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Some of the most fundamental human capabilities, including thought, speech, and movement, may be lost due 
to brain illnesses. The most prevalent form of dementia, Alzheimer’s disease (AD), is caused by a steady decline 
in brain function and is now incurable. Despite the challenges associated with making a conclusive diagnosis of 
AD, the field has generally shifted toward making diagnoses justified by patient records and neurological anal-
ysis, such as MRI. Reports of studies utilizing machine learning for AD identification have increased in recent 
years. In this publication, we report the results of our most recent research. It details a deep learning-based, 3D 
brain MRI-based method for automated AD detection. As a result, deep learning models have become increas-
ingly popular in recent years for analyzing medical images. To aid in detecting Alzheimer’s disease at an initial 
phase, we suggest a novel dual attention-aware Octave convolution-based deep learning network (DACN). The 
three main parts of DACN are as follows: First, we use Patch Convolutional Neural Network (PCNN) to identify 
discriminative features within each MRI patch while simultaneously boosting the features of abnormally al-
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tered micro-structures in the brain; second, we use an Octave convolution to minimize the spatial redundancy 
and widen the field of perception of the brain’s structure; and third, we use a dual attention aware convolution 
classifier to dissect the resulting depiction further. An outstanding test accuracy of 99.87% is reached for cat-
egorizing dementia phases by employing the suggested method in experiments on a publicly available ADNI 
(Alzheimer’s Disease Neuroimaging Initiative) dataset. The proposed model was more effective, efficient, and 
reliable than the state-of-the-art models through our comparisons.
KEYWORDS: Alzheimer’s disease, Brain disorder, deep learning, depth-wise separable convolution, spatial at-
tention blocks.

1. Introduction
Human capabilities such as thought, speech, and 
movement are fundamental to our daily lives. How-
ever, brain illnesses can rob individuals of these abil-
ities, profoundly influencing their standard of living. 
One of the most prevalent and devastating forms of 
brain disease is AD, marked by a gradual loss of men-
tal capacity. Unfortunately, AD has no cure, making 
early detection crucial for managing the condition ef-
fectively. As the human population ages, neurological 
disorders like Alzheimer’s and Parkinson’s become 
more common. Alzheimer’s disease (AD) stands out 
among these disorders due to its high prevalence: 
5.5% in Europe in 2016 [27] and 10% in the USA in 
2019 [10]. The primary difficulty Alzheimer’s dis-
ease researchers confront today is making a defini-
tive premortem diagnosis. There is still a lot we do 
not know about this condition beyond the fact that 
it causes shifts in the brain’s cortex and is associated 
with mood swings that are not related to normal ag-
ing [35, 9]. Though the exact reasons for AD remain 
unclear, most scientists think it is due to hereditary 
and environmental factors. Some research has linked 
it to periodontal disease-causing bacteria [6] and her-
pes simplex virus type 1 [17]. There may be sexual di-
morphism in the occurrence of the illness [8], and it is 
thought to be age-related but not age-dependent [4]. 
Because of its lasting effects on society and research-
ers’ inability to agree on its cause, the illness is still a 
topic of intensive investigation.
Alzheimer’s disease affects the brains with larger 
ventricles and smaller cerebral cortex and memory. 
When the brain’s hippocampus is shrunk, it causes 
spatial and episodic memory problems. It’s a link 
between your head and your body. Loss of hippo-
campal volume is associated with the deterioration 
of synapses and neuronal terminals [38]. Uncertain-
ty between neurons has been linked to problems in 

short-term memory, organizing, and reasoning [34]. 
Experts in the field have created many computer-
ized diagnostic systems (CADS)for reliable identi-
fication and categorization of AD-related extracted 
characteristics [15]. Otherwise, more work and time 
on the part of human specialists is needed to process 
the retrieved information. To remove the features 
directly from medical pictures, researchers have re-
cently developed deep-learning models/techniques 
[22]. The field of medical imaging, including CT, 
MRI, X-ray, microscope, and mammography, has 
been primarily conquered by deep learning models 
[14]. Most of these models and techniques relied on 
binary categorization, which reveals whether the pa-
tient has AD [19]. However, the phases of dementia 
must be identified for an accurate diagnosis. Ten to 
sixteen percent of people with MCI rapidly progress 
to AD per year [16], making it a severely impaired 
stage compared to AD. Stabilization or reversal to 
the healthy stage in MCI patients is extremely varied 
[33]. The multi-modal information about the brain’s 
function and organization contained in MRI scans 
makes them ideal for medical care.
Traditionally, diagnosing AD has been challenging, 
relying on medical past and neuropsychological ev-
idence with MRI. Yet, there has been an increasing 
amount of study lately exploring the application of 
machine learning techniques to aid in AD identifi-
cation.
Motivation: Alzheimer’s Disease is a progressive and 
debilitating neurological condition, and early detec-
tion is crucial for timely intervention and treatment. 
Detecting AD at its initial stages can significantly im-
prove the quality of life for affected individuals and 
potentially slow down the progression of the disease. 
Research in this area aims to develop more accurate 
and efficient methods for early diagnosis. Advance-
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ments in medical imaging technology have provided 
researchers with a wealth of brain image data. Lever-
aging these technologies and analyzing the images 
with the help of artificial intelligence and deep learn-
ing models can lead to more accurate and consistent 
diagnostic tools for AD. Traditional methods of di-
agnosing AD often involve subjective assessments 
by healthcare professionals. These assessments may 
vary from one clinician to another and can be influ-
enced by individual experience and biases. The mo-
tivation behind this research is to develop objective 
and data-driven approaches that can provide consis-
tent and reliable diagnostic results.
This paper offers the results of our latest research, 
which introduces a novel deep learning-based meth-
od for the automated detection of AD using 3D brain 
MRI data. Deep learning models have gained signifi-
cant popularity in medical image analysis due to their 
ability to extract intricate patterns and features from 
complex data. To enhance the early detection of Alz-
heimer’s disease, we propose a novel deep learning 
network called the Dual Attention Aware Depth Wise 
Separable Convolution (DA-DSC) network. The main 
contribution of our is as follows.
1 we employ PCNN equipped to identify discrimi-

