
5Information Technology and Control 2024/1/53

Learning Sliding Policy of
Flat Multi-target Objects in
Clutter Scenes

ITC 1/53
Information Technology
and Control
Vol. 53 / No. 1 / 2024
pp. 5-18
DOI 10.5755/j01.itc.53.1.34708

Learning Sliding Policy of Flat Multi-target Objects in Clutter Scenes

Received 2023/07/25 Accepted after revision 2023/10/12

HOW TO CITE: Wu, L., Wu, J., Li, Z., Chen, Y., Liu, Z. (2024). Learning Sliding Policy of Flat Multi-
target Objects in Clutter Scenes. Information Technology and Control, 52(4), 5-18. https://doi.
org/10.5755/j01.itc.53.1.34708

Corresponding author: zhiyong.liu@ia.ac.cn

Liangdong Wu
School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

Jiaxi Wu
Institute of Automation, Chinese Academy of Sciences, Beijing, China

Zhengwei Li
School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

Yurou Chen
Institute of Automation, Chinese Academy of Sciences, Beijing, China

Zhiyong Liu
School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China;
Institute of Automation, Chinese Academy of Sciences, Beijing, China;
Cloud Computing Center, Chinese Academy of Sciences, Dongguan, Guangdong, China

In clutter scenes, one or several targets need to be obtained, which is hard for robot manipulation task. Espe-
cially, when the targets are flat objects like book, plates, due to limitation of common robot end-effectors, it
will be more challenging. By employing pre-grasp operation like sliding, it becomes feasible to rearrange ob-
jects and shift the target towards table edge, enabling the robot to grasp it from a lateral perspective. In this
paper, the proposed method transfers the task into a Parameterized Action Markov Decision Process to solve
the problem, which is based on deep reinforcement learning. The mask images are taken as one of observations
to the network for avoiding the impact of noise of original image. In order to improve data utilization, the policy
network predicts the parameters for the sliding primitive of each object, which is weight-sharing, and then the
Q-network selects the optimal execution target. Meanwhile, extra reward mechanism is adopted for improving
the efficiency of task actions to cope with multiple targets. In addition, an adaptive policy scaling algorithm
is proposed to improve the speed and adaptability of policy training. In both simulation and real system, our
method achieves a higher task success rate and requires fewer actions to accomplish the flat multi-target slid-
ing manipulation task within clutter scene, which verifies the effectiveness of ours.
KEYWORDS: Deep Learning in Manipulation, Reinforcement Learning, Robot Control, Intelligent system,
sliding policy.

Information Technology and Control 2024/1/536

1. Introduction
Robot grasping constitutes a pivotal focal point
within the domain of robotics research, with nu-
merous algorithms having been devised to propel
advancements in this field [12]. Conventionally, pri-
or to the robot’s initiation of a grasping operation,
the targeted object is prepositioned in a condition
conducive to grasping, thereby enabling the robot’s
gripper to grasp it from one or multiple directions.
However, in the face of a flat object placed horizon-
tally on a table, a direct grasp is most likely not possi-
ble. Typical objects are common books, dishes etc. If
such objects are thin and wide, robots equipped with
ordinary gripper cannot grasp them. At this time, a
simple and direct idea is that the “pre-grasp” action
like sliding or pushing is taken to shift flat object to
the table edge [5]. Currently, some manual or learn-
ing-based methods have emerged for processing in-
dividual object [28]. However, the target surrounded
by other objects is more common. It means that the
target is likely to collide with other objects before
being moved to the table edge, resulting in a failure
of the pre-grasp operation.
The target can be graspable through non-prehensile
actions rearranging the surrounded obstacles, such
as pushing, sliding, etc. [31]. Current approaches to
clutter scenarios revolve around partially or com-
pletely isolating objects from other obstacles, en-
abling top-down access to obtain small objects [30].
For flat objects, however, such manipulations are
still insufficient. Shift the target towards the table’s
edge sufficiently so that it is exposed for side grasp-
ing, rather than solely to separate it from obstacles.
Furthermore, it is imperative to ensure that objects
are not inadvertently dropped from the table to pre-
vent potential damage. Consequently, the task of ac-
quiring flat objects within a cluttered scene becomes
notably more demanding. In particular, if there are a
large number of obstacles and targets, it will be hard-
er to rearrange each object to make a target move to
the table smoothly and keep each object from falling
[18]. Moreover, multiple targets in cluttered scenar-
ios also add complexity to the task. Because it is not
only necessary to ensure the graspable-ability of a
single target, but also to fully consider the overall ac-
tion efficiency of the task. The manipulation policy is
put forward higher requirements.

In this paper, we aim to push each target in the clut-
tered scene to the table’s side with a small number of
actions to make them graspable, which is the focus of
our research and also to eliminate difficulty for subse-
quent grasping. We introduce a technique grounded in
deep reinforcement learning to accomplish sliding ma-
nipulation within cluttered scenes. The operation task
is redefined as a Parameterized Action Markov Deci-
sion Process (PAMDP) [17], where the object to be slid
is denoted as a discrete action space. The sliding prim-
itive composed of sliding distance and execution angle
is a continuous action space. Hence, the whole action
space is both discrete and continuous. For avoiding the
impact of noise of original image, the mask images are
taken as one of observations to the network. The policy
network predicts the parameters for the sliding primi-
tive of each individual object, which is weight-sharing,
and then the Q-network selects the optimal execution
target. Furthermore, with the aim of enhancing the
efficiency of completing multi-target task, the policy
needs to identify the execution of each action as a nec-
essary step in the overall minimum number of actions
as much as possible. Therefore, we design an addition-
al reward mechanism to intensify the policy’s perfor-
mance. Meanwhile, to boost the speed and adaptability
of policy training, an adaptive policy scaling algorithm
is proposed. The trained agent generates a sequence of
sliding actions to rearrange individual objects, clear
obstructions for a collision-free path, and subsequent-
ly slides the target towards the table edge. This process
repeats, ensuring that each target progressively reach-
es a graspable pose.
The effectiveness of our method has been verified
through experiments conducted in both simulated
and real-world systems, showcasing a superior task
success rate and enhanced action efficiency. To sum
up, this paper has three main contributions.
1 The sliding policy is learned to rearrange objects

via PAMDP and reinforcement learning with
weight-sharing network for making multiple target
flat objects graspable in clutter scenes.

2 Incorporate the extra reward into the system for
boosting action efficiency.

3 An adaptive policy scaling algorithm is proposed
for flat multi-target sliding tasks in clutter.

7Information Technology and Control 2024/1/53

2. Related Works
In the field of robot grasping, numerous studies have
emerged [4, 15], enabling intelligent manipulation of
unknown objects within unstructured environments
to a certain degree. Nonetheless, in regular circum-
stances, robots often face challenges when attempt-
ing to directly grasp flat objects such as books and
plates. Instead, they require the assistance of pre-
grasp operations, such as pushing [7], sliding [9], and
so on, to render these objects graspable.
A straightforward idea is to design professional tool
to complete the operation task [27], when it is hard
for flat objects to obtain via general gripper. A unique
two-finger fixture gripper was designed via Babin et al.
and trained a dedicated “shovel” policy for it, so as to
achieve a flat desktop to scoop up objects and then grasp
them [1]. Berlin Institute of Technology manufactures
the RBO soft robotic hand using silicone gel and polyes-
ter fibers [20], and it is driven pneumatically.
Ordinary gripper can grasp flat objects to accomplish
the grasping task by pushing, sliding and other pre-
grasp operations [5]. Sarantopoulos et al. trained the ro-
bot to grasp from the side by identifying the gap between
table top and steel plate [22]. King et al. adopted the idea
of trajectory optimization to solve the pre-grasp prob-
lem and obtained the optimal solution through training
policy [14]. Kappler et al. classified objects into cate-
gories, and made adaptive adjustments for objects to
be executed based on their categories, then completed
pre-grasp operations by sliding [13]. CBiRRT algorithm
[9] and reinforcement learning method [24] are used to
move flat object to grabable poses.
When the target object is in close proximity to sur-
rounding obstacles, employing pre-grasp actions can
expedite the acquisition of the target via robot, such as
pushing [6]. Huang et al. moved the obstacle by push-
ing, so that the target object could be discovered by
the camera and provide input state for the subsequent
capture [11]. Baichuan et al. output the optimal push-
ing action sequences based on the predictive network
to capture the target in a relatively efficient way [10].
Berscheid et al. introduced sliding into the algorithm
framework of VPG [31] and applied it to cluttered en-
vironments with constraints around storage bins [2].
A hierarchical reinforcement learning approach was
proposed by Sarantopoulos et al. [21] to incorporate
pushing, sliding, and other pre-grasp actions within a
continuous action space framework.

Currently, research on pre-grasp manipulation of
flat objects is relatively scarce. Bingjie et al. mitigat-
ed task complexity to some extent by not positioning
the plates completely flat, successfully accomplishing
plate grasping in clutter [25].

3. Background

3.1. Reinforcement Learning (RL)
In general, we represent the Markov Decision Pro-
cess (MDP) as a tuple (, , , ,)S A p r γ , where S is the set
of states, A is the set of actions, p is the state transi-
tion probability function, r is the reward function, and

[]0,1γ ∈ is the discount factor.
The main goal of reinforcement learning is to max-
imize the discounted reward sum

T
i t

t i
i t

R rγ −

=

= ∑ , also
known as the expected return maximization. The
agent’s objective is to train a policy θπ with parameter
θ that can perform an action with maximum reward.
How to learn policy efficiently is the main research
content of reinforcement learning, and many algo-
rithms have been proposed, such as DDPG [16], A3C
[19], PPO [23] and so on.

