
Information Technology and Control 2023/4/52984

Weight Coefficient Based
Adaptive Federated Learning for
Vehicular Data Transmission

ITC 4/52
Information Technology
and Control
Vol. 52 / No. 4 / 2023
pp. 984-995
DOI 10.5755/j01.itc.52.4.34479

Weight Coefficient Based Adaptive Federated Learning for
Vehicular Data Transmission

Received 2023/06/25 Accepted after revision 2023/10/26

HOW TO CITE: Xie, H. (2023). Weight Coefficient Based Adaptive Federated Learning for
Vehicular Data Transmission. Information Technology and Control, 52(4), 984-995. https://doi.
org/10.5755/j01.itc.52.4.34479

Hui Xie
School of Computing and Information Science, Fuzhou Institute of Technology,
Fuzhou 350506, P. R. China; e-mail: 18231408@qq.com

Corresponding author: 18231408@qq.com

With the ever-increasing amount of vehicle data being generated, the collection and transmission of this da-
ta-to-data processing centers is consuming significant amounts of communication resources. The traditional
method of compressing and transmitting the vehicle data is not effective in addressing the issue of efficient uti-
lization of this data. In order to overcome this challenge, we propose an adaptive federated learning approach
that avoids the need for transmitting data per vehicle. Our approach leverages the vehicle as a distributed
training device node and enables the training of vehicle data using the vehicle’s own computing power, thereby
eliminating the need to transmit the data over the network. To further enhance the efficiency of the federated
learning aggregation calculation, we introduce the information entropy function and cosine similarity calcu-
lation. By computing the similarity between the model and the benchmark model, we present a new round of
model aggregation calculation weight. Finally, we validate the proposed algorithm using the actual datasets,
demonstrating its high effectiveness.
KEYWORDS: Data Mining, Information Entropy, Federated Learning, Adaptive Weight Coefficient.

1. Introduction
With the rapid advancement of industrial manufac-
turing technology, the production of motor vehicles
has witnessed an explosive growth [26, 41, 49]. Fur-
thermore, with the significant improvement in calcu-
lation performance of smart sensor [5, 30, 31], these
sensors have become smaller in size, thereby allow-

ing for their widespread deployment in conventional
motor vehicles to make them smarter. The increasing
popularity of electric vehicles has further accelerated
the trend towards intelligent motor vehicles [16, 17,
46], leading to an unprecedented surge in the amount
of data generated by such vehicles [8, 14, 44].

mailto:obodovskiy58@gmail.com

985Information Technology and Control 2023/4/52

Machine learning is being increasingly utilized to ex-
tract valuable insights from vehicular data, with the
aim of improving the safety of intelligent motor vehi-
cles [11, 22, 37, 40]. However, the collection, transmis-
sion, and storage of this large amount of motor vehicle
data remains a major challenge. Although 5G net-
works have been deployed extensively, experiencing
the advantages of fast transmission provided by these
networks requires the development of large-scale,
high-density base station networks [4, 20, 24, 32].
However, the deployment of 5G networks with strong
network coverage will take a significant amount of
time, which has hindered the practical applications
of vehicular data [15, 19, 23, 45, 47]. To address the
issue of high-throughput data transmission, people
have turned to distributed computation, such as fed-
erated learning (FL), which allows for the collabora-
tive training of deep learning prediction models using
data sourced from multiple parties while avoiding
massive data transmission [15, 21, 27, 51].
FL is an effective means of achieving distributed
training of vehicular data and not only mitigates the
network transmission burden caused by large-scale
data transmission but also balances the data silos
faced by different parties [3, 34]. Additionally, FL en-
ables the sharing of data while ensuring privacy-pre-
serving between participants’ data, thereby helping
users with small training datasets to achieve better re-
sults [7, 42]. However, several critical issues still need
to be addressed. Firstly, the execution of data process-
ing operations by different participants needs to meet
temporal consistency in the acquired vehicular data
to enable data owners to complete the effect of data
aggregation simultaneously [2, 13, 43]. Secondly, the
different data distribution from various participants
necessitates the use of different processing strate-
gies by the system. While current solutions focus on
data redundancy and transferring data with redun-
dant information removed to improve the efficiency
of data transfer, more needs to be done to improve the
transmission efficiency [1]. Even with the distributed
approach to data transmission, challenges related to
incomplete data-sharing applications still persist.
To enhance the efficiency of data sharing, improve
fine-grained data application, and address the imbal-
ance in multi-party data application, in this paper,
we propose an adaptive federated learning approach
using weight coefficients for high-throughput data

transmission. This approach optimizes the transfer
power of the network and improves the efficiency of
data reuse between parties. Specifically, it facilitates
efficient FL deep learning network training to enable
participating parties to collaborate and achieve pre-
dictive model aggregation.
The contributions of our approach are summarized
below.
1 We present a novel multi-party data transmission

system that enables high-speed, collaborative data
sharing without reliance on network transmis-
sion for deep network model training. To enhance
the efficiency of multi-party data use, we employ
a federated learning (FL) framework that circum-
vents network overload arising from transmission
of large data quantities, while enabling the reuse of
multi-party aggregates.

2 In order to expedite FL aggregation, we introduce
an adaptive FL deep learning training framework
that gauges the correlation of trained predictive
models between different parties and allocates
varying weights to the sharing of the aggregated
model based on measures of information entropy
and cosine similarity.

3 To evaluate our novel system, we perform simula-
tion tests based on the CNN network. Results at-
test to the system’s efficacy, which not only adapts
to network conditions but also accelerates the
speed of FL aggregation, achieving high-through-
put data transmission.

The structure of this paper is as follows. We first in-
troduce the related work in Section 2, followed by an
overview of background knowledge in Section 3. Our
proposed system, including each individual party, is
presented in Section 4. Section 5 provides a detailed
description of our proposed system and its ability
to achieve adaptive federated learning training and
high-throughput data transmission. Finally, in Sec-
tion 6, we draw conclusions and suggest future re-
search directions.

2. Related Work
Federated learning represents a distributed machine
learning methodology capable of facilitating collab-
orative learning from diverse datasets without com-
promising the privacy of data owners. The FL archi-

Information Technology and Control 2023/4/52986

tecture that comprises two levels of entity structure:
numerous participating clients and central servers.
In particular, a large number of local clients utilize
their data to train corresponding local models, which
are subsequently transmitted to the central server.
FL can significantly reduce data transmission by le-
veraging distributed collaborative training to achieve
multi-party model integration. However, owing to the
crucial role of numerous clients in training, in addi-
tion to their diverse communication capabilities and
varying device computing power, ensuring consistency
across local model training can present a challenging
task in FL.
Considering a judicious utilization of the communica-
tion resources alongside new perceptive learning-ori-
ented methods are vital, Taïk et al. [36] proposed an
FL architecture that utilizes vehicular-to-vehicular
resources to bypass the communication bottleneck
where clusters of vehicles train models simultane-
ously and only the aggregate of each cluster is sent
to the multi-access edge server. Elbir et al. [10] pre-
sented a federated learning framework that leveraged
local computing power of vehicles in training models,
reducing the need for data transmission. Nguyen et
al. [27] proposed an adaptive federated learning ap-
proach that dynamically adjusts the aggregation cal-
culation weight based on model similarity, enhancing
the efficiency of model aggregation.
To mitigate the high bandwidth consumption, Xiao
et al. [48] proposed a compression technique that ef-
fectively reduced the size of transmitted data while
maintaining model accuracy. To ensure the robust-
ness and security of the federated learning framework
in vehicular environments, Du et al. [8] developed a
secure and robust federated learning framework by
incorporating secure aggregation, Byzantine fault
tolerance, and verifiable model updates. Saputra et al.
[33] utilized FL to accurately predict energy demand
in electric vehicle networks with low communica-
tion overhead. In their model, charging stations act
as clients and only exchange trained models with the
charging station provider, ensuring the privacy of raw
user data. Yu et al. [44] introduced a FL-based proac-
tive content caching scheme for edge computing, in
which mobile devices function as clients and the base
station serves as the central server. Sozinov et al. [35]
demonstrated the efficacy of FL in human activity
recognition, highlighting its comparable accuracy to
centralized learning.

Zhou et al. [52] proposed a FL-based real-time data
processing architecture for multi-robot systems.
Doku et al. [9] combined FL with blockchain to de-
termine data relevance and store relevant data in a
decentralized manner. Ren et al. [29] presented a FL-
based framework for edge computing in large-scale
network environments. Their approach focuses on
jointly allocating communication and computing
resources. Mowla et al. [25] introduced a FL-based
jamming attack detection mechanism for flying ad
hoc networks. They also utilized a client selection ap-
proach based on Dempster-Shafer theory to enhance
the efficiency of FL.
Nguyen et al. [28] proposed a FL-based intrusion
detection system that efficiently aggregated behav-
ior profiles based on device-type-specific commu-
nication profiles. Notably, this system requires no
labeled data for detection. Verma et al. [38, 39] pro-
posed a web service-based implementation of FL for
cross-domain enterprise data sharing. In a similar
vein, Fantacci et al. [12] utilized FL to address the
allocation of virtual machine replica copies in hy-
brid cloud mobile edge computing (MEC) networks.
Their model leveraged FL to forecast user applica-
tion demands and maximize the hit percentage. Lu
et al. [18] proposed a privacy-preserving asynchro-
nous FL mechanism for MEC. They introduce an
asynchronous test process after each training round
at a client, which determines whether the updates
will be sent to the central server. Yan et al. [50] in-
vestigated a FL framework for power allocation in
decentralized vehicular networks. They employed
an online Actor-Critic algorithm for local training
and achieve collaboration among clients by sharing
gradients and weightages. Chen et al. [6] proposed
a FL-based framework for minimizing “breaks in
presence” in wireless networks. Their approach
utilized FL to predict user location and orientation
by enabling multiple clients to collaboratively train
their deep echo state networks based on local data.
Despite these efforts, the computational burden of
federated learning remains an undeniable challenge
that warrants further optimization. Further, the ef-
ficiency of vehicular data also needs to be improved.
To this end, we proposed an adaptive FL (AdaFL) ap-
proach, which offers an effective solution to address
the communication burden arising from large data
transfers.

987Information Technology and Control 2023/4/52

3. Adaptive Federated Learning
Architecture
3.1. System Framework
To address the unique challenges posed by the vary-
ing communication capabilities and device computing
power of local clients, we have developed an adaptive
FL training framework, called AdaFL. This framework
incorporates a weight coefficient for high-throughput
data transmission, facilitating efficient training of neu-
ral network prediction models for autonomous vehi-
cles under many motor vehicles and enhancing their
robustness. The AdaFL system framework comprises
four main components: the traffic management cen-
ter (TMC), in-vehicle sensor vehicles (VSV), mobile
vehicles central (MVC), and service provision content
(SPC), as illustrated in Figure 1.

Figure 1
The system framework of our proposed AdaFL

otal role in generating numerous local neural network
prediction models. They use their data to iteratively
optimize the model’s predictive accuracy round after
round, based on the received initialized model.
Roadside Server (RSS): As a roadside unit with en-
hanced computing power, the RSS not only facilitates
the communication transit function of forwarding
data to the TMC but also integrates the submitted lo-
cal model within the specified communication radius.
Service Provision Content (SPC): Once the final
predictive model has been generated, the TMC not
only transmits the aggregated predictive model to all
participating vehicles in the AdaFL system but also
improves the SPC of multiple applications while op-
timizing the traffic capacity of the entire transporta-
tion network.

3.2. System Overview
To achieve the high-throughput data transmission
needed for vehicular data, our AdaFL system imple-
mentation relies on four key components: vehicular
data collection, vehicle local training, radius model
aggregation, and final model aggregation. The con-
struction process of the entire AdaFL system is de-
picted in Figure 2. To enhance the aggregation ef-
fectiveness of the system on local models, we have
introduced the Pearson correlation coefficient, al-
lowing for the assignment of different weights to each
local model based on its correlation with other local
models during each training round.

(MVC), and service provision content (SPC), as
illustrated in Figure 1.

Figure 1

The system framework of our proposed AdaFL.

Traffic Management Center (TMC): As the
government department responsible for
transportation, the TMC functions as the final
aggregator of the numerous local models generated
within AdaFL. Additionally, the TMC undertakes
the task of neural network model initialization and
distribution to the VSVs.

In-Vehicle Sensor Vehicle (VSV): As an essential
component of the AdaFL system, the VSVs play a
pivotal role in generating numerous local neural
network prediction models. They use their data to
iteratively optimize the model's predictive
accuracy round after round, based on the received
initialized model.

