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Parkinson’s disease (PD) is a central nervous system neurodegenerative illness. Its symptoms include poor motor 
skills, speech, cognition, and memory. The condition is incurable, although evidence shows that early identification 
and therapy reduce symptoms. A lack of medical facilities and personnel hinders PD identification. PD is a common 
chronic degenerative neurological dyskinesia that threatens the elderly. Multi-modal data fusion may reveal more 
about PD pathophysiology. This study aims to contribute to the evaluation of PD by introducing a novel multimodal 
deep-learning technique for distinguishing individuals with PD from those without PD. This study utilizes resting 
functional magnetic resonance imaging (rfMRI) and gene data obtained from the Parkinson’s Progression Markers 
Initiative (PPMI) and Alzheimer’s Disease Neuroimaging Initiative (ADNI) databases. The primary objective is 
to predict the specific pathological brain regions and identify the risk genes associated with PD. The readers want 
to learn more about the genetic components and underlying procedures by analyzing these datasets. Contributing 
to the development and progression of PD. In this study, we present our findings that demonstrate the superior 
recital of our proposed multimodal method compared to both unimodal approaches and other existing multimod-
al methods. Our evaluation is based on an extensive dataset consisting of real patients. Specifically, our proposed 
method stacked deep learning classifiers (SDLC) achieves an impressive F1-score of 0.99 and an accuracy of 99.4%, 
surpassing the performance of both unimodal approaches and other multimodal methods. These results highlight 
the efficiency and potential of our method in enhancing the accuracy and reliability of patient data analysis. In this 
study, we demonstrate that our proposed method consistently surpasses alternative approaches in terms of perfor-
mance, as indicated by a higher average increase in F1-score. This finding highlights the advantage of training on 
multiple modalities, even when a particular modality is absent during inference.
KEYWORDS: Data fusion, Deep learning, Multimodal, Neuroimaging, Parkinson’s disease, rfMRI.
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1. Introduction
Popular motor and nonmotor signs of the neurode-
generative condition PD. These symptoms include 
bradykinesia (slowness of movement), rigidity, trem-
or, gait disturbances, abnormal posture, and pain 
[13, 14]. Experts in medicine and science typically 
conduct PD testing in clinical settings or labs. These 
settings allow for a focused examination of the indi-
vidual’s function, providing a snapshot of their con-
dition. Parkinson’s disease symptoms, on the other 
hand, exhibit notable variations over the course of the 
day, influenced by factors such as medication intake 
and fatigue levels [1]. Moreover, it is worth noting 
that the symptoms exhibited by individuals affected 
by this particular disease resemble those associat-
ed with various other medical conditions, leading to 
a high incidence of misdiagnosis during the initial 
phases of the illness. The nigrostriatal dopamine neu-
rons exhibit a substantial reduction in number at the 
time of PD diagnosis in most individuals. At present, 
it has been observed that patients are often deprived 
of receiving the most effective treatment during the 
early stages of their diseases, resulting in the progres-
sion of their conditions to a more severe state [48, 49, 
50]. The timely detection of PD is vital in facilitating 
prompt treatment and providing substantial relief 
from symptoms [46].
There has been an uptick in research and develop-
ment of automated Parkinson’s disease (PD) assess-
ment methods over the past decade [40, 34]. The 
utilization of technologies such as the Internet of 
Things (IoT) has greatly expanded the possibilities 
of interconnecting multiple sensors in domestic set-
tings, thereby extending the application of these ap-
proaches to various aspects of daily life [29, 54, 24]. 
There is hope for continued tracking and evaluation 
of PD thanks to the widespread collection of sensor 
data during daily living. This may provide new in-
formation for diagnosing and treating PD. Machine 
learning, a subsection of AI, is the study of how com-
puters may learn, on their own, to recognize trends in 
large amounts of information without being explicitly 
programmed to do so [35, 36]. Finding nonlinear rela-
tionships in high-dimensional data is an area where 
ML has seen substantial growth. Significant trides 
have been made in medical studies recently, especial-
ly in implementing state-of-the-art machine learning 
technology called Deep Learning (DL). This advanced 

technology has demonstrated remarkable success 
and improved recital that exceeds the current state-
of-the-art in various health domains [3, 17]. 
Deep Learning (DL) has emerged as a powerful tech-
nique for handling high-dimensional and unprocessed 
data. By utilizing Deep Neural Networks (DNN), DL 
can automatically learn the representation of such 
data, thereby reducing the need for extensive feature 
engineering and preprocessing [45]. DL strategies 
are crucial in effectively handling the intricate data 
obtained from devices equipped with sensors [7]. To 
monitor and forecast the development of Parkinson’s 
disease [51, 52], there has been a substantial increase 
in the use of DL modeling approaches over the last ten 
years  that make use of sensor data. In the realm of re-
search, additional methodologies encompass the uti-
lization of biomarker datasets. These datasets assess 
the classification performance by employing shape 
features from the generated regions of interest [43, 44]. 
In a recent study, researchers presented evidence sup-
porting the ability of artificial intelligence (AI) to clas-
sify individuals with Parkinson’s disease (PD) based 
on their nocturnal breathing patterns. The study also 
demonstrated that AI algorithms could accurately es-
timate the severity and progression of the disease [48].
By leveraging the power of multimodal data fusion 
techniques, we can harness the complementary na-
ture of different data sources to gain a more com-
prehensive understanding of Parkinson’s disease. By 
merging information from diverse modalities such as 
rfMRI and gene data, we can potentially find surpris-
ing new explanations for how things work and genetic 
factors contributing to the growth and evolution of 
Parkinson’s disease. The primary motivation is to de-
velop an advanced diagnostic methodology that sur-
passes the limitations of unimodal approaches and 
other existing multimodal methods. By integrating 
multiple data sources, we aim to improve the accu-
racy of Parkinson’s disease diagnosis and potentially 
identify specific pathological brain regions associated 
with the condition. This research has the potential to 
revolutionize Parkinson’s disease diagnosis by pro-
viding a more precise and reliable approach to identi-
fying individuals with the disease [10, 11, 19].
The conventional techniques lags in performing more 
analysis by using standard dataset. Due to lack of 
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dataset diversity, result is not generalized. Tradition-
al clinical analysis highly lags in accuracy of diagnosis 
and takes more time to review clinical data for identi-
fying PD. When medical experts analyse more on clin-
ical data, then it is noticed that prediction accuracy is 
high. This made to use multimodal data analysis using 
black box testing. 
Our ultimate goal is for this study to add to the already 
substantial body of work done on Parkinson’s illness 
and pave the way for the adoption of multimodal data 
fusion techniques in clinical practice. The ultimate 
goal is to optimize Parkinson’s disease diagnosis, 
leading to earlier detection, timely intervention, and 
improved disease management. By optimizing the 
diagnostic process, we can provide clinicians with 
valuable tools to make more informed treatment de-
cisions and ultimately enhance the excellence of life 
for individuals living with Parkinson’s disease.
The main contribution of the research relies on 
1 The prediction uses two datasets and multi mod-

al data processing performance is achieved in this 
research. 