3.2. Markov Decision Process for
Parameterized Action Space
In the field of reinforcement learning, action spaces
are commonly categorized into discrete actions and
continuous actions. Currently, various algorithms are
designed to address different types of action spaces.
For instance, The Deep Q-Network (DQN) algorithm
is explicitly designed to address problems character-
ized by discrete action spaces, whereas DDPG is cus-
tomized for situations involving continuous action
spaces. On the other hand, PPO is a versatile approach
that can effectively handle both discrete and continu-
ous action spaces.
However, there is another kind of action space that
is more special, that is, the parameterized action
space that is both discrete and continuous. Simul-
taneously, in certain scenarios, each discrete action
k∈Ad (Ad = {1, 2, ..., K}) can be represented by a set of
continuous parameters denoted as xk, where the total
number of continuous parameters is denoted as mk.
The aggregate of all continuous parameters, denot-
ed as xk, collectively constitutes a continuous action

Information Technology and Control 2024/1/538

space referred to as Ac. Consequently, this type of action
space can be expressed as { }(,)

d
k k ck A

A k x x A
∈

= ∪ ∈ ,
described as a hybrid discrete-continuous action space.
In the case of hybrid discrete-continuous action
spaces, traditional reinforcement learning algo-
rithms such as DQN, DDPG, and PPO face challeng-
es as they either discretize or relax the continuous
actions without considering the specific character-
istics of PAMDP during their initial design. As a re-
sult, achieving satisfactory results becomes difficult.
P-DQN (Parametrized Deep Q-Network) [29] was
proposed to address this issue by adapting the DQN
algorithm to handle mixed action spaces. However,
this approach involves inputting all action parame-
ters into the action value network, which contradicts
its theoretical derivation. To address this limitation,
MP-DQN (Multi-Pass Deep Q-Network) [3] was in-
troduced as an improvement over P-DQN. MP-DQN
enhances the algorithm’s performance by incorporat-
ing multiple inputs, thereby effectively handling hy-
brid discrete-continuous action spaces. By leveraging
these multiple inputs, MP-DQN aims to overcome the
limitations of previous approaches and achieve better
results in scenarios involving mixed action spaces.

3.3. Sliding Primitive
This paper explores the use of deep reinforcement
learning for end-to-end pre-grasp manipulations in
cluttered scenes. When dealing with complex environ-
ments, agents typically require significant trial and er-
ror to acquire an appropriate policy. To expedite train-
ing, this study introduces a sliding primitive (cx, cy, d, θ)
that imposes constraints on the robot’s action space.
Here, d represents the sliding distance, θ denotes the
sliding direction, and (cx, cy) represents the central coor-
dinate of the targeted object. Each object, identified by
its central coordinate (cx, cy), is assigned a correspond-
ing object number, and the robot employs a sliding oper-
ation (d, θ) to move the object to a designated position.
Alternatively, the sliding primitive can be expressed as
(k, d, θ), where k represents the object number.

4. Method
4.1. Mask Images
The sliding policy requires gathering shape character-
istics of both the object and the tabletop as observa-

tions to generate appropriate action instructions and
subsequently execute the task. However, the direct use
of the original image of the camera will be affected by
noise, increasing the complexity, and considering the
large number of samples required via reinforcement
learning, it will further increase the difficulty of policy
training. Therefore, the mask images are used as one of
the state quantities in this paper. Given pre-processed
mask images, the agent is capable of extracting shape
features and relative positions of objects and tables.
Subsequently, the agent can output sliding actions for
each object to enable it graspable.
The mask images consist of three components: the
object mask image Io, the mask image of desktop It,
and XOR image Ix, and Ix represents objects located
outside the desktop, which is expressed as:

one of the state quantities in this paper. Given pre-
processed mask images, the agent is capable of
extracting shape features and relative positions of
objects and tables. Subsequently, the agent can
output sliding actions for each object to enable it
graspable.

The mask images consist of three
components: the object mask image Io, the mask
image of desktop It, and XOR image Ix, and Ix
represents objects located outside the desktop,
which is expressed as:

0 0((,),)x tI AND XOR I I I . (1)
In the formula, AND denotes the logical and-
operation, and XOR represents the exclusive xor
operation. In the mask images Io and It, pixels
corresponding to objects and desktops have a
value of 1, while other areas have a pixel value of
0. In mask image Ix, the object is exposed to the
outer part of the desktop with a pixel value of 1

and the rest of the area with a pixel value of 0.
Figure 1 provides an illustration of two sets of
distinct mask images (Io, It, Ix). Notably, due to
variations observed on the right side of the
desktop, the desktop mask image It solely
displays the lower right area.

Figure 1 Binary mask images (Io, It, Ix)

In real world, considering that the robot will

maintain contact with the object during the sliding
operation, the robot may block the object. In this
case, we cannot get the full object mask image
directly from the current frame Ip. To circumvent
this issue, before the beginning of each round, the
RGB images of objects and desktops without
occlusion are collected in advance and converted

into mask images 0I
 and tI

 with OpenCV

library. The specific generation process is shown
in Figure 2. Since the camera is positioned in the
upper right region of the table, the camera's
shooting angle is not perpendicular to the desktop,

so the original image captured by the camera
needs to be first transformed by perspective and
projected on a plane parallel to the desktop. After
that, we carry out grayscale, binarization and
morphological processing of the projected image
to extract the contour information and draw mask
image of the object. Finally, the mask image of
the object is adjusted to the center of the image by
two-dimensional affine transformation, and the

mask image of the object is obtained 0I
 . The

desktop mask image tI
 is generated in a similar

way.

(1)

In the formula, AND denotes the logical and-opera-
tion, and XOR represents the exclusive xor operation.
In the mask images Io and It, pixels corresponding to
objects and desktops have a value of 1, while other ar-
eas have a pixel value of 0. In mask image Ix, the object
is exposed to the outer part of the desktop with a pixel
value of 1 and the rest of the area with a pixel value of
0. Figure 1 provides an illustration of two sets of dis-
tinct mask images (Io, It, Ix). Notably, due to variations
observed on the right side of the desktop, the desktop
mask image It solely displays the lower right area.

Figure 1
Binary mask images (Io, It, Ix)

one of the state quantities in this paper. Given pre-
processed mask images, the agent is capable of
extracting shape features and relative positions of
objects and tables. Subsequently, the agent can
output sliding actions for each object to enable it
graspable.

The mask images consist of three
components: the object mask image Io, the mask
image of desktop It, and XOR image Ix, and Ix
represents objects located outside the desktop,
which is expressed as:

0 0((,),)x tI AND XOR I I I . (1)
In the formula, AND denotes the logical and-
operation, and XOR represents the exclusive xor
operation. In the mask images Io and It, pixels
corresponding to objects and desktops have a
value of 1, while other areas have a pixel value of
0. In mask image Ix, the object is exposed to the
outer part of the desktop with a pixel value of 1

and the rest of the area with a pixel value of 0.
Figure 1 provides an illustration of two sets of
distinct mask images (Io, It, Ix). Notably, due to
variations observed on the right side of the
desktop, the desktop mask image It solely
displays the lower right area.

Figure 1 Binary mask images (Io, It, Ix)

In real world, considering that the robot will

maintain contact with the object during the sliding
operation, the robot may block the object. In this
case, we cannot get the full object mask image
directly from the current frame Ip. To circumvent
this issue, before the beginning of each round, the
RGB images of objects and desktops without
occlusion are collected in advance and converted

into mask images 0I
 and tI

 with OpenCV

library. The specific generation process is shown
in Figure 2. Since the camera is positioned in the
upper right region of the table, the camera's
shooting angle is not perpendicular to the desktop,

so the original image captured by the camera
needs to be first transformed by perspective and
projected on a plane parallel to the desktop. After
that, we carry out grayscale, binarization and
morphological processing of the projected image
to extract the contour information and draw mask
image of the object. Finally, the mask image of
the object is adjusted to the center of the image by
two-dimensional affine transformation, and the

mask image of the object is obtained 0I
 . The

desktop mask image tI
 is generated in a similar

way.

9Information Technology and Control 2024/1/53

Figure 2
The generation of mask images in real world

In real world, considering that the robot will maintain
contact with the object during the sliding operation,
the robot may block the object. In this case, we can-
not get the full object mask image directly from the
current frame Ip. To circumvent this issue, before
the beginning of each round, the RGB images of ob-
jects and desktops without occlusion are collected in
advance and converted into mask images 0I − and tI −
with OpenCV library. The specific generation process
is shown in Figure 2. Since the camera is positioned
in the upper right region of the table, the camera’s
shooting angle is not perpendicular to the desktop, so
the original image captured by the camera needs to be
first transformed by perspective and projected on a
plane parallel to the desktop. After that, we carry out
grayscale, binarization and morphological processing
of the projected image to extract the contour informa-
tion and draw mask image of the object. Finally, the
mask image of the object is adjusted to the center of
the image by two-dimensional affine transformation,
and the mask image of the object is obtained 0I − . The
desktop mask image tI − is generated in a similar way.

4.2. Sliding Policy
At the initial phase of this research, we first carry out
the design of policy network and value network for
the case of only one object in environment. The status
of the policy network s includes three mask images
(, ,)o t xI I I , the height of the object and the desktop,
the pose and speed of the end-effector. Action a is the
linear velocity of the end effector along the x/y/z axis.
Meanwhile, in order to speed up the convergence of
the network, the policy network outputs not only ac-
tion a, but also seven other variables as auxiliary out-
put auxy . The seven auxiliary output variables are the
coordinates of the object and the desktop in the direc-
tion of x/y, their relative positions, and a signal (1/-1)

about whether an object can be graspable. The loss
function of the policy network ϕπ is:

Figure 2 The generation of mask images in real world

4.2 Sliding Policy
At the initial phase of this research, we first carry
out the design of policy network and value
network for the case of only one object in
environment. The status of the policy network s
includes three mask images (, ,)o t xI I I , the
height of the object and the desktop, the pose and
speed of the end-effector. Action a is the linear
velocity of the end effector along the x/y/z axis.
Meanwhile, in order to speed up the convergence

of the network, the policy network outputs not
only action a, but also seven other variables as
auxiliary output auxy . The seven auxiliary output
variables are the coordinates of the object and the
desktop in the direction of x/y, their relative
positions, and a signal (1/-1) about whether an
object can be graspable. The loss function of the

policy network  is:

2ˆ(, ()) ()aux auxL Q s s y y      , (1)

where ˆauxy is the true value of the auxiliary
output variable auxy .
 The value network Q bears resemblance

to the policy network  ; however, it solely

entails the action value Q and lacks any

auxiliary output. Simultaneously, the value
network Q possesses a more comprehensive
range of input states compared to the policy

network. Besides the input of the policy network,
it also inputs the object’s pose and the desktop and
the signal of whether the object can be grasped
(1/-1). These additional input states can assist the
value network better evaluate actions a and guide

the policy network  to update the weights.

The loss function of the value network Q is:

2

1,2
(min (, ()) (,))

i
Q i

L r Q s s Q s a 
 

    , (2)

where, the two action values Q in the TD3

algorithm are distinguished by the footmark i, and
s is the state of the next moment.