Roadside Server (RSS): As a roadside unit with
enhanced computing power, the RSS not only
facilitates the communication transit function of
forwarding data to the TMC but also integrates the
submitted local model within the specified
communication radius.

Service Provision Content (SPC): Once the final
predictive model has been generated, the TMC not
only transmits the aggregated predictive model to
all participating vehicles in the AdaFL system but
also improves the SPC of multiple applications
while optimizing the traffic capacity of the entire
transportation network.

3.2 System Overview

To achieve the high-throughput data
transmission needed for vehicular data, our
AdaFL system implementation relies on four
key components: vehicular data collection,
vehicle local training, radius model
aggregation, and final model aggregation. The
construction process of the entire AdaFL
system is depicted in Figure 2. To enhance the
aggregation effectiveness of the system on
local models, we have introduced the Pearson
correlation coefficient, allowing for the
assignment of different weights to each local
model based on its correlation with other local
models during each training round.

Figure 2

 The construction process of the entire AdaFL
system.

Vehicular Data Collection (VDC): VDC is the
basic progress for realizing data transmission
and data mining. The vehicular data is mainly
collected by in-vehicle sensors and
traditionally transmitted to a data terminal via
wireless networks. Assume that there are 𝑚𝑚𝑚𝑚
vehicles on the road where each vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖
(1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚). The vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 could generate a
series of in-vehicle data that can reflect the
driving status of the vehicle and the behavior
of the driver and passengers, which can be
represented by a dataset 𝒳𝒳𝒳𝒳 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥3,⋯ , 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘}
where 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 (1 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑘𝑘𝑘𝑘) represents the data of a
certain type of information collected.
Therefore, the data collected by the 𝑚𝑚𝑚𝑚 vehicles
be represented in the form of a matrix 𝔸𝔸𝔸𝔸.

𝔸𝔸𝔸𝔸 =

⎣
⎢
⎢
⎡ 𝑥𝑥𝑥𝑥11 𝑥𝑥𝑥𝑥12 ⋯ 𝑥𝑥𝑥𝑥1𝑘𝑘𝑘𝑘

𝑥𝑥𝑥𝑥21 𝑥𝑥𝑥𝑥22 ⋯ 𝑥𝑥𝑥𝑥2𝑘𝑘𝑘𝑘
⋮ ⋮ ⋮ ⋮

𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚1 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚2 ⋯ 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘⎦
⎥
⎥
⎤
 (1)

Traffic Management Center (TMC): As the govern-
ment department responsible for transportation, the
TMC functions as the final aggregator of the numer-
ous local models generated within AdaFL. Addition-
ally, the TMC undertakes the task of neural network
model initialization and distribution to the VSVs.
In-Vehicle Sensor Vehicle (VSV): As an essential
component of the AdaFL system, the VSVs play a piv-

Figure 2
The construction process of the entire AdaFL system

(MVC), and service provision content (SPC), as
illustrated in Figure 1.

Figure 1

The system framework of our proposed AdaFL.

Traffic Management Center (TMC): As the
government department responsible for
transportation, the TMC functions as the final
aggregator of the numerous local models generated
within AdaFL. Additionally, the TMC undertakes
the task of neural network model initialization and
distribution to the VSVs.

In-Vehicle Sensor Vehicle (VSV): As an essential
component of the AdaFL system, the VSVs play a
pivotal role in generating numerous local neural
network prediction models. They use their data to
iteratively optimize the model's predictive
accuracy round after round, based on the received
initialized model.

Roadside Server (RSS): As a roadside unit with
enhanced computing power, the RSS not only
facilitates the communication transit function of
forwarding data to the TMC but also integrates the
submitted local model within the specified
communication radius.

Service Provision Content (SPC): Once the final
predictive model has been generated, the TMC not
only transmits the aggregated predictive model to
all participating vehicles in the AdaFL system but
also improves the SPC of multiple applications
while optimizing the traffic capacity of the entire
transportation network.

3.2 System Overview

To achieve the high-throughput data
transmission needed for vehicular data, our
AdaFL system implementation relies on four
key components: vehicular data collection,
vehicle local training, radius model
aggregation, and final model aggregation. The
construction process of the entire AdaFL
system is depicted in Figure 2. To enhance the
aggregation effectiveness of the system on
local models, we have introduced the Pearson
correlation coefficient, allowing for the
assignment of different weights to each local
model based on its correlation with other local
models during each training round.

Figure 2

 The construction process of the entire AdaFL
system.

Vehicular Data Collection (VDC): VDC is the
basic progress for realizing data transmission
and data mining. The vehicular data is mainly
collected by in-vehicle sensors and
traditionally transmitted to a data terminal via
wireless networks. Assume that there are 𝑚𝑚𝑚𝑚
vehicles on the road where each vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖
(1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚). The vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 could generate a
series of in-vehicle data that can reflect the
driving status of the vehicle and the behavior
of the driver and passengers, which can be
represented by a dataset 𝒳𝒳𝒳𝒳 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥3,⋯ , 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘}
where 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 (1 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑘𝑘𝑘𝑘) represents the data of a
certain type of information collected.
Therefore, the data collected by the 𝑚𝑚𝑚𝑚 vehicles
be represented in the form of a matrix 𝔸𝔸𝔸𝔸.

𝔸𝔸𝔸𝔸 =

⎣
⎢
⎢
⎡ 𝑥𝑥𝑥𝑥11 𝑥𝑥𝑥𝑥12 ⋯ 𝑥𝑥𝑥𝑥1𝑘𝑘𝑘𝑘

𝑥𝑥𝑥𝑥21 𝑥𝑥𝑥𝑥22 ⋯ 𝑥𝑥𝑥𝑥2𝑘𝑘𝑘𝑘
⋮ ⋮ ⋮ ⋮

𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚1 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚2 ⋯ 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘⎦
⎥
⎥
⎤
 (1)

Information Technology and Control 2023/4/52988

Vehicular Data Collection (VDC): VDC is the basic
progress for realizing data transmission and data
mining. The vehicular data is mainly collected by
in-vehicle sensors and traditionally transmitted to
a data terminal via wireless networks. Assume that
there are m vehicles on the road where each vehicle
𝒱i(1 ≤ i ≤ m). The vehicle 𝒱i could generate a series of
in-vehicle data that can reflect the driving status of
the vehicle and the behavior of the driver and passen-
gers, which can be represented by a dataset 𝒳 = {x1,
x2, x3, ...,xk} where xp(1 ≤ p ≤ k) represents the data of a
certain type of information collected. Therefore, the
data collected by the m vehicles be represented in the
form of a matrix 𝔸.

(MVC), and service provision content (SPC), as
illustrated in Figure 1.

Figure 1

The system framework of our proposed AdaFL.

Traffic Management Center (TMC): As the
government department responsible for
transportation, the TMC functions as the final
aggregator of the numerous local models generated
within AdaFL. Additionally, the TMC undertakes
the task of neural network model initialization and
distribution to the VSVs.

In-Vehicle Sensor Vehicle (VSV): As an essential
component of the AdaFL system, the VSVs play a
pivotal role in generating numerous local neural
network prediction models. They use their data to
iteratively optimize the model's predictive
accuracy round after round, based on the received
initialized model.

Roadside Server (RSS): As a roadside unit with
enhanced computing power, the RSS not only
facilitates the communication transit function of
forwarding data to the TMC but also integrates the
submitted local model within the specified
communication radius.

Service Provision Content (SPC): Once the final
predictive model has been generated, the TMC not
only transmits the aggregated predictive model to
all participating vehicles in the AdaFL system but
also improves the SPC of multiple applications
while optimizing the traffic capacity of the entire
transportation network.

3.2 System Overview

To achieve the high-throughput data
transmission needed for vehicular data, our
AdaFL system implementation relies on four
key components: vehicular data collection,
vehicle local training, radius model
aggregation, and final model aggregation. The
construction process of the entire AdaFL
system is depicted in Figure 2. To enhance the
aggregation effectiveness of the system on
local models, we have introduced the Pearson
correlation coefficient, allowing for the
assignment of different weights to each local
model based on its correlation with other local
models during each training round.

Figure 2

 The construction process of the entire AdaFL
system.

Vehicular Data Collection (VDC): VDC is the
basic progress for realizing data transmission
and data mining. The vehicular data is mainly
collected by in-vehicle sensors and
traditionally transmitted to a data terminal via
wireless networks. Assume that there are 𝑚𝑚𝑚𝑚
vehicles on the road where each vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖
(1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚). The vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 could generate a
series of in-vehicle data that can reflect the
driving status of the vehicle and the behavior
of the driver and passengers, which can be
represented by a dataset 𝒳𝒳𝒳𝒳 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥3,⋯ , 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘}
where 𝑥𝑥𝑥𝑥𝑝𝑝𝑝𝑝 (1 ≤ 𝑝𝑝𝑝𝑝 ≤ 𝑘𝑘𝑘𝑘) represents the data of a
certain type of information collected.
Therefore, the data collected by the 𝑚𝑚𝑚𝑚 vehicles
be represented in the form of a matrix 𝔸𝔸𝔸𝔸.

𝔸𝔸𝔸𝔸 =

⎣
⎢
⎢
⎡ 𝑥𝑥𝑥𝑥11 𝑥𝑥𝑥𝑥12 ⋯ 𝑥𝑥𝑥𝑥1𝑘𝑘𝑘𝑘

𝑥𝑥𝑥𝑥21 𝑥𝑥𝑥𝑥22 ⋯ 𝑥𝑥𝑥𝑥2𝑘𝑘𝑘𝑘
⋮ ⋮ ⋮ ⋮

𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚1 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚2 ⋯ 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘⎦
⎥
⎥
⎤
 (1) (1)

Vehicle Local Training (VLT): This progress in the
AdaFL system is key to reducing the communication
burden of data transmission on existing wireless net-
works. To utilize vehicular data without outsourc-
ing data transfer, we introduce the FL framework
to achieve the distribution training of the deep neu-
ral network model. Similarly, suppose that there are
m vehicles. Each vehicle 𝒱i could train a predictive
model per round using its computing device accord-
ing to the training mechanism of FL. Assume that the
vehicle 𝒱i as the local client could generate the local
model ℳi. Thereby, the local prediction models gen-
erated by m vehicles passing through a round can
be constructed as a prediction model set 𝒴 = {ℳ1

j, ℳ2
j,

...,ℳm
j}, where j(1 ≤ j) represents the number of com-

munication rounds in which FL training ultimately
reaches the available model. Particularly when the
vehicle 𝒱i accomplishes each round of model ℳi

j
training, the vehicle 𝒱i sends the ℳi

j to the nearest
roadside server.
Roadside Model Aggregation (RMA): As the second
progress in AdaFL system, the main task of RMA is
to aggregate local models submitted by clients within
the communication radius R into an aggregated mod-
el. Benefiting from RSS's computing and storage ca-
pabilities, RMA mainly implements the aggregation
task of some local models through RSS. Suppose that
the ℳ local clients are randomly averaged across U

number RSS, and each RSS contains K local clients
within the communication radius R where K≪ℳ.
Therefore, the RSS utilizes the federated learning av-
erage (FedAvg) algorithm to accomplish the K local
clients aggregated. For instance, the RSS 𝒫(k ∈ [1, U]
) could generate the sub-aggregated model list [M𝒫1,
M𝒫2, M𝒫3, ...,M𝒫U].
Service Provision Aggregation: The service provision
aggregation is the last progress to generate the final
aggregated model. Mainly when the RSS receives the
sub-aggregated model list [M𝒫1, M𝒫2, M𝒫3, ...,M𝒫U], the
SPC also uses the FedAvg algorithm to achieve the fi-
nal aggregated model.

3.3. Design Goal
In this paper, we aim to achieve the following goals
to balance the value of data and the amount of data
transferred.
Our proposed scheme mainly could significantly re-
duce vehicular data transmission and fully use the
intrinsic value of data.
Since our proposed strategy mainly relies on the dis-
tributed training mechanism of FL. Therefore, we
need to compensate for the contribution of different
participating vehicle clients to the aggregated predic-
tion model so that it can converge the model as soon
as possible.

4. Adaptive Federated Learning
Algorithm
In this section, we mainly introduce the details of ac-
complishing the AdaFL algorithm. Based on the prog-
ress of the AdaFL system in the system overview, we
also proceed through the following three processes:
vehicle local model training, local model correlation
measurement, and final model aggregation.

