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Deep learning-based anomaly detection in images has recently gained popularity as an investigative field with 
many global submissions. To simplify complex data analysis, researchers in the deep learning subfield of machine 
learning employ Artificial Neural Networks (ANNs) with many hidden layers. Finding data occurrences that sig-
nificantly differ from generalizable to most data sets is the primary goal of anomaly detection. Many medical im-
aging applications use convolutional neural networks (CNNs) to examine anomalies automatically. While CNN 
structures are reliable feature extractors, they encounter challenges when simultaneously classifying and seg-
menting spots that need removal from scans. We suggest a separate and integration system to solve these issues, 
separated into two distinct departments: classification and segmentation. Initially, many network architectures 
are taught independently for each abnormality, and these networks’ main components are combined. A shared 
component of the branched structure functions for all abnormalities. The final structure has two branches: one 
has distinct sub-networks, each intended to classify a particular abnormality, and the other for segmenting var-
ious abnormalities. Deep CNNs training directly on high-resolution images necessitate input layer image com-
pression, which results in the loss of information necessary for detecting medical abnormalities. A guided Grad-
CAM (GCAM) tuned patch neural network is applied to full-size images for anomaly localization. Therefore, the 
suggested approach merges the pre-trained deep CNNs with class activation mappings and area suggestion sys-
tems to construct abnormality sensors and then fine-tunes the CNNs on picture patches, focusing on medical 
abnormalities instead of training on whole images. A mammogram data set was used to test the deep patch classi-
fier, which had a 99% overall classification accuracy. A Brain tumor image data set was used to test the integrated 
detector’s ability to detect abnormalities, and it did so with an average precision of 0.99.
KEYWORDS: Abnormality detection, Artificial Neural Networks, CNN, Deep learning, integrated structure, 
segmentation, GCAM.
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1. Introduction
The detection of anomalies is a significant ma-
chine-learning challenge. Rather than assuming a stat-
ic and closed system, as with most current machine 
learning methods, this study explores how machine 
learning models may manage unknown and unpredict-
able input in an open and changing context. Learning 
systems designed for anomaly detection typically as-
sume an open environment and use that knowledge to 
deduce the unexpected, i.e., non-typical, out-of-the-or-
dinary patterns. To find unusual or new ways in data, 
anomaly detection methods typically first, With the 
average data at hand, draw out trends, describe them, 
and model them. Visual or image anomaly detection is 
used when the data being examined is an image. 
Medical photos with poor contrast and excessive 
noise make CADe of abnormalities a problematic re-
search topic despite its clinical importance. In par-
ticular, one of the challenges specific to medical im-
age analysis is that abnormalities tend to manifest in 
tiny local regions within a high-resolution image. In 
mammography, for instance, benign calcification is 
typically quite extensive, whereas suspicious calci-
fication is generally relatively small and requires the 
study of magnified images for characterization [10]. It 
is well known that the efficiency and accuracy of tra-
ditional machine learning approaches, which rely on 
constructing sliding window-based detectors, need to 
be revised [6, 15]. Additionally, they employ labor-in-
tensive and fallible manual feature engineering. New 
methods for pinpointing abnormalities in medical 
images have become available thanks to recent ad-
vancements in deep learning. At the ImageNet, deep 
CNNs  outperformed humans on picture categoriza-
tion tasks [25]. However, it remains challenging due 
to a lack of adequate training data. Transfer learning 
has been implemented to solve this issue and prevent 
over-fitting [38]. Acquired deep features from large-
scale labeled picture datasets, such as ImageNet, are 
then utilized for feature extraction on a target data set 
with an inadequate count of training photos. 
Anomaly identification, also known as outlier detec-
tion [26] seeks to identify cases that deviate signifi-
cantly from the norm that are out of the ordinary or 
unexpected. Recently, anomaly detection in images 
has become a popular research area due to its wide 
range of potential applications, from video surveil-

lance to medicine [35] [32]. Anomalies can occur for 
several reasons, including data errors or noises, but 
they can also reveal a hitherto unseen process. As a 
result, detecting anomalies is an essential endeav-
or, especially in medical image processing. Because 
deep neural networks have become so popular and 
produced remarkable results in many different con-
texts, many researchers have begun using them to 
spot anomalies in images. By looking at each pixel, it 
can also handle complex features like ROIs [22], [4]. 
Deep learning-based anomaly detection has become 
general. It has been functional for many tasks, with 
technologies becoming increasingly commonplace 
in the medical sector [32], [29], [5], [37], [33]. This is 
so because deep learning gets around the problem of 
data imbalance, which can lead to a positive-case bias. 
We conclude that anomaly detection is preferable to 
binary classification [33] because more negative med-
ical pictures outnumber good ones from five to one.
This work offers a deep learning method for detect-
ing local abnormalities in training deep patch CNNs 
and merging them with CAM and RPN [24] to recog-
nize regions in medical pictures. When deep CNNs 
are trained on high-resolution images, the input layer 
must perform image compression, which results in the 
loss of information necessary for medical anomaly de-
tection. Consequently, our method fine-tunes the deep 
CNNs on image patches focused on medical irregular-
ities rather than training on full-size medical images. 
The deep patch CNNs are educated to distinguish be-
tween the predetermined medical abnormalities.
The research questions rely on the following: 
1 How does the use of guided Grad-CAM (GCAM) 

tuned patch neural networks impact the localiza-
tion of anomalies in high-resolution medical imag-
es, and what is the trade-off between accuracy and 
computational efficiency in this context?