native features within each MRI patch. This ap-
proach allows us to simultaneously emphasize the 
features of abnormally altered micro-structures in 
the brain, potentially indicative of AD progression. 

2 we use an Octave convolution to minimize spatial 
redundancy and widen the field of perception of 
the brain’s structure. 

3 we leverage a dual attention-aware convolution 
classifier to analyze the resulting representation 
further and make a robust diagnosis. By utilizing 
this architecture, we aim to achieve improved ac-
curacy, efficiency, and reliability compared to ex-
isting state-of-the-art models.

To evaluate the efficiency of our proposed technique, 
we conducted experiments on a publicly available 
dataset. Remarkably, our suggested model achieved 
outstanding test accuracy in categorizing dementia 
phases. These impressive consequences establish the 
potential of our method for accurate and early detec-
tion of Alzheimer’s disease. Compared with existing 
models, our proposed DA-DSC network proves to be 
more effective, efficient, and reliable. The results of 

this investigation add to the burgeoning literature on 
machine learning techniques in the field of AD diag-
nosis and pave the way for improved patient care and 
management of this debilitating disease. 
The same structure applies to the remaining parts of 
this article. Section 3 discusses relevant literature 
and presents the proposed model. Section 4 details 
the findings of the inquiry. The conclusion and next 
steps are outlined in Section 5.

2. Related Works
Research has proposed several methods of identify-
ing AD and prognosis based on categorization. Be-
low is a summary of current revisions that have used 
conventional ML and DL methods in AD detection 
technologies. Earlier research on Alzheimer’s disease 
diagnosis has used more traditional machine-learn-
ing approaches. There is model building to interpret 
MRIs and other pictures of the brain’s anatomy and 
structure and the brain’s activity to diagnose disease. 
Furthermore, it relied mainly on manually construct-
ed features and visualizations of features compared to 
voxel, region, or patch-based approaches and treated 
segmentation challenges as classification concerns. 
It took more time and many expertly segmented pic-
tures to train classification algorithms.
Many applications of artificial intelligence models 
have been suggested to extract characteristics and 
transfer out frequent procedures on AD MRI images. 
To detect individuals with AD from T1-weighted MRI 
images, Kloppel et al. [21] developed a dimensional 
compression model based on a linear support vector 
machine technique. A multimodal classification for 
AD was developed by Gray et al. [11] using PET and 
MRI data using a random forest classifier. Morra et al. 
[25] compared models for detecting AD in MRI imag-
es, including support vector machine and hierarchi-
cal AdaBoost models. Using shrunken kernel princi-
pal component analysis (DKPCA) and SVM, Neff et 
al. [26] devised an approach for feature extraction and 
reduction in AD MRI images. Using a multi-support 
vector machine (MSVM) kernel, they evaluated the 
model on the OASIS datasets and found it to be 92.5% 
accurate. Wang et al. [40] extracted and categorized 
the structures in MRI data using wavelet entropy and 
biography-based optimizers.
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They achieved perfect accuracy by using a 6-fold 
CV model to 64 brain pictures. Ben Ahmed et al. [3] 
have enhanced the precision of feature extraction 
and feature selection on datasets of Alzheimer’s dis-
ease and neurodegenerative disease patients. They 
turned to SVM, the gray level occurrence matrix, 
and voxel-based morphometric (VBM) analysis for 
feature extraction and classification. Over 92% ac-
curacy was achieved when tested on data from the 
ADNI. The Harvard Medical School has created 
systems for extracting and reducing features from 
T2-weighted MRI scans, as proposed by El-Dashan 
et al. [7]. Hinrich et al. [13] used the suggested meth-
od to multi-classify Alzheimer’s disease using data 
from the ADNI database. All in all, a total of 79.8 
percent accuracy was achieved. The correlation 
between subjects was also discovered by Yue et al. 
[39] using a voxel-based hierarchical feature ex-
traction method. Second, we processed the feature 
using feature vectors and sent them into a classifier 
to see how well it performed. To diagnose the var-
ious phases of AD, Ahmed et al. [1] created a more 
straightforward CNN model based on the patch-
based classifier. The model both improved accuracy 
and decreased computing time.
A model for the early detection, categorization, fore-
casting, and identification of AD, MCI, and aged cog-
nitively normal from those with MCI was proposed by 
Rallabandi et al. [31]. Including 371 healthy controls, 
328 patients with moderate dementia, 169 with se-
vere dementia, and 284 with dementia, the ADNI da-
tabase provided 1167 participants with whole-brain 
MRIs. Using FreeSurfer evaluation, they were able 
to identify 68 features related to the thickness of the 
cortical from each image. When handling sequential 
data, recurrent neural networks, particularly those 
with long short-term memory (LSTM), are powerful 
models [36]. The vanishing gradient problem is fixed, 
feature propagation is strengthened, and the number 
of parameters is decreased thanks to the DenseNet 
CNN architecture. Therefore, it was adopted to ex-
tract the interslice features [37].
Considering all of this information, we present a new 
Deep Learning (DL) model that layers an LSTM on 
top of the bottleneck features retrieved using the ini-
tialized weights of a previously trained CNN based on 
the DenseNet architecture and fed with data from Im-
ageNet. CNN and LSTM are used in this hybrid model 