4.1. Vehicle Local Model Training
With the continuous enrichment of onboard sensors
and the increasing intelligence of vehicles, vehicles
are now like a comprehensive service platform. To
fully tap the value of vehicular data, collecting vehic-
ular data is the most basic operation. According to
the above statement, there are m vehicles on the road,
which are randomly assigned to a specific area within

989Information Technology and Control 2023/4/52

the scope of K RSU. The same assumption, each ve-
hicle could generate its own dataset 𝒳 = {x1, x2, x3, ...,
xk}, where each element in the 𝒳 means a collection of
certain types of in-vehicle data. The use of each data
type is guided by the training purpose of the vehicle.
To realize the availability of data, according to the
different types of vehicle users who collect data, the
data will be marked accordingly to realize the usabil-
ity of the data. Similarly, assume that the label could
be defined as the vector ℒ = [l1, l2, l3, ...,lK], each element
lq,(1 ≤ q ≤ K) in vector ℒ corresponds to the generated
dataset 𝒳, such as.

Vehicle Local Training (VLT): This progress in the
AdaFL system is key to reducing the
communication burden of data transmission on
existing wireless networks. To utilize vehicular
data without outsourcing data transfer, we
introduce the FL framework to achieve the
distribution training of the deep neural network
model. Similarly, suppose that there are m
vehicles. Each vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 could train a predictive
model per round using its computing device
according to the training mechanism of FL. Assume
that the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 as the local client could generate
the local model ℳ𝑖𝑖𝑖𝑖 . Thereby, the local prediction
models generated by m vehicles passing through
a round can be constructed as a prediction model
set 𝒴𝒴𝒴𝒴 = {ℳ1

𝑗𝑗𝑗𝑗 ,ℳ2
𝑗𝑗𝑗𝑗 ,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗 } , where 𝑗𝑗𝑗𝑗(1 ≤ 𝑗𝑗𝑗𝑗)
represents the number of communication rounds in
which FL training ultimately reaches the available
model. Particularly when the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖
accomplishes each round of model ℳ𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗 training,
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 sends the ℳ𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗 to the nearest roadside
server.

Roadside Model Aggregation (RMA): As the
second progress in AdaFL system, the main task of
RMA is to aggregate local models submitted by
clients within the communication radius 𝑅𝑅𝑅𝑅 into an
aggregated model. Benefiting from RSS's
computing and storage capabilities, RMA mainly
implements the aggregation task of some local
models through RSS. Suppose that the ℳ local
clients are randomly averaged across U number
RSS, and each RSS contains 𝐾𝐾𝐾𝐾 local clients within
the communication radius 𝑅𝑅𝑅𝑅 where 𝐾𝐾𝐾𝐾 ≪ℳ.
Therefore, the RSS utilizes the federated learning
average (FedAvg) algorithm to accomplish the K
local clients aggregated. For instance, the RSS
𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘∈[1,𝑈𝑈𝑈𝑈] could generate the sub-aggregated model
list �𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫1 ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫2 ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫3 ,⋯ ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫𝑈𝑈𝑈𝑈�.

Service Provision Aggregation: The service
provision aggregation is the last progress to
generate the final aggregated model. Mainly when
the RSS receives the sub-aggregated model list
�𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫1 ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫2 ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫3 ,⋯ ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫𝑈𝑈𝑈𝑈� , the SPC also uses the
FedAvg algorithm to achieve the final aggregated
model.

3.3 Design Goal
In this paper, we aim to achieve the following goals
to balance the value of data and the amount of data
transferred.

Our proposed scheme mainly could significantly
reduce vehicular data transmission and fully use
the intrinsic value of data.

Since our proposed strategy mainly relies on the

distributed training mechanism of FL.
Therefore, we need to compensate for the
contribution of different participating vehicle
clients to the aggregated prediction model so
that it can converge the model as soon as
possible.

4. Adaptive Federated Learning
Algorithm

In this section, we mainly introduce the details
of accomplishing the AdaFL algorithm. Based
on the progress of the AdaFL system in the
system overview, we also proceed through
the following three processes: vehicle local
model training, local model correlation
measurement, and final model aggregation.

4.1 Vehicle Local Model Training
With the continuous enrichment of onboard
sensors and the increasing intelligence of
vehicles, vehicles are now like a
comprehensive service platform. To fully tap
the value of vehicular data, collecting
vehicular data is the most basic operation.
According to the above statement, there are 𝑚𝑚𝑚𝑚
vehicles on the road, which are randomly
assigned to a specific area within the scope of
𝐾𝐾𝐾𝐾 RSU. The same assumption, each vehicle
could generate its own dataset 𝒳𝒳𝒳𝒳 =
{𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥3,⋯ , 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘}, where each element in the 𝒳𝒳𝒳𝒳
means a collection of certain types of in-
vehicle data. The use of each data type is
guided by the training purpose of the vehicle.
To realize the availability of data, according to
the different types of vehicle users who collect
data, the data will be marked accordingly to
realize the usability of the data. Similarly,
assume that the label could be defined as the
vector ℒ = [𝑙𝑙𝑙𝑙1, 𝑙𝑙𝑙𝑙2, 𝑙𝑙𝑙𝑙3,⋯ , 𝑙𝑙𝑙𝑙𝐾𝐾𝐾𝐾] , each element
𝑙𝑙𝑙𝑙𝑞𝑞𝑞𝑞 , (1 ≤ 𝑞𝑞𝑞𝑞 ≤ 𝐾𝐾𝐾𝐾) in vector ℒ corresponds to the
generated dataset 𝒳𝒳𝒳𝒳, such as.

𝔻𝔻𝔻𝔻 =

⎣
⎢
⎢
⎡ 𝑥𝑥𝑥𝑥11 𝑥𝑥𝑥𝑥12 ⋯ 𝑥𝑥𝑥𝑥1𝑘𝑘𝑘𝑘 , 𝑙𝑙𝑙𝑙1

𝑥𝑥𝑥𝑥21 𝑥𝑥𝑥𝑥22 ⋯ 𝑥𝑥𝑥𝑥2𝑘𝑘𝑘𝑘 , 𝑙𝑙𝑙𝑙2
⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚1 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚2 ⋯ 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 , 𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘⎦
⎥
⎥
⎤
. (2)

When the vehicle generates the dataset, the 𝒳𝒳𝒳𝒳
will be stored in the data storage device inside
the vehicle. Thanks to the increased
computing power of in-vehicle devices, we
can use the data without transferring the in-
vehicle data generated by the vehicle.
Therefore, based on the above introduction,
we can minimize data transmission and
significantly save the bandwidth of
communication resources.

(2)

When the vehicle generates the dataset, the 𝒳 will be
stored in the data storage device inside the vehicle.
Thanks to the increased computing power of in-vehi-
cle devices, we can use the data without transferring
the in-vehicle data generated by the vehicle. There-
fore, based on the above introduction, we can min-
imize data transmission and significantly save the
bandwidth of communication resources.
As the client node of local model training, the vehicle
uses its own standard data to complete the training
of the corresponding prediction model based on se-
lecting a specific data type. Assume that the vehicle
𝒱i uses the training dataset [𝒳 : li] based on the deep
neural network learning algorithm f to generate the
local model ℳi, such as the following:

As the client node of local model training, the
vehicle uses its own standard data to complete the
training of the corresponding prediction model
based on selecting a specific data type. Assume that
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following:

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖). (3)

Therefore, the 𝑚𝑚𝑚𝑚 vehicles could generate 𝑚𝑚𝑚𝑚 local
predict model, which further is structured as a
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚
vehicles are randomly assigned to the range of the
communication radius 𝑅𝑅𝑅𝑅 of 𝐾𝐾𝐾𝐾 the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗).

Therefore, the vector 𝑀𝑀𝑀𝑀 also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

components, and further the vector 𝑀𝑀𝑀𝑀 could be
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all

the vehicle nodes participating in the local client
training have trained the local prediction model,
the vehicle will select the adjacent RSU server base
station and send the trained model parameters to
RSU. To speed up the aggregation speed of local
models, it is imperative to fully explore the weight
between different model parameters and realize the
weight analysis of local models submitted by
different vehicles.

4.2 Local Model Correlation Measurement
We construct a model parameter weights allocation
algorithm by introducing cosine similarity to
complete the analysis of different weights between
different model parameters. Firstly, we utilize the
KL divergence based on information entropy to
compute the between different model
relationships. And then, the so-called cosine
similarity refers to calculating the cosine angle
between different values. The KL divergence could
be shown as follows.

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌)

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 . (4)

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets,
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)� and the ℋ(𝑌𝑌𝑌𝑌) could be
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To
illustrate how to calculate the KL divergence
between different models and cosine similarity, we
through a simple example to illustrate as follows.

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of
vectors 𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵 could be computed as
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that
when the KL divergence of the parameters of
the two prediction models is less than the
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models.
When some model parameters with high
distribution similarity are aggregated, in
order to balance the contribution of the
remaining model parameters to the final
prediction model, we next calculate the
discrete cosine angle of the models. Assume
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can
be computed as follows:

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 . (5)

In most cases, the dimension of the data is
greater than 2 , so we need to extend the
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁] and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] .
Therefore, the cosine angle can also be
computed as follows:

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

. (6)

To calculate whether the local model
submitted by each vehicle client deviates from
the final aggregation direction, we first need
to use the FedAvg algorithm to perform an
aggregation calculation on the local model to
obtain a baseline for calculating cosine
similarity. Suppose that the aggregation
model obtained by aggregation calculation is
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity
between each local model and the benchmark
aggregation model respectively to cosine
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� as

weight values. Based on the obtained weight
vector, we redesign the federal learning
model aggregation algorithm with weight
coefficients. The refactored formulas are
shown in 7 and 8.

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) (7)

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤) (8)

(3)

Therefore, the m vehicles could generate m local pre-
dict model, which further is structured as a vector M =
[ℳ1, ℳ2, ℳ3, ..., ℳm]. Assuming that there is an ideal
state, at a particular moment, m vehicles are random-
ly assigned to the range of the communication radius
R of K the RSU (m

K ∈N*). Therefore, the vector M also
is divided into m

K components, and further the vec-
tor M could be rewritten as ℳ� 1= [ℳ1, ℳ2, ℳ3, ..., ℳm

K
]. After all the vehicle nodes participating in the local
client training have trained the local prediction mod-
el, the vehicle will select the adjacent RSU server base
station and send the trained model parameters to RSU.
To speed up the aggregation speed of local models, it is

imperative to fully explore the weight between differ-
ent model parameters and realize the weight analysis
of local models submitted by different vehicles.

4.2. Local Model Correlation Measurement

We construct a model parameter weights allocation
algorithm by introducing cosine similarity to com-
plete the analysis of different weights between dif-
ferent model parameters. Firstly, we utilize the KL
divergence based on information entropy to compute
the between different model relationships. And then,
the so-called cosine similarity refers to calculating
the cosine angle between different values. The KL di-
vergence could be shown as follows.

As the client node of local model training, the
vehicle uses its own standard data to complete the
training of the corresponding prediction model
based on selecting a specific data type. Assume that
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following:

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖). (3)

Therefore, the 𝑚𝑚𝑚𝑚 vehicles could generate 𝑚𝑚𝑚𝑚 local
predict model, which further is structured as a
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚
vehicles are randomly assigned to the range of the
communication radius 𝑅𝑅𝑅𝑅 of 𝐾𝐾𝐾𝐾 the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗).

Therefore, the vector 𝑀𝑀𝑀𝑀 also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

components, and further the vector 𝑀𝑀𝑀𝑀 could be
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all

the vehicle nodes participating in the local client
training have trained the local prediction model,
the vehicle will select the adjacent RSU server base
station and send the trained model parameters to
RSU. To speed up the aggregation speed of local
models, it is imperative to fully explore the weight
between different model parameters and realize the
weight analysis of local models submitted by
different vehicles.

4.2 Local Model Correlation Measurement
We construct a model parameter weights allocation
algorithm by introducing cosine similarity to
complete the analysis of different weights between
different model parameters. Firstly, we utilize the
KL divergence based on information entropy to
compute the between different model
relationships. And then, the so-called cosine
similarity refers to calculating the cosine angle
between different values. The KL divergence could
be shown as follows.

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌)

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 . (4)

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets,
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)� and the ℋ(𝑌𝑌𝑌𝑌) could be
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To
illustrate how to calculate the KL divergence
between different models and cosine similarity, we
through a simple example to illustrate as follows.