However, when confronted with a more
intricate cluttered scene involving multiple
targets and a higher number of objects, training a
policy network for each individual object
becomes challenging. Convergence becomes
difficult for each network, resulting in a lower
task success rate. For all objects, given the
similarity of operational parameters, denoted as
(,)d  , utilizing a weighted sharing policy

network ()s can significantly enhance the

efficiency of data utilization. To facilitate
differentiation between objects, the system
incorporates the observation ko as one of the
states, and k is a specific object. Consequently, the

policy (,)ks o is employed to predict the

action parameters for the execution of object k.

An additional value network (, ,)k kQ s o x is

employed to perform the object selection process:

(1)

where ˆauxy is the true value of the auxiliary output
variable auxy .
 The value network Qω bears resemblance to the pol-
icy network ϕπ ; however, it solely entails the action
value Q and lacks any auxiliary output. Simultane-
ously, the value network Qω possesses a more com-
prehensive range of input states compared to the
policy network. Besides the input of the policy net-
work, it also inputs the object’s pose and the desktop
and the signal of whether the object can be grasped
(1/-1). These additional input states can assist the
value network better evaluate actions a and guide the
policy network ϕπ to update the weights. The loss
function of the value network Qω is:

Figure 2 The generation of mask images in real world

4.2 Sliding Policy
At the initial phase of this research, we first carry
out the design of policy network and value
network for the case of only one object in
environment. The status of the policy network s
includes three mask images (, ,)o t xI I I , the
height of the object and the desktop, the pose and
speed of the end-effector. Action a is the linear
velocity of the end effector along the x/y/z axis.
Meanwhile, in order to speed up the convergence

of the network, the policy network outputs not
only action a, but also seven other variables as
auxiliary output auxy . The seven auxiliary output
variables are the coordinates of the object and the
desktop in the direction of x/y, their relative
positions, and a signal (1/-1) about whether an
object can be graspable. The loss function of the

policy network  is:

2ˆ(, ()) ()aux auxL Q s s y y      , (1)

where ˆauxy is the true value of the auxiliary
output variable auxy .
 The value network Q bears resemblance

to the policy network  ; however, it solely

entails the action value Q and lacks any

auxiliary output. Simultaneously, the value
network Q possesses a more comprehensive
range of input states compared to the policy

network. Besides the input of the policy network,
it also inputs the object’s pose and the desktop and
the signal of whether the object can be grasped
(1/-1). These additional input states can assist the
value network better evaluate actions a and guide

the policy network  to update the weights.

The loss function of the value network Q is:

2

1,2
(min (, ()) (,))

i
Q i

L r Q s s Q s a 
 

    , (2)

where, the two action values Q in the TD3

algorithm are distinguished by the footmark i, and
s is the state of the next moment.

However, when confronted with a more
intricate cluttered scene involving multiple
targets and a higher number of objects, training a
policy network for each individual object
becomes challenging. Convergence becomes
difficult for each network, resulting in a lower
task success rate. For all objects, given the
similarity of operational parameters, denoted as
(,)d  , utilizing a weighted sharing policy

network ()s can significantly enhance the

efficiency of data utilization. To facilitate
differentiation between objects, the system
incorporates the observation ko as one of the
states, and k is a specific object. Consequently, the

policy (,)ks o is employed to predict the

action parameters for the execution of object k.

An additional value network (, ,)k kQ s o x is

employed to perform the object selection process:

(2)

where, the two action values Q in the TD3 algorithm
are distinguished by the footmark i, and s′ is the state
of the next moment.
However, when confronted with a more intricate clut-
tered scene involving multiple targets and a higher
number of objects, training a policy network for each
individual object becomes challenging. Convergence
becomes difficult for each network, resulting in a low-
er task success rate. For all objects, given the similar-
ity of operational parameters, denoted as (,)d θ , uti-
lizing a weighted sharing policy network ()sϕπ can
significantly enhance the efficiency of data utiliza-
tion. To facilitate differentiation between objects, the
system incorporates the observation ko as one of the
states, and k is a specific object. Consequently, the pol-

Information Technology and Control 2024/1/5310

icy (,)ks oϕπ is employed to predict the action param-
eters for the execution of object k. An additional value
network (, ,)k kQ s o xω is employed to perform the ob-
ject selection process: arg max (, , (,))k kk Q s o s oπ∗ ← .
The action space based on sliding primitives compris-
es discrete object numbers denoted as k and continu-
ous action parameters : (,)kx d θ , resulting in a mixed
action space (,)kk x that combines both discrete and
continuous elements. In this paper, how to learn the
sliding policy in cluttered scenarios is translated into
a PAMDP problem.
Currently, the Bellman equation

,
(,) [max (,) ,]

r s a
Q s a E r Q s a s aγ

′ ′
′ ′= + can be rewritten as:

arg max (, , (,))k kk Q s o s o  . The action

space based on sliding primitives comprises
discrete object numbers denoted as k and
continuous action parameters : (,)kx d  , resulting
in a mixed action space (,)kk x that combines both
discrete and continuous elements. In this paper,

how to learn the sliding policy in cluttered
scenarios is translated into a PAMDP problem.

Currently, the Bellman equation

,
(,) [max (,) ,]

r s a
Q s a E r Q s a s a

 
   can be

rewritten as:

,
(, ,) [max (, , (,)) , ,]k k k k k k

r s k
Q s o x E r Q s o s o s o x  

 
   , (3)

where k  designates the object that is eligible for
sliding in the subsequent state, s represents the
state of the next time step, and ko  corresponds to
the observation of object k  . In the equation, the
maximum target variable is related to k  , and the
observation ko is incorporated as an input variable
to discern between distinct objects.

To determine the optimal network parameter

 is the goal of the policy network ()s , which

maximizes the action value Q, while keeping the
parameter of the value network Q constant.

arg max (, , (,))k kQ s o s o   . (4)

Therefore, the loss function for the policy network ()s can be articulated as follows:

(, , (,))k kL Q s o s o    . (5)

The parameter  is optimized by gradient
descent, and the value function Q loss function

is represented by minimum mean square error:

2arg min((, ,))k k
ty Q s o x


   , (6)

where max (, , (,))k k
t k

y r Q s o s o   
 
   .

ty can be used for estimation by only one step,
or alternatively, N steps can be utilized for

estimation to further enhance the model's
performance.

Subsequently, the loss function of the value
network Q can be formulated as follows:

2((, ,))k k
Q tL y Q s o x  . (7)

To obtain the sliding parameter kx and its
associated action value KQ , it is necessary to
perform a forward operation on each object.
Subsequently, the object k is selected from the set

of n objects to execute the action
k

x  , which

possesses highest action value. As a result, in an
environment containing n objects, the prediction

of sliding parameters kx and action values KQ

requires n forward operations. An overview of
ours is depicted in Figure 3.

For the reward function, we use a

combination of -1/0 sparse reward and extra
reward. The setting of sparse reward is expressed
as:

0, 1
1,

situation
r

others


  
. (8)

Situation 1 pertains to a scenario where the target object satisfies the following two

(3)

where k ′ designates the object that is eligible for slid-
ing in the subsequent state, s′ represents the state of
the next time step, and ko ′

 corresponds to the observa-
tion of object k ′. In the equation, the maximum tar-
get variable is related to k ′, and the observation ko is
incorporated as an input variable to discern between
distinct objects.
To determine the optimal network parameter ϕ is
the goal of the policy network ()sϕπ , which maximiz-
es the action value Q, while keeping the parameterω
of the value network Qω constant.

arg max (, , (,))k kk Q s o s o  . The action

space based on sliding primitives comprises
discrete object numbers denoted as k and
continuous action parameters : (,)kx d  , resulting
in a mixed action space (,)kk x that combines both
discrete and continuous elements. In this paper,

how to learn the sliding policy in cluttered
scenarios is translated into a PAMDP problem.

Currently, the Bellman equation

,
(,) [max (,) ,]

r s a
Q s a E r Q s a s a

 
   can be

rewritten as:

,
(, ,) [max (, , (,)) , ,]k k k k k k

r s k
Q s o x E r Q s o s o s o x  

 
   , (3)

where k  designates the object that is eligible for
sliding in the subsequent state, s represents the
state of the next time step, and ko  corresponds to
the observation of object k  . In the equation, the
maximum target variable is related to k  , and the
observation ko is incorporated as an input variable
to discern between distinct objects.

To determine the optimal network parameter

 is the goal of the policy network ()s , which

maximizes the action value Q, while keeping the
parameter of the value network Q constant.

arg max (, , (,))k kQ s o s o   . (4)

Therefore, the loss function for the policy network ()s can be articulated as follows:

(, , (,))k kL Q s o s o    . (5)

The parameter  is optimized by gradient
descent, and the value function Q loss function

is represented by minimum mean square error:

2arg min((, ,))k k
ty Q s o x


   , (6)

where max (, , (,))k k
t k

y r Q s o s o   
 
   .

ty can be used for estimation by only one step,
or alternatively, N steps can be utilized for

estimation to further enhance the model's
performance.

Subsequently, the loss function of the value
network Q can be formulated as follows:

2((, ,))k k
Q tL y Q s o x  . (7)

To obtain the sliding parameter kx and its
associated action value KQ , it is necessary to
perform a forward operation on each object.
Subsequently, the object k is selected from the set

of n objects to execute the action
k

x  , which

possesses highest action value. As a result, in an
environment containing n objects, the prediction

of sliding parameters kx and action values KQ

requires n forward operations. An overview of
ours is depicted in Figure 3.

For the reward function, we use a

combination of -1/0 sparse reward and extra
reward. The setting of sparse reward is expressed
as:

0, 1
1,

situation
r

others


  
. (8)

Situation 1 pertains to a scenario where the target object satisfies the following two

(4)

Therefore, the loss function for the policy network
()sϕπ can be articulated as follows:

arg max (, , (,))k kk Q s o s o  . The action

space based on sliding primitives comprises
discrete object numbers denoted as k and
continuous action parameters : (,)kx d  , resulting
in a mixed action space (,)kk x that combines both
discrete and continuous elements. In this paper,

how to learn the sliding policy in cluttered
scenarios is translated into a PAMDP problem.

