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In clutter scenes, one or several targets need to be obtained, which is hard for robot manipulation task. Espe-
cially, when the targets are flat objects like book, plates, due to limitation of common robot end-effectors, it 
will be more challenging. By employing pre-grasp operation like sliding, it becomes feasible to rearrange ob-
jects and shift the target towards table edge, enabling the robot to grasp it from a lateral perspective. In this 
paper, the proposed method transfers the task into a Parameterized Action Markov Decision Process to solve 
the problem, which is based on deep reinforcement learning. The mask images are taken as one of observations 
to the network for avoiding the impact of noise of original image. In order to improve data utilization, the policy 
network predicts the parameters for the sliding primitive of each object, which is weight-sharing, and then the 
Q-network selects the optimal execution target. Meanwhile, extra reward mechanism is adopted for improving 
the efficiency of task actions to cope with multiple targets. In addition, an adaptive policy scaling algorithm 
is proposed to improve the speed and adaptability of policy training. In both simulation and real system, our 
method achieves a higher task success rate and requires fewer actions to accomplish the flat multi-target slid-
ing manipulation task within clutter scene, which verifies the effectiveness of ours.
KEYWORDS: Deep Learning in Manipulation, Reinforcement Learning, Robot Control, Intelligent system, 
sliding policy.
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1. Introduction 
Robot grasping constitutes a pivotal focal point 
within the domain of robotics research, with nu-
merous algorithms having been devised to propel 
advancements in this field [12]. Conventionally, pri-
or to the robot’s initiation of a grasping operation, 
the targeted object is prepositioned in a condition 
conducive to grasping, thereby enabling the robot’s 
gripper to grasp it from one or multiple directions. 
However, in the face of a flat object placed horizon-
tally on a table, a direct grasp is most likely not possi-
ble. Typical objects are common books, dishes etc. If 
such objects are thin and wide, robots equipped with 
ordinary gripper cannot grasp them. At this time, a 
simple and direct idea is that the “pre-grasp” action 
like sliding or pushing is taken to shift flat object to 
the table edge [5]. Currently, some manual or learn-
ing-based methods have emerged for processing in-
dividual object [28]. However, the target surrounded 
by other objects is more common. It means that the 
target is likely to collide with other objects before 
being moved to the table edge, resulting in a failure 
of the pre-grasp operation.
The target can be graspable through non-prehensile 
actions rearranging the surrounded obstacles, such 
as pushing, sliding, etc. [31]. Current approaches to 
clutter scenarios revolve around partially or com-
pletely isolating objects from other obstacles, en-
abling top-down access to obtain small objects [30]. 
For flat objects, however, such manipulations are 
still insufficient. Shift the target towards the table’s 
edge sufficiently so that it is exposed for side grasp-
ing, rather than solely to separate it from obstacles. 
Furthermore, it is imperative to ensure that objects 
are not inadvertently dropped from the table to pre-
vent potential damage. Consequently, the task of ac-
quiring flat objects within a cluttered scene becomes 
notably more demanding. In particular, if there are a 
large number of obstacles and targets, it will be hard-
er to rearrange each object to make a target move to 
the table smoothly and keep each object from falling 
[18]. Moreover, multiple targets in cluttered scenar-
ios also add complexity to the task. Because it is not 
only necessary to ensure the graspable-ability of a 
single target, but also to fully consider the overall ac-
tion efficiency of the task. The manipulation policy is 
put forward higher requirements.

In this paper, we aim to push each target in the clut-
tered scene to the table’s side with a small number of 
actions to make them graspable, which is the focus of 
our research and also to eliminate difficulty for subse-
quent grasping. We introduce a technique grounded in 
deep reinforcement learning to accomplish sliding ma-
nipulation within cluttered scenes. The operation task 
is redefined as a Parameterized Action Markov Deci-
sion Process (PAMDP) [17], where the object to be slid 
is denoted as a discrete action space. The sliding prim-
itive composed of sliding distance and execution angle 
is a continuous action space. Hence, the whole action 
space is both discrete and continuous. For avoiding the 
impact of noise of original image, the mask images are 
taken as one of observations to the network. The policy 
network predicts the parameters for the sliding primi-
tive of each individual object, which is weight-sharing, 
and then the Q-network selects the optimal execution 
target. Furthermore, with the aim of enhancing the 
efficiency of completing multi-target task, the policy 
needs to identify the execution of each action as a nec-
essary step in the overall minimum number of actions 
as much as possible. Therefore, we design an addition-
al reward mechanism to intensify the policy’s perfor-
mance. Meanwhile, to boost the speed and adaptability 
of policy training, an adaptive policy scaling algorithm 
is proposed. The trained agent generates a sequence of 
sliding actions to rearrange individual objects, clear 
obstructions for a collision-free path, and subsequent-
ly slides the target towards the table edge. This process 
repeats, ensuring that each target progressively reach-
es a graspable pose.
The effectiveness of our method has been verified 
through experiments conducted in both simulated 
and real-world systems, showcasing a superior task 
success rate and enhanced action efficiency. To sum 
up, this paper has three main contributions.
1 The sliding policy is learned to rearrange objects 

via PAMDP and reinforcement learning with 
weight-sharing network for making multiple target 
flat objects graspable in clutter scenes.