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of
vectors 𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵 could be computed as
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that
when the KL divergence of the parameters of
the two prediction models is less than the
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models.
When some model parameters with high
distribution similarity are aggregated, in
order to balance the contribution of the
remaining model parameters to the final
prediction model, we next calculate the
discrete cosine angle of the models. Assume
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can
be computed as follows:

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 . (5)

In most cases, the dimension of the data is
greater than 2 , so we need to extend the
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁] and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] .
Therefore, the cosine angle can also be
computed as follows:

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

. (6)

To calculate whether the local model
submitted by each vehicle client deviates from
the final aggregation direction, we first need
to use the FedAvg algorithm to perform an
aggregation calculation on the local model to
obtain a baseline for calculating cosine
similarity. Suppose that the aggregation
model obtained by aggregation calculation is
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity
between each local model and the benchmark
aggregation model respectively to cosine
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� as

weight values. Based on the obtained weight
vector, we redesign the federal learning
model aggregation algorithm with weight
coefficients. The refactored formulas are
shown in 7 and 8.

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) (7)

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤) (8)

(4)

In Equation (4), the Y are the random variable sets,
X are the independent variable set, and ℋ(X, Y) is
the joint probability distribution function of X and
Y. Therefore, the ℋ(X, Y) could be calculated by the
information entropy ℋ(X) by the formula ℋ(X) =
–∑x∈Xp (x)log(p(x)) and the ℋ(Y) could be obtained by
ℋ(Y) = –∑y∈Y p(y)log(p(Y)).To illustrate how to calcu-
late the KL divergence between different models and
cosine similarity, we through a simple example to il-
lustrate as follows.
Suppose there are 2-dimensional vectors A = [a1, a1, a2,
a3] and B = [a1, a1, a2, a3], we can obtain that the prob-
ability of element a1 is 0.5 in the vector A, the proba-
bility of element a2 is 0.25 in the vector A, the proba-
bility of element a3 is 0.25 in the vector A. Similarly,
the probability of element a1 is 0.25 in the vector B,
the probability of element a2 is 0.5 in vector B, and the
probability of element a3 is 0.25 in vector B. There-
fore, the KL divergence of vectors A and B could be
computed as 𝒦KL (A|B)=0.5 log 0.5

0.25 + 0.25 log0.25
0.5 + 0.25

log0.25
0.25 = 0.25. Here, we stipulate that when the KL

divergence of the parameters of the two prediction
models is less than the threshold α, we aggregate the
two models. When some model parameters with high
distribution similarity are aggregated, in order to bal-
ance the contribution of the remaining model param-
eters to the final prediction model, we next calculate
the discrete cosine angle of the models. Assume that
there are two-dimensional vectors T1 = [t1, t2] and W2 =

Information Technology and Control 2023/4/52990

[w1, w2], the cosine angle can be computed as follows:

As the client node of local model training, the
vehicle uses its own standard data to complete the
training of the corresponding prediction model
based on selecting a specific data type. Assume that
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following:

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖). (3)

Therefore, the 𝑚𝑚𝑚𝑚 vehicles could generate 𝑚𝑚𝑚𝑚 local
predict model, which further is structured as a
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚
vehicles are randomly assigned to the range of the
communication radius 𝑅𝑅𝑅𝑅 of 𝐾𝐾𝐾𝐾 the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗).

Therefore, the vector 𝑀𝑀𝑀𝑀 also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

components, and further the vector 𝑀𝑀𝑀𝑀 could be
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all

the vehicle nodes participating in the local client
training have trained the local prediction model,
the vehicle will select the adjacent RSU server base
station and send the trained model parameters to
RSU. To speed up the aggregation speed of local
models, it is imperative to fully explore the weight
between different model parameters and realize the
weight analysis of local models submitted by
different vehicles.

4.2 Local Model Correlation Measurement
We construct a model parameter weights allocation
algorithm by introducing cosine similarity to
complete the analysis of different weights between
different model parameters. Firstly, we utilize the
KL divergence based on information entropy to
compute the between different model
relationships. And then, the so-called cosine
similarity refers to calculating the cosine angle
between different values. The KL divergence could
be shown as follows.

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌)

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 . (4)

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets,
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)� and the ℋ(𝑌𝑌𝑌𝑌) could be
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To
illustrate how to calculate the KL divergence
between different models and cosine similarity, we
through a simple example to illustrate as follows.

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of
vectors 𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵 could be computed as
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that
when the KL divergence of the parameters of
the two prediction models is less than the
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models.
When some model parameters with high
distribution similarity are aggregated, in
order to balance the contribution of the
remaining model parameters to the final
prediction model, we next calculate the
discrete cosine angle of the models. Assume
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can
be computed as follows:

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 . (5)

In most cases, the dimension of the data is
greater than 2 , so we need to extend the
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁] and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] .
Therefore, the cosine angle can also be
computed as follows:

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

. (6)

To calculate whether the local model
submitted by each vehicle client deviates from
the final aggregation direction, we first need
to use the FedAvg algorithm to perform an
aggregation calculation on the local model to
obtain a baseline for calculating cosine
similarity. Suppose that the aggregation
model obtained by aggregation calculation is
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity
between each local model and the benchmark
aggregation model respectively to cosine
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� as

weight values. Based on the obtained weight
vector, we redesign the federal learning
model aggregation algorithm with weight
coefficients. The refactored formulas are
shown in 7 and 8.

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) (7)

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤) (8)

(5)

In most cases, the dimension of the data is greater
than 2, so we need to extend the dimension to N. Sim-
ilarly, suppose that there are n dimensional vectors
A =[a1, a2, a3, ..., aN] and B = [b1, b2, b3, ...,bN]. Therefore,
the cosine angle can also be computed as follows:

As the client node of local model training, the
vehicle uses its own standard data to complete the
training of the corresponding prediction model
based on selecting a specific data type. Assume that
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following:

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖). (3)

Therefore, the 𝑚𝑚𝑚𝑚 vehicles could generate 𝑚𝑚𝑚𝑚 local
predict model, which further is structured as a
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚
vehicles are randomly assigned to the range of the
communication radius 𝑅𝑅𝑅𝑅 of 𝐾𝐾𝐾𝐾 the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗).

Therefore, the vector 𝑀𝑀𝑀𝑀 also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

components, and further the vector 𝑀𝑀𝑀𝑀 could be
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all

the vehicle nodes participating in the local client
training have trained the local prediction model,
the vehicle will select the adjacent RSU server base
station and send the trained model parameters to
RSU. To speed up the aggregation speed of local
models, it is imperative to fully explore the weight
between different model parameters and realize the
weight analysis of local models submitted by
different vehicles.

4.2 Local Model Correlation Measurement
We construct a model parameter weights allocation
algorithm by introducing cosine similarity to
complete the analysis of different weights between
different model parameters. Firstly, we utilize the
KL divergence based on information entropy to
compute the between different model
relationships. And then, the so-called cosine
similarity refers to calculating the cosine angle
between different values. The KL divergence could
be shown as follows.

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌)

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 . (4)

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets,
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)� and the ℋ(𝑌𝑌𝑌𝑌) could be
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To
illustrate how to calculate the KL divergence
between different models and cosine similarity, we
through a simple example to illustrate as follows.

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of
vectors 𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵 could be computed as
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that
when the KL divergence of the parameters of
the two prediction models is less than the
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models.
When some model parameters with high
distribution similarity are aggregated, in
order to balance the contribution of the
remaining model parameters to the final
prediction model, we next calculate the
discrete cosine angle of the models. Assume
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can
be computed as follows:

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 . (5)

In most cases, the dimension of the data is
greater than 2 , so we need to extend the
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁] and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] .
Therefore, the cosine angle can also be
computed as follows:

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

. (6)

To calculate whether the local model
submitted by each vehicle client deviates from
the final aggregation direction, we first need
to use the FedAvg algorithm to perform an
aggregation calculation on the local model to
obtain a baseline for calculating cosine
similarity. Suppose that the aggregation
model obtained by aggregation calculation is
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity
between each local model and the benchmark
aggregation model respectively to cosine
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� as

weight values. Based on the obtained weight
vector, we redesign the federal learning
model aggregation algorithm with weight
coefficients. The refactored formulas are
shown in 7 and 8.

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) (7)

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤) (8)

(6)

To calculate whether the local model submitted by
each vehicle client deviates from the final aggregation
direction, we first need to use the FedAvg algorithm
to perform an aggregation calculation on the local
model to obtain a baseline for calculating cosine sim-
ilarity. Suppose that the aggregation model obtained
by aggregation calculation is ℳo, we need to calculate
the cosine similarity between each local model and
the benchmark aggregation model respectively to co-
sine similarity coefficient Θ = [θ1, θ2, ..., θm

K
] as weight

values. Based on the obtained weight vector, we rede-
sign the federal learning model aggregation algorithm
with weight coefficients. The refactored formulas are
shown in 7 and 8.

As the client node of local model training, the
vehicle uses its own standard data to complete the
training of the corresponding prediction model
based on selecting a specific data type. Assume that
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following:

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖). (3)

Therefore, the 𝑚𝑚𝑚𝑚 vehicles could generate 𝑚𝑚𝑚𝑚 local
predict model, which further is structured as a
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚
vehicles are randomly assigned to the range of the
communication radius 𝑅𝑅𝑅𝑅 of 𝐾𝐾𝐾𝐾 the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗).

Therefore, the vector 𝑀𝑀𝑀𝑀 also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

components, and further the vector 𝑀𝑀𝑀𝑀 could be
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all

the vehicle nodes participating in the local client
training have trained the local prediction model,
the vehicle will select the adjacent RSU server base
station and send the trained model parameters to
RSU. To speed up the aggregation speed of local
models, it is imperative to fully explore the weight
between different model parameters and realize the
weight analysis of local models submitted by
different vehicles.

4.2 Local Model Correlation Measurement
We construct a model parameter weights allocation
algorithm by introducing cosine similarity to
complete the analysis of different weights between
different model parameters. Firstly, we utilize the
KL divergence based on information entropy to
compute the between different model
relationships. And then, the so-called cosine
similarity refers to calculating the cosine angle
between different values. The KL divergence could
be shown as follows.

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌)

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 . (4)

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets,
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)� and the ℋ(𝑌𝑌𝑌𝑌) could be
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To
illustrate how to calculate the KL divergence
between different models and cosine similarity, we
through a simple example to illustrate as follows.

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of
vectors 𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵 could be computed as
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that
when the KL divergence of the parameters of
the two prediction models is less than the
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models.
When some model parameters with high
distribution similarity are aggregated, in
order to balance the contribution of the
remaining model parameters to the final
prediction model, we next calculate the
discrete cosine angle of the models. Assume
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can
be computed as follows:

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 . (5)

In most cases, the dimension of the data is
greater than 2 , so we need to extend the
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁] and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] .
Therefore, the cosine angle can also be
computed as follows:

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

. (6)

To calculate whether the local model
submitted by each vehicle client deviates from
the final aggregation direction, we first need
to use the FedAvg algorithm to perform an
aggregation calculation on the local model to
obtain a baseline for calculating cosine
similarity. Suppose that the aggregation
model obtained by aggregation calculation is
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity
between each local model and the benchmark
aggregation model respectively to cosine
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� as

weight values. Based on the obtained weight
vector, we redesign the federal learning
model aggregation algorithm with weight
coefficients. The refactored formulas are
shown in 7 and 8.

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) (7)

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤) (8)

(7)

As the client node of local model training, the
vehicle uses its own standard data to complete the
training of the corresponding prediction model
based on selecting a specific data type. Assume that
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following:

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖). (3)

Therefore, the 𝑚𝑚𝑚𝑚 vehicles could generate 𝑚𝑚𝑚𝑚 local
predict model, which further is structured as a
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚
vehicles are randomly assigned to the range of the
communication radius 𝑅𝑅𝑅𝑅 of 𝐾𝐾𝐾𝐾 the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗).

Therefore, the vector 𝑀𝑀𝑀𝑀 also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

components, and further the vector 𝑀𝑀𝑀𝑀 could be
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all

the vehicle nodes participating in the local client
training have trained the local prediction model,
the vehicle will select the adjacent RSU server base
station and send the trained model parameters to
RSU. To speed up the aggregation speed of local
models, it is imperative to fully explore the weight
between different model parameters and realize the
weight analysis of local models submitted by
different vehicles.

