
899Information Technology and Control 2024/3/53

FHPE-Net: Pedestrian Intention 
Prediction Using Fusion with Head 
Pose Estimation Based on RNN

ITC 3/53
Information Technology  
and Control
Vol. 53 / No. 3/ 2024
pp. 899-915
DOI 10.5755/j01.itc.53.3.34807

FHPE-Net: Pedestrian Intention Prediction Using Fusion  
with Head Pose Estimation Based on RNN

Received 2023/08/07 Accepted after revision 2023/12/04

HOW TO CITE: Yang, Z., Guo, Z., Zhang, R., Guo, J., Zhou, Y. (2024). FHPE-Net: Pedestrian Intention 
Prediction Using Fusion with Head Pose Estimation Based on RNN. Information Technology and 
Control, 53(3), 899-915. https://doi.org/10.5755/j01.itc.53.3.34807

Corresponding author: zyy@cqvie.edu.cn

Zhiyong Yang
The College of Computer and Information Science, Chongqing Normal University, and the College of Big Data 
and Internet of Things, Chongqing Vocational Institute of Engineering, Chongqing, 402246, China;   
e-mail: zyy@cqvie.edu.cn

Zihang Guo, Ruixiang Zhang, Jieru Guo
Chongqing Normal University School of Computer and Information Science, Chongqing, 401331, China

Yu Zhou
The College of Finance and Tourism, Chongqing Vocational Institute of Engineering, Chongqing, 402246, China

Accurate real-time prediction of pedestrian crossing intent during the autonomous driving process is crucial 
for ensuring the safety of both pedestrians and passengers, as well as improving riding comfort. However, ex-
isting methods for pedestrian crossing intent detection mostly rely on extracting complete pose information 
of pedestrians, leading to reduced accuracy when pedestrians are occluded. To address this issue, this paper 
proposes FHPE-Net: a lightweight, multi-branch prediction model that utilizes only the head pose features of 
pedestrians. In pedestrian crossing scenarios, pedestrian behavior is highly influenced by surrounding vehicles 
and the environment. FHPE-Net encodes pedestrian head poses and global context semantic image sequences 
to comprehensively capture spatiotemporal interaction features between pedestrians, vehicles, and the envi-
ronment, thereby enhancing the accuracy of pedestrian crossing intent prediction. To improve the robustness 
of the FHPE-Net method, this study further processes bounding box positions and vehicle velocity features, 
making it more stable and reliable in complex traffic scenarios. Finally, a novel U-BiGRUs module is introduced 
for feature fusion, and an optimal fusion strategy is employed to achieve the best predictive performance in 
terms of F1 score and accuracy (ACC). Extensive ablation experiments are conducted on the PIE dataset, and 
performance analysis demonstrates that FHPE-Net achieves an accuracy of 90%, outperforming baseline 
methods such as PCPA and Multi-RNN, while using only pedestrian head pose features. This research holds 
significant guidance in enhancing traffic safety and optimizing urban traffic management. Furthermore, it pro-
vides essential technological support for advancing the commercialization of autonomous driving.
KEYWORDS: pedestrian action, autonomous vehicles, transport safety, fusion strategy.
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1. Introduction
The widespread use of artificial intelligence (AI) 
and deep learning in recent years has led to the rap-
id development of autonomous driving technology. 
However, the interplay between vehicular systems 
and vulnerable road users (VRUs) (e.g., pedestrians) 
remains a significant barrier to developing fully intel-
ligent driving vehicles for various applications. Many 
researchers are still exploring solutions for optimal 
interaction between vehicular systems and pedes-
trians, especially in detecting pedestrian crossing 
intentions. In L4-level autonomous driving (vehicles 
can be fully autonomous under certain conditions), a 
pedestrian crossing is one of the behaviours that can 
be solved most urgently.
Initially, researchers employed Convolutional Neural 
Networks (CNNs) [26] to redefine pedestrian inten-
tion prediction tasks as static image classification 
problems, ultimately relying solely on the final frame 
of the observed video to predict pedestrian crossing 
intentions. 
This method neglected crucial information regard-
ing the temporal orientation of video frames. Subse-
quently, with the development of Recurrent Neural 
Networks (RNNs), researchers began to predict pe-
destrian crossing intentions by analyzing the motion 
consistency of pedestrians’ visual features over short 
time frames [17], [19], [27]. This resulted in a vari-
ety of methods to merge different features [14], [25], 
[28-30], [40], such as detected pedestrian boundary 
frames, human postures, behaviour, appearance, and 
current information about the vehicle.
Recently, the most recent benchmark for predicting 
pedestrian intent [20] was released, and the PCPA 
model outperformed all others on the widely used 
PIE dataset [31]. However, the integration of different 
forms of perceptual modal information extracted from 
additional networks can lead to large model sizes and 
slow inference. For effective application in real-world 
autonomous driving scenarios, however, the optimal 
decision model must operate effectively in real-time. 
To address this problem, a recent study [15] proposed 
a solution that uses only one add-on network [7] to 
extract pedestrian pose information for predicting pe-
destrian behaviour and understanding pedestrian in-
tentions. Although the identification of human skeletal 
points can determine the movements of pedestrians 

before crossing the road and thus predict their crossing 
intentions, several obstacles, such as complex environ-
mental conditions, occlusion, and varying distances 
between pedestrians and vehicles, make it difficult to 
accurately detect human skeletal points, thereby re-
ducing the overall accuracy of motion recognition. 
Another recent study [24] used head pose orientation 
features, including yaw, pitch, and roll, and applied a 
clustering algorithm to predict pedestrian crossing 
intentions with good performance. These results in-
dicate that head pose is essential in predicting pedes-
trian crossing intentions. However, this method relies 
heavily on accurate head pose estimation, and incor-
rect estimates can significantly affect the accuracy of 
prediction. Furthermore, the current fusion strategy 
may not be optimal, necessitating further optimisa-
tion. In addition, identifying pedestrians’ intentions 
only through pedestrian detection, tracking, trajecto-
ry prediction, and action recognition without consid-
ering contextual semantic information makes it diffi-
cult to accurately determine their crossing intentions 
as they are closely related to the traffic environment.
The existing methods for pedestrian crossing intent 
detection encounter challenges when pedestrians are 
occluded, as they heavily rely on extracting complete 
pose information, leading to reduced accuracy in such 
scenarios. To address this limitation and enhance the 
accuracy of pedestrian crossing intent prediction, we 
propose FHPE-Net, a lightweight, multi-branch pre-
diction model that leverages the head pose features 
of pedestrians. Figure 1 illustrates how the proposed 
model integrates several key features, including pe-
destrian head posture direction features (yaw, pitch, 
and roll), global context semantic information (se-
mantic segmentation of road, pedestrian, and vehi-
cle), real-time vehicle speed, and pedestrian bound-
ary box information. FHPE-Net employs a fusion 
mechanism that combines pixel-level and non-pix-
el-level information to achieve precise pedestrian 
crossing intention prediction.
The main contributions of the thesis can be summa-
rized as follows:
 _ Firstly, the paper proposes FHPE-Net, a lightweight 

and efficient prediction model that focuses solely on 
utilizing the head pose features of pedestrians for 
pedestrian crossing intent detection. By avoiding 
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Figure 1
Predicting pedestrian behaviour, the goal is to predict whether a pedestrian will start crossing the street given an 
observation t of length m 

the need for complete pose information, the model 
addresses the challenge of reduced accuracy in 
occluded pedestrian scenarios.

 _  Secondly, this paper introduces a novel U-BiGRUs 
module for feature fusion: an asymmetric 
bidirectional recursive architecture aimed at 
incorporating different features by leveraging 
bidirectional spatiotemporal context and long-term 
spatiotemporal information. Through extensive 
ablation experiments involving mixed fusion 
strategies, input configurations (adding or reducing 
input channels), and encoder options (attention 
mechanism and RNN), the paper determines 
the optimal model distribution. The U-BiGRUs 
module effectively integrates diverse information 
for enhanced feature fusion, enhancing the overall 
performance of the proposed pedestrian crossing 
intent prediction model, FHPE-Net.

 _ Finally, the proposed model was extensively com-
pared and evaluated on the widely used Pedestrian 
Intention and Trajectory Estimation (PIE) [27] 
dataset, demonstrating its effectiveness. FHPE-
Net outperformed the compared baseline methods.

The rest of the paper is organized as follows. Section 
2 presents some related work and Section 3 gives the 
research methodology. Then Section 4 describes the 
experimental procedure and details. Then Section 5 
presents the experimental results and analysis. Final-
ly, Section 6 summarizes the paper.

2. Related Work
2.1. Head Pose Estimation
Head pose estimation is a computer vision and pattern 
recognition technique that determines the orientation 
of a person’s head in a digital image using yaw, pitch, 
and roll angles in a spatial coordinate system, as shown 
in Figure 2. In pedestrian crossing scenarios, people of-
ten look around to observe oncoming traffic and deter-
mine whether it is safe to cross the street. Similarly, a 
driver must move their head to examine the surround-
ing traffic when driving a car. People can express agree-
ment or disagreement by nodding or shaking their 
heads, highlighting the importance of head posture 
in human behaviour analysis. As a result, researchers 



Information Technology and Control 2024/3/53902

Figure 2
Example of head posture

have developed several excellent algorithms for head 
pose estimation, as shown in previous studies [13], 
[44]. The increasing maturity of these algorithms has 
led to the widespread use of head pose in human be-
haviour analysis and understanding, such as attention 
detection and human-computer interaction.