Currently, the Bellman equation

,
(,) [max (,) ,]

r s a
Q s a E r Q s a s a

 
   can be

rewritten as:

,
(, ,) [max (, , (,)) , ,]k k k k k k

r s k
Q s o x E r Q s o s o s o x  

 
   , (3)

where k  designates the object that is eligible for
sliding in the subsequent state, s represents the
state of the next time step, and ko  corresponds to
the observation of object k  . In the equation, the
maximum target variable is related to k  , and the
observation ko is incorporated as an input variable
to discern between distinct objects.

To determine the optimal network parameter

 is the goal of the policy network ()s , which

maximizes the action value Q, while keeping the
parameter of the value network Q constant.

arg max (, , (,))k kQ s o s o   . (4)

Therefore, the loss function for the policy network ()s can be articulated as follows:

(, , (,))k kL Q s o s o    . (5)

The parameter  is optimized by gradient
descent, and the value function Q loss function

is represented by minimum mean square error:

2arg min((, ,))k k
ty Q s o x


   , (6)

where max (, , (,))k k
t k

y r Q s o s o   
 
   .

ty can be used for estimation by only one step,
or alternatively, N steps can be utilized for

estimation to further enhance the model's
performance.

Subsequently, the loss function of the value
network Q can be formulated as follows:

2((, ,))k k
Q tL y Q s o x  . (7)

To obtain the sliding parameter kx and its
associated action value KQ , it is necessary to
perform a forward operation on each object.
Subsequently, the object k is selected from the set

of n objects to execute the action
k

x  , which

possesses highest action value. As a result, in an
environment containing n objects, the prediction

of sliding parameters kx and action values KQ

requires n forward operations. An overview of
ours is depicted in Figure 3.

For the reward function, we use a

combination of -1/0 sparse reward and extra
reward. The setting of sparse reward is expressed
as:

0, 1
1,

situation
r

others


  
. (8)

Situation 1 pertains to a scenario where the target object satisfies the following two

(5)

The parameterω is optimized by gradient descent,
and the value function Qω loss function is represent-
ed by minimum mean square error:

arg max (, , (,))k kk Q s o s o  . The action

space based on sliding primitives comprises
discrete object numbers denoted as k and
continuous action parameters : (,)kx d  , resulting
in a mixed action space (,)kk x that combines both
discrete and continuous elements. In this paper,

how to learn the sliding policy in cluttered
scenarios is translated into a PAMDP problem.

Currently, the Bellman equation

,
(,) [max (,) ,]

r s a
Q s a E r Q s a s a

 
   can be

rewritten as:

,
(, ,) [max (, , (,)) , ,]k k k k k k

r s k
Q s o x E r Q s o s o s o x  

 
   , (3)

where k  designates the object that is eligible for
sliding in the subsequent state, s represents the
state of the next time step, and ko  corresponds to
the observation of object k  . In the equation, the
maximum target variable is related to k  , and the
observation ko is incorporated as an input variable
to discern between distinct objects.

To determine the optimal network parameter

 is the goal of the policy network ()s , which

maximizes the action value Q, while keeping the
parameter of the value network Q constant.

arg max (, , (,))k kQ s o s o   . (4)

Therefore, the loss function for the policy network ()s can be articulated as follows:

(, , (,))k kL Q s o s o    . (5)

The parameter  is optimized by gradient
descent, and the value function Q loss function

is represented by minimum mean square error:

2arg min((, ,))k k
ty Q s o x


   , (6)

where max (, , (,))k k
t k

y r Q s o s o   
 
   .

ty can be used for estimation by only one step,
or alternatively, N steps can be utilized for

estimation to further enhance the model's
performance.

Subsequently, the loss function of the value
network Q can be formulated as follows:

2((, ,))k k
Q tL y Q s o x  . (7)

To obtain the sliding parameter kx and its
associated action value KQ , it is necessary to
perform a forward operation on each object.
Subsequently, the object k is selected from the set

of n objects to execute the action
k

x  , which

possesses highest action value. As a result, in an
environment containing n objects, the prediction

of sliding parameters kx and action values KQ

requires n forward operations. An overview of
ours is depicted in Figure 3.

For the reward function, we use a

combination of -1/0 sparse reward and extra
reward. The setting of sparse reward is expressed
as:

0, 1
1,

situation
r

others


  
. (8)

Situation 1 pertains to a scenario where the target object satisfies the following two

(6)

where max (, , (,))k k
t k

y r Q s o s oω ϕγ π′ ′
′ ′′
′ ′= + . ty can be

used for estimation by only one step, or alternatively,
N steps can be utilized for estimation to further en-
hance the model’s performance.
Subsequently, the loss function of the value network
Qω can be formulated as follows:

arg max (, , (,))k kk Q s o s o  . The action

space based on sliding primitives comprises
discrete object numbers denoted as k and
continuous action parameters : (,)kx d  , resulting
in a mixed action space (,)kk x that combines both
discrete and continuous elements. In this paper,

how to learn the sliding policy in cluttered
scenarios is translated into a PAMDP problem.

Currently, the Bellman equation

,
(,) [max (,) ,]

r s a
Q s a E r Q s a s a

 
   can be

rewritten as:

,
(, ,) [max (, , (,)) , ,]k k k k k k

r s k
Q s o x E r Q s o s o s o x  

 
   , (3)

where k  designates the object that is eligible for
sliding in the subsequent state, s represents the
state of the next time step, and ko  corresponds to
the observation of object k  . In the equation, the
maximum target variable is related to k  , and the
observation ko is incorporated as an input variable
to discern between distinct objects.

To determine the optimal network parameter

 is the goal of the policy network ()s , which

maximizes the action value Q, while keeping the
parameter of the value network Q constant.

arg max (, , (,))k kQ s o s o   . (4)

Therefore, the loss function for the policy network ()s can be articulated as follows:

(, , (,))k kL Q s o s o    . (5)

The parameter  is optimized by gradient
descent, and the value function Q loss function

is represented by minimum mean square error:

2arg min((, ,))k k
ty Q s o x


   , (6)

where max (, , (,))k k
t k

y r Q s o s o   
 
   .

ty can be used for estimation by only one step,
or alternatively, N steps can be utilized for

estimation to further enhance the model's
performance.

Subsequently, the loss function of the value
network Q can be formulated as follows:

2((, ,))k k
Q tL y Q s o x  . (7)

To obtain the sliding parameter kx and its
associated action value KQ , it is necessary to
perform a forward operation on each object.
Subsequently, the object k is selected from the set

of n objects to execute the action
k

x  , which

possesses highest action value. As a result, in an
environment containing n objects, the prediction

of sliding parameters kx and action values KQ

requires n forward operations. An overview of
ours is depicted in Figure 3.

For the reward function, we use a

combination of -1/0 sparse reward and extra
reward. The setting of sparse reward is expressed
as:

0, 1
1,

situation
r

others


  
. (8)

Situation 1 pertains to a scenario where the target object satisfies the following two

(7)

To obtain the sliding parameter kx and its associated
action value KQ , it is necessary to perform a forward
operation on each object. Subsequently, the object k∗

is selected from the set of n objects to execute the ac-
tion

k
x ∗ , which possesses highest action value. As a re-

sult, in an environment containing n objects, the pre-
diction of sliding parameters kx and action values KQ
requires n forward operations. An overview of ours is
depicted in Figure 3.

Figure 3
The overview of our method. (a) The basic operating logic of
policy network ϕπ

and Q-network Qω in the system. (b) The
policy network ϕπ

outputs corresponding actions for each
object, and the input-output logic of value network Qω is
similar. (c) Two types of reward assist the agent in updatingconditions: (1) The target object possesses ample

surface area to be stably exposed off the table; (2)
The target object lies within the reachable

workspace of the robot. Meanwhile, all objects
are positioned on the table.

(a)

(b) (c)

Figure 3 The overview of our method. (a) The basic operating logic of policy network  and Q-

network Q in the system. (b) The policy network  outputs corresponding actions for each object, and

the input-output logic of value network Q is similar. (c) Two types of reward assist the agent in
updating

4.3 Extra Reward
In a clutter scene with multiple flat targets, it is
not enough to just shift one target to render it
graspable. Moreover, after each action is executed,
the pose of each object may change due to touch,
so ensuring the overall efficiency of the actions is
the key for policy to complete the task. This paper
adds extra reward, the main purpose of which is
to enable the policy to learn associated actions
(for example, sliding target A can move target B
to the table together), thus optimizing task
efficiency.

The system records the positions of targets
at the beginning of episode pi (i number of
targets).When the robot slides a target 1T to the
table’s edge, 1T is graspable and reach the goal

position (1T reach goal, abbreviating 1gT). The

d1 is the distance between pi and 1gT . The d2 is the

distance between ip (when 1T reach goal) and

1gT . If d2 < d1, obtain an extra reward er :

0

t
e

n
r

n
 , (9)

conditions: (1) The target object possesses ample
surface area to be stably exposed off the table; (2)
The target object lies within the reachable

workspace of the robot. Meanwhile, all objects
are positioned on the table.

(a)

(b) (c)

Figure 3 The overview of our method. (a) The basic operating logic of policy network  and Q-

network Q in the system. (b) The policy network  outputs corresponding actions for each object, and

the input-output logic of value network Q is similar. (c) Two types of reward assist the agent in
updating

4.3 Extra Reward
In a clutter scene with multiple flat targets, it is
not enough to just shift one target to render it
graspable. Moreover, after each action is executed,
the pose of each object may change due to touch,
so ensuring the overall efficiency of the actions is
the key for policy to complete the task. This paper
adds extra reward, the main purpose of which is
to enable the policy to learn associated actions
(for example, sliding target A can move target B
to the table together), thus optimizing task
efficiency.

The system records the positions of targets
at the beginning of episode pi (i number of
targets).When the robot slides a target 1T to the
table’s edge, 1T is graspable and reach the goal

position (1T reach goal, abbreviating 1gT). The

d1 is the distance between pi and 1gT . The d2 is the

distance between ip (when 1T reach goal) and

1gT . If d2 < d1, obtain an extra reward er :

0

t
e

n
r

n
 , (9)

conditions: (1) The target object possesses ample
surface area to be stably exposed off the table; (2)
The target object lies within the reachable

workspace of the robot. Meanwhile, all objects
are positioned on the table.