4.2 Local Model Correlation Measurement
We construct a model parameter weights allocation
algorithm by introducing cosine similarity to
complete the analysis of different weights between
different model parameters. Firstly, we utilize the
KL divergence based on information entropy to
compute the between different model
relationships. And then, the so-called cosine
similarity refers to calculating the cosine angle
between different values. The KL divergence could
be shown as follows.

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌)

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 . (4)

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets,
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)� and the ℋ(𝑌𝑌𝑌𝑌) could be
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To
illustrate how to calculate the KL divergence
between different models and cosine similarity, we
through a simple example to illustrate as follows.

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of
vectors 𝐴𝐴𝐴𝐴 and 𝐵𝐵𝐵𝐵 could be computed as
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that
when the KL divergence of the parameters of
the two prediction models is less than the
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models.
When some model parameters with high
distribution similarity are aggregated, in
order to balance the contribution of the
remaining model parameters to the final
prediction model, we next calculate the
discrete cosine angle of the models. Assume
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can
be computed as follows:

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 . (5)

In most cases, the dimension of the data is
greater than 2 , so we need to extend the
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁] and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] .
Therefore, the cosine angle can also be
computed as follows:

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

. (6)

To calculate whether the local model
submitted by each vehicle client deviates from
the final aggregation direction, we first need
to use the FedAvg algorithm to perform an
aggregation calculation on the local model to
obtain a baseline for calculating cosine
similarity. Suppose that the aggregation
model obtained by aggregation calculation is
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity
between each local model and the benchmark
aggregation model respectively to cosine
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� as

weight values. Based on the obtained weight
vector, we redesign the federal learning
model aggregation algorithm with weight
coefficients. The refactored formulas are
shown in 7 and 8.

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) (7)

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤) (8) (8)

Algorithm 1: AdaFL Algorithm

Input: Vehicular Clients: O = {o1, o2, ...,oN}. B is
the local mini-batch size, E is the number of local
epochs, α is the learning rate, ▽L(. ; .) is the gradient
optimization function.
Output: ℳj

1. Initialize ω*.
2. for communication round t = 1, 2, ... do
3. {OM} ← select VCs from O to join in this round;
4. TMC broadcasts global model ω* to {OM} to;
5. for each VC o ∈ {OM} do
6. Initialize ω(o, t) = ω*;
7. ω(i,(o, t + 1)) ← LocalUpdate(o, ω(o, t));

8. Calculate the KL divergence
 KKL (ω(i,(o, t + 1)) || ω(j,(o, t + 1)));

9. if KKL ≤ α then
10. Computing ω–i, j ←

 FedAvg(ω(i,(o, t + 1))|| ω(j,(o, t + 1)));
11. else
12.

Algorithm 1: AdaFL Algorithm
Input: Vehicular Clients: 𝑂𝑂𝑂𝑂 = {𝑜𝑜𝑜𝑜1 , 𝑜𝑜𝑜𝑜2 ,· · · , 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁 }. 𝐵𝐵𝐵𝐵
is the local mini-batch size, 𝐸𝐸𝐸𝐸 is the number of local
epochs, 𝛼𝛼𝛼𝛼 is the learning rate, ▽ 𝐿𝐿𝐿𝐿(· ; ·) is the
gradient optimization function.
Output: ℳ𝑗𝑗𝑗𝑗
1. Initialize 𝜔𝜔𝜔𝜔∗.
2. for communication round 𝑡𝑡𝑡𝑡 = 1, 2,· · · do
3. {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 } ← select VCs from 𝑂𝑂𝑂𝑂 to join in this

round;
4. TMC broadcasts global model 𝜔𝜔𝜔𝜔∗ to {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 };
5. for each VC 𝑜𝑜𝑜𝑜 ∈ {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 } do
6. Initialize 𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡) = 𝜔𝜔𝜔𝜔∗;
7. 𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ← 𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿(𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡));
8. Calculate the KL divergence

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��;
9. if 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 𝛼𝛼𝛼𝛼 then
10. Computing �̄�𝜔𝜔𝜔𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ←

𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��;
11. else
12. cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2×𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

13. 𝛩𝛩𝛩𝛩 = [𝜃𝜃𝜃𝜃1 ,𝜃𝜃𝜃𝜃2 ,𝜃𝜃𝜃𝜃3 ,· · · ,𝜃𝜃𝜃𝜃𝐾𝐾𝐾𝐾]
14. �̄�𝜔𝜔𝜔(𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡+1) ← 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

|{𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀}|
∑ 𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 ;

15. Local Update �𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)�:
16. ℬ ← (split 𝒟𝒟𝒟𝒟𝑖𝑖𝑖𝑖 into batches of size 𝐵𝐵𝐵𝐵);
17. if each local epoch 𝑖𝑖𝑖𝑖 from 1 to 𝐸𝐸𝐸𝐸 then
18. if batch 𝑏𝑏𝑏𝑏 ∈ ℬ then
19. 𝜔𝜔𝜔𝜔 ← 𝜔𝜔𝜔𝜔 − 𝛼𝛼𝛼𝛼 · ▽ 𝐿𝐿𝐿𝐿(𝜔𝜔𝜔𝜔; 𝑏𝑏𝑏𝑏);

4.3 Predictive Model Aggregation
To be able to adapt to the rapid movement of
vehicles, our aggregation calculations involve two
stages. The first stage involves the initial local
model aggregation task, which is primarily
concentrated in the RSU. When the RSU receives
local model submissions from various vehicles
within its communication radius R, it performs
aggregation calculations, generating partially
aggregated sub-models, which are then sent to the
SPC for further aggregation of all sub-models. This
step generates the final predictive global model.
Subsequently, the SPC transmits the generated
global model to each participating vehicle in the
training for a new round of model updates.

5. Simulation Experiment
To demonstrate the effectiveness of the AdaFL
system, we utilized a CNN model to construct a
prediction model based on the MNIST and
FashionMNIST dataset, training data from 100
clients. Notably, the authors randomly assigned the
dataset to each client based on the type of data they
obtain to satisfy the characteristics of non-IID. The

experiment environment employed an
Intel(R) Core (TM), i7-12600 CPU@3.40GHZ,
and 16.00GB of RAM, RTX3090 of GPU, to
serve as our central server.
Figure 3

Prediction accuracy by CNN model on MNIST test
set.

We first evaluated the performance of the
CNN model based on 100 clients, as well as
the performance via centralized training by
mining the MNIST dataset, as shown in Figure
3. The results indicate that federated learning
can achieve very stable results, even with a
large number of training nodes. Specifically,
when the number of training rounds reaches
approximately 50, the CNN training method
based on federated learning can achieve
accuracy stability. Therefore, we can generate
a model through the above process without
collecting data generated by vehicles, and
conduct mining training on vehicle data
effectively.

To further enhance the stability of local model
prediction accuracy in federated learning, we
used the KL divergence method based on
information entropy to calculate the similarity
between any two models. Specifically, we first
calculated the KL divergence value between
any two local model parameters and
compared it with a preset threshold. If the KL
divergence value between the model
parameters was less than or equal to the
threshold 𝛼𝛼𝛼𝛼, we used the traditional FedAvg
algorithm to aggregate the corresponding
model parameters. If the KL divergence value
was greater than the threshold 𝛼𝛼𝛼𝛼, we did not
aggregate its model parameters.

To identify a suitable threshold 𝛼𝛼𝛼𝛼, we varied
values of 𝛼𝛼𝛼𝛼 within the range [0,1], and
evaluated the number of rounds required for

13. Θ = [θ1, θ2, θ3, ...,θK]

14.

Algorithm 1: AdaFL Algorithm
Input: Vehicular Clients: 𝑂𝑂𝑂𝑂 = {𝑜𝑜𝑜𝑜1 , 𝑜𝑜𝑜𝑜2 ,· · · , 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁 }. 𝐵𝐵𝐵𝐵
is the local mini-batch size, 𝐸𝐸𝐸𝐸 is the number of local
epochs, 𝛼𝛼𝛼𝛼 is the learning rate, ▽ 𝐿𝐿𝐿𝐿(· ; ·) is the
gradient optimization function.
Output: ℳ𝑗𝑗𝑗𝑗
1. Initialize 𝜔𝜔𝜔𝜔∗.
2. for communication round 𝑡𝑡𝑡𝑡 = 1, 2,· · · do
3. {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 } ← select VCs from 𝑂𝑂𝑂𝑂 to join in this

round;
4. TMC broadcasts global model 𝜔𝜔𝜔𝜔∗ to {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 };
5. for each VC 𝑜𝑜𝑜𝑜 ∈ {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 } do
6. Initialize 𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡) = 𝜔𝜔𝜔𝜔∗;
7. 𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ← 𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿(𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡));
8. Calculate the KL divergence

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��;
9. if 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 𝛼𝛼𝛼𝛼 then
10. Computing �̄�𝜔𝜔𝜔𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ←

𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��;
11. else
12. cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2×𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

13. 𝛩𝛩𝛩𝛩 = [𝜃𝜃𝜃𝜃1 ,𝜃𝜃𝜃𝜃2 ,𝜃𝜃𝜃𝜃3 ,· · · ,𝜃𝜃𝜃𝜃𝐾𝐾𝐾𝐾]
14. �̄�𝜔𝜔𝜔(𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡+1) ← 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

|{𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀}|
∑ 𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 ;

15. Local Update �𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)�:
16. ℬ ← (split 𝒟𝒟𝒟𝒟𝑖𝑖𝑖𝑖 into batches of size 𝐵𝐵𝐵𝐵);
17. if each local epoch 𝑖𝑖𝑖𝑖 from 1 to 𝐸𝐸𝐸𝐸 then
18. if batch 𝑏𝑏𝑏𝑏 ∈ ℬ then
19. 𝜔𝜔𝜔𝜔 ← 𝜔𝜔𝜔𝜔 − 𝛼𝛼𝛼𝛼 · ▽ 𝐿𝐿𝐿𝐿(𝜔𝜔𝜔𝜔; 𝑏𝑏𝑏𝑏);

4.3 Predictive Model Aggregation
To be able to adapt to the rapid movement of
vehicles, our aggregation calculations involve two
stages. The first stage involves the initial local
model aggregation task, which is primarily
concentrated in the RSU. When the RSU receives
local model submissions from various vehicles
within its communication radius R, it performs
aggregation calculations, generating partially
aggregated sub-models, which are then sent to the
SPC for further aggregation of all sub-models. This
step generates the final predictive global model.
Subsequently, the SPC transmits the generated
global model to each participating vehicle in the
training for a new round of model updates.

5. Simulation Experiment
To demonstrate the effectiveness of the AdaFL
system, we utilized a CNN model to construct a
prediction model based on the MNIST and
FashionMNIST dataset, training data from 100
clients. Notably, the authors randomly assigned the
dataset to each client based on the type of data they
obtain to satisfy the characteristics of non-IID. The

experiment environment employed an
Intel(R) Core (TM), i7-12600 CPU@3.40GHZ,
and 16.00GB of RAM, RTX3090 of GPU, to
serve as our central server.
Figure 3

Prediction accuracy by CNN model on MNIST test
set.

We first evaluated the performance of the
CNN model based on 100 clients, as well as
the performance via centralized training by
mining the MNIST dataset, as shown in Figure
3. The results indicate that federated learning
can achieve very stable results, even with a
large number of training nodes. Specifically,
when the number of training rounds reaches
approximately 50, the CNN training method
based on federated learning can achieve
accuracy stability. Therefore, we can generate
a model through the above process without
collecting data generated by vehicles, and
conduct mining training on vehicle data
effectively.

To further enhance the stability of local model
prediction accuracy in federated learning, we
used the KL divergence method based on
information entropy to calculate the similarity
between any two models. Specifically, we first
calculated the KL divergence value between
any two local model parameters and
compared it with a preset threshold. If the KL
divergence value between the model
parameters was less than or equal to the
threshold 𝛼𝛼𝛼𝛼, we used the traditional FedAvg
algorithm to aggregate the corresponding
model parameters. If the KL divergence value
was greater than the threshold 𝛼𝛼𝛼𝛼, we did not
aggregate its model parameters.

