
865Information Technology and Control 2024/3/53

An Efficient Framework for Sensor
Data Collection by UAV Based on
Clustering, Two-Fold Ant Colony
Optimization and Node Grouping

ITC 3/53
Information Technology
and Control
Vol. 53 / No. 3/ 2024
pp. 865-887
DOI 10.5755/j01.itc.53.3.34530

An Efficient Framework for Sensor Data Collection by UAV Based on Clustering,
Two-Fold Ant Colony Optimization and Node Grouping

Received 2023/07/01 Accepted after revision 2024/01/18

HOW TO CITE: Shayboub, M., Al-Mahdi, E. R. H., Nassar, H. (2024). An Efficient Framework
for Sensor Data Collection by UAV Based on Clustering, Two-Fold Ant Colony Optimization and
Node Grouping. Information Technology and Control, 53(3), 865-887. https://doi.org/10.5755/j01.
itc.53.3.34530

Corresponding author: drhassanwesf@ci.suez.edu.eg

Magdy Shayboub, Eman Reda Hassan Al-Mahdi and Hamed Nassar
Suez Canal University, Faculty of Computers and Informatics, Computer Science Department, Ismailia 41522,
Egypt; e-mails: {dr.magdy_ali, eman, drhassanwwesf, nassar}@ci.suez.edu.eg

Unmanned Aerial Vehicles (UAVs) are a promising solution for sensor data collection (DC) in large-scale area.
The challenge is to minimize the DC route, which will reduce UAV energy consumption and data latency. The
novelty of this paper lies in its innovative approach to optimizing sensor data collection by UAVs. It combines
Ant Colony Optimization (ACO) and K-means algorithms to establish an initial shortest route and introduces
a unique method for grouping sensor nodes (SNs) along the route based on the UAV’s footprint, reducing data
latency and energy consumption for both UAV and sensors. First, an initial shortest route that traverses all SNs
is established based on the ACO and the K-means algorithms. Second, we group the sensor nodes (SNs) along
the initial route using the footprint of the UAV, so that the latter can collect the data of the group in one stop,
instead of stopping at each SN. By sequencing the hovering locations, we obtain a (shorter) intermediate route.
Third, we shorten this route even further, by applying ACO to the set of hovering locations of the intermediate
route. The solution has been implemented fully in Python. The results show that the route length gets shorter
progressively with each phase. To evaluate the performance of the solution objectively, we have compared it
with four states of the art solutions. The results show vividly that the proposed solution produces a DC route
19.28% shorter than the shortest route produced by the four competitive solutions. Moreover, it demonstrates
a remarkable improvement by retaining 44% of energy in most SNs while over 99% energy depletion observed
in the five state-of-the-art competitive solutions.
KEYWORDS: UAV path planning, Sensor data collection, ACO, K-means, Wireless sensor network, Clustering,
Power consumption.

Information Technology and Control 2024/3/53866

1. Introduction
In recent years, the utilization of Unmanned Aerial
Vehicles (UAVs) has gained considerable recogni-
tion from both the research community and industry,
primarily because of their adaptability, efficacy, and
affordability in various domains like agriculture, en-
vironmental monitoring, disaster relief, search and
rescue, surveillance, and military operations [59]. In
addition to their versatility, UAVs can offer real-time
data collection (DC) capabilities, making them a valu-
able tool for various applications. Their popularity
and extensive usage can be attributed to their afford-
ability, mobility, dependable network access, and abil-
ity to establish line-of-sight links with ground Sensor
Nodes (SNs) [58]. The integration of UAVs and Wire-
less Sensor Networks (WSNs) in large-scale areas
has been extensively investigated by researchers. In
this setup, UAVs act as mobile sinks that collect data
directly from SNs or indirectly via Cluster Heads
(CHs). The UAVs then transmit the gathered data to
the Base Station (BS) for further analysis [11].
A sensor node periodically measures physical phe-
nomena and is often powered by a small battery that
can be challenging to replace or recharge when deplet-
ed. Therefore, preserving battery energy is of utmost
importance and represents a primary research interest
[24]. It stands to reason then that the energy consump-
tion of the SN be kept to a minimum during DC, a con-
cern fully addressed by the present article. On the other
hand, the data measured by the SN has to be collected
and transmitted to a «sink», where it can by analyzed,
processed and/or stored. Many DC solutions have been
proposed and can be generally divided into three basic
types: WSNs, mobile sink (MS), and UAV.
The first DC basic solution uses a WSN that links
the SNs wirelessly [19]. The SNs work together in a
store-and-forward manner to transmit the measured
data to the sink. Each SN acts as a data gatherer and a
router. If all SNs are within range of at least one other,
the network is fully connected, and data reaches the
sink. However, if not, a relay node must be set up for
complete connectivity. The advantage of a WSN solu-
tion lies in its ability to instantaneously transfer data
to the sink. This low latency is highly valuable for re-
al-time applications. However, if real time DC is not a
critical factor, utilizing a WSN may not be advisable
due to its many drawbacks [15].

First, load imbalance between SNs, where SNs close
to the sink forward more data and lose energy faster.
Clustering with a CH serving as a local sink can rem-
edy this weakness. Second, WSN can come to a halt if
a crucial SN becomes dead (e.g., due to battery deple-
tion). Third, collisions can occur between neighbor
SNs if transmissions are not coordinated, which can
be avoided through coordination or retransmission.
Fourth, WSN communications protocol requires
non-trivial computations and communications, ex-
hausting SN battery. Fifth, WSN requires full connec-
tivity, which may require adding redundant SNs or re-
lay nodes that may not be practical or feasible. Sixth,
SN communications can be hampered by obstacles on
the ground, requiring relay nodes for increased trans-
mission range. Finally, election of a CH is problematic
and energy-consuming, and a CH represents a single
point of failure for the WSN. CHs are likely to lose en-
ergy and fail quickly due to their intensive work.
The second DC solution involves a mobile station, like
a laptop, that collects data from nearby sensor nodes
[51]. This approach brings the sink to the data instead
of the other way around. The MS can be controlled
by a person, animal, or vehicle. This solution offloads
computations and communications from the SNs to
the MS, eliminating communication between SNs
[51]. The advantages of this solution are as follows.
1) Single hop data transmission ensures equal load
for all SNs. 2) No risk of a single point of failure since
there are no CHs. 3) Death of any SN affects only that
SN, not the entire DC system. 4) No fear of collisions
as the MS can inform each SN of when to transmit. 5)
No need for SNs to perform communication protocol
computations as transmission is single hop to UAV. 6)
No need to install relay nodes as SNs do not need to be
fully connected. 7) MS can improve data latency and
save energy by stopping at points where data from
multiple SNs can be collected at once.
The many-to-one data collection mode requires SNs
to be within transmission range. However, the MS
solution faces two problems: long routes resulting in
high energy consumption and latency. These issues
stem from non-linear movement between collection
locations and impractical ideal collection points. The
solution to this problem is a UAV, allowing the MS to
fly and solve the issue of excessive route length.

867Information Technology and Control 2024/3/53

In this article, the UAV solution allows for data to be
collected from SNs in a single hop from the air. The
UAV flies high enough to avoid obstacles but low
enough to be within transmission range. This has ad-
vantages over the MS solution, including line of sight
(LoS) communications and extended transmission
range, which can collect from multiple SNs at once
[17]. The UAV’s straight-line movement can drasti-
cally shorten the collection route, saving energy and
reducing latency. Additionally, there are no unreacha-
ble points in the air, making it possible to collect data
from any SN or DC point, particularly in the many-to-
one collection mode.
Apart from the three basic solutions described above,
there are also hybrid DC solutions combine WSNs
with an MS or UAV for better performance. For exam-
ple, in [3], an MS-assisted WSN is proposed, where
the SNs are grouped into clusters, with each cluster
having a CH, and the MS collects data solely from the
CHs. Similarly, [6] employs a similar setup and fo-
cuses on developing an optimal route for the MS. In-
itially, Particle Swarm Optimization (PSO) is utilized
to establish optimal cluster formation. Following
cluster formation, the optimal number of data collec-
tion points are chosen, and a data-gathering route is
planned for the MS.
The trouble with hybrid solutions is that they inher-
it the disadvantages of both of their components: the
WSN and the complement, be it MS or UAV. So, they
should in general be avoided unless necessary, as
when the CHs are not in the transmission range of one
another. To upload data from many SNs to the UAV
fixed at some hovering location (HL), some studies
consider the orthogonal frequency division multiple
access (OFDMA) technique as a communications
scheme, which allows the UAV to collect data from
multiple SNs within its communication range simul-
taneously. For example, in [14], using the OFDMA the
authors first formulate a DC maximization problem
via deploying an energy constrained UAV and show
the NP-hardness of the problem. Moreover, in [12], the
authors also consider OFDMA subject to the energy
capacity of the UAV. In the present article we propose
a simple TDM scheme to achieve the same result. The
scheme can be implemented in software, without re-
quiring any hardware installation or modification.
In the present work, we propose a UAV DC solution for
a wide sensory area (e.g. an agricultural farm), where

N ≫1 SNs are installed. The objective of the work is
two-fold: a minimum UAV flight time and minimum
SN computations and communications. The former
ensures very low latency for the data, and very low
energy consumption by the SNs, and is attained by a
minimum UAV DC route. The latter ensures very low
energy consumption by each SN and is attained by the
UAV’s collecting data directly from the SN in a sin-
gle-hop. To this end, the solution goes through three
phases, as shown in Figure 1.

Figure 1
The three phases of the proposed solution

a single-hop. To this end, the solution goes through
three phases, as shown in Figure 1.
Figure 1
 The three phases of the proposed solution.

In Phase I, we obtain an initial shortest route PP
traversing the N SNs. To this end, we first partition
the N SNs into clusters, based on their physical
positions, then use ant colony optimization (ACO) to
determine the shortest route within each cluster.
Clustering is employed to increase the accuracy and
accelerate the convergence of ACO in its effort to find
a shortest route traversing all N SNs. In Phase II, we
partition the N SNs along the initial route PP into
groups each of which can fit in the footprint of the
UAV while flying on top. For each group we identify
the centroid, which is used as a HL, where the UAV
will stop and collect the data of the group lying in the
footprint. The sequence made up of the HLs forms the
intermediate UAV route QQ . To improve the hovering
route even further, its nodes are input to a suitable
metaheurisitic such as ACO or Genetic Algorithm
(GA) to permute them in the hope that a final shorter
hovering route RR is obtained.
The proposed solution has been implemented and
tested for its validity and correctness. It has been
found to largely produce routes that get progressively
shorter, namely  PP QQ RR , where XX is the length,
e.g., in meters, of route. When the results of the
proposed solution, namely the length RR of the final
UAV route, are compared with those of state-of-the-
art solutions, the proposed solution comes out
superior. In addition, the proposed solution has many
additional advantages including:

1. All the computations (initial route,
intermediate route, final route, and collection
lists) are done on premise, rather than on the
UAV or SNs, saving the energy of the latter
and also ensuring low run time thanks to the
more powerful computational resources
usually available on site.

2. Only one transmission by the SN per data
packet upload is needed, saving SN energy.

3. Only one reception by the UAV per data
packet, saving UAV energy.

4. No risk of transmission collisions between
SNs, thanks to the proposed TDM upload
scheme.

5. No communications protocols or overhead is
needed, as SNs communicate directly to the
UAV, saving the energy of the SNs.

6. All SN data is guaranteed to be collected, and
no single SN will be left out in a DC trip.

7. DC is completely distributed, meaning no
single point of failure, e.g. cluster head,

anchor node.
8. Equal energy load all SNs, as each is

requested to transmit only its own data.
9. Line of sight communications are

guaranteed; hence the longest and most
reliable transmission range is guaranteed,
which in turn leads to a large

The rest of the article is organized as follows. A
review is presented in Section 2 of recent
published work related to the subject. In Section
3 the system model and proposed solution are
provided in full detail, including three algorithms
to generate the three mentioned routes, are
presented, and discussed. In Section 4, the
experimental work is presented, where numerical
results for some example configurations are
obtained, analysed and discussed. In the final
section, we give our concluding remarks.

2. Related Work

In a UAV DC solution, such as the one proposed in
the present work, the energy consumption of the SNs
is no longer an issue. Simply, each SN will transmit
its data directly to the UAV in one hop, obviating the
need for SN to SN communications and ancillary
computations. As such, as most of the
communications and computations chores are
offloaded to the UAV, which does not have the energy
scarcity problem the SNs have [48]. For one, the UAV
usually has a large battery, enough to supply all the
energy needed for DC. For another, this battery can be
easily replaced or recharged once the UAV returns
back to its base from a DC mission. Therefore, what
really still poses a challenge in a UAV DC solution is
minimizing the energy consumed by the UAV to keep
it flying, and the only way to mitigate this challenge
is to decrease the UAV flight route, which is the
objective of the present article.
Given its profound importance, planning a short route
for a UAV intended to collect data from SNs has
attracted much research work. In [16], a strategy for
an optimized UAV route is introduced for a disaster
field. The field is divided into multiple cells and the
authors formulate and solve two complementary
subproblems: one identifying a minimal number of
HLs at which the UAV hovers to collect data from all
the SNs in the cell, and one constructing the UAV
route that traverses those locations.
In [54], a UAV is dispatched to collect a given amount
of data from some SNs. The authors consider two
UAV routes, namely circular flight, and straight
flight. In each case, the authors first derive the energy
consumption expressions of the UAV and SN, and
then find the optimal SN transmit power and UAV
route that achieve a Pareto optimal trade-off. In [7],
the authors formulate a non-convex optimization
problem to maximize the minimum residual energy of
the SNs after data transmission. To solve this
problem, the authors first derive a feasible solution for
the shortest UAV route, where a Voronoi diagram is
modified to find a set of UAV HLs. Then with the

In Phase I, we obtain an initial shortest route P tra-
versing the N SNs. To this end, we first partition the
N SNs into clusters, based on their physical positions,
then use ant colony optimization (ACO) to determine
the shortest route within each cluster. Clustering is
employed to increase the accuracy and accelerate the
convergence of ACO in its effort to find a shortest route
traversing all N SNs. In Phase II, we partition the N
SNs along the initial route P into groups each of which
can fit in the footprint of the UAV while flying on top.
For each group we identify the centroid, which is used
as a HL, where the UAV will stop and collect the data
of the group lying in the footprint. The sequence made
up of the HLs forms the intermediate UAV route Q . To
improve the hovering route even further, its nodes are
input to a suitable metaheurisitic such as ACO or Ge-
netic Algorithm (GA) to permute them in the hope that
a final shorter hovering route R is obtained.
The proposed solution has been implemented and
tested for its validity and correctness. It has been
found to largely produce routes that get progressively
shorter, namely > >P Q R , where X is the length,
e.g., in meters, of route. When the results of the pro-
posed solution, namely the length R of the final UAV
route, are compared with those of state-of-the-art
solutions, the proposed solution comes out superior.
In addition, the proposed solution has many addition-
al advantages including:
1 All the computations (initial route, intermediate

route, final route, and collection lists) are done on

Information Technology and Control 2024/3/53868

premise, rather than on the UAV or SNs, saving
the energy of the latter and also ensuring low run
time thanks to the more powerful computational
resources usually available on site.

2 Only one transmission by the SN per data packet
upload is needed, saving SN energy.

3 Only one reception by the UAV per data packet,
saving UAV energy.

4 No risk of transmission collisions between SNs,
thanks to the proposed TDM upload scheme.

5 No communications protocols or overhead is need-
ed, as SNs communicate directly to the UAV, saving
the energy of the SNs.

6 All SN data is guaranteed to be collected, and no
single SN will be left out in a DC trip.

7 DC is completely distributed, meaning no single
point of failure, e.g. cluster head, anchor node.

8 Equal energy load all SNs, as each is requested to
transmit only its own data.

9 Line of sight communications are guaranteed;
hence the longest and most reliable transmission
range is guaranteed, which in turn leads to a large

The rest of the article is organized as follows. A review
is presented in Section 2 of recent published work re-
lated to the subject. In Section 3 the system model and
proposed solution are provided in full detail, includ-
ing three algorithms to generate the three mentioned
routes, are presented, and discussed. In Section 4, the
experimental work is presented, where numerical re-
sults for some example configurations are obtained,
analysed and discussed. In the final section, we give
our concluding remarks.

2. Related Work
In a UAV DC solution, such as the one proposed in the
present work, the energy consumption of the SNs is
no longer an issue. Simply, each SN will transmit its
data directly to the UAV in one hop, obviating the need
for SN to SN communications and ancillary compu-
tations. As such, as most of the communications and
computations chores are offloaded to the UAV, which
does not have the energy scarcity problem the SNs
have [48]. For one, the UAV usually has a large battery,
enough to supply all the energy needed for DC. For an-
other, this battery can be easily replaced or recharged

once the UAV returns back to its base from a DC mis-
sion. Therefore, what really still poses a challenge in a
UAV DC solution is minimizing the energy consumed
by the UAV to keep it flying, and the only way to miti-
gate this challenge is to decrease the UAV flight route,
which is the objective of the present article.
Given its profound importance, planning a short
route for a UAV intended to collect data from SNs has
attracted much research work. In [16], a strategy for
an optimized UAV route is introduced for a disaster
field. The field is divided into multiple cells and the
authors formulate and solve two complementary sub-
problems: one identifying a minimal number of HLs
at which the UAV hovers to collect data from all the
SNs in the cell, and one constructing the UAV route
that traverses those locations.
In [54], a UAV is dispatched to collect a given amount
of data from some SNs. The authors consider two
UAV routes, namely circular flight, and straight flight.
In each case, the authors first derive the energy con-
sumption expressions of the UAV and SN, and then
find the optimal SN transmit power and UAV route
that achieve a Pareto optimal trade-off. In [7], the au-
thors formulate a non-convex optimization problem
to maximize the minimum residual energy of the SNs
after data transmission. To solve this problem, the
authors first derive a feasible solution for the short-
est UAV route, where a Voronoi diagram is modified
to find a set of UAV HLs. Then with the initial short-
est UAV route, a UAV route is proposed by adjusting
each UAV HL sequentially based on SN energy status.
In [30], the authors accept partial DC, unlike the case
in the present article, where full DC is targeted. They
investigate two problems: (1) optimizing the route
of the UAV to minimize its travel time and DC time
while guaranteeing the collection of a certain amount
of data; and (2) finding the optimal route of UAV to
maximize the minimum ratio of the collected data to
the data stored in the SNs.
In [46], UAV route planning in the context of target
detection is investigated based on integral geometric
theory. The authors theoretically derived the target
detection probability for both static and mobile target
scenarios. In [8] deep deterministic gradient decent
is used to autonomously decide the best UAV route to
adopt in an obstacle-constrained environment, while
Q-learning is used to determine the order of nodes to
visit such that the DC time is minimized. In [13], HLs

869Information Technology and Control 2024/3/53

are identified such that the UAV is able to collect data
from as many SNs as possible from the same loca-
tions. The authors jointly consider the HL of the UAV
and the utility maximization of DC, by first formulat-
ing a DC utility maximization problem (UMP) and
show that it is an NP-hard problem. They devise an
algorithm for positioning (potential) UAV HLs, which
improves the DC utility.
In [28], the authors first divide the region into multi-
ple cells, then design the flight routes for single UAV
and multiple UAVs to cover all the cells. The per-node
capacity of SN is derived as a function of the number
of cells, the height of UAV, the number of SNs and
the energy capacity of UAV. In [33], an optimal UAV
DC route scheme based on matrix completion is pro-
posed. Simulated annealing is used to plan the route
of UAV based on the selected sampling points. In [50],
the authors consider the problem of data loss, as some
SNs may run out of storage space as a result of failing
to upload their data to the UAV for an extended period
of time. To mitigate this problem, a joint user sched-
uling and route planning DC strategy is formulated
as a non-convex optimization problem which is then
solved sequentially.
In [56], a farm made up of greenhouses of different
sizes, with each having a number of SNs, is consid-
ered. To collect data from all SNs, the UAV flies along
an optimal route generated by a genetic algorithm.
The UAV height is controlled so that all the SNs of
a greenhouse, regardless of size, can transmit their
data reliability. In [40], the authors jointly optimize
the route of a UAV and the radio resource allocation
to maximize the number of sampled SNs, under the
constraint that each SN having a data upload dead-
line. The formulate optimization problem is shown
to be mixed integer non-convex and generally NP-
hard, and solve it by a branch, reduce and bound algo-
rithm. Route planning is also investigated for hybrid
MS/WSN solutions, such as in [20], where a heuris-
tic tour- planning algorithm is developed to find the
shortest touring route for the MS to visits all SNs and
collect data single hop from each. In [27], Q-learning
is used to find the shortest route connecting the CHs.
The study in [10] takes into account the amount of
data in each SN. It constructs the shortest MS touring
route and also dynamically adjusts the transmission
rate for each SN based on the amount of its data. In
[18], an ACO-based method is employed to select the

best set of DC points and uses them to form the tour-
ing route for the MS. SNs sense the location of the MS
and the duration it remains in transmission range to
transfer all their data packets.
Route planning is also investigated for hybrid UAV/
WSN solutions, such as in [24], where the UAV flays
over each CH in an optimal route obtained by ACO.
In [30], a pre-configured UAV route is planned us-
ing ACO to fly through each CH to gather data. Data
compression takes place at the intermediate SNs to
decrease upload time, but it of course adds an extra
computation cost. In [41], the cross-edges approach
and Kruskal’s algorithm are used to generate the UAV
route. The SNs in each cluster communicate using
the ZigBee/IEEE 802.15.4 standards in the 2.4 GHz
frequency band, which increases the danger of trans-
mission collisions between them.
In [34], a DC strategy in UAV-aided WSNs for hilly re-
gions is introduced using a UAV as a data mule. The
UAV broadcasts beacon messages to the SNs to locate
their CH, but this of course adds communications
cost on the SNs. In [59], a deep reinforcement learn-
ing (DRL) method for solving the UAV route planning
problem is employed. However, in contrast to LoS, the
multi-route approach utilized in the ground network
consumes more power and does not guarantee the
longest and most reliable transmission range. In [11],
a study is presented to minimize the WSN’s energy
consumption while satisfying the UAV route length
requirement in a data collecting scheme for a hetero-
geneous WSN. In [53], the authors propose two work-
ing modes: single- and multiple-UAV scenarios for
small-scale and large-scale DC systems, respectively.
In [6], the authors model the UAV motion as a prob-
abilistic travelling salesman problem (PTSP), where
the number of SNs to be served each time is a ran-
dom variable. To optimize the UAV route, the authors
propose an exact Branch and Bound algorithm that
provides an optimal solution through each set of SNs
which occur with certain probabilities. In [57], route
planning for UAV is based on spiral decomposition,
focusing on the rapid route planning for large-scale
SNs evenly distributed in the circular area. In [52],
smooth route construction for multiple UAVs in
WSNs is proposed. The authors first develop a TSP
based route construction algorithm, then extend it
with route adjustments based on the required contact
time at each SN. In [49], the authors propose an algo-