to learn both interslice and interslice characteristics 
from brain MRI scans. For the diagnosis of Alzhei-
mer’s disease in its earliest stages, the author [2] sug-
gests a hybrid Deep Learning Approach. Combining 
MRI, PET, and traditional neuropsychological test 
scores is one approach to early AD identification uti-
lizing multimodal imaging and CNN with the LSTM 
algorithm. Better prediction performance in Alzhei-
mer’s disease diagnosis is sought in this study [32] by 
proposing an integrated multi-solutional ensemble 
deep learning-based approach. 
Martinez-Murcia et al. [24] employ deeper convo-
lutional autoencoders to study AD data processing. 
Extracting MRI features that stand in for cognitive 
indications and the underlying neurodegenerative 
process is now possible because of the data-driven 
deconstruction of MRI scans. A DNN with inter-
connected layers [30, 12] accomplishes binary ar-
rangement. There is a unique activation function 
for each of the underlying hidden layers. After do-
ing k-folds validation, a model with the maximum 
presentation is selected. The Lancet Commission 
reported that it is possible to alter 35 percent of the 
risk factors for developing Alzheimer’s disease. A 
high correlation is shown among genetic examina-
tions. Biomarker and neuropsychological results 
when data from the ADNI trial is used using ten-
fold cross-validation [20].

3. Methods and Materials
AD is diagnosed using brain MRI by experienced phy-
sicians. Neurological disorders are challenging to pre-
dict in the early stages. The training and optimization 
process for the neural network and the technology be-
hind related approaches such as CNN and Patch-Nets 
are presented here. 
Next, the data must be labeled appropriately, a cru-
cial step in supervised learning. Expert clinicians or 
neurologists review the MRI scans and assign labels 
indicating whether the individual has Alzheimer’s 
Disease or is part of the healthy control group. This 
labeling process ensures the availability of ground 
truth information for training the deep learning 
model. When detecting dementia in its earliest stag-
es, the deep learning model is crucial. It leverages 
advanced algorithms, such as the suggested dual at-
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tention-aware convolution-based deep learning net-
work, to learn compound patterns and structures 
from the pre-processed and labeled MRI data. The 
model is trained using a combination of MRI patches, 
spatial attention blocks, and attention-aware convo-
lution, which collectively enable the identification of 
discriminative features and abnormal microstruc-
tures associated with AD.
Classification is a vital step in the process, where the 
trained deep learning model predicts whether a given 
MRI scan belongs to a healthy individual or someone 
with Alzheimer’s. The model utilizes the learned rep-
resentations and weights to make accurate predic-
tions based on the extracted features from the brain 
structures. Lastly, the recital of the deep learning 
model needs to be evaluated to assess its effectiveness 
in early diagnosis. By comparing the model’s predic-
tions with the ground truth labels, the performance 
evaluation provides insights into the accuracy and re-
liability of the deep learning model for detecting Alz-
heimer’s Disease at an early stage.

3.1. Data Collection
The ADNI dataset is a comprehensive collection of 
clinical, imaging, genetic, and biomarker data from 
individuals with Alzheimer’s disease, mild cognitive 
impairment (MCI), and healthy controls. The initia-
tive aims to facilitate research and advancements in 
understanding, diagnosing, and treating Alzheimer’s 
disease. The site provides access to Alzheimer’s dis-
ease individuals, moderately impaired individuals, 
and older controls who participated in the North 
American ADNI research.