2 Incorporate the extra reward into the system for 
boosting action efficiency.

3 An adaptive policy scaling algorithm is proposed 
for flat multi-target sliding tasks in clutter.
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2. Related Works 
In the field of robot grasping, numerous studies have 
emerged [4, 15], enabling intelligent manipulation of 
unknown objects within unstructured environments 
to a certain degree. Nonetheless, in regular circum-
stances, robots often face challenges when attempt-
ing to directly grasp flat objects such as books and 
plates. Instead, they require the assistance of pre-
grasp operations, such as pushing [7], sliding [9], and 
so on, to render these objects graspable.
A straightforward idea is to design professional tool 
to complete the operation task [27], when it is hard 
for flat objects to obtain via general gripper. A unique 
two-finger fixture gripper was designed via Babin et al. 
and trained a dedicated “shovel” policy for it, so as to 
achieve a flat desktop to scoop up objects and then grasp 
them [1]. Berlin Institute of Technology manufactures 
the RBO soft robotic hand using silicone gel and polyes-
ter fibers [20], and it is driven pneumatically.
Ordinary gripper can grasp flat objects to accomplish 
the grasping task by pushing, sliding and other pre-
grasp operations [5]. Sarantopoulos et al. trained the ro-
bot to grasp from the side by identifying the gap between 
table top and steel plate [22]. King et al. adopted the idea 
of trajectory optimization to solve the pre-grasp prob-
lem and obtained the optimal solution through training 
policy [14]. Kappler et al. classified objects into cate-
gories, and made adaptive adjustments for objects to 
be executed based on their categories, then completed 
pre-grasp operations by sliding [13]. CBiRRT algorithm 
[9] and reinforcement learning method [24] are used to 
move flat object to grabable poses.
When the target object is in close proximity to sur-
rounding obstacles, employing pre-grasp actions can 
expedite the acquisition of the target via robot, such as 
pushing [6]. Huang et al. moved the obstacle by push-
ing, so that the target object could be discovered by 
the camera and provide input state for the subsequent 
capture [11]. Baichuan et al. output the optimal push-
ing action sequences based on the predictive network 
to capture the target in a relatively efficient way [10]. 
Berscheid et al. introduced sliding into the algorithm 
framework of VPG [31] and applied it to cluttered en-
vironments with constraints around storage bins [2]. 
A hierarchical reinforcement learning approach was 
proposed by Sarantopoulos et al. [21] to incorporate 
pushing, sliding, and other pre-grasp actions within a 
continuous action space framework.

Currently, research on pre-grasp manipulation of 
flat objects is relatively scarce. Bingjie et al. mitigat-
ed task complexity to some extent by not positioning 
the plates completely flat, successfully accomplishing 
plate grasping in clutter [25].

3. Background 

3.1. Reinforcement Learning (RL)
In general, we represent the Markov Decision Pro-
cess (MDP) as a tuple ( , , , , )S A p r γ , where S is the set 
of states, A is the set of actions, p is the state transi-
tion probability function, r is the reward function, and

[ ]0,1γ ∈  is the discount factor.
The main goal of reinforcement learning is to max-
imize the discounted reward sum 

T
i t

t i
i t

R rγ −

=

= ∑ , also 
known as the expected return maximization. The 
agent’s objective is to train a policy θπ  with parameter
θ that can perform an action with maximum reward. 
How to learn policy efficiently is the main research 
content of reinforcement learning, and many algo-
rithms have been proposed, such as DDPG [16], A3C 
[19], PPO [23] and so on.

3.2. Markov Decision Process for 
Parameterized Action Space
In the field of reinforcement learning, action spaces 
are commonly categorized into discrete actions and 
continuous actions. Currently, various algorithms are 
designed to address different types of action spaces. 
For instance, The Deep Q-Network (DQN) algorithm 
is explicitly designed to address problems character-
ized by discrete action spaces, whereas DDPG is cus-
tomized for situations involving continuous action 
spaces. On the other hand, PPO is a versatile approach 
that can effectively handle both discrete and continu-
ous action spaces.
However, there is another kind of action space that 
is more special, that is, the parameterized action 
space that is both discrete and continuous. Simul-
taneously, in certain scenarios, each discrete action  
k∈Ad (Ad = {1, 2, ..., K}) can be represented by a set of 
continuous parameters denoted as xk, where the total 
number of continuous parameters is denoted as mk. 
The aggregate of all continuous parameters, denot-
ed as xk, collectively constitutes a continuous action 
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space referred to as Ac. Consequently, this type of action 
space can be expressed as { }( , )