2 What are the specific challenges and limitations 
of training deep convolutional neural networks 
(CNNs) directly on high-resolution medical imag-
es, and how does image compression affect the de-
tection of medical abnormalities?

In this study, we provide a new technique for separat-
ing and categorizing medical anomalies, which can 
be used to solve the issues above. The proposed split 
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neural network uses one branch to segment images 
while the other uses classification. The availability 
of similar low-level properties across several anoma-
lies allows the proposed network’s central node to be 
created to be identical in both splits so that they may 
share computing functions. Following are some ways 
in which the proposed method contributes:
1 We introduced straightforward network architec-

ture that can be used for segmenting and classify-
ing medical image anomalies. 

2 This research presented unified network whose 
primary nodes share features helpful in segment-
ing and classifying various abnormalities.

3 The novel Guided Grad-CAM tuned patch neu-
ral network is then applied to full-size images for 
anomaly localization.

4 we use patch-based CNN classifiers for the full im-
ages for abnormality localization.

The remaining sections of this paper are structured 
as follows. Multiple categorization schemes for 
anomalies converse in Section 2. Section 3 describes 
the GCAM-equipped network proposed for spotting 
numerous anomalies. The methods and outcomes 
of the research are discussed in Section 4. Section 5 
contains the conversation, followed by the closing 
thoughts in Section 6.

2. Related Works
In computer vision and image analysis, abnormality 
detection using deep learning is a hot topic. Multiple 
studies have proposed deep learning-based methods 
for anomaly detection across a wide range of fields 
and industries, from medical imaging and industrial 
inspection to surveillance and beyond.
In the past few years, CNNs have made great strides to-
ward automating the derivation of generic character-
istics from WCE pictures. Jia et al. [12] are one of the 
earliest publications on CNN-based WCE image clas-
sification. They implemented a 5-layer convolutional 
neural network CNN to extract features from WCE 
images and detect bleeding. Since then, various CNN 
architectures for detecting anomalies have been pro-
posed [7]. To learn the features of WCE images, Segui 
et al. [30] used three parallel CNNs and the Hessian and 
Laplacian of the images in addition to the original RGB 

inputs. Finally, features from all three CNNs are com-
bined before being sent to fully connected layers for 
image classification. Iakovidis et al. [11] have also used 
a 5-layer CNN to detect and pinpoint anomalies. By ap-
plying this algorithm to the feature maps, we can locate 
exciting features that may be found in out-of-the-ordi-
nary areas. Goel et al. [8] used a CNN with two forks, 
one serving as the network’s backbone and the other 
performing a dilated Conv operation that preserves 
image resolution. The primary CNN uses multiple 
scales to extract features. The expanded Conv branch 
broadens the system’s sensitivity and facilitates the 
separation of key features. To get the dominant global 
features, [2] we finally combine the elements from the 
backbone CNN and the dilated CNN.
Performance evaluation measures were also calcu-
lated using three distinct pattern classifiers: Support 
Vector Machine [28], [13], [34], Linear Discriminate 
Analysis, and Bayes Linear Classifier. The other work 
contributed is dimensionally reducing the obtained 
features with Principal Component Analysis and then 
classifying them with the Support Vector Machine 
technique. The abnormal breast area can be pinpoint-
ed with the help of a mammogram. The abnormali-
ty in mammograms was detected using a variety of 
pattern recognition algorithms and decision-making 
systems. Textural and geometric features are used 
for feature extraction. A correlation-based Feature 
Selection (CFS) scheme selects features for further 
classification into masses or non-masses. Breast dis-
orders such as tumors and microcalcification may be 
detected using methods for image processing such as 
Shape derivation and Boundary of group or lesion. 
One indicator of breast abnormality detection is 
the presence of a mass at the periphery of the mass. 
Breast masses that are round and well-defined on a 
mammogram are typically benign, while those with 
an uncertain border indicate cancer. The Digital da-
tabase for screening mammography (DDSM) is the 
source for these images, and Verma et al. [3] have 
developed a computer-aided diagnosis scheme to es-
tablish an outline for computerized mammograms 
that prioritizes a neural hereditary calculation with 
an acquired precision of 85%. According to Ahuja et 
al. [23], benign neoplasms are well-marginated and 
have regular shapes, while malignant neoplasms have 
indistinct and irregular borders that become more 
speculative over time. Masses and benign glandular 
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tissue slightly differ in X-ray attenuation, so a lack of 
contrast and blurriness characterize their visual pre-
sentation. Micro-calcifications, or mammographic 
“bright spots,” are tiny calcium deposits.
Reconstruction-based or image generation and com-
pletion methods are another option for training on 
one-class data. The benefit of these methods—often 
based on neural networks—is that they can detect 
anomalies pixel-by-pixel. After an input has been pro-
cessed through a bottleneck layer, for instance, auto-
encoders can reconstruct it [36], [14]. To avoid having 
to learn a meaningful representation, they compress 
the images. Denoising variants solves this issue by 
introducing noise into the input image, forcing the 
DAN to reconstruct the original query [19]. However, 
because such manipulation is typically performed at 
the pixel level, the DAN does not need to learn much 
semantic data. A recent image creation method relies 
on a GAN taught to produce average results.
Yuan et al. [39] have implemented a resemblance re-
straint in the loss function when training a DenseNet 
to handle intra-class variations. For low intra-class 

variation and high inter-class variations, Yuan et al. 
[40] proposed a densely connected CNN with unbal-
anced discriminant loss and category-sensitive loss. 
To reduce intra-class variance in polyp detection, Guo 
et al. [9] developed a triple ANET construction using 
angular contrastive loss and an attention mechanism. 
Many existing studies concentrate on intra-class 
variations, a diverse range of anomalies challenging 
in achieving accuracy and reducing error rate. The 
popular systems described in the literature focus on 
intra-class variation caused by a single abnormality 
type. Unique mechanisms need to be designed to cap-
ture the underlying characteristics of various anoma-
lies to deal with and classify them as abnormal. This 
research presents a parallel CNN framework that 
utilizes a unique meta-feature retrieval approach to 
differentiate among multiple anomalies using the un-
derlying statistical trends in the feature maps. Com-
bined with traditional feature maps, these meta-fea-
tures boosted the accuracy of the classifier. Table 1 
shows comparison of conventional model woth its 
unique characteristics.