To identify a suitable threshold 𝛼𝛼𝛼𝛼, we varied
values of 𝛼𝛼𝛼𝛼 within the range [0,1], and
evaluated the number of rounds required for

;
15. Local Update (o, ω(o, t)):
16. ℬ ← (split 𝒟i into batches of size B);
17. if each local epoch i from 1 to E then
18. if batch b ∈ ℬ then
19. ω ← ω – α · ▽L(ω; b);

4.3. Predictive Model Aggregation

To be able to adapt to the rapid movement of vehicles,
our aggregation calculations involve two stages. The
first stage involves the initial local model aggregation
task, which is primarily concentrated in the RSU.
When the RSU receives local model submissions
from various vehicles within its communication radi-
us R, it performs aggregation calculations, generating
partially aggregated sub-models, which are then sent
to the SPC for further aggregation of all sub-models.
This step generates the final predictive global model.
Subsequently, the SPC transmits the generated global
model to each participating vehicle in the training for
a new round of model updates.

5. Simulation Experiment
To demonstrate the effectiveness of the AdaFL sys-
tem, we utilized a CNN model to construct a predic-
tion model based on the MNIST and FashionMNIST
dataset, training data from 100 clients. Notably, the
authors randomly assigned the dataset to each cli-
ent based on the type of data they obtain to satisfy
the characteristics of non-IID. The experiment envi-
ronment employed an Intel(R) Core (TM), i7-12600
CPU@3.40GHZ, and 16.00GB of RAM, RTX3090 of
GPU, to serve as our central server.
We first evaluated the performance of the CNN model
based on 100 clients, as well as the performance via

991Information Technology and Control 2023/4/52

Figure 3
Prediction accuracy by CNN model on MNIST test set

centralized training by mining the MNIST dataset, as
shown in Figure 3. The results indicate that federated
learning can achieve very stable results, even with a
large number of training nodes. Specifically, when the
number of training rounds reaches approximately 50,
the CNN training method based on federated learn-
ing can achieve accuracy stability. Therefore, we can
generate a model through the above process without
collecting data generated by vehicles, and conduct
mining training on vehicle data effectively.

Algorithm 1: AdaFL Algorithm
Input: Vehicular Clients: 𝑂𝑂𝑂𝑂 = {𝑜𝑜𝑜𝑜1 , 𝑜𝑜𝑜𝑜2 ,· · · , 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁 }. 𝐵𝐵𝐵𝐵
is the local mini-batch size, 𝐸𝐸𝐸𝐸 is the number of local
epochs, 𝛼𝛼𝛼𝛼 is the learning rate, ▽ 𝐿𝐿𝐿𝐿(· ; ·) is the
gradient optimization function.
Output: ℳ𝑗𝑗𝑗𝑗
1. Initialize 𝜔𝜔𝜔𝜔∗.
2. for communication round 𝑡𝑡𝑡𝑡 = 1, 2,· · · do
3. {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 } ← select VCs from 𝑂𝑂𝑂𝑂 to join in this

round;
4. TMC broadcasts global model 𝜔𝜔𝜔𝜔∗ to {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 };
5. for each VC 𝑜𝑜𝑜𝑜 ∈ {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 } do
6. Initialize 𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡) = 𝜔𝜔𝜔𝜔∗;
7. 𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ← 𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿(𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡));
8. Calculate the KL divergence

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��;
9. if 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 𝛼𝛼𝛼𝛼 then
10. Computing �̄�𝜔𝜔𝜔𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ←

𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��;
11. else
12. cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2×𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

13. 𝛩𝛩𝛩𝛩 = [𝜃𝜃𝜃𝜃1 ,𝜃𝜃𝜃𝜃2 ,𝜃𝜃𝜃𝜃3 ,· · · ,𝜃𝜃𝜃𝜃𝐾𝐾𝐾𝐾]
14. �̄�𝜔𝜔𝜔(𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡+1) ← 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

|{𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀}|
∑ 𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 ;

15. Local Update �𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)�:
16. ℬ ← (split 𝒟𝒟𝒟𝒟𝑖𝑖𝑖𝑖 into batches of size 𝐵𝐵𝐵𝐵);
17. if each local epoch 𝑖𝑖𝑖𝑖 from 1 to 𝐸𝐸𝐸𝐸 then
18. if batch 𝑏𝑏𝑏𝑏 ∈ ℬ then
19. 𝜔𝜔𝜔𝜔 ← 𝜔𝜔𝜔𝜔 − 𝛼𝛼𝛼𝛼 · ▽ 𝐿𝐿𝐿𝐿(𝜔𝜔𝜔𝜔; 𝑏𝑏𝑏𝑏);

4.3 Predictive Model Aggregation
To be able to adapt to the rapid movement of
vehicles, our aggregation calculations involve two
stages. The first stage involves the initial local
model aggregation task, which is primarily
concentrated in the RSU. When the RSU receives
local model submissions from various vehicles
within its communication radius R, it performs
aggregation calculations, generating partially
aggregated sub-models, which are then sent to the
SPC for further aggregation of all sub-models. This
step generates the final predictive global model.
Subsequently, the SPC transmits the generated
global model to each participating vehicle in the
training for a new round of model updates.

5. Simulation Experiment
To demonstrate the effectiveness of the AdaFL
system, we utilized a CNN model to construct a
prediction model based on the MNIST and
FashionMNIST dataset, training data from 100
clients. Notably, the authors randomly assigned the
dataset to each client based on the type of data they
obtain to satisfy the characteristics of non-IID. The

experiment environment employed an
Intel(R) Core (TM), i7-12600 CPU@3.40GHZ,
and 16.00GB of RAM, RTX3090 of GPU, to
serve as our central server.
Figure 3

Prediction accuracy by CNN model on MNIST test
set.

We first evaluated the performance of the
CNN model based on 100 clients, as well as
the performance via centralized training by
mining the MNIST dataset, as shown in Figure
3. The results indicate that federated learning
can achieve very stable results, even with a
large number of training nodes. Specifically,
when the number of training rounds reaches
approximately 50, the CNN training method
based on federated learning can achieve
accuracy stability. Therefore, we can generate
a model through the above process without
collecting data generated by vehicles, and
conduct mining training on vehicle data
effectively.

To further enhance the stability of local model
prediction accuracy in federated learning, we
used the KL divergence method based on
information entropy to calculate the similarity
between any two models. Specifically, we first
calculated the KL divergence value between
any two local model parameters and
compared it with a preset threshold. If the KL
divergence value between the model
parameters was less than or equal to the
threshold 𝛼𝛼𝛼𝛼, we used the traditional FedAvg
algorithm to aggregate the corresponding
model parameters. If the KL divergence value
was greater than the threshold 𝛼𝛼𝛼𝛼, we did not
aggregate its model parameters.

To identify a suitable threshold 𝛼𝛼𝛼𝛼, we varied
values of 𝛼𝛼𝛼𝛼 within the range [0,1], and
evaluated the number of rounds required for

To further enhance the stability of local model predic-
tion accuracy in federated learning, we used the KL
divergence method based on information entropy to
calculate the similarity between any two models. Spe-
cifically, we first calculated the KL divergence value
between any two local model parameters and com-
pared it with a preset threshold. If the KL divergence
value between the model parameters was less than or
equal to the threshold α, we used the traditional Fed-
Avg algorithm to aggregate the corresponding model
parameters. If the KL divergence value was greater
than the threshold α, we did not aggregate its model
parameters.
To identify a suitable threshold α, we varied values of
α within the range [0, 1], and evaluated the number of
rounds required for the entire algorithm to stabilize
the prediction accuracy under different values. The
results are shown in Figure 5, which shows that the

Figure 5
The choice of α

the entire algorithm to stabilize the prediction
accuracy under different values. The results are
shown in Figure 5, which shows that the number of
training rounds varies with the value of 𝛼𝛼𝛼𝛼 in the
form of a quadratic function with an upward
opening. The curve has a minimum value, and
when 𝛼𝛼𝛼𝛼 = 0.5, the number of rounds required for
the entire algorithm to stabilize is the least.

To further demonstrate the effectiveness of our
proposed scheme in maximizing the saving of
communication resources in the network, we
compared the byte stream size (BSS) in different
scenarios with or without vehicle data outsourcing,
as shown in Figure 5. The results showcase that the
algorithm proposed in this paper can significantly
reduce communication resources consumption and
enhance the utilization rate of vehicle data. In
Figure 6, the green color represents the byte stream
of communication required to collect vehicle data
for centralized training in the traditional form. The
consumption of this communication resource is
mainly to complete the transmission of vehicle
data. The orange color represents the consumption
of communication resources required to use the
method proposed in this paper. The consumption
is primarily the resource consumption when
participating in the model training and submitting
the model by each client.

Figure 5

The choice of 𝛼𝛼𝛼𝛼.

Figure 6

Comparison of the communication burden with
centralized data collection.

Figure 7

Comparison of cosine similarity calculation

Lastly, to further validate the effectiveness of
our proposed method, simulations were
conducted to show that the cosine similarity
calculation proposed in this study can reduce
the number of interactive rounds of federated
learning training, as shown in Figure 7. The
figure contains two curves, where the green
line represents the result of the federal
aggregation calculation using the cosine
similarity proposed in this paper, while the
red line represents the prediction result after
the aggregation calculation using the
traditional fed learning aggregation
algorithm.

In Table 1, on FashionMNIST dataset, we also
compared our proposed AdaFL with the
centralized data collection (CDC) and CNN
network with respect to the metrics byte
stream size (BSS) and Map. Through
comparisons, our proposed algorithm can
achieve similar model prediction results with
fewer rounds. Thus, our proposed cosine
similarity calculation method has a positive
impact and can improve the model
aggregation calculation in federated learning
training.

number of training rounds varies with the value of α
in the form of a quadratic function with an upward
opening. The curve has a minimum value, and when
α = 0.5, the number of rounds required for the entire
algorithm to stabilize is the least.
To further demonstrate the effectiveness of our pro-
posed scheme in maximizing the saving of commu-
nication resources in the network, we compared the
byte stream size (BSS) in different scenarios with or
without vehicle data outsourcing, as shown in Figure
5. The results showcase that the algorithm proposed
in this paper can significantly reduce communication
resources consumption and enhance the utilization
rate of vehicle data. In Figure 6, the green color rep-
resents the byte stream of communication required to
collect vehicle data for centralized training in the tra-
ditional form. The consumption of this communica-
tion resource is mainly to complete the transmission
of vehicle data. The orange color represents the con-
sumption of communication resources required to
use the method proposed in this paper. The consump-
tion is primarily the resource consumption when par-
ticipating in the model training and submitting the
model by each client.
Lastly, to further validate the effectiveness of our pro-
posed method, simulations were conducted to show
that the cosine similarity calculation proposed in this
study can reduce the number of interactive rounds
of federated learning training, as shown in Figure 7.

Information Technology and Control 2023/4/52992

The figure contains two curves, where the green line
represents the result of the federal aggregation calcu-
lation using the cosine similarity proposed in this pa-
per, while the red line represents the prediction result
after the aggregation calculation using the traditional
fed learning aggregation algorithm.
In Table 1, on FashionMNIST dataset, we also com-
pared our proposed AdaFL with the centralized data
collection (CDC) and CNN network with respect to

Figure 6
Comparison of the communication burden with
centralized data collection

Figure 7
Comparison of cosine similarity calculation

the entire algorithm to stabilize the prediction
accuracy under different values. The results are
shown in Figure 5, which shows that the number of
training rounds varies with the value of 𝛼𝛼𝛼𝛼 in the
form of a quadratic function with an upward
opening. The curve has a minimum value, and
when 𝛼𝛼𝛼𝛼 = 0.5, the number of rounds required for
the entire algorithm to stabilize is the least.

To further demonstrate the effectiveness of our
proposed scheme in maximizing the saving of
communication resources in the network, we
compared the byte stream size (BSS) in different
scenarios with or without vehicle data outsourcing,
as shown in Figure 5. The results showcase that the
algorithm proposed in this paper can significantly
reduce communication resources consumption and
enhance the utilization rate of vehicle data. In
Figure 6, the green color represents the byte stream
of communication required to collect vehicle data
for centralized training in the traditional form. The
consumption of this communication resource is
mainly to complete the transmission of vehicle
data. The orange color represents the consumption
of communication resources required to use the
method proposed in this paper. The consumption
is primarily the resource consumption when
participating in the model training and submitting
the model by each client.

Figure 5

The choice of 𝛼𝛼𝛼𝛼.

Figure 6

Comparison of the communication burden with
centralized data collection.

Figure 7

Comparison of cosine similarity calculation

Lastly, to further validate the effectiveness of
our proposed method, simulations were
conducted to show that the cosine similarity
calculation proposed in this study can reduce
the number of interactive rounds of federated
learning training, as shown in Figure 7. The
figure contains two curves, where the green
line represents the result of the federal
aggregation calculation using the cosine
similarity proposed in this paper, while the
red line represents the prediction result after
the aggregation calculation using the
traditional fed learning aggregation
algorithm.