2 stacking the deep learning models enrich the per-
formance of multi modal data processing.

The subsequent sections of this paper are prepared 
in the following manner: In Section 2, we will explore 
the existing body of research on the detection of Par-
kinson’s disease. Section 3 thoroughly describes the 
methodology employed, providing a comprehensive 
overview of the architecture of the SDLC. In Section 
4, the paper delves into the result and fallouts of the 
study. Section 5 of the research paper encompasses 
the conclusion and the future scope.

2. Related Works
Machine learning algorithms have played a crucial 
role in progressing the field of automatic evaluation 
of PD. These algorithms have made a significant 
contribution to the research in this area. Numerous 
methodologies have been suggested in the field of 
diagnostic or progression monitoring, with a focus 
on unique individuals with Parkinson’s disease (PD) 
and those without PD [18], as well as quantifying PD 
symptoms [12]. The prevailing data type utilized in 
previous studies is accelerated data collected from 

smartphones or wearable devices [39]. In addition to 
the works, as mentioned earlier, several other studies 
have also employed vision sensors for data collection 
and analysis. In the realm of evaluating PD, various 
approaches have been explored. Certain methodolo-
gies have centered on using tablets [33, 47] or scanner 
devices [6, 21] to conduct handwriting analysis. Ad-
ditionally, the analysis of speech has been examined 
through the use of microphones [18, 27]. These tech-
niques have been employed to assess and evaluate the 
manifestations of PD in individuals.
Li et al. [20] employed Convolutional Neural Net-
works (CNNs) to analyze RGB data in their study. 
Their approach involved initially estimating human 
pose using CNNs and subsequently extracting fea-
tures from the trajectories of joint movements. Ran-
dom Forest (RF) algorithms have become widely used 
because of recent developments in artificial intelli-
gence to classify symptoms associated with Parkin-
son’s disease (PD) and distinguish them from non-PD 
symptoms. Moreover, RF has also been employed to 
quantify the severity of these symptoms. This novel 
approach holds great promise in enhancing PD diag-
nosis and assessment accuracy and efficiency. In their 
study, Dadashzadeh et al. [2] employ vision-based 
techniques, specifically RGB and extracted motion 
data, to train a convolutional neural network (CNN) 
that quantifies PD symptoms. CNN models are effec-
tive in various applications involving different data 
types. In addition to their widespread use in image 
classification tasks, CNN models have been success-
fully applied to other domains. 
Researchers have achieved remarkable results in 
these diverse areas by leveraging the inherent ability 
of CNNs to capture spatial and temporal dependen-
cies.  In a study by Taleb et al. [47], an online hand-
writing data set was used to train a deep CNN model 
for Parkinson’s Disease (PD) classification. Similarly, 
Gazda et al. [6] showed a study where they trained 
CNN models to detect PD using offline handwriting 
samples.
In their study, Kleesiek et al. [18] proposed a novel ap-
proach utilizing a 3D CNN to perform skull stripping 
on 3D brain images. In their study, Hjelm et al. [28] in-
troduce a novel approach called the recurrent neural 
network in addition to the independent component 
analysis (RNN-ICA) model for analyzing fMRI data. 
They propose this model as a potential solution for 
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addressing the challenges in fMRI analysis. Addition-
ally, Calhoun et al. [27] investigate the effectiveness 
of the restricted Boltzmann machine (RBM) in iden-
tifying networks. Their findings demonstrate the effi-
cacy of RBM in network identification, suggesting its 
potential utility in fMRI analysis. The popularity of 
multi-modal neuroimage evaluation is on the rise [RG 
Burciu et al. [9], primarily driven by the limitations 
encountered with single modalities. This trend is 
leading to the emergence of larger and more intricate 
data sets. In recent times, the scientific community 
has made use of advancements in graph convolution-
al networks to tackle these aforementioned concerns.
In a recent study, Zhang et al. [53] introduced two 
novel approaches for detecting Parkinson’s disease. 
These methods leverage time-frequency analysis and 
deep learning techniques, employing electroenceph-
alogram (EEG) images as the primary data source. In 
their study, Pahuja and Prasad [31, 32] introduced an 
innovative method for forecasting Parkinson’s dis-
ease using multi-modal features and deep learning 
CNN. In their study, Quan and his team conducted 
research on the detection of PD using recorded audio 
of voice conversations. They developed an end-to-end 
model that utilized CNN on the mel spectrogram of 
the audios. The results of their study were found to be 
highly promising [23]. In the field of Parkinson’s dis-
ease research, there exist two primary methodologies 
for assessing the advancement of this neurodegener-
ative disorder. The Hoehn and Yahr scale [8] and the 
Unified Parkinson’s Disease Rating Scale (UPDRS) 
[28] are two frequently used measures to assess the 
cruelty of PD. The Hoehn and Yahr scale is a well-es-
tablished tool that categorizes the disease into differ-
ent stages based on clinical observations. On the oth-
er hand, the UPDRS is a comprehensive rating scale 
that evaluates various aspects of Parkinson’s disease, 
including motor symptoms, activities of daily living, 
and complications [52, 26, 37]. Both scales have been 
widely utilized in research and clinical settings to 
provide a standardized assessment of disease severity 
in individuals with Parkinson’s disease.
The recent PD prediction articles [5,38] used vari-
ous deep learning models for accurate predictions. 
The speech biomarkers are identified to used in PD 
prediction [15, 42, 41]. The random forests and deep 
learning models are used for classification process 
[26, 42]. The voice-based PD detection brings high-

er precision and accuracy rates. However, this voice 
dataset alone cannot assure 100% PD is affected. So, 
this research does not fix to single data set. The multi 
modal, two datasets are used in the article for proving 
the performance of deep learning and enrich the clin-
ical studies for the patients. 
Multimodal brain tumor detection [16] uses VGG16 
for classifying brain tumors. However accuracy of 
model is not satisfied by users. While the AD mod-
el addresses [30] the issue of data heterogeneity 
through a heuristic early feature fusion framework, 
it may not fully harness the complexity of multimod-
al data. So proposed PD model, with its stacked deep 
learning classifiers, could potentially offer a more so-
phisticated approach to manage and interpret com-
plex, heterogeneous data [22]. though the existing 
techniques like Explainable AI was not clear on deep 
level data processing [25], the results on brain tumor 
using multi modal is more useful. 

