
Information Technology and Control 2023/4/52984

Weight Coefficient Based 
Adaptive Federated Learning for 
Vehicular Data Transmission

ITC 4/52
Information Technology  
and Control
Vol. 52 / No. 4 / 2023
pp. 984-995
DOI 10.5755/j01.itc.52.4.34479

Weight Coefficient Based Adaptive Federated Learning for  
Vehicular Data Transmission

Received 2023/06/25 Accepted after revision 2023/10/26

HOW TO CITE: Xie, H. (2023). Weight Coefficient Based Adaptive Federated Learning for 
Vehicular Data Transmission. Information Technology and Control, 52(4), 984-995. https://doi.
org/10.5755/j01.itc.52.4.34479

Hui Xie
School of Computing and Information Science, Fuzhou Institute of Technology,  
Fuzhou 350506, P. R. China; e-mail: 18231408@qq.com

Corresponding author: 18231408@qq.com

With the ever-increasing amount of vehicle data being generated, the collection and transmission of this da-
ta-to-data processing centers is consuming significant amounts of communication resources. The traditional 
method of compressing and transmitting the vehicle data is not effective in addressing the issue of efficient uti-
lization of this data. In order to overcome this challenge, we propose an adaptive federated learning approach 
that avoids the need for transmitting data per vehicle. Our approach leverages the vehicle as a distributed 
training device node and enables the training of vehicle data using the vehicle’s own computing power, thereby 
eliminating the need to transmit the data over the network. To further enhance the efficiency of the federated 
learning aggregation calculation, we introduce the information entropy function and cosine similarity calcu-
lation. By computing the similarity between the model and the benchmark model, we present a new round of 
model aggregation calculation weight. Finally, we validate the proposed algorithm using the actual datasets, 
demonstrating its high effectiveness.
KEYWORDS: Data Mining, Information Entropy, Federated Learning, Adaptive Weight Coefficient.

1. Introduction
With the rapid advancement of industrial manufac-
turing technology, the production of motor vehicles 
has witnessed an explosive growth [26, 41, 49]. Fur-
thermore, with the significant improvement in calcu-
lation performance of smart sensor [5, 30, 31], these 
sensors have become smaller in size, thereby allow-

ing for their widespread deployment in conventional 
motor vehicles to make them smarter. The increasing 
popularity of electric vehicles has further accelerated 
the trend towards intelligent motor vehicles [16, 17, 
46], leading to an unprecedented surge in the amount 
of data generated by such vehicles [8, 14, 44]. 
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Machine learning is being increasingly utilized to ex-
tract valuable insights from vehicular data, with the 
aim of improving the safety of intelligent motor vehi-
cles [11, 22, 37, 40]. However, the collection, transmis-
sion, and storage of this large amount of motor vehicle 
data remains a major challenge. Although 5G net-
works have been deployed extensively, experiencing 
the advantages of fast transmission provided by these 
networks requires the development of large-scale, 
high-density base station networks [4, 20, 24, 32].
However, the deployment of 5G networks with strong 
network coverage will take a significant amount of 
time, which has hindered the practical applications 
of vehicular data [15, 19, 23, 45, 47]. To address the 
issue of high-throughput data transmission, people 
have turned to distributed computation, such as fed-
erated learning (FL), which allows for the collabora-
tive training of deep learning prediction models using 
data sourced from multiple parties while avoiding 
massive data transmission [15, 21, 27, 51]. 
FL is an effective means of achieving distributed 
training of vehicular data and not only mitigates the 
network transmission burden caused by large-scale 
data transmission but also balances the data silos 
faced by different parties [3, 34]. Additionally, FL en-
ables the sharing of data while ensuring privacy-pre-
serving between participants’ data, thereby helping 
users with small training datasets to achieve better re-
sults [7, 42]. However, several critical issues still need 
to be addressed. Firstly, the execution of data process-
ing operations by different participants needs to meet 
temporal consistency in the acquired vehicular data 
to enable data owners to complete the effect of data 
aggregation simultaneously [2, 13, 43]. Secondly, the 
different data distribution from various participants 
necessitates the use of different processing strate-
gies by the system. While current solutions focus on 
data redundancy and transferring data with redun-
dant information removed to improve the efficiency 
of data transfer, more needs to be done to improve the 
transmission efficiency [1]. Even with the distributed 
approach to data transmission, challenges related to 
incomplete data-sharing applications still persist.
To enhance the efficiency of data sharing, improve 
fine-grained data application, and address the imbal-
ance in multi-party data application, in this paper, 
we propose an adaptive federated learning approach 
using weight coefficients for high-throughput data 

transmission. This approach optimizes the transfer 
power of the network and improves the efficiency of 
data reuse between parties. Specifically, it facilitates 
efficient FL deep learning network training to enable 
participating parties to collaborate and achieve pre-
dictive model aggregation. 
The contributions of our approach are summarized 
below.
1 We present a novel multi-party data transmission 

system that enables high-speed, collaborative data 
sharing without reliance on network transmis-
sion for deep network model training. To enhance 
the efficiency of multi-party data use, we employ 
a federated learning (FL) framework that circum-
vents network overload arising from transmission 
of large data quantities, while enabling the reuse of 
multi-party aggregates.

2 In order to expedite FL aggregation, we introduce 
an adaptive FL deep learning training framework 
that gauges the correlation of trained predictive 
models between different parties and allocates 
varying weights to the sharing of the aggregated 
model based on measures of information entropy 
and cosine similarity.

3 To evaluate our novel system, we perform simula-
tion tests based on the CNN network. Results at-
test to the system’s efficacy, which not only adapts 
to network conditions but also accelerates the 
speed of FL aggregation, achieving high-through-
put data transmission.

The structure of this paper is as follows. We first in-
troduce the related work in Section 2, followed by an 
overview of background knowledge in Section 3. Our 
proposed system, including each individual party, is 
presented in Section 4. Section 5 provides a detailed 
description of our proposed system and its ability 
to achieve adaptive federated learning training and 
high-throughput data transmission. Finally, in Sec-
tion 6, we draw conclusions and suggest future re-
search directions.

2. Related Work
Federated learning represents a distributed machine 
learning methodology capable of facilitating collab-
orative learning from diverse datasets without com-
promising the privacy of data owners. The FL archi-
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tecture that comprises two levels of entity structure: 
numerous participating clients and central servers. 
In particular, a large number of local clients utilize 
their data to train corresponding local models, which 
are subsequently transmitted to the central server. 
FL can significantly reduce data transmission by le-
veraging distributed collaborative training to achieve 
multi-party model integration. However, owing to the 
crucial role of numerous clients in training, in addi-
tion to their diverse communication capabilities and 
varying device computing power, ensuring consistency 
across local model training can present a challenging 
task in FL.
Considering a judicious utilization of the communica-
tion resources alongside new perceptive learning-ori-
ented methods are vital, Taïk et al. [36] proposed an 
FL architecture that utilizes vehicular-to-vehicular 
resources to bypass the communication bottleneck 
where clusters of vehicles train models simultane-
ously and only the aggregate of each cluster is sent 
to the multi-access edge server. Elbir et al. [10] pre-
sented a federated learning framework that leveraged 
local computing power of vehicles in training models, 
reducing the need for data transmission. Nguyen et 
al. [27] proposed an adaptive federated learning ap-
proach that dynamically adjusts the aggregation cal-
culation weight based on model similarity, enhancing 
the efficiency of model aggregation.
To mitigate the high bandwidth consumption, Xiao 
et al. [48] proposed a compression technique that ef-
fectively reduced the size of transmitted data while 
maintaining model accuracy. To ensure the robust-
ness and security of the federated learning framework 
in vehicular environments, Du et al. [8] developed a 
secure and robust federated learning framework by 
incorporating secure aggregation, Byzantine fault 
tolerance, and verifiable model updates. Saputra et al. 
[33] utilized FL to accurately predict energy demand 
in electric vehicle networks with low communica-
tion overhead. In their model, charging stations act 
as clients and only exchange trained models with the 
charging station provider, ensuring the privacy of raw 
user data. Yu et al. [44] introduced a FL-based proac-
tive content caching scheme for edge computing, in 
which mobile devices function as clients and the base 
station serves as the central server. Sozinov et al. [35] 
demonstrated the efficacy of FL in human activity 
recognition, highlighting its comparable accuracy to 
centralized learning. 