d
k k ck A

A k x x A
∈

= ∪ ∈ , 
described as a hybrid discrete-continuous action space.
In the case of hybrid discrete-continuous action 
spaces, traditional reinforcement learning algo-
rithms such as DQN, DDPG, and PPO face challeng-
es as they either discretize or relax the continuous 
actions without considering the specific character-
istics of PAMDP during their initial design. As a re-
sult, achieving satisfactory results becomes difficult. 
P-DQN (Parametrized Deep Q-Network) [29] was 
proposed to address this issue by adapting the DQN 
algorithm to handle mixed action spaces. However, 
this approach involves inputting all action parame-
ters into the action value network, which contradicts 
its theoretical derivation. To address this limitation, 
MP-DQN (Multi-Pass Deep Q-Network) [3] was in-
troduced as an improvement over P-DQN. MP-DQN 
enhances the algorithm’s performance by incorporat-
ing multiple inputs, thereby effectively handling hy-
brid discrete-continuous action spaces. By leveraging 
these multiple inputs, MP-DQN aims to overcome the 
limitations of previous approaches and achieve better 
results in scenarios involving mixed action spaces.

3.3. Sliding Primitive
This paper explores the use of deep reinforcement 
learning for end-to-end pre-grasp manipulations in 
cluttered scenes. When dealing with complex environ-
ments, agents typically require significant trial and er-
ror to acquire an appropriate policy. To expedite train-
ing, this study introduces a sliding primitive (cx, cy, d, θ) 
that imposes constraints on the robot’s action space. 
Here, d represents the sliding distance, θ denotes the 
sliding direction, and (cx, cy) represents the central coor-
dinate of the targeted object. Each object, identified by 
its central coordinate (cx, cy), is assigned a correspond-
ing object number, and the robot employs a sliding oper-
ation (d, θ) to move the object to a designated position. 
Alternatively, the sliding primitive can be expressed as 
(k, d, θ), where k represents the object number.

4. Method
4.1. Mask Images
The sliding policy requires gathering shape character-
istics of both the object and the tabletop as observa-

tions to generate appropriate action instructions and 
subsequently execute the task. However, the direct use 
of the original image of the camera will be affected by 
noise, increasing the complexity, and considering the 
large number of samples required via reinforcement 
learning, it will further increase the difficulty of policy 
training. Therefore, the mask images are used as one of 
the state quantities in this paper. Given pre-processed 
mask images, the agent is capable of extracting shape 
features and relative positions of objects and tables. 
Subsequently, the agent can output sliding actions for 
each object to enable it graspable.
The mask images consist of three components: the 
object mask image Io, the mask image of desktop It, 
and XOR image Ix, and Ix represents objects located 
outside the desktop, which is expressed as:

one of the state quantities in this paper. Given pre-
processed mask images, the agent is capable of 
extracting shape features and relative positions of 
objects and tables. Subsequently, the agent can 
output sliding actions for each object to enable it 
graspable. 

The mask images consist of three 
components: the object mask image Io, the mask 
image of desktop It, and XOR image Ix, and Ix 
represents objects located outside the desktop, 
which is expressed as: 

0 0( ( , ), )x tI AND XOR I I I .                           (1) 
In the formula, AND denotes the logical and-
operation, and XOR represents the exclusive xor 
operation. In the mask images Io and It, pixels 
corresponding to objects and desktops have a 
value of 1, while other areas have a pixel value of 
0. In mask image Ix, the object is exposed to the 
outer part of the desktop with a pixel value of 1 

and the rest of the area with a pixel value of 0. 
Figure 1 provides an illustration of two sets of 
distinct mask images (Io, It, Ix). Notably, due to 
variations observed on the right side of the 
desktop, the desktop mask image It solely 
displays the lower right area. 
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In real world, considering that the robot will 

maintain contact with the object during the sliding 
operation, the robot may block the object. In this 
case, we cannot get the full object mask image 
directly from the current frame Ip. To circumvent 
this issue, before the beginning of each round, the 
RGB images of objects and desktops without 
occlusion are collected in advance and converted 

into mask images 0I
   and tI

   with OpenCV 

library. The specific generation process is shown 
in Figure 2. Since the camera is positioned in the 
upper right region of the table, the camera's 
shooting angle is not perpendicular to the desktop, 

so the original image captured by the camera 
needs to be first transformed by perspective and 
projected on a plane parallel to the desktop. After 
that, we carry out grayscale, binarization and 
morphological processing of the projected image 
to extract the contour information and draw mask 
image of the object. Finally, the mask image of 
the object is adjusted to the center of the image by 
two-dimensional affine transformation, and the 

mask image of the object is obtained 0I
  . The 

desktop mask image tI
  is generated in a similar 

way. 