In Table 1, on FashionMNIST dataset, we also
compared our proposed AdaFL with the
centralized data collection (CDC) and CNN
network with respect to the metrics byte
stream size (BSS) and Map. Through
comparisons, our proposed algorithm can
achieve similar model prediction results with
fewer rounds. Thus, our proposed cosine
similarity calculation method has a positive
impact and can improve the model
aggregation calculation in federated learning
training.

the entire algorithm to stabilize the prediction
accuracy under different values. The results are
shown in Figure 5, which shows that the number of
training rounds varies with the value of 𝛼𝛼𝛼𝛼 in the
form of a quadratic function with an upward
opening. The curve has a minimum value, and
when 𝛼𝛼𝛼𝛼 = 0.5, the number of rounds required for
the entire algorithm to stabilize is the least.

To further demonstrate the effectiveness of our
proposed scheme in maximizing the saving of
communication resources in the network, we
compared the byte stream size (BSS) in different
scenarios with or without vehicle data outsourcing,
as shown in Figure 5. The results showcase that the
algorithm proposed in this paper can significantly
reduce communication resources consumption and
enhance the utilization rate of vehicle data. In
Figure 6, the green color represents the byte stream
of communication required to collect vehicle data
for centralized training in the traditional form. The
consumption of this communication resource is
mainly to complete the transmission of vehicle
data. The orange color represents the consumption
of communication resources required to use the
method proposed in this paper. The consumption
is primarily the resource consumption when
participating in the model training and submitting
the model by each client.

Figure 5

The choice of 𝛼𝛼𝛼𝛼.

Figure 6

Comparison of the communication burden with
centralized data collection.

Figure 7

Comparison of cosine similarity calculation

Lastly, to further validate the effectiveness of
our proposed method, simulations were
conducted to show that the cosine similarity
calculation proposed in this study can reduce
the number of interactive rounds of federated
learning training, as shown in Figure 7. The
figure contains two curves, where the green
line represents the result of the federal
aggregation calculation using the cosine
similarity proposed in this paper, while the
red line represents the prediction result after
the aggregation calculation using the
traditional fed learning aggregation
algorithm.

In Table 1, on FashionMNIST dataset, we also
compared our proposed AdaFL with the
centralized data collection (CDC) and CNN
network with respect to the metrics byte
stream size (BSS) and Map. Through
comparisons, our proposed algorithm can
achieve similar model prediction results with
fewer rounds. Thus, our proposed cosine
similarity calculation method has a positive
impact and can improve the model
aggregation calculation in federated learning
training.

the metrics byte stream size (BSS) and Map. Through
comparisons, our proposed algorithm can achieve
similar model prediction results with fewer rounds.
Thus, our proposed cosine similarity calculation
method has a positive impact and can improve the
model aggregation calculation in federated learning
training.

6. Conclusion
This paper presented a system designed for efficient
utilization of vehicular data by utilizing adaptive fed-
erated learning via weight coefficient, without vehic-
ular data transmission. To achieve this objective, we
proposed two vehicle data usage mechanisms. The
first mechanism involved using a vehicle node for dis-
tributed training of vehicular data, thus facilitating
the mining process of the vehicular data. The second
mechanism aimed to improve the efficiency of local
model aggregation in federated learning by introduc-
ing information entropy and cosine similarity calcu-
lation into the system algorithm. In future research,
we plan to further explore adaptive federated learning
aggregation and develop adaptive aggregation com-
puting for a wider range of scenarios. This will enable
us to unlock the full potential of adaptive federated
learning for various applications.

Acknowledgement

This work is supported by the Research Fund
of Fuzhou Institute of Technology under Grant
FTKY2022007.

Table 1
Performance comparison between AdaFL and
centralized data collection (CDC) and CNN network on
FashionMNIST dataset

Round
BSS [Kb] Map [%]

CDC AdaFL CNN AdaFL

20 1.6*105 0.06*105 85.2 89.4

40 1.6*105 0.11*105 88.4 91.6

60 1.6*105 0.14*105 89.1 92.4

80 1.6*105 0.17*105 91.7 92.7

100 1.6*105 0.21*105 92.0 92.7

993Information Technology and Control 2023/4/52

References
1. Abdel-Basset, M., Moustafa N., Hawash H., Razzak, I.,

Sallam, K. M., Elkomy, O. M. Federated Intrusion De-
tection in Blockchain-Based Smart Transportation
Systems. IEEE Transactions on Intelligent Transpor-
tation Systems, 2021, 23(3), 2523-2537. https://doi.
org/10.1109/TITS.2021.3119968

2. Abid, A., Yuksekgonul, M., Zou, J. Meaningfully Debug-
ging Model Mistakes Using Conceptual Counterfactual
Explanations. International Conference on Machine
Learning. PMLR, 2022, 162, 66-88.

3. Blaine, N., Marco B., Fuching, J. C., Joseph, A. D., Rubin-
stein, B. I. P., Saini, U., Sutton, C., Tygar, J. D., Xia, K. Ex-
ploiting Machine Learning to Subvert Your Spam Filter.
Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats, 2008, 7, 1-9.

4. Chehri, A., Fortier, P., Saadane, R. A Framework for 5G Ul-
tra-Reliable Low Latency for Industrial and Mission-Crit-
ical Machine-Type Communication. International Con-
ference on Human-Centered Intelligent Systems, 2021,
99-109. https://doi.org/10.1007/978-981-16-3264-8_10

5. Chen, B., Wan, J., Shu, L., et al. Smart Factory of Indus-
try 4.0: Key Technologies, Application Case, and Chal-
lenges. IEEE Access, 2017, 6, 6505-6519. https://doi.
org/10.1109/ACCESS.2017.2783682

6. Chen, M., Semiari, O., Saad, W., Liu, X., Yin, C. Federated
Echo State Learning for Minimizing Breaks in Presence
in Wireless Virtual Reality Networks. IEEE Transac-
tions on Wireless Communication, 2020, 19(1), 177-191.
https://doi.org/10.1109/TWC.2019.2942929

7. Chepurko, N., Marcus, R., Zgraggen, E., Fernandez, R. C.,
Kraska, T., Karger, D. ARDA: Automatic Relational Data
Augmentation for Machine Learning. arXiv preprint
arXiv:2003.09758, 2020. https://doi.org/10.48550/arX-
iv.2003.09758

8. Dobson, R., Semple, S. Changes in Outdoor Air Pollu-
tion Due to COVID-19 Lockdowns Differ by Pollutant:
Evidence from Scotland. Occupational and Environ-
mental Medicine, 2020, 77(11), 798-800. https://doi.
org/10.1136/oemed-2020-106659

9. Doku, R., Rawat, D. B., Liu, C. Towards Federated Learn-
ing Approach to Determine Data Relevance in Big Data.
IEEE International Conference on Information Reuse
& Integration, 2019, 184-192. https://doi.org/10.1109/
IRI.2019.00039

10. Elbir, A. M., Soner, B., Çöleri, S., et al. Federated Learning
in Vehicular Networks. IEEE International Mediterra-

nean Conference on Communications and Networking
(MeditCom), Athens, Greece, 2022, 72-77. https://doi.
org/10.1109/MeditCom55741.2022.9928621

11. ElHalawany, B. M., El-Banna, A., Wu, K. Physical-Lay-
er Security and Privacy for Vehicle-to-Everything.
IEEE Communications Magazine, 2019, 57(10), 84-90.
https://doi.org/10.1109/MCOM.001.1900141

12. Fantacci, R., Picano, B. Federated Learning Framework
for Mobile Edge Computing Networks. CAAI Trans-
actions on Intelligent Technology, 2020, 5(1), 15-21.
https://doi.org/10.1049/trit.2019.0049

13. Garrido, G. M., Sedlmeir, J., Uludağ, Ö., Alaoui, I. S.,
Luckow, A., Matthes, F. Revealing the Landscape of Pri-
vacy-Enhancing Technologies in the Context of Data
Markets for the IoT: A Systematic Literature Review.
Journal of Network and Computer Applications, 2022,
207, 103465. https://doi.org/10.1016/j.jnca.2022.103465

14. Hoseinzadeh, N., Arvin, R., Khattak, A. J., Han, L. D.
Integrating Safety and Mobility for Pathfinding Using
Big Data Generated by Connected Vehicles. Journal of
Intelligent Transportation Systems, 2020, 24(4), 404-
420. https://doi.org/10.1080/15472450.2019.1699077

15. Huba, D., Nguyen, J., Malik, K., Zhu, R., Rabbat, M., Yousef-
pour, A., Wu, C.-J., Zhan, H., Ustinov, P., Srinivas, H., Wang,
K., Shoumikhin, A., Min, J., Malek, M. Papaya: Practical,
Private, and Scalable Federated Learning. Proceedings of
Machine Learning and Systems, 2022, 4, 814-832.

16. Li, Q. Design of Automated Control System for Vehi-
cle-mounted Communication Equipment Based on
PLC and Shortwave Communication. Internation-
al Conference on Electronics and Renewable Sys-
tems (ICEARS), IEEE, 2022, 796-799. https://doi.
org/10.1109/ICEARS53579.2022.9752371

17. Liu, Y., Meng, X., Huang, X. Route Planning Strategy of
Intelligent Car Based on Camera Sensor. IEEE Asia-Pa-
cific Conference on Image Processing, Electronics and
Computers (IPEC), IEEE, 2022, 729-732. https://doi.
org/10.1109/IPEC54454.2022.9777323

18. Lu, X., Liao, Y., Lio, P., Hui, P. Privacy-Preserving Asyn-
chronous Federated Learning Mechanism for Edge
Network Computing. IEEE Access, 2020, 8, 48970-
48981. https://doi.org/10.1109/ACCESS.2020.2978082

19. Luping, W., Wei, W., Bo, L. CMFL: Mitigating Commu-
nication Overhead for Federated Learning. IEEE 39th
International Conference on Distributed Computing
Systems (ICDCS), IEEE, 2019, 954-964. https://doi.
org/10.1109/ICDCS.2019.00099

https://doi.org/10.1109/TITS.2021.3119968
https://doi.org/10.1109/TITS.2021.3119968
https://doi.org/10.1007/978-981-16-3264-8_10
https://doi.org/10.1109/ACCESS.2017.2783682
https://doi.org/10.1109/ACCESS.2017.2783682
https://doi.org/10.1109/TWC.2019.2942929
https://doi.org/10.48550/arXiv.2003.09758
https://doi.org/10.48550/arXiv.2003.09758
https://doi.org/10.1136/oemed-2020-106659
https://doi.org/10.1136/oemed-2020-106659
https://doi.org/10.1109/IRI.2019.00039
https://doi.org/10.1109/IRI.2019.00039
https://doi.org/10.1109/MeditCom55741.2022.9928621
https://doi.org/10.1109/MeditCom55741.2022.9928621
https://doi.org/10.1109/MCOM.001.1900141
https://doi.org/10.1049/trit.2019.0049
https://doi.org/10.1016/j.jnca.2022.103465
https://doi.org/10.1080/15472450.2019.1699077
https://doi.org/10.1109/ICEARS53579.2022.9752371
https://doi.org/10.1109/ICEARS53579.2022.9752371
https://doi.org/10.1109/IPEC54454.2022.9777323
https://doi.org/10.1109/IPEC54454.2022.9777323
https://doi.org/10.1109/ACCESS.2020.2978082
https://doi.org/10.1109/ICDCS.2019.00099
https://doi.org/10.1109/ICDCS.2019.00099

Information Technology and Control 2023/4/52994

20. Kaur, K., Guillemin, F., Rodriguez, V. Q., Sailhan, F. La-
tency and Network Aware Placement for Cloud-Na-
tive 5G/6G Services. IEEE 19th Annual Consum-
er Communications & Networking Conference
(CCNC), IEEE, 2022, 114-119. https://doi.org/10.1109/
CCNC49033.2022.9700582

21. Khan, L. U., Saad, W., Han, Z., Hossain, E., & Hong, C. S.
Federated Learning for Internet of Things: Recent Ad-
vances, Taxonomy, and Open Challenges. IEEE Com-
munications Surveys & Tutorials, 2021, 23(3), 1759-
1799. https://doi.org/10.1109/COMST.2021.3090430

22. Khayyam, H., Javadi, B., Jalili, M., & Jazar, R. N. Arti-
ficial Intelligence and Internet of Things for Autono-
mous Vehicles. Nonlinear approaches in engineering
applications, 2020, 39-68. https://doi.org/10.1007/978-
3-030-18963-1_2