Zhou et al. [52] proposed a FL-based real-time data 
processing architecture for multi-robot systems. 
Doku et al. [9] combined FL with blockchain to de-
termine data relevance and store relevant data in a 
decentralized manner. Ren et al. [29] presented a FL-
based framework for edge computing in large-scale 
network environments. Their approach focuses on 
jointly allocating communication and computing 
resources. Mowla et al. [25] introduced a FL-based 
jamming attack detection mechanism for flying ad 
hoc networks. They also utilized a client selection ap-
proach based on Dempster-Shafer theory to enhance 
the efficiency of FL. 
Nguyen et al. [28] proposed a FL-based intrusion 
detection system that efficiently aggregated behav-
ior profiles based on device-type-specific commu-
nication profiles. Notably, this system requires no 
labeled data for detection. Verma et al. [38, 39] pro-
posed a web service-based implementation of FL for 
cross-domain enterprise data sharing. In a similar 
vein, Fantacci et al. [12] utilized FL to address the 
allocation of virtual machine replica copies in hy-
brid cloud mobile edge computing (MEC) networks. 
Their model leveraged FL to forecast user applica-
tion demands and maximize the hit percentage. Lu 
et al. [18] proposed a privacy-preserving asynchro-
nous FL mechanism for MEC. They introduce an 
asynchronous test process after each training round 
at a client, which determines whether the updates 
will be sent to the central server. Yan et al. [50] in-
vestigated a FL framework for power allocation in 
decentralized vehicular networks. They employed 
an online Actor-Critic algorithm for local training 
and achieve collaboration among clients by sharing 
gradients and weightages. Chen et al. [6] proposed 
a FL-based framework for minimizing “breaks in 
presence” in wireless networks. Their approach 
utilized FL to predict user location and orientation 
by enabling multiple clients to collaboratively train 
their deep echo state networks based on local data.
Despite these efforts, the computational burden of 
federated learning remains an undeniable challenge 
that warrants further optimization. Further, the ef-
ficiency of vehicular data also needs to be improved. 
To this end, we proposed an adaptive FL (AdaFL) ap-
proach, which offers an effective solution to address 
the communication burden arising from large data 
transfers. 
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3. Adaptive Federated Learning 
Architecture
3.1. System Framework
To address the unique challenges posed by the vary-
ing communication capabilities and device computing 
power of local clients, we have developed an adaptive 
FL training framework, called AdaFL. This framework 
incorporates a weight coefficient for high-throughput 
data transmission, facilitating efficient training of neu-
ral network prediction models for autonomous vehi-
cles under many motor vehicles and enhancing their 
robustness. The AdaFL system framework comprises 
four main components: the traffic management cen-
ter (TMC), in-vehicle sensor vehicles (VSV), mobile 
vehicles central (MVC), and service provision content 
(SPC), as illustrated in Figure 1.

Figure 1
The system framework of our proposed AdaFL

otal role in generating numerous local neural network 
prediction models. They use their data to iteratively 
optimize the model’s predictive accuracy round after 
round, based on the received initialized model. 
Roadside Server (RSS): As a roadside unit with en-
hanced computing power, the RSS not only facilitates 
the communication transit function of forwarding 
data to the TMC but also integrates the submitted lo-
cal model within the specified communication radius. 
Service Provision Content (SPC): Once the final 
predictive model has been generated, the TMC not 
only transmits the aggregated predictive model to all 
participating vehicles in the AdaFL system but also 
improves the SPC of multiple applications while op-
timizing the traffic capacity of the entire transporta-
tion network.

3.2. System Overview
To achieve the high-throughput data transmission 
needed for vehicular data, our AdaFL system imple-
mentation relies on four key components: vehicular 
data collection, vehicle local training, radius model 
aggregation, and final model aggregation. The con-
struction process of the entire AdaFL system is de-
picted in Figure 2. To enhance the aggregation ef-
fectiveness of the system on local models, we have 
introduced the Pearson correlation coefficient, al-
lowing for the assignment of different weights to each 
local model based on its correlation with other local 
models during each training round.
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𝑥𝑥𝑥𝑥21 𝑥𝑥𝑥𝑥22 ⋯ 𝑥𝑥𝑥𝑥2𝑘𝑘𝑘𝑘
⋮ ⋮ ⋮ ⋮

𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚1 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚2 ⋯ 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘⎦
⎥
⎥
⎤
                    (1) 
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Vehicular Data Collection (VDC): VDC is the basic 
progress for realizing data transmission and data 
mining. The vehicular data is mainly collected by 
in-vehicle sensors and traditionally transmitted to 
a data terminal via wireless networks. Assume that 
there are m vehicles on the road where each vehicle 
𝒱i(1 ≤ i ≤ m). The vehicle 𝒱i could generate a series of 
in-vehicle data that can reflect the driving status of 
the vehicle and the behavior of the driver and passen-
gers, which can be represented by a dataset 𝒳 = {x1, 
x2, x3, ...,xk} where xp(1 ≤ p ≤ k) represents the data of a 
certain type of information collected. Therefore, the 
data collected by the m vehicles be represented in the 
form of a matrix 𝔸.
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Vehicle Local Training (VLT): This progress in the 
AdaFL system is key to reducing the communication 
burden of data transmission on existing wireless net-
works. To utilize vehicular data without outsourc-
ing data transfer, we introduce the FL framework 
to achieve the distribution training of the deep neu-
ral network model. Similarly, suppose that there are 
$m$ vehicles. Each vehicle 𝒱i could train a predictive 
model per round using its computing device accord-
ing to the training mechanism of FL. Assume that the 
vehicle 𝒱i as the local client could generate the local 
model ℳi. Thereby, the local prediction models gen-
erated by $m$ vehicles passing through a round can 
be constructed as a prediction model set 𝒴 = {ℳ1

j, ℳ2
j, 

...,ℳm
j}, where j(1 ≤ j) represents the number of com-

munication rounds in which FL training ultimately 
reaches the available model. Particularly when the 
vehicle 𝒱i accomplishes each round of model ℳi

j 
training, the vehicle 𝒱i sends the ℳi

j to the nearest 
roadside server.
Roadside Model Aggregation (RMA): As the second 
progress in AdaFL system, the main task of RMA is 
to aggregate local models submitted by clients within 
the communication radius R into an aggregated mod-
el. Benefiting from RSS's computing and storage ca-
pabilities, RMA mainly implements the aggregation 
task of some local models through RSS. Suppose that 
the ℳ local clients are randomly averaged across $U$ 

number RSS, and each RSS contains K local clients 
within the communication radius R where K≪ℳ. 
Therefore, the RSS utilizes the federated learning av-
erage (FedAvg) algorithm to accomplish the $K$ local 
clients aggregated. For instance, the RSS 𝒫(k ∈ [1, U] 
) could generate the sub-aggregated model list [M𝒫1, 
M𝒫2, M𝒫3, ...,M𝒫U].
Service Provision Aggregation: The service provision 
aggregation is the last progress to generate the final 
aggregated model. Mainly when the RSS receives the 
sub-aggregated model list [M𝒫1, M𝒫2, M𝒫3, ...,M𝒫U], the 
SPC also uses the FedAvg algorithm to achieve the fi-
nal aggregated model.

3.3. Design Goal
In this paper, we aim to achieve the following goals 
to balance the value of data and the amount of data 
transferred.
Our proposed scheme mainly could significantly re-
duce vehicular data transmission and fully use the 
intrinsic value of data.
Since our proposed strategy mainly relies on the dis-
tributed training mechanism of FL. Therefore, we 
need to compensate for the contribution of different 
participating vehicle clients to the aggregated predic-
tion model so that it can converge the model as soon 
as possible. 

