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Unmanned Aerial Vehicles (UAVs) are a promising solution for sensor data collection (DC) in large-scale area. 
The challenge is to minimize the DC route, which will reduce UAV energy consumption and data latency. The 
novelty of this paper lies in its innovative approach to optimizing sensor data collection by UAVs. It combines 
Ant Colony Optimization (ACO) and K-means algorithms to establish an initial shortest route and introduces 
a unique method for grouping sensor nodes (SNs) along the route based on the UAV’s footprint, reducing data 
latency and energy consumption for both UAV and sensors. First, an initial shortest route that traverses all SNs 
is established based on the ACO and the K-means algorithms. Second, we group the sensor nodes (SNs) along 
the initial route using the footprint of the UAV, so that the latter can collect the data of the group in one stop, 
instead of stopping at each SN. By sequencing the hovering locations, we obtain a (shorter) intermediate route. 
Third, we shorten this route even further, by applying ACO to the set of hovering locations of the intermediate 
route. The solution has been implemented fully in Python. The results show that the route length gets shorter 
progressively with each phase. To evaluate the performance of the solution objectively, we have compared it 
with four states of the art solutions. The results show vividly that the proposed solution produces a DC route 
19.28% shorter than the shortest route produced by the four competitive solutions. Moreover, it demonstrates 
a remarkable improvement by retaining 44% of energy in most SNs while over 99% energy depletion observed 
in the five state-of-the-art competitive solutions.
KEYWORDS: UAV path planning, Sensor data collection, ACO, K-means, Wireless sensor network, Clustering, 
Power consumption.
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1. Introduction
In recent years, the utilization of Unmanned Aerial 
Vehicles (UAVs) has gained considerable recogni-
tion from both the research community and industry, 
primarily because of their adaptability, efficacy, and 
affordability in various domains like agriculture, en-
vironmental monitoring, disaster relief, search and 
rescue, surveillance, and military operations [59]. In 
addition to their versatility, UAVs can offer real-time 
data collection (DC) capabilities, making them a valu-
able tool for various applications. Their popularity 
and extensive usage can be attributed to their afford-
ability, mobility, dependable network access, and abil-
ity to establish line-of-sight links with ground Sensor 
Nodes (SNs) [58]. The integration of UAVs and Wire-
less Sensor Networks (WSNs) in large-scale areas 
has been extensively investigated by researchers. In 
this setup, UAVs act as mobile sinks that collect data 
directly from SNs or indirectly via Cluster Heads 
(CHs). The UAVs then transmit the gathered data to 
the Base Station (BS) for further analysis [11].
A sensor node periodically measures physical phe-
nomena and is often powered by a small battery that 
can be challenging to replace or recharge when deplet-
ed. Therefore, preserving battery energy is of utmost 
importance and represents a primary research interest 
[24]. It stands to reason then that the energy consump-
tion of the SN be kept to a minimum during DC, a con-
cern fully addressed by the present article. On the other 
hand, the data measured by the SN has to be collected 
and transmitted to a «sink», where it can by analyzed, 
processed and/or stored. Many DC solutions have been 
proposed and can be generally divided into three basic 
types: WSNs, mobile sink (MS), and UAV.
The first DC basic solution uses a WSN that links 
the SNs wirelessly [19]. The SNs work together in a 
store-and-forward manner to transmit the measured 
data to the sink. Each SN acts as a data gatherer and a 
router. If all SNs are within range of at least one other, 
the network is fully connected, and data reaches the 
sink. However, if not, a relay node must be set up for 
complete connectivity. The advantage of a WSN solu-
tion lies in its ability to instantaneously transfer data 
to the sink. This low latency is highly valuable for re-
al-time applications. However, if real time DC is not a 
critical factor, utilizing a WSN may not be advisable 
due to its many drawbacks [15].

First, load imbalance between SNs, where SNs close 
to the sink forward more data and lose energy faster. 
Clustering with a CH serving as a local sink can rem-
edy this weakness. Second, WSN can come to a halt if 
a crucial SN becomes dead (e.g., due to battery deple-
tion). Third, collisions can occur between neighbor 
SNs if transmissions are not coordinated, which can 
be avoided through coordination or retransmission. 
Fourth, WSN communications protocol requires 
non-trivial computations and communications, ex-
hausting SN battery. Fifth, WSN requires full connec-
tivity, which may require adding redundant SNs or re-
lay nodes that may not be practical or feasible. Sixth, 
SN communications can be hampered by obstacles on 
the ground, requiring relay nodes for increased trans-
mission range. Finally, election of a CH is problematic 
and energy-consuming, and a CH represents a single 
point of failure for the WSN. CHs are likely to lose en-
ergy and fail quickly due to their intensive work.
The second DC solution involves a mobile station, like 
a laptop, that collects data from nearby sensor nodes 
[51]. This approach brings the sink to the data instead 
of the other way around. The MS can be controlled 
by a person, animal, or vehicle. This solution offloads 
computations and communications from the SNs to 
the MS, eliminating communication between SNs 
[51]. The advantages of this solution are as follows. 
1) Single hop data transmission ensures equal load 
for all SNs. 2) No risk of a single point of failure since 
there are no CHs. 3) Death of any SN affects only that 
SN, not the entire DC system. 4) No fear of collisions 
as the MS can inform each SN of when to transmit. 5) 
No need for SNs to perform communication protocol 
computations as transmission is single hop to UAV. 6) 
No need to install relay nodes as SNs do not need to be 
fully connected. 7) MS can improve data latency and 
save energy by stopping at points where data from 
multiple SNs can be collected at once.
The many-to-one data collection mode requires SNs 
to be within transmission range. However, the MS 
solution faces two problems: long routes resulting in 
high energy consumption and latency. These issues 
stem from non-linear movement between collection 
locations and impractical ideal collection points. The 
solution to this problem is a UAV, allowing the MS to 
fly and solve the issue of excessive route length.
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In this article, the UAV solution allows for data to be 
collected from SNs in a single hop from the air. The 
UAV flies high enough to avoid obstacles but low 
enough to be within transmission range. This has ad-
vantages over the MS solution, including line of sight 
(LoS) communications and extended transmission 
range, which can collect from multiple SNs at once 
[17]. The UAV’s straight-line movement can drasti-
cally shorten the collection route, saving energy and 
reducing latency. Additionally, there are no unreacha-
ble points in the air, making it possible to collect data 
from any SN or DC point, particularly in the many-to-
one collection mode.
Apart from the three basic solutions described above, 
there are also hybrid DC solutions combine WSNs 
with an MS or UAV for better performance. For exam-
ple, in [3], an MS-assisted WSN is proposed, where 
the SNs are grouped into clusters, with each cluster 
having a CH, and the MS collects data solely from the 
CHs. Similarly, [6] employs a similar setup and fo-
cuses on developing an optimal route for the MS. In-
itially, Particle Swarm Optimization (PSO) is utilized 
to establish optimal cluster formation. Following 
cluster formation, the optimal number of data collec-
tion points are chosen, and a data-gathering route is 
planned for the MS.
The trouble with hybrid solutions is that they inher-
it the disadvantages of both of their components: the 
WSN and the complement, be it MS or UAV. So, they 
should in general be avoided unless necessary, as 
when the CHs are not in the transmission range of one 
another. To upload data from many SNs to the UAV 
fixed at some hovering location (HL), some studies 
consider the orthogonal frequency division multiple 
access (OFDMA) technique as a communications 
scheme, which allows the UAV to collect data from 
multiple SNs within its communication range simul-
taneously. For example, in [14], using the OFDMA the 
authors first formulate a DC maximization problem 
via deploying an energy constrained UAV and show 
the NP-hardness of the problem. Moreover, in [12], the 
authors also consider OFDMA subject to the energy 
capacity of the UAV. In the present article we propose 
a simple TDM scheme to achieve the same result. The 
scheme can be implemented in software, without re-
quiring any hardware installation or modification.
In the present work, we propose a UAV DC solution for 
a wide sensory area (e.g. an agricultural farm), where 

N ≫1 SNs are installed. The objective of the work is 
two-fold: a minimum UAV flight time and minimum 
SN computations and communications. The former 
ensures very low latency for the data, and very low 
energy consumption by the SNs, and is attained by a 
minimum UAV DC route. The latter ensures very low 
energy consumption by each SN and is attained by the 
UAV’s collecting data directly from the SN in a sin-
gle-hop. To this end, the solution goes through three 
phases, as shown in Figure 1.

Figure 1
The three phases of the proposed solution
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In Phase I, we obtain an initial shortest route PP  
traversing the N  SNs. To this end, we first partition 
the N  SNs into clusters, based on their physical 
positions, then use ant colony optimization (ACO) to 
determine the shortest route within each cluster. 
Clustering is employed to increase the accuracy and 
accelerate the convergence of ACO in its effort to find 
a shortest route traversing all N  SNs. In Phase II, we 
partition the N  SNs along the initial route PP  into 
groups each of which can fit in the footprint of the 
UAV while flying on top. For each group we identify 
the centroid, which is used as a HL, where the UAV 
will stop and collect the data of the group lying in the 
footprint. The sequence made up of the HLs forms the 
intermediate UAV route QQ . To improve the hovering 
route even further, its nodes are input to a suitable 
metaheurisitic such as ACO or Genetic Algorithm 
(GA) to permute them in the hope that a final shorter 
hovering route RR  is obtained.  
The proposed solution has been implemented and 
tested for its validity and correctness. It has been 
found to largely produce routes that get progressively 
shorter, namely  PP QQ RR , where XX is the length, 
e.g., in meters, of route. When the results of the 
proposed solution, namely the length RR of the final 
UAV route, are compared with those of state-of-the-
art solutions, the proposed solution comes out 
superior. In addition, the proposed solution has many 
additional advantages including: 

1. All the computations (initial route, 
intermediate route, final route, and collection 
lists) are done on premise, rather than on the 
UAV or SNs, saving the energy of the latter 
and also ensuring low run time thanks to the 
more powerful computational resources 
usually available on site. 

2. Only one transmission by the SN per data 
packet upload is needed, saving SN energy. 

3. Only one reception by the UAV per data 
packet, saving UAV energy. 

4. No risk of transmission collisions between 
SNs, thanks to the proposed TDM upload 
scheme. 

5. No communications protocols or overhead is 
needed, as SNs communicate directly to the 
UAV, saving the energy of the SNs. 

6. All SN data is guaranteed to be collected, and 
no single SN will be left out in a DC trip. 

7. DC is completely distributed, meaning no 
single point of failure, e.g. cluster head, 

anchor node. 
8. Equal energy load all SNs, as each is 

requested to transmit only its own data. 
9. Line of sight communications are 

guaranteed; hence the longest and most 
reliable transmission range is guaranteed, 
which in turn leads to a large 

The rest of the article is organized as follows. A 
review is presented in Section 2 of recent 
published work related to the subject. In Section 
3 the system model and proposed solution are 
provided in full detail, including three algorithms 
to generate the three mentioned routes, are 
presented, and discussed. In Section 4, the 
experimental work is presented, where numerical 
results for some example configurations are 
obtained, analysed and discussed. In the final 
section, we give our concluding remarks. 
 

 
2. Related Work 

In a UAV DC solution, such as the one proposed in 
the present work, the energy consumption of the SNs 
is no longer an issue. Simply, each SN will transmit 
its data directly to the UAV in one hop, obviating the 
need for SN to SN communications and ancillary 
computations. As such, as most of the 
communications and computations chores are 
offloaded to the UAV, which does not have the energy 
scarcity problem the SNs have [48]. For one, the UAV 
usually has a large battery, enough to supply all the 
energy needed for DC. For another, this battery can be 
easily replaced or recharged once the UAV returns 
back to its base from a DC mission. Therefore, what 
really still poses a challenge in a UAV DC solution is 
minimizing the energy consumed by the UAV to keep 
it flying, and the only way to mitigate this challenge 
is to decrease the UAV flight route, which is the 
objective of the present article. 
Given its profound importance, planning a short route 
for a UAV intended to collect data from SNs has 
attracted much research work. In [16], a strategy for 
an optimized UAV route is introduced for a disaster 
field. The field is divided into multiple cells and the 
authors formulate and solve two complementary 
subproblems: one identifying a minimal number of 
HLs at which the UAV hovers to collect data from all 
the SNs in the cell, and one constructing the UAV 
route that traverses those locations. 
In [54], a UAV is dispatched to collect a given amount 
of data from some SNs. The authors consider two 
UAV routes, namely circular flight, and straight 
flight. In each case, the authors first derive the energy 
consumption expressions of the UAV and SN, and 
then find the optimal SN transmit power and UAV 
route that achieve a Pareto optimal trade-off. In [7], 
the authors formulate a non-convex optimization 
problem to maximize the minimum residual energy of 
the SNs after data transmission. To solve this 
problem, the authors first derive a feasible solution for 
the shortest UAV route, where a Voronoi diagram is 
modified to find a set of UAV HLs. Then with the 

In Phase I, we obtain an initial shortest route P  tra-
versing the N  SNs. To this end, we first partition the 
N  SNs into clusters, based on their physical positions, 
then use ant colony optimization (ACO) to determine 
the shortest route within each cluster. Clustering is 
employed to increase the accuracy and accelerate the 
convergence of ACO in its effort to find a shortest route 
traversing all N  SNs. In Phase II, we partition the N  
SNs along the initial route P  into groups each of which 
can fit in the footprint of the UAV while flying on top. 
For each group we identify the centroid, which is used 
as a HL, where the UAV will stop and collect the data 
of the group lying in the footprint. The sequence made 
up of the HLs forms the intermediate UAV route Q . To 
improve the hovering route even further, its nodes are 
input to a suitable metaheurisitic such as ACO or Ge-
netic Algorithm (GA) to permute them in the hope that 
a final shorter hovering route R  is obtained. 
The proposed solution has been implemented and 
tested for its validity and correctness. It has been 
found to largely produce routes that get progressively 
shorter, namely > >P Q R , where X is the length, 
e.g., in meters, of route. When the results of the pro-
posed solution, namely the length R of the final UAV 
route, are compared with those of state-of-the-art 
solutions, the proposed solution comes out superior. 
In addition, the proposed solution has many addition-
al advantages including:
1 All the computations (initial route, intermediate 

route, final route, and collection lists) are done on 
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premise, rather than on the UAV or SNs, saving 
the energy of the latter and also ensuring low run 
time thanks to the more powerful computational 
resources usually available on site.