2.2. Pedestrian Crossing Prediction
Behaviour detection and prediction is a widely studied 
topic in computer vision [41], [43], [9], [1]. Specifically, 
in order to predict whether or not a pedestrian will be-
gin crossing the street shortly, the job is formulated as 
a binary classification issue, as shown in Figure 1. Pre-
vious work has transformed the pedestrian prediction 
task into a static image classification problem using 
convolutional neural networks. However, this method 
needed to incorporate the temporal and spatial infor-
mation essential for accurate prediction. Recent meth-
ods have used recurrent neural networks (RNNs), par-
ticularly variants such as GRU and LSTM, to explore 
the temporal consistency of RGB video frames [43]. In 
addition, methods that combine multiple sources of 
information have been proposed, using different strat-
egies to integrate different sources of information [40], 
[42]. For example, one study proposed SF-GRU [28], 
which uses a hierarchical GRU architecture to merge 
five sources of features: the appearance of pedestrians, 
the environment, the pose of the pedestrian’s skeleton, 
the bounding box, and vehicle speed. Finally, a dense 
layer predicts the pedestrian’s crossing intention. 
However, these approaches use additional networks to 
extract feature sources, which significantly increases 
the latency of model recognition and requires signifi-
cant additional computational resources.
A recent study [15] proposed a novel method for pre-
dicting behaviour using only an add-on network. This 
approach is based on human kinematics and predicts 
pedestrian intentions by detecting changes in 2D 
skeletal joints. However, this method relies too heavi-

ly on human pose features and neglects the influence 
of other features. Recently, many datasets, such as the 
PIE dataset, have provided more annotated informa-
tion that can be used for feature fusion. A recent study 
has proposed a common evaluation protocol and 
pattern input to advance the research on pedestrian 
behaviour prediction and enable fair comparisons 
between proposed methods [20]. These efforts have 
helped to advance the field and provide more compre-
hensive support for future research. 

3. Method
3.1. Problem Formulation
The following describes the tasks in this paper aimed 
at predicting pedestrian crossing intentions model-
ling and analysis of vehicle pedestrian interactions 
in a continuous time series. A model is constructed 
to derive the target pedestrian behaviour probability 

{ }n+t
iA 0,1∈ using a series of video frames acquired 

from within the field of view in front of the car and in-
formation related to the car’s movement, where t  rep-
resents the specific moment when the last observed 
frame occurs. n  are the frames observed before a 
crossing or non-crossing (C/NC) event occurs. First, 
the model extracts salient features such as pedestri-
an bounding boxes, head pose orientation and global 
context (semantic segmentation). These channels 
and vehicle speeds are independently used as inputs 
to the prediction model. Thus, the model constructed 
in this paper contains the following input sources:
2D positioning trajectory of the pedestrian  in the co-
ordinates of the enclosing box (top left and bottom 
right points):

  

different sources of information [40], [42]. For example, 
one study proposed SF-GRU [28], which uses a 
hierarchical GRU architecture to merge five sources of 
features: the appearance of pedestrians, the environment, 
the pose of the pedestrian's skeleton, the bounding box, 
and vehicle speed. Finally, a dense layer predicts the 
pedestrian's crossing intention. However, these 
approaches use additional networks to extract feature 
sources, which significantly increases the latency of 
model recognition and requires significant additional 
computational resources. 

A recent study [15] proposed a novel method for 
predicting behaviour using only an add-on network. This 
approach is based on human kinematics and predicts 
pedestrian intentions by detecting changes in 2D skeletal 
joints. However, this method relies too heavily on human 
pose features and neglects the influence of other features. 
Recently, many datasets, such as the PIE dataset, have 
provided more annotated information that can be used 
for feature fusion. A recent study has proposed a 
common evaluation protocol and pattern input to 
advance the research on pedestrian behaviour prediction 
and enable fair comparisons between proposed methods 
[20]. These efforts have helped to advance the field and 
provide more comprehensive support for future research.  
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orientation and global context (semantic segmentation). 
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2D positioning trajectory of the pedestrian i  in the 
coordinates of the enclosing box (top left and bottom 
right points): 

{ }t-m t-m+1 t
i i i iB ,b ...= b , ,b .                                        (1) 

Head pose sequence for pedestrian i: 

{ }t-m t-m+1 t
i i i iΡ = θ ,θ ,...,θ .                                          (2) 

Global semantic segmentation sequences: 

{ }t-m t-m+1 t
g g g gK = k ,k ,...,k .                                        (3) 

Vehicle ego speed sequence: 

{ }t-m t-m+1 tS= v ,v ,...,v .                                           (4) 

For each source, there exists a sequence of length 
m+1. Figure 3 shows the input sources. 

 
3.2. Input Acquisition 
3.2.1. Bounding Box Coordinates 

The 2D localisation trajectory, denoted iB , 
represents the positional changes of the pedestrian 
target in the image plane. It is possible to extract 
these trajectories using object detection systems 
such as YOLO [32] or object tracking systems such 
as SORT [39]. In order to maintain the focus of this 
paper, the pedestrian detection and tracking task is 
not explored, and therefore the Bi  trajectories in 
the dataset are used directly. Specifically, the 2D 
localisation trajectory { }t-m t-m+1 t

i i i iB = b ,b ,...,b  consists 

of the bounding box coordinates of the target 
pedestrian. i.e. 

{ }t m t m t m t m t m
i iα iα iβ iβB x , y , x , y− − − − −= ,                             (5) 

where t-m t-m
iα iαx ,y  indicates the top left corner dot 

and t-m t-m
iβ iβx ,y  indicates the bottom right corner dot. 

3.2.2. Head Pose Estimation 
Pedestrian head poses orientation features reflect 
the variations in head pose as the target pedestrian 
crosses the road, including changes in yaw, pitch 
and side tilt angles per frame. These features can 
be obtained using lightweight head pose estimation 
algorithms such as WHENet[44]. This work 
estimates the head pose using the available head 
pose data within the PIE dataset at 

{ }t-m t-m+1 t
i i i iΡ = θ ,θ ,...,θ . Specifically, The vector Ρ  

is a 3D vector of three yaw angles, including yaw, 
pitch, and roll. i.e. 

{ }t-m t-m t-m t-m
i ir ip iyΡ = σ , σ , σ ,                                      (6) 

where t-m
irσ , t-m

ipσ , t-m
iyσ are the angles of rotation, 

pitch, and yaw. The range of pitch angle and angle 
of rotation covers ( ° °-99 ,99 ) and the range of yaw 
cover ( ° °-180 ,180 ). To prevent negative angles 
from having an effect on the training of the model, 
we take the absolute values of rotation, pitch and 
yaw angles as initial inputs to the model. 
Therefore, the changed rotation and pitch angle 
range cover ( ° °0 ,99 ) and the yaw range covers (

° °0 ,180 ). 

(1)

Head pose sequence for pedestrian i:
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coordinates of the enclosing box (top left and bottom 
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{ }t-m t-m+1 t
i i i iB ,b ...= b , ,b .                                        (1) 

Head pose sequence for pedestrian i: 

{ }t-m t-m+1 t
i i i iΡ = θ ,θ ,...,θ .                                          (2) 

Global semantic segmentation sequences: 

{ }t-m t-m+1 t
g g g gK = k ,k ,...,k .                                        (3) 
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For each source, there exists a sequence of length 
m+1. Figure 3 shows the input sources. 
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3.2.1. Bounding Box Coordinates 

The 2D localisation trajectory, denoted iB , 
represents the positional changes of the pedestrian 
target in the image plane. It is possible to extract 
these trajectories using object detection systems 
such as YOLO [32] or object tracking systems such 
as SORT [39]. In order to maintain the focus of this 
paper, the pedestrian detection and tracking task is 
not explored, and therefore the Bi  trajectories in 
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of the bounding box coordinates of the target 
pedestrian. i.e. 

{ }t m t m t m t m t m
i iα iα iβ iβB x , y , x , y− − − − −= ,                             (5) 

where t-m t-m
iα iαx ,y  indicates the top left corner dot 

and t-m t-m
iβ iβx ,y  indicates the bottom right corner dot. 

3.2.2. Head Pose Estimation 
Pedestrian head poses orientation features reflect 
the variations in head pose as the target pedestrian 
crosses the road, including changes in yaw, pitch 
and side tilt angles per frame. These features can 
be obtained using lightweight head pose estimation 
algorithms such as WHENet[44]. This work 
estimates the head pose using the available head 
pose data within the PIE dataset at 

{ }t-m t-m+1 t
i i i iΡ = θ ,θ ,...,θ . Specifically, The vector Ρ  

is a 3D vector of three yaw angles, including yaw, 
pitch, and roll. i.e. 

{ }t-m t-m t-m t-m
i ir ip iyΡ = σ , σ , σ ,                                      (6) 

where t-m
irσ , t-m

ipσ , t-m
iyσ are the angles of rotation, 

pitch, and yaw. The range of pitch angle and angle 
of rotation covers ( ° °-99 ,99 ) and the range of yaw 
cover ( ° °-180 ,180 ). To prevent negative angles 
from having an effect on the training of the model, 
we take the absolute values of rotation, pitch and 
yaw angles as initial inputs to the model. 
Therefore, the changed rotation and pitch angle 
range cover ( ° °0 ,99 ) and the yaw range covers (

° °0 ,180 ). 

(2)

Global semantic segmentation sequences:
  

different sources of information [40], [42]. For example, 
one study proposed SF-GRU [28], which uses a 
hierarchical GRU architecture to merge five sources of 
features: the appearance of pedestrians, the environment, 
the pose of the pedestrian's skeleton, the bounding box, 
and vehicle speed. Finally, a dense layer predicts the 
pedestrian's crossing intention. However, these 
approaches use additional networks to extract feature 
sources, which significantly increases the latency of 
model recognition and requires significant additional 
computational resources. 

A recent study [15] proposed a novel method for 
predicting behaviour using only an add-on network. This 
approach is based on human kinematics and predicts 
pedestrian intentions by detecting changes in 2D skeletal 
joints. However, this method relies too heavily on human 
pose features and neglects the influence of other features. 
Recently, many datasets, such as the PIE dataset, have 
provided more annotated information that can be used 
for feature fusion. A recent study has proposed a 
common evaluation protocol and pattern input to 
advance the research on pedestrian behaviour prediction 
and enable fair comparisons between proposed methods 
[20]. These efforts have helped to advance the field and 
provide more comprehensive support for future research.  