EMCI (Early Mild Cognitive Impairment) stage re-
fers to individuals who are in the cognition decline’s 
first symptoms but do not meet the criteria for a di-
agnosis of Alzheimer’s disease. LMCI (Late Mild Cog-
nitive Impairment) stage represents individuals in a 
more advanced stage of cognitive decline but still do 
not meet the standards for analysis of Alzheimer’s 
disease. MCI (Mild Cognitive Impairment) stage en-
compasses individuals with mild mental damage, an 
intermediate phase among normal aging and Alzhei-
mer’s disease. MCI personalities may have noticeable 
cognitive decline but still retain functional indepen-
dence. AD (Alzheimer’s Disease) stage represents 
individuals diagnosed with AD with significant cog-
nitive impairment and functional decline. CN (Cog-
nitively Normal) stage includes individuals with no 
significant cognitive impairment and is the control 
group.
As shown in Figure 1, the photos in the dataset range 
in size. Variations in picture size might lead to inaccu-
racy in the design. This is why we pre-processed the 
data. Our data pre-processing consists of two stages: 
a) image scaling and b) image denoising. Training a 
neural network model takes less time when images 
are resized. We used OpenCV Python to resize the 
photos. Denoising images is a key challenge in ar-
tificial intelligence and the processing of pictures. 
Denoising is a process that estimates the original 
picture by removing unwanted noise. We ran denois-
ing algorithms on MRI images of the brain from our 
ADNI dataset to boost our model’s accuracy. Python 
OpenCV3 was used for the denoising process.

Figure 1 
Sample images from the dataset ADNI
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3.2 Methodology 
3.2.1 Segmentation by PCNN 
A patchwise CNN (PCNN) is a common approach for 
analyzing brain images in medical imaging. In this 
approach, the input brain image is divided into smaller 
patches, and each patch is processed individually by the 
CNN. The CNN learns patterns and features from these 
patches to make predictions or perform tasks such as 
segmentation, classification, or anomaly detection, as 
shown in Figure 2. 
The equation for a PCNN can be represented as follows: 
 

( * )Y f W X b                                                   (1) 
 

Where: 𝑌𝑌 represents the output or prediction made 
by the CNN, 𝑋𝑋 denotes the input patch, which is a 
subset of the brain image, 𝑊𝑊  represents the 
learnable weights of the CNN's convolutional 
layers. 𝑏𝑏𝑏represents the biases associated with the 
convolutional layers. 𝑓𝑓𝑓𝑓𝑏is the activation function 
that announces non-linearity into the system. 
Convolutional layers then pooling layers make up 
the PCNN, which extracts hierarchical features 
from source patches. The data is then put into fully 
linked layers, flattened and used to produce 
projections or carry out the desired activities. The 
final layer of the network often uses a suitable 
activation function, such as softmax for 
organization tasks or sigmoid for binary 
classification. During training, the CNN learns the 
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Figure 2 
The structure of PCNN architecture

3.2. Methodology
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Where: Y represents the output or prediction made by 
the CNN, X denotes the input patch, which is a subset 
of the brain image, W represents the learnable weights 
of the CNN’s convolutional layers. brepresents the bi-
ases associated with the convolutional layers. f() is 
the activation function that announces non-lineari-
ty into the system. Convolutional layers then pooling 
layers make up the PCNN, which extracts hierarchi-
cal features from source patches. The data is then put 
into fully linked layers, flattened and used to produce 
projections or carry out the desired activities. The fi-
nal layer of the network often uses a suitable activa-
tion function, such as softmax for organization tasks 
or sigmoid for binary classification. During training, 
the CNN learns the optimal value for the weights (W)  
and biases (b) by minimizing a loss function, typically 
through backpropagation and gradient descent opti-
mization.
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3.2.2. Octave Convolution
In particular, 3D CNNs used for image classification 
have memory requirements and hardware demands 
that expand dramatically as the number of convolu-
tion layers increases. Recently proposed octave con-
volution [5, 18] divides the CNN-generated feature 
map into two spatially frequent stages, which are 
then separately reviewed, swapped, and merged to 
reduce spatial duplication and expand the observer’s 
field of view.
By learning patterns and features from the data, the 
system can assess new neuroimaging scans and pre-
dict the likelihood of Alzheimer’s disease [28-29].
Octave Convolution is a type of convolutional oper-
ation that aims to capture both high-frequency and 
low-frequency information in an image efficiently. It 
was introduced to address the challenges of captur-
ing multi-scale features in computer visualization 
responsibilities such as brain image classification.  
The Octave Convolution operation involves splitting 
the input image into two paths, as shown in Figure 
3: the high-frequency and low-frequency paths. The 
high-frequency path captures fine-grained details, 
while the low-frequency path captures the global con-
text and larger-scale features.
Mathematically, the Octave Convolution can be ex-
pressed as follows:
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where: 𝑌𝑌� and 𝑌𝑌�  are the production feature maps for the 
high-frequency and low-frequency paths, respectively. 
𝑋𝑋� and 𝑋𝑋�  are the input feature maps for the high-
frequency and low-frequency paths, respectively. 
𝑊𝑊�

� and 𝑊𝑊�
�  are the convolutional filters for the high-

frequency and low-frequency paths, correspondingly. 
𝐷𝐷� is the downsampled version of 𝑋𝑋� obtained by 
reducing its spatial resolution. 𝑈𝑈  is an upsampling 
operation that increases the spatial resolution of 𝐷𝐷� to 
match the size of 𝑌𝑌� . 𝑛𝑛 and 𝑚𝑚 represent the number of 
high-frequency and low-frequency filters, respectively. 
In the Octave Convolution operation, the high-
frequency path operates at the original spatial 
resolution, while the low-frequency path operates at a 

reduced spatial resolution. The down sampled 
feature map 𝐷𝐷� captures the low-frequency 
information, which is then up sampled using the 
Upsampling operation 𝑈𝑈 to match the size of the 
low-frequency feature map 𝑌𝑌� . The outputs of both 
paths are concatenated to obtain the final output 
feature map Y. By splitting the convolution into 
different frequency paths, Octave Convolution 
enables the network to effectively capture multi-
scale information, making it suitable for tasks such 
as brain image classification, where both fine-
grained details and global context are essential for 
accurate classification. 
 
3.2.3 Dual Attention-based Convolution 
Network (DACN) 
The patch output from PCNN is fed into network 
branches of 3D octave convolution layers to 
extract multi-scale characteristics. Batch 
normalization-RELU(BN-RELU) follows the 
octave 3D convolution layer in the network's fork. 
It's important to note that the octave 3D 
convolution kernel widths varied amongst the 
three branches, each with its unique value. Figure 
4 shows several convolution kernels used in 
constructing each octave of a 3D convolution layer 
that runs throughout the various branches. To 
improve the discriminatory power of the resulting 
feature maps, we use an attention module that 
combines channel-wise attention with spatial-wise 
attention. Two FC layers and a softmax classifier 
are employed as the last step in classification.  
Channel Attention and Spatial Attention are two 
mechanisms commonly used in computer vision 
tasks, with brain image classification, to improve 
the representation power of CNNs and focus on 
relevant features within an image. Channel 
Attention aims to emphasize or suppress specific 
channels (or feature maps) in a CNN based on 
their importance for the given task. It enables the 
network to attend to informative features while 
suppressing less relevant ones selectively. Given 
an input feature map, a global pooling operation 
(e.g., global average pooling) is applied to 
aggregate information across spatial dimensions, 
resulting in a channel descriptor. 
The channel descriptor is then passed through one 
or more fully connected (or convolutional) layers 
to capture channel-wise relationships and generate 
attention weights. The attention weights are 
usually obtained by applying an activation 
function, such as sigmoid or softmax, to ensure 
that they represent importance values between 0 
and 1. Finally, the attention weights are multiplied 
element-wise with the original feature map to 
modulate the channel-wise activations, 
highlighting important channels and suppressing 
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minimizing a loss function, typically through 
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[5, 18] divides the CNN-generated feature map into two 
spatially frequent stages, which are then separately 
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duplication and expand the observer's field of view. 
By learning patterns and features from the data, the 
system can assess new neuroimaging scans and predict 
the likelihood of Alzheimer's disease [28-29]. 
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that aims to capture both high-frequency and low-
frequency information in an image efficiently. It was 
introduced to address the challenges of capturing multi-
scale features in computer visualization responsibilities 
such as brain image classification.  The Octave 
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context of the feature map. The weight matrix 𝑊𝑊�� 
learns the importance of each channel, and the 
sigmoid activation function σ scales the channel 
weights between 0 and 1. Finally, the element-
wise multiplication ( ) applies the channel 
weights to the original feature map 𝐹𝐹 to obtain the 
channel attention-enhanced feature map 𝐹𝐹��. 
Spatial Attention, however, focuses on 
highlighting informative spatial regions within an 
image. It enables the network to selectively attend 
to relevant image regions while suppressing less 
important or noisy regions. Given an input feature 
map, spatial attention mechanisms aim to capture 
interdependencies across spatial dimensions.
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features within an image. Channel Attention aims to 
emphasize or suppress specific channels (or feature 
maps) in a CNN based on their importance for the 
given task. It enables the network to attend to infor-
mative features while suppressing less relevant ones 
selectively. Given an input feature map, a global pool-
ing operation (e.g., global average pooling) is applied 
to aggregate information across spatial dimensions, 
resulting in a channel descriptor.
The channel descriptor is then passed through one 
or more fully connected (or convolutional) layers 
to capture channel-wise relationships and generate 
attention weights. The attention weights are usual-
ly obtained by applying an activation function, such 
as sigmoid or softmax, to ensure that they represent 
importance values between 0 and 1. Finally, the at-
tention weights are multiplied element-wise with the 
original feature map to modulate the channel-wise 
activations, highlighting important channels and 
suppressing unrelated ones. The channel attention 