Table 1
Comparasion of characteristics on existing work

Reference Method Key Features Applications Unique Contributions

Jia et al. [12] 5-layer CNN Feature extraction from 
WCE images

WCE image 
classification

Early use of CNN in WCE image 
classification

Segui et al. [30]
Three 
parallel 
CNNs

Uses Hessian, Laplacian, and 
RGB inputs WCE images

Combination of multiple 
CNNs and image processing 
techniques

Iakovidis et al. [11] 5-layer CNN Anomaly detection and 
localization

Threat 
classification

Localization of anomalies in 
feature maps

Goel et al. [8] CNN with 
two forks

Dilated Conv operation, 
multi-scale features Image processing Expanded Conv branch for key 

feature separation

Various [2, 28, 13, 34] Various 
methods SVM, LDA, BLC classifiers Mammogram 

analysis
Comparative analysis using 
different classifiers

Verma et al. [3] CAD scheme Neural hereditary calculation Computerized 
mammograms

Outline for computerized 
mammograms

Ahuja et al. [23] Not 
specified

Analysis of neoplasm 
characteristics

Mammogram 
analysis

Differentiation between benign 
and malignant neoplasms

Yuan et al. [39, 40] DenseNet, 
CNN

Resemblance restraint, 
unbalanced discriminant loss Polyp detection Addressing intra-class 

variations

Guo et al. [9] Triple 
ANET

Angular contrastive loss, 
attention mechanism Polyp detection Reducing intra-class variance
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3. Materials and Methods
Deep CNN pre-trained on normal pictures is fine-
tuned using extracted image patches centered on 
medical aberrations. This allows the CNNs to acquire 
image attributes for local abnormalities. 

3.1. Data Collection

The DDSM is a free resource for researchers interested 
in using digital mammograms to study breast cancer. 
Computer-aided detection and diagnosis algorithms 
for breast cancer extensively use a dataset developed 
by the University of South Florida’s Digital Image and 
Communications in Medicine (DICOM) Standard. 
The DDSM dataset’s Curated Breast Imaging Subset 
(CBIS) is a subset of the entire dataset that has been 
processed and cleaned up for research convenience. 
More than three thousand mammography photos with 
annotations and information are included, including 
screening and diagnostic mammography.
Full-field digital mammography (FFDM) and digi-
tal breast tomosynthesis (DBT) pictures are also part 
of the CBIS collection. Digital breast tomosynthesis 
(DBT) pictures are 3D digital images that enable more 

precise identification of breast lesions than flat-field 
digital mammography (FFDM) images. Breast lesions 
are annotated in the CBIS dataset with bounding boxes, 
benign/malignant labels, and BI-RADS (Breast Imag-
ing Reporting and Data System) scores to help classify 
mammogram findings according to the level of suspi-
cion for breast cancer. The CBIS dataset may be used to 
train and evaluate CAD algorithms to identify and diag-
nose breast cancer. The dataset may be downloaded at 
no cost and used in various studies. Our studies use the 
publicly accessible brain MRI dataset from the Kaggle 
repository. Out of 253 MRI scans, 155 are considered 
“normal,” leaving 98 scans that show abnormalities.
The proposed detector incorporates patch classifi-
ers where only image patches can be obtained during 
training. Performs a complete medical image abnor-
mality map computation once trained. The object de-
tector includes the patch classifiers. The use of whole 
pictures and patch locations in different contexts can 
be obtained during training. Once the sensor has been 
trained, it will report irregularities as rectangles with 
likelihoods attached to them. Both methods are prov-
en effective and improve performance when finding 
local abnormalities in mammograms and ultrasound 
liver images. Figure 1 depicts the proposed method.

Figure 1 
Outline of the Modeling Proposal
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Each anomaly can have its network trained explicitly on 
its dataset of abnormal images. Each trained network 
successfully segments the training-set abnormality. As a 

result, the architecture of each network can be fine-
tuned to address a specific abnormality. There is no 
coordination between the different constituents of 
the networks and no use of shared characteristics 
of the abnormalities, all contributing to the overall 
complexity of the network. Although these systems 
are appropriately particular, they need more job 
duplication. Not only are they useless for 
classification, but they are only suitable for 
segmentation. When segmenting and classifying 
multiple abnormalities, it is essential to focus on 
individual monsters as required for segmentation 
to maintain the broader understanding needed for 
classification.