(1)

In the formula, AND denotes the logical and-opera-
tion, and XOR represents the exclusive xor operation. 
In the mask images Io and It, pixels corresponding to 
objects and desktops have a value of 1, while other ar-
eas have a pixel value of 0. In mask image Ix, the object 
is exposed to the outer part of the desktop with a pixel 
value of 1 and the rest of the area with a pixel value of 
0. Figure 1 provides an illustration of two sets of dis-
tinct mask images (Io, It, Ix). Notably, due to variations 
observed on the right side of the desktop, the desktop 
mask image It solely displays the lower right area.
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Figure 2
The generation of mask images in real world

In real world, considering that the robot will maintain 
contact with the object during the sliding operation, 
the robot may block the object. In this case, we can-
not get the full object mask image directly from the 
current frame Ip. To circumvent this issue, before 
the beginning of each round, the RGB images of ob-
jects and desktops without occlusion are collected in 
advance and converted into mask images 0I −  and tI −  
with OpenCV library. The specific generation process 
is shown in Figure 2. Since the camera is positioned 
in the upper right region of the table, the camera’s 
shooting angle is not perpendicular to the desktop, so 
the original image captured by the camera needs to be 
first transformed by perspective and projected on a 
plane parallel to the desktop. After that, we carry out 
grayscale, binarization and morphological processing 
of the projected image to extract the contour informa-
tion and draw mask image of the object. Finally, the 
mask image of the object is adjusted to the center of 
the image by two-dimensional affine transformation, 
and the mask image of the object is obtained 0I − . The 
desktop mask image tI −  is generated in a similar way.

4.2. Sliding Policy
At the initial phase of this research, we first carry out 
the design of policy network and value network for 
the case of only one object in environment. The status 
of the policy network s includes three mask images 
( , , )o t xI I I , the height of the object and the desktop, 
the pose and speed of the end-effector. Action a is the 
linear velocity of the end effector along the x/y/z axis. 
Meanwhile, in order to speed up the convergence of 
the network, the policy network outputs not only ac-
tion a, but also seven other variables as auxiliary out-
put auxy . The seven auxiliary output variables are the 
coordinates of the object and the desktop in the direc-
tion of x/y, their relative positions, and a signal (1/-1) 

about whether an object can be graspable. The loss 
function of the policy network ϕπ is:
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entails the action value Q   and lacks any 

auxiliary output. Simultaneously, the value 
network Q  possesses a more comprehensive 
range of input states compared to the policy 

network. Besides the input of the policy network, 
it also inputs the object’s pose and the desktop and 
the signal of whether the object can be grasped 
(1/-1). These additional input states can assist the 
value network better evaluate actions a and guide 

the policy network    to update the weights. 

The loss function of the value network Q is: 

2

1,2
( min ( , ( )) ( , ))

i
Q i

L r Q s s Q s a 
 
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where, the two action values Q   in the TD3 

algorithm are distinguished by the footmark i, and
s is the state of the next moment. 

However, when confronted with a more 
intricate cluttered scene involving multiple 
targets and a higher number of objects, training a 
policy network for each individual object 
becomes challenging. Convergence becomes 
difficult for each network, resulting in a lower 
task success rate. For all objects, given the 
similarity of operational parameters, denoted as 
( , )d   , utilizing a weighted sharing policy 

network ( )s   can significantly enhance the 

efficiency of data utilization. To facilitate 
differentiation between objects, the system 
incorporates the observation ko  as one of the 
states, and k is a specific object. Consequently, the 

policy ( , )ks o   is employed to predict the 

action parameters for the execution of object k. 

An additional value network ( , , )k kQ s o x  is 

employed to perform the object selection process: 
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where, the two action values Q  in the TD3 algorithm 
are distinguished by the footmark i, and s′  is the state 
of the next moment.
However, when confronted with a more intricate clut-
tered scene involving multiple targets and a higher 
number of objects, training a policy network for each 
individual object becomes challenging. Convergence 
becomes difficult for each network, resulting in a low-
er task success rate. For all objects, given the similar-
ity of operational parameters, denoted as ( , )d θ , uti-
lizing a weighted sharing policy network ( )sϕπ  can 
significantly enhance the efficiency of data utiliza-
tion. To facilitate differentiation between objects, the 
system incorporates the observation ko as one of the 
states, and k is a specific object. Consequently, the pol-
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icy ( , )ks oϕπ  is employed to predict the action param-
eters for the execution of object k. An additional value 
network ( , , )k kQ s o xω is employed to perform the ob-
ject selection process: arg max ( , , ( , ))k kk Q s o s oπ∗ ← . 
The action space based on sliding primitives compris-
es discrete object numbers denoted as k and continu-
ous action parameters : ( , )kx d θ , resulting in a mixed 
action space ( , )kk x that combines both discrete and 
continuous elements. In this paper, how to learn the 
sliding policy in cluttered scenarios is translated into 
a PAMDP problem.
Currently, the Bellman equation 

,
( , ) [ max ( , ) , ]

r s a
Q s a E r Q s a s aγ

′ ′
′ ′= +  can be rewritten as:

arg max ( , , ( , ))k kk Q s o s o   . The action 

space based on sliding primitives comprises 
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Situation 1 pertains to a scenario where the target ob-
ject satisfies the following two conditions: (1) The tar-
get object possesses ample surface area to be stably 
exposed off the table; (2) The target object lies within 
the reachable workspace of the robot. Meanwhile, all 
objects are positioned on the table.