 
3. Method 
3.1. Problem Formulation 
The following describes the tasks in this paper aimed at 
predicting pedestrian crossing intentions modelling and 
analysis of vehicle pedestrian interactions in a 
continuous time series. A model is constructed to derive 
the target pedestrian behaviour probability { }n+t

iA 0,1∈
using a series of video frames acquired from within the 
field of view in front of the car and information related 
to the car's movement, where t  represents the specific 
moment when the last observed frame occurs. n  are the 
frames observed before a crossing or non-crossing 
(C/NC) event occurs. First, the model extracts salient 
features such as pedestrian bounding boxes, head pose 
orientation and global context (semantic segmentation). 
These channels and vehicle speeds are independently 
used as inputs to the prediction model. Thus, the model 
constructed in this paper contains the following input 
sources: 

2D positioning trajectory of the pedestrian i  in the 
coordinates of the enclosing box (top left and bottom 
right points): 

{ }t-m t-m+1 t
i i i iB ,b ...= b , ,b .                                        (1) 

Head pose sequence for pedestrian i: 

{ }t-m t-m+1 t
i i i iΡ = θ ,θ ,...,θ .                                          (2) 

Global semantic segmentation sequences: 

{ }t-m t-m+1 t
g g g gK = k ,k ,...,k .                                        (3) 

Vehicle ego speed sequence: 

{ }t-m t-m+1 tS= v ,v ,...,v .                                           (4) 

For each source, there exists a sequence of length 
m+1. Figure 3 shows the input sources. 

 
3.2. Input Acquisition 
3.2.1. Bounding Box Coordinates 

The 2D localisation trajectory, denoted iB , 
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where t-m t-m
iα iαx ,y  indicates the top left corner dot 

and t-m t-m
iβ iβx ,y  indicates the bottom right corner dot. 
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Vehicle ego speed sequence:
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for feature fusion. A recent study has proposed a 
common evaluation protocol and pattern input to 
advance the research on pedestrian behaviour prediction 
and enable fair comparisons between proposed methods 
[20]. These efforts have helped to advance the field and 
provide more comprehensive support for future research.  
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represents the positional changes of the pedestrian 
target in the image plane. It is possible to extract 
these trajectories using object detection systems 
such as YOLO [32] or object tracking systems such 
as SORT [39]. In order to maintain the focus of this 
paper, the pedestrian detection and tracking task is 
not explored, and therefore the Bi  trajectories in 
the dataset are used directly. Specifically, the 2D 
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{ }t m t m t m t m t m
i iα iα iβ iβB x , y , x , y− − − − −= ,                             (5) 

where t-m t-m
iα iαx ,y  indicates the top left corner dot 

and t-m t-m
iβ iβx ,y  indicates the bottom right corner dot. 

3.2.2. Head Pose Estimation 
Pedestrian head poses orientation features reflect 
the variations in head pose as the target pedestrian 
crosses the road, including changes in yaw, pitch 
and side tilt angles per frame. These features can 
be obtained using lightweight head pose estimation 
algorithms such as WHENet[44]. This work 
estimates the head pose using the available head 
pose data within the PIE dataset at 

{ }t-m t-m+1 t
i i i iΡ = θ ,θ ,...,θ . Specifically, The vector Ρ  

is a 3D vector of three yaw angles, including yaw, 
pitch, and roll. i.e. 

{ }t-m t-m t-m t-m
i ir ip iyΡ = σ , σ , σ ,                                      (6) 

where t-m
irσ , t-m

ipσ , t-m
iyσ are the angles of rotation, 

pitch, and yaw. The range of pitch angle and angle 
of rotation covers ( ° °-99 ,99 ) and the range of yaw 
cover ( ° °-180 ,180 ). To prevent negative angles 
from having an effect on the training of the model, 
we take the absolute values of rotation, pitch and 
yaw angles as initial inputs to the model. 
Therefore, the changed rotation and pitch angle 
range cover ( ° °0 ,99 ) and the yaw range covers (

° °0 ,180 ). 

(4)



903Information Technology and Control 2024/3/53

For each source, there exists a sequence of length 
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and vehicle speed. Finally, a dense layer predicts the 
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sources, which significantly increases the latency of 
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A recent study [15] proposed a novel method for 
predicting behaviour using only an add-on network. This 
approach is based on human kinematics and predicts 
pedestrian intentions by detecting changes in 2D skeletal 
joints. However, this method relies too heavily on human 
pose features and neglects the influence of other features. 
Recently, many datasets, such as the PIE dataset, have 
provided more annotated information that can be used 
for feature fusion. A recent study has proposed a 
common evaluation protocol and pattern input to 
advance the research on pedestrian behaviour prediction 
and enable fair comparisons between proposed methods 
[20]. These efforts have helped to advance the field and 
provide more comprehensive support for future research.  
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features such as pedestrian bounding boxes, head pose 
orientation and global context (semantic segmentation). 
These channels and vehicle speeds are independently 
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predicting behaviour using only an add-on network. This 
approach is based on human kinematics and predicts 
pedestrian intentions by detecting changes in 2D skeletal 
joints. However, this method relies too heavily on human 
pose features and neglects the influence of other features. 
Recently, many datasets, such as the PIE dataset, have 
provided more annotated information that can be used 
for feature fusion. A recent study has proposed a 
common evaluation protocol and pattern input to 
advance the research on pedestrian behaviour prediction 
and enable fair comparisons between proposed methods 
[20]. These efforts have helped to advance the field and 
provide more comprehensive support for future research.  
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3.1. Problem Formulation 
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to the car's movement, where t  represents the specific 
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(C/NC) event occurs. First, the model extracts salient 
features such as pedestrian bounding boxes, head pose 
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These channels and vehicle speeds are independently 
used as inputs to the prediction model. Thus, the model 
constructed in this paper contains the following input 
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For each source, there exists a sequence of length 
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3.2. Input Acquisition 
3.2.1. Bounding Box Coordinates 
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represents the positional changes of the pedestrian 
target in the image plane. It is possible to extract 
these trajectories using object detection systems 
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as SORT [39]. In order to maintain the focus of this 
paper, the pedestrian detection and tracking task is 
not explored, and therefore the Bi  trajectories in 
the dataset are used directly. Specifically, the 2D 
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3.2.2. Head Pose Estimation 
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algorithms such as WHENet[44]. This work 
estimates the head pose using the available head 
pose data within the PIE dataset at 
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are the angles of rotation, pitch, 

and yaw. The range of pitch angle and angle of rotation 
covers ( °°-99 ,99) and the range of yaw cover ( °°-180 ,180). 

Figure 3
The network architecture of FHPE-Net: The model’s inputs include global contextual information, bounding boxes, 
pedestrian head pose, and real-time vehicle speed. The red part (b) shows the pixel-level information. The global contextual 
information is feature extracted using CNN and then fed into the U-BiGRU module for coding. The yellow part shows (a) the 
fusion of non-pixel level information, and these features are encoded using U-BiGRU and fused layer by layer. The blue part 
(c) shows the final fusion, where pixel-level and non-pixel-level features are concatenated and fed to the Attention module 
and finally to the Dense layer for final prediction. U-BiGRU block: the input features are passed backwards through the first 
GRU layer, then concatenated with the original input and encoded together in a Bi-GRU layer for the final output
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To prevent negative angles from having an effect on 
the training of the model, we take the absolute values 
of rotation, pitch and yaw angles as initial inputs to the 
model. Therefore, the changed rotation and pitch angle 
range cover ( °°0 ,99) and the yaw range covers ( °°0 ,180).

3.2.3. Global Semantic Information
Global Semantic Segmentation Information, 

{ }t-m t-m+1 t
g g g gK = k ,k ,...,k , provides a visual representa-

tion of the complex interactions between road users 
and the surrounding environment. This study lever-
ages semantic mask information at the pixel level to 
capture global context. Semantic masks allow differ-
ent objects in an image to be classified and localized 
by assigning pixel values to all the pixels associated 
with a particular object. Since the PIE dataset is de-
void of semantic mask annotations, this paper intro-
duces the lightweight DeepLabV3 model [25], pre-
trained on the Cityscapes dataset [29], in order to 
extract semantic masking information. The paper re-
tains only critical information, including roads, build-
ings, pedestrians, and vehicles, to represent the glob-
al semantic segmentation information. To facilitate 
model learning, target pedestrians are masked using 
a unique label (with the mask region bounding box 
obtained from iB ). The semantic segmentation in-
formation is scaled as [224,224] for all input frames.

3.2.4. Ego-vehicle Speed
The speed S  of the vehicle in real-time is an import-
ant factor in pedestrian crossing decisions. It can 
be accessed directly from the existing vehicle net-
work. Since the dataset includes annotations of the 
ego’s velocity of the vehicle, this study directly uses 
the labels of the true values to represent the velocity 

{ }t-m t-m+1 tS= v ,v ,...,v  of the vehicle.
The following describes the tasks in this paper aimed 
at predicting pedestrian crossing intentions—model-
ling and analysis of vehicle-pedestrian interactions 
in a continuous time series. A model is constructed 
to derive the target pedestrian behaviour probability

{ }n+t
iA 0,1∈ using a series of video frames acquired 

from within the field of view in front of the car and in-
formation.

3.3. Model Architecture
As shown in Figure 3, a comprehensive prediction 
model framework covering the entire forecasting 

process is presented. The hybrid fusion method inte-
grates CNN, RNN, and feature branch fusion modules 
to train a holistic model.