 
Figure 1  

Outline of the Modeling Proposal 

 
 
.  
Figure 2  
The level 1 classifier architecture – GAN structure 
 



Information Technology and Control 2024/2/53360

Figure 2 
The level 1 classifier architecture – GAN structure

3.2. Level 1 Classifier
Each anomaly can have its network trained explicitly 
on its dataset of abnormal images. Each trained net-
work successfully segments the training-set abnor-
mality. As a result, the architecture of each network 
can be fine-tuned to address a specific abnormality. 
There is no coordination between the different con-
stituents of the networks and no use of shared char-
acteristics of the abnormalities, all contributing to 
the overall complexity of the network. Although these 
systems are appropriately particular, they need more 
job duplication. Not only are they useless for classi-
fication, but they are only suitable for segmentation. 
When segmenting and classifying multiple abnormal-
ities, it is essential to focus on individual monsters as 
required for segmentation to maintain the broader 
understanding needed for classification.
Common abnormalities in medical images have been 
linked to severe illnesses. Segmentation and abnor-
mal region classification are both necessary for accu-
rate diagnosis of significant diseases. Segmentation 
and categorization of aberrant areas are essential for a 
precise assessment. The primary objective of the first 
classification stage is to identify aberrant pictures. The 
normal samples are used to train the model, which then 
attempts to produce consistent reconstructions of reg-
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the encoded version to reconstruct a image â that is 
similar to a.
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There are two parts to the GAN: the generator G and the 
discriminator D. D seeks to categorize the data as real or 
artificial, whereas G is meant to develop synthetic 
samples that are comparable to the real data. As G and D 
compete, GAN is able to optimize the objective function 
and so understand the fundamental information 
distribution, allowing for the generation of high-quality 
artificial samples. 
The subsequent anomaly score is used during the 
inference phase to determine the level of abnormality 
present in a fresh query signal 𝑎𝑎: 
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This measures how far off 𝐺𝐺 ’s pattern extraction from 
normal photos is from the actual image. When processing 
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abnormality scores. However, if 𝑠𝑠(𝑎𝑎) is small, it means 
that the test picture 𝑎𝑎  has patterns that are typical of 
normal images, and so will be classed as normal by the 
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medical imaging field. The network has an encoder 
and a decoder with skip links to keep spatial data 
intact. Class imbalance, limited sample numbers, 
and complicated anatomical systems are only some 
of the difficulties this architecture is built to 
overcome. For segmenting medical images, Figure 
3 exposes the technical details of the U-Net 
architecture.  
To extract information from an input picture, the 
encoder network passes it over a chain of 
convolutional layers. The construction is built from 
stacked units of two 3×3 convolutional layers, a 
rectified linear unit (ReLU) activation function, and 
a down sampling layer of 2×2 max pooling. Each 
pooling operation doubles the number of filters 
used in each convolutional layer. Using batch 
normalization after each convolutional layer 
improves the resolution, and overfitting is 
mitigated. 
The encoder network’s output is sent into the 
decoder network, where it is upsampled to the input 
size and combined with the encoder network’s 
feature maps through skip links. There are two 3×3 
convolutional layers with ReLU activations, and 
one 2×2 transposed convolutional layer for 
Upsampling, all of which are repeated in blocks 
throughout the design. After every block, the 
number of filters in the transposed convolutional 
layer is halved.
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Input:  medical image dataset Id
Output: Segmented medical images

Step 1: Pre-processing:
a Load the  medical image dataset Id.
b Normalize the intensity values of Id to a standard 

range, typically [0, 1].
c augmentation of data is performed including ro-

tations, scalings, and elastic deformations to in-
crease dataset robustness.

Step 2: Initialize a U-Net model with the following 
architecture
Step 3:  Encoder operation
i. input the  image with one channel.
ii. Apply a sequence of convolutional blocks, each 

consisting of:
 _ Two 3x3x3 convolutions with ReLU activation.
 _ A 2x2x2 max pooling operation to reduce spatial 

dimensions.
 _ Doubling the number of filters starting with 32 

and progressing through 64, 128, 256.
iii. Performing batch normalization after each con-

volutional layer to stabilize learning and improve 
convergence.

Step 4: Bottleneck
In the bottom of the U-Net without pooling image 
patch is executed using two 3x3x3 convolutions fol-
lowed by ReLU activation and batch normalization.
Step 5: Decoder operation
i. Up-sample the image using 2x2x2 transposed con-

volutions to increase the spatial dimensions.
ii. Concatenate the upsampled output with the cor-

responding encoder feature maps  (skip connec-
tions).

iii. two 3x3x3 convolutions with ReLU activation is 
used for image segementing.

iv. Halve the number of filters after each up-sampling 
step (starting from 512 and reducing through 256, 
128, 64).

Step 6:  Output Layer:
1x1x1 convolution performed to map the feature maps 
to the number of segmentation labels.

Algorithm 1: Segmenting using U-Ne Step 7:  Execute loss function using softmax cross-en-
tropy for multi-class voxel classification and Dice loss 
for segmentation accuracy. optimize the features us-
ing Adam with an initial learning rate and evaluate 
overall measures
Step 8:  Model Training:
a Train the U-Net model using the preprocessed and 

augmented dataset I_d.
b validates the data still stopping and best model 

checkpointing.
c learning rate is adjusted and performance is eval-

uated
Step 9:  Test set is executed for the evaluating the per-
formance. Use the performance metrics defined earli-
er for quantitative assessment.