Information Technology and Control 2024/3/53870

rithm based on grid division, to increase the efficiency
of UAV route planning, while guaranteeing the length
of the route to be short. In [35] a collaborative UAV-
WSN network for monitoring large areas using a het-
erogeneous multi-agent scheme.
A mixed-integer based optimization procedure is em-
ployed into the associated constrained optimization
problem. In [38], a hierarchical structure based on the
collaboration between UAVs and federated WSNs for
crop monitoring in precision agriculture is present-
ed. In [60], the authors consider that the SNs which
may or may not be within the transmission range of
each other. Accordingly, they find a route for the UAV
that includes HLs and determine the duration at each
hovering such that the cumulative volume of data col-
lected is maximized, subject to the energy capacity on
the UAV. Two DC maximization problems, for full and
partial collection, are formulated and solved by heu-
ristics.
The research presented in [25] offers a comprehen-
sive review of contemporary methodologies em-
ployed to improve the energy efficiency (EE) of UAVs.
These methodologies encompass diverse aspects
such as trajectory planning and deployment, resource
allocation and management, design of energy-con-
serving communication protocols, as well as energy
harvesting (EH) and transfer. Additionally, this paper
extensively investigates pertinent research literature,
thereby introducing several promising research direc-
tions for future exploration. In [42], authors propose
a cluster-based routing approach to enhance UAV
coverage with visual sensors. The model consists of
four modules: online path planning, clustering-based
topology construction, reinforcement learning-based
cluster management, and data routing. The dynamic
path planning algorithm determines UAV waypoints,
while topology construction includes initialization,
cluster head election, and formation. SARSA deter-
mines the optimal re-clustering policy for cluster
management. Inter-cluster forwarders and selective
route request flooding improve packet delivery and
reduce delay. In [2], authors optimize UAV-assisted
cluster-based WSNs in a 3D environment to enhance
lifespan. Varying UAV altitude significantly affects
lifetime and throughput. The proposed optimization
redirects UAVs to efficient altitudes, outperforming
centered placement at lower altitudes in terms of sys-
tem lifetime.

In [39], authors presented a data collection and
scheduling framework for smart farms. It involves
two phases: data collection and scheduling. IoT sen-
sors form clusters based on RSSI, allowing the UAV to
collect data optimally. The UAV transfers data to the
nearest base station. The base station selects an ef-
ficient fog node for workload processing. The frame-
work was implemented in OMNeT++ and compared
to existing approaches in terms of energy and net-
work delay. In [5], the authors proposed an energy-ef-
ficient method for data gathering in deadline-based
WSNs using multiple UAVs). The method optimizes
UAV position, trajectory, travel time, and the number
of UAVs required for efficient data collection. Simu-
lation results show that the method achieves optimal
performance in terms of energy consumption, travel
time, and UAV utilization. In [23], the authors pre-
sented a cutting-edge method for energy-efficient
clustering and cluster head selection in NG-WSNs.
Their approach seamlessly integrates various com-
ponents, including the midpoint technique, uniform
sensor distribution, multihop communication, and
the inclusion UAV within the network architecture.
By leveraging these elements, along with the imple-
mentation of a simulated annealing algorithm for
UAV trajectory optimization, the proposed approach
exhibits remarkable superiority in terms of both en-
ergy efficiency and network lifetime when compared
to existing techniques.
In [4], a single UAV was employed to optimize trajec-
tory, reduce energy consumption of ground sensors in
wireless networks, and maintain QoS and power con-
straints. The study incorporates two channel models
for 4G, 5G, and B5G systems and investigates three
trajectory optimization strategies. Namely exhaus-
tive search, particle swarm optimization, and fixed
placement, to locate the optimal trajectory of the UAV.
In [23], the authors introduced a framework to op-
timize UAV trajectory planning for energy-efficient
data collection from IoT sensor nodes. It employs
a data similarity-based node selection approach in
three phases: data similarity determination using
SDTW, redundant node removal with HGACA, and
UAV trajectory planning through an ILP model. Sim-
ulation results show improved efficiency in execution
time and power consumption while preserving data
integrity, marking a substantial advancement in UAV
data collection from IoT nodes.

871Information Technology and Control 2024/3/53

In [44], the authors presented a comprehensive Li-
DAR dataset collected from vineyards in northern
Spain using a DJI M300 UAV with a DJI Zenmuse
L1 LiDAR sensor. The dataset includes high-density
3D LiDAR point clouds with embedded RGB infor-
mation, serving various purposes such as optimizing
vineyard management, aiding agricultural robotics
development, and providing a “ground truth” data-
set for validating satellite-derived models like digital
elevation models (DEMs). It addresses the need for
public UAV LiDAR datasets in Precision Agriculture,
making it a valuable resource for the field.
In [36], the authors investigate surveillance as a se-
curity solution, focusing on heuristic neural analy-
sis through artificial intelligence and deep learning.
Automatic analysis of surveillance video content in-
volves object/people tracking, detecting suspicious
behavior, and sound analysis. In [58], a machine
learning-based image analysis system combines op-
tical flow and convolutional neural networks to rec-
ognize and track objects, especially detecting sudden
movements and unfamiliar factors. In [26], the au-
thors introduced an automated guided vehicle (AGV)
technology which uses a combination of artificial in-
telligence and deep learning techniques, allows for
the detection and identification of pallets for the pur-
pose of automatically guiding the guided vehicle.
In [21], one example of the use of automated guided
vehicles (AGV) in port environments is presented
to handle and transport goods in a collision-free and
safe path to avoid obstacles and arrive accurately at
the shipping station using the star algorithm.

3. System Model
The objective of the present work is to collect the data
of > 1N SNs deployed in a sensor field using a UAV, in
the shortest time possible to ensure both low latency
for the data and low energy consumption by the UAV.
Assuming a constant flying speed, the shortest time
corresponds to the shortest flight route, which will be
achieved in three phases, each having an algorithm, as
described below. DC time, being mainly radio propa-
gation time, will be ignored with respect to UAV flight
time. Another objective, that is equally important, is
to collect the data with a minimal amount of energy
on the part of the SN, by minimizing the computation-

al and communications chores of the SN. The N SNs
are arbitrarily given the IDs 1 2 3, , ,..., .Ns s s s
Let 1 2 3{ , , ,..., }Ns s s s=S be the set of all SNs. The lo-
cation of each SN is is determined by the ordered pair
(,),i ix y where ix and iy are the Cartesian coordi-
nates measured from some reference point, e.g. the
lower left corner of the sensor field. It is assumed that
there is a lookup table T having the position (),i ix y
of each SN ,is and that this table is accessible to any
component of the solution, e.g. the UAV and the al-
gorithms. The set S of SNs will be partitioned into
clusters to find an initial (SN) route, then will be
partitioned again, this time along the initial route, to
find an intermediate (hovering) route. The latter will
be optimized to produce the final (hovering) route.
By collecting data from many SNs in each UAV stop,
called many to one DC, there will be a fewer HLs,
hence a shorter UAV flight distance, realizing the ob-
jective of the solution.

3.1. Definitions
The definitions below are employed in the sequel.
 _ Hovering location: The point on the ground above

which the UAV will hover to collect data from the
SNs underneath.

 _ UAV footprint: The fixed size disk entered at the
HL of the UAV, within which any SN can commu-
nicate with the UAV as shown in Figure 2. While
the footprint size is fixed, the number of SNs it con-
tains may differ from one footprint to another.

 _ Data packet: A fixed size data record transmitted by
the SN to the UAV while above the hovering loca-
tion. Its header contains the SN ID.

 _ Time slot: The amount of time needed to transmit
a data packet.

 _ Collection window: The amount of time the UAV
hovers over a footprint. It is equal to the number
SNs in the footprint multiplied by the slot time.

 _ UAV packet: A packet transmitted by the UAV each
time it is above a HL to make its presence known
to the SNs in its footprint. It contains the IDs of
those SNs in the footprint and the order in which
they should to transmit their data so as to avoid col-
lisions. It serves also as synchronization signal so
that time slots in the collection window are prop-
erly recognized.

Information Technology and Control 2024/3/53872

SN transmission range :d The maximum distance a
wireless signal transmitted by the SN can reach when
communicating line of sight (LoS). This range should
be longer than in the case of non-LoS, e.g. in WSN or
MS DC solutions, where obstacles may exist.
In addition, the following variables are used in the ar-
ticle:

N Number of deployed SNs
m Number of clusters
Ni Number of SNs in cluster i

n
Number of groups (Number of hovering
locations)

Mi Number of SNs in group i

Clearly, the number of deployed SNs is

the UAV. Assuming a constant flying speed, the
shortest time corresponds to the shortest flight route,
which will be achieved in three phases, each having
an algorithm, as described below. DC time, being
mainly radio propagation time, will be ignored with
respect to UAV flight time. Another objective, that is
equally important, is to collect the data with a minimal
amount of energy on the part of the SN, by minimizing
the computational and communications chores of the
SN. The N SNs are arbitrarily given the IDs
1 2 3, , ,..., .Ns s s s

Let 1 2 3, , ,..., Ns s s sS be the set of all SNs. The
location of each SN is is determined by the ordered
pair , ,i ix y where ix and iy are the Cartesian
coordinates measured from some reference point, e.g.
the lower left corner of the sensor field. It is assumed
that there is a lookup table T having the position
 ,i ix y of each SN ,is and that this table is
accessible to any component of the solution, e.g. the
UAV and the algorithms. The set S of SNs will be
partitioned into clusters to find an initial (SN) route,
then will be partitioned again, this time along the
initial route, to find an intermediate (hovering) route.
The latter will be optimized to produce the final
(hovering) route. By collecting data from many SNs
in each UAV stop, called many to one DC, there will
be a fewer HLs, hence a shorter UAV flight distance,
realizing the objective of the solution.

3.1 Definitions
The definitions below are employed in the sequel.
 Hovering location: The point on the ground

above which the UAV will hover to collect data
from the SNs underneath.

 UAV footprint: The fixed size disk entered at the
HL of the UAV, within which any SN can
communicate with the UAV as shown in Figure
2. While the footprint size is fixed, the number
of SNs it contains may differ from one footprint
to another.

 Data packet: A fixed size data record transmitted
by the SN to the UAV while above the hovering
location. Its header contains the SN ID.

 Time slot: The amount of time needed to
transmit a data packet.

 Collection window: The amount of time the
UAV hovers over a footprint. It is equal to the
number SNs in the footprint multiplied by the
slot time.

 UAV packet: A packet transmitted by the UAV
each time it is above a HL to make its presence
known to the SNs in its footprint. It contains the
IDs of those SNs in the footprint and the order in
which they should to transmit their data so as to
avoid collisions. It serves also as
synchronization signal so that time slots in the
collection window are properly recognized.

 SN transmission range :d The maximum
distance a wireless signal transmitted by the SN
can reach when communicating line of sight
(LoS). This range should be longer than in the

case of non-LoS, e.g. in WSN or MS DC
solutions, where obstacles may exist.

In addition, the following variables are used in the
article:

N Number of deployed SNs

m Number of clusters

iN Number of SNs in cluster i

n Number of groups (Number of hovering
locations)

iM Number of SNs in group i

Clearly, the number of deployed SNs is

 

  
1 1

.
m n

i i
i i
N M N

Figure 2
UAV footprint encompasses all SNs (green dots) that can
transmit successfully to the UAV while hovering above the
centroid (footprint center).

3.2 Preliminaries
In what follows we explain a number of elements used
in the proposed solution

3.2.1 Radius UR of the UAV footprint

Referring to Figure 2, the radius UR of the UAV
footprint is a function of its height above the HL and
the transmission range of the SNs. Given the
transmission range d of the SN, the UAV height h ,
then the UAV footprint radius UR is given by

 2 2 .UR d h (1)

It is desirable to have as wide a footprint as possible
in order to enclose as large a number of SNs as
possible and collect data from them in one UAV stop.
This of course will decrease the number of HLs and

3.2. Preliminaries
In what follows we explain a number of elements used
in the proposed solution

Figure 2
UAV footprint encompasses all SNs (green dots) that can
transmit successfully to the UAV while hovering above the
centroid (footprint center)

the UAV. Assuming a constant flying speed, the
shortest time corresponds to the shortest flight route,
which will be achieved in three phases, each having
an algorithm, as described below. DC time, being
mainly radio propagation time, will be ignored with
respect to UAV flight time. Another objective, that is
equally important, is to collect the data with a minimal
amount of energy on the part of the SN, by minimizing
the computational and communications chores of the
SN. The N SNs are arbitrarily given the IDs
1 2 3, , ,..., .Ns s s s

Let 1 2 3, , ,..., Ns s s sS be the set of all SNs. The
location of each SN is is determined by the ordered
pair , ,i ix y where ix and iy are the Cartesian
coordinates measured from some reference point, e.g.
the lower left corner of the sensor field. It is assumed
that there is a lookup table T having the position
 ,i ix y of each SN ,is and that this table is
accessible to any component of the solution, e.g. the
UAV and the algorithms. The set S of SNs will be
partitioned into clusters to find an initial (SN) route,
then will be partitioned again, this time along the
initial route, to find an intermediate (hovering) route.
The latter will be optimized to produce the final
(hovering) route. By collecting data from many SNs
in each UAV stop, called many to one DC, there will
be a fewer HLs, hence a shorter UAV flight distance,
realizing the objective of the solution.

3.1 Definitions
The definitions below are employed in the sequel.
 Hovering location: The point on the ground

above which the UAV will hover to collect data
from the SNs underneath.

 UAV footprint: The fixed size disk entered at the
HL of the UAV, within which any SN can
communicate with the UAV as shown in Figure
2. While the footprint size is fixed, the number
of SNs it contains may differ from one footprint
to another.

 Data packet: A fixed size data record transmitted
by the SN to the UAV while above the hovering
location. Its header contains the SN ID.

 Time slot: The amount of time needed to
transmit a data packet.

 Collection window: The amount of time the
UAV hovers over a footprint. It is equal to the
number SNs in the footprint multiplied by the
slot time.

 UAV packet: A packet transmitted by the UAV
each time it is above a HL to make its presence
known to the SNs in its footprint. It contains the
IDs of those SNs in the footprint and the order in
which they should to transmit their data so as to
avoid collisions. It serves also as
synchronization signal so that time slots in the
collection window are properly recognized.

 SN transmission range :d The maximum
distance a wireless signal transmitted by the SN
can reach when communicating line of sight
(LoS). This range should be longer than in the

case of non-LoS, e.g. in WSN or MS DC
solutions, where obstacles may exist.

In addition, the following variables are used in the
article:

N Number of deployed SNs

m Number of clusters

iN Number of SNs in cluster i

n Number of groups (Number of hovering
locations)

iM Number of SNs in group i

Clearly, the number of deployed SNs is

 

  
1 1

.
m n

i i
i i
N M N

Figure 2
UAV footprint encompasses all SNs (green dots) that can
transmit successfully to the UAV while hovering above the
centroid (footprint center).

3.2 Preliminaries
In what follows we explain a number of elements used
in the proposed solution

3.2.1 Radius UR of the UAV footprint

Referring to Figure 2, the radius UR of the UAV
footprint is a function of its height above the HL and
the transmission range of the SNs. Given the
transmission range d of the SN, the UAV height h ,
then the UAV footprint radius UR is given by

 2 2 .UR d h (1)

It is desirable to have as wide a footprint as possible
in order to enclose as large a number of SNs as
possible and collect data from them in one UAV stop.
This of course will decrease the number of HLs and

3.2.1. Radius Ru of the UAV Footprint
Referring to Figure 2, the radius UR of the UAV foot-
print is a function of its height above the HL and the
transmission range of the SNs. Given the transmis-
sion range d of the SN, the UAV height h , then the
UAV footprint radius UR is given by

the UAV. Assuming a constant flying speed, the
shortest time corresponds to the shortest flight route,
which will be achieved in three phases, each having
an algorithm, as described below. DC time, being
mainly radio propagation time, will be ignored with
respect to UAV flight time. Another objective, that is
equally important, is to collect the data with a minimal
amount of energy on the part of the SN, by minimizing
the computational and communications chores of the
SN. The N SNs are arbitrarily given the IDs
1 2 3, , ,..., .Ns s s s

Let 1 2 3, , ,..., Ns s s sS be the set of all SNs. The
location of each SN is is determined by the ordered
pair , ,i ix y where ix and iy are the Cartesian
coordinates measured from some reference point, e.g.
the lower left corner of the sensor field. It is assumed
that there is a lookup table T having the position
 ,i ix y of each SN ,is and that this table is
accessible to any component of the solution, e.g. the
UAV and the algorithms. The set S of SNs will be
partitioned into clusters to find an initial (SN) route,
then will be partitioned again, this time along the
initial route, to find an intermediate (hovering) route.
The latter will be optimized to produce the final
(hovering) route. By collecting data from many SNs
in each UAV stop, called many to one DC, there will
be a fewer HLs, hence a shorter UAV flight distance,
realizing the objective of the solution.

3.1 Definitions
The definitions below are employed in the sequel.
 Hovering location: The point on the ground

above which the UAV will hover to collect data
from the SNs underneath.

 UAV footprint: The fixed size disk entered at the
HL of the UAV, within which any SN can
communicate with the UAV as shown in Figure
2. While the footprint size is fixed, the number
of SNs it contains may differ from one footprint
to another.

 Data packet: A fixed size data record transmitted
by the SN to the UAV while above the hovering
location. Its header contains the SN ID.

 Time slot: The amount of time needed to
transmit a data packet.

 Collection window: The amount of time the
UAV hovers over a footprint. It is equal to the
number SNs in the footprint multiplied by the
slot time.

 UAV packet: A packet transmitted by the UAV
each time it is above a HL to make its presence
known to the SNs in its footprint. It contains the
IDs of those SNs in the footprint and the order in
which they should to transmit their data so as to
avoid collisions. It serves also as
synchronization signal so that time slots in the
collection window are properly recognized.

 SN transmission range :d The maximum
distance a wireless signal transmitted by the SN
can reach when communicating line of sight
(LoS). This range should be longer than in the

case of non-LoS, e.g. in WSN or MS DC
solutions, where obstacles may exist.

In addition, the following variables are used in the
article:

N Number of deployed SNs

m Number of clusters

iN Number of SNs in cluster i

n Number of groups (Number of hovering
locations)

iM Number of SNs in group i

Clearly, the number of deployed SNs is

 

  
1 1

.
m n

i i
i i
N M N

Figure 2
UAV footprint encompasses all SNs (green dots) that can
transmit successfully to the UAV while hovering above the
centroid (footprint center).

3.2 Preliminaries
In what follows we explain a number of elements used
in the proposed solution

3.2.1 Radius UR of the UAV footprint

Referring to Figure 2, the radius UR of the UAV
footprint is a function of its height above the HL and
the transmission range of the SNs. Given the
transmission range d of the SN, the UAV height h ,
then the UAV footprint radius UR is given by

 2 2 .UR d h (1)

It is desirable to have as wide a footprint as possible
in order to enclose as large a number of SNs as
possible and collect data from them in one UAV stop.
This of course will decrease the number of HLs and

(1)

It is desirable to have as wide a footprint as possible
in order to enclose as large a number of SNs as possi-
ble and collect data from them in one UAV stop. This
of course will decrease the number of HLs and con-
sequently the UAV route and flying time. Since the
transmission range d is constant for all the SNs, per
assumption, the only way to widen the UAV footprint
can be brought about by decreasing its height. Howev-
er, to avoid ground obstacles and to ensure LoS com-
munications with the SNs, there is a minimum height
h that the UAV cannot fly below. Thus, we may define
h to be the lowest height the UAV can fly at to avoid
ground obstacles, which may hamper the flight or pre-
vent LoS communications between the UAV and SNs
on the edge of the footprint.