3.3.1. CNN Encodes Global Semantic Information
In this work, an efficient neural network model is 
employed as a tool for extracting global environmen-
tal visual features, aiming to achieve high efficien-
cy. MobileNet [33] employs a distinct architectural 
design, decomposing standard convolutions into 
depthwise convolutions and 1x1 pointwise convo-
lutions. Standard convolutions use kernel filters 
across all input channels and merge them in one step, 
while depthwise convolutions separate kernel fil-
ters for each input channel and combine them using 
pointwise convolutions. This separation and feature 
fusion method reduces computational complexity 
and model size. Additionally, since the global seman-
tic segmentation map already serves as intermediate 
features for image recognition, a shallower (fewer 
layers) and narrower (fewer channels) network is 
sufficient for modeling the spatiotemporal dynam-
ics of global visual features. Based on these princi-
ples, we adopt the lightweight convolutional neural 
network, MobileNet, as the backbone network for 
visual feature extraction. This model is pre-trained 
on the widely used ImageNet dataset [9], as using 
pre-trained models speeds up the training process, 
enabling accurate predictions with a relatively small 
dataset. In our experiments, we train this module us-
ing a batch of consecutive video clips 

  

In this work, an efficient neural network model is 
employed as a tool for extracting global environmental 
visual features, aiming to achieve high efficiency. 
MobileNet [33] employs a distinct architectural design, 
decomposing standard convolutions into depthwise 
convolutions and 1x1 pointwise convolutions. Standard 
convolutions use kernel filters across all input channels 
and merge them in one step, while depthwise 
convolutions separate kernel filters for each input 
channel and combine them using pointwise 
convolutions. This separation and feature fusion method 
reduces computational complexity and model size. 
Additionally, since the global semantic segmentation 
map already serves as intermediate features for image 
recognition, a shallower (fewer layers) and narrower 
(fewer channels) network is sufficient for modeling the 
spatiotemporal dynamics of global visual features. Based 
on these principles, we adopt the lightweight 
convolutional neural network, MobileNet, as the 
backbone network for visual feature extraction. This 
model is pre-trained on the widely used ImageNet 
dataset [9], as using pre-trained models speeds up the 
training process, enabling accurate predictions with a 
relatively small dataset. In our experiments, we train this 
module using a batch of consecutive video clips 

l c h wΧ R × × ×∈  as input. Here, h and w represent the height 
and width of the images; l stands for the number of 
frames observed; c represents the number of image 
channels. Once the video clips are loaded, they are fed 
into the MobileNet network to generate a final feature 
vector of dimension [ ]l,1280  as a visual feature 
sequence. Using the MobileNet model, our CNN module 
extracts crucial visual features from the input data, 
enabling us to effectively predict pedestrian crossing 
intentions in complex urban environments 

3.3.2. RNN Module: U-BiGRUs 
In this study, to construct the RNN module, we employed 
a combination of Gated Recurrent Units (GRU) [12] and 
Bidirectional Gated Recurrent Units (Bi-GRU) [4], as 
depicted in Figure 3. We chose GRU over Long Short-
Term Memory (LSTM) [34] due to its superior 
computational efficiency and architectural simplicity. 
Recurrent Neural Networks (RNNs) are an extension of 
feedforward networks. RNNs possess recurrent hidden 
states that allow them to learn temporal dependencies in 
sequential data. This inherent temporal depth has proven 
highly advantageous for tasks such as pedestrian 
trajectory prediction, where single-layer RNNs are 
applied to point coordinates in space. Besides temporal 
depth, spatial depth of RNNs can be increased by 
stacking multiple layers of RNN units on top of each 
other. This approach has been shown as an effective 
method to enhance sequential data modeling for complex 
tasks [28], particularly in video sequence analysis [17], 
where networks model dependencies between visual 
features of consecutive video frames. Given the 
multimodal nature of pedestrian motion prediction that 
depends on dynamic and visual scene information, we 

employed a cascade fusion approach, gradually 
integrating features at each level based on their 
complexity. In other words, we input complex 
visual features of the scene, which can benefit 
more from the spatial depth and dynamic features 
of lower-level networks, such as head pose and 
velocity, at higher levels of the network. 
Meanwhile, compared to using GRU or 
Bidirectional GRU modules separately, the output 
layer of the RNN module constructed with U-
BiGRU can better access past and future 
information. This allows the model to better 
discern which data will contribute to future 
predictions, thereby enhancing performance. 
Similarly, context features are processed in parallel 
through the same architecture. The GRU employed 
in this study consists of 256 hidden units, resulting 
in a feature vector of dimension [1, 256]. The 
combination of GRU and BiGRU in the RNN 
module efficiently captures temporal correlations 
in the data and accurately predicts pedestrian 
crossing intentions. The formula calculation is as 
follows: Calculate the update gate vector: 

( )t g r t Wr r t-1 Nrr =σ W x +b +N h +b


,                          (7) 

( )t g z t Wz z t-1 Nzz =σ W x +b +N h +b


,                       (8) 

t h t Wh h t t-1 Nhh =tanh(W x +b +N (r eh )+b )
 ,           (9) 

( )t t t t t-1h = 1-z eh +z eh ,                                        (10) 

where tx


 is the reverse vector of the input vector

tx , t-1h indicates the hidden state of the previous 
moment. W , N and b  are trainable weights and 
bias terms, respectively. gσ is the sigmoid 
function.  denotes the element-by-element 
multiplication operation of a vector. 

( )t t t-1h =GRU x ,h
 

,                                             (11) 

t t tx x ;h =  
 

 ,                                                 (12) 

( ) ( )t tt t 1 t 1H GRU x , H ;GRU x , H− −
 =  

   
  ,             (13) 

where tx


 is the inverse vector of the input vector 

tx  , and tx  is the vector in which tx


 and th


 
have been combined. ( )GRU denotes the non-
linear transformation of the input vector that 
encodes tx


,  t x into the corresponding state of the 

hidden layer of the GRU. ( )t t-1GRU x ,H
 
  is the 

state of the hidden layer of the forward GRU at 
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input. Here, h and w represent the height and width 
of the images; l stands for the number of frames ob-
served; c represents the number of image channels. 
Once the video clips are loaded, they are fed into the 
MobileNet network to generate a final feature vector 
of dimension [ ]l,1280  as a visual feature sequence. 
Using the MobileNet model, our CNN module ex-
tracts crucial visual features from the input data, 
enabling us to effectively predict pedestrian cross-
ing intentions in complex urban environments

3.3.2. RNN Module: U-BiGRUs
In this study, to construct the RNN module, we 
employed a combination of Gated Recurrent Units 
(GRU) [12] and Bidirectional Gated Recurrent Units 
(Bi-GRU) [4], as depicted in Figure 3. We chose GRU 
over Long Short-Term Memory (LSTM) [34] due to 
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its superior computational efficiency and architec-
tural simplicity. Recurrent Neural Networks (RNNs) 
are an extension of feedforward networks. RNNs 
possess recurrent hidden states that allow them to 
learn temporal dependencies in sequential data. 
This inherent temporal depth has proven highly ad-
vantageous for tasks such as pedestrian trajectory 
prediction, where single-layer RNNs are applied to 
point coordinates in space. Besides temporal depth, 
spatial depth of RNNs can be increased by stacking 
multiple layers of RNN units on top of each other. 
This approach has been shown as an effective meth-
od to enhance sequential data modeling for complex 
tasks [28], particularly in video sequence analysis 
[17], where networks model dependencies between 
visual features of consecutive video frames. Given 
the multimodal nature of pedestrian motion predic-
tion that depends on dynamic and visual scene in-
formation, we employed a cascade fusion approach, 
gradually integrating features at each level based on 
their complexity. In other words, we input complex 
visual features of the scene, which can benefit more 
from the spatial depth and dynamic features of low-
er-level networks, such as head pose and velocity, at 
higher levels of the network. Meanwhile, compared 
to using GRU or Bidirectional GRU modules sep-
arately, the output layer of the RNN module con-
structed with U-BiGRU can better access past and 
future information. This allows the model to better 
discern which data will contribute to future predic-
tions, thereby enhancing performance. Similarly, 
context features are processed in parallel through 
the same architecture. The GRU employed in this 
study consists of 256 hidden units, resulting in a fea-
ture vector of dimension [1, 256]. The combination 
of GRU and BiGRU in the RNN module efficiently 
captures temporal correlations in the data and accu-
rately predicts pedestrian crossing intentions. The 
formula calculation is as follows: Calculate the up-
date gate vector:
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on these principles, we adopt the lightweight 
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backbone network for visual feature extraction. This 
model is pre-trained on the widely used ImageNet 
dataset [9], as using pre-trained models speeds up the 
training process, enabling accurate predictions with a 
relatively small dataset. In our experiments, we train this 
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In this study, to construct the RNN module, we employed 
a combination of Gated Recurrent Units (GRU) [12] and 
Bidirectional Gated Recurrent Units (Bi-GRU) [4], as 
depicted in Figure 3. We chose GRU over Long Short-
Term Memory (LSTM) [34] due to its superior 
computational efficiency and architectural simplicity. 
Recurrent Neural Networks (RNNs) are an extension of 
feedforward networks. RNNs possess recurrent hidden 
states that allow them to learn temporal dependencies in 
sequential data. This inherent temporal depth has proven 
highly advantageous for tasks such as pedestrian 
trajectory prediction, where single-layer RNNs are 
applied to point coordinates in space. Besides temporal 
depth, spatial depth of RNNs can be increased by 
stacking multiple layers of RNN units on top of each 
other. This approach has been shown as an effective 
method to enhance sequential data modeling for complex 
tasks [28], particularly in video sequence analysis [17], 
where networks model dependencies between visual 
features of consecutive video frames. Given the 
multimodal nature of pedestrian motion prediction that 
depends on dynamic and visual scene information, we 

employed a cascade fusion approach, gradually 
integrating features at each level based on their 
complexity. In other words, we input complex 
visual features of the scene, which can benefit 
more from the spatial depth and dynamic features 
of lower-level networks, such as head pose and 
velocity, at higher levels of the network. 
Meanwhile, compared to using GRU or 
Bidirectional GRU modules separately, the output 
layer of the RNN module constructed with U-
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information. This allows the model to better 
discern which data will contribute to future 
predictions, thereby enhancing performance. 
Similarly, context features are processed in parallel 
through the same architecture. The GRU employed 
in this study consists of 256 hidden units, resulting 
in a feature vector of dimension [1, 256]. The 
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spatiotemporal dynamics of global visual features. Based 
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backbone network for visual feature extraction. This 
model is pre-trained on the widely used ImageNet 
dataset [9], as using pre-trained models speeds up the 
training process, enabling accurate predictions with a 
relatively small dataset. In our experiments, we train this 
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backbone network for visual feature extraction. This 
model is pre-trained on the widely used ImageNet 
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training process, enabling accurate predictions with a 
relatively small dataset. In our experiments, we train this 
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in a feature vector of dimension [1, 256]. The 
combination of GRU and BiGRU in the RNN 
module efficiently captures temporal correlations 
in the data and accurately predicts pedestrian 
crossing intentions. The formula calculation is as 
follows: Calculate the update gate vector: 

( )t g r t Wr r t-1 Nrr =σ W x +b +N h +b


,                          (7) 

( )t g z t Wz z t-1 Nzz =σ W x +b +N h +b


,                       (8) 

t h t Wh h t t-1 Nhh =tanh(W x +b +N (r eh )+b )
 ,           (9) 

( )t t t t t-1h = 1-z eh +z eh ,                                        (10) 

where tx


 is the reverse vector of the input vector

tx , t-1h indicates the hidden state of the previous 
moment. W , N and b  are trainable weights and 
bias terms, respectively. gσ is the sigmoid 
function.  denotes the element-by-element 
multiplication operation of a vector. 