2 Only one transmission by the SN per data packet 
upload is needed, saving SN energy.

3 Only one reception by the UAV per data packet, 
saving UAV energy.

4 No risk of transmission collisions between SNs, 
thanks to the proposed TDM upload scheme.

5 No communications protocols or overhead is need-
ed, as SNs communicate directly to the UAV, saving 
the energy of the SNs.

6 All SN data is guaranteed to be collected, and no 
single SN will be left out in a DC trip.

7 DC is completely distributed, meaning no single 
point of failure, e.g. cluster head, anchor node.

8 Equal energy load all SNs, as each is requested to 
transmit only its own data.

9 Line of sight communications are guaranteed; 
hence the longest and most reliable transmission 
range is guaranteed, which in turn leads to a large

The rest of the article is organized as follows. A review 
is presented in Section 2 of recent published work re-
lated to the subject. In Section 3 the system model and 
proposed solution are provided in full detail, includ-
ing three algorithms to generate the three mentioned 
routes, are presented, and discussed. In Section 4, the 
experimental work is presented, where numerical re-
sults for some example configurations are obtained, 
analysed and discussed. In the final section, we give 
our concluding remarks.

2. Related Work
In a UAV DC solution, such as the one proposed in the 
present work, the energy consumption of the SNs is 
no longer an issue. Simply, each SN will transmit its 
data directly to the UAV in one hop, obviating the need 
for SN to SN communications and ancillary compu-
tations. As such, as most of the communications and 
computations chores are offloaded to the UAV, which 
does not have the energy scarcity problem the SNs 
have [48]. For one, the UAV usually has a large battery, 
enough to supply all the energy needed for DC. For an-
other, this battery can be easily replaced or recharged 

once the UAV returns back to its base from a DC mis-
sion. Therefore, what really still poses a challenge in a 
UAV DC solution is minimizing the energy consumed 
by the UAV to keep it flying, and the only way to miti-
gate this challenge is to decrease the UAV flight route, 
which is the objective of the present article.
Given its profound importance, planning a short 
route for a UAV intended to collect data from SNs has 
attracted much research work. In [16], a strategy for 
an optimized UAV route is introduced for a disaster 
field. The field is divided into multiple cells and the 
authors formulate and solve two complementary sub-
problems: one identifying a minimal number of HLs 
at which the UAV hovers to collect data from all the 
SNs in the cell, and one constructing the UAV route 
that traverses those locations.
In [54], a UAV is dispatched to collect a given amount 
of data from some SNs. The authors consider two 
UAV routes, namely circular flight, and straight flight. 
In each case, the authors first derive the energy con-
sumption expressions of the UAV and SN, and then 
find the optimal SN transmit power and UAV route 
that achieve a Pareto optimal trade-off. In [7], the au-
thors formulate a non-convex optimization problem 
to maximize the minimum residual energy of the SNs 
after data transmission. To solve this problem, the 
authors first derive a feasible solution for the short-
est UAV route, where a Voronoi diagram is modified 
to find a set of UAV HLs. Then with the initial short-
est UAV route, a UAV route is proposed by adjusting 
each UAV HL sequentially based on SN energy status. 
In [30], the authors accept partial DC, unlike the case 
in the present article, where full DC is targeted. They 
investigate two problems: (1) optimizing the route 
of the UAV to minimize its travel time and DC time 
while guaranteeing the collection of a certain amount 
of data; and (2) finding the optimal route of UAV to 
maximize the minimum ratio of the collected data to 
the data stored in the SNs.
In [46], UAV route planning in the context of target 
detection is investigated based on integral geometric 
theory. The authors theoretically derived the target 
detection probability for both static and mobile target 
scenarios. In [8] deep deterministic gradient decent 
is used to autonomously decide the best UAV route to 
adopt in an obstacle-constrained environment, while 
Q-learning is used to determine the order of nodes to 
visit such that the DC time is minimized. In [13], HLs 
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are identified such that the UAV is able to collect data 
from as many SNs as possible from the same loca-
tions. The authors jointly consider the HL of the UAV 
and the utility maximization of DC, by first formulat-
ing a DC utility maximization problem (UMP) and 
show that it is an NP-hard problem. They devise an 
algorithm for positioning (potential) UAV HLs, which 
improves the DC utility.
In [28], the authors first divide the region into multi-
ple cells, then design the flight routes for single UAV 
and multiple UAVs to cover all the cells. The per-node 
capacity of SN is derived as a function of the number 
of cells, the height of UAV, the number of SNs and 
the energy capacity of UAV. In [33], an optimal UAV 
DC route scheme based on matrix completion is pro-
posed. Simulated annealing is used to plan the route 
of UAV based on the selected sampling points. In [50], 
the authors consider the problem of data loss, as some 
SNs may run out of storage space as a result of failing 
to upload their data to the UAV for an extended period 
of time. To mitigate this problem, a joint user sched-
uling and route planning DC strategy is formulated 
as a non-convex optimization problem which is then 
solved sequentially. 
In [56], a farm made up of greenhouses of different 
sizes, with each having a number of SNs, is consid-
ered. To collect data from all SNs, the UAV flies along 
an optimal route generated by a genetic algorithm. 
The UAV height is controlled so that all the SNs of 
a greenhouse, regardless of size, can transmit their 
data reliability. In [40], the authors jointly optimize 
the route of a UAV and the radio resource allocation 
to maximize the number of sampled SNs, under the 
constraint that each SN having a data upload dead-
line. The formulate optimization problem is shown 
to be mixed integer non-convex and generally NP-
hard, and solve it by a branch, reduce and bound algo-
rithm. Route planning is also investigated for hybrid 
MS/WSN solutions, such as in [20], where a heuris-
tic tour- planning algorithm is developed to find the 
shortest touring route for the MS to visits all SNs and 
collect data single hop from each. In [27], Q-learning 
is used to find the shortest route connecting the CHs. 
The study in [10] takes into account the amount of 
data in each SN. It constructs the shortest MS touring 
route and also dynamically adjusts the transmission 
rate for each SN based on the amount of its data. In 
[18], an ACO-based method is employed to select the 

best set of DC points and uses them to form the tour-
ing route for the MS. SNs sense the location of the MS 
and the duration it remains in transmission range to 
transfer all their data packets.
Route planning is also investigated for hybrid UAV/
WSN solutions, such as in [24], where the UAV flays 
over each CH in an optimal route obtained by ACO. 
In [30], a pre-configured UAV route is planned us-
ing ACO to fly through each CH to gather data. Data 
compression takes place at the intermediate SNs to 
decrease upload time, but it of course adds an extra 
computation cost. In [41], the cross-edges approach 
and Kruskal’s algorithm are used to generate the UAV 
route. The SNs in each cluster communicate using 
the ZigBee/IEEE 802.15.4 standards in the 2.4 GHz 
frequency band, which increases the danger of trans-
mission collisions between them.
In [34], a DC strategy in UAV-aided WSNs for hilly re-
gions is introduced using a UAV as a data mule. The 
UAV broadcasts beacon messages to the SNs to locate 
their CH, but this of course adds communications 
cost on the SNs. In [59], a deep reinforcement learn-
ing (DRL) method for solving the UAV route planning 
problem is employed. However, in contrast to LoS, the 
multi-route approach utilized in the ground network 
consumes more power and does not guarantee the 
longest and most reliable transmission range. In [11], 
a study is presented to minimize the WSN’s energy 
consumption while satisfying the UAV route length 
requirement in a data collecting scheme for a hetero-
geneous WSN. In [53], the authors propose two work-
ing modes: single- and multiple-UAV scenarios for 
small-scale and large-scale DC systems, respectively.
In [6], the authors model the UAV motion as a prob-
abilistic travelling salesman problem (PTSP), where 
the number of SNs to be served each time is a ran-
dom variable. To optimize the UAV route, the authors 
propose an exact Branch and Bound algorithm that 
provides an optimal solution through each set of SNs 
which occur with certain probabilities. In [57], route 
planning for UAV is based on spiral decomposition, 
focusing on the rapid route planning for large-scale 
SNs evenly distributed in the circular area. In [52], 
smooth route construction for multiple UAVs in 
WSNs is proposed. The authors first develop a TSP 
based route construction algorithm, then extend it 
with route adjustments based on the required contact 
time at each SN. In [49], the authors propose an algo-
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rithm based on grid division, to increase the efficiency 
of UAV route planning, while guaranteeing the length 
of the route to be short. In [35] a collaborative UAV-
WSN network for monitoring large areas using a het-
erogeneous multi-agent scheme.
A mixed-integer based optimization procedure is em-
ployed into the associated constrained optimization 
problem. In [38], a hierarchical structure based on the 
collaboration between UAVs and federated WSNs for 
crop monitoring in precision agriculture is present-
ed. In [60], the authors consider that the SNs which 
may or may not be within the transmission range of 
each other. Accordingly, they find a route for the UAV 
that includes HLs and determine the duration at each 
hovering such that the cumulative volume of data col-
lected is maximized, subject to the energy capacity on 
the UAV. Two DC maximization problems, for full and 
partial collection, are formulated and solved by heu-
ristics.
The research presented in [25] offers a comprehen-
sive review of contemporary methodologies em-
ployed to improve the energy efficiency (EE) of UAVs. 
These methodologies encompass diverse aspects 
such as trajectory planning and deployment, resource 
allocation and management, design of energy-con-
serving communication protocols, as well as energy 
harvesting (EH) and transfer. Additionally, this paper 
extensively investigates pertinent research literature, 
thereby introducing several promising research direc-
tions for future exploration. In [42], authors propose 
a cluster-based routing approach to enhance UAV 
coverage with visual sensors. The model consists of 
four modules: online path planning, clustering-based 
topology construction, reinforcement learning-based 
cluster management, and data routing. The dynamic 
path planning algorithm determines UAV waypoints, 
while topology construction includes initialization, 
cluster head election, and formation. SARSA deter-
mines the optimal re-clustering policy for cluster 
management. Inter-cluster forwarders and selective 
route request flooding improve packet delivery and 
reduce delay. In [2], authors optimize UAV-assisted 
cluster-based WSNs in a 3D environment to enhance 
lifespan. Varying UAV altitude significantly affects 
lifetime and throughput. The proposed optimization 
redirects UAVs to efficient altitudes, outperforming 
centered placement at lower altitudes in terms of sys-
tem lifetime.

In [39], authors presented a data collection and 
scheduling framework for smart farms. It involves 
two phases: data collection and scheduling. IoT sen-
sors form clusters based on RSSI, allowing the UAV to 
collect data optimally. The UAV transfers data to the 
nearest base station. The base station selects an ef-
ficient fog node for workload processing. The frame-
work was implemented in OMNeT++ and compared 
to existing approaches in terms of energy and net-
work delay. In [5], the authors proposed an energy-ef-
ficient method for data gathering in deadline-based 
WSNs using multiple UAVs). The method optimizes 
UAV position, trajectory, travel time, and the number 
of UAVs required for efficient data collection. Simu-
lation results show that the method achieves optimal 
performance in terms of energy consumption, travel 
time, and UAV utilization. In [23], the authors pre-
sented a cutting-edge method for energy-efficient 
clustering and cluster head selection in NG-WSNs. 
Their approach seamlessly integrates various com-
ponents, including the midpoint technique, uniform 
sensor distribution, multihop communication, and 
the inclusion UAV within the network architecture. 
By leveraging these elements, along with the imple-
mentation of a simulated annealing algorithm for 
UAV trajectory optimization, the proposed approach 
exhibits remarkable superiority in terms of both en-
ergy efficiency and network lifetime when compared 
to existing techniques.
In [4], a single UAV was employed to optimize trajec-
tory, reduce energy consumption of ground sensors in 
wireless networks, and maintain QoS and power con-
straints. The study incorporates two channel models 
for 4G, 5G, and B5G systems and investigates three 
trajectory optimization strategies. Namely exhaus-
tive search, particle swarm optimization, and fixed 
placement, to locate the optimal trajectory of the UAV.
In [23], the authors introduced a framework to op-
timize UAV trajectory planning for energy-efficient 
data collection from IoT sensor nodes. It employs 
a data similarity-based node selection approach in 
three phases: data similarity determination using 
SDTW, redundant node removal with HGACA, and 
UAV trajectory planning through an ILP model. Sim-
ulation results show improved efficiency in execution 
time and power consumption while preserving data 
integrity, marking a substantial advancement in UAV 
data collection from IoT nodes.
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In [44], the authors presented a comprehensive Li-
DAR dataset collected from vineyards in northern 
Spain using a DJI M300 UAV with a DJI Zenmuse 
L1 LiDAR sensor. The dataset includes high-density 
3D LiDAR point clouds with embedded RGB infor-
mation, serving various purposes such as optimizing 
vineyard management, aiding agricultural robotics 
development, and providing a “ground truth” data-
set for validating satellite-derived models like digital 
elevation models (DEMs). It addresses the need for 
public UAV LiDAR datasets in Precision Agriculture, 
making it a valuable resource for the field.
In [36], the authors investigate surveillance as a se-
curity solution, focusing on heuristic neural analy-
sis through artificial intelligence and deep learning. 
Automatic analysis of surveillance video content in-
volves object/people tracking, detecting suspicious 
behavior, and sound analysis. In [58], a machine 
learning-based image analysis system combines op-
tical flow and convolutional neural networks to rec-
ognize and track objects, especially detecting sudden 
movements and unfamiliar factors. In [26], the au-
thors introduced an automated guided vehicle (AGV) 
technology which uses a combination of artificial in-
telligence and deep learning techniques, allows for 
the detection and identification of pallets for the pur-
pose of automatically guiding the guided vehicle.
In [21], one example of the use of automated guided 
vehicles (AGV) in port environments is presented 
to handle and transport goods in a collision-free and 
safe path to avoid obstacles and arrive accurately at 
the shipping station using the star algorithm.