3.2.2. Shortest SN Traversal Route P and the ACO
Algorithm
The ACO algorithm is used in Phase I of the proposed
solution to find a shortest traversal route within each
cluster and is also used in Phase III to optimize the
UAV DC route. The decision to employ ACO is based
on a careful consideration of the specific characteris-
tics of our paper. In our paper, the total area of interest
is subdivided into smaller regions using the k-means
clustering technique. Within these smaller areas,
ACO has consistently demonstrated superior perfor-
mance in obtaining the shortest path when compared
to some other algorithms like Genetic Algorithms
(GA). To further substantiate our choice, we conduct-
ed experiments that provide empirical evidence sup-
porting the effectiveness of ACO in this paper.
Capable of solving combinatorial optimization prob-
lems, ACO takes inspiration from the behaviour of
real ant colonies [55]. When searching for food, ants
put a substance called pheromone on the ground
in an effort to make the shortest route to the food
source known for other ants. Clearly, the more ants
that use a particular trail, the more pheromone will

873Information Technology and Control 2024/3/53

be on there, which in turn attracts more ants to use
that trail. However, pheromone is not a permanent
substance but can evaporate. Thus, if a trail has some
pheromone but is ignored by ants for a while, whatev-
er pheromone there will evaporate with time, turning
off any ant that wanted to use the trail. Then, ants that
search later for food trace the presence of pheromone
and follow the trait that has a higher concentration of
the substance. Once at the food source, the ants are
able to get food and return back to their colony us-
ing the same trail, dropping more pheromone which
makes the trail ever more popular as time goes by.
ACO algorithms act similarly, using a number of ar-
tificial ants—tiny computational agents, that work
cooperatively and communicate through artificial
pheromone trails. In the computer replica of ant be-
havior, the equivalent of time is iterations. In partic-
ular, and regarding our particular problem, a number
v of artificial ants are used to search for the shortest
path traversing a set of N nodes starting at a given
node. Every ant constructs a solution to the problem
by travelling on a constructed graph. In each iteration,
every ant makes a move to one and only one neighbor
node. During their tour, all ants leave an amount of
pheromone on the edges they have cross, so as to help
the ants that will use the edges next. When an ant is
at a given node ,i it selects the next node j based on
the amount of pheromoneτ ij and the heuristic desir-
ability ηij of the trail (,)i j connecting the two nodes.
Specifically, the probability for the ant to go from
node i to node j is a function node of the two quanti-
ties τ ij and ηij raised to the powers α and β which are
two parameters determining the relative influence
of the pheromone and the heuristic information, re-
spectively. At the end of each iteration, the amount
of pheromone on each trail is updated based on the
amount that has been dropped and the amount that
has evaporated during the iteration.

3.2.3. Clustering SNs and the K-means Algorithm
The K-means algorithm is used in Phase I of the
proposed solution to partition the set S of SNs into
non-overlapping clusters. Based on unsupervised
learning, it places in the same cluster all the points
with similar features or characteristics, using the
least squares concept as follows. First, it receives as
input the number k of required clusters. Then it se-
lects randomly k points representing an initial k cen-

troids without replacement. It keeps iterating until
there is no change to the centroids, i.e assignment of
points to clusters is not changing. Now, it computes
the sum of the squared distances between the points
and all centroids, and assigns each point to the closest
cluster (centroid). Finally, it computes the centroid
of a cluster by taking the average of all points that
belong to each cluster. The centroid of 1k points
() () ()1 1 2 2, , , ,..., ,k kx y x y x y

deployed in the Euclide-

an plane is also a point ()= ,c x y in the same plane,
with x and y given by

consequently the UAV route and flying time. Since
the transmission range d is constant for all the SNs,
per assumption, the only way to widen the UAV
footprint can be brought about by decreasing its
height. However, to avoid ground obstacles and to
ensure LoS communications with the SNs, there is a
minimum height h that the UAV cannot fly below.
Thus, we may define h to be the lowest height the
UAV can fly at to avoid ground obstacles, which may
hamper the flight or prevent LoS communications
between the UAV and SNs on the edge of the
footprint.

3.2.2 Shortest SN Traversal Route P and the
ACO Algorithm

The ACO algorithm is used in Phase I of the proposed
solution to find a shortest traversal route within each
cluster and is also used in Phase III to optimize the
UAV DC route. The decision to employ ACO is based
on a careful consideration of the specific
characteristics of our paper. In our paper, the total area
of interest is subdivided into smaller regions using the
k-means clustering technique. Within these smaller
areas, ACO has consistently demonstrated superior
performance in obtaining the shortest path when
compared to some other algorithms like Genetic
Algorithms (GA). To further substantiate our choice,
we conducted experiments that provide empirical
evidence supporting the effectiveness of ACO in this
paper.
 Capable of solving combinatorial optimization
problems, ACO takes inspiration from the behaviour
of real ant colonies [55]. When searching for food,
ants put a substance called pheromone on the ground
in an effort to make the shortest route to the food
source known for other ants. Clearly, the more ants
that use a particular trail, the more pheromone will be
on there, which in turn attracts more ants to use that
trail. However, pheromone is not a permanent
substance but can evaporate. Thus, if a trail has some
pheromone but is ignored by ants for a while,
whatever pheromone there will evaporate with time,
turning off any ant that wanted to use the trail. Then,
ants that search later for food trace the presence of
pheromone and follow the trait that has a higher
concentration of the substance. Once at the food
source, the ants are able to get food and return back to
their colony using the same trail, dropping more
pheromone which makes the trail ever more popular
as time goes by.
ACO algorithms act similarly, using a number of
artificial ants—tiny computational agents, that work
cooperatively and communicate through artificial
pheromone trails. In the computer replica of ant
behavior, the equivalent of time is iterations. In
particular, and regarding our particular problem, a
number v of artificial ants are used to search for the
shortest path traversing a set of N nodes starting at a
given node. Every ant constructs a solution to the
problem by travelling on a constructed graph. In each
iteration, every ant makes a move to one and only one
neighbor node. During their tour, all ants leave an
amount of pheromone on the edges they have cross,
so as to help the ants that will use the edges next.

When an ant is at a given node ,i it selects the next
node j based on the amount of pheromone ij and the

heuristic desirability ij of the trail � , �i j connecting
the two nodes. Specifically, the probability for the ant
to go from node i to node j is a function node of the
two quantities  ij and ij raised to the powers α and β
which are two parameters determining the relative
influence of the pheromone and the heuristic
information, respectively. At the end of each iteration,
the amount of pheromone on each trail is updated
based on the amount that has been dropped and the
amount that has evaporated during the iteration.

3.2.3 Clustering SNs and the K-means
Algorithm

The K-means algorithm is used in Phase I of the
proposed solution to partition the set S of SNs into
non-overlapping clusters. Based on unsupervised
learning, it places in the same cluster all the points
with similar features or characteristics, using the least
squares concept as follows. First, it receives as input
the number k of required clusters. Then it selects
randomly k points representing an initial k
centroids without replacement. It keeps iterating until
there is no change to the centroids, i.e assignment of
points to clusters is not changing. Now, it computes
the sum of the squared distances between the points
and all centroids, and assigns each point to the closest
cluster (centroid). Finally, it computes the centroid of
a cluster by taking the average of all points that belong
to each cluster. The centroid of  1k points
     1 1 2 2, , , ,..., ,k kx y x y x y deployed in the

Euclidean plane is also a point   ,c x y in the same

plane, with x and y given by

1 2

1 2

... ,
... .

k

k

x x xx ky y yy k

  


  


�2a�

�2b�

The total mean-square quantisation error (MSE) [1] is
used as a fitness function of the K-means algorithm.

3.3 Solution Phases and Algorithms

Clearly, the start SN
11p of cluster 1 will also be the

start SN 1p of entire set S of deployed SNs. The
proposed solution is comprised of three phases, as
shown in Figure 1, each having a well developed
algorithm and ending up with a route that gets
(hopefully) shorter with the phases.

(2a)

consequently the UAV route and flying time. Since
the transmission range d is constant for all the SNs,
per assumption, the only way to widen the UAV
footprint can be brought about by decreasing its
height. However, to avoid ground obstacles and to
ensure LoS communications with the SNs, there is a
minimum height h that the UAV cannot fly below.
Thus, we may define h to be the lowest height the
UAV can fly at to avoid ground obstacles, which may
hamper the flight or prevent LoS communications
between the UAV and SNs on the edge of the
footprint.

3.2.2 Shortest SN Traversal Route P and the
ACO Algorithm

The ACO algorithm is used in Phase I of the proposed
solution to find a shortest traversal route within each
cluster and is also used in Phase III to optimize the
UAV DC route. The decision to employ ACO is based
on a careful consideration of the specific
characteristics of our paper. In our paper, the total area
of interest is subdivided into smaller regions using the
k-means clustering technique. Within these smaller
areas, ACO has consistently demonstrated superior
performance in obtaining the shortest path when
compared to some other algorithms like Genetic
Algorithms (GA). To further substantiate our choice,
we conducted experiments that provide empirical
evidence supporting the effectiveness of ACO in this
paper.
 Capable of solving combinatorial optimization
problems, ACO takes inspiration from the behaviour
of real ant colonies [55]. When searching for food,
ants put a substance called pheromone on the ground
in an effort to make the shortest route to the food
source known for other ants. Clearly, the more ants
that use a particular trail, the more pheromone will be
on there, which in turn attracts more ants to use that
trail. However, pheromone is not a permanent
substance but can evaporate. Thus, if a trail has some
pheromone but is ignored by ants for a while,
whatever pheromone there will evaporate with time,
turning off any ant that wanted to use the trail. Then,
ants that search later for food trace the presence of
pheromone and follow the trait that has a higher
concentration of the substance. Once at the food
source, the ants are able to get food and return back to
their colony using the same trail, dropping more
pheromone which makes the trail ever more popular
as time goes by.
ACO algorithms act similarly, using a number of
artificial ants—tiny computational agents, that work
cooperatively and communicate through artificial
pheromone trails. In the computer replica of ant
behavior, the equivalent of time is iterations. In
particular, and regarding our particular problem, a
number v of artificial ants are used to search for the
shortest path traversing a set of N nodes starting at a
given node. Every ant constructs a solution to the
problem by travelling on a constructed graph. In each
iteration, every ant makes a move to one and only one
neighbor node. During their tour, all ants leave an
amount of pheromone on the edges they have cross,
so as to help the ants that will use the edges next.

When an ant is at a given node ,i it selects the next
node j based on the amount of pheromone ij and the

heuristic desirability ij of the trail � , �i j connecting
the two nodes. Specifically, the probability for the ant
to go from node i to node j is a function node of the
two quantities  ij and ij raised to the powers α and β
which are two parameters determining the relative
influence of the pheromone and the heuristic
information, respectively. At the end of each iteration,
the amount of pheromone on each trail is updated
based on the amount that has been dropped and the
amount that has evaporated during the iteration.

3.2.3 Clustering SNs and the K-means
Algorithm

The K-means algorithm is used in Phase I of the
proposed solution to partition the set S of SNs into
non-overlapping clusters. Based on unsupervised
learning, it places in the same cluster all the points
with similar features or characteristics, using the least
squares concept as follows. First, it receives as input
the number k of required clusters. Then it selects
randomly k points representing an initial k
centroids without replacement. It keeps iterating until
there is no change to the centroids, i.e assignment of
points to clusters is not changing. Now, it computes
the sum of the squared distances between the points
and all centroids, and assigns each point to the closest
cluster (centroid). Finally, it computes the centroid of
a cluster by taking the average of all points that belong
to each cluster. The centroid of  1k points
     1 1 2 2, , , ,..., ,k kx y x y x y deployed in the

Euclidean plane is also a point   ,c x y in the same

plane, with x and y given by
1 2

1 2

... ,

... .

k

k

x x x
k

y y yy k

  


  


�2a�

�2b�

The total mean-square quantisation error (MSE) [1] is
used as a fitness function of the K-means algorithm.

3.3 Solution Phases and Algorithms

Clearly, the start SN
11p of cluster 1 will also be the

start SN 1p of entire set S of deployed SNs. The
proposed solution is comprised of three phases, as
shown in Figure 1, each having a well developed
algorithm and ending up with a route that gets
(hopefully) shorter with the phases.

(2b)

The total mean-square quantisation error (MSE) [1]
is used as a fitness function of the K-means algorithm.

3.3. Solution Phases and Algorithms
Clearly, the start SN

11p of cluster 1 will also be the
start SN 1p of entire set S of deployed SNs. The pro-
posed solution is comprised of three phases, as shown
in Figure 1, each having a well developed algorithm
and ending up with a route that gets (hopefully) short-
er with the phases.

Algorithm 1: Initial (SN) route

Input: Set S of N SNs, Start SN
11p , Desired

number m of clusters, SN position lookup table.
Output: Initial (SN) route P 1 2(, ,...,)Np p p= .

1 P =: [] //Initialize the initial route.
2 Apply the K-means algorithm to the set S to

partition it into m clusters: 1 2, ,..., .mC C C

3 For each cluster iC find its centroid, as per (2),
placing all m centroids in some set φ.

4 Denote by 1c the centroid of the cluster, where the
start SN

11p exists, and by 1N the cardinality of
that cluster.

5 Delete the centroid 1c from the set φ.
6 Apply the ACO algorithm to the cluster with

centroid 1c to obtain a shortest path sub-route P1

()=
1 2 1

1 1 1 1, ,...,
N

P p p p traversing the cluster.
7 Append sub-route P1 to the initial route P .

Information Technology and Control 2024/3/53874

8 for = 1i to −1m do
9 Calculate the distance from SN ,

Ni
ip ,the end SN

of sub-route iP ,, to every centorid in the set φ.
10 Denote by +1ic the centroid closest to ,

Ni
ip , and

by +1iN the cardinality of the cluster of that
centroid.

11 Delete the centroid +1ic from the set φ.
12 Calculate the distance from SN ,

Ni
ip , the end

SN of sub-route iP ,,to every SN of the cluster
with centroid +1ic .

13 Denote by
11ip + the SN closest to Ni

ip .
14 Apply the ACO algorithm to the cluster with

centroid 1 ,ic + , starting at SN
11 ,ip + ,

to obtain a shortest path sub-route iP + =1

()
+

+ + +1 2 1
1 1 1, ,...,

Ni
i i ip p p traversing the cluster.

15 Append sub-route iP +1 to the initial route P .

16 end

Initial (SN) route P : In phase I , an initial SN travers-
al route P 1 2(, ,...,)Np p p= traversing all N SNs in a
shortest route manner is constructed from the set S
of all SNs, using both K-means clustering and ACO.
Algorithm 1 takes S as input and gives P as output.
Intermediate (hovering) route Q : In Phase II, an in-
termediate UAV hovering route =Q 1 2(, ,...,)Mq q q
is constructed from the initial route P . This is done
by grouping the SNs along P into n groups (mu-
tually disjoint subsets) each of which can fit in the
footprint of the UAV as it hovers above in the air. Al-
gorithm 2 takes P as input and gives Q as output. Ef-
fectively, this phase partition P into M collection lists

1 2 ML ,L , ...,L , each of which can fit in the footprint of
the UAV. Clearly, n N≤ and ≤Q P , with the equality
holding only if each group contains one and only one
SN.
Final (hovering) route R : Finally, in Phase III a final
hovering route R obtained by optimizing (rearranging
the elements of) Q using ACO, if the number of SNs is
large, or GA if that number is small. That is, R is pro-
duced by recording the elements, i.e. the HLs, of Q .
Algorithm 3 takes Q as input and gives R as output.
Clearly, ≤R Q , with the equality if the optimization
algorithm, ACO or GA, receives an already optimal
route.

3.3.1. Phase I: Initial (SN) Route P
In this phase, the ACO algorithm is applied to the set
S of all deployed SNs in order to construct the short-

est route through the SNs. However, doing so would
produce two problems. First, the chances of ACO’s
finding the shortest path would be very slim especial-
ly if the size of S is large. Second, ACO would take a
large amount of time to finish its work, regardless of
the final result. To avoid these problems, we start by
partitioning S into an arbitrary number < <1 m N
of clusters using the K-means algorithm, and finding
the centroid ()= ,c x y of each cluster. Each cluster has
a number iN SNs, with =∑max

min iN N . Then, we apply
ACO to the clusters separately to obtain a shortest
route within each cluster, and eventually concatenate
these subroutes to obtain a short route traversing all
the SNs. Needless to say, this route may or may not be
the shortest, but it can be made very close to the short-
est by knowing where to start the ACO in each cluster.
By much experimentation, we have reached a method
that makes the traversal route through S very short,
compared to what has been reported in other research
papers. The method starts in the second cluster, as the
start SN for the first cluster is user defined.
After ACO produces the shortest route 1P

()1 2 1
1 1 1, ,...,

N
p p p=

for the initial cluster, we proceed to

determine the distances between the last SN
1

1N
p

on

the route 1P and the centroids of all the other clusters,
where 1N is cardinality of the initial cluster. The sub-
sequent cluster to be traversed is determined by the
shortest distance.
Identify the closest SN in the subsequent cluster to
the last SN

11Np

on the route 1P . The closest SN would

then be the start SN for the second subroute 2P , to be
produced by ACO, and the cluster where it resides
would be the second cluster. As depicted in Algorithm
1, repeat the above three steps for all the remaining
clusters, getting at the end m sub-routes 1 2 mP ,P , ...,P .
Construct the initial UAV route P by concatenating
the iP in order, i.e.

1 2= mP (P ,P , ...,P)
1 2 1 21 2

1 2

1 1 1 2 2 2

1 2

, , ..., , , ..., , ..., , ...,
, , ...,
, , ...,

N N

Nmm m m
N

p p p p p p
p p p
p p p





We can see that P is basically a passive [9] permu-
tation σ, say, of the set { }1 2, ,..., .Ns s s=S If, for sim-

875Information Technology and Control 2024/3/53

Algorithm 2: Intermediate (hovering) route

Input: UAV initial route P = 1 2(, ,...,)Np p p and
UAV footprint radius UR .
Output: Intermediate route Q ()= 1 2 nq ,q ,...,q ,
where jq is the j th location group, and collection
lists nL ,L , ...,L1 2 , where jL is the list of SNs that
will be collected while UAV at HL .jq

1 =: 1;i //Index of SN along the initial route.
2 =: 1n //Group no.
3 nL : []= //Initialize nth collection list with first

SN in group.
4 Q : = [] //Initialize intermediate (hovering)

route.
5 ϕ=:C //Initialize footprint group test set.
6 do
7 { }=:  ipC C //Attempt adding a SN to the

current group.
8 Calculate centroid c of set C , as per (2).
9 Flag := 0.
10 foreach ∈s C do
11 Calculate distance sd from SN s to

centroid c .
12 if > Rs Sd then
13 Flag := 1 // SN is outside footprint, so

take action as below.
14 end
15 end
16 if Flag = 0 then
17 Append ip to nL //SN is inside footprint,

so add it to collection list.
18 if <i N then
19 =:nc c //Retain previous centroid.
20 end
21 else
22 Append c to Q //SN is the last one, so

add current centroid to route and stop.

23 end
24 end

25 else
26 if <i N then
27 Append nc to Q //SN outside footprint,

so write previous centroid as route
node.

28 = +: 1n n //Close current group and
start a new one.

29 L : []n ip= //Initialize a new list with the
SN that did not join previous list.

30 =: { }ipC //Initialize a new group set
with the SN that did not join previous
list.

31 end
32 else
33 Append c to Q //SN is the last one, so

add current centroid to route and stop.
34 Append ip to Q //Add last SN to route,

as it is the centroid of itself.
35 + =1L : []n ip //Place the last SN in a new

collection list.
36 end
37 end
38 = +: 1i i //Increment i to nominate another

SN, or exit while loop.
39 while (≤i N);

plicity, we consider σ to be a permutation of the set
{ }1,2,...,N , rather than the set of SNs, then for each

{ }1,2,...,i N∈ , the i th element of the route P is just
element ()is

σ
of the set S , i.e. ()i ip s

σ
= .