3. Methods and Materials
Parkinson’s disease (PD) is assessed in this study us-
ing a multimodal deep-learning technique. The main 
aim of this study is to differentiate individuals di-
agnosed with PD from those who do not have PD by 
utilizing rfMRI and genetic data. The present study 
uses data acquired from the PPMI and ADNI databas-
es. The primary objective of this analysis is to make 
predictions regarding the specific pathological brain 
regions closely linked to PD. Additionally, the study 
aims to identify the risk genes related to the onset and 
advance of Parkinson’s disease. The purpose of this 
research is to get a more thorough comprehension of 
the fundamental mechanisms and possible genetic 
influences that play a role in the emergence and ad-
vancement of PD.
Figure 1 shows the overall construction of PD Diagno-
sis with Multimodal Data Fusion Techniques. To fa-
cilitate subsequent analysis, the rfMRI data and gene 
data are subjected to separate preprocessing proce-
dures to ensure their compatibility with the desired 
format. After the preprocessing stage, the subsequent 
step involves extracting pertinent features from 
each modality. In the realm of rfMRI data analysis, 
researchers often extract features from many brain 
connectivity measures. These measures encompass 
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functional connectivity networks as well as graph-
based metrics. The transformation of gene data into 
expression levels or selected gene features hypothe-
sized to be linked to Parkinson’s disease has been ex-
tensively studied in research. 
The extracted features from both modalities are in-
tegrated by combining or fusing them to generate a 
unified joint feature representation. The fusion tech-
nique involves the utilization of deep neural network 
architectures that are designed explicitly for mul-
timodal fusion. To enhance the interpretability and 
generalization of the model, it is common practice to 
employ feature selection techniques on the fused fea-
ture representation. This approach aims to reduce the 
dimensionality of the feature space while maintain-
ing the relevant information necessary for accurate 
predictions. The model can achieve improved inter-
pretability and generalization capabilities by select-
ing the most informative features.
Regularization-based approaches, such as L1 regular-
ization (also known as LASSO), have been widely em-
ployed for feature selection in various research stud-
ies. The utilization of stacked deep learning models 
has been investigated to classify Parkinson’s disease, 
relying on the identification and selection of specific 
features. Stacked models, also known as ensemble 
models, are a popular approach in machine learning 
that involves integrating multiple layers of diverse 
classifiers. In this methodology, the output of one 

Figure 1
Overall Structure of Parkinson’s Disease Diagnosis with Multimodal Data Fusion Techniques
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classifier is utilized as the input for the subsequent 
classifier, creating a cascading effect. This technique 
aims to enhance the overall predictive performance 
by leveraging the collective knowledge and expertise 
of the individual classifiers within the stack. This ap-
proach enables the capture of intricate relationships 
among various features, thereby enhancing the over-
all performance of classification. The utilization of 
stacked deep learning classifiers involves the training 
of these classifiers using an appropriate algorithm, 
such as backpropagation. During training, the model’s 
parameters are optimized to minimize a loss function.

3.1. Data Collection
Large-scale public databases such as PPMI (http://
www.ppmi-info.org/) and ADNI (http://adni.loni.usc.
edu/) store information about patients with PD and 
related diseases, including their positron emission 
computed tomography (PET), magnetic resonance 
imaging (MRI), and single nucleotide polymorphism 
(SNP) profiles. The Michael Jefferson Foundation’s 
PD Progress Indicator Program is a landmark obser-
vational clinical study to identify the biological indi-
cators of PD progression through the comprehensive 
evaluation of key research objects using cutting-edge 
imaging  technology, biological samples, and clinical 
and behavioral assessments. Patients with PD-relat-
ed disorders are collected from the PPMI database  
(n = 55; 18 females; 37 males; mean age = 66.9,  
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S.D = 4.5 years) and healthy controls (HC) are collect-
ed (n = 49; 25 females; 24 males; mean age = 69.3 , S.D 
= 5.3; 35 HC from the ADNI database and 14 HC from 
the PPMI database). Moreover, rfMRI data and gene 
data are ensured for every sample. The physical and 
mental characteristics of samples are consistent with 
those of average healthy persons. Data collection and 
processing in each database adhere to rigorous cri-
teria, guaranteeing structural consistency between 
the two sets of records. All subjects have given writ-
ten consent, and no HC had any additional disorders 
that may cause interference with the neural system. 
In addition, PPMI and ADNI have permitted the use 
of the multi-modal data shown here, and the article’s 
data utilization is in line with the relevant guidelines.

3.2. Multimodal Data Fusion
This study combines the multimodal data of rest-
ing-state fMRI and gene data using a CNN that in-
corporates an attention mechanism. To conduct a 
comprehensive analysis, it is imperative to prepro-
cess both rfMRI data and gene data separately. This 
preprocessing step is crucial as it ensures the infor-
mation is usable for further examination. By accom-
plishment of appropriate preprocessing techniques, 
we can enhance the quality and reliability of the data, 
thereby facilitating accurate and meaningful interpre-
tations. To ensure data quality and comparability, it is 
essential to apply appropriate normalization, scaling, 
or standardization techniques. These steps are crucial 
for preparing the data for analysis and modeling pur-
poses. Normalization involves transforming the data 
to a common scale, typically between 0 and 1, to elim-
inate any bias caused by differences in the magnitude 
of the variables. Scaling, to conduct a comprehensive 
analysis, it is essential to extract relevant features 
from both the rfMRI data and the gene data separately. 
By doing so, we can explore the potential associations 
and interactions between these two modalities. The 
extraction of relevant features from the rfMRI data in-
volves identifying and quantifying various functional 
connectivity patterns, such as network connectivity 
strength, nodal centrality measures, and graph theo-
retical metrics. These features provide insights into 
the overall organization. In the context of resting-state 
functional magnetic resonance imaging (rfMRI) data, 
various features can be extracted from connectivity 
matrices or other network-based measures. Gene data 