mechanism allows the network to adaptively assign 
weights to dissimilar channels founded on their rel-
evance, promoting the learning of discriminative fea-
tures and improving the network’s capability to cap-
ture important information.
Channel Attention focuses on modeling interdepen-
dencies between channels in a feature map to em-
phasize informative channels while suppressing less 
relevant ones. Mathematically, it can be signified as,
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One common approach is to apply a convolutional layer 
with a small kernel size (e.g., 1x1) to obtain a spatial 
attention map. The spatial attention map represents a 
weight for each spatial location, indicating the 
importance or relevance of that location. The spatial 
attention map is usually normalized using an activation 
function (e.g., softmax) to ensure that the weights sum up 
to 1 and represent the attention distribution across spatial 
locations. Finally, the attention map is helpful to the 
original feature map using element-wise multiplication, 
boosting the activations in relevant spatial regions. 
Spatial attention allows the system may zero in on 
specific locations within an image, enabling better 
localization and capturing fine-grained details that are 
crucial for tasks like brain image classification. Both 
channel attention and spatial attention mechanisms can 
be used individually or combined to enhance the 
representation power of CNNs, improve feature 
discrimination, and give the network more fine-grained 
control over the information it attends to during 
processing. 
Spatial Attention focuses on modeling interdependencies 
between spatial locations within a feature map to 
highlight informative regions while suppressing less 
relevant ones. Mathematically, it can be represented as: 
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where: 𝐹𝐹�  represents the 𝐶𝐶 th channel of the input 
feature map 𝐹𝐹  with 𝐶𝐶  channels., 𝑊𝑊��  is a weight 
matrix for spatial attention. 
Similar to channel attention, the spatial attention 
equation computes the channel-wise statistics 
�
�
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���  to capture the spatial context. The weight 

matrix 𝑊𝑊��  learns the importance of each spatial 
location, and the sigmoid activation function 𝜎𝜎 
scales the spatial weights between 0 and 1. The 
element-wise multiplication ⊙ applies the spatial 
weights to the original feature map 𝐹𝐹 to obtain the 
spatial attention-enhanced feature map 𝐹𝐹�� . Both 
channel attention and spatial attention mechanisms 
can be used individually or combined to enhance 
the discriminative power of CNNs by emphasizing 
relevant channels and spatial locations in the 
feature maps. These attention mechanisms help the 
network focus on informative features and suppress 
noise or less relevant information, ultimately 
improving the network's performance in various 
computer vision tasks. 
In the fully linked layer, we also use 'dropout' 
technology, which, without introducing a huge 
number of variables, may efficiently reduce over-
fitting. As a loss function, we also use the category 
cross-entropy. 
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computes the channel-wise statistics, capturing the 
global context of the feature map. The weight matrix Wca  
learns the importance of each channel, and the sigmoid 
activation function σ scales the channel weights be-
tween 0 and 1. Finally, the element-wise multiplication 
( )� applies the channel weights to the original feature 
map F to obtain the channel attention-enhanced fea-
ture map Fca . Spatial Attention, however, focuses on 
highlighting informative spatial regions within an im-
age. It enables the network to selectively attend to rel-
evant image regions while suppressing less important 
or noisy regions. Given an input feature map, spatial at-
tention mechanisms aim to capture interdependencies 
across spatial dimensions.
One common approach is to apply a convolutional lay-
er with a small kernel size (e.g., 1x1) to obtain a spatial 
attention map. The spatial attention map represents a 
weight for each spatial location, indicating the impor-
tance or relevance of that location. The spatial attention 
map is usually normalized using an activation function 
(e.g., softmax) to ensure that the weights sum up to 1 and 
represent the attention distribution across spatial loca-
tions. Finally, the attention map is helpful to the original 
feature map using element-wise multiplication, boost-
ing the activations in relevant spatial regions. Spatial 
attention allows the system may zero in on specific lo-
cations within an image, enabling better localization 
and capturing fine-grained details that are crucial for 
tasks like brain image classification. Both channel at-
tention and spatial attention mechanisms can be used 
individually or combined to enhance the representa-
tion power of CNNs, improve feature discrimination, 
and give the network more fine-grained control over the 
information it attends to during processing.
Spatial Attention focuses on modeling interdepen-
dencies between spatial locations within a feature 
map to highlight informative regions while suppress-
ing less relevant ones. Mathematically, it can be rep-
resented as:
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technology, which, without introducing a huge 
number of variables, may efficiently reduce over-
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4. Result and Discussion
Several standard metrics were employed to determine 
their performance in assessing AD Detection and 
classification models. Accuracy evaluates how well 
the model consistently makes accurate predictions. 
Correctly identified cases (true positives and true 
negatives) are combined and then divided by the total 
number of occurrences in the dataset to determine the 
accuracy rate. However, if the dataset has an uneven 
distribution of classes, the accuracy metric may not be 
an adequate measure of the model’s efficacy.
Practitioners and scholars can learn the accuracy, 
precision, recall, and overall efficacy of AD Detection 
and classification models by evaluating their effica-
cy using these standard metrics for assessment. The 
performance analysis report of the projected model is 
exposed in Table 2.