3.3.2. Phase II: Intermediate (Hovering) Route Q
The Intermediate Route algorithm takes the initial
route P ()= 1 2, ,..., Np p p , and the UAV footprint ra-
dius UR , as input and outputs an intermediate hov-
ering route ()1 2 nQ q ,q ,...,q= and n collection lists

1 2 nL ,L , ...,L , where iq is the i th UAV HL and iL is
the list of SNs, in order, whose data will be collected
by the UAV while at that location. The intermediate
route Algorithm 2 effectively partitions the SNs along
P into n N groups each of which fits in the footprint
of the Q ()1 2, ,..., nq q q= UAV if it hovers over the cen-
troid of the group. The algorithm achieves its aim by
building one group at a time, starting at the first SN 1P
of P . An empty test set C is created for each group, to
which SNs are added one at a time.
Each time a SN is added to C its centroid will be cal-
culated. The algorithm then compares the distance
between the added SN and the centroid of S with the
UAV footprint radius UR . If the distance is less than

UR , then the SN is added to the current group, and

Information Technology and Control 2024/3/53876

the algorithm moves on to attempt to add another SN.
Else, the SN is not added to the group, which will then
be closed and considered complete, and the algorithm
moves on to build a new group, adding to it that SN as
the first member.
The iM members of group i will be inserted, in the or-
der they are added to the group, in the collection list iL
of that group. The centroid of group i , denoted by iq ,
will be considered the UAV HL for the group.
This exercise is continued until all N SNs along
the initial route P are accounted for, noting that

1
.n

ii
M N

=
=∑ The algorithm outputs the intermedi-

ate route Q ()1 2, ,..., nq q q= , which is the vector of cen-
troids of the n formed groups, with each centroid iq
associated with a collection list iL telling which SNs
will transmit data and in what order while the UAV is
hovering above iq . It is as if the Intermediate route
algorithm partitions the initial route P into n lists

1 2 nL ,L , ...,L , or ()1 2= nP L ,L , ...,L ,
where

1 2 mmPP ,,PP ,,,,PP . Construct the initial UAV route PP by
concatenating the iiPP in order, i.e.

 1 2 mmPP ��PP ,,PP ,,,,PP ��

1 2 1 21 2

1 2

1 1 1 2 2 2

1 2

� , , ..., , , ..., , ..., , ...
, , , ..., �
� , , ..., �

N N

N mm m m
N

p p p p p p
p p p

p p p





We can see that PP is basically a passive [9]
permutation σ, say, of the set  1 2, ,..., .Ns s sS If,
for simplicity, we consider σ to be a permutation of
the set  1,2,...,N , rather than the set of SNs, then for

each  1,2,...,i N , the i th element of the route PP

is just element  is


of the set S , i.e.  i ip s


 .

3.3.2 Phase II : Intermediate (Hovering)
Route QQ

The Intermediate Route algorithm takes the initial
route PP   1 2, ,..., Np p p , and the UAV footprint
radius UR , as input and outputs an intermediate

hovering route  1 2 nQ q ,q ,...,q and n collection
lists 1 2 nnLL ,,LL ,,,,LL ,, where iq is the i th UAV HL and

iL is the list of SNs, in order, whose data will be
collected by the UAV while at that location. The
intermediate route Algorithm 2 effectively partitions
the SNs along PP into n N groups each of which
fits in the footprint of the QQ  1 2, ,..., nq q q UAV if it
hovers over the centroid of the group. The algorithm
achieves its aim by building one group at a time,
starting at the first SN 1P of PP . An empty test set C

is created for each group, to which SNs are added one
at a time.
Each time a SN is added to C its centroid will be
calculated. The algorithm then compares the distance
between the added SN and the centroid of S with
the UAV footprint radius UR . If the distance is less
than UR , then the SN is added to the current group,
and the algorithm moves on to attempt to add another
SN. Else, the SN is not added to the group, which will
then be closed and considered complete, and the
algorithm
moves on to build a new group, adding to it that SN
as the first member.

 The iM members of group i will be inserted, in the
order they are added to the group, in the collection list

iiLL of that group. The centroid of group i , denoted by

iq , will be considered the UAV HL for the group.
This exercise is continued until all N SNs along the
initial route PP are accounted for, noting that

1 .n
ii M N


 The algorithm outputs the intermediate

route QQ  1 2, ,..., nq q q , which is the vector of
centroids of the n formed groups, with each centroid

iq associated with a collection list iiLL telling which
SNs will transmit data and in what order while the
UAV is hovering above iq . It is as if the Intermediate
route algorithm partitions the initial route PP into n
lists 1 2 nnLL ,,LL ,,,,LL ,, or  1 2 nnPP LL ,,LL ,,,,LL ,

 where

1

1 1 1 2

1 2 1 1 2 1

1 2 1 1 2

1 1 2

2 1 2

n ... 1 ... 2

... 2 ...

1 2

L � , ,..., �,
L � , ,..., �,
...
L � , ,

,..., �
� , ,..., �.

N N

N N

m n

M
M M M M

M M M M M M
M M M M M M

N M N M N

p p p
p p p

p p
p p

p p p
 



  

       

      

   








As an example, assume  P� 3,5,1,7,9,2,4,8,6 .
Assume also that the Intermediate (hovering) route QQ
 1 2, ,..., nq q q algorithm was able, based on the

locations of the SNs and the footprint radius, to form
three groups, meaning that 3n , with

  1 2 34, 2, 3M M M . Then, the algorithm will

produce      1 2 3L � 3,5,1,7 , L � 9,2 , L � 4,8,6 . That

is, the UAV will collect the data of the SNs  3,5,1,7
in this order, while hovering atop their centroid, then
moves to the centroid of  9,2 to collect their data,

and finally moves to the centroid of  4,8,6 to collect
their data, completing the exercise of data
transmission by the SNs and collection by the UAV.

3.3.3 Final (Hovering) Route RR Algorithm
The Final Route algorithm, given formally in 3, takes
the set  1 2, ,..., nq q qΠ of the elements of the

intermediate route QQ  1 2, ,..., nq q q and applies ACO
to it, with the aim to shorten the length of that route.
Thus, the output of this

As an example, assume ()P= 3,5,1,7,9,2,4,8,6 .

As-
sume also that the Intermediate (hovering) route
Q ()1 2, ,..., nq q q= algorithm was able, based on
the locations of the SNs and the footprint radi-
us, to form three groups, meaning that = 3n , with

= = =1 2 34, 2, 3M M M . Then, the algorithm will pro-
duce () () ()1 2 3L = 3,5,1,7 , L = 9,2 , L = 4,8,6 .

That is, the

UAV will collect the data of the SNs ()3,5,1,7 in this
order, while hovering atop their centroid, then moves
to the centroid of ()9,2

to collect their data, and fi-

nally moves to the centroid of ()4,8,6

to collect their

data, completing the exercise of data transmission by
the SNs and collection by the UAV.

3.3.3. Final (Hovering) Route R Algorithm
The Final Route algorithm, given formally in 3, takes
the set

algorithm is basically some permutation γ, say, of the
set Π , noting that each element iq preserves with it its
associated collection list iiLL . That is, as the elements
of Π are permuted by γ, the collection lists will be
permuted by the same γ. The algorithm outputs a final
hovering route   1 2R , ,..., ,nr r r where RR is basically
some passive permutation γ of the set

 1 2, ,..., nq q qΠ . If, for simplicity, we consider

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th

element of RR is just element � �iq of the setΠ , i.e.

 
i ir q .

3.3.4 Time Complexity

Complexity analysis of Algorithm 1. For N SNs,
m N clusters and number of itreations I , the

time complexity of the K ‐means clustering
algorithm in step 2 is given as  O mNI [43]. The
time complexity of ACO algorithm in step 14 is
given as  2

1 max ,iO N I  where 1iN  is the

cardinality of cluster 1i C ,  is the number of
ants and maxI is the maximum iteration [37]. For

m N clusters, the time complexity for steps 8 to
16 is given as  1 2

1 max1
m

ii O N I

 . The overall

time complexity complexityT of the algorithm is
given as

    1 2

1 max1 .m
complexity iiT O mNI O N I


 

On the other hand the time complexity of
Algorithm 2 can be analysed as nested loop (the
outer loop and the inner loop), The outer loop
(Step 6 to 39) in the algorithm iterates over each
SN from the initial route PP . This loop has a time
complexity of   ,O N the inner loop (Step 10 to
15) iterates over the elements in each SNs group.
The overall time complexity of algorithm 2 can
be approximated as  2 .O N For algorithm 3, the

time complexity is given as  2 ,O n where n is
set of all SNs of the intermediate route QQ and

.n N
Figure 3
Sensory field of area 2400�400 m with 20 SNs
randomly deployed.

3. 4 Illustrative Example
We give now an illustrative example to show how the
framework works till it finds the final (hovering) route
RR .
In this example, the set �1,2,3,...,20�S of 20 SNs
are randomly deployed in an area of 2400�400 m
depicted visually in Figure 3, with the lookup table T
as shown in Table 1.

3.4.1 Generating the Initial Route PP
As per steps 1-2 in Algorithm 1, the K-means
clustering algorithm is told to divide the 20 SNs into

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route
 Input: Intermediate (hovering) route QQ

 1 2 n�q ,q ,...,q �, where jq is the j th
hovering location, and the corresponding 𝑛𝑛
reading lists nnLL ,,LL ,,,,LL1 2 .

 Output: UAV nal route RR 1 2� , ,..., �,nr r r
where jr is the j th hovering location, and
then collection lists 1 2  nnLL ,,LL ,,,,LL ..

1  1 2, ,..., nq q qΠ //Set of all elements

of the intermediate route QQ into a set.
2 Apply the ACO algorithm to Π to nd the

shortest path RR that traverses the points of
Π starting at location 1q .

3 Relabel each reading list iiLL to match the

relabelling of each iq to the corresponding

,jr , 1,2,..., .i j n

 of the elements of the in-
termediate route Q ()1 2, ,..., nq q q= and applies ACO
to it, with the aim to shorten the length of that route.
Thus, the output of this algorithm is basically some

permutation γ, say, of the set

algorithm is basically some permutation γ, say, of the
set Π , noting that each element iq preserves with it its
associated collection list iiLL . That is, as the elements
of Π are permuted by γ, the collection lists will be
permuted by the same γ. The algorithm outputs a final
hovering route   1 2R , ,..., ,nr r r where RR is basically
some passive permutation γ of the set

 1 2, ,..., nq q qΠ . If, for simplicity, we consider

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th

element of RR is just element � �iq of the setΠ , i.e.

 
i ir q .

3.3.4 Time Complexity

Complexity analysis of Algorithm 1. For N SNs,
m N clusters and number of itreations I , the

time complexity of the K ‐means clustering
algorithm in step 2 is given as  O mNI [43]. The
time complexity of ACO algorithm in step 14 is
given as  2

1 max ,iO N I  where 1iN  is the

cardinality of cluster 1i C ,  is the number of
ants and maxI is the maximum iteration [37]. For

m N clusters, the time complexity for steps 8 to
16 is given as  1 2

1 max1
m

ii O N I

 . The overall

time complexity complexityT of the algorithm is
given as

    1 2

1 max1 .m
complexity iiT O mNI O N I


 

On the other hand the time complexity of
Algorithm 2 can be analysed as nested loop (the
outer loop and the inner loop), The outer loop
(Step 6 to 39) in the algorithm iterates over each
SN from the initial route PP . This loop has a time
complexity of   ,O N the inner loop (Step 10 to
15) iterates over the elements in each SNs group.
The overall time complexity of algorithm 2 can
be approximated as  2 .O N For algorithm 3, the

time complexity is given as  2 ,O n where n is
set of all SNs of the intermediate route QQ and

.n N
Figure 3
Sensory field of area 2400�400 m with 20 SNs
randomly deployed.

3. 4 Illustrative Example
We give now an illustrative example to show how the
framework works till it finds the final (hovering) route
RR .
In this example, the set �1,2,3,...,20�S of 20 SNs
are randomly deployed in an area of 2400�400 m
depicted visually in Figure 3, with the lookup table T
as shown in Table 1.

3.4.1 Generating the Initial Route PP
As per steps 1-2 in Algorithm 1, the K-means
clustering algorithm is told to divide the 20 SNs into

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route
 Input: Intermediate (hovering) route QQ

 1 2 n�q ,q ,...,q �, where jq is the j th
hovering location, and the corresponding 𝑛𝑛
reading lists nnLL ,,LL ,,,,LL1 2 .

 Output: UAV nal route RR 1 2� , ,..., �,nr r r
where jr is the j th hovering location, and
then collection lists 1 2  nnLL ,,LL ,,,,LL ..

1  1 2, ,..., nq q qΠ //Set of all elements

of the intermediate route QQ into a set.
2 Apply the ACO algorithm to Π to nd the

shortest path RR that traverses the points of
Π starting at location 1q .

3 Relabel each reading list iiLL to match the

relabelling of each iq to the corresponding

,jr , 1,2,..., .i j n

, noting that each el-
ement iq preserves with it its associated collection
list iL . That is, as the elements of

algorithm is basically some permutation γ, say, of the
set Π , noting that each element iq preserves with it its
associated collection list iiLL . That is, as the elements
of Π are permuted by γ, the collection lists will be
permuted by the same γ. The algorithm outputs a final
hovering route   1 2R , ,..., ,nr r r where RR is basically
some passive permutation γ of the set

 1 2, ,..., nq q qΠ . If, for simplicity, we consider

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th

element of RR is just element � �iq of the setΠ , i.e.

 
i ir q .

3.3.4 Time Complexity

Complexity analysis of Algorithm 1. For N SNs,
m N clusters and number of itreations I , the

time complexity of the K ‐means clustering
algorithm in step 2 is given as  O mNI [43]. The
time complexity of ACO algorithm in step 14 is
given as  2

1 max ,iO N I  where 1iN  is the

cardinality of cluster 1i C ,  is the number of
ants and maxI is the maximum iteration [37]. For

m N clusters, the time complexity for steps 8 to
16 is given as  1 2

1 max1
m

ii O N I

 . The overall

time complexity complexityT of the algorithm is
given as

    1 2

1 max1 .m
complexity iiT O mNI O N I


 

On the other hand the time complexity of
Algorithm 2 can be analysed as nested loop (the
outer loop and the inner loop), The outer loop
(Step 6 to 39) in the algorithm iterates over each
SN from the initial route PP . This loop has a time
complexity of   ,O N the inner loop (Step 10 to
15) iterates over the elements in each SNs group.
The overall time complexity of algorithm 2 can
be approximated as  2 .O N For algorithm 3, the

time complexity is given as  2 ,O n where n is
set of all SNs of the intermediate route QQ and

.n N
Figure 3
Sensory field of area 2400�400 m with 20 SNs
randomly deployed.

3. 4 Illustrative Example
We give now an illustrative example to show how the
framework works till it finds the final (hovering) route
RR .
In this example, the set �1,2,3,...,20�S of 20 SNs
are randomly deployed in an area of 2400�400 m
depicted visually in Figure 3, with the lookup table T
as shown in Table 1.

3.4.1 Generating the Initial Route PP
As per steps 1-2 in Algorithm 1, the K-means
clustering algorithm is told to divide the 20 SNs into

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route
 Input: Intermediate (hovering) route QQ

 1 2 n�q ,q ,...,q �, where jq is the j th
hovering location, and the corresponding 𝑛𝑛
reading lists nnLL ,,LL ,,,,LL1 2 .

 Output: UAV nal route RR 1 2� , ,..., �,nr r r
where jr is the j th hovering location, and
then collection lists 1 2  nnLL ,,LL ,,,,LL ..

1  1 2, ,..., nq q qΠ //Set of all elements

of the intermediate route QQ into a set.
2 Apply the ACO algorithm to Π to nd the

shortest path RR that traverses the points of
Π starting at location 1q .

3 Relabel each reading list iiLL to match the

relabelling of each iq to the corresponding

,jr , 1,2,..., .i j n

 are permut-
ed by γ, the collection lists will be permuted by the
same γ. The algorithm outputs a final hovering route

()= 1 2R , ,..., ,nr r r

where R is basically some passive
permutation γ of the set

algorithm is basically some permutation γ, say, of the
set Π , noting that each element iq preserves with it its
associated collection list iiLL . That is, as the elements
of Π are permuted by γ, the collection lists will be
permuted by the same γ. The algorithm outputs a final
hovering route   1 2R , ,..., ,nr r r where RR is basically
some passive permutation γ of the set

 1 2, ,..., nq q qΠ . If, for simplicity, we consider

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th

element of RR is just element � �iq of the setΠ , i.e.

 
i ir q .

3.3.4 Time Complexity

Complexity analysis of Algorithm 1. For N SNs,
m N clusters and number of itreations I , the

time complexity of the K ‐means clustering
algorithm in step 2 is given as  O mNI [43]. The
time complexity of ACO algorithm in step 14 is
given as  2

1 max ,iO N I  where 1iN  is the

cardinality of cluster 1i C ,  is the number of
ants and maxI is the maximum iteration [37]. For

m N clusters, the time complexity for steps 8 to
16 is given as  1 2

1 max1
m

ii O N I

 . The overall

time complexity complexityT of the algorithm is
given as

    1 2

1 max1 .m
complexity iiT O mNI O N I


 

On the other hand the time complexity of
Algorithm 2 can be analysed as nested loop (the
outer loop and the inner loop), The outer loop
(Step 6 to 39) in the algorithm iterates over each
SN from the initial route PP . This loop has a time
complexity of   ,O N the inner loop (Step 10 to
15) iterates over the elements in each SNs group.
The overall time complexity of algorithm 2 can
be approximated as  2 .O N For algorithm 3, the

time complexity is given as  2 ,O n where n is
set of all SNs of the intermediate route QQ and

.n N
Figure 3
Sensory field of area 2400�400 m with 20 SNs
randomly deployed.

3. 4 Illustrative Example
We give now an illustrative example to show how the
framework works till it finds the final (hovering) route
RR .
In this example, the set �1,2,3,...,20�S of 20 SNs
are randomly deployed in an area of 2400�400 m
depicted visually in Figure 3, with the lookup table T
as shown in Table 1.

3.4.1 Generating the Initial Route PP
As per steps 1-2 in Algorithm 1, the K-means
clustering algorithm is told to divide the 20 SNs into

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route
 Input: Intermediate (hovering) route QQ

 1 2 n�q ,q ,...,q �, where jq is the j th
hovering location, and the corresponding 𝑛𝑛
reading lists nnLL ,,LL ,,,,LL1 2 .

 Output: UAV nal route RR 1 2� , ,..., �,nr r r
where jr is the j th hovering location, and
then collection lists 1 2  nnLL ,,LL ,,,,LL ..

1  1 2, ,..., nq q qΠ //Set of all elements

of the intermediate route QQ into a set.
2 Apply the ACO algorithm to Π to nd the

shortest path RR that traverses the points of
Π starting at location 1q .

3 Relabel each reading list iiLL to match the

relabelling of each iq to the corresponding

,jr , 1,2,..., .i j n

. If, for
simplicity, we consider γ to be a permutation of the
set { }1,2,..., ,n

rather than the set of HLs, then for each

{ }1,2,..., ,i n∈ the ith element of R is just element ()iqγ
of the set

algorithm is basically some permutation γ, say, of the
set Π , noting that each element iq preserves with it its
associated collection list iiLL . That is, as the elements
of Π are permuted by γ, the collection lists will be
permuted by the same γ. The algorithm outputs a final
hovering route   1 2R , ,..., ,nr r r where RR is basically
some passive permutation γ of the set

 1 2, ,..., nq q qΠ . If, for simplicity, we consider

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th

element of RR is just element � �iq of the setΠ , i.e.

 
i ir q .

3.3.4 Time Complexity

Complexity analysis of Algorithm 1. For N SNs,
m N clusters and number of itreations I , the

time complexity of the K ‐means clustering
algorithm in step 2 is given as  O mNI [43]. The
time complexity of ACO algorithm in step 14 is
given as  2

1 max ,iO N I  where 1iN  is the

cardinality of cluster 1i C ,  is the number of
ants and maxI is the maximum iteration [37]. For

m N clusters, the time complexity for steps 8 to
16 is given as  1 2

1 max1
m

ii O N I

 . The overall

time complexity complexityT of the algorithm is
given as

    1 2

1 max1 .m
complexity iiT O mNI O N I


 

On the other hand the time complexity of
Algorithm 2 can be analysed as nested loop (the
outer loop and the inner loop), The outer loop
(Step 6 to 39) in the algorithm iterates over each
SN from the initial route PP . This loop has a time
complexity of   ,O N the inner loop (Step 10 to
15) iterates over the elements in each SNs group.
The overall time complexity of algorithm 2 can
be approximated as  2 .O N For algorithm 3, the

time complexity is given as  2 ,O n where n is
set of all SNs of the intermediate route QQ and

.n N
Figure 3
Sensory field of area 2400�400 m with 20 SNs
randomly deployed.

3. 4 Illustrative Example
We give now an illustrative example to show how the
framework works till it finds the final (hovering) route
RR .
In this example, the set �1,2,3,...,20�S of 20 SNs
are randomly deployed in an area of 2400�400 m
depicted visually in Figure 3, with the lookup table T
as shown in Table 1.

3.4.1 Generating the Initial Route PP
As per steps 1-2 in Algorithm 1, the K-means
clustering algorithm is told to divide the 20 SNs into

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route
 Input: Intermediate (hovering) route QQ

 1 2 n�q ,q ,...,q �, where jq is the j th
hovering location, and the corresponding 𝑛𝑛
reading lists nnLL ,,LL ,,,,LL1 2 .

 Output: UAV nal route RR 1 2� , ,..., �,nr r r
where jr is the j th hovering location, and
then collection lists 1 2  nnLL ,,LL ,,,,LL ..

1  1 2, ,..., nq q qΠ //Set of all elements

of the intermediate route QQ into a set.
2 Apply the ACO algorithm to Π to nd the

shortest path RR that traverses the points of
Π starting at location 1q .

