and Incentive
Mechanism. IEEE Communications Magazine, 2020,
58, 88-93. https://doi.org/10.1109/MCOM.001.1900649

15. Monhamed, R. A., Zakariya, Y. Modified Jackknife Ridge
Estimator for Beta Regression Model with Application
to Chemical Data. International Journal of Mathemat-
ics, Statistics, and Computer Science, 2023, 1, 15-24.
https://doi.org/10.59543/ijmscs.v1i.7713

16. Ng, K. L., Chen, Z. C., Liu, Z. L., Yu, H., Liu, Y., Yang, Q.
A Multi-Player Game for Studying Federated Learn-
ing Incentive Schemes. In Proceedings of the Twen-
ty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence, 2021,
5279-5281. https://doi.org/10.24963/ijcai.2020/769

17. Noura, O. On the Product and Ratio of Pareto and Erlang
Random Variables. International Journal of Mathemat-
ics, Statistics, and Computer Science, 2023, 1, 33-47.
https://doi.org/10.59543/ijmscs.v1i.7737

18. Reny, P. J. On the Existence of Pure and Mixed Strategy
Nash Equilibria in Discontinuous Games. Economet-
rica, 1999, 67, 1029-1056. https://doi.org/10.1111/1468-
0262.00069

19. Roberts, M., Driggs, D. Common Pitfalls and Recom-
mendations for Using Machine Learning to Detect and
Prognosticate for COVID-19 Using Chest Radiographs
and CT Scans. Nature Machine Intelligence, 2021, 3,
199-217. https://doi.org/10.1038/s42256-021-00307-0

20. Toyoda, K., Zhang, A. N. Mechanism Design for an In-
centive-Aware Blockchain-Enabled Federated Learn-

ing Platform. In Proceedings of the 2019 IEEE Interna-
tional Conference on Big Data, 2019, 395-403. https://
doi.org/10.1109/BigData47090.2019.9006258

21. Wang, W., Wang, Y., Huang, Y. Privacy Protection Fed-
erated Learning System Based on Blockchain and Edge
Computing in Mobile Crowdsourcing. Computer Net-
works, 2022, 215, 109206. https://doi.org/10.1016/j.com-
net.2022.109206

22. Xiao, G., Xiao, M. Incentive Mechanism Design for Feder-
ated Learning: A Two-Stage Stackelberg Game Approach.
In Proceedings of the 2020 IEEE 26th International Con-
ference on Parallel and Distributed Systems, 2020, 148-
155. https://doi.org/10.1109/ICPADS51040.2020.00028

23. Xu, J., Wang, H. Q., Chen, L. X. Bandwidth Allocation for
Multiple Federated Learning Services in Wireless Edge
Networks. IEEE Transactions on Wireless Communi-
cations, 2022, 21, 2534-2546. https://doi.org/10.1109/
TWC.2021.3113346

24. Yang, J., Su, C. Q. Robust Optimization of Microgrid
Based on Renewable Distributed Power Generation
and Load Demand Uncertainty. Energy, 2021, 223(2).
https://doi.org/10.1016/j.energy.2020.119472

25. Yang, Q., Liu, Y. Federated Machine Learning: Concept
and Applications. ACM Transactions on Intelligent
Systems and Technology, 2019, 10, 1-19. https://doi.
org/10.1145/3298981

26. Yang, Z., Chen, M., Wong, K. K. Federated Learning
for 6G: Applications, Challenges, and Opportunities.
Engineering, 2022, 8, 33-41. https://doi.org/10.1016/j.
eng.2021.09.011

27. Yang, Z., Chen, M., Saad, W., Hong, C. S., Shikh-Baha-
ei, M. Energy Efficient Federated Learning over Wire-
less Communication Networks. IEEE Transactions
on Wireless Communications, 2020, 20, 1935-1949.
https://doi.org/10.1109/TWC.2020.3037554

28. Yunus, S., Ozgur, E. Motivating Workers in Federat-
ed Learning: A Stackelberg Game Perspective. IEEE
Networking Letters, 2020, 2(01), 23-27. https://doi.
org/10.1109/LNET.2019.2947144

29. Zhan, Y., Li, P. A Learning-Based Incentive Mecha-
nism for Federated Learning. IEEE Internet of Things
Journal, 2020, 7, 6360-6368. https://doi.org/10.1109/
JIOT.2020.2967772

30. Zhang, J., Guo, S. Adaptive Vertical Federated Learning
on Unbalanced Features. IEEE Transactions on Parallel
and Distributed Systems, 2022, 33, 4006-4018. https://
doi.org/10.1109/TPDS.2022.3178443

31. Zhou, L., Fan, Q. W., Huang, X. D. Weak and Strong
Convergence Analysis of Elman Neural Networks via
Weight Decay Regularization. Optimization, 2022, 70,
75-100. DOI: 10.1080/02331934.2022.2048935

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