(a)

(b) (c)

Figure 3 The overview of our method. (a) The basic operating logic of policy network  and Q-

network Q in the system. (b) The policy network  outputs corresponding actions for each object, and

the input-output logic of value network Q is similar. (c) Two types of reward assist the agent in
updating

4.3 Extra Reward
In a clutter scene with multiple flat targets, it is
not enough to just shift one target to render it
graspable. Moreover, after each action is executed,
the pose of each object may change due to touch,
so ensuring the overall efficiency of the actions is
the key for policy to complete the task. This paper
adds extra reward, the main purpose of which is
to enable the policy to learn associated actions
(for example, sliding target A can move target B
to the table together), thus optimizing task
efficiency.

The system records the positions of targets
at the beginning of episode pi (i number of
targets).When the robot slides a target 1T to the
table’s edge, 1T is graspable and reach the goal

position (1T reach goal, abbreviating 1gT). The

d1 is the distance between pi and 1gT . The d2 is the

distance between ip (when 1T reach goal) and

1gT . If d2 < d1, obtain an extra reward er :

0

t
e

n
r

n
 , (9)

(a)

(b)

(c)

11Information Technology and Control 2024/1/53

For the reward function, we use a combination of -1/0
sparse reward and extra reward. The setting of sparse
reward is expressed as:

arg max (, , (,))k kk Q s o s o  . The action

space based on sliding primitives comprises
discrete object numbers denoted as k and
continuous action parameters : (,)kx d  , resulting
in a mixed action space (,)kk x that combines both
discrete and continuous elements. In this paper,

how to learn the sliding policy in cluttered
scenarios is translated into a PAMDP problem.

Currently, the Bellman equation

,
(,) [max (,) ,]

r s a
Q s a E r Q s a s a

 
   can be

rewritten as:

,
(, ,) [max (, , (,)) , ,]k k k k k k

r s k
Q s o x E r Q s o s o s o x  

 
   , (3)

where k  designates the object that is eligible for
sliding in the subsequent state, s represents the
state of the next time step, and ko  corresponds to
the observation of object k  . In the equation, the
maximum target variable is related to k  , and the
observation ko is incorporated as an input variable
to discern between distinct objects.

To determine the optimal network parameter

 is the goal of the policy network ()s , which

maximizes the action value Q, while keeping the
parameter of the value network Q constant.

arg max (, , (,))k kQ s o s o   . (4)

Therefore, the loss function for the policy network ()s can be articulated as follows:

(, , (,))k kL Q s o s o    . (5)

The parameter  is optimized by gradient
descent, and the value function Q loss function

is represented by minimum mean square error:

2arg min((, ,))k k
ty Q s o x


   , (6)

where max (, , (,))k k
t k

y r Q s o s o   
 
   .

ty can be used for estimation by only one step,
or alternatively, N steps can be utilized for

estimation to further enhance the model's
performance.

Subsequently, the loss function of the value
network Q can be formulated as follows:

2((, ,))k k
Q tL y Q s o x  . (7)

To obtain the sliding parameter kx and its
associated action value KQ , it is necessary to
perform a forward operation on each object.
Subsequently, the object k is selected from the set

of n objects to execute the action
k

x  , which

possesses highest action value. As a result, in an
environment containing n objects, the prediction

of sliding parameters kx and action values KQ

requires n forward operations. An overview of
ours is depicted in Figure 3.

For the reward function, we use a

combination of -1/0 sparse reward and extra
reward. The setting of sparse reward is expressed
as:

0, 1
1,

situation
r

others


  
. (8)

Situation 1 pertains to a scenario where the target object satisfies the following two

(8)

Situation 1 pertains to a scenario where the target ob-
ject satisfies the following two conditions: (1) The tar-
get object possesses ample surface area to be stably
exposed off the table; (2) The target object lies within
the reachable workspace of the robot. Meanwhile, all
objects are positioned on the table.

4.3. Extra Reward
In a clutter scene with multiple flat targets, it is not
enough to just shift one target to render it graspable.
Moreover, after each action is executed, the pose of
each object may change due to touch, so ensuring the
overall efficiency of the actions is the key for policy to
complete the task. This paper adds extra reward, the
main purpose of which is to enable the policy to learn
associated actions (for example, sliding target A can
move target B to the table together), thus optimizing
task efficiency.
The system records the positions of targets at the be-
ginning of episode pi (i∈number of targets).When the
robot slides a target 1T to the table’s edge, 1T is grasp-
able and reach the goal position (1T reach goal, abbre-
viating 1gT). The d1 is the distance between pi and 1gT .
The d2 is the distance between ip′ (when 1T reach
goal) and 1gT . If d2 < d1, obtain an extra reward er :

conditions: (1) The target object possesses ample
surface area to be stably exposed off the table; (2)
The target object lies within the reachable

workspace of the robot. Meanwhile, all objects
are positioned on the table.

(a)

(b) (c)

Figure 3 The overview of our method. (a) The basic operating logic of policy network  and Q-

network Q in the system. (b) The policy network  outputs corresponding actions for each object, and

the input-output logic of value network Q is similar. (c) Two types of reward assist the agent in
updating

4.3 Extra Reward
In a clutter scene with multiple flat targets, it is
not enough to just shift one target to render it
graspable. Moreover, after each action is executed,
the pose of each object may change due to touch,
so ensuring the overall efficiency of the actions is
the key for policy to complete the task. This paper
adds extra reward, the main purpose of which is
to enable the policy to learn associated actions
(for example, sliding target A can move target B
to the table together), thus optimizing task
efficiency.

The system records the positions of targets
at the beginning of episode pi (i number of
targets).When the robot slides a target 1T to the
table’s edge, 1T is graspable and reach the goal

position (1T reach goal, abbreviating 1gT). The

d1 is the distance between pi and 1gT . The d2 is the

distance between ip (when 1T reach goal) and

1gT . If d2 < d1, obtain an extra reward er :

0

t
e

n
r

n
 , (9) (9)

where, 0n is the quantity of other targets (excluding 1T),
and tn represents the quantity of targets that satisfy
the requirement d2 < d1. The agent will learn benefi-
cial associated actions and improve the performance
of system via extra reward.

4.4. Adaptive Policy Scaling
The scarcity of rewards poses a challenge for rein-
forcement learning in obtaining reward signals and
acquiring an appropriate policy. To address this, the
initial state is initialized to the state observed during

the demonstration track, which expedites the train-
ing process and facilitates the acquisition of an im-
proved policy. However, over-reliance on the presen-
tation trajectory can lead to inadequate exploration
of the entire state space. Therefore, this paper not
only initializes the initial state of the environment
as a demonstration trajectory, but also randomly
initializes it to ensure the agent’s ability to explore
other state spaces. Specifically, the initialization
is based on two conditions: In situations where the
agent lacks knowledge on how to accomplish the
task, the environment’s initial state is initialized to
the state observed during the demonstration trajec-
tory. This process directly sets up the environment
in a state that is near the completion of the task, and
the policy learns these relatively simple subtasks
first, thereby facilitating the learning of the overall
task. After the agent is capable of partially complet-
ing the task, the initial state is randomly initialized
directly, and the agent begins to learn the overall
task and explore the state space not covered by the
presentation trajectory.
In a multi-target environment with additional ob-
jects, if the policy network generates all actions si-
multaneously and the number of output actions
varies, the policy model becomes unsuitable for con-
tinued use. The inconsistency in the number of out-
put actions can lead to compatibility issues, rendering
the policy model ineffective for handling the dynamic
nature of the environment. In the proposed method,
the policy network also takes the observation ko as an
input, while k is a specific object, and only the sliding
parameter kx of a single object k is output each time.
It means that this method is not constrained by the
number of objects.
Meanwhile, we draw upon the concept of course
learning [8] and further extends the proposed meth-
od to the chaotic scene containing more objects, so
as to incrementally raise the quantity of objects in
the environment and realize the gradual learning of
sliding operations, rather than letting the agent learn
in the scene of many objects at the beginning, which
can better help the agent to overcome exploratory
problem. At the end of the course, even in a com-
plex scene, the agent can separate the target objects
and make them graspable orderly. The algorithm is
shown as follow.

Information Technology and Control 2024/1/5312

Algorithm1. Adaptive Policy Scaling

1: Initialize the policy network ϕπ and value network Qω

2: Initialize parameters , , ,Tµ σ α
3: 2, (1),n Tµ σ α µ← ← × − ∈
4: Initialize the train buffer tB and demo buffer dB ,
generate n reference tracks and save them in dB
5: for epi=1, M do
6: The environment is initialized to a cluttered

scene of ni objects
7: if ni<M0 and p<pd then
8: State initialization of demonstrates trajectory
9: end if
10: if ni<M0 and dp p≥ then
11: Random initialization
12: end if
13: Rollout and save data to the buffer tB
14: Update the success rateζ with µ objects
15: Update parameters ,Tµ after m episodes
16: 1() 1()h lµ µ ζ β ζ β′ ← + > − <
17: if µ µ′ > then
18: 1T T← +
19: else
20: 1T T← −

21: end if
22: µ µ′←
23: Update the network parameters ,ϕ ω by Equa-

tionstab (4) and (6)
24: if nµ ≥ then
25: Update ,δ ε , ,δ δ ξ ε ε ξ← × ← ×
26: end if
27: end for

where, 1 2(1 , ,)dp clip ζ ε ε
α

= −

represents the proba-
bility of initialization to a state on the demonstration
trajectory, and 1r dp p= − represents the probability
of random initialization, the sum of which is 1. ζ is
the current task success rate, and 1ε and 2ε are the
minimum and maximum values of dp . (0,1]α ∈ is a
hyperparameter adjusting the size of dp . When the
success rate ς α≥ , the environment is initialized to
the state of the presentation trajectory with only a

small probability 1ε ; otherwise, it is initialized ran-
domly. Initial stage of training is accelerated in this
way, where M0 is significantly less than M.
To facilitate better transfer of the sliding policy
trained in an environment with a limited number of
objects to a scenario with a higher number of objects,
this paper adopts truncated normal distribution sam-
pling (, , ,)N l hτ µ σ for ascertaining the quantity of
objects in the current environment in , where l and h
are truncated boundaries.α is a hyperparameter that
adjusts the size of the standard deviation σ , and the
integer down function adjusts the number of objects

in to an integer.
At the beginning of the training, there are only 2 ob-
jects in the environment, including 1 target object and
1 obstacle object. When the success rate of the agent
in this simple subtask exceeds hβ , we increase the ob-
ject mean µ to improve the task difficulty. Conversely,
when the agent’s success rate in the ongoing subtask
drops below a certain threshold lβ , the mean of ob-
jects initialized by the environment µ is reduced.
This measure is taken to decrease the task difficulty
and enhance the agent’s chances of achieving suc-
cessful outcomes in subsequent attempts. Mean-
while, the number of target objects T also changes
accordingly. The process is repeated until the object
mean µ reaches the preset maximum number of ob-
jects. In line 16 of the algorithm, 1(g) is the symbolic
function.
For avoiding the policy falling into local optimality,
noise δ is added to the action of the agent, and the
ε-greedy policy is utilized to choose the object k to be
acted on. In addition, the exploration noise δ and εare
limited by decreasing the attenuation rate ξ to assist
the policy network convergence.