3 Relabel each reading list iiLL to match the

relabelling of each iq to the corresponding

,jr , 1,2,..., .i j n

, i.e. ()γ
=i ir q .

3.3.4. Time Complexity
Complexity analysis of Algorithm 1. For N SNs, <m N
clusters and number of itreations I , the time com-
plexity of the K -means clustering algorithm in step 2
is given as ()O mNI [43]. The time complexity of ACO
algorithm in step 14 is given as ()2

1 max ,iO N Iσ +
where

1iN + is the cardinality of cluster 1i +C , σ is the number
of ants and maxI is the maximum iteration [37]. For

<m N clusters, the time complexity for steps 8 to 16 is
given as ()1 2

1 max1

m
ii

O N Iσ−

+=∑ . The overall time complexity
complexityT of the algorithm is given as

algorithm is basically some permutation γ, say, of the
set Π , noting that each element iq preserves with it its
associated collection list iiLL . That is, as the elements
of Π are permuted by γ, the collection lists will be
permuted by the same γ. The algorithm outputs a final
hovering route   1 2R , ,..., ,nr r r where RR is basically
some passive permutation γ of the set

 1 2, ,..., nq q qΠ . If, for simplicity, we consider

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th

element of RR is just element � �iq of the setΠ , i.e.

 
i ir q .

3.3.4 Time Complexity

Complexity analysis of Algorithm 1. For N SNs,
m N clusters and number of itreations I , the

time complexity of the K ‐means clustering
algorithm in step 2 is given as  O mNI [43]. The
time complexity of ACO algorithm in step 14 is
given as  2

1 max ,iO N I  where 1iN  is the

cardinality of cluster 1i C ,  is the number of
ants and maxI is the maximum iteration [37]. For

m N clusters, the time complexity for steps 8 to
16 is given as  1 2

1 max1
m

ii O N I

 . The overall

time complexity complexityT of the algorithm is
given as

    1 2

1 max1 .m
complexity iiT O mNI O N I


 

On the other hand the time complexity of
Algorithm 2 can be analysed as nested loop (the
outer loop and the inner loop), The outer loop
(Step 6 to 39) in the algorithm iterates over each
SN from the initial route PP . This loop has a time
complexity of   ,O N the inner loop (Step 10 to
15) iterates over the elements in each SNs group.
The overall time complexity of algorithm 2 can
be approximated as  2 .O N For algorithm 3, the

time complexity is given as  2 ,O n where n is
set of all SNs of the intermediate route QQ and

.n N
Figure 3
Sensory field of area 2400�400 m with 20 SNs
randomly deployed.

3. 4 Illustrative Example
We give now an illustrative example to show how the
framework works till it finds the final (hovering) route
RR .
In this example, the set �1,2,3,...,20�S of 20 SNs
are randomly deployed in an area of 2400�400 m
depicted visually in Figure 3, with the lookup table T
as shown in Table 1.

3.4.1 Generating the Initial Route PP
As per steps 1-2 in Algorithm 1, the K-means
clustering algorithm is told to divide the 20 SNs into

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route
 Input: Intermediate (hovering) route QQ

 1 2 n�q ,q ,...,q �, where jq is the j th
hovering location, and the corresponding 𝑛𝑛
reading lists nnLL ,,LL ,,,,LL1 2 .

 Output: UAV nal route RR 1 2� , ,..., �,nr r r
where jr is the j th hovering location, and
then collection lists 1 2  nnLL ,,LL ,,,,LL ..

1  1 2, ,..., nq q qΠ //Set of all elements

of the intermediate route QQ into a set.
2 Apply the ACO algorithm to Π to nd the

shortest path RR that traverses the points of
Π starting at location 1q .

3 Relabel each reading list iiLL to match the

relabelling of each iq to the corresponding

,jr , 1,2,..., .i j n

On the other hand the time complexity of Algorithm 2
can be analysed as nested loop (the outer loop and the
inner loop), The outer loop (Step 6 to 39) in the algo-
rithm iterates over each SN from the initial route P.
This loop has a time complexity of () ,O N

the inner

loop (Step 10 to 15) iterates over the elements in each
SNs group. The overall time complexity of algorithm
2 can be approximated as ()2 .O N

 For algorithm 3, the

time complexity is given as ()2 ,O n

 where n is set of

all SNs of the intermediate route Q and n≪ N.

Algorithm 3: Final (hovering) route

Input: Intermediate (hovering) route Q = 1 2 n(q ,q ,...,q),
where jq is the j th hovering location, and the
corresponding n reading lists nL ,L , ...,L1 2 .
Output: UAV final route =R 1 2(, ,...,),nr r r where jr
is the j th hovering location, and the n collection
lists 1 2

′ ′ ′
nL ,L , ...,L .

1

algorithm is basically some permutation γ, say, of the
set Π , noting that each element iq preserves with it its
associated collection list iiLL . That is, as the elements
of Π are permuted by γ, the collection lists will be
permuted by the same γ. The algorithm outputs a final
hovering route   1 2R , ,..., ,nr r r where RR is basically
some passive permutation γ of the set

 1 2, ,..., nq q qΠ . If, for simplicity, we consider

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th

element of RR is just element � �iq of the setΠ , i.e.

 
i ir q .

3.3.4 Time Complexity

Complexity analysis of Algorithm 1. For N SNs,
m N clusters and number of itreations I , the

time complexity of the K ‐means clustering
algorithm in step 2 is given as  O mNI [43]. The
time complexity of ACO algorithm in step 14 is
given as  2

1 max ,iO N I  where 1iN  is the

cardinality of cluster 1i C ,  is the number of
ants and maxI is the maximum iteration [37]. For

m N clusters, the time complexity for steps 8 to
16 is given as  1 2

1 max1
m

ii O N I

 . The overall

time complexity complexityT of the algorithm is
given as

    1 2

1 max1 .m
complexity iiT O mNI O N I


 

On the other hand the time complexity of
Algorithm 2 can be analysed as nested loop (the
outer loop and the inner loop), The outer loop
(Step 6 to 39) in the algorithm iterates over each
SN from the initial route PP . This loop has a time
complexity of   ,O N the inner loop (Step 10 to
15) iterates over the elements in each SNs group.
The overall time complexity of algorithm 2 can
be approximated as  2 .O N For algorithm 3, the

time complexity is given as  2 ,O n where n is
set of all SNs of the intermediate route QQ and

.n N
Figure 3
Sensory field of area 2400�400 m with 20 SNs
randomly deployed.

3. 4 Illustrative Example
We give now an illustrative example to show how the
framework works till it finds the final (hovering) route
RR .
In this example, the set �1,2,3,...,20�S of 20 SNs
are randomly deployed in an area of 2400�400 m
depicted visually in Figure 3, with the lookup table T
as shown in Table 1.

3.4.1 Generating the Initial Route PP
As per steps 1-2 in Algorithm 1, the K-means
clustering algorithm is told to divide the 20 SNs into

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route
 Input: Intermediate (hovering) route QQ

 1 2 n�q ,q ,...,q �, where jq is the j th
hovering location, and the corresponding 𝑛𝑛
reading lists nnLL ,,LL ,,,,LL1 2 .

 Output: UAV nal route RR 1 2� , ,..., �,nr r r
where jr is the j th hovering location, and
then collection lists 1 2  nnLL ,,LL ,,,,LL ..

1  1 2, ,..., nq q qΠ //Set of all elements

of the intermediate route QQ into a set.
2 Apply the ACO algorithm to Π to nd the

shortest path RR that traverses the points of
Π starting at location 1q .

3 Relabel each reading list iiLL to match the

relabelling of each iq to the corresponding

,jr , 1,2,..., .i j n

 //Set of all elements of the
intermediate route Q into a set.

2 Apply the ACO algorithm to

algorithm is basically some permutation γ, say, of the
set Π , noting that each element iq preserves with it its
associated collection list iiLL . That is, as the elements
of Π are permuted by γ, the collection lists will be
permuted by the same γ. The algorithm outputs a final
hovering route   1 2R , ,..., ,nr r r where RR is basically
some passive permutation γ of the set

 1 2, ,..., nq q qΠ . If, for simplicity, we consider

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th

element of RR is just element � �iq of the setΠ , i.e.

 
i ir q .

3.3.4 Time Complexity

Complexity analysis of Algorithm 1. For N SNs,
m N clusters and number of itreations I , the

time complexity of the K ‐means clustering
algorithm in step 2 is given as  O mNI [43]. The
time complexity of ACO algorithm in step 14 is
given as  2

1 max ,iO N I  where 1iN  is the

cardinality of cluster 1i C ,  is the number of
ants and maxI is the maximum iteration [37]. For

m N clusters, the time complexity for steps 8 to
16 is given as  1 2

1 max1
m

ii O N I

 . The overall

time complexity complexityT of the algorithm is
given as

    1 2

1 max1 .m
complexity iiT O mNI O N I


 

On the other hand the time complexity of
Algorithm 2 can be analysed as nested loop (the
outer loop and the inner loop), The outer loop
(Step 6 to 39) in the algorithm iterates over each
SN from the initial route PP . This loop has a time
complexity of   ,O N the inner loop (Step 10 to
15) iterates over the elements in each SNs group.
The overall time complexity of algorithm 2 can
be approximated as  2 .O N For algorithm 3, the

time complexity is given as  2 ,O n where n is
set of all SNs of the intermediate route QQ and

.n N
Figure 3
Sensory field of area 2400�400 m with 20 SNs
randomly deployed.

3. 4 Illustrative Example
We give now an illustrative example to show how the
framework works till it finds the final (hovering) route
RR .
In this example, the set �1,2,3,...,20�S of 20 SNs
are randomly deployed in an area of 2400�400 m
depicted visually in Figure 3, with the lookup table T
as shown in Table 1.

3.4.1 Generating the Initial Route PP
As per steps 1-2 in Algorithm 1, the K-means
clustering algorithm is told to divide the 20 SNs into

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route
 Input: Intermediate (hovering) route QQ

 1 2 n�q ,q ,...,q �, where jq is the j th
hovering location, and the corresponding 𝑛𝑛
reading lists nnLL ,,LL ,,,,LL1 2 .

 Output: UAV nal route RR 1 2� , ,..., �,nr r r
where jr is the j th hovering location, and
then collection lists 1 2  nnLL ,,LL ,,,,LL ..

1  1 2, ,..., nq q qΠ //Set of all elements

of the intermediate route QQ into a set.
2 Apply the ACO algorithm to Π to nd the

shortest path RR that traverses the points of
Π starting at location 1q .

3 Relabel each reading list iiLL to match the

relabelling of each iq to the corresponding

,jr , 1,2,..., .i j n

 to find the shortest
path R that traverses the points of

algorithm is basically some permutation γ, say, of the
set Π , noting that each element iq preserves with it its
associated collection list iiLL . That is, as the elements
of Π are permuted by γ, the collection lists will be
permuted by the same γ. The algorithm outputs a final
hovering route   1 2R , ,..., ,nr r r where RR is basically
some passive permutation γ of the set

 1 2, ,..., nq q qΠ . If, for simplicity, we consider

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th

element of RR is just element � �iq of the setΠ , i.e.

 
i ir q .

3.3.4 Time Complexity

Complexity analysis of Algorithm 1. For N SNs,
m N clusters and number of itreations I , the

time complexity of the K ‐means clustering
algorithm in step 2 is given as  O mNI [43]. The
time complexity of ACO algorithm in step 14 is
given as  2

1 max ,iO N I  where 1iN  is the

cardinality of cluster 1i C ,  is the number of
ants and maxI is the maximum iteration [37]. For

m N clusters, the time complexity for steps 8 to
16 is given as  1 2

1 max1
m

ii O N I

 . The overall

time complexity complexityT of the algorithm is
given as

    1 2

1 max1 .m
complexity iiT O mNI O N I


 

On the other hand the time complexity of
Algorithm 2 can be analysed as nested loop (the
outer loop and the inner loop), The outer loop
(Step 6 to 39) in the algorithm iterates over each
SN from the initial route PP . This loop has a time
complexity of   ,O N the inner loop (Step 10 to
15) iterates over the elements in each SNs group.
The overall time complexity of algorithm 2 can
be approximated as  2 .O N For algorithm 3, the

time complexity is given as  2 ,O n where n is
set of all SNs of the intermediate route QQ and

.n N
Figure 3
Sensory field of area 2400�400 m with 20 SNs
randomly deployed.

3. 4 Illustrative Example
We give now an illustrative example to show how the
framework works till it finds the final (hovering) route
RR .
In this example, the set �1,2,3,...,20�S of 20 SNs
are randomly deployed in an area of 2400�400 m
depicted visually in Figure 3, with the lookup table T
as shown in Table 1.

3.4.1 Generating the Initial Route PP
As per steps 1-2 in Algorithm 1, the K-means
clustering algorithm is told to divide the 20 SNs into

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route
 Input: Intermediate (hovering) route QQ

 1 2 n�q ,q ,...,q �, where jq is the j th
hovering location, and the corresponding 𝑛𝑛
reading lists nnLL ,,LL ,,,,LL1 2 .

 Output: UAV nal route RR 1 2� , ,..., �,nr r r
where jr is the j th hovering location, and
then collection lists 1 2  nnLL ,,LL ,,,,LL ..

1  1 2, ,..., nq q qΠ //Set of all elements

of the intermediate route QQ into a set.
2 Apply the ACO algorithm to Π to nd the

shortest path RR that traverses the points of
Π starting at location 1q .

3 Relabel each reading list iiLL to match the

relabelling of each iq to the corresponding

,jr , 1,2,..., .i j n

 starting at
location 1q .

3 Relabel each reading list iL to match the relabelling
of each iq to the corresponding ,jr , 1,2,..., .i j n=

877Information Technology and Control 2024/3/53

Figure 3
Sensory field of area 400 × 400 m2 with 20 SNs randomly
deployed

algorithm is basically some permutation γ, say, of the
set Π , noting that each element iq preserves with it its
associated collection list iiLL . That is, as the elements
of Π are permuted by γ, the collection lists will be
permuted by the same γ. The algorithm outputs a final
hovering route   1 2R , ,..., ,nr r r where RR is basically
some passive permutation γ of the set

 1 2, ,..., nq q qΠ . If, for simplicity, we consider

𝛾𝛾 to be a permutation of the set  1,2,..., ,n rather than

the set of HLs, then for each  1,2,..., ,i n the 𝑖𝑖 th

element of RR is just element � �iq of the setΠ , i.e.

 
i ir q .

3.3.4 Time Complexity

Complexity analysis of Algorithm 1. For N SNs,
m N clusters and number of itreations I , the

time complexity of the K ‐means clustering
algorithm in step 2 is given as  O mNI [43]. The
time complexity of ACO algorithm in step 14 is
given as  2

1 max ,iO N I  where 1iN  is the

cardinality of cluster 1i C ,  is the number of
ants and maxI is the maximum iteration [37]. For

m N clusters, the time complexity for steps 8 to
16 is given as  1 2

1 max1
m

ii O N I

 . The overall

time complexity complexityT of the algorithm is
given as

    1 2

1 max1 .m
complexity iiT O mNI O N I


 

On the other hand the time complexity of
Algorithm 2 can be analysed as nested loop (the
outer loop and the inner loop), The outer loop
(Step 6 to 39) in the algorithm iterates over each
SN from the initial route PP . This loop has a time
complexity of   ,O N the inner loop (Step 10 to
15) iterates over the elements in each SNs group.
The overall time complexity of algorithm 2 can
be approximated as  2 .O N For algorithm 3, the

time complexity is given as  2 ,O n where n is
set of all SNs of the intermediate route QQ and

.n N
Figure 3
Sensory field of area 2400�400 m with 20 SNs
randomly deployed.

3. 4 Illustrative Example
We give now an illustrative example to show how the
framework works till it finds the final (hovering) route
RR .
In this example, the set �1,2,3,...,20�S of 20 SNs
are randomly deployed in an area of 2400�400 m
depicted visually in Figure 3, with the lookup table T
as shown in Table 1.

3.4.1 Generating the Initial Route PP
As per steps 1-2 in Algorithm 1, the K-means
clustering algorithm is told to divide the 20 SNs into

3m clusters. The three clusters are

Algorithm 3: Final (hovering) route
 Input: Intermediate (hovering) route QQ

 1 2 n�q ,q ,...,q �, where jq is the j th
hovering location, and the corresponding 𝑛𝑛
reading lists nnLL ,,LL ,,,,LL1 2 .

 Output: UAV nal route RR 1 2� , ,..., �,nr r r
where jr is the j th hovering location, and
then collection lists 1 2  nnLL ,,LL ,,,,LL ..

1  1 2, ,..., nq q qΠ //Set of all elements

of the intermediate route QQ into a set.
2 Apply the ACO algorithm to Π to nd the

shortest path RR that traverses the points of
Π starting at location 1q .

3 Relabel each reading list iiLL to match the

relabelling of each iq to the corresponding

,jr , 1,2,..., .i j n

3.4. Illustrative Example
We give now an illustrative example to show how
the framework works till it finds the final (hovering)
route R .
In this example, the set {1,2,3,...,20}=S of 20 SNs
are randomly deployed in an area of 2400×400 m de-
picted visually in Figure 3, with the lookup table T as
shown in Table 1.

3.4.1. Generating the Initial Route P
As per steps 1-2 in Algorithm 1, the K-means clustering
algorithm is told to divide the 20 SNs into = 3m clus-
ters. The three clusters are {11,6,8,14,15,16,4,3,20},
{5,12,7,13,17,10}, {1,2,19,18,9} as shown in Fig-
ure 3. The centroids of these three clusters when
calculated are found to be 1 (178.88,317.96),c =

2 (305,70.75)c = and 3 (67.78,138.03)c = , respec-
tively.
As per the for loop in Algorithm 1, ACO will start
working in the cluster containing this start SN, no.
11, i.e. the cluster with centroid ()1c = 178.88,317.96 .
Invoking the ACO algorithm for the SNs of cluster
1, with SN 11 as a start SN, step 6 in the Algorithm 1
yields the sub-route

11,6,8,14,15,16,4,3,20 , 5,12,7,13,17,10 ,
1,2,19,18,9 as shown in Figure 3. The centroids of

these three clusters when calculated are found to be
1 178.88,317.96 ,c  2 305,70.75c  and

3 67.78,138.03c  , respectively.

Table 1
The lookup table which contains the SNs information
ID Position ID Position
1 (111.27, 74.59) 11 (73.4, 392.18)
2 (47.12, 102.24) 12 (375.89, 138.02)
3 (214.58, 299.89) 13 (264.49, 11.18)
4 (131.9, 304.77) 14 (107.34, 297.04)
5 (227.09, 89.6) 15 (271.19, 255.15)
6 (141.13, 369.26) 16 (282.61, 383.4)
7 (346.31, 57.96) 17 (327.82, 110.02)
8 (208.85, 261.35) 18 (68.04, 161.7)
9 (35.49, 226.68) 19 (76.96, 124.96)
10 (284.4, 17.69) 20 (178.94, 298.58)

As per the for loop in Algorithm 1, ACO will start
working in the cluster containing this start SN, no. 11,
i.e. the cluster with centroid  1c 178.88,317.96 .
Invoking the ACO algorithm for the SNs of cluster 1,
with SN 11 as a start SN, step 6 in the Algorithm 1
yields the sub-route

  1P 11,6,4,14,20,3,8,15,16 , 3

whose length, using the lookup table T, is 500.05 m.
Calculate the distances from SN 16 to centroid 2c and

3c which gives, 313.45 m and 326.13, respectively.
The centroid 2c of cluster 2 is the closest centroid to
SN 16 . To traverse cluster 2, we find in it the SN
closest to the end SN of 1PP , namely 16 , by calculating
the distances between SN 16 and all the SNs of
cluster 2. This calculation is shown in Table 2, from
which we find that the subroute 2PP of cluster 2 should
start with SN 12 which has the smallest distance
262.51 m with SN 16 . When the ACO algorithm is
given 2 12,17,7,10,13,5e S and SN 12 as start
SN as input, it outputs the subroute

 2P 12,17,7,10,13,5 , 4

whose length, using the lookup table T, is 292.56 m.

In a similar manner, to traverse cluster 3, we find in it
the SN closest to the end SN of PP2 , namely 5, by
calculating the distances between SN 5 and all the
SNs of cluster 3 as shown in Table 3. This calculation
shows that the subroute PP2 should start with SN 1

which has the smallest distance  116.79 m with SN
5 . When the ACO algorithm is given

3 1,2,19,18,9e S and SN 1 as start SN as input,
it outputs the subroute

 3P 1,19,2,18,9 , (5)

whose length, using the lookup table T, is 234.16 m.
Referring to Figure 3, using step 12 in algorithm 1, the
initial route PP is given by concatenating the three
subroutes (3)-(5) getting

 1 2 3PP PP ,,PP ,,PP ..

 11,6,4,14,20,3,8,15,16,12,17,7,
10,13,5,1,19,2,18,9 , (6)

whose length, by summing the lengths of the three
subroutes and connection line lengths, is

1406.07 1.4 km.