( )t t t-1h =GRU x ,h
 

,                                             (11) 

t t tx x ;h =  
 

 ,                                                 (12) 

( ) ( )t tt t 1 t 1H GRU x , H ;GRU x ,H− −
 =  

   
  ,             (13) 

where tx


 is the inverse vector of the input vector 

tx  , and tx  is the vector in which tx


 and th


 
have been combined. ( )GRU denotes the non-
linear transformation of the input vector that 
encodes tx


,  t x into the corresponding state of the 

hidden layer of the GRU. ( )t t-1GRU x ,H
 
  is the 

state of the hidden layer of the forward GRU at 

(9)

  

In this work, an efficient neural network model is 
employed as a tool for extracting global environmental 
visual features, aiming to achieve high efficiency. 
MobileNet [33] employs a distinct architectural design, 
decomposing standard convolutions into depthwise 
convolutions and 1x1 pointwise convolutions. Standard 
convolutions use kernel filters across all input channels 
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map already serves as intermediate features for image 
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spatiotemporal dynamics of global visual features. Based 
on these principles, we adopt the lightweight 
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backbone network for visual feature extraction. This 
model is pre-trained on the widely used ImageNet 
dataset [9], as using pre-trained models speeds up the 
training process, enabling accurate predictions with a 
relatively small dataset. In our experiments, we train this 
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extracts crucial visual features from the input data, 
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Similarly, context features are processed in parallel 
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extracts crucial visual features from the input data, 
enabling us to effectively predict pedestrian crossing 
intentions in complex urban environments 

3.3.2. RNN Module: U-BiGRUs 
In this study, to construct the RNN module, we employed 
a combination of Gated Recurrent Units (GRU) [12] and 
Bidirectional Gated Recurrent Units (Bi-GRU) [4], as 
depicted in Figure 3. We chose GRU over Long Short-
Term Memory (LSTM) [34] due to its superior 
computational efficiency and architectural simplicity. 
Recurrent Neural Networks (RNNs) are an extension of 
feedforward networks. RNNs possess recurrent hidden 
states that allow them to learn temporal dependencies in 
sequential data. This inherent temporal depth has proven 
highly advantageous for tasks such as pedestrian 
trajectory prediction, where single-layer RNNs are 
applied to point coordinates in space. Besides temporal 
depth, spatial depth of RNNs can be increased by 
stacking multiple layers of RNN units on top of each 
other. This approach has been shown as an effective 
method to enhance sequential data modeling for complex 
tasks [28], particularly in video sequence analysis [17], 
where networks model dependencies between visual 
features of consecutive video frames. Given the 
multimodal nature of pedestrian motion prediction that 
depends on dynamic and visual scene information, we 

employed a cascade fusion approach, gradually 
integrating features at each level based on their 
complexity. In other words, we input complex 
visual features of the scene, which can benefit 
more from the spatial depth and dynamic features 
of lower-level networks, such as head pose and 
velocity, at higher levels of the network. 
Meanwhile, compared to using GRU or 
Bidirectional GRU modules separately, the output 
layer of the RNN module constructed with U-
BiGRU can better access past and future 
information. This allows the model to better 
discern which data will contribute to future 
predictions, thereby enhancing performance. 
Similarly, context features are processed in parallel 
through the same architecture. The GRU employed 
in this study consists of 256 hidden units, resulting 
in a feature vector of dimension [1, 256]. The 
combination of GRU and BiGRU in the RNN 
module efficiently captures temporal correlations 
in the data and accurately predicts pedestrian 
crossing intentions. The formula calculation is as 
follows: Calculate the update gate vector: 
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In this work, an efficient neural network model is 
employed as a tool for extracting global environmental 
visual features, aiming to achieve high efficiency. 
MobileNet [33] employs a distinct architectural design, 
decomposing standard convolutions into depthwise 
convolutions and 1x1 pointwise convolutions. Standard 
convolutions use kernel filters across all input channels 
and merge them in one step, while depthwise 
convolutions separate kernel filters for each input 
channel and combine them using pointwise 
convolutions. This separation and feature fusion method 
reduces computational complexity and model size. 
Additionally, since the global semantic segmentation 
map already serves as intermediate features for image 
recognition, a shallower (fewer layers) and narrower 
(fewer channels) network is sufficient for modeling the 
spatiotemporal dynamics of global visual features. Based 
on these principles, we adopt the lightweight 
convolutional neural network, MobileNet, as the 
backbone network for visual feature extraction. This 
model is pre-trained on the widely used ImageNet 
dataset [9], as using pre-trained models speeds up the 
training process, enabling accurate predictions with a 
relatively small dataset. In our experiments, we train this 
module using a batch of consecutive video clips 
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applied to point coordinates in space. Besides temporal 
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information. This allows the model to better 
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in this study consists of 256 hidden units, resulting 
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and merge them in one step, while depthwise 
convolutions separate kernel filters for each input 
channel and combine them using pointwise 
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reduces computational complexity and model size. 
Additionally, since the global semantic segmentation 
map already serves as intermediate features for image 
recognition, a shallower (fewer layers) and narrower 
(fewer channels) network is sufficient for modeling the 
spatiotemporal dynamics of global visual features. Based 
on these principles, we adopt the lightweight 
convolutional neural network, MobileNet, as the 
backbone network for visual feature extraction. This 
model is pre-trained on the widely used ImageNet 
dataset [9], as using pre-trained models speeds up the 
training process, enabling accurate predictions with a 
relatively small dataset. In our experiments, we train this 
module using a batch of consecutive video clips 
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extracts crucial visual features from the input data, 
enabling us to effectively predict pedestrian crossing 
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Recurrent Neural Networks (RNNs) are an extension of 
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states that allow them to learn temporal dependencies in 
sequential data. This inherent temporal depth has proven 
highly advantageous for tasks such as pedestrian 
trajectory prediction, where single-layer RNNs are 
applied to point coordinates in space. Besides temporal 
depth, spatial depth of RNNs can be increased by 
stacking multiple layers of RNN units on top of each 
other. This approach has been shown as an effective 
method to enhance sequential data modeling for complex 
tasks [28], particularly in video sequence analysis [17], 
where networks model dependencies between visual 
features of consecutive video frames. Given the 
multimodal nature of pedestrian motion prediction that 
depends on dynamic and visual scene information, we 
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integrating features at each level based on their 
complexity. In other words, we input complex 
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Bidirectional GRU modules separately, the output 
layer of the RNN module constructed with U-
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discern which data will contribute to future 
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in this study consists of 256 hidden units, resulting 
in a feature vector of dimension [1, 256]. The 
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In this work, an efficient neural network model is 
employed as a tool for extracting global environmental 
visual features, aiming to achieve high efficiency. 
MobileNet [33] employs a distinct architectural design, 
decomposing standard convolutions into depthwise 
convolutions and 1x1 pointwise convolutions. Standard 
convolutions use kernel filters across all input channels 
and merge them in one step, while depthwise 
convolutions separate kernel filters for each input 
channel and combine them using pointwise 
convolutions. This separation and feature fusion method 
reduces computational complexity and model size. 
Additionally, since the global semantic segmentation 
map already serves as intermediate features for image 
recognition, a shallower (fewer layers) and narrower 
(fewer channels) network is sufficient for modeling the 
spatiotemporal dynamics of global visual features. Based 
on these principles, we adopt the lightweight 
convolutional neural network, MobileNet, as the 
backbone network for visual feature extraction. This 
model is pre-trained on the widely used ImageNet 
dataset [9], as using pre-trained models speeds up the 
training process, enabling accurate predictions with a 
relatively small dataset. In our experiments, we train this 
module using a batch of consecutive video clips 

l c h wΧ R × × ×∈  as input. Here, h and w represent the height 
and width of the images; l stands for the number of 
frames observed; c represents the number of image 
channels. Once the video clips are loaded, they are fed 
into the MobileNet network to generate a final feature 
vector of dimension [ ]l,1280  as a visual feature 
sequence. Using the MobileNet model, our CNN module 
extracts crucial visual features from the input data, 
enabling us to effectively predict pedestrian crossing 
intentions in complex urban environments 