5. Experiments
5.1. Experimental Setting
In this paper, the simulation is conducted using the
Mujoco software [26]. The main body of the experi-
ment is a six-axis UR3 robot equipped with Robotiq85
gripper. The task assigned to the agent involves slid-
ing the objects within the cluttered scene while en-
suring that none of the objects fall. Additionally, the
agent must guide each target towards the table edge,

13Information Technology and Control 2024/1/53

ultimately achieving a graspable state for all the tar-
gets. In the simulation environment, n objects, which
includes the target objects (purple triangle), are ran-
domly dispersed on the desk as depicted in Figure 5.
For evaluation, we employ the average quantity of ac-
tions and task success rate in 50 times as the metrics.

5.2. Simulated Results
In order to illustrate the effectiveness of our ap-
proach, we conduct a comparative analysis against
various baseline approaches.
P-DQN: The method presented in reference [29] gen-
erates all actions in a simultaneous manner, employ-
ing a Q-network to handle a mixed action space com-
prising both discrete and continuous elements.
MP-DQN: In order to mitigate false gradients caused
by Q-values dependence, this method [3] takes the
action base vector as the input of the Q network. This
variant of P-DQN helps to address the issue effective-
ly.
Q-TD3: To yield the precise policy gradient, the Qω
network exclusively computes the loss function of πϕ
network. Additionally, an auxiliary Qψ network is uti-
lized to choose the object to be acted, further contrib-
uting to the overall functionality of the method.
ArbitraryTD3: The workspace (cx, cy, d, θ) is consis-
tent with our approach, but can be slid from arbitrary
point. A method following the standard TD3 frame-
work.

Figure 4
The learning curve of each method is obtained in a training
environment consisting of 2 targets and 4 non-targets

5. Experiments
5.1 Experimental Setting
In this paper, the simulation is conducted using
the Mujoco software [26]. The main body of the
experiment is a six-axis UR3 robot equipped with
Robotiq85 gripper. The task assigned to the agent
involves sliding the objects within the cluttered

scene while ensuring that none of the objects fall.
Additionally, the agent must guide each target
towards the table edge, ultimately achieving a
graspable state for all the targets. In the
simulation environment, n objects, which
includes the target objects (purple triangle), are
randomly dispersed on the desk as depicted in
Figure 5. For evaluation, we employ the average
quantity of actions and task success rate in 50
times as the metrics.

Figure 4 The learning curve of each method is obtained in a training environment consisting of 2
targets and 4 non-targets

5.2 Simulated Results
In order to illustrate the effectiveness of our
approach, we conduct a comparative analysis
against various baseline approaches.

P-DQN: The method presented in reference
[29] generates all actions in a simultaneous
manner, employing a Q-network to handle a
mixed action space comprising both discrete and
continuous elements.

MP-DQN: In order to mitigate false gradients
caused by Q-values dependence, this method [3]
takes the action base vector as the input of the Q
network. This variant of P-DQN helps to address
the issue effectively.

Q-TD3: To yield the precise policy gradient,
the Qω network exclusively computes the loss
function of πϕ network. Additionally, an auxiliary
Qψ network is utilized to choose the object to be
acted, further contributing to the overall
functionality of the method.

ArbitraryTD3: The workspace (cx, cy, d, θ) is
consistent with our approach, but can be slid from
arbitrary point. A method following the standard
TD3 framework.

The success rate of training is shown in Figure
4. The training environment is a clutter scene with
2 target objects (Tob) and 4 non-target objects
(NTob). In addition, both random and challenging

The success rate of training is shown in Figure 4. The
training environment is a clutter scene with 2 tar-
get objects (Tob) and 4 non-target objects (NTob).
In addition, both random and challenging scenes are
utilized to evaluate the methods, considering various
numbers of objects, and the results are summarized in
Table 1. Superior performance reflected in our meth-
od, achieving a higher success rate and requiring few-
er actions compared to other methods, making it the
optimal choice for the given tasks.
The network directly obtains the object observation ko
in our method, and the network exclusively estimates

kQ without computing all of the Q-values. This fo-
cused estimation allows both ϕπ network and the Q-net-
work to acquire more precise Q-values, contributing to
the overall precision and efficacy of ours. Indeed, our
method differs from P-DQN and MP-DQN. MP-DQN
introduces a multi-channel method that weakens the
Q-values error estimation, while in ours, we focus on es-
timating kQ directly from the object observation, which
results in a distinct and more accurate Q-values estima-
tion process. Furthermore, our proposed method utiliz-
es the Q-network Qω for action selection, allowing it to
provide a policy gradient for the policy network ϕπ . This
close integration between action parameters and target
selection leads to a more cohesive and effective way in
handling the task. The incorporation of the extra reward
further improves the sensitivity of policy to changes in
the state of each target during training. This improve-
ment allows the system to more effectively adapt to
varying conditions and optimizes the overall system’s
execution efficiency. The large action space of Arbitrar-
yTD3 exacerbates the challenge of exploration, making
it difficult to learn a proper policy. In contrast, our meth-
od tackles this issue by rearranging the non-target ob-
jects to create separation between each target and make
them graspable orderly through sliding.
To analyze the difference between the proposed
method and the baselines, we conduct training in 3
randomly arranged scenarios, then testing in random
ones and other 3 challenging scenarios. The objects
in each type of scenario are 1 Tob and 2 NTob, 2 Tob
and 4 NTob, and 3 Tob and 6 NTob, respectively, as
shown in Figure 5, purple triangle(s) representing the
target(s). The results are presented in Table 1, where
r represents randomly distributed scene, c represents
challenging scene, and 3, 6, 9 represents the number
of objects. The success rate tends to decrease and the

Information Technology and Control 2024/1/5314

Figure 5
Random clutter scene (a, c, e) and challenging scene (b, d,
f) under simulation

scenes are utilized to evaluate the methods,
considering various numbers of objects, and the
results are summarized in Table 1. Superior
performance reflected in our method, achieving a
higher success rate and requiring fewer actions
compared to other methods, making it the optimal
choice for the given tasks.

The network directly obtains the object
observation ko in our method, and the network

exclusively estimates kQ without computing all

of the Q-values. This focused estimation allows

both  network and the Q-network to acquire

more precise Q-values, contributing to the overall
precision and efficacy of ours. Indeed, our
method differs from P-DQN and MP-DQN. MP-
DQN introduces a multi-channel method that
weakens the Q-values error estimation, while in

ours, we focus on estimating kQ directly from

the object observation, which results in a distinct

and more accurate Q-values estimation process.
Furthermore, our proposed method utilizes the Q-
network Q for action selection, allowing it to
provide a policy gradient for the policy network

 . This close integration between action

parameters and target selection leads to a more
cohesive and effective way in handling the task.
The incorporation of the extra reward further
improves the sensitivity of policy to changes in
the state of each target during training. This
improvement allows the system to more
effectively adapt to varying conditions and
optimizes the overall system's execution
efficiency. The large action space of
ArbitraryTD3 exacerbates the challenge of
exploration, making it difficult to learn a proper
policy. In contrast, our method tackles this issue
by rearranging the non-target objects to create
separation between each target and make them
graspable orderly through sliding.

 (a) (b)

(c) (d)

scenes are utilized to evaluate the methods,
considering various numbers of objects, and the
results are summarized in Table 1. Superior
performance reflected in our method, achieving a
higher success rate and requiring fewer actions
compared to other methods, making it the optimal
choice for the given tasks.

The network directly obtains the object
observation ko in our method, and the network

exclusively estimates kQ without computing all

of the Q-values. This focused estimation allows

both  network and the Q-network to acquire

more precise Q-values, contributing to the overall
precision and efficacy of ours. Indeed, our
method differs from P-DQN and MP-DQN. MP-
DQN introduces a multi-channel method that
weakens the Q-values error estimation, while in

ours, we focus on estimating kQ directly from

the object observation, which results in a distinct

and more accurate Q-values estimation process.
Furthermore, our proposed method utilizes the Q-
network Q for action selection, allowing it to
provide a policy gradient for the policy network

 . This close integration between action

parameters and target selection leads to a more
cohesive and effective way in handling the task.
The incorporation of the extra reward further
improves the sensitivity of policy to changes in
the state of each target during training. This
improvement allows the system to more
effectively adapt to varying conditions and
optimizes the overall system's execution
efficiency. The large action space of
ArbitraryTD3 exacerbates the challenge of
exploration, making it difficult to learn a proper
policy. In contrast, our method tackles this issue
by rearranging the non-target objects to create
separation between each target and make them
graspable orderly through sliding.

 (a) (b)

(c) (d)

scenes are utilized to evaluate the methods,
considering various numbers of objects, and the
results are summarized in Table 1. Superior
performance reflected in our method, achieving a
higher success rate and requiring fewer actions
compared to other methods, making it the optimal
choice for the given tasks.

The network directly obtains the object
observation ko in our method, and the network

exclusively estimates kQ without computing all

of the Q-values. This focused estimation allows

both  network and the Q-network to acquire

more precise Q-values, contributing to the overall
precision and efficacy of ours. Indeed, our
method differs from P-DQN and MP-DQN. MP-
DQN introduces a multi-channel method that
weakens the Q-values error estimation, while in

ours, we focus on estimating kQ directly from

the object observation, which results in a distinct

and more accurate Q-values estimation process.
Furthermore, our proposed method utilizes the Q-
network Q for action selection, allowing it to
provide a policy gradient for the policy network

 . This close integration between action

parameters and target selection leads to a more
cohesive and effective way in handling the task.
The incorporation of the extra reward further
improves the sensitivity of policy to changes in
the state of each target during training. This
improvement allows the system to more
effectively adapt to varying conditions and
optimizes the overall system's execution
efficiency. The large action space of
ArbitraryTD3 exacerbates the challenge of
exploration, making it difficult to learn a proper
policy. In contrast, our method tackles this issue
by rearranging the non-target objects to create
separation between each target and make them
graspable orderly through sliding.