Table 2
 Distance between the SN 16 to other SNs in cluster 2

ID Distance(m)
12 262.51
17 277.09
7 331.62
10 365.71
13 372.66
5 299.0

Table 3
 Distance between the SN 5 to other SNs in cluster 3

ID Distance(m)
1 116.79
19 154.24
2 180.41
18 174.63
9 235.59

3.4.2 Generating the (Hovering)
Intermediate Route QQ

In this example, we set the UAV height  80h m and
the UAV to the edge SN distance 88 m.d  Using
Figure 2, the UAV radius UR is calculated to 36.66 m.
Applying steps 1 through 5 in Algorithm 2, 1 LL :: ,,
QQ :: ,, and : .C Then follow steps 7 and 8, the
set C is updated to : 11C with centroid

1 73.4,392.18 .c  Using step 11, the distance sd

from the SN 11 to the c is calculated to 0 m. Since sd

satisfies the condition in steps 16 in Algorithm 2, then

1LL is updated to 1 11   LL :: ..

Carrying out steps 6 to 39 yields, 1 11 6   LL :: ,, .. and

: 11,6,4C with centroid  1 107.3,380.7 .c 

(3)

Table 1
The lookup table which contains the SNs information

ID Position ID Position

1 (111.27, 74.59) 11 (73.4, 392.18)

2 (47.12, 102.24) 12 (375.89, 138.02)

3 (214.58, 299.89) 13 (264.49, 11.18)

4 (131.9, 304.77) 14 (107.34, 297.04)

5 (227.09, 89.6) 15 (271.19, 255.15)

6 (141.13, 369.26) 16 (282.61, 383.4)

7 (346.31, 57.96) 17 (327.82, 110.02)

8 (208.85, 261.35) 18 (68.04, 161.7)

9 (35.49, 226.68) 19 (76.96, 124.96)

10 (284.4, 17.69) 20 (178.94, 298.58)

whose length, using the lookup table T, is 500.05 m.
Calculate the distances from SN 16 to centroid 2c and

3c which gives, 313.45 m and 326.13, respectively.
The centroid 2c of cluster 2 is the closest centroid
to SN 16 . To traverse cluster 2, we find in it the SN
closest to the end SN of 1P , namely 16 , by calculat-
ing the distances between SN 16 and all the SNs of
cluster 2. This calculation is shown in Table 2, from
which we find that the subroute 2P of cluster 2 should
start with SN 12 which has the smallest distance
262.51 m with SN 16 . When the ACO algorithm is
given 2() {12,17,7,10,13,5}e =S and SN 12 as start
SN as input, it outputs the subroute

11,6,8,14,15,16,4,3,20 , 5,12,7,13,17,10 ,
1,2,19,18,9 as shown in Figure 3. The centroids of

these three clusters when calculated are found to be
1 178.88,317.96 ,c  2 305,70.75c  and

3 67.78,138.03c  , respectively.

Table 1
The lookup table which contains the SNs information
ID Position ID Position
1 (111.27, 74.59) 11 (73.4, 392.18)
2 (47.12, 102.24) 12 (375.89, 138.02)
3 (214.58, 299.89) 13 (264.49, 11.18)
4 (131.9, 304.77) 14 (107.34, 297.04)
5 (227.09, 89.6) 15 (271.19, 255.15)
6 (141.13, 369.26) 16 (282.61, 383.4)
7 (346.31, 57.96) 17 (327.82, 110.02)
8 (208.85, 261.35) 18 (68.04, 161.7)
9 (35.49, 226.68) 19 (76.96, 124.96)
10 (284.4, 17.69) 20 (178.94, 298.58)

As per the for loop in Algorithm 1, ACO will start
working in the cluster containing this start SN, no. 11,
i.e. the cluster with centroid  1c 178.88,317.96 .
Invoking the ACO algorithm for the SNs of cluster 1,
with SN 11 as a start SN, step 6 in the Algorithm 1
yields the sub-route

  1P 11,6,4,14,20,3,8,15,16 , 3

whose length, using the lookup table T, is 500.05 m.
Calculate the distances from SN 16 to centroid 2c and

3c which gives, 313.45 m and 326.13, respectively.
The centroid 2c of cluster 2 is the closest centroid to
SN 16 . To traverse cluster 2, we find in it the SN
closest to the end SN of 1PP , namely 16 , by calculating
the distances between SN 16 and all the SNs of
cluster 2. This calculation is shown in Table 2, from
which we find that the subroute 2PP of cluster 2 should
start with SN 12 which has the smallest distance
262.51 m with SN 16 . When the ACO algorithm is
given 2 12,17,7,10,13,5e S and SN 12 as start
SN as input, it outputs the subroute

 2P 12,17,7,10,13,5 , 4

whose length, using the lookup table T, is 292.56 m.

In a similar manner, to traverse cluster 3, we find in it
the SN closest to the end SN of PP2 , namely 5, by
calculating the distances between SN 5 and all the
SNs of cluster 3 as shown in Table 3. This calculation
shows that the subroute PP2 should start with SN 1

which has the smallest distance  116.79 m with SN
5 . When the ACO algorithm is given

3 1,2,19,18,9e S and SN 1 as start SN as input,
it outputs the subroute

 3P 1,19,2,18,9 , (5)

whose length, using the lookup table T, is 234.16 m.
Referring to Figure 3, using step 12 in algorithm 1, the
initial route PP is given by concatenating the three
subroutes (3)-(5) getting

 1 2 3PP PP ,,PP ,,PP ..

 11,6,4,14,20,3,8,15,16,12,17,7,
10,13,5,1,19,2,18,9 , (6)

whose length, by summing the lengths of the three
subroutes and connection line lengths, is

1406.07 1.4 km.

Table 2
 Distance between the SN 16 to other SNs in cluster 2

ID Distance(m)
12 262.51
17 277.09
7 331.62
10 365.71
13 372.66
5 299.0

Table 3
 Distance between the SN 5 to other SNs in cluster 3

ID Distance(m)
1 116.79
19 154.24
2 180.41
18 174.63
9 235.59

3.4.2 Generating the (Hovering)
Intermediate Route QQ

In this example, we set the UAV height  80h m and
the UAV to the edge SN distance 88 m.d  Using
Figure 2, the UAV radius UR is calculated to 36.66 m.
Applying steps 1 through 5 in Algorithm 2, 1 LL :: ,,
QQ :: ,, and : .C Then follow steps 7 and 8, the
set C is updated to : 11C with centroid

1 73.4,392.18 .c  Using step 11, the distance sd

from the SN 11 to the c is calculated to 0 m. Since sd

satisfies the condition in steps 16 in Algorithm 2, then

1LL is updated to 1 11   LL :: ..

Carrying out steps 6 to 39 yields, 1 11 6   LL :: ,, .. and

: 11,6,4C with centroid  1 107.3,380.7 .c 

(4)

whose length, using the lookup table T, is 292.56 m.
In a similar manner, to traverse cluster 3, we find in it
the SN closest to the end SN of P2 , namely 5, by calcu-
lating the distances between SN 5 and all the SNs of
cluster 3 as shown in Table 3. This calculation shows
that the subroute P2 should start with SN 1 which has
the smallest distance ()116.79 m

with SN 5 . When

the ACO algorithm is given 3() {1,2,19,18,9}e =S
and SN 1 as start SN as input, it outputs the subroute

11,6,8,14,15,16,4,3,20 , 5,12,7,13,17,10 ,
1,2,19,18,9 as shown in Figure 3. The centroids of

these three clusters when calculated are found to be
1 178.88,317.96 ,c  2 305,70.75c  and

3 67.78,138.03c  , respectively.

Table 1
The lookup table which contains the SNs information
ID Position ID Position
1 (111.27, 74.59) 11 (73.4, 392.18)
2 (47.12, 102.24) 12 (375.89, 138.02)
3 (214.58, 299.89) 13 (264.49, 11.18)
4 (131.9, 304.77) 14 (107.34, 297.04)
5 (227.09, 89.6) 15 (271.19, 255.15)
6 (141.13, 369.26) 16 (282.61, 383.4)
7 (346.31, 57.96) 17 (327.82, 110.02)
8 (208.85, 261.35) 18 (68.04, 161.7)
9 (35.49, 226.68) 19 (76.96, 124.96)
10 (284.4, 17.69) 20 (178.94, 298.58)

As per the for loop in Algorithm 1, ACO will start
working in the cluster containing this start SN, no. 11,
i.e. the cluster with centroid  1c 178.88,317.96 .
Invoking the ACO algorithm for the SNs of cluster 1,
with SN 11 as a start SN, step 6 in the Algorithm 1
yields the sub-route

  1P 11,6,4,14,20,3,8,15,16 , 3

whose length, using the lookup table T, is 500.05 m.
Calculate the distances from SN 16 to centroid 2c and

3c which gives, 313.45 m and 326.13, respectively.
The centroid 2c of cluster 2 is the closest centroid to
SN 16 . To traverse cluster 2, we find in it the SN
closest to the end SN of 1PP , namely 16 , by calculating
the distances between SN 16 and all the SNs of
cluster 2. This calculation is shown in Table 2, from
which we find that the subroute 2PP of cluster 2 should
start with SN 12 which has the smallest distance
262.51 m with SN 16 . When the ACO algorithm is
given 2 12,17,7,10,13,5e S and SN 12 as start
SN as input, it outputs the subroute

 2P 12,17,7,10,13,5 , 4

whose length, using the lookup table T, is 292.56 m.

In a similar manner, to traverse cluster 3, we find in it
the SN closest to the end SN of PP2 , namely 5, by
calculating the distances between SN 5 and all the
SNs of cluster 3 as shown in Table 3. This calculation
shows that the subroute PP2 should start with SN 1

which has the smallest distance  116.79 m with SN
5 . When the ACO algorithm is given

3 1,2,19,18,9e S and SN 1 as start SN as input,
it outputs the subroute

 3P 1,19,2,18,9 , (5)

whose length, using the lookup table T, is 234.16 m.
Referring to Figure 3, using step 12 in algorithm 1, the
initial route PP is given by concatenating the three
subroutes (3)-(5) getting

 1 2 3PP PP ,,PP ,,PP ..

 11,6,4,14,20,3,8,15,16,12,17,7,
10,13,5,1,19,2,18,9 , (6)

whose length, by summing the lengths of the three
subroutes and connection line lengths, is

1406.07 1.4 km.

Table 2
 Distance between the SN 16 to other SNs in cluster 2

ID Distance(m)
12 262.51
17 277.09
7 331.62
10 365.71
13 372.66
5 299.0

Table 3
 Distance between the SN 5 to other SNs in cluster 3

ID Distance(m)
1 116.79
19 154.24
2 180.41
18 174.63
9 235.59

3.4.2 Generating the (Hovering)
Intermediate Route QQ

In this example, we set the UAV height  80h m and
the UAV to the edge SN distance 88 m.d  Using
Figure 2, the UAV radius UR is calculated to 36.66 m.
Applying steps 1 through 5 in Algorithm 2, 1 LL :: ,,
QQ :: ,, and : .C Then follow steps 7 and 8, the
set C is updated to : 11C with centroid

1 73.4,392.18 .c  Using step 11, the distance sd

from the SN 11 to the c is calculated to 0 m. Since sd

satisfies the condition in steps 16 in Algorithm 2, then

1LL is updated to 1 11   LL :: ..

Carrying out steps 6 to 39 yields, 1 11 6   LL :: ,, .. and

: 11,6,4C with centroid  1 107.3,380.7 .c 

(5)

whose length, using the lookup table T, is 234.16 m.
Referring to Figure 3, using step 12 in algorithm 1, the

Information Technology and Control 2024/3/53878

initial route P is given by concatenating the three
subroutes (3)-(5) getting

11,6,8,14,15,16,4,3,20 , 5,12,7,13,17,10 ,
1,2,19,18,9 as shown in Figure 3. The centroids of

these three clusters when calculated are found to be
1 178.88,317.96 ,c  2 305,70.75c  and

3 67.78,138.03c  , respectively.

Table 1
The lookup table which contains the SNs information
ID Position ID Position
1 (111.27, 74.59) 11 (73.4, 392.18)
2 (47.12, 102.24) 12 (375.89, 138.02)
3 (214.58, 299.89) 13 (264.49, 11.18)
4 (131.9, 304.77) 14 (107.34, 297.04)
5 (227.09, 89.6) 15 (271.19, 255.15)
6 (141.13, 369.26) 16 (282.61, 383.4)
7 (346.31, 57.96) 17 (327.82, 110.02)
8 (208.85, 261.35) 18 (68.04, 161.7)
9 (35.49, 226.68) 19 (76.96, 124.96)
10 (284.4, 17.69) 20 (178.94, 298.58)

As per the for loop in Algorithm 1, ACO will start
working in the cluster containing this start SN, no. 11,
i.e. the cluster with centroid  1c 178.88,317.96 .
Invoking the ACO algorithm for the SNs of cluster 1,
with SN 11 as a start SN, step 6 in the Algorithm 1
yields the sub-route

  1P 11,6,4,14,20,3,8,15,16 , 3

whose length, using the lookup table T, is 500.05 m.
Calculate the distances from SN 16 to centroid 2c and

3c which gives, 313.45 m and 326.13, respectively.
The centroid 2c of cluster 2 is the closest centroid to
SN 16 . To traverse cluster 2, we find in it the SN
closest to the end SN of 1PP , namely 16 , by calculating
the distances between SN 16 and all the SNs of
cluster 2. This calculation is shown in Table 2, from
which we find that the subroute 2PP of cluster 2 should
start with SN 12 which has the smallest distance
262.51 m with SN 16 . When the ACO algorithm is
given 2 12,17,7,10,13,5e S and SN 12 as start
SN as input, it outputs the subroute

 2P 12,17,7,10,13,5 , 4

whose length, using the lookup table T, is 292.56 m.

In a similar manner, to traverse cluster 3, we find in it
the SN closest to the end SN of PP2 , namely 5, by
calculating the distances between SN 5 and all the
SNs of cluster 3 as shown in Table 3. This calculation
shows that the subroute PP2 should start with SN 1

which has the smallest distance  116.79 m with SN
5 . When the ACO algorithm is given

3 1,2,19,18,9e S and SN 1 as start SN as input,
it outputs the subroute

 3P 1,19,2,18,9 , (5)

whose length, using the lookup table T, is 234.16 m.
Referring to Figure 3, using step 12 in algorithm 1, the
initial route PP is given by concatenating the three
subroutes (3)-(5) getting

 1 2 3PP PP ,,PP ,,PP ..
 11,6,4,14,20,3,8,15,16,12,17,7,
10,13,5,1,19,2,18,9 , (6)

1406.07 1.4 km.

Table 2
 Distance between the SN 16 to other SNs in cluster 2

ID Distance(m)
12 262.51
17 277.09
7 331.62
10 365.71
13 372.66
5 299.0

Table 3
 Distance between the SN 5 to other SNs in cluster 3

ID Distance(m)
1 116.79
19 154.24
2 180.41
18 174.63
9 235.59

3.4.2 Generating the (Hovering)
Intermediate Route QQ

In this example, we set the UAV height  80h m and
the UAV to the edge SN distance 88 m.d  Using
Figure 2, the UAV radius UR is calculated to 36.66 m.
Applying steps 1 through 5 in Algorithm 2, 1 LL :: ,,
QQ :: ,, and : .C Then follow steps 7 and 8, the
set C is updated to : 11C with centroid

1 73.4,392.18 .c  Using step 11, the distance sd

from the SN 11 to the c is calculated to 0 m. Since sd

satisfies the condition in steps 16 in Algorithm 2, then

1LL is updated to 1 11   LL :: ..

Carrying out steps 6 to 39 yields, 1 11 6   LL :: ,, .. and

: 11,6,4C with centroid  1 107.3,380.7 .c 

(6)

whose length, by summing the lengths of the three sub-
routes and connection line lengths, is 1406.07 ≈1.4 km.

satisfies the condition in steps 16 in Algorithm 2, then
1L is updated to 1 11 =  L : .

Carrying out steps 6 to 39 yields, 1 11 6 =  L : , .

and

: {11,6,4}=C with centroid ()1 107.3,380.7 .c =

Car-

rying out steps 6 to 39 again shows that SN 4 along
the initial route does not satisfy the condition at step
16. As a result, the collection list 1L

is closed with

()107 3 380 7 =  Q : . , . .

After executing steps from 6 to

39 in Algorithm 2 N times, the intermediate route
is completely generated by adding all the resulting
centroids to Q , getting the elements of Q as shown
in Table 4.Table 2

Distance between the SN 16 to other SNs in cluster 2

ID Distance(m)

12 262.51

17 277.09

7 331.62

10 365.71

13 372.66

5 299.0

Table 3
Distance between the SN 5 to other SNs in cluster 3

ID Distance(m)

1 116.79

19 154.24

2 180.41

18 174.63

9 235.59

3.4.2. Generating the (Hovering) Intermediate
Route Q
In this example, we set the UAV height = 80h m
and the UAV to the edge SN distance 88 m.d = Us-
ing Figure 2, the UAV radius UR is calculated to
36.66 m. Applying steps 1 through 5 in Algorithm 2,

1 =L : [], Q : =[], and : .ϕ=C Then follow steps 7
and 8, the set C is updated to : {11}=C with centroid

1 (73.4,392.18).c = Using step 11, the distance sd from the SN 11 to the c is calculated to 0 m. Since sd

Figure 4, the composition of the set Q is visually de-
picted, wherein each element of Q corresponds to the
centroid of a distinct set of SNs enclosed within in-
dividual circles. These centroids, originating from 1q ,
collectively delineate the starting points of the UAV
HLs. The arrangement of these centroids gives rise to
the intermediate route Q. In essence, Q encapsulates
the representation of UAV HLs initiated from 1q and
encompasses the spatial distribution of SNs within
each circle.
The route length of the route Q can be easily calculat-
ed using Table 4 as 1155.95»1.2 km.

Table 4
The generated groups and their centroids

Hovering location Group

=1 (107.3,380.7)q (11, 6)

=2 (119.6,300.9)q (4, 14)

=3 (200.8,286.6)q (20, 3, 8)

=4 (271.2,255.2)q (15)

=5 (282.6,383.4)q (16)
=6 (351.9,124.0)q (12, 17)

=7 (346.3,58.0)q (7)

=8 (274.4,14.4)q (10, 13)

=9 (227.1,89.6)q (5)

=10 (94.1,99.8)q (1, 19)

=11 (57.6,132.0)q (2, 18)

=12 (35.5,226.7)q (9)

879Information Technology and Control 2024/3/53

Figure 4
The intermediate route Q consists of 12 hovering locations
of 12 groups

Carrying out steps 6 to 39 again shows that SN 4 along
the initial route does not satisfy the condition at step
16. As a result, the collection list 1LL is closed with

 107 3 380 7   QQ :: .. ,, After executing steps from 6 to
39 in Algorithm 2 N times, the intermediate route is
completely generated by adding all the resulting
centroids to QQ , getting the elements of QQ as shown in
Table 4.
Figure 4, the composition of the set QQ is visually
depicted, wherein each element of QQ corresponds to
the centroid of a distinct set of SNs enclosed within
individual circles. These centroids, originating from

1q , collectively delineate the starting points of the
UAV HLs. The arrangement of these centroids gives
rise to the intermediate route QQ.. In essence, QQ
encapsulates the representation of UAV HLs initiated
from 1q and encompasses the spatial distribution of
SNs within each circle.
Figure 4
The intermediate route QQ consists of 12 hovering locations
of 12 groups.

The route length of the route QQ can be easily
calculated using Table 4 as1155.95»1.2 km.

Table 4
The generated groups and their centroids.

Hovering location Group
1 107.3,380.7q (11, 6)

2 119.6,300.9q (4, 14)

3 200.8,286.6q (20, 3, 8)

4 271.2,255.2q (15)

5 282.6,383.4q (16)

6 351.9,124.0q (12, 17)

7 346.3,58.0q (7)

8 274.4,14.4q (10, 13)

9 227.1,89.6q (5)

10 94.1,99.8q (1, 19)

11 57.6,132.0q (2, 18)

12 35.5,226.7q (9)

3.4.3 Generating the Final Route RR
For further UAV trajectory improvement, Algorithm
3 is utilised to generate the final route RR based on the
intermediate route QQ formed in Figure 4.

This can be conducted using steps 1-3 in the
Algorithm 3, where, the ACO algorithm is applied to
obtain a new permutation of the HLs within the route
QQ to get the final route   1 2 3 12 1R , , ,..., ,r r r r r as
shown in Figure 5.

Figure 5
The final UAV route R for gathering data from 20 SNs by
hovering 12 locations.

Based on this figure and Table 5, the route length of
the final route RR is calculated using Table 5 as
1069 1.1 km.

Table 5
The final hovering locations and their associated groups.