3.3.2. RNN Module: U-BiGRUs 
In this study, to construct the RNN module, we employed 
a combination of Gated Recurrent Units (GRU) [12] and 
Bidirectional Gated Recurrent Units (Bi-GRU) [4], as 
depicted in Figure 3. We chose GRU over Long Short-
Term Memory (LSTM) [34] due to its superior 
computational efficiency and architectural simplicity. 
Recurrent Neural Networks (RNNs) are an extension of 
feedforward networks. RNNs possess recurrent hidden 
states that allow them to learn temporal dependencies in 
sequential data. This inherent temporal depth has proven 
highly advantageous for tasks such as pedestrian 
trajectory prediction, where single-layer RNNs are 
applied to point coordinates in space. Besides temporal 
depth, spatial depth of RNNs can be increased by 
stacking multiple layers of RNN units on top of each 
other. This approach has been shown as an effective 
method to enhance sequential data modeling for complex 
tasks [28], particularly in video sequence analysis [17], 
where networks model dependencies between visual 
features of consecutive video frames. Given the 
multimodal nature of pedestrian motion prediction that 
depends on dynamic and visual scene information, we 

employed a cascade fusion approach, gradually 
integrating features at each level based on their 
complexity. In other words, we input complex 
visual features of the scene, which can benefit 
more from the spatial depth and dynamic features 
of lower-level networks, such as head pose and 
velocity, at higher levels of the network. 
Meanwhile, compared to using GRU or 
Bidirectional GRU modules separately, the output 
layer of the RNN module constructed with U-
BiGRU can better access past and future 
information. This allows the model to better 
discern which data will contribute to future 
predictions, thereby enhancing performance. 
Similarly, context features are processed in parallel 
through the same architecture. The GRU employed 
in this study consists of 256 hidden units, resulting 
in a feature vector of dimension [1, 256]. The 
combination of GRU and BiGRU in the RNN 
module efficiently captures temporal correlations 
in the data and accurately predicts pedestrian 
crossing intentions. The formula calculation is as 
follows: Calculate the update gate vector: 
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and merge them in one step, while depthwise 
convolutions separate kernel filters for each input 
channel and combine them using pointwise 
convolutions. This separation and feature fusion method 
reduces computational complexity and model size. 
Additionally, since the global semantic segmentation 
map already serves as intermediate features for image 
recognition, a shallower (fewer layers) and narrower 
(fewer channels) network is sufficient for modeling the 
spatiotemporal dynamics of global visual features. Based 
on these principles, we adopt the lightweight 
convolutional neural network, MobileNet, as the 
backbone network for visual feature extraction. This 
model is pre-trained on the widely used ImageNet 
dataset [9], as using pre-trained models speeds up the 
training process, enabling accurate predictions with a 
relatively small dataset. In our experiments, we train this 
module using a batch of consecutive video clips 
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sequential data. This inherent temporal depth has proven 
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trajectory prediction, where single-layer RNNs are 
applied to point coordinates in space. Besides temporal 
depth, spatial depth of RNNs can be increased by 
stacking multiple layers of RNN units on top of each 
other. This approach has been shown as an effective 
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tasks [28], particularly in video sequence analysis [17], 
where networks model dependencies between visual 
features of consecutive video frames. Given the 
multimodal nature of pedestrian motion prediction that 
depends on dynamic and visual scene information, we 

employed a cascade fusion approach, gradually 
integrating features at each level based on their 
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more from the spatial depth and dynamic features 
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velocity, at higher levels of the network. 
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Bidirectional GRU modules separately, the output 
layer of the RNN module constructed with U-
BiGRU can better access past and future 
information. This allows the model to better 
discern which data will contribute to future 
predictions, thereby enhancing performance. 
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in this study consists of 256 hidden units, resulting 
in a feature vector of dimension [1, 256]. The 
combination of GRU and BiGRU in the RNN 
module efficiently captures temporal correlations 
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  is the input data; 

( )t t-1GRU x ,H
 
  is the hidden-layer state of the backward 
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
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final hidden state can be obtained by sewing together 
the forms of the forward and backward hidden layers, 
where [ ];  

denotes the operation of splicing.

3.3.3. Hybrid Fusion of All the Features Branches 
In real-world scenarios, it is often necessary to par-
tition and combine different knowledge modules at 
various abstraction levels based on the nature and 
complexity of the problem to achieve partial or holis-
tic coordination for effective problem-solving. In fact, 
most problems are composed of subproblems. Thus, 
the ability to consider problems at different abstrac-
tion levels simultaneously is crucial for efficient and 
robust learning.
Based on the aforementioned principles, this paper 
proposes a hybrid fusion strategy that effectively in-
tegrates feature information from different modes, 
structured at both pixel-level and non-pixel-level ab-
stractions, as illustrated in Figure 3. This architecture 
consists of two branches, one for pixel-level feature 
processing and the other for non-pixel-level feature 
fusion. Pixel-level features, as shown in Figure 3(b), 
involve the extraction of spatial feature informa-
tion for global semantic segmentation, as discussed 
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in the previous section, using a CNN module. Sub-
sequently, the U-BiGRU module encodes temporal 
features to obtain pixel-level feature vectors yiV . In 
contrast, the non-pixel feature branch encompasses 
three types of feature information: the position of the 
target pedestrian, head pose orientation, and vehicle 
velocity. Based on their complexity and abstraction 
levels, basic features are extracted using the U-BiG-
RU module and a cascade structure, as depicted in 
Figure 3(d). Next, a non-pixel-level feature vector 

niV  is obtained through feature fusion, as shown in 
Figure 3(a). The non-pixel-level feature niV  and the 
pixel-level feature yiV  are concatenated and fed into a 
modality attention block [20], as illustrated in Figure 
3(c). This process involves merging multiple modal-
ity inputs into a representation, maximizing feature 
informativeness by weighting the information from 
each modality. We represent the sequence features 
(e.g., encoder-based outputs from an RNN) as hidden 
states { }1 2 fh= h ,h ,...,h . The calculation of attention 
weights is as follows:
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action. Overall, the proposed hybrid fusion 
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4. Experiment
4.1. Dataset and Benchmark
The effectiveness of our suggested multi-branch-
ing strategy and its architecture for analysing traffic 
pedestrian behaviour was validated by experiments 
using the Pedestrian Intention Estimation (PIE) 
[27] dataset in this study. The dataset includes more 
than 6 hours of continuous video footage recorded by 
in-vehicle cameras, providing a rich source of typical 
traffic scenarios covering complex road structures 
and crowded urban environments. The dataset in-
cludes annotations for 1842 pedestrian trajectories, 
providing comprehensive coverage of pedestrians 
near curbs and intersections that may have crosswalk 
intentions. The overall ratio of non-cross-over events 
to cross-over events in the dataset is 2.5:1. The dataset 
also contains a large amount of annotated informa-
tion, including bounding boxes for pedestrians, head 
posture and vehicle sensor information such as vehi-
cle velocity and yaw angle. Thus, for each pedestrian 
sample, we identified an event point for those who 
crossed in front of a vehicle the instant they began 
to cross the street. The data were randomly divided 
into training and test sets in a 6:4 ratio, and perfor-
mance was assessed using established metrics such 
as ACC, AUC, F1, precision and recall. These metrics 
are widely used in binary event prediction and reflect 
the balanced accuracy of the algorithm.

4.2. Implementation Details
This paper adopts a benchmark implementation 
based on the PCPA model [20], which encompasses 
most pedestrian intent prediction methods. Specifi-
cally, we use a U-BiGRU model with 256 hidden units 
and a cascade structure to encode all features except 
global semantic information. To reduce overfitting, 
we set the dropout rate of the RNN module to 0.2 and 
added an L2 regularization of 0.001 to the final dense 
layer. The number of observation frames is set to 16. 
We use a binary cross-loss function and the Adam 
optimization algorithm [17], with a learning rate of 

55 10−×  and a batch size of 32. The training process is 
performed over 60 epochs.

4.3. Baseline and Ablation Experiments
This study conducted extensive experiments to as-
sess the effectiveness of FHPE-Net under different 
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feature fusion strategies. In the baseline model com-
parison experiments, we initially compared FHPE-
Net to the standard baseline criterion for pedestrian 
crossing prediction, as detailed in Table 1. Next, to 
validate the U-BiGRU approach proposed in this pa-
per, we compared it to models in the baseline that uti-
lized recurrent neural networks for encoding (includ-
ing Multi-RNN, Stacked-RNN, Hierarchical-RNN, 
and PCPA). The corresponding results are presented 
in Figure 4. Finally, to further verify the effectiveness 
of FHPE-Net in detecting occluded pedestrians, we 
conducted comparison experiments with partially 
occluded pedestrians in the PIE dataset against the 
baseline models, as shown in Figure 6.

Figure 4
Schematic diagram of the fusion method. The pictures from 
top to bottom show the direct connection structure, the Grade 
connection structure and the hybrid connection structure

sion architectures as illustrated in Figure 4, includ-
ing pixel-level and non-pixel-level fusion, cascaded 
and direct fusion structures, to investigate the op-
timal model configurations. Secondly, we exam-
ined the influence of different types of data sourc-
es on FHPE-Net’s performance. Finally, through 
visualizing the results, we demonstrated the actual 
performance of the model, further illustrating its 
strengths and weaknesses.

5. Results
5.1. Baseline Comparison of Intent 
Prediction

Table 1 presents the quantitative results on the PIE 
dataset, offering a comprehensive comparison be-
tween our proposed model and baseline models. We 
observe four distinct types of models, including 2D 
convolution models, recurrent models, 3D convolu-
tion models, and multi-modal fusion models. Firstly, 
the initial set of models, such as ATGC, exclusively 
employ static images as input for pedestrian cross-
ing prediction. Other models utilize recurrent neural 
networks (RNNs), stacking multiple image frames 
as historical data to enhance accuracy. In contrast, 
models like ID3, which are 3D convolution models, 
exhibit remarkable performance, but they come 
with relatively higher computational costs. Addi-
tionally, the PCPA model demonstrates exceptional 
multi-modal capabilities, amalgamating the advan-
tages of 3D convolution models. FHPE-Net diverges 
from the baseline models by not only incorporating 
pixel-level and non-pixel-level fusion methods in 
feature fusion strategies but also introducing head 
pose information in the input sources. 
Experimental results indicate that, in comparison to 
the PCPA model, FHPE-Net achieves a 3% improve-
ment in accuracy, a 1% increase in AUC, and a 5% 
boost in F1 score. It is worth emphasizing that the 
F1 score, as a comprehensive metric that considers 
both recall and precision, stands as a pivotal indica-
tor for evaluating a model’s performance in binary 
classification tasks. In this respect, our proposed 
model attains the highest score among all the com-
pared models.