4. Adaptive Federated Learning 
Algorithm
In this section, we mainly introduce the details of ac-
complishing the AdaFL algorithm. Based on the prog-
ress of the AdaFL system in the system overview, we 
also proceed through the following three processes: 
vehicle local model training, local model correlation 
measurement, and final model aggregation.

4.1. Vehicle Local Model Training
With the continuous enrichment of onboard sensors 
and the increasing intelligence of vehicles, vehicles 
are now like a comprehensive service platform. To 
fully tap the value of vehicular data, collecting vehic-
ular data is the most basic operation. According to 
the above statement, there are m vehicles on the road, 
which are randomly assigned to a specific area within 
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the scope of K RSU. The same assumption, each ve-
hicle could generate its own dataset 𝒳 = {x1, x2, x3, ..., 
xk}, where each element in the 𝒳 means a collection of 
certain types of in-vehicle data. The use of each data 
type is guided by the training purpose of the vehicle. 
To realize the availability of data, according to the 
different types of vehicle users who collect data, the 
data will be marked accordingly to realize the usabil-
ity of the data. Similarly, assume that the label could 
be defined as the vector ℒ = [l1, l2, l3, ...,lK], each element 
lq,(1 ≤ q ≤ K) in vector ℒ corresponds to the generated 
dataset 𝒳, such as.

 
 

 

Vehicle Local Training (VLT): This progress in the 
AdaFL system is key to reducing the 
communication burden of data transmission on 
existing wireless networks. To utilize vehicular 
data without outsourcing data transfer, we 
introduce the FL framework to achieve the 
distribution training of the deep neural network 
model. Similarly, suppose that there are $m$ 
vehicles. Each vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖  could train a predictive 
model per round using its computing device 
according to the training mechanism of FL. Assume 
that the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 as the local client could generate 
the local model ℳ𝑖𝑖𝑖𝑖 . Thereby, the local prediction 
models generated by $m$ vehicles passing through 
a round can be constructed as a prediction model 
set 𝒴𝒴𝒴𝒴 = {ℳ1

𝑗𝑗𝑗𝑗 ,ℳ2
𝑗𝑗𝑗𝑗 ,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗 } , where 𝑗𝑗𝑗𝑗(1 ≤ 𝑗𝑗𝑗𝑗) 
represents the number of communication rounds in 
which FL training ultimately reaches the available 
model. Particularly when the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 
accomplishes each round of model ℳ𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗  training, 
the vehicle  𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 sends the ℳ𝑖𝑖𝑖𝑖

𝑗𝑗𝑗𝑗 to the nearest roadside 
server. 

Roadside Model Aggregation (RMA): As the 
second progress in AdaFL system, the main task of 
RMA is to aggregate local models submitted by 
clients within the communication radius 𝑅𝑅𝑅𝑅 into an 
aggregated model. Benefiting from RSS's 
computing and storage capabilities, RMA mainly 
implements the aggregation task of some local 
models through RSS. Suppose that the ℳ  local 
clients are randomly averaged across $U$ number 
RSS, and each RSS contains 𝐾𝐾𝐾𝐾 local clients within 
the communication radius 𝑅𝑅𝑅𝑅  where 𝐾𝐾𝐾𝐾 ≪ℳ. 
Therefore, the RSS utilizes the federated learning 
average (FedAvg) algorithm to accomplish the $K$ 
local clients aggregated. For instance, the RSS 
𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘∈[1,𝑈𝑈𝑈𝑈]  could generate the sub-aggregated model 
list  �𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫1 ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫2 ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫3 ,⋯ ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫𝑈𝑈𝑈𝑈�. 

Service Provision Aggregation: The service 
provision aggregation is the last progress to 
generate the final aggregated model. Mainly when 
the RSS receives the sub-aggregated model list 
�𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫1 ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫2 ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫3 ,⋯ ,𝑀𝑀𝑀𝑀𝒫𝒫𝒫𝒫𝑈𝑈𝑈𝑈� , the SPC also uses the 
FedAvg algorithm to achieve the final aggregated 
model. 

3.3 Design Goal 
In this paper, we aim to achieve the following goals 
to balance the value of data and the amount of data 
transferred. 

Our proposed scheme mainly could significantly 
reduce vehicular data transmission and fully use 
the intrinsic value of data. 

Since our proposed strategy mainly relies on the 

distributed training mechanism of FL. 
Therefore, we need to compensate for the 
contribution of different participating vehicle 
clients to the aggregated prediction model so 
that it can converge the model as soon as 
possible.  

4. Adaptive Federated Learning 
Algorithm 

In this section, we mainly introduce the details 
of accomplishing the AdaFL algorithm. Based 
on the progress of the AdaFL system in the 
system overview, we also proceed through 
the following three processes: vehicle local 
model training, local model correlation 
measurement, and final model aggregation. 

4.1 Vehicle Local Model Training 
With the continuous enrichment of onboard 
sensors and the increasing intelligence of 
vehicles, vehicles are now like a 
comprehensive service platform. To fully tap 
the value of vehicular data, collecting 
vehicular data is the most basic operation. 
According to the above statement, there are 𝑚𝑚𝑚𝑚 
vehicles on the road, which are randomly 
assigned to a specific area within the scope of 
𝐾𝐾𝐾𝐾  RSU. The same assumption, each vehicle 
could generate its own dataset 𝒳𝒳𝒳𝒳 =
{𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥3,⋯ , 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘}, where each element in the 𝒳𝒳𝒳𝒳 
means a collection of certain types of in-
vehicle data. The use of each data type is 
guided by the training purpose of the vehicle. 
To realize the availability of data, according to 
the different types of vehicle users who collect 
data, the data will be marked accordingly to 
realize the usability of the data. Similarly, 
assume that the label could be defined as the 
vector ℒ = [𝑙𝑙𝑙𝑙1, 𝑙𝑙𝑙𝑙2, 𝑙𝑙𝑙𝑙3,⋯ , 𝑙𝑙𝑙𝑙𝐾𝐾𝐾𝐾] , each element 
𝑙𝑙𝑙𝑙𝑞𝑞𝑞𝑞 , (1 ≤ 𝑞𝑞𝑞𝑞 ≤ 𝐾𝐾𝐾𝐾) in vector ℒ corresponds to the 
generated dataset 𝒳𝒳𝒳𝒳, such as. 

𝔻𝔻𝔻𝔻 =

⎣
⎢
⎢
⎡ 𝑥𝑥𝑥𝑥11 𝑥𝑥𝑥𝑥12 ⋯ 𝑥𝑥𝑥𝑥1𝑘𝑘𝑘𝑘 , 𝑙𝑙𝑙𝑙1

𝑥𝑥𝑥𝑥21 𝑥𝑥𝑥𝑥22 ⋯ 𝑥𝑥𝑥𝑥2𝑘𝑘𝑘𝑘 , 𝑙𝑙𝑙𝑙2
⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚1 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚2 ⋯ 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘 , 𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘⎦
⎥
⎥
⎤
.              (2) 

When the vehicle generates the dataset, the 𝒳𝒳𝒳𝒳 
will be stored in the data storage device inside 
the vehicle. Thanks to the increased 
computing power of in-vehicle devices, we 
can use the data without transferring the in-
vehicle data generated by the vehicle. 
Therefore, based on the above introduction, 
we can minimize data transmission and 
significantly save the bandwidth of 
communication resources. 