3. System Model
The objective of the present work is to collect the data 
of > 1N  SNs deployed in a sensor field using a UAV, in 
the shortest time possible to ensure both low latency 
for the data and low energy consumption by the UAV. 
Assuming a constant flying speed, the shortest time 
corresponds to the shortest flight route, which will be 
achieved in three phases, each having an algorithm, as 
described below. DC time, being mainly radio propa-
gation time, will be ignored with respect to UAV flight 
time. Another objective, that is equally important, is 
to collect the data with a minimal amount of energy 
on the part of the SN, by minimizing the computation-

al and communications chores of the SN. The N  SNs 
are arbitrarily given the IDs 1 2 3, , ,..., .Ns s s s
Let 1 2 3{ , , ,..., }Ns s s s=S  be the set of all SNs. The lo-
cation of each SN is is determined by the ordered pair 
( , ),i ix y  where ix and iy are the Cartesian coordi-
nates measured from some reference point, e.g. the 
lower left corner of the sensor field. It is assumed that 
there is a lookup table T having the position ( ),i ix y
of each SN ,is and that this table is accessible to any 
component of the solution, e.g. the UAV and the al-
gorithms. The set S  of SNs will be partitioned into 
clusters to find an initial (SN) route, then will be 
partitioned again, this time along the initial route, to 
find an intermediate (hovering) route. The latter will 
be optimized to produce the final (hovering) route. 
By collecting data from many SNs in each UAV stop, 
called many to one DC, there will be a fewer HLs, 
hence a shorter UAV flight distance, realizing the ob-
jective of the solution.

3.1. Definitions
The definitions below are employed in the sequel.
 _ Hovering location: The point on the ground above 

which the UAV will hover to collect data from the 
SNs underneath.

 _ UAV footprint: The fixed size disk entered at the 
HL of the UAV, within which any SN can commu-
nicate with the UAV as shown in Figure 2. While 
the footprint size is fixed, the number of SNs it con-
tains may differ from one footprint to another.

 _ Data packet: A fixed size data record transmitted by 
the SN to the UAV while above the hovering loca-
tion. Its header contains the SN ID.

 _ Time slot: The amount of time needed to transmit 
a data packet.

 _ Collection window: The amount of time the UAV 
hovers over a footprint. It is equal to the number 
SNs in the footprint multiplied by the slot time.

 _ UAV packet: A packet transmitted by the UAV each 
time it is above a HL to make its presence known 
to the SNs in its footprint. It contains the IDs of 
those SNs in the footprint and the order in which 
they should to transmit their data so as to avoid col-
lisions. It serves also as synchronization signal so 
that time slots in the collection window are prop-
erly recognized.



Information Technology and Control 2024/3/53872

SN transmission range :d  The maximum distance a 
wireless signal transmitted by the SN can reach when 
communicating line of sight (LoS). This range should 
be longer than in the case of non-LoS, e.g. in WSN or 
MS DC solutions, where obstacles may exist.
In addition, the following variables are used in the ar-
ticle:

N Number of deployed SNs
m Number of clusters
Ni Number of SNs in cluster i 

n
Number of groups (Number of hovering 
locations)

Mi Number of SNs in group i 

Clearly, the number of deployed SNs is
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communicate with the UAV as shown in Figure 
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Figure 2 
UAV footprint encompasses all SNs (green dots) that can 
transmit successfully to the UAV while hovering above the 
centroid (footprint center). 

 

3.2 Preliminaries 
In what follows we explain a number of elements used 
in the proposed solution 

3.2.1 Radius UR of the UAV footprint 

Referring to Figure 2, the radius UR of the UAV 
footprint is a function of its height above the HL and 
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transmission range d of the SN, the UAV height h , 
then the UAV footprint radius UR is given by 
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It is desirable to have as wide a footprint as possible 
in order to enclose as large a number of SNs as 
possible and collect data from them in one UAV stop. 
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It is desirable to have as wide a footprint as possible 
in order to enclose as large a number of SNs as possi-
ble and collect data from them in one UAV stop. This 
of course will decrease the number of HLs and con-
sequently the UAV route and flying time. Since the 
transmission range d is constant for all the SNs, per 
assumption, the only way to widen the UAV footprint 
can be brought about by decreasing its height. Howev-
er, to avoid ground obstacles and to ensure LoS com-
munications with the SNs, there is a minimum height 
h  that the UAV cannot fly below. Thus, we may define 
h  to be the lowest height the UAV can fly at to avoid 
ground obstacles, which may hamper the flight or pre-
vent LoS communications between the UAV and SNs 
on the edge of the footprint.

3.2.2. Shortest SN Traversal Route P and the ACO 
Algorithm
The ACO algorithm is used in Phase I of the proposed 
solution to find a shortest traversal route within each 
cluster and is also used in Phase III to optimize the 
UAV DC route. The decision to employ ACO is based 
on a careful consideration of the specific characteris-
tics of our paper. In our paper, the total area of interest 
is subdivided into smaller regions using the k-means 
clustering technique. Within these smaller areas, 
ACO has consistently demonstrated superior perfor-
mance in obtaining the shortest path when compared 
to some other algorithms like Genetic Algorithms 
(GA). To further substantiate our choice, we conduct-
ed experiments that provide empirical evidence sup-
porting the effectiveness of ACO in this paper.
Capable of solving combinatorial optimization prob-
lems, ACO takes inspiration from the behaviour of 
real ant colonies [55]. When searching for food, ants 
put a substance called pheromone on the ground 
in an effort to make the shortest route to the food 
source known for other ants. Clearly, the more ants 
that use a particular trail, the more pheromone will 
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be on there, which in turn attracts more ants to use 
that trail. However, pheromone is not a permanent 
substance but can evaporate. Thus, if a trail has some 
pheromone but is ignored by ants for a while, whatev-
er pheromone there will evaporate with time, turning 
off any ant that wanted to use the trail. Then, ants that 
search later for food trace the presence of pheromone 
and follow the trait that has a higher concentration of 
the substance. Once at the food source, the ants are 
able to get food and return back to their colony us-
ing the same trail, dropping more pheromone which 
makes the trail ever more popular as time goes by.
ACO algorithms act similarly, using a number of ar-
tificial ants—tiny computational agents, that work 
cooperatively and communicate through artificial 
pheromone trails. In the computer replica of ant be-
havior, the equivalent of time is iterations. In partic-
ular, and regarding our particular problem, a number 
v of artificial ants are used to search for the shortest 
path traversing a set of N nodes starting at a given 
node. Every ant constructs a solution to the problem 
by travelling on a constructed graph. In each iteration, 
every ant makes a move to one and only one neighbor 
node. During their tour, all ants leave an amount of 
pheromone on the edges they have cross, so as to help 
the ants that will use the edges next. When an ant is 
at a given node ,i  it selects the next node j  based on 
the amount of pheromoneτ ij and the heuristic desir-
ability ηij of the trail ( , )i j connecting the two nodes. 
Specifically, the probability for the ant to go from 
node i to node j is a function node of the two quanti-
ties τ ij and ηij raised to the powers α and β which are 
two parameters determining the relative influence 
of the pheromone and the heuristic information, re-
spectively. At the end of each iteration, the amount 
of pheromone on each trail is updated based on the 
amount that has been dropped and the amount that 
has evaporated during the iteration.

3.2.3. Clustering SNs and the K-means Algorithm
The K-means algorithm is used in Phase I of the 
proposed solution to partition the set S  of SNs into 
non-overlapping clusters. Based on unsupervised 
learning, it places in the same cluster all the points 
with similar features or characteristics, using the 
least squares concept as follows. First, it receives as 
input the number k  of required clusters. Then it se-
lects randomly k  points representing an initial k  cen-

troids without replacement. It keeps iterating until 
there is no change to the centroids, i.e assignment of 
points to clusters is not changing. Now, it computes 
the sum of the squared distances between the points 
and all centroids, and assigns each point to the closest 
cluster (centroid). Finally, it computes the centroid 
of a cluster by taking the average of all points that 
belong to each cluster. The centroid of 1k  points
( ) ( ) ( )1 1 2 2, , , ,..., ,k kx y x y x y

 
deployed in the Euclide-

an plane is also a point ( )= ,c x y  in the same plane, 
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The total mean-square quantisation error (MSE) [1] is 
used as a fitness function of the K-means algorithm. 

3.3 Solution Phases and Algorithms 
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shown in Figure 1, each having a well developed 
algorithm and ending up with a route that gets 
(hopefully) shorter with the phases. 

(2a)

 

 

consequently the UAV route and flying time. Since 
the transmission range d is constant for all the SNs, 
per assumption, the only way to widen the UAV 
footprint can be brought about by decreasing its 
height. However, to avoid ground obstacles and to 
ensure LoS communications with the SNs, there is a 
minimum height h  that the UAV cannot fly below. 
Thus, we may define h  to be the lowest height the 
UAV can fly at to avoid ground obstacles, which may 
hamper the flight or prevent LoS communications 
between the UAV and SNs on the edge of the 
footprint. 

3.2.2 Shortest SN Traversal Route P and the 
ACO Algorithm 

The ACO algorithm is used in Phase I of the proposed 
solution to find a shortest traversal route within each 
cluster and is also used in Phase III to optimize the 
UAV DC route. The decision to employ ACO is based 
on a careful consideration of the specific 
characteristics of our paper. In our paper, the total area 
of interest is subdivided into smaller regions using the 
k-means clustering technique. Within these smaller 
areas, ACO has consistently demonstrated superior 
performance in obtaining the shortest path when 
compared to some other algorithms like Genetic 
Algorithms (GA). To further substantiate our choice, 
we conducted experiments that provide empirical 
evidence supporting the effectiveness of ACO in this 
paper. 
 Capable of solving combinatorial optimization 
problems, ACO takes inspiration from the behaviour 
of real ant colonies [55]. When searching for food, 
ants put a substance called pheromone on the ground 
in an effort to make the shortest route to the food 
source known for other ants. Clearly, the more ants 
that use a particular trail, the more pheromone will be 
on there, which in turn attracts more ants to use that 
trail. However, pheromone is not a permanent 
substance but can evaporate. Thus, if a trail has some 
pheromone but is ignored by ants for a while, 
whatever pheromone there will evaporate with time, 
turning off any ant that wanted to use the trail. Then, 
ants that search later for food trace the presence of 
pheromone and follow the trait that has a higher 
concentration of the substance. Once at the food 
source, the ants are able to get food and return back to 
their colony using the same trail, dropping more 
pheromone which makes the trail ever more popular 
as time goes by. 
ACO algorithms act similarly, using a number of 
artificial ants—tiny computational agents, that work 
cooperatively and communicate through artificial 
pheromone trails. In the computer replica of ant 
behavior, the equivalent of time is iterations. In 
particular, and regarding our particular problem, a 
number v of artificial ants are used to search for the 
shortest path traversing a set of N nodes starting at a 
given node. Every ant constructs a solution to the 
problem by travelling on a constructed graph. In each 
iteration, every ant makes a move to one and only one 
neighbor node. During their tour, all ants leave an 
amount of pheromone on the edges they have cross, 
so as to help the ants that will use the edges next. 

When an ant is at a given node ,i  it selects the next 
node j  based on the amount of pheromone ij and the 

heuristic desirability ij of the trail � , �i j connecting 
the two nodes. Specifically, the probability for the ant 
to go from node i to node j is a function node of the 
two quantities  ij and ij raised to the powers α and β 
which are two parameters determining the relative 
influence of the pheromone and the heuristic 
information, respectively. At the end of each iteration, 
the amount of pheromone on each trail is updated 
based on the amount that has been dropped and the 
amount that has evaporated during the iteration. 

3.2.3 Clustering SNs and the K-means 
Algorithm 

The K-means algorithm is used in Phase I  of the 
proposed solution to partition the set S of SNs into 
non-overlapping clusters. Based on unsupervised 
learning, it places in the same cluster all the points 
with similar features or characteristics, using the least 
squares concept as follows. First, it receives as input 
the number k of required clusters. Then it selects 
randomly k  points representing an initial k  
centroids without replacement. It keeps iterating until 
there is no change to the centroids, i.e assignment of 
points to clusters is not changing. Now, it computes 
the sum of the squared distances between the points 
and all centroids, and assigns each point to the closest 
cluster (centroid). Finally, it computes the centroid of 
a cluster by taking the average of all points that belong 
to each cluster. The centroid of  1k points
     1 1 2 2, , , ,..., ,k kx y x y x y deployed in the 

Euclidean plane is also a point   ,c x y  in the same 

plane, with x and y given by 
1 2

1 2

... ,                                

... .                               
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k
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The total mean-square quantisation error (MSE) [1] is 
used as a fitness function of the K-means algorithm. 

3.3 Solution Phases and Algorithms 

Clearly, the start  SN  
11p  of cluster 1 will also be the 

start SN  1p of entire set  S  of deployed SNs. The 
proposed solution is comprised of three phases, as 
shown in Figure 1, each having a well developed 
algorithm and ending up with a route that gets 
(hopefully) shorter with the phases. 

(2b)

The total mean-square quantisation error (MSE) [1] 
is used as a fitness function of the K-means algorithm.