In addition to the baseline model comparisons, this 
paper also conducted ablation studies. Firstly, to 
validate the effectiveness of the multi-feature fu-
sion strategy proposed in this paper, we performed 
ablation experiments on the network fusion archi-
tecture and RNN encoders, with relevant results 
provided in Table 2. In these experiments, we ex-
plored different types of RNN encoders, including 
GRU, BiGRU, and U-BiGRU, as well as different fu-



Information Technology and Control 2024/3/53908

Table 1
Quantitative results of the baseline model and the latest model and its variants based on the PIE dataset Solid lines 
separate the different types of architecture. Models correspond to the type of network used in the given method

Model Name Model Variants Head ACC AUC F1 P R

Static

ATGC [38]

VGG16 [35]
Resnet50 [15]
AlexNet

No
No
No

0.71 0.60 0.41 0.49 0.36
0.70
0.59

0.59
0.55

0.38
0.39

0.47
0.33

0.32
0.47

Con-LSTM [34]

Single-RNN [18]

Multi-RNN [28]
Stacked-RNN [27]
Hierarchical-RNN [41]

VGG16
Resnet50
GRU
LSTM
GRU
GRU
GRU

No
No

0.58 0.55 0.39 0.32 0.49
0.54 0.46 0.26 0.23 0.29

No
No

0.81 0.75 0.64 0.67 0.61
0.83 0.77 0.67 0.70 0.64

No 0.83 0.80 0.71 0.69 0.73
No
No

0.82
0.82

0.78
0.77

0.67
0.67

0.67
0.68

0.68
0.66

C3D[37]
I3D[5]

RGB
RGB
Optical flow

No
No
No

0.77 0.67 0.52 0.63 0.44
0.80
0.81

0.73
0.83

0.62
0.72

0.67
0.60

0.58
0.90

Two-Stream [36] VGG16 No 0.64 0.54 0.32 0.33 0.31

PCPA [19] Temp.+ mod. Attention No 0.87 0.86 0.77

Ours (FHPE-Net) MobileNetV2 + U-BiGRU Yes 0.90 0.87 0.82 0.79 0.86

Model
Name

Model Variants PIE

Encoder Head Fusion Approach ACC AUC F1 P R

Ours1 CNN + GRU Yes Grade connection 0.86 0.85 0.76 0.72 0.81

Ours2 CNN + GRU Yes Direct connection 0.85 0.83 0.75 0.70 0.80

Ours3 CNN + GRU Yes Hybrid connection 0.86 0.83 0.76 0.74 0.77

Ours4 CNN + BiGRU Yes Grade connection 0.86 0.85 0.77 0.73 0.83

Ours5 CNN + BiGRU Yes Direct connection 0.87 0.83 0.75 0.76 0.75

Ours6 CNN + BiGRU Yes Hybrid connection 0.85 0.86 0.77 0.68 0.90

Ours7 CNN + U-BiGRU Yes Grade connection 0.87 0.84 0.76 0.77 0.76

Ours8 CNN + U-BiGRU Yes Direct connection 0.88 0.83 0.77 0.80 0.74

Ours9 CNN + U-BiGRU Yes hybrid connection 0.90 0.87 0.82 0.79 0.86

Table 2
Quantitative results of ablation experiments based on the PIE dataset

5.2. Comparison of Results of U-BiGRU in 
Baseline Models
To validate the effectiveness of the U-BiGRU method 
proposed in this study for pedestrian crossing inten-
tion prediction, a series of experiments were conduct-
ed with a specific focus on the importance of bidirec-
tional temporal modeling and long-term contextual 

information. Several commonly used baseline models 
were selected for comparison, all of which employed 
recurrent neural networks (RNNs) in the encoding 
process. These baseline models included Multi-RNN, 
Stacked-RNN, Hierarchical-RNN, and PCPA. The 
performance of these models was evaluated by re-
placing the GRU method in their architectures with 
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Figure 5
Comparative experimental results of GRU and U-BiGRU 
in the baseline model including Multi-RNN, Stacked-RNN, 
Hierarchical-RNN and PCPA

the U-BiGRU method proposed in this paper while 
keeping all other experimental settings constant. As 
depicted in Figure 5, the experimental results reveal 
notable improvements in the performance metrics 
(ACC and F1) of the Multi-RNN model, with increas-
es of 3%. Similarly, the Stacked-RNN model and the 
Hierarchical-RNN model exhibited performance im-
provements of 4% and 6%, and 3% and 5%, respective-
ly. However, among the four baseline methods men-
tioned, the PCPA model’s performance improvement 
was relatively less pronounced, with no improvement 
in ACC and a 1% increase in F1. This is attributed to 
the fact that the PCPA model’s design did not ade-
quately consider the global contextual background, 
including information regarding roads and other road 
users, which is an essential factor in the task of pre-
dicting pedestrian crossing intentions. Nevertheless, 
these experimental results unmistakably underscore 
the vital value of the U-BiGRU method in pedestrian 
intention prediction. The approach presented in this 
paper enhances the performance of the baseline mod-
els, especially when considering bidirectional tempo-
ral modeling and long-term contextual information. 
These results strengthen our confidence in the U-Bi-
GRU method and emphasize its effectiveness in pre-
dicting pedestrian crossing intentions.

5.3. Comparison of Results of Baseline 
Models Under Pedestrian Occlusion
The FHPE-Net proposed in this study is designed to 
efficiently predict pedestrian crossing intentions in 
the presence of occlusions. To assess the effective-
ness of FHPE-Net in detecting pedestrian crossing 
intentions when occlusions are present, we con-
ducted a series of systematic experiments and com-
pared its performance against several high-perform-
ing baseline models. These baseline models include 
Multi-RNN, Stacked-RNN, Hierarchical-RNN, and 
the PCPA model, with the first three being commonly 
used sequential modeling approaches, and the PCPA 
being an advanced model for pedestrian crossing in-
tention prediction. In this experiment, we selected 
427 pedestrian crossing segments with partial oc-
clusions (occlusion rates ranging from 0.25 to 0.75) 
from the PIE dataset. As shown in Figure 6, the ex-
perimental results indicate that FHPE-Net exhibits 
significant performance advantages, achieving higher 
values in terms of accuracy and F1 score compared to 
the baseline models. Of particular note, FHPE-Net 
demonstrates exceptional robustness when predict-
ing pedestrian crossing intentions in the presence of 

Figure 6
Comparative experimental results of occluded pedestrian 
data set in baseline model including Multi-RNN, Stacked-
RNN, Hierarchical-RNN and PCPA. ALL: All pedestrians, 
Occlusion: Occlusion of pedestrians
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occlusions, experiencing less interference from oc-
clusion factors compared to other models.

5.4. Ablation Experiment Results 
5.4.1. Network Fusion Architecture and Encoder 
Ablation Results 
The task of predicting pedestrian street-crossing 
behavior has historically been dedicated to the in-
tegration of multiple information sources, employ-
ing various strategies to consolidate different data 
streams. Presently, the majority of highly accurate 
pedestrian street-crossing prediction methods have 
achieved preeminence within their respective data-
sets, primarily attributable to their ingenious fusion 
strategies. This unequivocally underscores the crit-
ical importance of fusion strategies in the context of 
multi-feature integration for pedestrian street-cross-
ing prediction tasks.
Concurrently, in order to evaluate the U-BiGRU mod-
el proposed in this study for pedestrian street-cross-
ing intention prediction, leveraging the significance 
of bidirectional temporal modeling and long-term 
contextual comprehension, we conducted network 
fusion architecture and encoder ablation experi-
ments. As illustrated in Table 2, we initially investi-
gated the effects of substituting U-BiGRU in the en-
coder component with GRU and bidirectional GRU. 
Experimental results indicate that both of these en-
hancement methods led to a performance decrease, 
reaffirming our belief that an effective model for pe-
destrian behavior prediction should concurrently ad-
dress long-term dependencies and multi-scale tem-
poral characteristics.
Furthermore, we explored various fusion strategies, 
including pixel-level and non-pixel-level fusion, cas-
cading, and direct connection structures, among oth-
ers. According to the experimental data presented in 
Table 2, the hybrid fusion strategy of CNN+U-BiG-
RU in ‘Ours9’ exhibited the most exceptional perfor-
mance. This highlights the model’s capacity to simul-
taneously consider the problem from different levels 
of abstraction as essential for achieving efficient and 
robust learning in the task of pedestrian intention 
prediction.

5.4.2. Input Source Ablation Results
Due to the complexity of real-world traffic scenarios, 
accurate identification for the task of predicting pe-

Table 3
Quantitative results of ablation experiments based on the 
PIE dataset

Model Variants ACC AUC F1

FHPE-Net without head pose 0.82 0.83 0.72

FHPE-Net without speed 0.86 0.85 0.76

FHPE-Net without bounding box 0.88 0.84 0.77

FHPE-Net without Global Semantic 0.77 0.80 0.68

FHPE-Net replace contexts 
semantics with contexts image 0.83 0.80 0.71

FHPE-Net with 2D skeleton pose 0.87 0.85 0.77

FHPE-Net with local context 0.87 0.83 0.76

FHPE-Net 0.90 0.87 0.82

destrian crossings typically requires the integration 
of multiple features. However, the integration of dif-
ferent forms of perceptual modal information from 
additional networks may lead to substantial increas-
es in model size and slow inference speeds. Therefore, 
achieving real-time effectiveness of the optimal deci-
sion model is crucial in the context of autonomous 
driving scenarios. In this section, we conducted a se-
ries of ablation studies to thoroughly analyze the im-
pact of different data types on FHPE-Net.
As shown in Table 3, when the model excludes head 
pose information, the performance metrics of the 
model (including ACC, AUC, and F1) decrease by 8%, 
4%, and 10%, respectively. This once again empha-
sizes that head pose information is a critical factor 
affecting the interaction features between target pe-
destrians and moving vehicles in the task of predict-
ing pedestrian intentions. Similarly, removing vehicle 
speed, pedestrian position, and global semantic infor-
mation results in a decrease in model performance. 
Particularly, when replacing global semantic infor-
mation with contextual images, ACC, AUC, and F1 de-
crease by 13%, 7%, 14%, and 7%, 7%, 11%, respectively. 
Thus, we can emphasize that environmental seman-
tic information is a key factor influencing the inter-
action features between target pedestrians and the 
traffic environment.
Secondly, we attempted to extend the feature ex-
traction network by introducing human 2D skeletal 
pose as non-pixel-level input to the model. However, 
performance metrics decreased by 3%, 2%, and 5%, 
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confirming the theoretical standpoint of this study 
that, influenced by factors such as complex environ-
mental conditions, occlusion, and variations in dis-
tance between pedestrians and vehicles, accurate de-
tection of human skeletal points is challenging, thus 
reducing the overall accuracy of motion recognition.
Finally, we attempted to improve the proposed meth-
od by introducing local contextual features of the 
target pedestrian. Although the results did not meet 
expectations, with performance metrics decreasing 
by 3%, 4%, and 6%, this may be due to reasons similar 
to previous attempts. The experiments described in 
Table 3 represent some intriguing explorations, and 
despite not achieving the initial expectations, they 
once again underscore that the proposed model can 
achieve better performance in situations with fewer 
features.