 (a) (b)

(c) (d)

scenes are utilized to evaluate the methods,
considering various numbers of objects, and the
results are summarized in Table 1. Superior
performance reflected in our method, achieving a
higher success rate and requiring fewer actions
compared to other methods, making it the optimal
choice for the given tasks.

The network directly obtains the object
observation ko in our method, and the network

exclusively estimates kQ without computing all

of the Q-values. This focused estimation allows

both  network and the Q-network to acquire

more precise Q-values, contributing to the overall
precision and efficacy of ours. Indeed, our
method differs from P-DQN and MP-DQN. MP-
DQN introduces a multi-channel method that
weakens the Q-values error estimation, while in

ours, we focus on estimating kQ directly from

the object observation, which results in a distinct

and more accurate Q-values estimation process.
Furthermore, our proposed method utilizes the Q-
network Q for action selection, allowing it to
provide a policy gradient for the policy network

 . This close integration between action

parameters and target selection leads to a more
cohesive and effective way in handling the task.
The incorporation of the extra reward further
improves the sensitivity of policy to changes in
the state of each target during training. This
improvement allows the system to more
effectively adapt to varying conditions and
optimizes the overall system's execution
efficiency. The large action space of
ArbitraryTD3 exacerbates the challenge of
exploration, making it difficult to learn a proper
policy. In contrast, our method tackles this issue
by rearranging the non-target objects to create
separation between each target and make them
graspable orderly through sliding.

 (a) (b)

(c) (d)

(a)

(b)

(c)

(d)

Table 1
The test results of proposed method are compared with
other baselines in different clutter scenes

Metric Success Rate (%)

Arrangement
Random Challenging

r3 r6 r9 c3 c6 c9

P-DQN 91.2 46.8 21.3 89.7 39.5 16.5

MP-DQN 92.4 53.1 24.5 90.6 47.2 19.7

Q-TD3 94.3 56.3 26.1 88.5 49.6 20.4

ArbitraryTD3 68.9 20.6 5.3 57.3 11.2 3.9

Ours 98.8 91.2 80.4 94.8 88.3 77.8

Metric Number of Action

Arrangement
Random Challenging

r3 r6 r9 c3 c6 c9

P-DQN 4.2 7.8 12.4 4.6 8.7 13.2

MP-DQN 3.6 7.2 11.6 3.9 8.1 12.8

Q-TD3 2.9 6.7 10.8 3.8 7.8 11.9

ArbitraryTD3 4.7 8.9 13.5 5.4 9.7 15.1

Ours 2.1 4.3 6.8 2.5 4.9 7.3

average number of actions required increases, with
the increasement in the quantity of objects. This
trend indicates that handling a larger number of ob-
jects introduces greater complexity and challenges
for the methods, resulting in decreased success rates
and increased action requirements across the board.
However, our method manages to maintain a decent
performance, even in challenging scenarios with 9
objects (3 Tob in them) and achieve 77.8% success
rate, and other metrics are optimal. Although other
methods have a significant performance while the
quantity of objects is few, the success rate of the task
decreases visibly with the increase of the number of
objects, which is due to the inaccurate estimation of
Q-values and insufficient exploration of action space.
We conducted ablation experiments on the proposed
algorithm 1 and the extra reward mechanism to veri-
fy their effectiveness for the whole system. There are
9 objects (including 3 Tob) in the simulation environ-
ment, and the results are shown in Table 2, w/o repre-
senting without and w/ representing with. When al-

(a)

(b)

15Information Technology and Control 2024/1/53

gorithm 1 and extra reward are not used neither, each
data is the lowest, and when both are used, it is the best.
In addition, the data also show that the experimental
result of algorithm 1 utilized only is better than extra
reward only. Comprehensive analysis shows that with
the assistance of algorithm 1, the generalization abili-
ty of the whole system is improved, and the addition of
extra reward can effectively compensate for the explor-
atory problems and enhance the performance of policy.

5.3. Results of Real System
In the real system, we use UR3 robot and Robotiq85
gripper for sliding manipulation, as shown in Figure
6, and adopt Kinect2.0 camera on the top to locate
objects and generate image mask via Apriltag [3]
and Section 4.1. Using mask image can not only ac-
celerate the training of policy in simulation, but also
better eliminate the error and noise caused by the
original image in the policy transfer application of
real system. To facilitate the execution of the sliding
action, the rubber block is fixed at the end of the grip-

Table 2
Ablation experiment results of algorithm1 and extra reward

Metric Success Rate (%) Number of Action

Arrangement r c r c

Ours w/o alg1 w/o ER 38.5 32.3 10.2 11.3

Ours w/o alg1 w/ ER 42.1 36.8 9.5 10.4

Ours w/ alg1 w/o ER 47.8 42.6 8.9 9.7

Ours w/ alg1 w/ ER 80.4 77.8 6.8 7.3

available at https://www.youtube.com/watch?v= LA05I6POuzA.

(a) (b)

Figure 6 Real system (a) and experimental objects (b)

Table 3 Experimental results in real system

(a) (b)

Figure 7 Novel 3D printed objects and living objects for experiments

The proposed method achieves the best results for sliding task in success rate and number of actions.
Specifically, 82.3% is the result of success rate, and the number of actions required in the random scene
is 5.6. It should be noted that there may be relative motion between the object and the gripper when it is
in contact under simulation, but this relative motion can be ignored in the actual situation. In addition,
we also conduct experiments on novel real objects, as shown in Figure 7, where seven objects are new
and the other two are existing triangular objects. The results demonstrate that even when encountering
shapes that it has not been exposed to during training, the policy model can achieve 76.5% success rate

available at https://www.youtube.com/watch?v= LA05I6POuzA.

(a) (b)

Figure 6 Real system (a) and experimental objects (b)

Table 3 Experimental results in real system

(a) (b)

Figure 7 Novel 3D printed objects and living objects for experiments

The proposed method achieves the best results for sliding task in success rate and number of actions.
Specifically, 82.3% is the result of success rate, and the number of actions required in the random scene
is 5.6. It should be noted that there may be relative motion between the object and the gripper when it is
in contact under simulation, but this relative motion can be ignored in the actual situation. In addition,
we also conduct experiments on novel real objects, as shown in Figure 7, where seven objects are new
and the other two are existing triangular objects. The results demonstrate that even when encountering
shapes that it has not been exposed to during training, the policy model can achieve 76.5% success rate

(a) (b)

Figure 6
Real system (a) and experimental objects (b)

per, which also makes the contact process cushioned.
We conducted a comparative evaluation between the
proposed method and four other baselines, running
a total of 50 times in both random and challenging
scenes with 9 objects (including 3 randomly assigned
targets). To evaluate the performance of the pro-
posed method under real-world conditions, the poli-
cy trained in the simulation is directly transferred to
the real system without any fine-tuning. The obtained
results are shown in Table 3. The video is available at
https://www.youtube.com/watch?v= LA05I6POuzA.

Table 3
Experimental results in real system

Metric Success Rate (%) Number of Action

P-DQN 23.5 11.9

MP-DQN 28.6 10.8

Q-TD3 29.7 9.7

Ours 82.3 5.6

Ours (novel objects) 76.5 6.3

The proposed method achieves the best results for
sliding task in success rate and number of actions.
Specifically, 82.3% is the result of success rate, and
the number of actions required in the random scene
is 5.6. It should be noted that there may be relative
motion between the object and the gripper when it is
in contact under simulation, but this relative motion
can be ignored in the actual situation. In addition,
we also conduct experiments on novel real objects,
as shown in Figure 7, where seven objects are new

Figure 7
Novel 3D printed objects and living objects for experiments

available at https://www.youtube.com/watch?v= LA05I6POuzA.

(a) (b)

Figure 6 Real system (a) and experimental objects (b)

Table 3 Experimental results in real system

(a) (b)

Figure 7 Novel 3D printed objects and living objects for experiments

The proposed method achieves the best results for sliding task in success rate and number of actions.
Specifically, 82.3% is the result of success rate, and the number of actions required in the random scene
is 5.6. It should be noted that there may be relative motion between the object and the gripper when it is
in contact under simulation, but this relative motion can be ignored in the actual situation. In addition,
we also conduct experiments on novel real objects, as shown in Figure 7, where seven objects are new
and the other two are existing triangular objects. The results demonstrate that even when encountering
shapes that it has not been exposed to during training, the policy model can achieve 76.5% success rate

available at https://www.youtube.com/watch?v= LA05I6POuzA.

(a) (b)

Figure 6 Real system (a) and experimental objects (b)

Table 3 Experimental results in real system

(a) (b)

Figure 7 Novel 3D printed objects and living objects for experiments

The proposed method achieves the best results for sliding task in success rate and number of actions.
Specifically, 82.3% is the result of success rate, and the number of actions required in the random scene
is 5.6. It should be noted that there may be relative motion between the object and the gripper when it is
in contact under simulation, but this relative motion can be ignored in the actual situation. In addition,
we also conduct experiments on novel real objects, as shown in Figure 7, where seven objects are new
and the other two are existing triangular objects. The results demonstrate that even when encountering
shapes that it has not been exposed to during training, the policy model can achieve 76.5% success rate

(a) (b)

Information Technology and Control 2024/1/5316

and the other two are existing triangular objects. The
results demonstrate that even when encountering
shapes that it has not been exposed to during training,
the policy model can achieve 76.5% success rate in
completing the sliding task. This also verifies the ro-
bustness and generalization of the proposed method.