3.3. Solution Phases and Algorithms
Clearly, the start  SN 

11p  of cluster 1 will also be the 
start SN  1p of entire set S  of deployed SNs. The pro-
posed solution is comprised of three phases, as shown 
in Figure 1, each having a well developed algorithm 
and ending up with a route that gets (hopefully) short-
er with the phases.

Algorithm 1: Initial (SN) route 

Input: Set S   of N  SNs, Start SN 
11p ,  Desired 

number m  of clusters, SN position lookup table. 
Output: Initial (SN) route P  1 2( , ,..., )Np p p= .

1 P   =: []  //Initialize the initial route.
2 Apply the K-means algorithm to the set S  to 

partition it into m  clusters: 1 2, ,..., .mC C C

3 For each cluster iC   find its centroid, as per (2), 
placing all m   centroids in some set φ.

4 Denote by 1c  the centroid of the cluster, where the 
start SN 

11p  exists, and by 1N  the cardinality of 
that cluster. 

5 Delete the centroid 1c  from the set φ. 
6 Apply the ACO algorithm to the cluster with 

centroid 1c  to obtain a shortest path sub-route P1  

( )=
1 2 1

1 1 1 1, ,...,
N

P p p p  traversing the cluster. 
7 Append sub-route P1  to the initial route P . 
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8 for = 1i   to −1m  do 
9 Calculate the distance from SN ,

Ni
ip ,the end SN 

of sub-route iP ,, to every centorid in the set φ.
10 Denote by +1ic  the centroid closest to ,

Ni
ip , and 

by +1iN  the cardinality of the cluster of that 
centroid.

11 Delete the centroid +1ic  from the set φ. 
12 Calculate the distance from SN ,

Ni
ip , the end 

SN of sub-route iP ,,to every SN of the cluster 
with centroid +1ic .

13 Denote by 
11ip +  the SN closest to Ni

ip .
14 Apply the ACO algorithm to the cluster with 

centroid 1 ,ic + , starting at SN 
11 ,ip + , 

to obtain a shortest path  sub-route iP + =1  

( )
+

+ + +1 2 1
1 1 1, ,...,

Ni
i i ip p p  traversing the cluster. 

15 Append sub-route iP +1  to the initial route P . 

16 end 

Initial (SN) route P : In phase I , an initial SN travers-
al route P 1 2( , ,..., )Np p p= traversing all N SNs in a 
shortest route manner is constructed from the set S
of all SNs, using both K-means clustering and ACO. 
Algorithm 1 takes S as input and gives P  as output.
Intermediate (hovering) route Q : In Phase II, an in-
termediate UAV hovering route =Q 1 2( , ,..., )Mq q q
is constructed from the initial route P . This is done 
by grouping the SNs along P  into n groups (mu-
tually disjoint subsets) each of which can fit in the 
footprint of the UAV as it hovers above in the air. Al-
gorithm 2 takes P as input and gives Q as output. Ef-
fectively, this phase partition P into M collection lists 

1 2 ML ,L , ...,L ,  each of which can fit in the footprint of 
the UAV. Clearly, n N≤ and ≤Q P , with the equality 
holding only if each group contains one and only one 
SN.
Final (hovering) route R : Finally, in Phase III a final 
hovering route R obtained by optimizing (rearranging 
the elements of ) Q using ACO, if the number of SNs is 
large, or GA if that number is small. That is, R is pro-
duced by recording the elements, i.e. the HLs, of Q . 
Algorithm 3 takes Q  as input and gives R as output. 
Clearly, ≤R Q , with the equality if the optimization 
algorithm, ACO or GA, receives an already optimal 
route.

3.3.1. Phase I: Initial (SN) Route P
In this phase, the ACO algorithm is applied to the set 
S of all deployed SNs in order to construct the short-

est route through the SNs. However, doing so would 
produce two problems. First, the chances of ACO’s 
finding the shortest path would be very slim especial-
ly if the size of S is large. Second, ACO would take a 
large amount of time to finish its work, regardless of 
the final result. To avoid these problems, we start by 
partitioning S  into an arbitrary number < <1 m N
of clusters using the K-means algorithm, and finding 
the centroid ( )= ,c x y of each cluster. Each cluster has 
a number iN SNs, with =∑max

min iN N . Then, we apply 
ACO to the clusters separately to obtain a shortest 
route within each cluster, and eventually concatenate 
these subroutes to obtain a short route traversing all 
the SNs. Needless to say, this route may or may not be 
the shortest, but it can be made very close to the short-
est by knowing where to start the ACO in each cluster. 
By much experimentation, we have reached a method 
that makes the traversal route through S very short, 
compared to what has been reported in other research 
papers. The method starts in the second cluster, as the 
start SN for the first cluster is user defined.
After ACO produces the shortest route 1P

( )1 2 1
1 1 1, ,...,

N
p p p=

 
for the initial cluster, we proceed to 

determine the distances between the last SN 
1

1N
p

 
on 

the route 1P and the centroids of all the other clusters, 
where 1N  is cardinality of the initial cluster. The sub-
sequent cluster to be traversed is determined by the 
shortest distance. 
Identify the closest SN in the subsequent cluster to 
the last SN 

11Np
 
on the route 1P . The closest SN would 

then be the start SN for the second subroute 2P , to be 
produced by ACO, and the cluster where it resides 
would be the second cluster. As depicted in Algorithm 
1, repeat the above three steps for all the remaining 
clusters, getting at the end m  sub-routes 1 2 mP ,P , ...,P . 
Construct the initial UAV route P by concatenating 
the iP  in order, i.e. 

1 2= mP (P ,P , ...,P )
1 2 1 21 2

1 2

1 1 1 2 2 2

1 2

, , ..., , , ..., , ..., , ...,
, , ...,
, , ...,

N N

Nmm m m
N

p p p p p p
p p p
p p p





We can see that P is basically a passive [9] permu-
tation σ, say, of the set { }1 2, ,..., .Ns s s=S  If, for sim-
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Algorithm 2: Intermediate (hovering) route 

Input: UAV initial route P  = 1 2( , ,..., )Np p p  and 
UAV footprint radius UR .
Output: Intermediate route Q  ( )= 1 2 nq ,q ,...,q , 
where jq  is the j  th location group, and collection 
lists nL ,L , ...,L1 2 , where jL  is the list of SNs that 
will be collected while UAV at HL .jq

1 =: 1;i  //Index of SN along the initial route.
2 =: 1n  //Group no.
3 nL : [ ]=   //Initialize nth collection list with first 

SN in group.
4 Q : = [ ] //Initialize intermediate (hovering) 

route.
5 ϕ=:C  //Initialize footprint group test set.
6 do 
7 { }=:  ipC C  //Attempt adding a SN to the 

current group. 
8 Calculate centroid c  of set C ,  as per (2).
9 Flag := 0.
10 foreach ∈s C  do 
11 Calculate distance sd  from SN s  to 

centroid c . 
12 if > Rs Sd  then 
13   Flag := 1 // SN is outside footprint, so 

take action as below. 
14 end 
15 end
16 if Flag = 0 then
17 Append ip  to nL  //SN is inside footprint, 

so add it to collection list. 
18 if <i N  then 
19 =:nc c  //Retain previous centroid. 
20 end
21 else
22 Append c  to Q  //SN is the last one, so 

add current centroid to route and stop. 

23 end
24 end

25 else
26 if <i N  then 
27 Append nc  to Q  //SN outside footprint, 

so write previous centroid as route 
node.

28 = +: 1n n  //Close current group and 
start a new one.

29 L : [ ]n ip=  //Initialize a new list with the 
SN that did not join previous list. 

30 =: { }ipC  //Initialize a new group set 
with the SN that did not join previous 
list. 

31 end
32 else
33 Append c  to Q  //SN is the last one, so 

add current centroid to route and stop.
34 Append ip  to Q  //Add last SN to route, 

as it is the centroid of itself.
35 + =1L : [ ]n ip  //Place the last SN in a new 

collection list. 
36 end
37 end
38 = +: 1i i  //Increment i  to nominate another 

SN, or exit while loop. 
39 while ( ≤i N ); 

plicity, we consider σ to be a permutation of the set 
{ }1,2,...,N , rather than the set of SNs, then for each 

{ }1,2,...,i N∈ , the i th element of the route P  is just 
element ( )is

σ
of the set S , i.e. ( )i ip s

σ
= .

3.3.2. Phase II: Intermediate (Hovering) Route Q
The Intermediate Route algorithm takes the initial 
route P ( )= 1 2, ,..., Np p p , and the UAV footprint ra-
dius UR ,  as input and outputs an intermediate hov-
ering route ( )1 2 nQ q ,q ,...,q= and n  collection lists 

1 2 nL ,L , ...,L ,  where iq is the i th UAV HL and iL  is 
the list of SNs, in order, whose data will be collected 
by the UAV while at that location. The intermediate 
route Algorithm 2 effectively partitions the SNs along 
P  into n N groups each of which fits in the footprint 
of the Q ( )1 2, ,..., nq q q= UAV if it hovers over the cen-
troid of the group. The algorithm achieves its aim by 
building one group at a time, starting at the first SN 1P
of P . An empty test set C is created for each group, to 
which SNs are added one at a time.
Each time a SN is added to C its centroid will be cal-
culated. The algorithm then compares the distance 
between the added SN and the centroid of  S  with the 
UAV footprint radius UR . If the distance is less than

UR , then the SN is added to the current group, and 
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the algorithm moves on to attempt to add another SN. 
Else, the SN is not added to the group, which will then 
be closed and considered complete, and the algorithm 
moves on to build a new group, adding to it that SN as 
the first member.
The iM members of group i will be inserted, in the or-
der they are added to the group, in the collection list iL
of that group. The centroid of group i , denoted by iq , 
will be considered the UAV HL for the group.
This exercise is continued until all N SNs along 
the initial route P  are accounted for, noting that 

1
.n

ii
M N

=
=∑ The algorithm outputs the intermedi-

ate route Q ( )1 2, ,..., nq q q= , which is the vector of cen-
troids of the n formed groups, with each centroid iq
associated with a collection list iL  telling which SNs 
will transmit data and in what order while the UAV is 
hovering above iq . It is as if the Intermediate route 
algorithm partitions the initial route P into n  lists 

1 2 nL ,L , ...,L , or ( )1 2= nP L ,L , ...,L ,
where

 

 

1 2 mmPP ,,PP ,, ......,,PP . Construct the initial UAV route PP by 
concatenating the iiPP   in order, i.e. 

  1 2 mmPP ��PP ,,PP ,, ......,,PP ��  

1 2 1 21 2

1 2

1 1 1 2 2 2

1 2

� , , ..., , , ..., , ..., , ...
, , , ..., �
� , , ..., �

N N

N mm m m
N

p p p p p p
p p p

p p p




 

We can see that PP is basically a passive [9] 
permutation σ, say, of the set  1 2, ,..., .Ns s sS  If, 
for simplicity, we consider σ to be a permutation of 
the set  1,2,...,N , rather than the set of SNs, then for 

each  1,2,...,i N , the i th element of the route PP  

is just element  is


of the set S , i.e.  i ip s


 . 

3.3.2 Phase II : Intermediate (Hovering) 
Route QQ  

The Intermediate Route algorithm takes the initial 
route PP   1 2, ,..., Np p p , and the UAV footprint 
radius UR ,  as input and outputs an intermediate 

hovering route  1 2 nQ q ,q ,...,q and n  collection 
lists 1 2 nnLL ,,LL ,, ......,,LL ,, where iq is the i th UAV HL and 

iL is the list of SNs, in order, whose data will be 
collected by the UAV while at that location. The 
intermediate route Algorithm 2 effectively partitions 
the SNs along PP  into n N groups each of which 
fits in the footprint of the QQ  1 2, ,..., nq q q UAV if it 
hovers over the centroid of the group. The algorithm 
achieves its aim by building one group at a time, 
starting at the first SN 1P of PP . An empty test set C

is created for each group, to which SNs are added one 
at a time. 
Each time a SN is added to C its centroid will be 
calculated. The algorithm then compares the distance 
between the added SN and the centroid of  S  with 
the UAV footprint radius UR . If the distance is less 
than UR , then the SN is added to the current group, 
and the algorithm moves on to attempt to add another 
SN. Else, the SN is not added to the group, which will 
then be closed and considered complete, and the 
algorithm  
moves on to build a new group, adding to it that SN 
as the first member. 

 The iM members of group i will be inserted, in the 
order they are added to the group, in the collection list

iiLL of that group. The centroid of group i , denoted by

iq , will be considered the UAV HL for the group. 
This exercise is continued until all N SNs along the 
initial route PP  are accounted for, noting that 

1 .n
ii M N


 The algorithm outputs the intermediate 

route QQ  1 2, ,..., nq q q , which is the vector of 
centroids of the n formed groups, with each centroid 

iq associated with a collection list iiLL telling which 
SNs will transmit data and in what order while the 
UAV is hovering above iq . It is as if the Intermediate 
route algorithm partitions the initial route PP into n
lists 1 2 nnLL ,,LL ,, ......,,LL ,, or  1 2 nnPP LL ,,LL ,, ......,,LL , 

 where 

1

1 1 1 2

1 2 1 1 2 1

1 2 1 1 2

1 1 2

2 1 2

n ... 1 ... 2

... 2 ...

1 2

L � , ,..., �,
L � , ,..., �,
...
L � , ,

,..., �
� , ,..., �.