4.3. Extra Reward
In a clutter scene with multiple flat targets, it is not 
enough to just shift one target to render it graspable. 
Moreover, after each action is executed, the pose of 
each object may change due to touch, so ensuring the 
overall efficiency of the actions is the key for policy to 
complete the task. This paper adds extra reward, the 
main purpose of which is to enable the policy to learn 
associated actions (for example, sliding target A can 
move target B to the table together), thus optimizing 
task efficiency.
The system records the positions of targets at the be-
ginning of episode pi ( i∈number of targets).When the 
robot slides a target 1T  to the table’s edge, 1T  is grasp-
able and reach the goal position ( 1T  reach goal, abbre-
viating 1gT ). The d1 is the distance between pi and 1gT . 
The d2 is the distance between ip′  (when 1T  reach 
goal) and 1gT . If d2 < d1, obtain an extra reward er :
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Figure 3 The overview of our method. (a) The basic operating logic of policy network  and Q-

network Q in the system. (b) The policy network  outputs corresponding actions for each object, and 

the input-output logic of value network Q is similar. (c) Two types of reward assist the agent in 
updating 
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where, 0n is the quantity of other targets (excluding 1T ), 
and tn represents the quantity of targets that satisfy 
the requirement d2 < d1. The agent will learn benefi-
cial associated actions and improve the performance 
of system via extra reward.

4.4. Adaptive Policy Scaling
The scarcity of rewards poses a challenge for rein-
forcement learning in obtaining reward signals and 
acquiring an appropriate policy. To address this, the 
initial state is initialized to the state observed during 

the demonstration track, which expedites the train-
ing process and facilitates the acquisition of an im-
proved policy. However, over-reliance on the presen-
tation trajectory can lead to inadequate exploration 
of the entire state space. Therefore, this paper not 
only initializes the initial state of the environment 
as a demonstration trajectory, but also randomly 
initializes it to ensure the agent’s ability to explore 
other state spaces. Specifically, the initialization 
is based on two conditions: In situations where the 
agent lacks knowledge on how to accomplish the 
task, the environment’s initial state is initialized to 
the state observed during the demonstration trajec-
tory. This process directly sets up the environment 
in a state that is near the completion of the task, and 
the policy learns these relatively simple subtasks 
first, thereby facilitating the learning of the overall 
task. After the agent is capable of partially complet-
ing the task, the initial state is randomly initialized 
directly, and the agent begins to learn the overall 
task and explore the state space not covered by the 
presentation trajectory.
In a multi-target environment with additional ob-
jects, if the policy network generates all actions si-
multaneously and the number of output actions 
varies, the policy model becomes unsuitable for con-
tinued use. The inconsistency in the number of out-
put actions can lead to compatibility issues, rendering 
the policy model ineffective for handling the dynamic 
nature of the environment. In the proposed method, 
the policy network also takes the observation ko as an 
input, while k is a specific object, and only the sliding 
parameter kx  of a single object k is output each time. 
It means that this method is not constrained by the 
number of objects. 
Meanwhile, we draw upon the concept of course 
learning [8] and further extends the proposed meth-
od to the chaotic scene containing more objects, so 
as to incrementally raise the quantity of objects in 
the environment and realize the gradual learning of 
sliding operations, rather than letting the agent learn 
in the scene of many objects at the beginning, which 
can better help the agent to overcome exploratory 
problem. At the end of the course, even in a com-
plex scene, the agent can separate the target objects 
and make them graspable orderly. The algorithm is 
shown as follow.
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Algorithm1. Adaptive Policy Scaling

1: Initialize the policy network ϕπ and value network Qω

2: Initialize parameters , , ,Tµ σ α
3: 2, ( 1),n Tµ σ α µ← ← × − ∈
4: Initialize the train buffer tB and demo buffer dB , 
generate n reference tracks and save them in dB
5: for  epi=1, M  do
6: The environment is initialized to a cluttered 

scene of ni objects
7: if  ni<M0  and  p<pd  then
8:  State initialization of demonstrates trajectory
9: end if
10: if  ni<M0  and dp p≥  then
11:  Random initialization
12: end if
13: Rollout and save data to the buffer tB
14: Update the success rateζ with µ objects
15: Update parameters ,Tµ after m episodes
16: 1( ) 1( )h lµ µ ζ β ζ β′ ← + > − <  
17:  if  µ µ′ >   then
18:                         1T T← +  
19: else
20:                        1T T← −