6. Conclusion
In this paper, we transform the flat multi-target slid-
ing manipulation task in clutter scenes into a parame-
terized action Markov decision process. Subsequent-
ly, we propose a method to address the issue, which is
based on deep reinforcement learning. In this meth-
od, the mask images are taken as one of the states at
the input side to avoid the noise effect of the original
image. To improve data utilization, the parameters of
objects’ sliding primitives are predicted by the policy
network, while the policy is weight-sharing, and then
the Q-network selects the optimal execution object.
Meanwhile, adding extra reward makes the policy bet-
ter able to cope with multi-targets situation. In addi-
tion, an adaptive policy scaling algorithm is proposed

to boost the speed and adaptability of policy training.
In simulation and real system, the proposed method
achieves the flat multi-targets sliding manipulation
task with preferable performance, which verifies the
effectiveness of ours.
This paper centers its attention on the pursuit of at-
tainable graspability for individual targets within
cluttered environments. It does not delve into the sub-
sequent grasping, which is also our future research
work. Two viable ideas emerge for consideration: the
first entails employing hierarchical reinforcement
learning to train a sub-policy for grasping, while the
second is to use parallel training to train both sliding
and grasping policies.

Acknowledgements
This work was supported in part by the National
Key Research and Development Plan of China under
Grant 2020AAA0108902; in part by the Strategic Pri-
ority Research Program of Chinese Academy of Sci-
ence under Grant XDB32050100; and in part by the
Dongguan Core Technology Research Frontier Proj-
ect, China, under Grant 2019622101001.

References
1. Babin, V., Gosselin, C. Picking, Grasping, or Scoop-

ing Small Objects Lying on Flat Surfaces: A Design
Approach. The International Journal of Robot-
ics Research, 2018, 37(12), 1484-1499. https://doi.
org/10.1177/0278364918802346

2. Berscheid, L., Meißner, P., Kröger, T. Robot Learning
of Shifting Objects for Grasping in Cluttered Environ-
ments. 2019 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE, 2019, 612-
618. https://doi.org/10.1109/IROS40897.2019.8968042

3. Bester, C. J., James, S. D., Konidaris, G. D. Multi-Pass Q-Net-
works for Deep Reinforcement Learning with Parame-
terized Action Spaces. arXiv Preprint arXiv:1905.04388,
2019. https://doi.org/10.48550/arXiv.1905.04388

4. Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M.,
Kalakrishnan, M., Downs, L., Ibarz, J., Pastor, P., Kono-
lige, K., Levine, S., Vanhoucke, V. Using Simulation and
Domain Adaptation to Improve Efficiency of Deep Ro-
botic Grasping. 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, 4243-
4250. https://doi.org/10.1109/ICRA.2018.8460875

5. Chang, L. Y., Srinivasa, S. S., Pollard, N. S. Planning Pre-
Grasp Manipulation for Transport Tasks. 2010 IEEE
International Conference on Robotics and Automation,
IEEE, 2010, 2697-2704. https://doi.org/10.1109/RO-
BOT.2010.5509651

6. Danielczuk, M., Angelova, A., Vanhoucke, V., Gold-
berg, K. X-ray: Mechanical Search for an Occluded
Object by Minimizing Support of Learned Occupancy
Distributions. 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS),
IEEE, 2020, 9577-9584. https://doi.org/10.1109/
IROS45743.2020.9340984

7. Dogar, M. R., Srinivasa, S. S. Push-Grasping with Dex-
terous Hands: Mechanics and a Method. 2010 IEEE/
RSJ International Conference on Intelligent Robots
and Systems, IEEE, 2010, 2123-2130. https://doi.
org/10.1109/IROS.2010.5652970

8. Gupta, J. K., Egorov, M., Kochenderfer, M. Coopera-
tive Multi-Agent Control Using Deep Reinforcement
Learning. Autonomous Agents and Multiagent Sys-
tems: AAMAS 2017 Workshops, Best Papers, São Pau-

17Information Technology and Control 2024/1/53

lo, Brazil, May 8-12, 2017, Revised Selected Papers 16.
Springer International Publishing, 2017, 66-83. https://
doi.org/10.1007/978-3-319-71682-4_5

9. Hang, K., Morgan, A. S., Dollar, A. M. Pre-Grasp Sliding
Manipulation of Thin Objects Using Soft, Compliant, or
Underactuated Hands. IEEE Robotics and Automation
Letters, 2019, 4(2), 662-669. https://doi.org/10.1109/
LRA.2019.2892591

10. Huang, B., Han, S. D., Yu, J., Boularias, A. Visual Fore-
sight Trees for Object Retrieval from Clutter with
Nonprehensile Rearrangement. IEEE Robotics and
Automation Letters, 2021, 7(1), 231-238. https://doi.
org/10.1109/LRA.2021.3123373

11. Huang, H., Dominguez-Kuhne, M., Ichnowski, J., Satish,
V., Danielczuk, M., Sanders, K., Lee, A., Angelova, A., Van-
houcke, V., Goldberg, K. Mechanical Search on Shelves
Using Lateral Access X-ray. 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), IEEE, 2021, 2045-2052. https://doi.org/10.1109/
IROS51168.2021.9636629

12. Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., Levine, S. Scalable Deep Reinforcement
Learning for Vision-Based Robotic Manipulation. Con-
ference on Robot Learning, PMLR, 2018, 651-673.

13. Kappler, D., Chang, L. Y., Pollard, N. S., Asfour, T., Dill-
mann, R. Templates for Pre-Grasp Sliding Interactions.
Robotics and Autonomous Systems, 2012, 60(3), 411-
423. https://doi.org/10.1016/j.robot.2011.07.015

14. King, J., Klingensmith, M., Dellin, C., Dogar, M., Ve-
lagapudi, P., Pollard, N., Srinivasa, S. Pregrasp Manip-
ulation as Trajectory Optimization. Robotics: Science
and Systems, 2013. https://doi.org/10.15607/RSS.2013.
IX.015

15. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quil-
len, D. Learning Hand-Eye Coordination for Robot-
ic Grasping with Deep Learning and Large-Scale
Data Collection. The International Journal of Ro-
botics Research, 2018, 37(4-5), 421-436. https://doi.
org/10.1177/0278364917710318

16. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., Wierstra, D. Continuous Control
with Deep Reinforcement Learning. arXiv Preprint
arXiv:1509.02971, 2015. https://doi.org/10.48550/arX-
iv.1509.02971

17. Masson, W., Ranchod, P., Konidaris, G. Reinforcement
Learning with Parameterized Actions. Proceedings of
the AAAI Conference on Artificial Intelligence, 2016,
30(1). https://doi.org/10.1609/aaai.v30i1.10226

18. Moll, M., Kavraki, L., Rosell, J. Randomized Phys-
ics-Based Motion Planning for Grasping in Cluttered
and Uncertain Environments. IEEE Robotics and
Automation Letters, 2017, 3(2), 712-719. https://doi.
org/10.1109/LRA.2017.2783445

19. Mnih, V., Badia, A. P., Mirza, M., Graves, A., Harley, T.,
Lillicrap, T. P., Silver, D., Kavukcuoglu, K. Asynchronous
Methods for Deep Reinforcement Learning. Interna-
tional Conference on Machine Learning, PMLR, 2016,
1928-1937.

20. Puhlmann, S., Harris, J., Brock, O. RBO Hand 3: A Plat-
form for Soft Dexterous Manipulation. IEEE Transac-
tions on Robotics, 2022, 38(6), 3434-3449. https://doi.
org/10.1109/TRO.2022.3156806

21. Sarantopoulos, I., Kiatos, M., Doulgeri, Z., Malassiotis, S.
Total Singulation with Modular Reinforcement Learn-
ing. IEEE Robotics and Automation Letters, 2021, 6(2),
4117-4124. https://doi.org/10.1109/LRA.2021.3062295

22. Sarantopoulos, I., Koveos, Y., Doulgeri, Z. Grasping Flat
Objects by Exploiting Non-Convexity of the Object and
Support Surface. 2018 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2018, 5606-
5611. https://doi.org/10.1109/ICRA.2018.8461192

23. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Kli-
mov, O. Proximal Policy Optimization Algorithms.
arXiv Preprint arXiv:1707.06347, 2017. https://doi.
org/10.48550/arXiv.1707.06347

24. Sun, Z., Yuan, K., Hu, W., Yang, C., Li, Z. Learning Pre-
grasp Manipulation of Objects from Ungraspable Poses.
2020 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2020, 9917-9923. https://
doi.org/10.1109/ICRA40945.2020.9196982

25. Tang, B., Corsaro, M., Konidaris, G., Nikolaidis, S., Tellex,
S. Learning Collaborative Pushing and Grasping Policies
in Dense Clutter. 2021 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2021, 6177-
6184. https://doi.org/10.1109/ICRA48506.2021.9561828

26. Todorov, E., Erez, T., Tassa, Y. MuJoCo: A Physics En-
gine for Model-Based Control. 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems, IEEE, 2012, 5026-5033. https://doi.org/10.1109/
IROS.2012.6386109

27. Tong, Z., He, T., Kim, C. H., Ng, Y. H., Xu, Q., Seo, J. Pick-
ing Thin Objects by Tilt-and-Pivot Manipulation and
Its Application to Bin Picking. 2020 IEEE Internation-
al Conference on Robotics and Automation (ICRA),
IEEE, 2020, 9932-9938. https://doi.org/10.1109/
ICRA40945.2020.9197493

Information Technology and Control 2024/1/5318

28. Wu, J., Zhong, S., Li, Y. Learning Pre-Grasp Pushing
Manipulation of Wide and Flat Objects Using Binary
Masks. Neural Information Processing: 28th Inter-
national Conference, ICONIP 2021, Sanur, Bali, In-
donesia, December 8-12, 2021, Proceedings, Part IV
28. Springer International Publishing, 2021, 366-377.
https://doi.org/10.1007/978-3-030-92273-3_30

29. Xiong, J., Wang, Q., Yang, Z., Sun, P., Han, L., Zheng,
Y., Fu, H., Zhang, T., Liu, J., Liu, H. Parametrized Deep
Q-Networks Learning: Reinforcement Learning with
Discrete-Continuous Hybrid Action Space. arXiv Pre-

print arXiv:1810.06394, 2018. https://doi.org/10.48550/
arXiv.1810.06394

30. Xu, K., Yu, H., Lai, Q., Wang, Y., Xiong, R. Efficient Learn-
ing of Goal-Oriented Push-Grasping Synergy in Clutter.
IEEE Robotics and Automation Letters, 2021, 6(4),
6337-6344. https://doi.org/10.1109/LRA.2021.3092640

31. Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., Funk-
houser, T. Learning Synergies Between Pushing and
Grasping with Self-Supervised Deep Reinforcement
Learning. 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2018,
4238-4245. https://doi.org/10.1109/IROS.2018.8593986

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