5.5. Visualization Results
5.5.1. Challenging Visualization 
Figure 7 presents qualitative results of the proposed 
pedestrian crossing intention prediction model in 
this paper, comparing it with the PCPA model. As il-
lustrated in the examples, our method accurately pre-
dicts pedestrian crossing intentions compared to the 
predictions made by PCPA. After careful consider-
ation of these cases, the following arguments emerge: 
pedestrian head pose and overall environmental con-
text can effectively contribute to solving the predic-
tion problem of pedestrian crossing intentions:
In Figure 7(a), pedestrians standing in an unknown 
direction are depicted. The pedestrians are posi-
tioned at the edge of the street, indicating an intention 
to cross. However, as their head poses do not exhibit 
an interactive posture with the moving vehicles, the 
PCPA model fails to consider the influence of pedes-

trian head poses, leading to an incorrect judgment. In 
contrast, our model fully utilizes the information pro-
vided by pedestrian head features regarding pedestri-
an-vehicle interactions, accurately determining that 
the pedestrian in question does not have an intention 
to cross.
In Figure 7(b), pedestrians with shadows forming 
visual disparities are shown. Due to the target pedes-
trian being in a shadowed position, the shadow may 
create contours similar to the pedestrian, making it 
challenging for the PCPA model to distinguish be-
tween the pedestrian and the background, resulting 
in misjudgment. Conversely, FHPE-Net, by leverag-
ing semantic segmentation information from envi-
ronmental context, is able to accurately differenti-
ate these elements from the semantic region of the 
pedestrian, even when shadows or visual disparities 
create some resemblance. Additionally, the model in-
tegrates semantic segmentation to provide more con-
textual information, determining that the pedestrian 
does not have an intention to cross.
As shown in Figures 7(c)-(d), pedestrians with large 
body regions obscured below the head. Since the 
PCPA model relies on local body features and pose 
information to determine pedestrian intentions, oc-
clusion of the pedestrian’s body can lead to unreli-
able judgments. However, our approach utilizes both 
pedestrian head features and overall global context 
semantic information, enabling accurate prediction 
even in situations of occlusion as illustrated in Fig-
ure 7(c)-(d). This is because the head pose provides 
information about the interaction between the target 
pedestrian and moving vehicles, while global context 
semantic information provides information about 
the interaction between the target pedestrian and the 
traffic scene. Thus, combining head pose with global 

Figure 7
Example diagram comparing pedestrian crossing intentions, with GT indicating true label values. NC indicates that the 
target pedestrian has not crossed the street. C indicates that the target pedestrian crossed the street
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Figure 8
Example diagram comparing pedestrian crossing intentions, with GT indicating true label values. NC indicates that the 
target pedestrian has not crossed the street. C indicates that the target pedestrian crossed the street

context, FHPE-Net significantly improves the accu-
racy of pedestrian crossing intention prediction, even 
in challenging scenarios such as body part occlusion, 
visual disparities, or ambiguous directions. This re-
sult highlights the robustness of our proposed method 
in various real-world scenarios.

5.5.2. Limitation Visualization
As shown in Figure 8, this study conducted a detailed 
analysis of failure cases of the proposed model. Fig-
ures 8(a)-(b) depict pedestrian crossing scenarios 
under overcast conditions. FHPE-Net inaccurately 
predicted pedestrian crossing intentions in these cas-
es. Our analysis indicates that the primary reason lies 
in insufficient lighting conditions on overcast days, 
combined with the relatively long distance between 
the target pedestrians and vehicles. This resulted in 
inaccuracies in the head pose estimation algorithm 
when extracting pedestrian head pose information. 
Due to the lower quality of extracted head pose, 
FHPE-Net failed to capture crucial information af-
fecting pedestrian intention decisions, namely, head 
pose. However, as these pedestrians were far from 
vehicles and did not interact with them, they did not 
pose any impact on driving vehicles.
Figure 8(c) illustrates a scenario, where pedestrians, 
standing at the edge of a crossroads, exhibit head poses 
suggesting interaction with moving vehicles. Never-
theless, FHPE-Net incorrectly predicted that these pe-
destrians had an intention to cross. We speculate that 
the pedestrian might have initially intended to cross 
but eventually abandoned the plan due to the high vol-
ume of oncoming traffic. Hence, the traffic situation 
should be a significant factor to be considered in future 
tasks involving predicting pedestrian intentions, espe-
cially at intersections without traffic signals.

Figure 8(d) presents a scenario of pedestrians not 
crossing in nighttime conditions, but FHPE-Net 
erroneously predicted that they had an intention 
to cross. This misjudgment is attributed to severe 
low light conditions under adverse weather (night-
time, rainy or snowy weather), affecting the feature 
extraction process of the model. Both PCPA and 
our model made incorrect judgments under these 
conditions. Based on these failure cases, this study 
attributes the main challenges to the limitations 
of vision-based depth estimation and pedestri-
an detection technologies in low light and adverse 
weather conditions. To enhance the applicability of 
these technologies, we can consider the integration 
of image restoration methods (such as de-raining, 
de-fogging, low-light enhancement, and image su-
per-resolution), or in future research, contemplate 
the amalgamation of depth and radar technologies 
[5], [21] as alternatives to traditional image recog-
nition methods. Radar technology employs radio 
waves to perceive the surrounding environment and 
offers stability under various weather conditions 
[3]. Radar sensors accurately detect the position, 
speed, and distance of objects, irrespective of visual 
constraints. This inherent robustness makes radar 
an intriguing alternative, particularly for nighttime 
driving, fog, heavy rain, or other low-visibility con-
ditions where visual recognition may be severely 
hampered. The fusion of laser radar and visual per-
ception systems combines the advantages of rapid 
dynamic object measurement with radar and the 
capability of visual recognition of obstacles. This 
collaborative approach enhances the system’s com-
prehensive understanding of the road environment, 
thereby improving the accuracy and reliability of pe-
destrian intent prediction.
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5.6. Ethical Issues in Intention Prediction
When it comes to autonomous driving technology, 
careful consideration of the ethical issues involved is 
paramount. This research aims to delve deeply into 
the profound societal and ethical implications of au-
tonomous driving technology, underscoring the im-
portance of this examination. The ethical concerns 
arising from autonomous vehicles are wide-ranging, 
encompassing various facets including safety, priva-
cy, and justice, among others, which demand meticu-
lous attention and resolution.
Firstly, concerning safety issues, the pedestrian cross-
ing intention prediction algorithm developed in this 
study is designed to provide effective alerts to guide 
drivers in taking necessary measures to avoid potential 
traffic accidents. This proactive approach seeks to re-
duce risks beforehand and enhance pedestrian safety.
Secondly, regarding privacy concerns, it is worth 
noting that the data used in this research originates 
from the publicly available Pedestrian Intention Esti-
mation (PIE) dataset. During the data usage process, 
we strictly adhere to data privacy protection princi-
ples, utilizing only the necessary data that fulfils the 
requirements of this research. Furthermore, we ex-
plicitly confine the use of this data within the scope of 
academic research to ensure the privacy of the data is 
rigorously safeguarded.
Lastly, with regards to issues of social justice, the fo-
cal point of this research is the FHPE-Net algorithm, 
dedicated to improving overall urban traffic safety 
while optimizing urban traffic management. More-
over, this model is adaptable to different age groups 
and special pedestrian categories, such as the elderly, 
children, and disabled individuals, allowing for per-
sonalized fine-tuning to better serve these specific 
demographics.
The purpose of this discourse is to emphasize the 
significance of ethical issues within the field of au-
tonomous driving technology and to showcase this 
research’s rigorous methods and commitment to ad-

dressing these concerns. This, in turn, contributes to 
ensuring that our research is fully cognizant of ethical 
and social justice considerations and contributes to 
the overall well-being of society.

6. Conclusion
This paper presents FHPE-Net, designed to efficiently 
and accurately predict obscured pedestrian intent. The 
model employs pixel-level and non-pixel-level fusion 
strategies and integrates the U-BiGRU module to ef-
fectively fuse pedestrian head poses, bounding box po-
sitions, vehicle speed, and environmental information. 
Extensive comparative experiments validate the out-
standing performance of FHPE-Net in pedestrian in-
tent prediction and the effectiveness of U-BiGRU. Fur-
thermore, ablation results suggest that combining head 
poses with global context and considering the problem 
from different abstract levels can enhance the accura-
cy of predicting pedestrians’ intent to cross the street. 
Future research will focus on the integration of deep 
learning with radar technology to enhance the model’s 
stability in adverse environments. While this paper’s 
architecture is primarily applied to pedestrian intent 
prediction, similar methods may potentially bring ben-
efits to other activities requiring head pose recognition.
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