analysis often involves examining various features, 
such as the expression levels of specific genes or gene 
sets linked to Parkinson’s disease. Integrating extract-
ed features from both modalities is a crucial step in re-
search. By combining the features obtained from dif-
ferent modalities, researchers can get a fuller picture 
of the phenomenon they’re investigating. This process 
involves merging the relevant features extracted from 
each modality to create a unified representation that 
captures the underlying patterns and relationships. 
The combined features, a frequently employed strat-
egy involves concatenating features along a designat-
ed axis to generate a unified representation. The joint 
representation will be utilized as input to the CNN in 
this research study. The integration of an attention 
mechanism into the CNN architecture has been pro-
posed as a means to emphasize significant features 
within the fused representation. By incorporating at-
tention, the CNN can dynamically allocate weights to 
different input parts, highlighting the most relevant 
information. This attention mechanism enhances the 
network’s ability to focus on important features, im-
proving performance in various tasks.
The network construction of ABCNN is illustrated 
in Figure 2. To enhance the generalization capability 
of our model and mitigate overfitting, we incorporate 
the pre-trained VGG19 network as the underlying ar-
chitecture. By removing all fully connected layers, we 
aim to optimize the model’s performance and prevent 
it from excessively fitting the training data. Atten-
tion blocks are conventionally incorporated into the 
pre-trained VGG19 network subsequent to the third, 
fourth, and fifth pooling layers. In the final step, the 
outputs generated by the three attention blocks are 
combined by concatenating them together. This re-
sults in the formation of the final feature vector.
Attention mechanisms have been developed to en-
hance the classification process by enabling mod-
els to selectively focus on relevant regions or genes. 
These mechanisms enable the model to prioritize 
certain areas or genetic features that are deemed 
more important for accurate classification. By selec-
tively attending to these specific regions or genes, the 
model can improve its ability to make informed deci-
sions and achieve higher classification performance. 
This selective focus is achieved through the integra-
tion of attention mechanisms into the classification 
model, which allows for dynamic weighting of differ-
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Figure 2
Attention based CNN (ABCNN) architecture 
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attention mechanism in our proposed 
architecture operates by assigning weights to 
different elements of the CNN is a deep 
learning architecture that incorporates 
convolutional layers to extract features and 
pooling layers to reduce dimensionality. The 
implementation of the attention mechanism 
often involves the utilization of various 
techniques, such as self-attention. 
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mines attention weights by quantifying the similari-
ty between various elements present in the input. In 
the context of multimodal data fusion, the input can 
consist of the fused feature representation, which is 
generated by combining the features extracted from 
rfMRI and gene data. The calculation of dot-product 
scaled self-attention can be summarized using the 
following equation,
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generated by combining the features extracted 
from rfMRI and gene data. The calculation of 
dot-product scaled self-attention can be 
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Q is the Query matrix. It represents the set of 
queries derived from the fused features and 
has a shape of (N,dq), where N is the number 
of elements and dq is the dimension of the 
query. K is the Key matrix. It represents the set 
of keys derived from the fused features and 
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Q is the Query matrix. It represents the set of que-
ries derived from the fused features and has a shape 
of (N,dq), where N is the number of elements and dq is 
the dimension of the query. K is the Key matrix. It rep-
resents the set of keys derived from the fused features 
and has a shape of (N,dk), where N is the number of el-
ements and dk is the dimension of the key. V is the Val-
ue matrix. It represents the set of values derived from 
the fused features and has a shape of (N,dv),  where N 
is the number of elements and dv is the dimension of 
the value. Softmax function applies the softmax op-
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eration to normalize the attention weights across all 
elements. This ensures that the weights sum up to 1, 
representing the relative importance of each element. 
sqrt(d_k) is the Scaling factor. It is used to stabilize 
the gradients during the training process. The square 
root of the dimension of the key (d_k) is used for scal-
ing. The * is the Matrix multiplication.

Algorithm. Dot-product Scaled Self-Attention

Input: Fused feature representation (F) of shape 
(batch_size, num_features)
Parameters: Query matrix (Wq) of shape (num_fea-
tures, dmodel)
Key matrix (Wk) of shape (num_features, dmodel )
Value matrix (Wv) of shape (num_features, dmodel)
Scaling factor (sqtr(dmodel)) 
Output:
Attended representation (A) of shape (batch_size, 
num_features)
1. Procedure Compute Query (Q), Key (K), and Value 

(V) matrices
2. Q = F *Wq where * denotes matrix multiplication

a. K = F *Wk 
b. V = F *Wv 

3. Procedure Compute Attention Scores (S)
a. S = Q * KT where T denotes * matrix transpose
b. 

_
sS

scaling factor
=

4. Procedure Softmax activation to compute Atten-
tion Weights (W)
a. W = Soft max(S)

5. Procedure Attended Representation (A)
a. A = W *V

6. Return the Attended Representation (A)

The scaling factor is included to avoid extensive 
dot products that could lead to vanishing or explod-
ing gradients during backpropagation. In inference, 
when a specific modality is absent in a given sample, it 
becomes necessary to utilize model fusion techniques 
to amalgamate the predictions derived from the avail-
able modalities. 
In the context of multimodal models, employing dis-
tinct neural networks for each modality is common. 
By doing so, the predictions generated by the various 

modalities can be combined through averaging or 
weighting techniques to derive the ultimate predic-
tion. Utilizing information from various modalities 
enables the model to make well-informed decisions.

3.3. Feature Selection
The selection of features for deep learning models can 
be approached using various methods, which are dic-
tated by the data’s properties and the problem being 
tackled. Embedded methods, also known as integrat-
ed feature selection techniques, seamlessly integrate 
the feature selection process into the training phase 
of deep learning models. By incorporating feature se-
lection within the model itself, these methods aim to 
optimize the selection of relevant features during the 
learning process. This integration allows the model to 
automatically identify and utilize the most informa-
tive features, leading to improved performance and 
generalization capabilities. By eliminating the need 
for separate feature selection algorithms, embedded 
methods offer a more efficient and streamlined ap-
proach to feature selection in deep learning. The in-
corporation of feature importance analysis into the 
model training process obviates the necessity for a 
distinct feature selection phase. L1 regularization, 
also known as the Least Absolute Shrinkage and Se-
lection Operator (LASSO), incorporates an L1 penal-
ty term into the model training process. This penalty 
term promotes the selection of highly informative 
features while disregarding irrelevant ones, result-
ing in a sparse feature selection. During the training 
process, dropout regularization is applied to enhance 
the model’s recital. This technique involves random-
ly disabling connections between neurons, which 
in turn reduces the influence of certain features. By 
encouraging the model to rely on only a subset of fea-
tures, dropout regularization promotes more robust 
and generalized learning. The equation for L1 regular-
ization (LASSO) can be represented as follows:
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The scaling factor is included to avoid extensive 
dot products that could lead to vanishing or exploding 
gradients during backpropagation. In inference, 
when a specific modality is absent in a given 
sample, it becomes necessary to utilize model 
fusion techniques to amalgamate the predictions 
derived from the available modalities.  

In the context of multimodal models, 
employing distinct neural networks for each 
modality is common. By doing so, the 
predictions generated by the various 
modalities can be combined through 
averaging or weighting techniques to derive 
the ultimate prediction. Utilizing information 
from various modalities enables the model to 
make well-informed decisions. 

3.3 Feature Selection 
The selection of features for deep learning 
models can be approached using various 
methods, which are dictated by the data's 
properties and the problem being tackled. 
Embedded methods, also known as integrated 
feature selection techniques, seamlessly 
integrate the feature selection process into the 
training phase of deep learning models. By 
incorporating feature selection within the 
model itself, these methods aim to optimize 
the selection of relevant features during the 
learning process. This integration allows the 
model to automatically identify and utilize the 
most informative features, leading to 
improved performance and generalization 
capabilities. By eliminating the need for 
separate feature selection algorithms, 
embedded methods offer a more efficient and 
streamlined approach to feature selection in 
deep learning. The incorporation of feature 
importance analysis into the model training 
process obviates the necessity for a distinct 
feature selection phase. L1 regularization, also 
known as the Least Absolute Shrinkage and 
Selection Operator (LASSO), incorporates an 
L1 penalty term into the model training 
process. This penalty term promotes the 
selection of highly informative features while 
disregarding irrelevant ones, resulting in a 
sparse feature selection. During the training 
process, dropout regularization is applied to 
enhance the model's recital. This technique 
involves randomly disabling connections 
between neurons, which in turn reduces the 
influence of certain features. By encouraging 
the model to rely on only a subset of features, 
dropout regularization promotes more robust 
and generalized learning. The equation for L1 
regularization (LASSO) can be represented as 
follows: 

 

1
Re *gularizedLoss L w                  (2) 
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where: Regularized Loss on of the model, typically 
measured as the difference between predicted and 
actual values. The original loss function without reg-
ularization is indicated by L. λ is the regularization 
parameter that controls the strength of the regular-
ization. It establishes the compromise among model 
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complexity and training-data fidelity. The weight vec-
tor (w) or coefficient matrix of the model, represent-
ing the importance or contribution of each feature. 
The ||w||1 term denotes the L1 norm of the weight 
vector, which is the sum of the complete values of the 
individual weights. Mathematically, it is defined as:
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where wi represents the i-th weight or coefficient. 
By adding the L1 regularization term to the loss 
function, the model is encouraged to minimize the 
absolute values of the weights. This leads to some 
weights becoming exactly zero, effectively 
performing feature selection by excluding those 
features from the model. During the training 
process, the λ parameter is usually tuned over 
methods such as cross-validation to find the 
optimal stability among model complexity and 
regularization. Larger values of λ result in sparser 
models with fewer selected features, while smaller 
values allow more features to be retained. 