N N

N N

m n

M
M M M M

M M M M M M
M M M M M M

N M N M N

p p p
p p p

p p
p p

p p p
 



  

       

      

   








 

As an example, assume  P� 3,5,1,7,9,2,4,8,6 .
Assume also that the Intermediate (hovering) route QQ
 1 2, ,..., nq q q algorithm was able, based on the 

locations of the SNs and the footprint radius, to form 
three groups, meaning that 3n , with 

  1 2 34, 2, 3M M M . Then, the algorithm will 

produce      1 2 3L � 3,5,1,7 , L � 9,2 , L � 4,8,6 . That 

is, the UAV will collect the data of the SNs  3,5,1,7
in this order, while hovering atop their centroid, then 
moves to the centroid of  9,2 to collect their data, 

and finally moves to the centroid of  4,8,6 to collect 
their data, completing the exercise of data 
transmission by the SNs and collection by the UAV. 

3.3.3 Final (Hovering) Route RR  Algorithm 
The Final Route algorithm, given formally in 3, takes 
the set  1 2, ,..., nq q qΠ  of the elements of the 

intermediate route QQ  1 2, ,..., nq q q and applies ACO 
to it, with the aim to shorten the length of that route. 
Thus, the output of this  

As an example, assume ( )P= 3,5,1,7,9,2,4,8,6 .
 

As-
sume also that the Intermediate (hovering) route 
Q ( )1 2, ,..., nq q q= algorithm was able, based on 
the locations of the SNs and the footprint radi-
us, to form three groups, meaning that = 3n , with 

= = =1 2 34, 2, 3M M M . Then, the algorithm will pro-
duce ( ) ( ) ( )1 2 3L = 3,5,1,7 , L = 9,2 , L = 4,8,6 .

 
That is, the 

UAV will collect the data of the SNs ( )3,5,1,7 in this 
order, while hovering atop their centroid, then moves 
to the centroid of ( )9,2

 
to collect their data, and fi-

nally moves to the centroid of ( )4,8,6
 
to collect their 

data, completing the exercise of data transmission by 
the SNs and collection by the UAV.

3.3.3. Final (Hovering) Route R  Algorithm
The Final Route algorithm, given formally in 3, takes 
the set 

  

algorithm is basically some permutation γ, say, of the 
set Π , noting that each element iq preserves with it its 
associated collection list iiLL . That is, as the elements 
of Π are permuted by γ, the collection lists will be 
permuted by the same γ. The algorithm outputs a final 
hovering route   1 2R , ,..., ,nr r r where RR is basically 
some passive permutation γ of the set 

 1 2, ,..., nq q qΠ . If, for simplicity, we consider 

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than 

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th 

element of RR is just element � �iq of the setΠ , i.e. 

 
i ir q . 

3.3.4 Time Complexity 
 

Complexity analysis of Algorithm 1. For N  SNs, 
m N clusters and number of  itreations  I ,  the 

time  complexity  of  the  K ‐means  clustering 
algorithm in step 2 is given as   O mNI [43]. The 
time complexity of ACO algorithm in step 14 is 
given  as   2

1 max ,iO N I  where 1iN  is  the 

cardinality  of  cluster 1i C ,     is  the  number  of 
ants and  maxI is the maximum iteration [37]. For 

m N clusters, the time complexity for steps 8 to 
16  is  given  as   1 2

1 max1
m

ii O N I

 .  The  overall 

time  complexity  complexityT  of  the  algorithm  is 
given as  
 
        1 2

1 max1 .m
complexity iiT O mNI O N I


   

On  the  other  hand  the  time  complexity  of 
Algorithm 2 can be analysed as nested loop (the 
outer  loop and  the  inner  loop), The outer  loop 
(Step 6 to 39) in the algorithm iterates over each 
SN from the initial route PP . This loop has a time 
complexity of    ,O N the  inner  loop  (Step 10  to 
15) iterates over the elements in each SNs  group. 
The overall time complexity of algorithm 2 can 
be approximated as   2 .O N  For algorithm 3, the 

time  complexity  is given as   2 ,O n  where  n  is 
set  of  all  SNs  of  the  intermediate  route  QQ and 

.n N  
Figure 3 
Sensory field of area 2400�400 m with 20  SNs 
randomly deployed. 

 

3. 4 Illustrative Example 
We give now an illustrative example to show how the 
framework works till it finds the final (hovering) route 
RR .  
In this example, the set �1,2,3,...,20�S of 20 SNs 
are randomly deployed in an area of 2400�400 m  
depicted visually in Figure 3, with the lookup table T 
as shown in Table 1.  

3.4.1 Generating the Initial Route PP  
As per steps 1-2 in Algorithm 1, the K-means 
clustering algorithm is told to divide the 20 SNs into 

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route  
  Input:  Intermediate  (hovering)  route QQ

 1 2 n�q ,q ,...,q �,   where  jq   is  the  j   th 
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Figure 3
Sensory field of area 400 × 400 m2 with 20 SNs randomly 
deployed
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 1 2 n�q ,q ,...,q �,   where  jq   is  the  j   th 
hovering location, and the corresponding 𝑛𝑛 
reading lists  nnLL ,,LL ,, ......,,LL1 2 . 

  Output: UAV  nal  route  RR 1 2� , ,..., �,nr r r
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then collection lists  1 2  nnLL ,,LL ,, ......,,LL ..  
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of the intermediate route QQ  into a set.  
2  Apply the ACO algorithm to Π to nd the 

shortest path RR  that traverses the points of  
Π   starting at location 1q . 

3  Relabel  each  reading  list  iiLL  to match  the 

relabelling of each  iq to the corresponding

,jr , 1,2,..., .i j n  

3.4. Illustrative Example
We give now an illustrative example to show how 
the framework works till it finds the final (hovering) 
route R . 
In this example, the set {1,2,3,...,20}=S  of 20 SNs 
are randomly deployed in an area of 2400×400 m   de-
picted visually in Figure 3, with the lookup table T as 
shown in Table 1.  

3.4.1. Generating the Initial Route P
As per steps 1-2 in Algorithm 1, the K-means clustering 
algorithm is told to divide the 20 SNs into = 3m clus-
ters. The three clusters are {11,6,8,14,15,16,4,3,20},
{5,12,7,13,17,10}, {1,2,19,18,9} as shown in Fig-
ure 3. The centroids of these three clusters when 
calculated are found to be  1 (178.88,317.96),c =  

2 (305,70.75)c =  and 3 (67.78,138.03)c = , respec-
tively.
As per the for loop in Algorithm 1, ACO will start 
working in the cluster containing this start SN, no. 
11, i.e. the cluster with centroid ( )1c = 178.88,317.96 .  
Invoking the ACO algorithm for the SNs of cluster 
1, with SN 11 as a start SN, step 6 in the Algorithm 1 
yields the sub-route

 

 

11,6,8,14,15,16,4,3,20 , 5,12,7,13,17,10 ,
1,2,19,18,9 as shown in Figure 3. The centroids of 

these three clusters when calculated are found to be  
1 178.88,317.96 ,c  2 305,70.75c  and 

3 67.78,138.03c  , respectively. 

Table 1 
The lookup table which contains the SNs information 
ID  Position  ID  Position 
1  (111.27, 74.59)  11  (73.4, 392.18) 
2  (47.12, 102.24)  12  (375.89, 138.02) 
3  (214.58, 299.89)  13  (264.49, 11.18) 
4  (131.9, 304.77)  14  (107.34, 297.04) 
5  (227.09, 89.6)  15  (271.19, 255.15) 
6  (141.13, 369.26)  16  (282.61, 383.4) 
7  (346.31, 57.96)  17  (327.82, 110.02) 
8  (208.85, 261.35)  18  (68.04, 161.7) 
9  (35.49, 226.68)  19  (76.96, 124.96) 
10  (284.4, 17.69)  20  (178.94, 298.58) 

As per the for loop in Algorithm 1, ACO will start 
working in the cluster containing this start SN, no. 11, 
i.e. the cluster with centroid  1c 178.88,317.96 .  
Invoking the ACO algorithm for the SNs of cluster 1, 
with SN 11 as a start SN, step 6 in the Algorithm 1 
yields the sub-route 

  1P 11,6,4,14,20,3,8,15,16 ,      3  

whose length, using the lookup table T, is 500.05 m. 
Calculate the distances from SN 16 to centroid 2c and

3c which gives, 313.45 m and 326.13,  respectively. 
The centroid 2c of cluster 2 is the closest centroid to 
SN 16 . To traverse cluster 2, we find in it the SN 
closest to the end SN of 1PP , namely 16 , by calculating 
the distances between SN 16  and all the SNs of 
cluster 2. This calculation is shown in Table 2, from 
which we find that the subroute 2PP  of cluster 2 should 
start with SN 12 which has the smallest distance
262.51 m with SN 16 . When the ACO algorithm is 
given 2 12,17,7,10,13,5e S and SN 12  as start 
SN as input, it outputs the subroute  

 2P 12,17,7,10,13,5 ,      4   

whose length, using the lookup table T, is 292.56 m.  

In a similar manner, to traverse cluster 3, we find in it 
the SN closest to the end SN of PP2 , namely 5, by 
calculating the distances between SN 5 and all the 
SNs of cluster 3 as shown in Table 3. This calculation 
shows that the subroute PP2 should start with SN 1 

which has the smallest distance  116.79 m with SN 
5 . When the ACO algorithm is given 

3 1,2,19,18,9e S and SN 1 as start SN as input, 
it outputs the subroute 

 3P 1,19,2,18,9 ,  (5) 

whose length, using the lookup table T, is 234.16 m.  
Referring to Figure 3, using step 12 in algorithm 1, the 
initial route PP is given by concatenating the three 
subroutes (3)-(5) getting 

 1 2 3PP PP ,,PP ,,PP ..   

 
 11,6,4,14,20,3,8,15,16,12,17,7,
10,13,5,1,19,2,18,9 ,  (6) 

whose length, by summing the lengths of the three 
subroutes and connection line lengths, is 

1406.07 1.4 km.  

Table 2 
 Distance between the SN 16 to other SNs in cluster 2 

ID  Distance(m) 
12  262.51 
17  277.09 
7  331.62 
10  365.71 
13  372.66 
5  299.0 

Table 3 
 Distance between the SN 5 to other SNs in cluster 3 

ID  Distance(m) 
1  116.79 
19  154.24 
2  180.41 
18  174.63 
9  235.59 

3.4.2 Generating the (Hovering) 
Intermediate Route QQ  

In this example, we set the UAV height  80h m and 
the UAV to the edge SN distance 88 m.d   Using 
Figure 2, the UAV radius UR is calculated to 36.66 m. 
Applying steps 1 through 5 in Algorithm 2, 1 LL ::   ,,
QQ ::   ,,  and : .C Then follow steps 7 and 8, the 
set C  is updated to : 11C with centroid 

1 73.4,392.18 .c  Using step 11, the distance sd  

from the SN 11 to the c is calculated to 0 m. Since sd  

satisfies the condition in steps 16 in Algorithm 2, then

1LL  is updated to 1 11   LL :: ..  

Carrying out steps 6 to 39 yields, 1 11 6   LL :: ,, .. and

: 11,6,4C with centroid  1 107.3,380.7 .c 

(3)

Table 1
The lookup table which contains the SNs information

ID Position ID Position

1 (111.27, 74.59) 11 (73.4, 392.18)

2 (47.12, 102.24) 12 (375.89, 138.02)

3 (214.58, 299.89) 13 (264.49, 11.18)

4 (131.9, 304.77) 14 (107.34, 297.04)

5 (227.09, 89.6) 15 (271.19, 255.15)

6 (141.13, 369.26) 16 (282.61, 383.4)

7 (346.31, 57.96) 17 (327.82, 110.02)

8 (208.85, 261.35) 18 (68.04, 161.7)

9 (35.49, 226.68) 19 (76.96, 124.96)

10 (284.4, 17.69) 20 (178.94, 298.58)

whose length, using the lookup table T, is 500.05 m. 
Calculate the distances from SN 16 to centroid 2c and 

3c which gives, 313.45 m and 326.13,  respectively. 
The centroid 2c of cluster 2 is the closest centroid 
to SN 16 . To traverse cluster 2, we find in it the SN 
closest to the end SN of 1P , namely 16 , by calculat-
ing the distances between SN 16  and all the SNs of 
cluster 2. This calculation is shown in Table 2, from 
which we find that the subroute 2P  of cluster 2 should 
start with SN 12  which has the smallest distance
262.51 m with SN 16 . When the ACO algorithm is 
given 2( ) {12,17,7,10,13,5}e =S  and SN 12  as start 
SN as input, it outputs the subroute 

 

 

11,6,8,14,15,16,4,3,20 , 5,12,7,13,17,10 ,
1,2,19,18,9 as shown in Figure 3. The centroids of 

these three clusters when calculated are found to be  
1 178.88,317.96 ,c  2 305,70.75c  and 

3 67.78,138.03c  , respectively. 

Table 1 
The lookup table which contains the SNs information 
ID  Position  ID  Position 
1  (111.27, 74.59)  11  (73.4, 392.18) 
2  (47.12, 102.24)  12  (375.89, 138.02) 
3  (214.58, 299.89)  13  (264.49, 11.18) 
4  (131.9, 304.77)  14  (107.34, 297.04) 
5  (227.09, 89.6)  15  (271.19, 255.15) 
6  (141.13, 369.26)  16  (282.61, 383.4) 
7  (346.31, 57.96)  17  (327.82, 110.02) 
8  (208.85, 261.35)  18  (68.04, 161.7) 
9  (35.49, 226.68)  19  (76.96, 124.96) 
10  (284.4, 17.69)  20  (178.94, 298.58) 

As per the for loop in Algorithm 1, ACO will start 
working in the cluster containing this start SN, no. 11, 
i.e. the cluster with centroid  1c 178.88,317.96 .  
Invoking the ACO algorithm for the SNs of cluster 1, 
with SN 11 as a start SN, step 6 in the Algorithm 1 
yields the sub-route 

  1P 11,6,4,14,20,3,8,15,16 ,      3  

whose length, using the lookup table T, is 500.05 m. 
Calculate the distances from SN 16 to centroid 2c and

3c which gives, 313.45 m and 326.13,  respectively. 
The centroid 2c of cluster 2 is the closest centroid to 
SN 16 . To traverse cluster 2, we find in it the SN 
closest to the end SN of 1PP , namely 16 , by calculating 
the distances between SN 16  and all the SNs of 
cluster 2. This calculation is shown in Table 2, from 
which we find that the subroute 2PP  of cluster 2 should 
start with SN 12 which has the smallest distance
262.51 m with SN 16 . When the ACO algorithm is 
given 2 12,17,7,10,13,5e S and SN 12  as start 
SN as input, it outputs the subroute  

 2P 12,17,7,10,13,5 ,      4   

whose length, using the lookup table T, is 292.56 m.  