(2)

When the vehicle generates the dataset, the 𝒳 will be 
stored in the data storage device inside the vehicle. 
Thanks to the increased computing power of in-vehi-
cle devices, we can use the data without transferring 
the in-vehicle data generated by the vehicle. There-
fore, based on the above introduction, we can min-
imize data transmission and significantly save the 
bandwidth of communication resources.
As the client node of local model training, the vehicle 
uses its own standard data to complete the training 
of the corresponding prediction model based on se-
lecting a specific data type. Assume that the vehicle 
𝒱i uses the training dataset [𝒳 : li] based on the deep 
neural network learning algorithm f to generate the 
local model ℳi, such as the following:

  

As the client node of local model training, the 
vehicle uses its own standard data to complete the 
training of the corresponding prediction model 
based on selecting a specific data type. Assume that 
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based 
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to 
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following: 

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖).                        (3) 

Therefore, the 𝑚𝑚𝑚𝑚  vehicles could generate 𝑚𝑚𝑚𝑚  local 
predict model, which further is structured as a 
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that 
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚 
vehicles are randomly assigned to the range of the 
communication radius 𝑅𝑅𝑅𝑅  of 𝐾𝐾𝐾𝐾  the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗ ). 

Therefore, the vector 𝑀𝑀𝑀𝑀  also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

 
components, and further the vector 𝑀𝑀𝑀𝑀  could be 
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all 

the vehicle nodes participating in the local client 
training have trained the local prediction model, 
the vehicle will select the adjacent RSU server base 
station and send the trained model parameters to 
RSU. To speed up the aggregation speed of local 
models, it is imperative to fully explore the weight 
between different model parameters and realize the 
weight analysis of local models submitted by 
different vehicles. 

4.2 Local Model Correlation Measurement 
We construct a model parameter weights allocation 
algorithm by introducing cosine similarity to 
complete the analysis of different weights between 
different model parameters. Firstly, we utilize the 
KL divergence based on information entropy to 
compute the between different model 
relationships. And then, the so-called cosine 
similarity refers to calculating the cosine angle 
between different values. The KL divergence could 
be shown as follows. 

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌) 

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 .      (4) 

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets, 
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is 
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and 
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the 
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)�  and the ℋ(𝑌𝑌𝑌𝑌)  could be 
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To 
illustrate how to calculate the KL divergence 
between different models and cosine similarity, we 
through a simple example to illustrate as follows. 

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain 

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the 
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25 
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3 
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the 
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector 
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector 
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in 
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of 
vectors 𝐴𝐴𝐴𝐴  and 𝐵𝐵𝐵𝐵  could be computed as 
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that 
when the KL divergence of the parameters of 
the two prediction models is less than the 
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models. 
When some model parameters with high 
distribution similarity are aggregated, in 
order to balance the contribution of the 
remaining model parameters to the final 
prediction model, we next calculate the 
discrete cosine angle of the models. Assume 
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can 
be computed as follows: 

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 .                (5) 

In most cases, the dimension of the data is 
greater than 2 , so we need to extend the 
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there 
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁]  and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] . 
Therefore, the cosine angle can also be 
computed as follows: 

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

.               (6) 

To calculate whether the local model 
submitted by each vehicle client deviates from 
the final aggregation direction, we first need 
to use the FedAvg algorithm to perform an 
aggregation calculation on the local model to 
obtain a baseline for calculating cosine 
similarity. Suppose that the aggregation 
model obtained by aggregation calculation is 
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity 
between each local model and the benchmark 
aggregation model respectively to cosine 
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
�  as 

weight values. Based on the obtained weight 
vector, we redesign the federal learning 
model aggregation algorithm with weight 
coefficients. The refactored formulas are 
shown in 7 and 8. 

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤)                  (7) 

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤)                   (8) 

(3)

Therefore, the m vehicles could generate m local pre-
dict model, which further is structured as a vector M = 
[ℳ1, ℳ2, ℳ3, ..., ℳm]. Assuming that there is an ideal 
state, at a particular moment, m vehicles are random-
ly assigned to the range of the communication radius 
R of K the RSU (m

K ∈N*). Therefore, the vector M also 
is divided into m

K  components, and further the vec-
tor M could be rewritten as ℳ� 1= [ℳ1, ℳ2, ℳ3, ..., ℳm

K
]. After all the vehicle nodes participating in the local 
client training have trained the local prediction mod-
el, the vehicle will select the adjacent RSU server base 
station and send the trained model parameters to RSU. 
To speed up the aggregation speed of local models, it is 

imperative to fully explore the weight between differ-
ent model parameters and realize the weight analysis 
of local models submitted by different vehicles.

4.2. Local Model Correlation Measurement

We construct a model parameter weights allocation 
algorithm by introducing cosine similarity to com-
plete the analysis of different weights between dif-
ferent model parameters. Firstly, we utilize the KL 
divergence based on information entropy to compute 
the between different model relationships. And then, 
the so-called cosine similarity refers to calculating 
the cosine angle between different values. The KL di-
vergence could be shown as follows.

  

As the client node of local model training, the 
vehicle uses its own standard data to complete the 
training of the corresponding prediction model 
based on selecting a specific data type. Assume that 
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based 
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to 
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following: 

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖).                        (3) 

Therefore, the 𝑚𝑚𝑚𝑚  vehicles could generate 𝑚𝑚𝑚𝑚  local 
predict model, which further is structured as a 
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that 
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚 
vehicles are randomly assigned to the range of the 
communication radius 𝑅𝑅𝑅𝑅  of 𝐾𝐾𝐾𝐾  the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗ ). 

Therefore, the vector 𝑀𝑀𝑀𝑀  also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

 
components, and further the vector 𝑀𝑀𝑀𝑀  could be 
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all 

the vehicle nodes participating in the local client 
training have trained the local prediction model, 
the vehicle will select the adjacent RSU server base 
station and send the trained model parameters to 
RSU. To speed up the aggregation speed of local 
models, it is imperative to fully explore the weight 
between different model parameters and realize the 
weight analysis of local models submitted by 
different vehicles. 

4.2 Local Model Correlation Measurement 
We construct a model parameter weights allocation 
algorithm by introducing cosine similarity to 
complete the analysis of different weights between 
different model parameters. Firstly, we utilize the 
KL divergence based on information entropy to 
compute the between different model 
relationships. And then, the so-called cosine 
similarity refers to calculating the cosine angle 
between different values. The KL divergence could 
be shown as follows. 

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌) 

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 .      (4) 

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets, 
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is 
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and 
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the 
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)�  and the ℋ(𝑌𝑌𝑌𝑌)  could be 
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To 
illustrate how to calculate the KL divergence 
between different models and cosine similarity, we 
through a simple example to illustrate as follows. 

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain 

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the 
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25 
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3 
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the 
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector 
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector 
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in 
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of 
vectors 𝐴𝐴𝐴𝐴  and 𝐵𝐵𝐵𝐵  could be computed as 
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that 
when the KL divergence of the parameters of 
the two prediction models is less than the 
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models. 
When some model parameters with high 
distribution similarity are aggregated, in 
order to balance the contribution of the 
remaining model parameters to the final 
prediction model, we next calculate the 
discrete cosine angle of the models. Assume 
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can 
be computed as follows: 

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 .                (5) 

In most cases, the dimension of the data is 
greater than 2 , so we need to extend the 
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there 
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁]  and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] . 
Therefore, the cosine angle can also be 
computed as follows: 

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

.               (6) 

To calculate whether the local model 
submitted by each vehicle client deviates from 
the final aggregation direction, we first need 
to use the FedAvg algorithm to perform an 
aggregation calculation on the local model to 
obtain a baseline for calculating cosine 
similarity. Suppose that the aggregation 
model obtained by aggregation calculation is 
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity 
between each local model and the benchmark 
aggregation model respectively to cosine 
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
�  as 

weight values. Based on the obtained weight 
vector, we redesign the federal learning 
model aggregation algorithm with weight 
coefficients. The refactored formulas are 
shown in 7 and 8. 