Hovering location Group

1 107.3,380.7r  (11, 6)

2 119.6,300.9r  (4, 14)

3 35.5,226.7r  (9)

4 57.6,132.0r  (2, 18)

5 94.1,99.8r  (1, 19)

6 227.1,89.6r  (5)

7 274.4,14.4r  (10, 13)

8 346.3,58.0r  (7)

9 351.9,124.0r  (12, 17)

3.4.3. Generating the Final Route R
For further UAV trajectory improvement, Algorithm
3 is utilised to generate the final route R based on the
intermediate route Q formed in Figure 4.
This can be conducted using steps 1-3 in the Algo-
rithm 3, where, the ACO algorithm is applied to obtain
a new permutation of the HLs within the route Q to
get the final route ()= 1 2 3 12 1R , , ,..., ,r r r r r

as shown in

Figure 5.
Based on this figure and Table 5, the route length
of the final route R is calculated using Table 5 as
1069 1.1 km.≈

4. Experimental Work
To validate the proposed solution, it has been imple-
mented by the authors in Python 3.9 and the code was
used to perform several simulation experiments. A
ready-made simulation package was avoided in or-
der to ensure full control over every operational de-
tail. The experiments were conducted on a PC with
an Intel i7 processor @2.4 GHz and having 16 GB of
main memory. Table 6 summarizes the operation-

Figure 5
The final UAV route R for gathering data from 20 SNs by
hovering 12 locations

Carrying out steps 6 to 39 again shows that SN 4 along
the initial route does not satisfy the condition at step
16. As a result, the collection list 1LL is closed with

 107 3 380 7   QQ :: .. ,, After executing steps from 6 to
39 in Algorithm 2 N times, the intermediate route is
completely generated by adding all the resulting
centroids to QQ , getting the elements of QQ as shown in
Table 4.
Figure 4, the composition of the set QQ is visually
depicted, wherein each element of QQ corresponds to
the centroid of a distinct set of SNs enclosed within
individual circles. These centroids, originating from

1q , collectively delineate the starting points of the
UAV HLs. The arrangement of these centroids gives
rise to the intermediate route QQ.. In essence, QQ
encapsulates the representation of UAV HLs initiated
from 1q and encompasses the spatial distribution of
SNs within each circle.
Figure 4
The intermediate route QQ consists of 12 hovering locations
of 12 groups.

The route length of the route QQ can be easily
calculated using Table 4 as1155.95»1.2 km.

Table 4
The generated groups and their centroids.

Hovering location Group
1 107.3,380.7q (11, 6)

2 119.6,300.9q (4, 14)

3 200.8,286.6q (20, 3, 8)

4 271.2,255.2q (15)

5 282.6,383.4q (16)

6 351.9,124.0q (12, 17)

7 346.3,58.0q (7)

8 274.4,14.4q (10, 13)

9 227.1,89.6q (5)

10 94.1,99.8q (1, 19)

11 57.6,132.0q (2, 18)

12 35.5,226.7q (9)

3.4.3 Generating the Final Route RR
For further UAV trajectory improvement, Algorithm
3 is utilised to generate the final route RR based on the
intermediate route QQ formed in Figure 4.

This can be conducted using steps 1-3 in the
Algorithm 3, where, the ACO algorithm is applied to
obtain a new permutation of the HLs within the route
QQ to get the final route   1 2 3 12 1R , , ,..., ,r r r r r as
shown in Figure 5.

Figure 5
The final UAV route R for gathering data from 20 SNs by
hovering 12 locations.

Based on this figure and Table 5, the route length of
the final route RR is calculated using Table 5 as
1069 1.1 km.

Table 5
The final hovering locations and their associated groups.

Hovering location Group

1 107.3,380.7r  (11, 6)

2 119.6,300.9r  (4, 14)

3 35.5,226.7r  (9)

4 57.6,132.0r  (2, 18)

5 94.1,99.8r  (1, 19)

6 227.1,89.6r  (5)

7 274.4,14.4r  (10, 13)

8 346.3,58.0r  (7)

9 351.9,124.0r  (12, 17)

Table 5
The final hovering locations and their associated groups

Hovering location Group

1 (107.3,380.7)r = (11, 6)

2 (119.6,300.9)r = (4, 14)

3 (35.5,226.7)r = (9)

4 (57.6,132.0)r = (2, 18)

5 (94.1,99.8)r = (1, 19)

6 (227.1,89.6)r = (5)

7 (274.4,14.4)r = (10, 13)

8 (346.3,58.0)r = (7)

9 (351.9,124.0)r = (12, 17)

10 (271.2,255.2)r = (15)

11 (200.8,286.6)r = (20, 3, 8)

12 (182.6,383.4)r = (16)

Information Technology and Control 2024/3/53880

al simulation parameters. At first, we carried out an
experiment to make sure that the three phases of the
solution produce progressively shorter routes as in-
tended, monitoring at the same time the operational
parameters under which the solution performs best.
In this experiment, we calculated the lengths of the
initial route P , intermediate route Q and final route
R under different operational scenarios, with the re-
sults shown in Figures 6-7. The aim of the first exper-
iment is to investigate whether the three phases of the
framework mange to produce a progressively shorter
route, regardless of the area of the sensory field. Fig-
ure 7 indicates that the answer is: yes. The figure
shows the lengths of the three routes, initial, inter-
mediate, and final, versus the area of the sensory field,
when 500 SNs are randomly deployed in the field.

Table 6
Simulation parameters

Parameters value

N 200, 500, 1000, 1500 SNs

m 1,2, . . . ,12 clusters

Monitoring Area (km2) 4, . . . ,16

SN transmission range 50 m

AUV’s height(m) 40, 60, 100 m

UAV footprint, Ru Calculated

Number of ants 20

Number of iterations 150, 250

The pheromone evaporation
rate, ρ 0.05

The relative influence of the
pheromone trail, α 1

Heuristic information, β 1

At the outset, we can see that the route length is a
function of both the deployment area and the num-
ber of SNs, which means that we have two elements
to investigate. First, we notice that the length of each
of the three routes increases as the sensing area size
increases. This is natural, for when the SNs are de-
ployed all over a larger area, the route that traverses
them will necessarily be longer.

Figure 6
The UAV routes length (km) in small and large scale area
with N= 500 SNs

We note in passing, however, that the rate of route
length increase starts to slow down after a certain
threshold (≈12) which means that the solution is
more effective in large areas than in small areas.
That is good since, after all, it is large areas that war-
rant the use of UAV anyway. The more important ob-
servation in the Figure is that, regardless of the area
size, the route length produced by each of the three
phases gets progressively shorter as we move to a
higher phase, regardless of the area. That is why the
uppermost curve represents the initial route and the
lowermost represents the final route, with the mid-
dle curve being the intermediate route. This confirms
that the three phases of the solution are essential to
produce the shortest route for any given sensory area
size. For any area size, it can be seen that for any area
the initial route (uppermost) is the longest, followed
by the intermediate route (middle), followed by the
final route (lowermost).
The second experiment, whose results are shown in
Figure 7, is similar to the first, except that the number
of deployed SNs is smaller, namely 200 SNs. As such,
the comments on the former figure still apply, but
a couple of interesting observations here are worth
mentioning. First, the length of all three routes in-
creases with the sensing area size more slowly than
was the case of 500 SNs. This is logical as when the
number of SNs is small, increasing the deployment
area size will not proportionally increase the hops be-
tween those SNs. We also notice that the difference in

881Information Technology and Control 2024/3/53

Figure 7
The UAV routes length (km) in small and large scale area
with N= 200 SNs

length between the three routes is not as significant
as it was in the previous case of 500 SNs. This means
that the proposed solution is more useful when there
is a large number of SNs deployed.
Having verified that the three phases are successful in
shortening the UAV route as progressively as intend-
ed, we move next to analyzing the impact of clustering,
done at Phase I, on the performance of the solution.
To this end we conducted the third experiment to in-
spect the initial route length for different numbers of
clusters. This experiment holds great significance be-
cause, as we explained in the above two experiments,
a short initial route results necessarily in a short in-
termediate route and hence a short final route.
Figure 8, shows how the number m of clusters affects
the length of the initial route P , for various numbers
of SNs deployed over the same square area of 4×4 km2.
The leftmost point on any of the three curves signifies
the scenario of no clustering, which involves employ-
ing ACO on the complete set S of deployed SNs. As
can be seen, this point corresponds to the longest ini-
tial route P. As the set is partitioned into an increas-
ing number of clusters, the length of the route decreas-
es correspondingly. This observation lends support
to the proposition that the ACO algorithm performs
more effectively when applied to a reduced number of
nodes, thereby justifying the structure of the proposed
solution. One should not, however, be encouraged to
increase the number of clusters dramatically, as the
length would not necessarily decrease proportionally,
as can be seen from curves. On the other hand, when

examining the curves vertically and analyzing their re-
sponse to changes in the number of nodes, it becomes
apparent that a smaller number of sensory nodes with-
in the sensory field results in a shorter initial route
length. After all, the route connects the SNs, so when
their number increases the length of the route increas-
es as well. However, the increase is not proportional
as we can see from the uppermost (N=1500 SNs) and
lowermost (N = 500 SNs) curves. When the number of
SNs is tripled, the length of the route almost doubled
only, regardless of the number of clusters. This is un-
derstandable as the deployment area remains the same
in both cases. We also have several more observations.
First, we will notice that, regardless of the number of
deployed SNs, as the number of clusters increases,
the length of the initial route decreases. For example,
if we stop at the point where the number of clusters is
6, i.e. m = 6, we will find that the initial route is longest
when there are N = 1500 SNs and shortest when there
are N = 500 SNs. This is logical as the initial route
traverses all existing SNs, so the more SNs the longer
the traversal path.
Second, for the same number N of SNs, the initial
route gets shorter as the number of clusters gets larg-
er. This again makes sense, as increasing the number
of clusters, decreases the number of SNs within each
cluster which in turn helps ACO to reach an optimal
sub_route within the cluster. This effect seems more
evident in the case when the number of SNs is large

Figure 8
The cost of the initial route, P, in km and area 4×4 km2 with
different values of cluster number m and sensor number N

Information Technology and Control 2024/3/53882

than in the case when the number is small. For exam-
ple, the slope of the uppermost curve is largest and
that of the lowermost is smallest. The reason is that
if the number of deployed SNs is small, then cluster-
ing will not bring down the number in each cluster too
much. Conversely, more clustering of a large number
of SNs will dramatically decrease the number within
each cluster. That is clustering is more effective when
the overall number of deployed SNs is large.
The fourth experiment, whose results are shown in
Figure 9, is similar to the third, except that we have
now a sensing area square of side 2 km. So, we expect
similar observations, with some differences as follows.
First, the length of the initial route here is smaller, for
the same number of SNs. This is logical, since if we de-
ployed the same number of SNs in two areas, one small
and one large, the distances between the SNs would be
longer in the latter case. Thus, regardless of any short-
est path traversing obtained, the former would certain-
ly be larger than the latter. Second, the rate of decrease
of route length is also now smaller, regardless of the
number N of SNs, as can be seen from the lower slopes
of the three curves. This means it pays more to increase
the number of clusters of the solution in a large senso-
ry area than in a small sensory area, regardless of the
number of SNs. This can be interpreted by observing
that, for the same number of SNs, the distances be-
tween the SNs in a large area would be longer than in
a small area. Thus, if a percentage decrease is exerted
on both, it would be more noticeable in the large area.
However, once again, one should not be encouraged to

increase the number of clusters dramatically, as the
route length would not necessarily decrease propor-
tionally, as can be seen from the right half of the curves.
Third, if we look at the curves vertically and focus on
the behavior of the route length as the number of SNs
changes, we will notice that the less SNs in the sensory
field the shorter the length of the initial route. After all,
the route connects the SNs, so when their number in-
creases the length of the route increases as well.
By comparing Figures 8 and 9, we can see that the de-
crease in route length due to clustering is more pro-
nounced when the sensing area gets larger. We note
also that the decrease in length due to the number of
SNs, regardless of the number of clusters, is more pro-
nounced when the number of SNs gets larger.
Finally, to evaluate the performance of the proposed
solution objectively, we ran a comparison experiment
to test the proposed solution against four similar
solutions recently published, namely in [56], [41], [49]
and [29].
The experiment used a square sensory field of side
500 m, where 100 SNs were randomly deployed. The
altitude of flight is 30 m and the SN transmission
range is 50 m. The final route of the proposed ap-
proach is determined by considering these parame-
ters. Four different scenarios are analyzed and their
outcomes are averaged to obtain a comparative value.
In the first scenario, the route is computed commenc-
ing from the leftmost SN within the designated region.
Conversely, in the second scenario, the route is calcu-
lated from the rightmost SN in the same region. The
third scenario involves computing the route starting
from the highest SN within the said area. Finally, the
fourth scenario computes the route starting from the
lowest SN within the designated area. Table 7 shows
the results and average of the four experiments.

Figure 9
The cost of the route, P within area 2×2 km2, different
values of cluster number m and sensor number N

Table 7
The results of final route calculation using four different
scenarios

Start SN Final route

left(km) 2.911975

right(km) 2.741445

above(km) 2.825351

below(km) 2.7728

Avg(km) 2.812892

883Information Technology and Control 2024/3/53

The results of the experiment are shown in Figure 10,
where it can be seen vividly that the proposed solu-
tion produces a DC route 19.28% shorter than the
shortest route produced by the four competitive solu-
tions. That is a great savings that is reflected not only
on the energy consumption of the UAV, but also on the
latency of the data.

look at the curves vertically and focus on the behavior
of the route length as the number of SNs changes, we
will notice that the less SNs in the sensory field the
shorter the length of the initial route. After all, the
route connects the SNs, so when their number
increases the length of the route increases as well.
Figure 9

The cost of the route, PP within area 2×2 km2, different
values of cluster number m and sensor number N.

By comparing Figures 8 and 9, we can see that the
decrease in route length due to clustering is more
pronounced when the sensing area gets larger. We
note also that the decrease in length due to the number
of SNs, regardless of the number of clusters, is more
pronounced when the number of SNs gets larger.
Finally, to evaluate the performance of the proposed
solution objectively, we ran a comparison experiment
to test the proposed solution against four similar
solutions recently published, namely in [56], [41],
[49] and [29].
The experiment used a square sensory field of side
500 m, where 100 SNs were randomly deployed. The
altitude of flight is 30 m and the SN transmission
range is 50 m. The final route of the proposed
approach is determined by considering these
parameters. Four different scenarios are analyzed and
their outcomes are averaged to obtain a comparative
value. In the first scenario, the route is computed
commencing from the leftmost SN within the
designated region. Conversely, in the second scenario,
the route is calculated from the rightmost SN in the
same region. The third scenario involves computing
the route starting from the highest SN within the said
area. Finally, the fourth scenario computes the route
starting from the lowest SN within the designated
area. Table 7 shows the results and average of the four
experiments.
Table 7
The results of final route calculation using four different
scenarios

Start SN Final route

left(km) 2.911975

right(km) 2.741445

above(km) 2.825351

below(km) 2.7728

Avg(km) 2.812892

The results of the experiment are shown in Figure 10,
where it can be seen vividly that the proposed solution
produces a DC route 19.28% shorter than the shortest
route produced by the four competitive solutions. That
is a great savings that is reflected not only on the
energy consumption of the UAV, but also on the
latency of the data.
Figure 10
The UAV route length within area 500×500 m2, N = 100 and
the SN transmission range 50 m.

The energy consumption evaluation of the proposed
solution is conducted using the simplest energy radio
communication model in [31] on the part of the SN.
In this model, SN transmitters consume energy for
radio electronics and power amplifiers, while SN
receivers dissipate energy on radio electronics. The
energy consumption for transmitting b bits over a
distance jd from SN j to UAV is denoted as

 ,Tx jE b d and expressed as:

 

 

 

2

4

,

, .
 7

,

Tx j

elec fs j j thr

elec mp j j thr

E b d

b E d d d

b E d d d



     
    







where elecE represents the energy dissipated per bit by
the transmitter or receiver circuit. The coefficients of
free space and multipath fading channel are denoted
as fs and mp , respectively. The transmission
distance threshold thrd is given as





fs

thr
mp

d . (8)

The expended energy RxE b to receive a b-bit packet

(8)

The expended energy ()RxE b to receive a b-bit packet
is given as

is given as

  .Rx elecE b b E (9)

Using Equations (7)-(9), the total energy consumption
of the proposed solution is compared to five
alternative methods, namely, LEACH-B [47], BPK-
means [46], Park’s approach [32], mk-means and NG-
WSNs [22]. To ensure a fair comparison, we
conducted an experiment using identical
environmental parameter values as presented in [22].
In this experiment, a total of 100 SNs are deployed in
a field with an area of 100×100 m2, the data packet
size is 3200 bits, 50elecE  nJ/bit, 10fs 
pJ/bit/m2, 0.0013mp  pJ/bit/m4 and each SN is
initially provided with an energy value of 1 joule. The
UAV operates at an altitude of 25 m, while the
transmission range of the SNs is set to 30 m.
Figure 11
Energy consumption comparison: Proposed solution vs.
alternative methods

Figure 11 compares the total energy consumption
across rounds. Initially, when the rounds are below
400, all methods exhibit similar energy usage.
However, beyond 400 rounds, the alternative methods
consume more power than the proposed solution. By
the 3000-round mark, more than 99% of total energy
in the alternative methods is depleted, while the
proposed solution retains 44% energy in most SNs,
ensuring an extended network lifetime. This
highlights the proposed solution’s ability to keep
more SNs operational for a longer duration compared
to the alternative methods.

5. Conclusions
In this article we have presented a comprehensive
solution to collect data from a large number of SNs
deployed over a wide geographical area using a UAV.
The solution is composed of three phases, each intended
to output a route for the UAV shorter than that outputted
by the previous phase. We use K-means in Phase I to
partition the set of SNs into clusters. This has proved,
from the experimental work carried out, fruitful in two
respects. First, it helps the optimization algorithm,
ACO, to reach an optimal solution, i.e. a shortest path
traversing the SNs of the cluster. Second, it guarantees
reaching this solution quickly. We develop an ingenious
method to connect the shortest paths of the clusters

together, obtaining an initial route that traverses all the
SNs. In Phase II, we group the SNs along the initial
route, with each group just fitting within the footprint of
the UAV. The reason behind this is allow the UAV to
collect the data of the entire group in one stop, hovering,
above the centroid of the group. The collection of all the
centroids forms the intermediate route. In Phase III, we
apply again the optimization algorithm, ACO, to
rearrange the centroids of the group to hopefully form a
route that is shorter than the intermediate route. The
rationale for this iterative application of ACO is that the
distribution of the generated centroids has changed
within the monitoring area. By reapplying ACO, we aim
to construct a final route that is optimized for the
updated distribution, ultimately yielding a route shorter
than the intermediate one. The experimental work
demonstrates that the solution works perfectly as
intended. When its output, the final route, is compared
with the output of four state of the art competitive
solutions, it came out about 19.28% shorter than the
shortest route of the four solutions. Finally, the proposed
solution outperforms alternative competitive methods in
terms of energy consumption and network lifetime.

References
1. Abdolreza, H., Salwani, A., Hossein, N. A

Combined Approach for Clustering Based On
K-Means and Gravitational Search
Algorithms. Swarm and Evolutionary
Computation, 2012, 6, 47-52. DOI:
10.1016/j.swevo.2012.02.003

2. Abu-Baker, A., Shakhatreh, H., Sawalmeh, A.,
Alenezi, A. H. Efficient Data Collection in
UAV-Assisted Cluster-Based Wireless Sensor
Networks for 3d Environment: Optimization
Study. Journal of Sensors, 2023, 2023(1),
9513868. DOI: 10.1155/2023/9513868

3. Agarwal, V., Tapaswi, S., Chanak, P. Energy-
Efficient Mobile Sink-Based Intelligent Data
Routing Scheme for Wireless Sensor
Networks. IEEE Sensors Journal, 2022,
22(10), 9881–9891. DOI:
10.1109/JSEN.2022.3164944

4. Ahn, H., Cho, H. J. Research of Multi-Object
Detection and Tracking Using Machine
Learning Based on Knowledge for Video
Surveillance System. Personal and Ubiquitous
Computing, 2022, 26(2), 385–394. DOI:
10.1007/s00779-019-01296-z

5. Albu-Salih, A. T., Seno, S. A. H. Energy-
Efficient Data Gathering Framework-Based
Clustering Via Multiple UAVs in Deadline-
Based WSN Applications. IEEE Access, 2018,
6, 72275–72286. DOI:
10.1109/ACCESS.2018.2882161

6. Amar, M. A., Khaznaji, W., Horchani, L. Ptsp
Solution Strategy for Motion Trajectory of
UAV in Ubiquitous Sensor Network. Procedia
Computer Science, 2020, 176, 3191–3199.
DOI: 10.1016/j.procs.2020.09.130

7. Baek, J., Han, S. I., Han, Y. Energy-Efficient
UAV Routing for Wireless Sensor Networks.
IEEE Transactions on Vehicular Technology,

(9)

Using Equations (7)-(9), the total energy consump-
tion of the proposed solution is compared to five
alternative methods, namely, LEACH-B [47], BPK-
means [46], Park’s approach [32], mk-means and
NG-WSNs [22]. To ensure a fair comparison, we
conducted an experiment using identical environ-
mental parameter values as presented in [22]. In
this experiment, a total of 100 SNs are deployed in a
field with an area of 100×100 m2, the data packet size
is 3200 bits, 50elecE = nJ/bit, 10fsΦ = pJ/bit/m2,

0.0013mpΦ =

pJ/bit/m4 and each SN is initially pro-

vided with an energy value of 1 joule. The UAV op-
erates at an altitude of 25 m, while the transmission
range of the SNs is set to 30 m.