21:  end if
22:  µ µ′←  
23:  Update the network parameters ,ϕ ω by Equa-

tionstab (4) and (6)
24: if  nµ ≥  then
25:  Update ,δ ε , ,δ δ ξ ε ε ξ← × ← ×  
26:  end if
27: end for

where, 1 2(1 , , )dp clip ζ ε ε
α

= −
 

represents the proba-
bility of initialization to a state on the demonstration 
trajectory, and 1r dp p= −  represents the probability 
of random initialization, the sum of which is 1. ζ is 
the current task success rate, and 1ε  and 2ε  are the 
minimum and maximum values of dp . (0,1]α ∈  is a 
hyperparameter adjusting the size of dp . When the 
success rate ς α≥ , the environment is initialized to 
the state of the presentation trajectory with only a 

small probability 1ε ; otherwise, it is initialized ran-
domly. Initial stage of training is accelerated in this 
way, where M0 is significantly less than M.
To facilitate better transfer of the sliding policy 
trained in an environment with a limited number of 
objects to a scenario with a higher number of objects, 
this paper adopts truncated normal distribution sam-
pling ( , , , )N l hτ µ σ  for ascertaining the quantity of 
objects in the current environment in , where l and h 
are truncated boundaries.α  is a hyperparameter that 
adjusts the size of the standard deviation σ , and the 
integer down function adjusts the number of objects 

in  to an integer.
At the beginning of the training, there are only 2 ob-
jects in the environment, including 1 target object and 
1 obstacle object. When the success rate of the agent 
in this simple subtask exceeds hβ , we increase the ob-
ject mean µ to improve the task difficulty. Conversely, 
when the agent’s success rate in the ongoing subtask 
drops below a certain threshold lβ , the mean of ob-
jects initialized by the environment µ  is reduced. 
This measure is taken to decrease the task difficulty 
and enhance the agent’s chances of achieving suc-
cessful outcomes in subsequent attempts. Mean-
while, the number of target objects T also changes 
accordingly. The process is repeated until the object 
mean µ  reaches the preset maximum number of ob-
jects. In line 16 of the algorithm, 1(g) is the symbolic 
function.
For avoiding the policy falling into local optimality, 
noise δ  is added to the action of the agent, and the 
ε-greedy policy is utilized to choose the object k to be 
acted on. In addition, the exploration noise δ  and εare 
limited by decreasing the attenuation rate ξ  to assist 
the policy network convergence. 

5. Experiments 
5.1. Experimental Setting
In this paper, the simulation is conducted using the 
Mujoco software [26]. The main body of the experi-
ment is a six-axis UR3 robot equipped with Robotiq85 
gripper. The task assigned to the agent involves slid-
ing the objects within the cluttered scene while en-
suring that none of the objects fall. Additionally, the 
agent must guide each target towards the table edge, 
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ultimately achieving a graspable state for all the tar-
gets. In the simulation environment, n objects, which 
includes the target objects (purple triangle), are ran-
domly dispersed on the desk as depicted in Figure 5. 
For evaluation, we employ the average quantity of ac-
tions and task success rate in 50 times as the metrics.

5.2. Simulated Results
In order to illustrate the effectiveness of our ap-
proach, we conduct a comparative analysis against 
various baseline approaches. 
P-DQN: The method presented in reference [29] gen-
erates all actions in a simultaneous manner, employ-
ing a Q-network to handle a mixed action space com-
prising both discrete and continuous elements.
MP-DQN: In order to mitigate false gradients caused 
by Q-values dependence, this method [3] takes the 
action base vector as the input of the Q network. This 
variant of P-DQN helps to address the issue effective-
ly.
Q-TD3: To yield the precise policy gradient, the Qω 
network exclusively computes the loss function of πϕ 
network. Additionally, an auxiliary Qψ network is uti-
lized to choose the object to be acted, further contrib-
uting to the overall functionality of the method.
ArbitraryTD3: The workspace (cx, cy, d, θ) is consis-
tent with our approach, but can be slid from arbitrary 
point. A method following the standard TD3 frame-
work.

Figure 4
The learning curve of each method is obtained in a training 
environment consisting of 2 targets and 4 non-targets
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continuous elements. 

MP-DQN: In order to mitigate false gradients 
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network. This variant of P-DQN helps to address 
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Q-TD3: To yield the precise policy gradient, 
the Qω network exclusively computes the loss 
function of πϕ network. Additionally, an auxiliary 
Qψ network is utilized to choose the object to be 
acted, further contributing to the overall 
functionality of the method. 

ArbitraryTD3: The workspace (cx, cy, d, θ) is 
consistent with our approach, but can be slid from 
arbitrary point. A method following the standard 
TD3 framework. 