In a similar manner, to traverse cluster 3, we find in it 
the SN closest to the end SN of PP2 , namely 5, by 
calculating the distances between SN 5 and all the 
SNs of cluster 3 as shown in Table 3. This calculation 
shows that the subroute PP2 should start with SN 1 

which has the smallest distance  116.79 m with SN 
5 . When the ACO algorithm is given 

3 1,2,19,18,9e S and SN 1 as start SN as input, 
it outputs the subroute 

 3P 1,19,2,18,9 ,  (5) 

whose length, using the lookup table T, is 234.16 m.  
Referring to Figure 3, using step 12 in algorithm 1, the 
initial route PP is given by concatenating the three 
subroutes (3)-(5) getting 

 1 2 3PP PP ,,PP ,,PP ..   

 
 11,6,4,14,20,3,8,15,16,12,17,7,
10,13,5,1,19,2,18,9 ,  (6) 

whose length, by summing the lengths of the three 
subroutes and connection line lengths, is 

1406.07 1.4 km.  

Table 2 
 Distance between the SN 16 to other SNs in cluster 2 

ID  Distance(m) 
12  262.51 
17  277.09 
7  331.62 
10  365.71 
13  372.66 
5  299.0 

Table 3 
 Distance between the SN 5 to other SNs in cluster 3 

ID  Distance(m) 
1  116.79 
19  154.24 
2  180.41 
18  174.63 
9  235.59 

3.4.2 Generating the (Hovering) 
Intermediate Route QQ  

In this example, we set the UAV height  80h m and 
the UAV to the edge SN distance 88 m.d   Using 
Figure 2, the UAV radius UR is calculated to 36.66 m. 
Applying steps 1 through 5 in Algorithm 2, 1 LL ::   ,,
QQ ::   ,,  and : .C Then follow steps 7 and 8, the 
set C  is updated to : 11C with centroid 

1 73.4,392.18 .c  Using step 11, the distance sd  

from the SN 11 to the c is calculated to 0 m. Since sd  

satisfies the condition in steps 16 in Algorithm 2, then

1LL  is updated to 1 11   LL :: ..  

Carrying out steps 6 to 39 yields, 1 11 6   LL :: ,, .. and

: 11,6,4C with centroid  1 107.3,380.7 .c 

(4)

whose length, using the lookup table T, is 292.56 m.
In a similar manner, to traverse cluster 3, we find in it 
the SN closest to the end SN of P2 , namely 5, by calcu-
lating the distances between SN 5 and all the SNs of 
cluster 3 as shown in Table 3. This calculation shows 
that the subroute P2  should start with SN 1 which has 
the smallest distance ( )116.79 m

 
with SN 5 . When 

the ACO algorithm is given 3( ) {1,2,19,18,9}e =S  
and SN 1 as start SN as input, it outputs the subroute

 

 

11,6,8,14,15,16,4,3,20 , 5,12,7,13,17,10 ,
1,2,19,18,9 as shown in Figure 3. The centroids of 

these three clusters when calculated are found to be  
1 178.88,317.96 ,c  2 305,70.75c  and 

3 67.78,138.03c  , respectively. 

Table 1 
The lookup table which contains the SNs information 
ID  Position  ID  Position 
1  (111.27, 74.59)  11  (73.4, 392.18) 
2  (47.12, 102.24)  12  (375.89, 138.02) 
3  (214.58, 299.89)  13  (264.49, 11.18) 
4  (131.9, 304.77)  14  (107.34, 297.04) 
5  (227.09, 89.6)  15  (271.19, 255.15) 
6  (141.13, 369.26)  16  (282.61, 383.4) 
7  (346.31, 57.96)  17  (327.82, 110.02) 
8  (208.85, 261.35)  18  (68.04, 161.7) 
9  (35.49, 226.68)  19  (76.96, 124.96) 
10  (284.4, 17.69)  20  (178.94, 298.58) 

As per the for loop in Algorithm 1, ACO will start 
working in the cluster containing this start SN, no. 11, 
i.e. the cluster with centroid  1c 178.88,317.96 .  
Invoking the ACO algorithm for the SNs of cluster 1, 
with SN 11 as a start SN, step 6 in the Algorithm 1 
yields the sub-route 

  1P 11,6,4,14,20,3,8,15,16 ,      3  

whose length, using the lookup table T, is 500.05 m. 
Calculate the distances from SN 16 to centroid 2c and

3c which gives, 313.45 m and 326.13,  respectively. 
The centroid 2c of cluster 2 is the closest centroid to 
SN 16 . To traverse cluster 2, we find in it the SN 
closest to the end SN of 1PP , namely 16 , by calculating 
the distances between SN 16  and all the SNs of 
cluster 2. This calculation is shown in Table 2, from 
which we find that the subroute 2PP  of cluster 2 should 
start with SN 12 which has the smallest distance
262.51 m with SN 16 . When the ACO algorithm is 
given 2 12,17,7,10,13,5e S and SN 12  as start 
SN as input, it outputs the subroute  

 2P 12,17,7,10,13,5 ,      4   

whose length, using the lookup table T, is 292.56 m.  

In a similar manner, to traverse cluster 3, we find in it 
the SN closest to the end SN of PP2 , namely 5, by 
calculating the distances between SN 5 and all the 
SNs of cluster 3 as shown in Table 3. This calculation 
shows that the subroute PP2 should start with SN 1 

which has the smallest distance  116.79 m with SN 
5 . When the ACO algorithm is given 

3 1,2,19,18,9e S and SN 1 as start SN as input, 
it outputs the subroute 

 3P 1,19,2,18,9 ,  (5) 

whose length, using the lookup table T, is 234.16 m.  
Referring to Figure 3, using step 12 in algorithm 1, the 
initial route PP is given by concatenating the three 
subroutes (3)-(5) getting 

 1 2 3PP PP ,,PP ,,PP ..   

 
 11,6,4,14,20,3,8,15,16,12,17,7,
10,13,5,1,19,2,18,9 ,  (6) 

whose length, by summing the lengths of the three 
subroutes and connection line lengths, is 

1406.07 1.4 km.  

Table 2 
 Distance between the SN 16 to other SNs in cluster 2 

ID  Distance(m) 
12  262.51 
17  277.09 
7  331.62 
10  365.71 
13  372.66 
5  299.0 

Table 3 
 Distance between the SN 5 to other SNs in cluster 3 

ID  Distance(m) 
1  116.79 
19  154.24 
2  180.41 
18  174.63 
9  235.59 

3.4.2 Generating the (Hovering) 
Intermediate Route QQ  

In this example, we set the UAV height  80h m and 
the UAV to the edge SN distance 88 m.d   Using 
Figure 2, the UAV radius UR is calculated to 36.66 m. 
Applying steps 1 through 5 in Algorithm 2, 1 LL ::   ,,
QQ ::   ,,  and : .C Then follow steps 7 and 8, the 
set C  is updated to : 11C with centroid 

1 73.4,392.18 .c  Using step 11, the distance sd  

from the SN 11 to the c is calculated to 0 m. Since sd  

satisfies the condition in steps 16 in Algorithm 2, then

1LL  is updated to 1 11   LL :: ..  

Carrying out steps 6 to 39 yields, 1 11 6   LL :: ,, .. and

: 11,6,4C with centroid  1 107.3,380.7 .c 

(5)

whose length, using the lookup table T, is 234.16 m.   
Referring to Figure 3, using step 12 in algorithm 1, the 
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initial route P  is given by concatenating the three 
subroutes (3)-(5) getting

 

 

11,6,8,14,15,16,4,3,20 , 5,12,7,13,17,10 ,
1,2,19,18,9 as shown in Figure 3. The centroids of 

these three clusters when calculated are found to be  
1 178.88,317.96 ,c  2 305,70.75c  and 

3 67.78,138.03c  , respectively. 

Table 1 
The lookup table which contains the SNs information 
ID  Position  ID  Position 
1  (111.27, 74.59)  11  (73.4, 392.18) 
2  (47.12, 102.24)  12  (375.89, 138.02) 
3  (214.58, 299.89)  13  (264.49, 11.18) 
4  (131.9, 304.77)  14  (107.34, 297.04) 
5  (227.09, 89.6)  15  (271.19, 255.15) 
6  (141.13, 369.26)  16  (282.61, 383.4) 
7  (346.31, 57.96)  17  (327.82, 110.02) 
8  (208.85, 261.35)  18  (68.04, 161.7) 
9  (35.49, 226.68)  19  (76.96, 124.96) 
10  (284.4, 17.69)  20  (178.94, 298.58) 

As per the for loop in Algorithm 1, ACO will start 
working in the cluster containing this start SN, no. 11, 
i.e. the cluster with centroid  1c 178.88,317.96 .  
Invoking the ACO algorithm for the SNs of cluster 1, 
with SN 11 as a start SN, step 6 in the Algorithm 1 
yields the sub-route 

  1P 11,6,4,14,20,3,8,15,16 ,      3  

whose length, using the lookup table T, is 500.05 m. 
Calculate the distances from SN 16 to centroid 2c and

3c which gives, 313.45 m and 326.13,  respectively. 
The centroid 2c of cluster 2 is the closest centroid to 
SN 16 . To traverse cluster 2, we find in it the SN 
closest to the end SN of 1PP , namely 16 , by calculating 
the distances between SN 16  and all the SNs of 
cluster 2. This calculation is shown in Table 2, from 
which we find that the subroute 2PP  of cluster 2 should 
start with SN 12 which has the smallest distance
262.51 m with SN 16 . When the ACO algorithm is 
given 2 12,17,7,10,13,5e S and SN 12  as start 
SN as input, it outputs the subroute  

 2P 12,17,7,10,13,5 ,      4   

whose length, using the lookup table T, is 292.56 m.  

In a similar manner, to traverse cluster 3, we find in it 
the SN closest to the end SN of PP2 , namely 5, by 
calculating the distances between SN 5 and all the 
SNs of cluster 3 as shown in Table 3. This calculation 
shows that the subroute PP2 should start with SN 1 

which has the smallest distance  116.79 m with SN 
5 . When the ACO algorithm is given 

3 1,2,19,18,9e S and SN 1 as start SN as input, 
it outputs the subroute 

 3P 1,19,2,18,9 ,  (5) 

whose length, using the lookup table T, is 234.16 m.  
Referring to Figure 3, using step 12 in algorithm 1, the 
initial route PP is given by concatenating the three 
subroutes (3)-(5) getting 

 1 2 3PP PP ,,PP ,,PP ..    
 11,6,4,14,20,3,8,15,16,12,17,7,
10,13,5,1,19,2,18,9 ,  (6) 

1406.07 1.4 km.  

Table 2 
 Distance between the SN 16 to other SNs in cluster 2 

ID  Distance(m) 
12  262.51 
17  277.09 
7  331.62 
10  365.71 
13  372.66 
5  299.0 

Table 3 
 Distance between the SN 5 to other SNs in cluster 3 

ID  Distance(m) 
1  116.79 
19  154.24 
2  180.41 
18  174.63 
9  235.59 

3.4.2 Generating the (Hovering) 
Intermediate Route QQ  

In this example, we set the UAV height  80h m and 
the UAV to the edge SN distance 88 m.d   Using 
Figure 2, the UAV radius UR is calculated to 36.66 m. 
Applying steps 1 through 5 in Algorithm 2, 1 LL ::   ,,
QQ ::   ,,  and : .C Then follow steps 7 and 8, the 
set C  is updated to : 11C with centroid 

1 73.4,392.18 .c  Using step 11, the distance sd  

from the SN 11 to the c is calculated to 0 m. Since sd  

satisfies the condition in steps 16 in Algorithm 2, then

1LL  is updated to 1 11   LL :: ..  

Carrying out steps 6 to 39 yields, 1 11 6   LL :: ,, .. and

: 11,6,4C with centroid  1 107.3,380.7 .c 

(6)

whose length, by summing the lengths of the three sub-
routes and connection line lengths, is 1406.07 ≈1.4 km.

satisfies the condition in steps 16 in Algorithm 2, then
1L   is updated to 1 11 =  L : .

 
Carrying out steps 6 to 39 yields, 1 11 6 =  L : , .

 
and

: {11,6,4}=C  with centroid ( )1 107.3,380.7 .c =
 
Car-

rying out steps 6 to 39 again shows that SN 4 along 
the initial route does not satisfy the condition at step 
16. As a result, the collection list 1L

 
is closed with

( )107 3 380 7 =  Q : . , . .
 