Table 2 
Recital analysis of the proposed model

Class Precision Recall F1-score

0 0.99 0.98 0.99

1 1.00 1.00 0.99

2 0.99 0.99 1.00

3 0.98 0.99 0.98

4 0.99 0.98 0.99

Accuracy 99.8

Micro avg 0.99 0.99 0.99

Weighted avg 0.99 1.00 0.99

In Figure 5, the accuracy of the model for AD Detec-
tion is presented. The graph illustrates the training 
and testing accuracy achieved by the model during the 
training procedure. According to the graph, the model 
attained a training accuracy of 100%, indicating that it 
successfully predicted the correct class for all instanc-
es in the training dataset. This high training accuracy 
proposes that the model has effectively cultured the 
patterns and features present in the training data.
The testing accuracy, however, is shown to be 99.8%. 
Indicative of the algorithm’s success in making ac-
curate class predictions for instances in the testing 
dataset that it had not seen during training. Testing 
accuracy of 99.8% suggests that the model generaliz-

es well to unseen data and can effectively classify in-
stances of Alzheimer’s disease. The high training and 
testing accuracy indicate that the model has success-
fully learned the relevant patterns and features asso-
ciated with Alzheimer’s disease and can accurately 
classify new instances.
In Figure 6, the loss of the model during the training 
and testing phases is visualized. The training loss is 
represented as 0.02, indicating the average loss value 
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testing phases is visualized. The training loss is 
represented as 0.02, indicating the average loss 
value computed during the training process. On the 
other hand, the testing loss is shown as 0.03, 
meaning the average loss value is calculated during 
the testing or evaluation phase. The loss value 
indicates the model's performance level. It 
measures how far the model's forecasts deviate 
from the real ground-truth labels. The closer the 
model's forecasts are to the actual labels, the 
smaller the loss value. When the training loss is just 
0.02, it is clear that the model is well-fit for the 
training data since it can reduce the error between 
anticipated and actual values. Similarly, a testing 
loss of 0.03 indicates that the model performs well 
on unobserved data during the testing phase, 
demonstrating its generalization capability. 
Figure 7 presents a confusion matrix to evaluate the 
model's performance on different classes or 
categories, namely 'EMCI,' 'LMCI,' 'MCI,' 'AD,' 
and 'CN.' The confusion matrix is a graphical 
summary of how well the forecasts made by the 
model match the actual identifiers. The values in 
the confusion matrix are expressed as percentages 
and indicate the accuracy of the model's estimates 
for each class. 
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Figure 7 
Confusion Matrix of the DACN Model for Alzheimer’s 
Disease Detection
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to 1, where 1 represents a flawless classifier. In our 
case, the classification model has exceptional 
performance with a ROC-AUC curve ranging from 
0.99 to 1.00, as shown in Figure 8. This indicates that 
the model achieves near-perfect or perfect 
discrimination between the positive and negative 
classes, resulting in high predictive accuracy. AUC 
values in the range of 0.99 to 1.00 suggest that the 
model has excellent predictive power and can 
effectively differentiate between different classes. 
Table 3 summarizes the findings of an analysis of the 
suggested model and the baseline models used to 
analyze the same dataset. The table presents the 
performance metrics of different models, including 
CNN, LSTM, Bi-LSTM, CLSTM, ResNet50, and the 
proposed model. The metrics evaluated are accuracy, 
precision, recall, and F1-score, which provide insights 
into the models' classification capabilities. The CNN 
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model demonstrated even higher accuracy, reaching 
97.5%, with precision, recall, and F1-score values of 
0.97, 0.96, and 0.96. However, the proposed model 
outperformed all the baseline models, achieving an 
exceptional accuracy of 99.8%. The precision, recall 
and F1-score values were also remarkably high at 
0.99, 0.99, and 1.00, respectively. This indicates that 
the proposed model excelled in accurately classifying 
instances of Alzheimer's disease, exhibiting superior 
performance compared to the baseline models. The 
results highlight the superiority of the proposed model 
in terms of accuracy and classification metrics. It 
demonstrates the model's ability to effectively identify 
Alzheimer's disease cases, outperforming other 
established models such as CNN, LSTM, Bi-LSTM, 
CLSTM, and ResNet50. These findings suggest that 
the proposed model holds promise as a highly accurate 
and reliable tool for AD detection on the given dataset.
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racy, precision, recall, and F1-score, which provide 
insights into the models’ classification capabilities. 
The CNN model achieved an accuracy of 95.6% with 
precision, recall, and F1-score values of 0.95, 0.94, 
and 0.95, respectively. The LSTM model performed 
slightly better, with an accuracy of 96.4% and preci-
sion, recall, and F1-score values of 0.95, 0.96, and 0.95, 
respectively. The Bi-LSTM model achieved an accu-
racy of 94.8% with similar precision, recall, and F1-
score values of 0.95, 0.94, and 0.95.
The CLSTM model showed improved performance, 
with an accuracy of 96.9% and precision, recall, and F1-
score values of 0.97, 0.96, and 0.97. The ResNet50 mod-
el demonstrated even higher accuracy, reaching 97.5%, 
with precision, recall, and F1-score values of 0.97, 0.96, 
and 0.96. However, the proposed model outperformed 
all the baseline models, achieving an exceptional accu-
racy of 99.8%. The precision, recall and F1-score val-
ues were also remarkably high at 0.99, 0.99, and 1.00, 
respectively. This indicates that the proposed model 
excelled in accurately classifying instances of Alzhei-