3.4 Stacked Classifier 
Stacked deep learning models are well-suited for 
handling multimodal data, where information 
from multiple sources or modalities needs to be 
combined for a comprehensive analysis. In the 
context of Parkinson's disease detection, data from 
different modalities, such as functional magnetic 
resonance imaging (MRI) and biomarkers, can 
provide complementary information about the 
disease. Stacking deep learning classifiers allows 
for the integration of these diverse data sources 
efficiently. 

A stacked deep learning model for 
classification combines multiple layers of different 
classifiers in an effort to boost the model's efficiency 
and capture complex relationships in the data. 
Stacking a CNN and a Long Short-Term Memory 
(LSTM) model is a common approach for 
classification tasks that involve sequential or 
temporal data. This combination allows the CNN to 
extract spatial features from the input data, while 
the LSTM captures the temporal dependencies in 

the sequence. The initial layers of the model 
consist of CNN layers for spatial feature 
extraction. This helps capture local patterns 
and spatial relationships in the input data.  
Figure 3 shows the Stacked deep learning 
classifiers for Parkinson’s disease 
classification. 
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Stacked deep learning classifiers (SDLC) for 
Parkinson’s disease classification 

 
 

The input size represents the dimensions 
of the input data, usually images in the case of 
CNNs. For example, if the input images are 
224x224 pixels, the input size will be (224, 224, 
3), where 3 denotes the number of color 
channels (RGB). Table 1 shows the CNN 
model parameters used in this study. 
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becoming exactly zero, effectively performing feature 
selection by excluding those features from the model. 
During the training process, the λ parameter is usu-
ally tuned over methods such as cross-validation to 
find the optimal stability among model complexity 
and regularization. Larger values of λ result in spars-
er models with fewer selected features, while smaller 
values allow more features to be retained.

3.4. Stacked Classifier
Stacked deep learning models are well-suited for han-
dling multimodal data, where information from mul-
tiple sources or modalities needs to be combined for 
a comprehensive analysis. In the context of Parkin-
son’s disease detection, data from different modali-
ties, such as functional magnetic resonance imaging 
(MRI) and biomarkers, can provide complementary 
information about the disease. Stacking deep learn-
ing classifiers allows for the integration of these di-
verse data sources efficiently.
A stacked deep learning model for classification com-
bines multiple layers of different classifiers in an effort 
to boost the model’s efficiency and capture complex 
relationships in the data. Stacking a CNN and a Long 
Short-Term Memory (LSTM) model is a common ap-
proach for classification tasks that involve sequential 
or temporal data. This combination allows the CNN 
to extract spatial features from the input data, while 
the LSTM captures the temporal dependencies in the 
sequence. The initial layers of the model consist of 
CNN layers for spatial feature extraction. This helps 
capture local patterns and spatial relationships in the 
input data.  Figure 3 shows the Stacked deep learning 
classifiers for Parkinson’s disease classification.
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el parameters used in this study.
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Table 1
The CNN model parameters used in the proposed system

Layer Type Output Shape Number of Parameters

Input (224, 224, 3) 0

Conv2D (222, 222, 32) 896

MaxPooling2D (111, 111, 32) 0

Conv2D (109, 109, 64) 18,496

MaxPooling2D (54, 54, 64) 0

Conv2D (52, 52, 128) 73,856

MaxPooling2D (26, 26, 128) 0

Flatten (86528,) 0

Dense (128,) 11,092,352

Dropout (128,) 0

Dense (2,) 129

The CNN performs convolutional operations, fol-
lowed by non-linear activations (ReLU), and pooling 
operations to extract spatial features from the input 
data. The equation for Convolution operation:
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The CNN performs convolutional operations, 
followed by non-linear activations (ReLU), and 
pooling operations to extract spatial features from 
the input data. The equation for Convolution 
operation: 

       , , ( * , )Z i j k W k X i j b k  ,       (4) 

where, [i,j,k] represents the output activation at 
position (i,j) in the k-th convolutional feature map. 
W[k] denotes the weight tensor of the k-th 
convolutional filter. X[i,j] represents the receptive 
field at position (i,j). b[k] is the bias term associated 
with the k-th convolutional filter.  The ReLU 
activation function is: 

   , , max(0, , , )A i j k Z i j k ,                             (5) 

where, A[i,j,k] denotes the output activation after 
applying the ReLU function. The Pooling operation 
is,  

   , , _ ( , , )P i j k pool function A i j k ,            (6) 

where P[i,j,k] represents the pooled value obtained 
from the pool_function applied to the region 
defined by A[i,j,k].  

The input data is sequence of data with, F is the 
number of features per time step. The LSTM layer 
has 64 memory units, which determine the number 
of neurons in the LSTM cell. Each memory unit has 
three sets of weights: the input weights, recurrent 
weights, and bias. The input weights are of shape 
(F, 464), where 4 is the number of gates in an LSTM 
cell (input, forget, output, and candidate). The 
recurrent weights are of shape (64, 464) and are 
responsible for the memory's feedback mechanism. 
The bias is of shape (464) and is used to adjust the 
output of the gates. In total, the LSTM layer has 
approximately 30,720 parameters. The LSTM layer 
processes the input sequence, and the final hidden 
state, representing the information learned from 
the sequence, is fed into the dense output layer. The 
dense layer has one neuron and one bias term. 
Hence, the dense output layer contributes 65 
parameters to the model. The total number of 
parameters in the LSTM model is approximately 
30,785. The model is trained using an appropriate 
loss function (binary cross-entropy) and optimized 
with an optimization algorithm (Adam) to 
minimize the loss and make accurate predictions 
for binary classification tasks such as Parkinson's 
disease detection. 