The success rate of training is shown in Figure 
4. The training environment is a clutter scene with 
2 target objects (Tob) and 4 non-target objects 
(NTob). In addition, both random and challenging 

The success rate of training is shown in Figure 4. The 
training environment is a clutter scene with 2 tar-
get objects (Tob) and 4 non-target objects (NTob). 
In addition, both random and challenging scenes are 
utilized to evaluate the methods, considering various 
numbers of objects, and the results are summarized in 
Table 1. Superior performance reflected in our meth-
od, achieving a higher success rate and requiring few-
er actions compared to other methods, making it the 
optimal choice for the given tasks.
The network directly obtains the object observation ko  
in our method, and the network exclusively estimates 

kQ without computing all of the Q-values. This fo-
cused estimation allows both ϕπ network and the Q-net-
work to acquire more precise Q-values, contributing to 
the overall precision and efficacy of ours. Indeed, our 
method differs from P-DQN and MP-DQN. MP-DQN 
introduces a multi-channel method that weakens the 
Q-values error estimation, while in ours, we focus on es-
timating kQ  directly from the object observation, which 
results in a distinct and more accurate Q-values estima-
tion process. Furthermore, our proposed method utiliz-
es the Q-network Qω for action selection, allowing it to 
provide a policy gradient for the policy network ϕπ . This 
close integration between action parameters and target 
selection leads to a more cohesive and effective way in 
handling the task. The incorporation of the extra reward 
further improves the sensitivity of policy to changes in 
the state of each target during training. This improve-
ment allows the system to more effectively adapt to 
varying conditions and optimizes the overall system’s 
execution efficiency. The large action space of Arbitrar-
yTD3 exacerbates the challenge of exploration, making 
it difficult to learn a proper policy. In contrast, our meth-
od tackles this issue by rearranging the non-target ob-
jects to create separation between each target and make 
them graspable orderly through sliding.
To analyze the difference between the proposed 
method and the baselines, we conduct training in 3 
randomly arranged scenarios, then testing in random 
ones and other 3 challenging scenarios. The objects 
in each type of scenario are 1 Tob and 2 NTob, 2 Tob 
and 4 NTob, and 3 Tob and 6 NTob, respectively, as 
shown in Figure 5, purple triangle(s) representing the 
target(s). The results are presented in Table 1, where 
r represents randomly distributed scene, c represents 
challenging scene, and 3, 6, 9 represents the number 
of objects. The success rate tends to decrease and the 
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Figure 5
Random clutter scene (a, c, e) and challenging scene (b, d, 
f ) under simulation

scenes are utilized to evaluate the methods, 
considering various numbers of objects, and the 
results are summarized in Table 1. Superior 
performance reflected in our method, achieving a 
higher success rate and requiring fewer actions 
compared to other methods, making it the optimal 
choice for the given tasks. 
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and more accurate Q-values estimation process. 
Furthermore, our proposed method utilizes the Q-
network Q  for action selection, allowing it to 
provide a policy gradient for the policy network

  . This close integration between action 

parameters and target selection leads to a more 
cohesive and effective way in handling the task. 
The incorporation of the extra reward further 
improves the sensitivity of policy to changes in 
the state of each target during training. This 
improvement allows the system to more 
effectively adapt to varying conditions and 
optimizes the overall system's execution 
efficiency. The large action space of 
ArbitraryTD3 exacerbates the challenge of 
exploration, making it difficult to learn a proper 
policy. In contrast, our method tackles this issue 
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Table 1
The test results of proposed method are compared with 
other baselines in different clutter scenes

Metric Success Rate (%)

Arrangement 
Random Challenging

r3 r6 r9 c3 c6 c9

P-DQN 91.2 46.8 21.3 89.7 39.5 16.5

MP-DQN 92.4 53.1 24.5 90.6 47.2 19.7

Q-TD3 94.3 56.3 26.1 88.5 49.6 20.4

ArbitraryTD3 68.9 20.6 5.3 57.3 11.2 3.9

Ours 98.8 91.2 80.4 94.8 88.3 77.8

Metric Number of Action

Arrangement 
Random Challenging

r3 r6 r9 c3 c6 c9

P-DQN 4.2 7.8 12.4 4.6 8.7 13.2

MP-DQN 3.6 7.2 11.6 3.9 8.1 12.8

Q-TD3 2.9 6.7 10.8 3.8 7.8 11.9

ArbitraryTD3 4.7 8.9 13.5 5.4 9.7 15.1

Ours 2.1 4.3 6.8 2.5 4.9 7.3

average number of actions required increases, with 
the increasement in the quantity of objects. This 
trend indicates that handling a larger number of ob-
jects introduces greater complexity and challenges 
for the methods, resulting in decreased success rates 
and increased action requirements across the board. 
However, our method manages to maintain a decent 
performance, even in challenging scenarios with 9 
objects (3 Tob in them) and achieve 77.8% success 
rate, and other metrics are optimal. Although other 
methods have a significant performance while the 
quantity of objects is few, the success rate of the task 
decreases visibly with the increase of the number of 
objects, which is due to the inaccurate estimation of 
Q-values and insufficient exploration of action space.
We conducted ablation experiments on the proposed 
algorithm 1 and the extra reward mechanism to veri-
fy their effectiveness for the whole system. There are 
9 objects (including 3 Tob) in the simulation environ-
ment, and the results are shown in Table 2, w/o repre-
senting without and w/ representing with. When al-

(a)

(b)
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gorithm 1 and extra reward are not used neither, each 
data is the lowest, and when both are used, it is the best. 
In addition, the data also show that the experimental 
result of algorithm 1 utilized only is better than extra 
reward only. Comprehensive analysis shows that with 
the assistance of algorithm 1, the generalization abili-
ty of the whole system is improved, and the addition of 
extra reward can effectively compensate for the explor-
atory problems and enhance the performance of policy.