Table 3 
Performance comparison of the models on the dataset ADNI

Model Accuracy Precision Recall F1-score

CNN 95.6 0.95 0.94 0.95

LSTM 96.4 0.95 0.96 0.95

Bi-LSTM 94.8 0.95 0.94 0.95

CLSTM 96.9 0.97 0.96 0.97

ResNet50 97.5 0.97 0.96 0.96

Propose 
model 99.8 0.99 0.99 1.00

mer’s disease, exhibiting superior performance com-
pared to the baseline models. The results highlight the 
superiority of the proposed model in terms of accuracy 
and classification metrics. It demonstrates the model’s 
ability to effectively identify Alzheimer’s disease cases, 
outperforming other established models such as CNN, 
LSTM, Bi-LSTM, CLSTM, and ResNet50. These find-
ings suggest that the proposed model holds promise as 
a highly accurate and reliable tool for AD detection on 
the given dataset.
Table 4 states various ablation studies in detail. The 
first model, without patching CNN segmentation on 
brain images, was done, and Dual Attention Aware 
Octave Convolution was performed for the final clas-
sification. In this model, image patching has not been 
done. CNN-based segmentation with Dual Atten-
tion Aware Octave Convolution has been done. The 
accuracy of the model is 97.5%, which is lower than 
the proposed model. Likewise, the second model, oc-
tave convolution and dual attention-based CNN, are 
processed without segmentation. Only images are 
trained and classified here using octave and double 
attention CNN. This model obtains 95% of accuracy. 
The third model is tested without octave convolution; 
in this model, we obtain an accuracy of 96.7%, which 
is lower than the first model. We tested dual attention 
CNN for training the images for the fourth model. In 
this model, initial neurons extract image features, and 
then, by further pooling, attention is used for classi-
fying the image. Due to ineffective feature extraction, 
this model performs very low than other models. 
However, our proposal achieves better than all oth-
er models in the table. It is concluded that patching 
is the first essential component, followed by octave 
convolution, which extracts features on low and high 

Table 4 
Performance of Ablation models

Model Accuracy Precision Recall F1-score

CNN segmentation (No patching) + Dual Attention Aware 
Octave Convolution 97.5  96 96 97.4

Octave Convolution+dual attention CNN 97.8 97.3 97.6 97.2

PCNN+DACN 96.7 96.2 95.1 96

DACN 92.4 93.4 93.2 93.6

PCNN+OCTAVE+DACN
(PROPOSED) 99.8 0.99 0.99 1.00
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frequencies. Patching makes the images more evident 
by pointing out exact noises in image features. Octave 
convolution further improves image classification 
by efficiently capturing high-frequency and low-fre-
quency information in an image. The removal of Oc-
tave convolution resulted in a noticeable decrease in 
the model’s efficiency, highlighting its role in optimis-
ing computational resources. Conversely, the PCNN 
contributes to overall performance. 

5. Conclusion and Future Work
This study concludes by presenting a deep learn-
ing-based method for automatically identifying AD 
using 3D brain MRI data. The study addresses the 
significant impact of brain illnesses, particularly AD, 
on fundamental human capabilities such as thought, 
speech, and movement. The proposed method, the dual 

attention aware Octave convolution-based deep learn-
ing network (DACN), offers several key contributions. 
Firstly, it employs a PCNN to extract discriminative 
features from MRI patches while enhancing the de-
tection of abnormally altered micro-structures in the 
brain. Secondly, an Octave convolution reduces spatial 
redundancy and improves the model’s perception of the 
brain’s structural details. Lastly, a dual attention-aware 
convolution classifier is employed to further analyze 
the resulting image representation. Experimental re-
sults using the publicly available ADNI dataset demon-
strate the efficiency of the suggested model. The pro-
posed method achieves an outstanding test accuracy of 
99.87% for categorizing dementia phases, surpassing 
the recital of state-of-the-art models. This remarkable 
accuracy underscores the potential of the DACN model 
in accurately identifying Alzheimer’s disease at an ear-
ly stage.In future different datasets for AD can be im-
plemented and tested for improving accuracyby cross 
verification. 
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