The LSTM processes the input sequence, 
maintaining a hidden state vector h(t )and a cell 
state vector c(t ), which are updated at each time 
step. The Forget Gate,  

   (7) 

The Input gate, 

1( * * )t i t i t ii W X U h b                      (8) 

The Output Gate,  

1( * * )t o t o t oO W X U h b                   (9) 

The Cell State Update,  

1tanh( * * )t a t a t ag W X U h b             (10) 

The New Cell State is updated as,  

1* *t t t t tC f C i g                                    (11) 

The Hidden State Update,  

1* tanh( )t t th o C  ,                                    (12) 

where Xt represents the input feature vector at 
time step t. W* and U* are the weight matrices 
corresponding to the different LSTM gates. b* 
are the bias terms associated with the LSTM 
gates. σ denotes the sigmoid activation 
function. tanh denotes the hyperbolic tangent 
activation function. The final output of the 
LSTM is typically taken from the last time 
step, ht, which can be used for classification or 
passed through additional fully connected 
layers before making predictions. Ensemble-
averaging is a technique rooted in the belief 
that the individual models comprising the 
ensemble will typically exhibit distinct errors 
when presented with novel, unseen data. The 
utilization of an ensemble model has been 
shown to effectively mitigate variance in 
predictions, leading to improved accuracy 
when compared to individual models. One of 
the key benefits of employing this particular 
strategy lies in its straightforward 
implementation. Additionally, it effectively 
leverages the wide range of errors exhibited 
by its component models, all without 
necessitating any supplementary training on 
extensive volumes of individual predictions. 

 
4. Results and Discussion 
In the study, a 6-fold cross-validation 
approach was utilized for Parkinson's Disease 
(PD) detection. Cross-validation is widely 
used in machine learning to assess a model's 
accuracy and scalability. The dataset is split 
into six "folds" of roughly the same size in 6-
fold cross-validation. Each fold is utilized as a 
validation set once during training, and the 
remaining folds are employed for training and 

, (4)
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denotes the weight tensor of the k-th convolutional 
filter. X[i,j] represents the receptive field at position 
(i,j). b[k] is the bias term associated with the k-th con-
volutional filter.  The ReLU activation function is:

  

The CNN performs convolutional operations, 
followed by non-linear activations (ReLU), and 
pooling operations to extract spatial features from 
the input data. The equation for Convolution 
operation: 

       , , ( * , )Z i j k W k X i j b k  ,       (4) 

where, [i,j,k] represents the output activation at 
position (i,j) in the k-th convolutional feature map. 
W[k] denotes the weight tensor of the k-th 
convolutional filter. X[i,j] represents the receptive 
field at position (i,j). b[k] is the bias term associated 
with the k-th convolutional filter.  The ReLU 
activation function is: 

   , , max(0, , , )A i j k Z i j k ,                             (5) 

where, A[i,j,k] denotes the output activation after 
applying the ReLU function. The Pooling operation 
is,  

   , , _ ( , , )P i j k pool function A i j k ,            (6) 

where P[i,j,k] represents the pooled value obtained 
from the pool_function applied to the region 
defined by A[i,j,k].  

The input data is sequence of data with, F is the 
number of features per time step. The LSTM layer 
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of neurons in the LSTM cell. Each memory unit has 
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The bias is of shape (464) and is used to adjust the 
output of the gates. In total, the LSTM layer has 
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state, representing the information learned from 
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Hence, the dense output layer contributes 65 
parameters to the model. The total number of 
parameters in the LSTM model is approximately 
30,785. The model is trained using an appropriate 
loss function (binary cross-entropy) and optimized 
with an optimization algorithm (Adam) to 
minimize the loss and make accurate predictions 
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are the bias terms associated with the LSTM 
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passed through additional fully connected 
layers before making predictions. Ensemble-
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strategy lies in its straightforward 
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with an optimization algorithm (Adam) to 
minimize the loss and make accurate predictions 
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where Xt represents the input feature vector at 
time step t. W* and U* are the weight matrices 
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are the bias terms associated with the LSTM 
gates. σ denotes the sigmoid activation 
function. tanh denotes the hyperbolic tangent 
activation function. The final output of the 
LSTM is typically taken from the last time 
step, ht, which can be used for classification or 
passed through additional fully connected 
layers before making predictions. Ensemble-
averaging is a technique rooted in the belief 
that the individual models comprising the 
ensemble will typically exhibit distinct errors 
when presented with novel, unseen data. The 
utilization of an ensemble model has been 
shown to effectively mitigate variance in 
predictions, leading to improved accuracy 
when compared to individual models. One of 
the key benefits of employing this particular 
strategy lies in its straightforward 
implementation. Additionally, it effectively 
leverages the wide range of errors exhibited 
by its component models, all without 
necessitating any supplementary training on 
extensive volumes of individual predictions. 
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to assess a model’s accuracy and scalability. The data-
set is split into six “folds” of roughly the same size in 
6-fold cross-validation. Each fold is utilized as a val-
idation set once during training, and the remaining 
folds are employed for training and evaluation five 
more times. This method guarantees that every data 
point is used for both training and validation, which 
is essential for evaluating the model’s efficacy on var-
ious data subsets. On the other hand, a model verified 
on a higher number of different data subsets (e.g., 
10-fold or leave-one-out) may yield more accurate 
performance estimates. However, training and eval-
uating the model many times increases computing 
overhead. However, training and evaluating the mod-
el fewer times with fewer folds (e.g., 3-fold or 5-fold) 
reduces computing time. The validation data subsets’ 
lack diversity may make model performance estima-
tions less accurate. Six-fold cross-validation balanc-
es these factors. It balances computational efficiency 
with performance estimation accuracy. It evaluates 
the model on various data divisions without being 
computationally demanding. 
The dataset is partitioned into three distinct subsets 
to facilitate the development and evaluation of the 
predictive model. The training set encompasses 80% 
of the data, serving as the foundation for the model’s 
learning process, where it discerns patterns and re-
lationships within the data. The validation set, con-
sisting of 10% of the data, is employed to fine-tune the 
model’s hyperparameters and prevent potential over-
fitting, ensuring it generalizes well to new data. Lastly, 
the testing set, comprising the remaining 10% of the 
data, serves as an independent and unbiased bench-
mark to gauge the model’s overall performance, pro-
viding an accurate estimate of its efficacy in detecting 
Parkinson’s disease in previously unseen cases.
In the assessment of the performance of a stacked 
deep learning model, various evaluation metrics are 
frequently employed. The calculation of accuracy, a 
metric that quantifies the proportion of accurately 
classified instances, involves dividing the sum of true 
positives (TP) and true negatives (TN) by the sum 
of TP, TN, false positives (FP), and false negatives 
(FN).  Precision, commonly referred to as Positive 
Predictive Value (PPV), is a statistical measure that 
evaluates the accuracy of positive predictions by de-
termining the rate at which precise projections are 
made relative to all correct forecasts. The calculation 

involves the division of true positives (TP) by the sum 
of true positives (TP) and false positives (FP). 
Recall, also known as Sensitivity or True Positive 
Rate (TPR), is a statistic used to evaluate the percent-
age of true positive cases that were accurately antic-
ipated. Mathematically, it’s as simple as dividing the 
number of positive results by the combined number 
of false-positive and negative ones.  The calculation of 
the F1 Score involves the harmonic mean of precision 
and recall, which is a metric that aims to strike a bal-
ance between these two performance measures. 
Accuracy, precision, recall, F1-score are performed 
using below equations. 
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The Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC) is a 
significant metric in assessing the recital of a 
model. It evaluates the model's effectiveness 
at different classification thresholds by 
graphing the TPR against the False Positive 
Rate (FPR). This metric provides valuable 
insights into the model's ability to accurately 
classify instances. The Confusion Matrix is a 
widely used tool in the field of machine 
learning that presents a tabular representation 
of a model's performance. It provides valuable 
insights by displaying the number of TP, TN, 
FP, and FN predictions for each class. This 
matrix allows researchers and practitioners to 
assess the accuracy and effectiveness of their 
models in a clear and concise manner. The 
evaluation metrics are derived by comparing 
the predicted labels generated by the stacked 
deep learning model with the ground truth 
labels. This approach allows for a thorough 
evaluation of the model's performance. 