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤)                  (7) 

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤)                   (8) 

(4)

In Equation (4), the Y are the random variable sets, 
X are the independent variable set, and ℋ(X, Y) is 
the joint probability distribution function of X and 
Y. Therefore, the ℋ(X, Y) could be calculated by the 
information entropy ℋ(X) by the formula ℋ(X)  = 
–∑x∈Xp (x)log(p(x)) and the ℋ(Y) could be obtained by 
ℋ(Y) = –∑y∈Y p(y)log(p(Y)).To illustrate how to calcu-
late the KL divergence between different models and 
cosine similarity, we through a simple example to il-
lustrate as follows.
Suppose there are 2-dimensional vectors A = [a1, a1, a2, 
a3] and B = [a1, a1, a2, a3], we can obtain that the prob-
ability of element a1 is 0.5 in the vector A, the proba-
bility of element a2 is 0.25 in the vector A, the proba-
bility of element a3 is 0.25 in the vector A. Similarly, 
the probability of element a1 is 0.25 in the vector B, 
the probability of element a2 is 0.5 in vector B, and the 
probability of element a3 is 0.25 in vector B. There-
fore, the KL divergence of vectors A and B could be 
computed as 𝒦KL (A|B)=0.5 log 0.5

0.25 + 0.25 log0.25
0.5  + 0.25 

log0.25
0.25 = 0.25. Here, we stipulate that when the KL 

divergence of the parameters of the two prediction 
models is less than the threshold α, we aggregate the 
two models. When some model parameters with high 
distribution similarity are aggregated, in order to bal-
ance the contribution of the remaining model param-
eters to the final prediction model, we next calculate 
the discrete cosine angle of the models. Assume that 
there are two-dimensional vectors T1 = [t1, t2] and W2 = 
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[w1, w2], the cosine angle can be computed as follows: 

  

As the client node of local model training, the 
vehicle uses its own standard data to complete the 
training of the corresponding prediction model 
based on selecting a specific data type. Assume that 
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based 
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to 
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following: 

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖).                        (3) 

Therefore, the 𝑚𝑚𝑚𝑚  vehicles could generate 𝑚𝑚𝑚𝑚  local 
predict model, which further is structured as a 
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that 
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚 
vehicles are randomly assigned to the range of the 
communication radius 𝑅𝑅𝑅𝑅  of 𝐾𝐾𝐾𝐾  the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗ ). 

Therefore, the vector 𝑀𝑀𝑀𝑀  also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

 
components, and further the vector 𝑀𝑀𝑀𝑀  could be 
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all 

the vehicle nodes participating in the local client 
training have trained the local prediction model, 
the vehicle will select the adjacent RSU server base 
station and send the trained model parameters to 
RSU. To speed up the aggregation speed of local 
models, it is imperative to fully explore the weight 
between different model parameters and realize the 
weight analysis of local models submitted by 
different vehicles. 

4.2 Local Model Correlation Measurement 
We construct a model parameter weights allocation 
algorithm by introducing cosine similarity to 
complete the analysis of different weights between 
different model parameters. Firstly, we utilize the 
KL divergence based on information entropy to 
compute the between different model 
relationships. And then, the so-called cosine 
similarity refers to calculating the cosine angle 
between different values. The KL divergence could 
be shown as follows. 

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌) 

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 .      (4) 

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets, 
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is 
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and 
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the 
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)�  and the ℋ(𝑌𝑌𝑌𝑌)  could be 
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To 
illustrate how to calculate the KL divergence 
between different models and cosine similarity, we 
through a simple example to illustrate as follows. 

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain 

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the 
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25 
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3 
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the 
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector 
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector 
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in 
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of 
vectors 𝐴𝐴𝐴𝐴  and 𝐵𝐵𝐵𝐵  could be computed as 
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that 
when the KL divergence of the parameters of 
the two prediction models is less than the 
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models. 
When some model parameters with high 
distribution similarity are aggregated, in 
order to balance the contribution of the 
remaining model parameters to the final 
prediction model, we next calculate the 
discrete cosine angle of the models. Assume 
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can 
be computed as follows: 

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 .                (5) 

In most cases, the dimension of the data is 
greater than 2 , so we need to extend the 
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there 
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁]  and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] . 
Therefore, the cosine angle can also be 
computed as follows: 

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

.               (6) 

To calculate whether the local model 
submitted by each vehicle client deviates from 
the final aggregation direction, we first need 
to use the FedAvg algorithm to perform an 
aggregation calculation on the local model to 
obtain a baseline for calculating cosine 
similarity. Suppose that the aggregation 
model obtained by aggregation calculation is 
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity 
between each local model and the benchmark 
aggregation model respectively to cosine 
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
�  as 

weight values. Based on the obtained weight 
vector, we redesign the federal learning 
model aggregation algorithm with weight 
coefficients. The refactored formulas are 
shown in 7 and 8. 

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤)                  (7) 

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤)                   (8) 

(5)

In most cases, the dimension of the data is greater 
than 2, so we need to extend the dimension to N. Sim-
ilarly, suppose that there are n dimensional vectors 
A =[a1, a2, a3, ..., aN] and B = [b1, b2, b3, ...,bN]. Therefore, 
the cosine angle can also be computed as follows:

  

As the client node of local model training, the 
vehicle uses its own standard data to complete the 
training of the corresponding prediction model 
based on selecting a specific data type. Assume that 
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based 
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to 
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following: 

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖).                        (3) 

Therefore, the 𝑚𝑚𝑚𝑚  vehicles could generate 𝑚𝑚𝑚𝑚  local 
predict model, which further is structured as a 
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that 
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚 
vehicles are randomly assigned to the range of the 
communication radius 𝑅𝑅𝑅𝑅  of 𝐾𝐾𝐾𝐾  the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗ ). 

Therefore, the vector 𝑀𝑀𝑀𝑀  also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

 
components, and further the vector 𝑀𝑀𝑀𝑀  could be 
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all 

the vehicle nodes participating in the local client 
training have trained the local prediction model, 
the vehicle will select the adjacent RSU server base 
station and send the trained model parameters to 
RSU. To speed up the aggregation speed of local 
models, it is imperative to fully explore the weight 
between different model parameters and realize the 
weight analysis of local models submitted by 
different vehicles. 

4.2 Local Model Correlation Measurement 
We construct a model parameter weights allocation 
algorithm by introducing cosine similarity to 
complete the analysis of different weights between 
different model parameters. Firstly, we utilize the 
KL divergence based on information entropy to 
compute the between different model 
relationships. And then, the so-called cosine 
similarity refers to calculating the cosine angle 
between different values. The KL divergence could 
be shown as follows. 

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌) 

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 .      (4) 

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets, 
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is 
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and 
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the 
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)�  and the ℋ(𝑌𝑌𝑌𝑌)  could be 
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To 
illustrate how to calculate the KL divergence 
between different models and cosine similarity, we 
through a simple example to illustrate as follows. 

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain 

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the 
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25 
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3 
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the 
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector 
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector 
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in 
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of 
vectors 𝐴𝐴𝐴𝐴  and 𝐵𝐵𝐵𝐵  could be computed as 
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that 
when the KL divergence of the parameters of 
the two prediction models is less than the 
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models. 
When some model parameters with high 
distribution similarity are aggregated, in 
order to balance the contribution of the 
remaining model parameters to the final 
prediction model, we next calculate the 
discrete cosine angle of the models. Assume 
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can 
be computed as follows: 

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 .                (5) 

In most cases, the dimension of the data is 
greater than 2 , so we need to extend the 
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there 
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁]  and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] . 
Therefore, the cosine angle can also be 
computed as follows: 

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

.               (6) 

To calculate whether the local model 
submitted by each vehicle client deviates from 
the final aggregation direction, we first need 
to use the FedAvg algorithm to perform an 
aggregation calculation on the local model to 
obtain a baseline for calculating cosine 
similarity. Suppose that the aggregation 
model obtained by aggregation calculation is 
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity 
between each local model and the benchmark 
aggregation model respectively to cosine 
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
�  as 

weight values. Based on the obtained weight 
vector, we redesign the federal learning 
model aggregation algorithm with weight 
coefficients. The refactored formulas are 
shown in 7 and 8. 