After executing steps from 6 to 

39 in Algorithm 2 N   times, the intermediate route 
is completely generated by adding all the resulting 
centroids to Q  , getting the elements of Q  as shown 
in Table 4.Table 2

Distance between the SN 16 to other SNs in cluster 2

ID Distance(m)

12 262.51

17 277.09

7 331.62

10 365.71

13 372.66

5 299.0

Table 3
Distance between the SN 5 to other SNs in cluster 3

ID Distance(m)

1 116.79

19 154.24

2 180.41

18 174.63

9 235.59

3.4.2. Generating the (Hovering) Intermediate 
Route Q 
In this example, we set the UAV height = 80h  m 
and the UAV to the edge SN distance 88 m.d =   Us-
ing Figure 2, the UAV radius UR  is calculated to 
36.66 m. Applying steps 1 through 5 in Algorithm 2, 

1 =L : [ ],  Q : =[ ],   and : .ϕ=C  Then follow steps 7 
and 8, the set C   is updated to : {11}=C  with centroid 

1 (73.4,392.18).c =  Using step 11, the distance sd   from the SN 11 to the c  is calculated to 0 m. Since sd   

Figure 4, the composition of the set Q  is visually de-
picted, wherein each element of Q  corresponds to the 
centroid of a distinct set of SNs enclosed within in-
dividual circles. These centroids, originating from 1q , 
collectively delineate the starting points of the UAV 
HLs. The arrangement of these centroids gives rise to 
the intermediate route Q.  In essence, Q  encapsulates 
the representation of UAV HLs initiated from 1q  and 
encompasses the spatial distribution of SNs within 
each circle.
The route length of the route Q  can be easily calculat-
ed using Table 4 as 1155.95»1.2 km.

Table 4
The generated groups and their centroids

Hovering location Group

=1 (107.3,380.7)q (11, 6)

=2 (119.6,300.9)q (4, 14)

=3 (200.8,286.6)q (20, 3, 8)

=4 (271.2,255.2)q (15)

=5 (282.6,383.4)q (16)
=6 (351.9,124.0)q (12, 17)

=7 (346.3,58.0)q (7)

=8 (274.4,14.4)q (10, 13)

=9 (227.1,89.6)q (5)

=10 (94.1,99.8)q (1, 19)

=11 (57.6,132.0)q (2, 18)

=12 (35.5,226.7)q (9)
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Figure 4
The intermediate route Q  consists of 12 hovering locations 
of 12 groups

  

Carrying out steps 6 to 39 again shows that SN 4 along 
the initial route does not satisfy the condition at step 
16. As a result, the collection list 1LL is closed with

 107 3 380 7   QQ :: .. ,, .. .. After executing steps from 6 to 
39 in Algorithm 2 N  times, the intermediate route is 
completely generated by adding all the resulting 
centroids to QQ , getting the elements of QQ as shown in 
Table 4. 
Figure 4, the composition of the set QQ is visually 
depicted, wherein each element of QQ corresponds to 
the centroid of a distinct set of SNs enclosed within 
individual circles. These centroids, originating from

1q , collectively delineate the starting points of the 
UAV HLs. The arrangement of these centroids gives 
rise to the intermediate route QQ.. In essence, QQ
encapsulates the representation of UAV HLs initiated 
from 1q and encompasses the spatial distribution of 
SNs within each circle. 
Figure 4 
The intermediate route QQ consists of 12 hovering locations 
of 12 groups. 

 
The route length of the route QQ can be easily 
calculated using Table 4 as1155.95»1.2 km.  

Table 4 
The generated groups and their centroids. 

Hovering location Group 
1 107.3,380.7q  (11, 6) 

2 119.6,300.9q  (4, 14) 

3 200.8,286.6q  (20, 3, 8) 

4 271.2,255.2q  (15) 

5 282.6,383.4q  (16) 

6 351.9,124.0q  (12, 17) 

7 346.3,58.0q  (7) 

8 274.4,14.4q  (10, 13) 

9 227.1,89.6q  (5) 

10 94.1,99.8q  (1, 19) 

11 57.6,132.0q  (2, 18) 

12 35.5,226.7q  (9) 

3.4.3 Generating the Final Route RR  
For further UAV trajectory improvement, Algorithm 
3 is utilised to generate the final route RR based on the 
intermediate route QQ formed in Figure 4. 

This can be conducted using steps 1-3 in the 
Algorithm 3, where, the ACO algorithm is applied to 
obtain a new permutation of the HLs within the route 
QQ to get the final route   1 2 3 12 1R , , ,..., ,r r r r r as 
shown in Figure 5. 

Figure 5 
The final UAV route R for gathering data from 20 SNs by 
hovering 12 locations. 

 

Based on this figure and Table 5, the route length of 
the final route RR is calculated using Table 5 as 
1069 1.1 km.  

Table 5 
The final hovering locations and their associated groups. 

Hovering location Group 

1 107.3,380.7r   (11, 6) 

2 119.6,300.9r   (4, 14) 

3 35.5,226.7r   (9) 

4 57.6,132.0r   (2, 18) 

5 94.1,99.8r   (1, 19) 

6 227.1,89.6r   (5) 

7 274.4,14.4r   (10, 13) 

8 346.3,58.0r   (7) 

9 351.9,124.0r   (12, 17) 

3.4.3. Generating the Final Route R  
For further UAV trajectory improvement, Algorithm 
3 is utilised to generate the final route R  based on the 
intermediate route Q  formed in Figure 4.
This can be conducted using steps 1-3 in the Algo-
rithm 3, where, the ACO algorithm is applied to obtain 
a new permutation of the HLs within the route Q  to 
get the final route ( )= 1 2 3 12 1R , , ,..., ,r r r r r

 
as shown in 

Figure 5.
Based on this figure and Table 5, the route length 
of the final route R is calculated using Table 5 as 
1069 1.1 km.≈

4. Experimental Work
To validate the proposed solution, it has been imple-
mented by the authors in Python 3.9 and the code was 
used to perform several simulation experiments. A 
ready-made simulation package was avoided in or-
der to ensure full control over every operational de-
tail. The experiments were conducted on a PC with 
an Intel i7 processor @2.4 GHz and having 16 GB of 
main memory. Table 6 summarizes the operation-

Figure 5
The final UAV route R for gathering data from 20 SNs by 
hovering 12 locations

  

Carrying out steps 6 to 39 again shows that SN 4 along 
the initial route does not satisfy the condition at step 
16. As a result, the collection list 1LL is closed with

 107 3 380 7   QQ :: .. ,, .. .. After executing steps from 6 to 
39 in Algorithm 2 N  times, the intermediate route is 
completely generated by adding all the resulting 
centroids to QQ , getting the elements of QQ as shown in 
Table 4. 
Figure 4, the composition of the set QQ is visually 
depicted, wherein each element of QQ corresponds to 
the centroid of a distinct set of SNs enclosed within 
individual circles. These centroids, originating from

1q , collectively delineate the starting points of the 
UAV HLs. The arrangement of these centroids gives 
rise to the intermediate route QQ.. In essence, QQ
encapsulates the representation of UAV HLs initiated 
from 1q and encompasses the spatial distribution of 
SNs within each circle. 
Figure 4 
The intermediate route QQ consists of 12 hovering locations 
of 12 groups. 

 
The route length of the route QQ can be easily 
calculated using Table 4 as1155.95»1.2 km.  

Table 4 
The generated groups and their centroids. 

Hovering location Group 
1 107.3,380.7q  (11, 6) 

2 119.6,300.9q  (4, 14) 

3 200.8,286.6q  (20, 3, 8) 

4 271.2,255.2q  (15) 

5 282.6,383.4q  (16) 

6 351.9,124.0q  (12, 17) 

7 346.3,58.0q  (7) 

8 274.4,14.4q  (10, 13) 

9 227.1,89.6q  (5) 

10 94.1,99.8q  (1, 19) 

11 57.6,132.0q  (2, 18) 

12 35.5,226.7q  (9) 

3.4.3 Generating the Final Route RR  
For further UAV trajectory improvement, Algorithm 
3 is utilised to generate the final route RR based on the 
intermediate route QQ formed in Figure 4. 

This can be conducted using steps 1-3 in the 
Algorithm 3, where, the ACO algorithm is applied to 
obtain a new permutation of the HLs within the route 
QQ to get the final route   1 2 3 12 1R , , ,..., ,r r r r r as 
shown in Figure 5. 

Figure 5 
The final UAV route R for gathering data from 20 SNs by 
hovering 12 locations. 

 

Based on this figure and Table 5, the route length of 
the final route RR is calculated using Table 5 as 
1069 1.1 km.  

Table 5 
The final hovering locations and their associated groups. 

Hovering location Group 

1 107.3,380.7r   (11, 6) 

2 119.6,300.9r   (4, 14) 

3 35.5,226.7r   (9) 

4 57.6,132.0r   (2, 18) 

5 94.1,99.8r   (1, 19) 

6 227.1,89.6r   (5) 

7 274.4,14.4r   (10, 13) 

8 346.3,58.0r   (7) 

9 351.9,124.0r   (12, 17) 

Table 5
The final hovering locations and their associated groups

Hovering location Group

1 (107.3,380.7)r = (11, 6)

2 (119.6,300.9)r = (4, 14)

3 (35.5,226.7)r = (9)

4 (57.6,132.0)r = (2, 18)

5 (94.1,99.8)r = (1, 19)

6 (227.1,89.6)r = (5)

7 (274.4,14.4)r = (10, 13)

8 (346.3,58.0)r = (7)

9 (351.9,124.0)r = (12, 17)

10 (271.2,255.2)r = (15)

11 (200.8,286.6)r = (20, 3, 8)

12 (182.6,383.4)r = (16)
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al simulation parameters. At first, we carried out an 
experiment to make sure that the three phases of the 
solution produce progressively shorter routes as in-
tended, monitoring at the same time the operational 
parameters under which the solution performs best. 
In this experiment, we calculated the lengths of the 
initial route P  , intermediate route Q  and final route 
R  under different operational scenarios, with the re-
sults shown in Figures 6-7.  The aim of the first exper-
iment is to investigate whether the three phases of the 
framework mange to produce a progressively shorter 
route, regardless of the area of the sensory field. Fig-
ure 7 indicates that the answer is: yes. The figure 
shows the lengths of the three routes, initial, inter-
mediate, and final, versus the area of the sensory field, 
when 500 SNs are randomly deployed in the field.

Table 6
Simulation parameters

Parameters value 

N 200, 500, 1000, 1500 SNs

m 1,2, . . . ,12 clusters

Monitoring Area (km2) 4, . . . ,16

SN transmission range 50 m

AUV’s height(m) 40, 60, 100 m

UAV footprint, Ru Calculated

Number of ants 20

Number of iterations 150, 250

The pheromone evaporation 
rate, ρ 0.05

The relative influence of the 
pheromone trail, α 1

Heuristic information, β 1

At the outset, we can see that the route length is a 
function of both the deployment area and the num-
ber of SNs, which means that we have two elements 
to investigate. First, we notice that the length of each 
of the three routes increases as the sensing area size 
increases. This is natural, for when the SNs are de-
ployed all over a larger area, the route that traverses 
them will necessarily be longer.

Figure 6
The UAV routes length (km) in small and large scale area 
with N= 500 SNs 

We note in passing, however, that the rate of route 
length increase starts to slow down after a certain 
threshold (≈12) which means that the solution is 
more effective in large areas than in small areas.
That is good since, after all, it is large areas that war-
rant the use of UAV anyway. The more important ob-
servation in the Figure is that, regardless of the area 
size, the route length produced by each of the three 
phases gets progressively shorter as we move to a 
higher phase, regardless of the area. That is why the 
uppermost curve represents the initial route and the 
lowermost represents the final route, with the mid-
dle curve being the intermediate route. This confirms 
that the three phases of the solution are essential to 
produce the shortest route for any given sensory area 
size. For any area size, it can be seen that for any area 
the initial route (uppermost) is the longest, followed 
by the intermediate route (middle), followed by the 
final route (lowermost).
The second experiment, whose results are shown in 
Figure 7, is similar to the first, except that the number 
of deployed SNs is smaller, namely 200 SNs. As such, 
the comments on the former figure still apply, but 
a couple of interesting observations here are worth 
mentioning. First, the length of all three routes in-
creases with the sensing area size more slowly than 
was the case of 500 SNs. This is logical as when the 
number of SNs is small, increasing the deployment 
area size will not proportionally increase the hops be-
tween those SNs. We also notice that the difference in 
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Figure 7
The UAV routes length (km) in small and large scale area 
with N= 200 SNs

length between the three routes is not as significant 
as it was in the previous case of 500 SNs. This means 
that the proposed solution is more useful when there 
is a large number of SNs deployed.
Having verified that the three phases are successful in 
shortening the UAV route as progressively as intend-
ed, we move next to analyzing the impact of clustering, 
done at Phase I, on the performance of the solution. 
To this end we conducted the third experiment to in-
spect the initial route length for different numbers of 
clusters. This experiment holds great significance be-
cause, as we explained in the above two experiments, 
a short initial route results necessarily in a short in-
termediate route and hence a short final route.
Figure 8, shows how the number m of clusters affects 
the length of the initial route P , for various numbers 
of SNs deployed over the same square area of 4×4 km2. 
The leftmost point on any of the three curves signifies 
the scenario of no clustering, which involves employ-
ing ACO on the complete set S of deployed SNs. As 
can be seen, this point corresponds to the longest ini-
tial route P.  As the set is partitioned into an increas-
ing number of clusters, the length of the route decreas-
es correspondingly. This observation lends support 
to the proposition that the ACO algorithm performs 
more effectively when applied to a reduced number of 
nodes, thereby justifying the structure of the proposed 
solution. One should not, however, be encouraged to 
increase the number of clusters dramatically, as the 
length would not necessarily decrease proportionally, 
as can be seen from curves. On the other hand, when 

examining the curves vertically and analyzing their re-
sponse to changes in the number of nodes, it becomes 
apparent that a smaller number of sensory nodes with-
in the sensory field results in a shorter initial route 
length. After all, the route connects the SNs, so when 
their number increases the length of the route increas-
es as well. However, the increase is not proportional 
as we can see from the uppermost (N=1500 SNs) and 
lowermost (N = 500 SNs) curves. When the number of 
SNs is tripled, the length of the route almost doubled 
only, regardless of the number of clusters. This is un-
derstandable as the deployment area remains the same 
in both cases. We also have several more observations.
First, we will notice that, regardless of the number of 
deployed SNs, as the number of clusters increases, 
the length of the initial route decreases. For example, 
if we stop at the point where the number of clusters is 
6, i.e. m = 6, we will find that the initial route is longest 
when there are N = 1500 SNs and shortest when there 
are N = 500 SNs. This is logical as the initial route 
traverses all existing SNs, so the more SNs the longer 
the traversal path.
Second, for the same number N of SNs, the initial 
route gets shorter as the number of clusters gets larg-
er. This again makes sense, as increasing the number 
of clusters, decreases the number of SNs within each 
cluster which in turn helps ACO to reach an optimal 
sub_route within the cluster. This effect seems more 
evident in the case when the number of SNs is large 