5.3. Results of Real System
In the real system, we use UR3 robot and Robotiq85 
gripper for sliding manipulation, as shown in Figure 
6, and adopt Kinect2.0 camera on the top to locate 
objects and generate image mask via Apriltag [3] 
and Section 4.1. Using mask image can not only ac-
celerate the training of policy in simulation, but also 
better eliminate the error and noise caused by the 
original image in the policy transfer application of 
real system. To facilitate the execution of the sliding 
action, the rubber block is fixed at the end of the grip-

Table 2
Ablation experiment results of algorithm1 and extra reward

Metric Success Rate (%) Number of Action

Arrangement r c r c

Ours w/o alg1 w/o ER 38.5 32.3 10.2 11.3

Ours w/o alg1 w/ ER 42.1 36.8 9.5 10.4

Ours w/ alg1 w/o ER 47.8 42.6 8.9 9.7

Ours w/ alg1 w/ ER 80.4 77.8 6.8 7.3

available at https://www.youtube.com/watch?v= LA05I6POuzA.
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Figure 7 Novel 3D printed objects and living objects for experiments 
 

The proposed method achieves the best results for sliding task in success rate and number of actions. 
Specifically, 82.3% is the result of success rate, and the number of actions required in the random scene 
is 5.6. It should be noted that there may be relative motion between the object and the gripper when it is 
in contact under simulation, but this relative motion can be ignored in the actual situation. In addition, 
we also conduct experiments on novel real objects, as shown in Figure 7, where seven objects are new 
and the other two are existing triangular objects. The results demonstrate that even when encountering 
shapes that it has not been exposed to during training, the policy model can achieve 76.5% success rate 
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Real system (a) and experimental objects (b)

per, which also makes the contact process cushioned. 
We conducted a comparative evaluation between the 
proposed method and four other baselines, running 
a total of 50 times in both random and challenging 
scenes with 9 objects (including 3 randomly assigned 
targets). To evaluate the performance of the pro-
posed method under real-world conditions, the poli-
cy trained in the simulation is directly transferred to 
the real system without any fine-tuning. The obtained 
results are shown in Table 3. The video is available at 
https://www.youtube.com/watch?v= LA05I6POuzA. 

Table 3
Experimental results in real system

Metric Success Rate (%) Number of Action

P-DQN 23.5 11.9

MP-DQN 28.6 10.8

Q-TD3 29.7 9.7

Ours 82.3 5.6

Ours (novel objects) 76.5 6.3

The proposed method achieves the best results for 
sliding task in success rate and number of actions. 
Specifically, 82.3% is the result of success rate, and 
the number of actions required in the random scene 
is 5.6. It should be noted that there may be relative 
motion between the object and the gripper when it is 
in contact under simulation, but this relative motion 
can be ignored in the actual situation. In addition, 
we also conduct experiments on novel real objects, 
as shown in Figure 7, where seven objects are new 

Figure 7
Novel 3D printed objects and living objects for experiments
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and the other two are existing triangular objects. The 
results demonstrate that even when encountering 
shapes that it has not been exposed to during training, 
the policy model can achieve 76.5% success rate in 
completing the sliding task. This also verifies the ro-
bustness and generalization of the proposed method.

6. Conclusion  
In this paper, we transform the flat multi-target slid-
ing manipulation task in clutter scenes into a parame-
terized action Markov decision process. Subsequent-
ly, we propose a method to address the issue, which is 
based on deep reinforcement learning. In this meth-
od, the mask images are taken as one of the states at 
the input side to avoid the noise effect of the original 
image. To improve data utilization, the parameters of 
objects’ sliding primitives are predicted by the policy 
network, while the policy is weight-sharing, and then 
the Q-network selects the optimal execution object. 
Meanwhile, adding extra reward makes the policy bet-
ter able to cope with multi-targets situation. In addi-
tion, an adaptive policy scaling algorithm is proposed 

to boost the speed and adaptability of policy training. 
In simulation and real system, the proposed method 
achieves the flat multi-targets sliding manipulation 
task with preferable performance, which verifies the 
effectiveness of ours.
This paper centers its attention on the pursuit of at-
tainable graspability for individual targets within 
cluttered environments. It does not delve into the sub-
sequent grasping, which is also our future research 
work. Two viable ideas emerge for consideration: the 
first entails employing hierarchical reinforcement 
learning to train a sub-policy for grasping, while the 
second is to use parallel training to train both sliding 
and grasping policies.
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