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤)                  (7) 

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤)                   (8) 

(6)

To calculate whether the local model submitted by 
each vehicle client deviates from the final aggregation 
direction, we first need to use the FedAvg algorithm 
to perform an aggregation calculation on the local 
model to obtain a baseline for calculating cosine sim-
ilarity. Suppose that the aggregation model obtained 
by aggregation calculation is ℳo, we need to calculate 
the cosine similarity between each local model and 
the benchmark aggregation model respectively to co-
sine similarity coefficient Θ = [θ1, θ2, ..., θm

K
] as weight 

values. Based on the obtained weight vector, we rede-
sign the federal learning model aggregation algorithm 
with weight coefficients. The refactored formulas are 
shown in 7 and 8.

  

As the client node of local model training, the 
vehicle uses its own standard data to complete the 
training of the corresponding prediction model 
based on selecting a specific data type. Assume that 
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based 
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to 
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following: 

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖).                        (3) 

Therefore, the 𝑚𝑚𝑚𝑚  vehicles could generate 𝑚𝑚𝑚𝑚  local 
predict model, which further is structured as a 
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that 
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚 
vehicles are randomly assigned to the range of the 
communication radius 𝑅𝑅𝑅𝑅  of 𝐾𝐾𝐾𝐾  the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗ ). 

Therefore, the vector 𝑀𝑀𝑀𝑀  also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

 
components, and further the vector 𝑀𝑀𝑀𝑀  could be 
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all 

the vehicle nodes participating in the local client 
training have trained the local prediction model, 
the vehicle will select the adjacent RSU server base 
station and send the trained model parameters to 
RSU. To speed up the aggregation speed of local 
models, it is imperative to fully explore the weight 
between different model parameters and realize the 
weight analysis of local models submitted by 
different vehicles. 

4.2 Local Model Correlation Measurement 
We construct a model parameter weights allocation 
algorithm by introducing cosine similarity to 
complete the analysis of different weights between 
different model parameters. Firstly, we utilize the 
KL divergence based on information entropy to 
compute the between different model 
relationships. And then, the so-called cosine 
similarity refers to calculating the cosine angle 
between different values. The KL divergence could 
be shown as follows. 

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌) 

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 .      (4) 

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets, 
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is 
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and 
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the 
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)�  and the ℋ(𝑌𝑌𝑌𝑌)  could be 
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To 
illustrate how to calculate the KL divergence 
between different models and cosine similarity, we 
through a simple example to illustrate as follows. 

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain 

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the 
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25 
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3 
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the 
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector 
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector 
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in 
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of 
vectors 𝐴𝐴𝐴𝐴  and 𝐵𝐵𝐵𝐵  could be computed as 
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that 
when the KL divergence of the parameters of 
the two prediction models is less than the 
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models. 
When some model parameters with high 
distribution similarity are aggregated, in 
order to balance the contribution of the 
remaining model parameters to the final 
prediction model, we next calculate the 
discrete cosine angle of the models. Assume 
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can 
be computed as follows: 

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 .                (5) 

In most cases, the dimension of the data is 
greater than 2 , so we need to extend the 
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there 
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁]  and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] . 
Therefore, the cosine angle can also be 
computed as follows: 

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

.               (6) 

To calculate whether the local model 
submitted by each vehicle client deviates from 
the final aggregation direction, we first need 
to use the FedAvg algorithm to perform an 
aggregation calculation on the local model to 
obtain a baseline for calculating cosine 
similarity. Suppose that the aggregation 
model obtained by aggregation calculation is 
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity 
between each local model and the benchmark 
aggregation model respectively to cosine 
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
�  as 

weight values. Based on the obtained weight 
vector, we redesign the federal learning 
model aggregation algorithm with weight 
coefficients. The refactored formulas are 
shown in 7 and 8. 

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤)                  (7) 

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤)                   (8) 

(7)

  

As the client node of local model training, the 
vehicle uses its own standard data to complete the 
training of the corresponding prediction model 
based on selecting a specific data type. Assume that 
the vehicle 𝒱𝒱𝒱𝒱𝑖𝑖𝑖𝑖 uses the training dataset [𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖] based 
on the deep neural network learning algorithm 𝑓𝑓𝑓𝑓 to 
generate the local model ℳ𝑖𝑖𝑖𝑖, such as the following: 

|𝒳𝒳𝒳𝒳: 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖| → 𝑓𝑓𝑓𝑓(ℳ𝑖𝑖𝑖𝑖).                        (3) 

Therefore, the 𝑚𝑚𝑚𝑚  vehicles could generate 𝑚𝑚𝑚𝑚  local 
predict model, which further is structured as a 
vector 𝑀𝑀𝑀𝑀 = [ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚] . Assuming that 
there is an ideal state, at a particular moment, 𝑚𝑚𝑚𝑚 
vehicles are randomly assigned to the range of the 
communication radius 𝑅𝑅𝑅𝑅  of 𝐾𝐾𝐾𝐾  the RSU (𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
∈ 𝑁𝑁𝑁𝑁∗ ). 

Therefore, the vector 𝑀𝑀𝑀𝑀  also is divided into 𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

 
components, and further the vector 𝑀𝑀𝑀𝑀  could be 
rewritten as ℳ�1 = �ℳ1,ℳ2,ℳ3,⋯ ,ℳ𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
� . After all 

the vehicle nodes participating in the local client 
training have trained the local prediction model, 
the vehicle will select the adjacent RSU server base 
station and send the trained model parameters to 
RSU. To speed up the aggregation speed of local 
models, it is imperative to fully explore the weight 
between different model parameters and realize the 
weight analysis of local models submitted by 
different vehicles. 

4.2 Local Model Correlation Measurement 
We construct a model parameter weights allocation 
algorithm by introducing cosine similarity to 
complete the analysis of different weights between 
different model parameters. Firstly, we utilize the 
KL divergence based on information entropy to 
compute the between different model 
relationships. And then, the so-called cosine 
similarity refers to calculating the cosine angle 
between different values. The KL divergence could 
be shown as follows. 

𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑋𝑋𝑋𝑋|𝑌𝑌𝑌𝑌) = ℋ(𝑋𝑋𝑋𝑋) −ℋ(𝑌𝑌𝑌𝑌) 

= ∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋,𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑥𝑥𝑥𝑥) ⋅ log 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦)

 .      (4) 

In Equation (4), the 𝑌𝑌𝑌𝑌 are the random variable sets, 
𝑋𝑋𝑋𝑋 are the independent variable set, and ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is 
the joint probability distribution function of 𝑋𝑋𝑋𝑋 and 
𝑌𝑌𝑌𝑌. Therefore, the ℋ(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) could be calculated by the 
information entropy ℋ(𝑋𝑋𝑋𝑋) by the formula ℋ(𝑋𝑋𝑋𝑋) =
−∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥∈𝑋𝑋𝑋𝑋 (𝑥𝑥𝑥𝑥)log�𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)�  and the ℋ(𝑌𝑌𝑌𝑌)  could be 
obtained by ℋ(𝑌𝑌𝑌𝑌) = −∑ 𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌 (𝑦𝑦𝑦𝑦)log�𝑝𝑝𝑝𝑝(𝑌𝑌𝑌𝑌)�. To 
illustrate how to calculate the KL divergence 
between different models and cosine similarity, we 
through a simple example to illustrate as follows. 