To extract information from an input picture, the en-
coder network passes it over a chain of convolutional 
layers. The construction is built from stacked units of 
two 3×3 convolutional layers, a rectified linear unit 
(ReLU) activation function, and a down sampling 
layer of 2×2 max pooling. Each pooling operation dou-
bles the number of filters used in each convolutional 
layer. Using batch normalization after each convolu-
tional layer improves the resolution, and overfitting is 
mitigated.
The encoder network’s output is sent into the decoder 
network, where it is upsampled to the input size and 
combined with the encoder network’s feature maps 
through skip links. There are two 3×3 convolutional 
layers with ReLU activations, and one 2×2 transposed 
convolutional layer for Upsampling, all of which are 
repeated in blocks throughout the design. After every 
block, the number of filters in the transposed convo-
lutional layer is halved.
Slices taken at various angles comprise the three-di-
mensional pictures used in biomedical imaging. The 
study of biomedical images requires the processing 
of massive volumes of information. Segmentation-la-
beled data may be challenging to annotate since com-
puters can only show data in two-dimensional slices. 
Thus, typical 2D image models often need more per-
formance and context loss while processing 3D images. 
The solution is a 3D U-Net based on the existing U-Net 
framework but with a reducing encoder component 
for full-image analysis and a continuously expanding 
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decoder section for high-resolution segmentation gen-
eration. There are numerous structural similarities be-
tween 2D and 3D U-Nets; however, 3D U-Nets use 3D 
convolution, 3D pooling, and 3D upsampling in place of 
all 2D processes. To avoid slowdowns in the network, 
batch normalization (BN) is implemented.
There are four parsing steps per layer in the encod-
ing path, the same as the regular U-Net, and the same 
number in the decoding road. The layer structure 
consists of two 3 × 3 × 3 convolutions, a 2-step-sized 
corrected linear unit (ReLu), and a 2 × 2 × 2 maximum 
pooling layer. Each ReLu active layer in the synthesis 
route is sandwiched between two 3×3×3 convolutions 
and two 2×2×2 higher convolutions with two steps 
in each dimension. The skip links in the equal-reso-
lution attribute map give high-resolution informa-
tion for decoding. The number of output channels is 
reduced to the size of the labels, which in this case 
is 3, thanks to the 1×1×1 convolution in the last layer. 
The total number of parameters for the structure is 
19069955.
Before training, the data and ground truth labelers 
are subjected to smooth, dense deformation fields in 
addition to the rotation, scaling, and Gray value in-
crease. Therefore, B-spline interpolation is applied to 
random vectors drawn from a uniform spreading with 
a standard deviation of 4 and a grid spacing of 32 vox-
els in each direction. We evaluate what the network 
produces to the ground truth label using the softmax 
plus weighted cross-entropy loss to strike a better 
balance among the effect of microscopic blood vessels 
and backdrop voxels on the loss. This comprehensive 
learning approach may employ fully or partially auto-
mated techniques to segment 3D targets from limited 
explanations. This network can generalize well from 
a limited amount of labeled data thanks to its well-de-
signed structure and data improvement features. 
Reasonable pictures could be produced, its prepro-
cessing approach could be rationalized, and the sys-
tem construction could be expanded to accommodate 
any size 3D data collection if suitable rigid alteration 
and modest elastic distortion submissions were used. 

3.4. Level 2 Classifier
Numerous medical procedures, such as endosco-
py, dermoscopy, funduscopy, etc., must classify and 
segment various disorders. Multiple abnormalities 
associated with severe illnesses can be seen in diag-

nostic imaging. Current years have seen a rise in the 
use of CNN for automatic abnormality identification 
in medical imaging applications because of its effi-
ciency and accuracy. Because mammography abnor-
malities tend to be present in minimal, local regions 
of a high-resolution picture, computer-aided identi-
fication cannot be approached as a straightforward 
image classification problem. An abnormality area in 
a standard mammography scan of 3000×4600 pixels 
(width by height) is just 80×80 pixels (or even less). 
Resizing photos to 224×224 (in pixels) at the in-
put layer is necessary for training high-quality deep 
CNNs. However, this results in a significant reduc-
tion in information concerning medical problems. To 
solve this problem, we first adopt deep CNNs trained 
on ROIs from trimmed pictures to full mammography 
images. The deep patch CNN is trained similarly to 
a window operator, but it may be used on the entire 
picture for the first time because the convolutional 
weights are shared in deep CNNs. The maps are cal-
culated using class activation mapping (CAM) [42]. 
CAM isolates class-related features in a picture. Be-
cause of this, classifiers may be reused for localization 
even if location-specific training data is unavailable. 
It also shows that CNNs have an inherent capacity for 
paying attention. 
Breast cancer is prevalent among women, and early 
detection is crucial for improving patient outcomes. 
Digital mammography is an imaging technique that 
captures X-ray images of the breast, which computer 
algorithms can analyze to assist radiologists in iden-
tifying potential cancerous regions [18], [41]. Me-
ta-heuristic optimization algorithms are techniques 
inspired by natural processes such as evolution, 
swarm intelligence, and simulated annealing. These 
algorithms search for optimal solutions in complex, 
high-dimensional problem spaces [16]. Figure 4 de-
picts the proposed method. Starting with transfer 
learning helps prevent over-fitting. picture patches 
centered on medical abnormalities are retrieved from 
the discriminator’s output picture and used to fine-
tune deep CNNs, allowing the CNNs to learn image 
characteristics for local abnormalities. The suggest-
ed detector combines patch classifiers with GCAMs 
for use in situations when only picture patches are 
available during training. The GCAM-based sensor, 
once trained, generates an anomaly map for the entire 
medical picture.
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Figure 4 
Level 2 classifier with GCAM
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The Guided Grad-CAM tuned patch neural network is 
applied to full-size mammograms for anomaly 
localization. Traditional methods employ a sliding 
window for the classifier to scan the entire image, which 
is time-consuming and inefficient. In contrast, our 
process allows anomaly localization with a single 
forward computing run. When the full-size 
mammography is fed into the patch classifier, and CAM 
is computed, a heat map of anomalies is generated. 
Guided Grad-CAM (Gradient-weighted Class Activation 
Mapping) is a method used in deep learning to visualize 
the sections of an input image that contribute the most to 
the prediction made by CNN. It combines the concepts of 
Grad-CAM and guided backpropagation to generate 
more accurate and detailed visualizations. 
The equation for Guided Grad-CAM (GCAM) can be 
defined as follows: 
The gradient of the desired class score relative to the 
output feature maps from the convolutional layer is 
computed. 
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Here, 𝑦𝑦� represents the target class score, 𝐴𝐴���  represents 
the activation at position (𝑚𝑚,𝑛𝑛)in the 𝑘𝑘-th feature map of 
the final convolutional layer, and 𝑍𝑍 is the spatial size of 
the feature maps. 
Calculate the weights (𝛼𝛼��) by taking the global average 
pooling of the gradients obtained in the previous step: 
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The ReLU activation is applied to discard any 
negative gradients. Calculate the Grad-CAM 
activation map by taking the weighted sum of the 
feature maps using the obtained weights: 
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𝐿𝐿��    represents the Grad-CAM activation map for 
the target class 𝑐𝑐 , and 𝐴𝐴�    characterizes the 𝑘𝑘 -th 
feature map of the final convolutional layer. 
Calculate the guided backpropagation gradient for 
each pixel: 
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Here, 𝑋𝑋  represents the input image. Calculate the 
guided Grad-CAM by element-wise multiplying 
the Grad-CAM activation map with the guided 
backpropagation gradient 
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The symbol ⊙ denotes element-wise 
multiplication. The resulting Guided Grad-CAM 
𝐿𝐿��    represents the guided Grad-CAM activation 
map for the target class 𝑐𝑐, , which identifies the 
input picture regions to be highlighted that 
contribute the most to the prediction made by the 
CNN. 
 