23. Ma, C., Li, J., Ding, M., Yang, H. H., Shu, F., Quek, T. Q.,
& Poor, H. V. On Safeguarding Privacy and Security
in the Framework of Federated Learning. IEEE Net-
work, 2020, 34(4), 242-248. https://doi.org/10.1109/
MNET.001.1900506

24. Moussaoui, M., Bertin, E., Crespi, N. Telecom Busi-
ness Models for Beyond 5G and 6G Networks: To-
wards Disaggregation? International Conference on
6G Networking (6GNet), IEEE, 2022, 1-8. https://doi.
org/10.1109/6GNet54646.2022.9830514

25. Mowla, N. I., Tran, N. H., Doh, I., Chae, K. Federated
Learning-Based Cognitive Detection of Jamming Attack
in Flying Ad-Hoc Network. IEEE Access, 2019, 8, 4338-
4350. https://doi.org/10.1109/ACCESS.2019.2962873

26. Mu, X. Public Security Road Traffic Management Strat-
egy Based on Big Data and Intelligent Dispatching Sys-
tem. International Conference on Sustainable Com-
puting and Data Communication Systems (ICSCDS),
IEEE, 2022, 589-592. https://doi.org/10.1109/
ICSCDS53736.2022.976075

27. Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne,
A., Li, J., Poor, H. V. Federated Learning for Internet
of Things: A Comprehensive Survey. IEEE Communi-
cations Surveys & Tutorials, 2021, 23(3), 1622-1658.
https://doi.org/10.1109/COMST.2021.3075439

28. Nguyen, T. D., Marchal, S., Miettinen, M., Fereidooni, H.,
Asokan, N., Sadeghi, A. R. DIoT: A Federated Self-Learn-
ing Anomaly Detection System for IoT. IEEE Internation-
al Conference on Distributed Computing Systems, 2019,
756-767. https://doi.org/10.1109/ICDCS.2019.00080

29. Han, Y., Li, D., Qi, H., Ren, J., Wang, X. Federated Learn-
ing-Based Computation Offloading Optimization in

Edge Computing Supported Internet of Things. IEEE
Access, 2019, 7, 69194-69201. https://doi.org/10.1109/
ACCESS.2019.2919736

30. Rodríguez, A., Valverde, J., Portilla, J., Otero, A., Ries-
go, T., De la Torre, E. FPGA-Based High-Performance
Embedded Systems for Adaptive Edge Computing in
Cyber-Physical Systems: The Artico3 Framework. Sen-
sors, 2018, 18(6), 1877-1993. https://doi.org/10.3390/
s18061877

31. Rohini, P., Tripathi, S., Preeti, C. M., Renuka, A., Gon-
zales, J. L. A., Gangodkar, D. A Study on the Adoption
of Wireless Communication in Big Data Analytics
Using Neural Networks and Deep Learning. 2nd In-
ternational Conference on Advance Computing and
Innovative Technologies in Engineering (ICACITE),
IEEE, 2022, 1071-1076. https://doi.org/10.1109/ICAC-
ITE53722.2022.9823439

32. Rossi, M. A. The Advent of 5G and the Non-Discrimina-
tion Principle. Telecommunications Policy, 2022, 46(4),
102279. https://doi.org/10.1016/j.telpol.2021.102279

33. Saputra, Y. M., Hoang, D. T., Nguyen, D. N., Dutkiewicz,
E., Mueck, M. D., Srikanteswara, S. Energy Demand
Prediction with Federated Learning for Electric Ve-
hicle Networks. IEEE Global Communication Con-
ference, 2019, 1-6. https://doi.org/10.1109/GLOBE-
COM38437.2019.9013587

34. Song, C., Shmatikov, V. Auditing Data Provenance in
Text-Generation Models. ACM SIGKDD Internation-
al Conference on Knowledge Discovery & Data Mining,
2019, 196-206. https://doi.org/10.1145/3292500.3330885

35. Sozinov, K., Vlassov, V., Girdzijauskas, S. Human Ac-
tivity Recognition Using Federated Learning. IEEE
International Conference on Parallel Distributed
Process, 2019, 1103-1111. https://doi.org/10.1109/BD-
Cloud.2018.00164

36. Taïk, A., Mlika, Z., Cherkaoui, S. Clustered Vehicular
Federated Learning: Process and Optimization. IEEE
Transactions on Intelligent Transportation Systems,
2022, 23(12), 25371-25383. https://doi.org/10.1109/
TITS.2022.3149860

37. Tong, W., Hussain, A., Bo, W. X., Maharjan, S. Artificial
Intelligence for Vehicle-to-Everything: A Survey. IEEE
Access, 2019, 7, 10823-10843. https://doi.org/10.1109/
ACCESS.2019.2891073

38. Verma, D., White, G., Mel, de. G. Federated AI for the En-
terprise: A Web Services Based Implementation. IEEE
International Conference on Web Services, 2019, 20-27.
https://doi.org/10.1109/ICWS.2019.00016

https://doi.org/10.1109/CCNC49033.2022.9700582
https://doi.org/10.1109/CCNC49033.2022.9700582
https://doi.org/10.1109/COMST.2021.3090430
https://doi.org/10.1007/978-3-030-18963-1_2
https://doi.org/10.1007/978-3-030-18963-1_2
https://doi.org/10.1109/MNET.001.1900506
https://doi.org/10.1109/MNET.001.1900506
https://doi.org/10.1109/6GNet54646.2022.9830514
https://doi.org/10.1109/6GNet54646.2022.9830514
https://doi.org/10.1109/ACCESS.2019.2962873
https://doi.org/10.1109/ICSCDS53736.2022.9760758
https://doi.org/10.1109/ICSCDS53736.2022.9760758
https://doi.org/10.1109/COMST.2021.3075439
https://doi.org/10.1109/ICDCS.2019.00080
https://doi.org/10.1109/ACCESS.2019.2919736
https://doi.org/10.1109/ACCESS.2019.2919736
https://doi.org/10.3390/s18061877
https://doi.org/10.3390/s18061877
https://doi.org/10.1109/ICACITE53722.2022.9823439
https://doi.org/10.1109/ICACITE53722.2022.9823439
https://doi.org/10.1016/j.telpol.2021.102279
https://doi.org/10.1109/GLOBECOM38437.2019.9013587
https://doi.org/10.1109/GLOBECOM38437.2019.9013587
https://doi.org/10.1145/3292500.3330885
https://doi.org/10.1109/BDCloud.2018.00164
https://doi.org/10.1109/BDCloud.2018.00164
https://doi.org/10.1109/TITS.2022.3149860
https://doi.org/10.1109/TITS.2022.3149860
https://doi.org/10.1109/ACCESS.2019.2891073
https://doi.org/10.1109/ACCESS.2019.2891073
https://doi.org/10.1109/ICWS.2019.00016

995Information Technology and Control 2023/4/52

39. Verma, D., White, G., Mel, de G. Federated Learning
Based Proactive Content Caching in Edge Computing.
IEEE Global Communication Conference, 2019, 1-6.
https://doi.org/10.1109/GLOCOM.2018.8647616

40. Vishwakarma, L., Das, D. Smart Coin: A Novel Incen-
tive Mechanism for Vehicles in Intelligent Transpor-
tation System Based on Consortium Blockchain. Ve-
hicular Communications, 2022, 33, 100429. https://doi.
org/10.1016/j.vehcom.2021.100429

41. Wang, K., Wang, X., Liu, X., Jolfaei, A. Task Offloading
Strategy Based on Reinforcement Learning Computing
in Edge Computing Architecture of Internet of Vehi-
cles. IEEE Access, 2020, 8, 173779-173789. https://doi.
org/10.1109/ACCESS.2020.3023939

42. Wang, Q., Yin, H., Chen, T., Yu, J., Zhou, A., Zhang, X.
Fast-Adapting and Privacy-Preserving Federated Rec-
ommender System. The VLDB Journal, 2022, 31(5),
877-896. https://doi.org/10.1007/s00778-021-00700-6

43. Wang, Y., Su, Z., Ni, J., Zhang, N., Shen, X. Block-
chain-Empowered Space-Air-Ground Integrated Net-
works: Opportunities, Challenges, and Solutions. IEEE
Communications Surveys & Tutorials, 2021, 24(1), 160-
209. https://doi.org/10.1109/COMST.2021.3131711

44. Wang, Z., Liao, X., Wang, C., Oswald, D., Wu, G. Bori-
boonsomsin, K., Barth, M. J., Han, K., Kim, B., Tiwari,
P. Driver Behavior Modeling Using Game Engine and
Real Vehicle: A Learning-Based Approach. IEEE Trans-
actions on Intelligent Vehicles, 2020, 5 (4), 738-749.
https://doi.org/10.1109/TIV.2020.2991948

45. Wu, Q., He, K., Chen, X. Personalized Federated Learn-
ing for Intelligent IoT Applications: A Cloud-Edge
Based Framework. IEEE Open Journal of the Com-
puter Society, 2020, 1, 35-44. https://doi.org/10.1109/
OJCS.2020.2993259

46. Wu, X., Wang, P. Intelligent Transportation Information
Interaction Technology. Intelligent Road Transport
Systems. Springer, Singapore, 2022, 151-192. https://
doi.org/10.1007/978-981-16-5776-4

47. Wu, X., Zhang, Y., Shi, M., Li, P., Li, R., Xiong, N. N. An
Adaptive Federated Learning Scheme with Differen-
tial Privacy Preserving. Future Generation Computer
Systems, 2022, 127, 362-372. https://doi.org/10.1016/j.
future.2021.09.015

48. Xiao, H., Zhao, J., Pei, Q., Feng, J., Liu, L., Shi, W. Ve-
hicle Selection and Resource Optimization for Fed-
erated Learning in Vehicular Edge Computing. IEEE
Transactions on Intelligent Transportation Systems,
2022, 23(8), 11073-11087. https://doi.org/10.1109/
TITS.2021.3099597

49. Xu, D., Li, T., Li, Y., Su, X., Tarkoma, S., Jiang, T., Crwo-
croft, J., Hui, P., Edge Intelligence: Empowering Intelli-
gence to the Edge of Network. Proceedings of the IEEE,
2021, 109(11), 1778-1837. https://doi.org/10.1109/
JPROC.2021.3119950

50. Yan, M., Chen, B., Feng, G., Qin, S. Federated Coop-
eration and Augmentation for Power Allocation in
Decentralized Wireless Networks. IEEE Access,
2020, 8, 48088-48100. https://doi.org/10.1109/AC-
CESS.2020.2979323

51. Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H. Fed-
erated learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 2019, 13(3), 1-207. https://
doi.org/10.1007/978-3-031-01585-4

52. Zhou, W., Li, Y., Chen, S., Ding, B. Real-Time Data Pro-
cessing Architecture for Multi-Robots Based on Differ-
ential Federated Learning. IEEE Proceedings of Smart
World, 2018, 462-471. https://doi.org/10.1109/Smart-
World.2018.00106

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/GLOCOM.2018.8647616
https://doi.org/10.1016/j.vehcom.2021.100429
https://doi.org/10.1016/j.vehcom.2021.100429
https://doi.org/10.1109/ACCESS.2020.3023939
https://doi.org/10.1109/ACCESS.2020.3023939
https://doi.org/10.1007/s00778-021-00700-6
https://doi.org/10.1109/COMST.2021.3131711
https://doi.org/10.1109/TIV.2020.2991948
https://doi.org/10.1109/OJCS.2020.2993259
https://doi.org/10.1109/OJCS.2020.2993259
https://doi.org/10.1007/978-981-16-5776-4
https://doi.org/10.1007/978-981-16-5776-4
https://doi.org/10.1016/j.future.2021.09.015
https://doi.org/10.1016/j.future.2021.09.015
https://doi.org/10.1109/TITS.2021.3099597
https://doi.org/10.1109/TITS.2021.3099597
https://doi.org/10.1109/JPROC.2021.3119950
https://doi.org/10.1109/JPROC.2021.3119950
https://doi.org/10.1109/ACCESS.2020.2979323
https://doi.org/10.1109/ACCESS.2020.2979323
https://doi.org/10.1007/978-3-031-01585-4
https://doi.org/10.1007/978-3-031-01585-4
https://doi.org/10.1109/SmartWorld.2018.00106
https://doi.org/10.1109/SmartWorld.2018.00106