Suppose there are 2-dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3] and 𝐵𝐵𝐵𝐵 = [𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3], we can obtain 

that the probability of element 𝑎𝑎𝑎𝑎1 is 0.5 in the 
vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎2 is 0.25 
in the vector 𝐴𝐴𝐴𝐴, the probability of element 𝑎𝑎𝑎𝑎3 
is 0.25 in the vector 𝐴𝐴𝐴𝐴 . Similarly, the 
probability of element 𝑎𝑎𝑎𝑎1 is 0.25 in the vector 
𝐵𝐵𝐵𝐵, the probability of element 𝑎𝑎𝑎𝑎2 is 0.5 in vector 
𝐵𝐵𝐵𝐵, and the probability of element 𝑎𝑎𝑎𝑎3 is 0.25 in 
vector 𝐵𝐵𝐵𝐵 . Therefore, the KL divergence of 
vectors 𝐴𝐴𝐴𝐴  and 𝐵𝐵𝐵𝐵  could be computed as 
𝒦𝒦𝒦𝒦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) = 0.5 log 0.5

0.25
+ 0.25 log 0.25

0.5
+

0.25 log 0.25
0.25

= 0.25 . Here, we stipulate that 
when the KL divergence of the parameters of 
the two prediction models is less than the 
threshold 𝛼𝛼𝛼𝛼 , we aggregate the two models. 
When some model parameters with high 
distribution similarity are aggregated, in 
order to balance the contribution of the 
remaining model parameters to the final 
prediction model, we next calculate the 
discrete cosine angle of the models. Assume 
that there are two-dimensional vectors 𝑇𝑇𝑇𝑇1 =
[𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2] and 𝑊𝑊𝑊𝑊2 = [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2], the cosine angle can 
be computed as follows: 

cos𝜃𝜃𝜃𝜃 = 𝑡𝑡𝑡𝑡1𝑤𝑤𝑤𝑤1+𝑡𝑡𝑡𝑡2𝑤𝑤𝑤𝑤2
�(𝑡𝑡𝑡𝑡1)2+(𝑡𝑡𝑡𝑡2)2+�(𝑤𝑤𝑤𝑤1)2+(𝑤𝑤𝑤𝑤2)2

 .                (5) 

In most cases, the dimension of the data is 
greater than 2 , so we need to extend the 
dimension to 𝑁𝑁𝑁𝑁. Similarly, suppose that there 
are 𝑛𝑛𝑛𝑛 dimensional vectors 𝐴𝐴𝐴𝐴 =
[𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2, 𝑎𝑎𝑎𝑎3,⋯ , 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁]  and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3,⋯ , 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁] . 
Therefore, the cosine angle can also be 
computed as follows: 

cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ×∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

.               (6) 

To calculate whether the local model 
submitted by each vehicle client deviates from 
the final aggregation direction, we first need 
to use the FedAvg algorithm to perform an 
aggregation calculation on the local model to 
obtain a baseline for calculating cosine 
similarity. Suppose that the aggregation 
model obtained by aggregation calculation is 
ℳ𝑜𝑜𝑜𝑜, we need to calculate the cosine similarity 
between each local model and the benchmark 
aggregation model respectively to cosine 
similarity coefficient 𝛩𝛩𝛩𝛩 = �𝜃𝜃𝜃𝜃1,𝜃𝜃𝜃𝜃2,⋯ , 𝜃𝜃𝜃𝜃𝑚𝑚𝑚𝑚

𝐾𝐾𝐾𝐾
�  as 

weight values. Based on the obtained weight 
vector, we redesign the federal learning 
model aggregation algorithm with weight 
coefficients. The refactored formulas are 
shown in 7 and 8. 

𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1

𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤)                  (7) 

𝐹𝐹𝐹𝐹𝑘𝑘𝑘𝑘(𝑤𝑤𝑤𝑤) = 1
𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
∑ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒫𝒫𝒫𝒫𝑘𝑘𝑘𝑘 (𝑤𝑤𝑤𝑤)                   (8) (8)

Algorithm 1: AdaFL Algorithm

Input: Vehicular Clients: O = {o1, o2, ...,oN}. B is 
the local mini-batch size, E is the number of local 
epochs, α is the learning rate, ▽L(. ; .) is the gradient 
optimization function.
Output: ℳj

1. Initialize ω*.
2. for communication round t = 1, 2, ... do
3.    {OM} ← select VCs from O to join in this round;
4.    TMC broadcasts global model  ω* to {OM} to;
5.    for each VC o ∈ {OM} do
6.       Initialize ω(o, t) = ω*;
7.        ω(i,(o, t + 1)) ← LocalUpdate(o, ω(o, t));

8.       Calculate the KL divergence  
       KKL (ω(i,(o, t + 1)) || ω(j,(o, t + 1)));

9.       if KKL ≤ α then
10.          Computing ω–i, j ← 

      FedAvg(ω(i,(o, t + 1))|| ω(j,(o, t + 1)));
11.       else
12.          

 
 

 

 
Algorithm 1: AdaFL Algorithm 
Input: Vehicular Clients: 𝑂𝑂𝑂𝑂 =  {𝑜𝑜𝑜𝑜1 , 𝑜𝑜𝑜𝑜2 ,· · · , 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁  }. 𝐵𝐵𝐵𝐵 
is the local mini-batch size, 𝐸𝐸𝐸𝐸 is the number of local 
epochs, 𝛼𝛼𝛼𝛼 is the learning rate, ▽ 𝐿𝐿𝐿𝐿(· ; ·) is the 
gradient optimization function. 
Output: ℳ𝑗𝑗𝑗𝑗 
1. Initialize 𝜔𝜔𝜔𝜔∗. 
2. for communication round 𝑡𝑡𝑡𝑡 =  1, 2,· · · do 
3.    {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀  }  ←  select VCs from 𝑂𝑂𝑂𝑂  to join in this 

round; 
4.    TMC broadcasts global model 𝜔𝜔𝜔𝜔∗ to {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀  }; 
5.    for each VC 𝑜𝑜𝑜𝑜 ∈  {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀  } do 
6.       Initialize 𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)  =  𝜔𝜔𝜔𝜔∗; 
7.       𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ← 𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿(𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)); 
8.       Calculate the KL divergence 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��; 
9.       if 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  ≤  𝛼𝛼𝛼𝛼 then 
10.          Computing �̄�𝜔𝜔𝜔𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ←

𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��; 
11.       else 
12.          cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2×𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

 

13.          𝛩𝛩𝛩𝛩 =  [𝜃𝜃𝜃𝜃1 ,𝜃𝜃𝜃𝜃2 ,𝜃𝜃𝜃𝜃3 ,· · · ,𝜃𝜃𝜃𝜃𝐾𝐾𝐾𝐾 ] 
14.       �̄�𝜔𝜔𝜔(𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡+1)  ← 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

|{𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀}|
∑ 𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 ; 

15. Local Update �𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)�: 
16. ℬ ← (split 𝒟𝒟𝒟𝒟𝑖𝑖𝑖𝑖 into batches of size 𝐵𝐵𝐵𝐵); 
17. if each local epoch 𝑖𝑖𝑖𝑖 from 1 to 𝐸𝐸𝐸𝐸 then 
18.    if batch 𝑏𝑏𝑏𝑏 ∈  ℬ then 
19.       𝜔𝜔𝜔𝜔 ←  𝜔𝜔𝜔𝜔 −  𝛼𝛼𝛼𝛼 · ▽ 𝐿𝐿𝐿𝐿(𝜔𝜔𝜔𝜔;  𝑏𝑏𝑏𝑏); 

4.3 Predictive Model Aggregation 
To be able to adapt to the rapid movement of 
vehicles, our aggregation calculations involve two 
stages. The first stage involves the initial local 
model aggregation task, which is primarily 
concentrated in the RSU. When the RSU receives 
local model submissions from various vehicles 
within its communication radius R, it performs 
aggregation calculations, generating partially 
aggregated sub-models, which are then sent to the 
SPC for further aggregation of all sub-models. This 
step generates the final predictive global model. 
Subsequently, the SPC transmits the generated 
global model to each participating vehicle in the 
training for a new round of model updates.   

5. Simulation Experiment 
To demonstrate the effectiveness of the AdaFL 
system, we utilized a CNN model to construct a 
prediction model based on the MNIST and 
FashionMNIST dataset, training data from 100 
clients. Notably, the authors randomly assigned the 
dataset to each client based on the type of data they 
obtain to satisfy the characteristics of non-IID. The 

experiment environment employed an 
Intel(R) Core (TM), i7-12600 CPU@3.40GHZ, 
and 16.00GB of RAM, RTX3090 of GPU, to 
serve as our central server. 
Figure 3 

Prediction accuracy by CNN model on MNIST test 
set. 