Figure 8
The cost of the initial route, P, in km and area 4×4 km2 with 
different values of cluster number m and sensor number N
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than in the case when the number is small. For exam-
ple, the slope of the uppermost curve is largest and 
that of the lowermost is smallest. The reason is that 
if the number of deployed SNs is small, then cluster-
ing will not bring down the number in each cluster too 
much. Conversely, more clustering of a large number 
of SNs will dramatically decrease the number within 
each cluster. That is clustering is more effective when 
the overall number of deployed SNs is large.
The fourth experiment, whose results are shown in 
Figure 9, is similar to the third, except that we have 
now a sensing area square of side 2 km. So, we expect 
similar observations, with some differences as follows. 
First, the length of the initial route here is smaller, for 
the same number of SNs. This is logical, since if we de-
ployed the same number of SNs in two areas, one small 
and one large, the distances between the SNs would be 
longer in the latter case. Thus, regardless of any short-
est path traversing obtained, the former would certain-
ly be larger than the latter. Second, the rate of decrease 
of route length is also now smaller, regardless of the 
number N of SNs, as can be seen from the lower slopes 
of the three curves. This means it pays more to increase 
the number of clusters of the solution in a large senso-
ry area than in a small sensory area, regardless of the 
number of SNs. This can be interpreted by observing 
that, for the same number of SNs, the distances be-
tween the SNs in a large area would be longer than in 
a small area. Thus, if a percentage decrease is exerted 
on both, it would be more noticeable in the large area. 
However, once again, one should not be encouraged to 

increase the number of clusters dramatically, as the 
route length would not necessarily decrease propor-
tionally, as can be seen from the right half of the curves. 
Third, if we look at the curves vertically and focus on 
the behavior of the route length as the number of SNs 
changes, we will notice that the less SNs in the sensory 
field the shorter the length of the initial route. After all, 
the route connects the SNs, so when their number in-
creases the length of the route increases as well.
By comparing Figures 8 and 9, we can see that the de-
crease in route length due to clustering is more pro-
nounced when the sensing area gets larger. We note 
also that the decrease in length due to the number of 
SNs, regardless of the number of clusters, is more pro-
nounced when the number of SNs gets larger.
Finally, to evaluate the performance of the proposed 
solution objectively, we ran a comparison experiment 
to test the proposed solution against four similar 
solutions recently published, namely in [56], [41], [49] 
and [29].
The experiment used a square sensory field of side 
500 m, where 100 SNs were randomly deployed. The 
altitude of flight is 30 m and the SN transmission 
range is 50 m. The final route of the proposed ap-
proach is determined by considering these parame-
ters. Four different scenarios are analyzed and their 
outcomes are averaged to obtain a comparative value. 
In the first scenario, the route is computed commenc-
ing from the leftmost SN within the designated region. 
Conversely, in the second scenario, the route is calcu-
lated from the rightmost SN in the same region. The 
third scenario involves computing the route starting 
from the highest SN within the said area. Finally, the 
fourth scenario computes the route starting from the 
lowest SN within the designated area. Table 7 shows 
the results and average of the four experiments.

Figure 9
The cost of the route, P within area 2×2 km2, different 
values of cluster number m and sensor number N

Table 7
The results of final route calculation using four different 
scenarios

Start SN Final route

left(km) 2.911975

right(km) 2.741445

above(km) 2.825351

below(km) 2.7728

Avg(km) 2.812892
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The results of the experiment are shown in Figure 10, 
where it can be seen vividly that the proposed solu-
tion produces a DC route 19.28% shorter than the 
shortest route produced by the four competitive solu-
tions. That is a great savings that is reflected not only 
on the energy consumption of the UAV, but also on the 
latency of the data.

 

 

look at the curves vertically and focus on the behavior 
of the route length as the number of SNs changes, we 
will notice that the less SNs in the sensory field the 
shorter the length of the initial route. After all, the 
route connects the SNs, so when their number 
increases the length of the route increases as well. 
Figure 9 

The cost of the route, PP within area 2×2 km2, different 
values of cluster number m and sensor number N. 

 
By comparing Figures 8 and 9, we can see that the 
decrease in route length due to clustering is more 
pronounced when the sensing area gets larger. We 
note also that the decrease in length due to the number 
of SNs, regardless of the number of clusters, is more 
pronounced when the number of SNs gets larger. 
Finally, to evaluate the performance of the proposed 
solution objectively, we ran a comparison experiment 
to test the proposed solution against four similar 
solutions recently published, namely in [56], [41], 
[49] and [29]. 
The experiment used a square sensory field of side 
500 m, where 100 SNs were randomly deployed. The 
altitude of flight is 30 m and the SN transmission 
range is 50 m. The final route of the proposed 
approach is determined by considering these 
parameters. Four different scenarios are analyzed and 
their outcomes are averaged to obtain a comparative 
value. In the first scenario, the route is computed 
commencing from the leftmost SN within the 
designated region. Conversely, in the second scenario, 
the route is calculated from the rightmost SN in the 
same region. The third scenario involves computing 
the route starting from the highest SN within the said 
area. Finally, the fourth scenario computes the route 
starting from the lowest SN within the designated 
area. Table 7 shows the results and average of the four 
experiments. 
Table 7 
The results of final route calculation using four different 
scenarios 

Start SN Final route 

left(km) 2.911975 

right(km) 2.741445 

above(km) 2.825351 

below(km) 2.7728 

Avg(km) 2.812892 

The results of the experiment are shown in Figure 10, 
where it can be seen vividly that the proposed solution 
produces a DC route 19.28% shorter than the shortest 
route produced by the four competitive solutions. That 
is a great savings that is reflected not only on the 
energy consumption of the UAV, but also on the 
latency of the data. 
Figure 10 
The UAV route length within area 500×500 m2, N = 100 and 
the SN transmission range 50 m. 

 
The energy consumption evaluation of the proposed 
solution is conducted using the simplest energy radio 
communication model in [31] on the part of the SN. 
In this model, SN transmitters consume energy for 
radio electronics and power amplifiers, while SN 
receivers dissipate energy on radio electronics. The 
energy consumption for transmitting b bits over a 
distance jd from SN j to UAV is denoted as 

 ,Tx jE b d and expressed as: 
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where elecE represents the energy dissipated per bit by 
the transmitter or receiver circuit. The coefficients of 
free space and multipath fading channel are denoted 
as fs and mp , respectively. The transmission 
distance threshold thrd is given as 





fs

thr
mp

d . (8) 

The expended energy RxE b to receive a b-bit packet 

(8)

The expended energy ( )RxE b  to receive a b-bit packet 
is given as

  

is given as 

  .Rx elecE b b E  (9) 

Using Equations (7)-(9), the total energy consumption 
of the proposed solution is compared to five 
alternative methods, namely, LEACH-B [47], BPK-
means [46], Park’s approach [32], mk-means and NG-
WSNs [22]. To ensure a fair comparison, we 
conducted an experiment using identical 
environmental parameter values as presented in [22]. 
In this experiment, a total of 100 SNs are deployed in 
a field with an area of 100×100 m2, the data packet 
size is 3200 bits, 50elecE   nJ/bit, 10fs   
pJ/bit/m2, 0.0013mp  pJ/bit/m4 and each SN is 
initially provided with an energy value of 1 joule. The 
UAV operates at an altitude of 25 m, while the 
transmission range of the SNs is set to 30 m. 
Figure 11 
Energy consumption comparison: Proposed solution vs. 
alternative methods 

 
Figure 11 compares the total energy consumption 
across rounds. Initially, when the rounds are below 
400, all methods exhibit similar energy usage. 
However, beyond 400 rounds, the alternative methods 
consume more power than the proposed solution. By 
the 3000-round mark, more than 99% of total energy 
in the alternative methods is depleted, while the 
proposed solution retains 44% energy in most SNs, 
ensuring an extended network lifetime. This 
highlights the proposed solution’s ability to keep 
more SNs operational for a longer duration compared 
to the alternative methods. 
 

5. Conclusions  
In this article we have presented a comprehensive 
solution to collect data from a large number of SNs 
deployed over a wide geographical area using a UAV. 
The solution is composed of three phases, each intended 
to output a route for the UAV shorter than that outputted 
by the previous phase. We use K-means in Phase I to 
partition the set of SNs into clusters. This has proved, 
from the experimental work carried out, fruitful in two 
respects. First, it helps the optimization algorithm, 
ACO, to reach an optimal solution, i.e. a shortest path 
traversing the SNs of the cluster. Second, it guarantees 
reaching this solution quickly. We develop an ingenious 
method to connect the shortest paths of the clusters 

together, obtaining an initial route that traverses all the 
SNs. In Phase II, we group the SNs along the initial 
route, with each group just fitting within the footprint of 
the UAV. The reason behind this is allow the UAV to 
collect the data of the entire group in one stop, hovering, 
above the centroid of the group. The collection of all the 
centroids forms the intermediate route. In Phase III, we 
apply again the optimization algorithm, ACO, to 
rearrange the centroids of the group to hopefully form a 
route that is shorter than the intermediate route. The 
rationale for this iterative application of ACO is that the 
distribution of the generated centroids has changed 
within the monitoring area. By reapplying ACO, we aim 
to construct a final route that is optimized for the 
updated distribution, ultimately yielding a route shorter 
than the intermediate one. The experimental work 
demonstrates that the solution works perfectly as 
intended. When its output, the final route, is compared 
with the output of four state of the art competitive 
solutions, it came out about 19.28% shorter than the 
shortest route of the four solutions. Finally, the proposed 
solution outperforms alternative competitive methods in 
terms of energy consumption and network lifetime. 
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NG-WSNs [22]. To ensure a fair comparison, we 
conducted an experiment using identical environ-
mental parameter values as presented in [22]. In 
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field with an area of 100×100 m2, the data packet size 
is 3200 bits, 50elecE =   nJ/bit, 10fsΦ =   pJ/bit/m2, 
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pJ/bit/m4 and each SN is initially pro-

vided with an energy value of 1 joule. The UAV op-
erates at an altitude of 25 m, while the transmission 
range of the SNs is set to 30 m.

Figure 10
The UAV route length within area 500×500 m2, N = 100 and 
the SN transmission range 50 m

The energy consumption evaluation of the proposed 
solution is conducted using the simplest energy radio 
communication model in [31] on the part of the SN. In 
this model, SN transmitters consume energy for radio 
electronics and power amplifiers, while SN receiv-
ers dissipate energy on radio electronics. The energy 
consumption for transmitting b  bits over a distance 
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where elecE  represents the energy dissipated per bit by 
the transmitter or receiver circuit. The coefficients of 
free space and multipath fading channel are denoted 
as fsΦ  and mpΦ , respectively. The transmission dis-
tance threshold thrd  is given as

Figure 11
Energy consumption comparison: Proposed solution vs. 
alternative methods

Figure 11 compares the total energy consumption 
across rounds. Initially, when the rounds are below 
400, all methods exhibit similar energy usage. How-
ever, beyond 400 rounds, the alternative methods 
consume more power than the proposed solution. By 
the 3000-round mark, more than 99% of total energy 
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in the alternative methods is depleted, while the pro-
posed solution retains 44% energy in most SNs, en-
suring an extended network lifetime. This highlights 
the proposed solution’s ability to keep more SNs op-
erational for a longer duration compared to the alter-
native methods.

5. Conclusions 
In this article we have presented a comprehensive 
solution to collect data from a large number of SNs 
deployed over a wide geographical area using a UAV. 
The solution is composed of three phases, each in-
tended to output a route for the UAV shorter than that 
outputted by the previous phase. We use K-means in 
Phase I to partition the set of SNs into clusters. This 
has proved, from the experimental work carried out, 
fruitful in two respects. First, it helps the optimiza-
tion algorithm, ACO, to reach an optimal solution, 
i.e. a shortest path traversing the SNs of the cluster. 
Second, it guarantees reaching this solution quick-
ly. We develop an ingenious method to connect the 
shortest paths of the clusters together, obtaining an 

initial route that traverses all the SNs. In Phase II, we 
group the SNs along the initial route, with each group 
just fitting within the footprint of the UAV. The rea-
son behind this is allow the UAV to collect the data of 
the entire group in one stop, hovering, above the cen-
troid of the group. The collection of all the centroids 
forms the intermediate route. In Phase III, we apply 
again the optimization algorithm, ACO, to rearrange 
the centroids of the group to hopefully form a route 
that is shorter than the intermediate route. The ratio-
nale for this iterative application of ACO is that the 
distribution of the generated centroids has changed 
within the monitoring area. By reapplying ACO, we 
aim to construct a final route that is optimized for 
the updated distribution, ultimately yielding a route 
shorter than the intermediate one. The experimental 
work demonstrates that the solution works perfectly 
as intended. When its output, the final route, is com-
pared with the output of four state of the art compet-
itive solutions, it came out about 19.28% shorter than 
the shortest route of the four solutions. Finally, the 
proposed solution outperforms alternative compet-
itive methods in terms of energy consumption and 
network lifetime.
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