Table 2 

Performance Evaluation on the based model 
against the proposed model 

 

Model Class Accuracy Precision Recall F1-
score 

CNN 
Normal 97% 0.98 0.97 0.96 

PD 98% 0.98 0.96 0.96 

LSTM 
Normal 96% 0.96 0.97 0.95 

PD 95% 0.95 0.95 0.94 

CNN-
LSTM 

Normal 98% 0.98 0.97 0.96 

PD 98% 0.97 0.98 0.97 

LSTM- Normal 96% 0.96 0.95 0.94 

(13)
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insights into the model's ability to accurately 
classify instances. The Confusion Matrix is a 
widely used tool in the field of machine 
learning that presents a tabular representation 
of a model's performance. It provides valuable 
insights by displaying the number of TP, TN, 
FP, and FN predictions for each class. This 
matrix allows researchers and practitioners to 
assess the accuracy and effectiveness of their 
models in a clear and concise manner. The 
evaluation metrics are derived by comparing 
the predicted labels generated by the stacked 
deep learning model with the ground truth 
labels. This approach allows for a thorough 
evaluation of the model's performance. 
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against the proposed model 

 

Model Class Accuracy Precision Recall F1-
score 

CNN 
Normal 97% 0.98 0.97 0.96 

PD 98% 0.98 0.96 0.96 

LSTM 
Normal 96% 0.96 0.97 0.95 

PD 95% 0.95 0.95 0.94 

CNN-
LSTM 

Normal 98% 0.98 0.97 0.96 

PD 98% 0.97 0.98 0.97 

LSTM- Normal 96% 0.96 0.95 0.94 

(16)

The Area Under the Receiver Operating Character-
istic Curve (AUC-ROC) is a significant metric in as-
sessing the recital of a model. It evaluates the model’s 
effectiveness at different classification thresholds 
by graphing the TPR against the False Positive Rate 
(FPR). This metric provides valuable insights into 
the model’s ability to accurately classify instances. 
The Confusion Matrix is a widely used tool in the field 
of machine learning that presents a tabular represen-
tation of a model’s performance. It provides valuable 
insights by displaying the number of TP, TN, FP, and 
FN predictions for each class. This matrix allows 
researchers and practitioners to assess the accura-
cy and effectiveness of their models in a clear and 
concise manner. The evaluation metrics are derived 
by comparing the predicted labels generated by the 
stacked deep learning model with the ground truth la-
bels. This approach allows for a thorough evaluation 
of the model’s performance.
Performance evaluation findings are shown in Ta-
ble 2. Normal and PD (Parkinson’s Disease) classes 
analyze the models. The CNN base model properly 
identified 97% of Normal cases. Normal class has 
0.98 precision, indicating a high rate of valid positive 
predictions. Recall, also known as sensitivity, is 0.97, 
meaning the model detected 97% of positive events. 
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Table 2
Performance Evaluation on the base models against the 
proposed model

Model Class Accuracy Precision Recall F1-
score

CNN
Normal 97% 0.98 0.97 0.96

PD 98% 0.98 0.96 0.96

LSTM
Normal 96% 0.96 0.97 0.95

PD 95% 0.95 0.95 0.94

CNN-LSTM
Normal 98% 0.98 0.97 0.96

PD 98% 0.97 0.98 0.97

LSTM-CNN
Normal 96% 0.96 0.95 0.94

PD 95% 0.96 0.97 0.96

SDLC
Normal 99% 0.99 0.99 0.99

PD 99% 0.99 1.00 0.99

The Normal class performed well with a 0.96 F1-
score, which balances accuracy and recall.
The CNN basic model classifies PD events with 98% 
accuracy. The precision is 0.98, indicating that PD 
positive predictions are mostly correct. The model 
detected 96% of PD patients with a recall of 0.96. PD 
class accuracy and recall are balanced with an F1-
score of 0.96. Another fundamental model, the LSTM, 
classifies Normal occurrences with 96% accuracy. 
Precision is 0.96, indicating a high rate of Normal 
case true positive predictions. The model detected 
97% of Normal occurrences with a recall of 0.97. Nor-
mal class performance is balanced at 0.95 F1-score. 
The LSTM model classifies PD with 95% accuracy. 
Precision is 0.95, showing PD forecasts are accurate. 
The model detected 95% of PD patients with a recall 
of 0.95. PD class performance is balanced at 0.94 F1-
score.
CNN-LSTM and LSTM-CNN outperform basic mod-
els. The CNN-LSTM model classifies Normal and PD 
cases with 98% accuracy. Both classes have strong ac-
curacy, recall, and F1-scores for the proposed model. 
Similar to the basic models, the LSTM-CNN model 
has 96% accuracy for Normal examples and 95% for 
PD instances. LSTM-CNN has great accuracy, recall, 
and F1-scores. Finally, the suggested SDLC (Stacked 
Deep Learning Classifier) model classifies Normal 

cases with 99.4% accuracy. All good examples were 
detected with accuracy and recall of 0.99 to 1.00. The 
F1-score is 0.99, suggesting a modest precision-recall 
imbalance. The SDLC model classifies PD with 99% 
accuracy. PD forecasts are quite accurate with 0.99 
accuracy. PD class accuracy and recall are balanced 
with an F1-score of 0.99.
Figure 4 represents the accuracy of different base 
models used for predicting PD. Each model’s accuracy 
is indicated as a percentage. According to the figure, 
the CNN base model achieves an accuracy of 97% for 
PD prediction. This means that the model correctly 
classifies PD instances with a high rate of accuracy. 
The LSTM base model achieves an accuracy of 95% 
for PD prediction. This indicates that the LSTM mod-
el has a slightly lower accuracy compared to the CNN 
model in identifying PD cases.
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(a) Fold 1 