4. Experimental Setup 
Linux was used for the experiments, and they were 
run using the Keras framework. Table 2 displays 
the experiment-specific values for our model’s 

In step 1, we use picture patches from calcification 
and bulk instances to train a two-class classifier uti-
lizing transfer learning and cutting-edge deep CNN 
architectures. The data flow is based on AlexNet’s 
architecture for illustration purposes. VGGnet, Goo-
gLeNet, and ResNet are the other models used for this 
purpose. After the last convolution layer in the deep 
patch, CNN is removed, a global average pooling lay-
er and a fully linked layer are added. The new model 
requires retraining to acquire the output layer CAM 
weights wk(i = 1, 2, ...n). After feeding aomplete mam-
mography into the input layer, the ResNet is the only 
one of the four deep CNN designs that is ready to com-
pute CAM. The output of the last convolutional layer 
is the feature maps, or Tensors, indicated by Fk(i = 1, 2, 
...n). By reflecting Convolutional maps of features and 
their weights from the output layer, we can determine 
which parts of the picture are most significant.
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Here, yc represents the target class score, Ak
mn rep-

resents the activation at position (m, n) in the k-th 
feature map of the final convolutional layer, and Z is 
the spatial size of the feature maps.
Calculate the weights (ac

k ) by taking the global average 
pooling of the gradients obtained in the previous step:
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The ReLU activation is applied to discard any nega-
tive gradients. Calculate the Grad-CAM activation 
map by taking the weighted sum of the feature maps 
using the obtained weights:
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C represents the Grad-CAM activation map for the 

target class c, and Ak characterizes the k-th feature 
map of the final convolutional layer. Calculate the 
guided backpropagation gradient for each pixel:
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Here, X represents the input image. Calculate the 
guided Grad-CAM by element-wise multiplying the 
Grad-CAM activation map with the guided backprop-
agation gradient
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The symbol ⊙ denotes element-wise multiplication. 
The resulting Guided Grad-CAM LG

C  represents the 
guided Grad-CAM activation map for the target class 
c, which identifies the input picture regions to be 
highlighted that contribute the most to the prediction 
made by the CNN.

4. Experimental Setup
Linux was used for the experiments, and they were 
run using the Keras framework. Table 2 displays the 
experiment-specific values for our model’s hyper-pa-
rameters. The validation data set was used to deter-
mine these hyper-parameters. The validation dataset 
also served to establish the normal/abnormal cut-off. 

applied to the proposed image abnormality detection 
method, the effectiveness metrics of accuracy, sensi-
tivity, specificity, Receiver Operating Characteristic 
(ROC), and Area Under the Curve (AUC) validate the 
excellence of the findings and outcome from the ac-
tual case.
The input picture was scaled down to 64x64 pixels so 
that the model could be systematically evaluated. In 
the first round of testing, we use a 64x64 grid with a 
0.1, 0.01, 0.001, and 0.0001 epoch learning rate. After 
the database was split into testing and training sets, 
the generated algorithm was put through its paces re-
garding performance metrics. Performance metrics 
of 99.12% accuracy, 98.21% sensitivity, and 98.36% 
specificity on the CBSI-DDSM dataset and 99.35% 
accuracy, 98.10% sensitivity, and 98.87% specificity 
were obtained with a learning rate of 0.0001 as in Ta-
ble 3 and Figure 5. Table 4 shows the standard perfor-
mance measure of precison, recall and F1-score. 
We construct class activation mapping using the fine-
tuned ResNet to pinpoint anomalies. The decision 
to utilize ResNet to compute GCAM was based on 
the fact that it does not require any further training. 
Without sacrificing generalizability, we load a sin-
gle calcification-class complete mammography into 
ResNet and calculate the GCAM. It is challenging to 
train classifiers on calcification and mass instanc-
es because of mammography pictures’ poor contrast 
and noise. Input pictures to deep neural networks can 