Figure 10
The UAV route length within area 500×500 m2, N = 100 and
the SN transmission range 50 m

The energy consumption evaluation of the proposed
solution is conducted using the simplest energy radio
communication model in [31] on the part of the SN. In
this model, SN transmitters consume energy for radio
electronics and power amplifiers, while SN receiv-
ers dissipate energy on radio electronics. The energy
consumption for transmitting b bits over a distance

jd

from SN j to UAV is denoted as (),Tx jE b d

and

expressed as:

 
 
 

2

4

,
, .
,

Tx j

elec fs j j thr

elec mp j j thr

E b d
b E d d d
b E d d d
    
 


   





(7)

where elecE represents the energy dissipated per bit by
the transmitter or receiver circuit. The coefficients of
free space and multipath fading channel are denoted
as fsΦ and mpΦ , respectively. The transmission dis-
tance threshold thrd is given as

Figure 11
Energy consumption comparison: Proposed solution vs.
alternative methods

Figure 11 compares the total energy consumption
across rounds. Initially, when the rounds are below
400, all methods exhibit similar energy usage. How-
ever, beyond 400 rounds, the alternative methods
consume more power than the proposed solution. By
the 3000-round mark, more than 99% of total energy

Information Technology and Control 2024/3/53884

in the alternative methods is depleted, while the pro-
posed solution retains 44% energy in most SNs, en-
suring an extended network lifetime. This highlights
the proposed solution’s ability to keep more SNs op-
erational for a longer duration compared to the alter-
native methods.

5. Conclusions
In this article we have presented a comprehensive
solution to collect data from a large number of SNs
deployed over a wide geographical area using a UAV.
The solution is composed of three phases, each in-
tended to output a route for the UAV shorter than that
outputted by the previous phase. We use K-means in
Phase I to partition the set of SNs into clusters. This
has proved, from the experimental work carried out,
fruitful in two respects. First, it helps the optimiza-
tion algorithm, ACO, to reach an optimal solution,
i.e. a shortest path traversing the SNs of the cluster.
Second, it guarantees reaching this solution quick-
ly. We develop an ingenious method to connect the
shortest paths of the clusters together, obtaining an

initial route that traverses all the SNs. In Phase II, we
group the SNs along the initial route, with each group
just fitting within the footprint of the UAV. The rea-
son behind this is allow the UAV to collect the data of
the entire group in one stop, hovering, above the cen-
troid of the group. The collection of all the centroids
forms the intermediate route. In Phase III, we apply
again the optimization algorithm, ACO, to rearrange
the centroids of the group to hopefully form a route
that is shorter than the intermediate route. The ratio-
nale for this iterative application of ACO is that the
distribution of the generated centroids has changed
within the monitoring area. By reapplying ACO, we
aim to construct a final route that is optimized for
the updated distribution, ultimately yielding a route
shorter than the intermediate one. The experimental
work demonstrates that the solution works perfectly
as intended. When its output, the final route, is com-
pared with the output of four state of the art compet-
itive solutions, it came out about 19.28% shorter than
the shortest route of the four solutions. Finally, the
proposed solution outperforms alternative compet-
itive methods in terms of energy consumption and
network lifetime.

References
1. Abdolreza, H., Salwani, A., Hossein, N. A Combined

Approach for Clustering Based On K-Means and Grav-
itational Search Algorithms. Swarm and Evolutionary
Computation, 2012, 6, 47-52. https://doi.org/10.1016/j.
swevo.2012.02.003

2. Abu-Baker, A., Shakhatreh, H., Sawalmeh, A., Alen-
ezi, A. H. Efficient Data Collection in UAV-As-
sisted Cluster-Based Wireless Sensor Net-
works for 3d Environment: Optimization Study.
Journal of Sensors, 2023, 2023(1), 9513868. https://doi.
org/10.1155/2023/9513868

3. Agarwal, V., Tapaswi, S., Chanak, P. Energy-Efficient
Mobile Sink-Based Intelligent Data Routing Scheme
for Wireless Sensor Networks. IEEE Sensors Jour-
nal, 2022, 22(10), 9881-9891. https://doi.org/10.1109/
JSEN.2022.3164944

4. Ahn, H., Cho, H. J. Research of Multi-Object Detec-
tion and Tracking Using Machine Learning Based on
Knowledge for Video Surveillance System. Person-
al and Ubiquitous Computing, 2022, 26(2), 385-394.
https://doi.org/10.1007/s00779-019-01296-z

5. Albu-Salih, A. T., Seno, S. A. H. Energy-Efficient Data
Gathering Framework-Based Clustering Via Multiple
UAVs in Deadline-Based WSN Applications. IEEE Ac-
cess, 2018, 6, 72275-72286. https://doi.org/10.1109/AC-
CESS.2018.2882161

6. Amar, M. A., Khaznaji, W., Horchani, L. Ptsp Solution
Strategy for Motion Trajectory of UAV in Ubiquitous
Sensor Network. Procedia Computer Science, 2020, 176,
3191-3199. https://doi.org/10.1016/j.procs.2020.09.130

7. Baek, J., Han, S. I., Han, Y. Energy-Efficient UAV Rout-
ing for Wireless Sensor Networks. IEEE Transac-
tions on Vehicular Technology, 2019, 69(2), 1741-1750.
https://doi.org/10.1109/TVT.2019.2959808

8. Bouhamed, O., Ghazzai, H., Besbes, H., Massoud, Y. A
UAV-Assisted Data Collection for Wireless Sensor
Networks: Autonomous Navigation and Scheduling.
IEEE Access, 2020, 8, 110446-110460. https://doi.
org/10.1109/ACCESS.2020.3002538

9. Cameron, P. J. Combinatorics: Topics, Techniques, Al-
gorithms. Cambridge University Press, 1994. https://
doi.org/10.1017/CBO9780511803888

885Information Technology and Control 2024/3/53

10. Chang, C. Y., Chen, S. Y., Chang, I. H., Yu, G. J., Roy,
D.S. Multirate Data Collection Using Mobile Sink
in Wireless Sensor Networks. IEEE Sensors Jour-
nal, 2020, 20(14), 8173-8185. https://doi.org/10.1109/
JSEN.2020.2981692

11. Chen, J., Tang, J. Uav-Assisted Data Collection for Dy-
namic and Heterogeneous Wireless Sensor Networks.
IEEE Wireless Communications Letters, 2022, 11(6),
1288-1292. https://doi.org/10.1109/LWC.2022.3164784

12. Chen, M., Liang, W., Li, Y. Data Collection Maximiza-
tion for UAV-Enabled Wireless Sensor Networks. IEEE
29th International Conference on Computer Commu-
nications and Networks (ICCCN), 2020, 1-9. https://doi.
org/10.1109/ICCCN49398.2020.9209619

13. Chen, M., Liang, W., Das, S. K. Data Collection Utility
Maximization in Wireless Sensor Networks Via Effi-
cient Determination of UAV Hovering Locations. IEEE
International Conference on Pervasive Computing and
Communications (PerCom), 2021, 1-10. https://doi.
org/10.1109/PERCOM50583.2021.9439126

14. Chen, M., Liang, W., Li, J. Energy-Efficient Data Collec-
tion Maximization for UAV-Assisted Wireless Sensor
Networks. IEEE Wireless Communications and Net-
working Conference (WCNC), 2021, 1-7. https://doi.
org/10.1109/WCNC49053.2021.9417258

15. Chowdhury, S., Roy, A., Benslimane, A., Giri, C. On Se-
mantic Clustering and Adaptive Robust Regression
Based Energy Aware Communication with True Out-
liers Detection in WSN. Ad Hoc Networks, 2019, 94,
101934. https://doi.org/10.1016/j.adhoc.2019.101934

16. Demiane, F., Sharafeddine, S., Farhat, O. An Optimized
UAV Trajectory Planning for Localization in Disaster
Scenarios. Computer Networks, 2020, 179, 107378.
https://doi.org/10.1016/j.comnet.2020.107378

17. Dicandia, F. A., Fonseca, N. J. G., Bacco, M., Mugnaini,
S., Genovesi, S. Space-Air-Ground Integrated 6G Wire-
less Communication Networks: A Review of Anten-
na Technologies and Application Scenarios. Sensors,
2022, 22(9), 3136. https://doi.org/10.3390/s22093136

18. Donta, P. K., Amgoth, T., Annavarapu, C. S. R. An Ex-
tended ACO-Based Mobile Sink Path Determination in
Wireless Sensor Networks. Journal of Ambient Intelli-
gence and Humanized Computing, 2021, 12(10), 8991-
9006. https://doi.org/10.1007/s12652-020-02595-7

19. Fang, T., Yang, Y. Distributed Communication Proto-
col in Wireless Sensor Network Based on Internet of
Things Technology. Wireless Personal Communica-
tions, 2022, 126(3), 2361-2377. https://doi.org/10.1007/
s11277-021-09203-7

20. Fellah, K., Kechar, B. New Approach Based on Hilbert
Curve for Energy Efficient Data Collection in WSN With
Mobile Sink. IET Wireless Sensor Systems, 2020, 10(5),
214-220. https://doi.org/10.1049/iet-wss.2019.0078

21. Gang, T., Congqiang, T., Claramunt, C., Hu, X., Zhou,
P. Geometric A-Star Algorithm: An Improved A-Star
Algorithm for AGV Path Planning in A Port Environ-
ment. IEEE Access, 2021, 9, 59196-59210. https://doi.
org/10.1109/ACCESS.2021.3070054

22. Haider, S. K., Jiang, A., Almogren, A., Rehman, A. U.,
Ahmed, A., Khan, W. U., Hamam, H. Energy Efficient
UAV Flight Path Model for Cluster Head Selection in
Next-Generation Wireless Sensor Networks. Sensors,
2021, 21(24), 8445. https://doi.org/10.3390/s21248445

23. Haoran, M., Khan, M. F., Peng, L., Tak, B., Lee, J., Ho, P.-
H. Data-Similarity-Based IoT Node Selection for UAV
Trajectory Optimization. Computers and Electrical En-
gineering, 2023, 112, 108994. https://doi.org/10.1016/j.
compeleceng.2023.108994

24. Jiang, B., Huang, G., Wang, T., Gui, J., Zhu, X. Trust Based
Energy Efficient Data Collection with Unmanned Aeri-
al Vehicle in Edge Network. Transactions on Emerging
Telecommunications Technologies, 2022, 33(6), e3942.
https://doi.org/10.1002/ett.3942

25. Jin, H., Jin, X., Zhou, Y., Guo, P., Ren, J., Yao, J., Zhang, S.
A Survey of Energy Efficient Methods for UAV Commu-
nication. Vehicular Communications, 2023, 41, 100594.
https://doi.org/10.1016/j.vehcom.2023.100594

26. Katarzyna, P., Dawid, P., Gautam, S. Neuro-Heuristic
Pallet Detection for Automated Guided Vehicle Naviga-
tion. IEEE International Conference on Big Data, Osa-
ka, Japan, 2022, 6325-6331. https://doi.org/10.1109/
BigData55660.2022.10020256

27. Krishnan, M., Lim, Y. Reinforcement Learning-Based
Dynamic Routing Using Mobile Sink for Data Collec-
tion in WSNs and IoT Applications. Journal of Network
and Computer Applications, 2021, 194, 103223. https://
doi.org/10.1016/j.jnca.2021.103223

28. Lin, C., Han, G., Qi, X., Du, J., Xu, T., Martínez-García
M. Energy-Optimal Data Collection for Unmanned
Aerial Vehicle Aided Industrial Wireless Sensor Net-
work-Based Agricultural Monitoring System: Cluster-
ing Compressed Sampling Approach. IEEE Transac-
tions on Industrial Informatics, 2021, 17(6), 4411-4420.
https://doi.org/10.1109/TII.2020.3027840

29. Liu, S., Wei, Z., Guo, Z., Yuan, X., Feng, Z. Performance
Analysis of UAVs Assisted Data Collection in Wire-
less Sensor Network. IEEE 87th vehicular technol-

Information Technology and Control 2024/3/53886

ogy conference (VTC Spring), 2018, 1-5. https://doi.
org/10.1109/VTCSpring.2018.8417673

30. Liu, X., Liu, Y., Zhang, N., Wu, W., Liu, A. Optimizing Tra-
jectory of Unmanned Aerial Vehicles for Efficient Data
Acquisition: A Matrix Completion Approach. IEEE In-
ternet of Things Journal, 2019, 6(2), 1829-1840. https://
doi.org/10.1109/JIOT.2019.2894257

31. Li, Y., Liang, W., Xu, W., Jia, X. Data Collection of IoT
Devices Using an Energy-Constrained UAV. IEEE In-
ternational Parallel and Distributed Processing Sympo-
sium (IPDPS), 2020, 644-653. https://doi.org/10.1109/
IPDPS47924.2020.00072

32. Luo, C., Chen, W., Li, D., Wang, Y., Du, H., Wu, L., Wu,
W. Optimizing Flight Trajectory of UAV for Efficient
Data Collection in Wireless Sensor Networks. Theo-
retical Computer Science, 2021, 853, 25-42. https://doi.
org/10.1016/j.tcs.2020.05.019

33. Munan, L. Efficiency Improvement of Ant Colony Opti-
mization in Solving the Moderate LTSP. Journal of Sys-
tems Engineering and Electronics, 2015, 26(6), 1300-
1308. https://doi.org/10.1109/JSEE.2015.00142

34. Nawkhare, R., Singh, D. Machine Learning Approach
on Efficient Routing Efficient Techniques in Wire-
less Sensor Network. IEEE International Conference
on Current Development in Engineering and Tech-
nology (CCET), 2022, 1-6. https://doi.org/10.1109/
CCET56606.2022.10080050

35. Nazib, R. A., Moh, S. Energy-Efficient and Fast Data
Collection in UAV-Aided Wireless Sensor Networks
for Hilly Terrains. IEEE Access, 2021, 9, 23168-23190.
https://doi.org/10.1109/ACCESS.2021.3056701

36. Nguyen, M. T., Nguyen, C. V., Do, H. T., Hua, H. T., Tran,
T. A., Nguyen, A. D., Ala, G., Viola, F. UAV-Assisted Data
Collection in Wireless Sensor Networks: A Compre-
hensive Survey. Electronics, 2021, 10(21), 2603. https://
doi.org/10.3390/electronics10212603

37. Połap, D. Neuro-Heuristic Analysis of Surveillance Vid-
eo in A Centralized IoT System. ISA Transactions, 2023,
140, 0019-0578, 402-411. https://doi.org/10.1016/j.isa-
tra.2023.05.024

38. Popescu, D., Dragana, C., Stoican, F., Ichim, L., Stamate-
scu, G. A Collaborative UAV-WSN Network for Moni-
toring Large Areas. Sensors, 2018, 18(12), 4202. https://
doi.org/10.3390/s18124202

39. Popescu, D., Stoican, F., Stamatescu, G., Ichim, L., Dra-
gana, C. Advanced UAV-WSN System for Intelligent
Monitoring in Precision Agriculture. Sensors, 2020,
20(3), 817. https://doi.org/10.3390/s20030817

40. Qayyum, T., Trabelsi, Z., Malik, A., Hayawi, K. Trajecto-
ry Design For UAV-Based Data Collection Using Clus-
tering Model in Smart Farming. Sensors, 2021, 22(1),
37. https://doi.org/10.3390/s22010037

41. Samir, M., Sharafeddine, S., Assi, C. M., Nguyen, T. M.,
Ghrayeb, A. Uav Trajectory Planning for Data Collec-
tion from Time-Constrained IoT Devices. IEEE Trans-
actions on Wireless Communications, 2019, 19(1), 34-
46. https://doi.org/10.1109/TWC.2019.2940447

42. Saxena, N., Gupta, N., Gupta, J., Sharma, D. K., Dev, K.
Trajectory Optimization for the UAV Assisted Data
Collection in Wireless Sensor Networks. Wireless Net-
works, 2022, 28(4), 1785-1796. https://doi.org/10.1007/
s11276-022-02934-w

43. Seraj, R., Islam, S. M., Ahmed, M. The K-Means Al-
gorithm: A Comprehensive Survey and Performance
Evaluation. Electronics, 2020, 9(8), 1295. https://doi.
org/10.3390/electronics9081295

44. Sergio, V., Ariza-Sentís, M., Valente, J. VineLiDAR:
High-Resolution UAV-Lidar Vineyard Dataset Acquired
Over Two Years in Northern Spain. Data in Brief, 2023,
51, 109686. https://doi.org/10.1016/j.dib.2023.109686

45. Skondras, E., Michalas, A., Vergados, D. D. Mobility
Management on 5G Vehicular Cloud Computing Sys-
tems. Vehicular Communications, 2019, 16, 15-44.
https://doi.org/10.1016/j.vehcom.2019.01.001

46. Sun, P., Boukerche, A. Performance Modeling and Anal-
ysis of A UAV Path Planning and Target Detection in A
UAV Based Wireless Sensor Network. Computer Net-
works, 2018, 146, 217-231. https://doi.org/10.1016/j.
comnet.2018.09.022

47. Tan, L., Gong, Y., Chen, G. A Balanced Parallel Clustering
Protocol for Wireless Sensor Networks Using K-Means
Techniques. Second International Conference on
Sensor Technologies and Applications (Sensorcomm
2008), 2008, 300-305. https://doi.org/10.1109/SEN-
SORCOMM.2008.45

48. Tong, M., Tang, M. Leach-b: An Improved Leach Pro-
tocol for Wireless Sensor Network. 6th International
Conference on Wireless Communications Networking
and Mobile Computing (WiCOM), 2010, 1-4. https://
doi.org/10.1109/WICOM.2010.5601113

49. Ullah, Z., Al-Turjman, F., Moatasim, U., Mostarda, L.,
Gagliardi, R. UAVs Joint Optimization Problems and
Machine Learning to Improve the 5G and Beyond Com-
munication. Computer Networks, 2020, 182, 107478.
https://doi.org/10.1016/j.comnet.2020.107478

50. Wang, C., Ma, F., Yan, J., De, D., Das, S. K. Efficient Ae-
rial Data Collection with UAV in Large-Scale Wireless

887Information Technology and Control 2024/3/53

Sensor Networks. International Journal of Distribut-
ed Sensor Networks, 2015, 11(11), 286080. https://doi.
org/10.1155/2015/286080

51. Wang, X., Liu, X., Cheng, C. T., Deng, L., Chen, X., Xiao,
F. A Joint User Scheduling and Trajectory Planning
Data Collection Strategy for the UAV-Assisted WSN.
IEEE Communications Letters, 2021, 25(7), 2333-2337.
https://doi.org/10.1109/LCOMM.2021.3067898

52. Wen, W., Zhao, S., Shang, C., Chang, C. Y. Eapc: Ener-
gy-Aware Path Construction for Data Collection Us-
ing Mobile Sink in Wireless Sensor Networks. IEEE
Sensors Journal, 2017, 18(2), 890-901. https://doi.
org/10.1109/JSEN.2017.2773119

53. Wichmann, A., Korkmaz, T. Smooth Path Construction
and Adjustment for Multiple Mobile Sinks in Wireless
Sensor Networks. Computer Communications, 2015, 72,
93-106. https://doi.org/10.1016/j.comcom.2015.06.001

54. Wu, Q., Sun, P., Boukerche, A. Unmanned Aerial Vehi-
cle-Assisted Energy-Efficient Data Collection Scheme
for Sustainable Wireless Sensor Networks. Computer
Networks, 2019, 165, 106927. https://doi.org/10.1016/j.
comnet.2019.106927

55. Yang, D., Wu, Q., Zeng, Y., Zhang, R. Energy Tradeoff
in Ground-to-UAV Communication Via Trajectory
Design. IEEE Transactions on Vehicular Technolo-

gy, 2018, 67(7), 6721-6726. https://doi.org/10.1109/
TVT.2018.2816244

56. Yang, X. Introduction to Mathematical Optimization.
From Linear Programming to Metaheuristics, 2008.
https://doi.org/10.1007/s00521-016-2254-3

57. Yuan, J., Liu, W., Wang, J., Shi, J., Miao, L. An Efficient
Framework for Data Aggregation in Smart Agriculture.
Concurrency and Computation: Practice and Expe-
rience, 2021, 33(10), e6160. https://doi.org/10.1002/
cpe.6160

58. Yue, W., Jiang, Z. Path Planning for UAV to Collect
Sensors Data Based on Spiral Decomposition. Proce-
dia Computer Science, 2018, 131, 873-879. https://doi.
org/10.1016/j.procs.2018.04.291

59. Zeng, Y., Zhang, R., Lim, T. J. Wireless Communica-
tions with Unmanned Aerial Vehicles: Opportuni-
ties and Challenges. IEEE Communications Mag-
azine, 2016, 54(5), 36-42. https://doi.org/10.1109/
MCOM.2016.7470933

60. Zhu, B., Bedeer, E., Nguyen, H. H., Barton, R., Henry, J.
UAV Trajectory Planning in Wireless Sensor Networks
for Energy Consumption Minimization by Deep Re-
inforcement Learning. IEEE Transactions on Vehic-
ular Technology, 2021, 70(9), 9540-9554. https://doi.
org/10.1109/TVT.2021.3102161

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