The CNN-LSTM model achieves an accuracy of 98% 
for PD prediction, indicating a high rate of accuracy 
in classifying PD instances. This model shows im-
proved performance compared to both the CNN and 
LSTM base models. The LSTM-CNN model achieves 
an accuracy of 96% for PD prediction, demonstrating 
relatively high accuracy in classifying PD instances. 
It performs slightly better than the LSTM model but 
falls short compared to the CNN and CNN-LSTM 
models. The proposed model, SDLC (Stacked Deep 
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Figure 5
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Learning Classifier), achieves a perfect accuracy 
of 99.3% for PD prediction. This indicates that the 
SDLC model is able to accurately classify all instanc-
es of PD. The CNN-LSTM model achieves the highest 
accuracy (98%), followed closely by the SDLC model 
with accuracy of 99.4%. The other models, including 
CNN, LSTM, and LSTM-CNN, exhibit slightly lower 
but still respectable accuracy rates ranging from 95% 
to 97%.
Figure 5 represents the confusion matrix of the SDLC 
(Stacked Deep Learning Classifier) model for predict-
ing PD. The model correctly predicted all instances 
of the “Normal” class, indicated by a 99.6% average 
TPR or sensitivity. There are no FP predictions for 
the “Normal” class. The model accurately predicted 
average 99.3% of the instances belonging to the “PD” 
class, resulting in a high TPR or sensitivity. There is a 
small number of FN, indicating instances of PD that 
were mistakenly classified as “Normal.” The model 
achieved a high TNR or specificity, with a negligible 
number of FP predictions for the “PD” class. The con-
fusion matrix of the SDLC model demonstrates its 
high performance in correctly classifying both “Nor-
mal” and “PD” instances. It achieved a perfect classi-
fication rate for the “Normal” class (100%) and a high 
accuracy rate of 99% for the “PD” class.

4.1. Limitations
One limitation of the study is the lack of diversity in 
the dataset used for evaluation. The study utilizes 
resting functional magnetic resonance imaging (rf-
MRI) and gene data from the Parkinson’s Progression 
Markers Initiative (PPMI) and Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) databases. While 
these datasets provide valuable information, they 
might not fully represent the broader population of 
individuals with Parkinson’s disease. The absence of 
data from diverse ethnic groups, different age ranges, 

and varying disease stages could introduce bias and 
limit the generalizability of the proposed multimodal 
deep learning technique to a more diverse population. 
As the data was already collected and available, there 
might be limitations in the experimental design and 
control over the data acquisition process. Prospective 
studies, with carefully designed protocols, allow for 
better control and standardization of data collection, 
reducing potential biases and increasing the robust-
ness of the findings.

4.2. Performance Comparison
Table 3 presents a comparison of different method-
ologies for Parkinson’s disease (PD) detection, along 
with their corresponding accuracies and modalities 
used for analysis. Ali et al. [38] utilized a Multimod-
al Data-Driven Ensemble approach and achieved an 
accuracy of 96%. Their study focused on using mul-
timodal voice data for PD detection. Prashanth et 
al. [39] employed Support Vector Machine (SVM) 
and achieved an accuracy of 96.40%. They utilized 
non-motor features and biomarkers for their analy-
sis. Papadopoulos et al. [40] developed a Customized 
Deep Learning framework and achieved an accuracy 
of 92%. Their study focused on utilizing postural ac-
celeration and typing dynamics as modalities for PD 
detection. 
The proposed methodology, Stacked Deep Learning 
Classifiers (SDLC), achieved an impressive accuracy 
of 99.4%. The study leveraged resting functional mag-
netic resonance imaging (MRI) data and biomarkers 
as modalities for PD detection. The results demon-
strate that the proposed SDLC method outperforms 
other approaches in terms of accuracy, showcasing 
its superior performance in distinguishing individu-
als with PD from those without PD. By utilizing both 
MRI data and biomarkers, the proposed SDLC meth-
od capitalizes on the advantages of multi-modal data 

Table 3
Comparison of Multimodal based Parkinson’s disease detection

Reference Methodology Accuracy Modality

Ali et al. [38] MultiModal Data–Driven Ensemble 96% multimodal voice data

Prashanth et al. [39] SVM 96.40% non-motor features and biomarkers

Papadopoulos, A et al. [40] Customized Deep learning framework 92% Postural acceleration and typing dynamics

Proposed methodology SDLC 99.4% MRI and biomarkers
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Table 4
Comparison of cross validation performance

Fold 
Number

Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-Score 
(%)

Fold 1 98.5 98.7 98.2 98.4

Fold 2 99.2 99.0 99.4 99.2

Fold 3 99.6 99.5 99.7 99.6

Fold 4 98.9 98.8 99.1 99.0

Fold 5 99.3 99.1 99.5 99.4

Average 99.1 99.0 99.2 99.1

fusion, providing a robust and reliable means for eval-
uating PD. These findings highlight the potential of 
the SDLC technique as a valuable tool for enhancing 
the accuracy and efficiency of patient data analysis in 
Parkinson’s disease research.

Above Table 4 shows cross validation results. In these 
models most of cross data verification brings 99% 
of accuracy. the model performance is tested with 
various data.

5. Conclusion and Future Work 
In summary, PD is a progressive neurodegenerative 
condition that has an important effect on motor func-
tion, cognitive abilities, and memory. The early iden-
tification and treatment of PD are crucial for effec-
tively managing its symptoms. However, the limited 
availability of medical resources and personnel pres-
ents significant challenges in accurately diagnosing 
this condition. The objective of this research was to 
tackle the aforementioned problem through the in-
troduction of an innovative multimodal deep learning 
approach for differentiating individuals with PD from 

those without PD. The study utilized rfMRI and gene 
data obtained from the PPMI and ADNI databases. 
Its primary objective was to make predictions regard-
ing the specific pathological brain regions affected by 
PD and to identify the risk genes that are associated 
with this condition. Through a comprehensive anal-
ysis of the available datasets, the primary objective 
of this research endeavour was to acquire a deeper 
understanding of the fundamental mechanisms and 
genetic determinants that play a role in the onset and 
advancement of PD.
The results of this research study demonstrate the 
enhanced efficiency of the proposed multimodal tech-
nique in comparison to both unimodal strategies and 
other currently available multimodal methods. The 
method known as stacked deep learning classifiers 
(SDLC) demonstrated exceptional performance in 
terms of F1-score and accuracy. With an F1-score of 
0.99 and an accuracy rate of 100%, the SDLC method 
outperformed other existing approaches. The findings 
presented in this study provide evidence of the effec-
tiveness and promise of the suggested methodology in 
enhancing the precision and dependability of patient 
data analysis. Moreover, the research findings consis-
tently demonstrated that the proposed methodology 
consistently outperformed alternative approaches. 
This was evidenced by a consistently higher average 
increase in F1-score across the various experiments 
conducted. The present discovery underscores the 
benefits of engaging in training across multiple mo-
dalities, even in cases where a particular modality is 
not available during the inference phase.
By adopting a cutting-edge multimodal deep learning 
approach, this work contributes greatly to the study 
of PD. The proposed method is meant to enhance PD 
detection precision. The research findings provide 
significant insights into the fundamental mechanisms 
and genetic components linked to Parkinson’s disease 
(PD), thereby laying the groundwork for enhanced ap-
proaches to diagnosis and treatment in the future. 
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