Table 2  
Hyperparameter tuning for the proposed model

Hyperparameter Value

Batch size 64,128,512

Epochs 50

Learning rate 0.001,0.0001,0.00001

Optimizer Adam

Activation ReLu, softmax, Sigmoid

5. Result and Discussion
This section shows how well the suggested technique 
determines whether a picture is aberrant (DR). The 
obtained performance metrics are then evaluated 
against competing, cutting-edge strategies. When 

Table 3 
Performance measures in terms of Learning rate

Dataset Learning 
Rate Accuracy Sensitivity Specificity

CBSI-
DDSM

0.1 90.78% 90.12% 90.41%

0.01 95.32% 94.75% 94.15%

0.001 97.58% 96.78% 96.23%

0.0001 99.12% 98.21% 98.36%

0.00001 98.32% 97.12% 97.54%

Brain 
MRI

0.1 89.62% 89.32% 88.98%

0.01 95.47% 95.65% 94.85%

0.001 96.54% 96.32% 95.10%

0.0001 99.35% 98.10% 98.87%

0.00001 97.65% 97.21% 96.54%
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Table 4 
Standard performance measures using various Learning rate

Dataset Learning 
Rate Precison Recall F1-score

CBSI-
DDSM

0.1 90.12% 90.12% 90.12%

0.01 94.75% 94.75% 94.75%

0.001 96.78% 96.78% 96.78%

0.0001 98.21% 98.21% 98.21%

0.00001 97.12% 97.12% 97.12%

Brain 
MRI

0.1 89.32% 89.32% 89.32%

0.01 95.65% 95.65% 95.65%

0.001 96.32% 96.32% 96.32%

0.0001 98.10% 98.10% 98.10%

0.00001 97.21% 97.21% 97.21%

Figure 5
Accuracy of the DACN model for Alzheimer’s Disease 
Detection

 

 

 
 
The total accuracy indicates how well the training data 
was classified. However, val_acc is essential for testing 
the correctness of the hidden data in the test data. As 
shown in Figure 6, a neural network model performs well 
when the val_loss and val_acc go up. However, the 
model has learned for a non-deterministic batch, as 
shown by the training epoch. The word batch is employed 
since the validation loss is determined per sample. 
val_loss is an excellent indicator of the model’s 
performance on unseen data. Overfitting is not an issue if 
the val_loss is small. Thus, if the model has been taught 
significantly on the data, an increase in val_loss indicates 
overfitting. Line charts for the defined central terms 
depict an overall assessment of the proposed model. 
Figures 6-7 depict this phenomenon. It is essential to 
observe that as more epochs pass, the accuracy metrics 
improve, and the Loss numbers drop. When val_loss goes 
down, it means the model has been trained correctly. 
After the outliers have been filtered out, the dataset of 
images is identified as normal or abnormal using a basic 
neural network design. 
In Figure 8, the projected result is presented as a 
confusion matrix. Of the total input images, 99% were 

correctly labeled as expected, and 100% were 
labeled as abnormal. The suggested approach 
addresses limits in the same way that any expert 
system would. The training data plays a crucial role 
in the model’s recital. Because of this, the 
algorithm flagged the intake of new information—
a typical, healthy cardiac image—as suspicious. 
This may be an issue when the corpus lacks 
domain-specific examples. The temporal 
components of the picture are stripped away during 
the cleaning process since the suggested model only 
considers spatial features. As a result, features are 
occasionally misrepresented because of a failure to 
account for edges and differences in the local 
binary pattern of the pictures.  
Interestingly, only a small amount of training can 
get the minimal Loss score down to 0.01. This 
theory helped reduce the input data length and 
illustrate the latent space model. Most activations 
also show a sparse hierarchical architecture, mainly 
when focusing on the spatial aspects. In addition, 
the encoder reduces the dimensionality of the 
complex representation before reconstructing the 
original picture during decoding. The model may 
get overfit during this adjustment by memorizing 
the training data. The suggested approach typically 
uses half the input variables to regulate how many 
neurons may be used in the core layer. By doing so, 
we can guarantee that the model is picking up on 
the most relevant and valuable aspects of the data 
we provide it. It is important to emphasize that the 
model is unsupervised because it makes no use of 
training labels. The system is data-dependent since 
the buried layers’ neurons are all driven by the 
available data. Therefore, the activation function 
causes various neurons to fire, resulting in a varied 
network output when the input characteristics 
change. Our technique had a tremendous overall 
classification performance but needed to be more 
accurate in a small percentage of data. 
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only be 224x224 or 227x227 pixels in size. Fine fea-
tures essential for categorization will likely be lost if 
mammography pictures are resized to these sizes. To 
distinguish between calcification and bulk instances, 
we suggest training classifiers on cropped batches 
of images and then applying the resulting deep CNN 
models to full-size mammograms. We effectively 
apply the patch classifier to the task of pinpointing 
anomalies in complete mammography images using a 
method termed GCAM.

The total accuracy indicates how well the training 
data was classified. However, val_acc is essential for 
testing the correctness of the hidden data in the test 
data. As shown in Figure 6, a neural network model 
performs well when the val_loss and val_acc go up. 
However, the model has learned for a non-determin-
istic batch, as shown by the training epoch. The word 
batch is employed since the validation loss is deter-
mined per sample. val_loss is an excellent indicator 
of the model’s performance on unseen data. Overfit-
ting is not an issue if the val_loss is small. Thus, if the 
model has been taught significantly on the data, an 
increase in val_loss indicates overfitting. Line charts 
for the defined central terms depict an overall as-
sessment of the proposed model. Figures 6-7 depict 
this phenomenon. It is essential to observe that as 
more epochs pass, the accuracy metrics improve, and 
the Loss numbers drop. When val_loss goes down, it 
means the model has been trained correctly. After the 
outliers have been filtered out, the dataset of images is 
identified as normal or abnormal using a basic neural 
network design.
In Figure 8, the projected result is presented as a con-
fusion matrix. Of the total input images, 99% were 
correctly labeled as expected, and 100% were labeled 
as abnormal. The suggested approach addresses lim-
its in the same way that any expert system would. The 
training data plays a crucial role in the model’s recit-
al. Because of this, the algorithm flagged the intake of 
new information—a typical, healthy cardiac image—
as suspicious. This may be an issue when the cor-
pus lacks domain-specific examples. The temporal 
components of the picture are stripped away during 
the cleaning process since the suggested model only 
considers spatial features. As a result, features are 
occasionally misrepresented because of a failure to 
account for edges and differences in the local binary 
pattern of the pictures. 
Interestingly, only a small amount of training can 
get the minimal Loss score down to 0.01. This theo-
ry helped reduce the input data length and illustrate 
the latent space model. Most activations also show 
a sparse hierarchical architecture, mainly when fo-
cusing on the spatial aspects. In addition, the encod-
er reduces the dimensionality of the complex repre-
sentation before reconstructing the original picture 
during decoding. The model may get overfit during 
this adjustment by memorizing the training data. 
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The suggested approach typically uses half the input 
variables to regulate how many neurons may be used 
in the core layer. By doing so, we can guarantee that 
the model is picking up on the most relevant and valu-
able aspects of the data we provide it. It is important 
to emphasize that the model is unsupervised because 
it makes no use of training labels. The system is da-

ta-dependent since the buried layers’ neurons are all 
driven by the available data. Therefore, the activation 
function causes various neurons to fire, resulting in a 
varied network output when the input characteristics 
change. Our technique had a tremendous overall clas-
sification performance but needed to be more accu-
rate in a small percentage of data.
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The table summarizes related studies along with their 
respective datasets and accuracy rates. Montaha et 
al. [20] conducted a study using the CBSI-DDSM 
dataset and achieved an accuracy of 98%. Zebari [41] 
also utilized the CBSI-DDSM dataset but achieved 
a slightly lower accuracy of 79.36%. Panambur et al. 
[21] obtained an accuracy of 87% using the same CB-
SI-DDSM dataset. Sarker et al. [27] and Shen et al. 
[31] used the CBSI-DDSM dataset and achieved accu-

Figure 8 
The Confusion matrix of the proposed model on (a) CBSI-DDSM dataset and (b) Brain MRI
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Table 3
Performance comparison with related work

Related study Dataset Accuracy

Montaha et al. [20] CBSI-DDSM 98%

Zebari [41] CBSI-DDSM 79.36%

Panambur et al. [21] CBSI-DDSM 87%

Sarker et al. [27] CBSI-DDSM 98%

Shen et al. [31] CBSI-DDSM 98%

Mallick et al.  [17] Kaggle Brain MRI 93%

Alsaif et al. [1] Kaggle Brain MRI 97%

Proposed 
methodology

CBSI-DDSM, 
Kaggle Brain MRI 99%

racies of 98%. Mallick et al. [20] employed the Kaggle 
Brain MRI dataset and achieved an accuracy of 93%. 
Similarly, Alsaif et al. [1] used the Kaggle Brain MRI 
dataset and achieved an accuracy of 97%. Finally, the 
proposed methodology utilized both the CBSI-DDSM 
and Kaggle Brain MRI datasets and achieved an im-
pressive accuracy rate of 99%. Overall, the table 
highlights various studies, datasets, and their corre-
sponding accuracy rates, providing an overview of the 
performance of different approaches in the field.

6. Conclusion and Future Work
We offer a method based on deep learning to find 
anomalies in medical pictures. Transfer learning 
is used for actual feature learning without over-fit-
ting when available training data is scarce. Deep 
CNN is taught to recognize certain anomalies in 
an image. They are used with GCAMs to construct 
anomaly detectors. Experimental data shows that 
the integrated strategy is superior to conventional 
and alternative deep learning strategies. After the 
database was split into testing and training sets, the 
generated algorithm was put through its paces re-
garding performance metrics. Performance metrics 
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of 99.12% accuracy, 98.21% sensitivity, and 98.36% 
specificity on the CBSI-DDSM dataset and 99.35% 
accuracy, 98.10% sensitivity, and 98.87% specificity 
were obtained with a learning rate 0.0001. The sug-
gested technique has been successfully validated on 
mammography and ultrasound pictures, indicating 
tremendous promise for helping clinicians discover 
local problems in medical imaging. Classifier per-
formance may be measured in terms of accuracy, 

f-score, precision, and calculation time and is ac-
quired through a testing procedure that follows the 
training. The experimental analysis results are su-
perior to those of the current methods.
Shortly, genetic algorithms will be used to improve 
the deep convolution neural network further. The 
properties of the sperm pictures enhance feature 
analysis. An algorithm is being developed to speed up 
the processing of massive datasets.
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