 
We first evaluated the performance of the 
CNN model based on 100 clients, as well as 
the performance via centralized training by 
mining the MNIST dataset, as shown in Figure 
3. The results indicate that federated learning 
can achieve very stable results, even with a 
large number of training nodes. Specifically, 
when the number of training rounds reaches 
approximately 50, the CNN training method 
based on federated learning can achieve 
accuracy stability. Therefore, we can generate 
a model through the above process without 
collecting data generated by vehicles, and 
conduct mining training on vehicle data 
effectively. 

To further enhance the stability of local model 
prediction accuracy in federated learning, we 
used the KL divergence method based on 
information entropy to calculate the similarity 
between any two models. Specifically, we first 
calculated the KL divergence value between 
any two local model parameters and 
compared it with a preset threshold. If the KL 
divergence value between the model 
parameters was less than or equal to the 
threshold 𝛼𝛼𝛼𝛼, we used the traditional FedAvg 
algorithm to aggregate the corresponding 
model parameters. If the KL divergence value 
was greater than the threshold 𝛼𝛼𝛼𝛼, we did not 
aggregate its model parameters.  

To identify a suitable threshold 𝛼𝛼𝛼𝛼, we varied 
values of 𝛼𝛼𝛼𝛼  within the range [0,1], and 
evaluated the number of rounds required for 
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Algorithm 1: AdaFL Algorithm 
Input: Vehicular Clients: 𝑂𝑂𝑂𝑂 =  {𝑜𝑜𝑜𝑜1 , 𝑜𝑜𝑜𝑜2 ,· · · , 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁  }. 𝐵𝐵𝐵𝐵 
is the local mini-batch size, 𝐸𝐸𝐸𝐸 is the number of local 
epochs, 𝛼𝛼𝛼𝛼 is the learning rate, ▽ 𝐿𝐿𝐿𝐿(· ; ·) is the 
gradient optimization function. 
Output: ℳ𝑗𝑗𝑗𝑗 
1. Initialize 𝜔𝜔𝜔𝜔∗. 
2. for communication round 𝑡𝑡𝑡𝑡 =  1, 2,· · · do 
3.    {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀  }  ←  select VCs from 𝑂𝑂𝑂𝑂  to join in this 

round; 
4.    TMC broadcasts global model 𝜔𝜔𝜔𝜔∗ to {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀  }; 
5.    for each VC 𝑜𝑜𝑜𝑜 ∈  {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀  } do 
6.       Initialize 𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)  =  𝜔𝜔𝜔𝜔∗; 
7.       𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ← 𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿(𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)); 
8.       Calculate the KL divergence 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��; 
9.       if 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  ≤  𝛼𝛼𝛼𝛼 then 
10.          Computing �̄�𝜔𝜔𝜔𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ←

𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��; 
11.       else 
12.          cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2×𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

 

13.          𝛩𝛩𝛩𝛩 =  [𝜃𝜃𝜃𝜃1 ,𝜃𝜃𝜃𝜃2 ,𝜃𝜃𝜃𝜃3 ,· · · ,𝜃𝜃𝜃𝜃𝐾𝐾𝐾𝐾 ] 
14.       �̄�𝜔𝜔𝜔(𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡+1)  ← 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖

|{𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀}|
∑ 𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀 ; 

15. Local Update �𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)�: 
16. ℬ ← (split 𝒟𝒟𝒟𝒟𝑖𝑖𝑖𝑖 into batches of size 𝐵𝐵𝐵𝐵); 
17. if each local epoch 𝑖𝑖𝑖𝑖 from 1 to 𝐸𝐸𝐸𝐸 then 
18.    if batch 𝑏𝑏𝑏𝑏 ∈  ℬ then 
19.       𝜔𝜔𝜔𝜔 ←  𝜔𝜔𝜔𝜔 −  𝛼𝛼𝛼𝛼 · ▽ 𝐿𝐿𝐿𝐿(𝜔𝜔𝜔𝜔;  𝑏𝑏𝑏𝑏); 

4.3 Predictive Model Aggregation 
To be able to adapt to the rapid movement of 
vehicles, our aggregation calculations involve two 
stages. The first stage involves the initial local 
model aggregation task, which is primarily 
concentrated in the RSU. When the RSU receives 
local model submissions from various vehicles 
within its communication radius R, it performs 
aggregation calculations, generating partially 
aggregated sub-models, which are then sent to the 
SPC for further aggregation of all sub-models. This 
step generates the final predictive global model. 
Subsequently, the SPC transmits the generated 
global model to each participating vehicle in the 
training for a new round of model updates.   

5. Simulation Experiment 
To demonstrate the effectiveness of the AdaFL 
system, we utilized a CNN model to construct a 
prediction model based on the MNIST and 
FashionMNIST dataset, training data from 100 
clients. Notably, the authors randomly assigned the 
dataset to each client based on the type of data they 
obtain to satisfy the characteristics of non-IID. The 

experiment environment employed an 
Intel(R) Core (TM), i7-12600 CPU@3.40GHZ, 
and 16.00GB of RAM, RTX3090 of GPU, to 
serve as our central server. 
Figure 3 

Prediction accuracy by CNN model on MNIST test 
set. 

 
We first evaluated the performance of the 
CNN model based on 100 clients, as well as 
the performance via centralized training by 
mining the MNIST dataset, as shown in Figure 
3. The results indicate that federated learning 
can achieve very stable results, even with a 
large number of training nodes. Specifically, 
when the number of training rounds reaches 
approximately 50, the CNN training method 
based on federated learning can achieve 
accuracy stability. Therefore, we can generate 
a model through the above process without 
collecting data generated by vehicles, and 
conduct mining training on vehicle data 
effectively. 

To further enhance the stability of local model 
prediction accuracy in federated learning, we 
used the KL divergence method based on 
information entropy to calculate the similarity 
between any two models. Specifically, we first 
calculated the KL divergence value between 
any two local model parameters and 
compared it with a preset threshold. If the KL 
divergence value between the model 
parameters was less than or equal to the 
threshold 𝛼𝛼𝛼𝛼, we used the traditional FedAvg 
algorithm to aggregate the corresponding 
model parameters. If the KL divergence value 
was greater than the threshold 𝛼𝛼𝛼𝛼, we did not 
aggregate its model parameters.  

To identify a suitable threshold 𝛼𝛼𝛼𝛼, we varied 
values of 𝛼𝛼𝛼𝛼  within the range [0,1], and 
evaluated the number of rounds required for 

;
15. Local Update (o, ω(o, t)):
16. ℬ ← (split 𝒟i into batches of size B);
17. if each local epoch i from 1 to E then
18.    if batch b ∈ ℬ  then
19.       ω ← ω – α · ▽L(ω; b);

4.3. Predictive Model Aggregation

To be able to adapt to the rapid movement of vehicles, 
our aggregation calculations involve two stages. The 
first stage involves the initial local model aggregation 
task, which is primarily concentrated in the RSU. 
When the RSU receives local model submissions 
from various vehicles within its communication radi-
us R, it performs aggregation calculations, generating 
partially aggregated sub-models, which are then sent 
to the SPC for further aggregation of all sub-models. 
This step generates the final predictive global model. 
Subsequently, the SPC transmits the generated global 
model to each participating vehicle in the training for 
a new round of model updates.  

5. Simulation Experiment
To demonstrate the effectiveness of the AdaFL sys-
tem, we utilized a CNN model to construct a predic-
tion model based on the MNIST and FashionMNIST 
dataset, training data from 100 clients. Notably, the 
authors randomly assigned the dataset to each cli-
ent based on the type of data they obtain to satisfy 
the characteristics of non-IID. The experiment envi-
ronment employed an Intel(R) Core (TM), i7-12600 
CPU@3.40GHZ, and 16.00GB of RAM, RTX3090 of 
GPU, to serve as our central server.
We first evaluated the performance of the CNN model 
based on 100 clients, as well as the performance via 
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Figure 3
Prediction accuracy by CNN model on MNIST test set

centralized training by mining the MNIST dataset, as 
shown in Figure 3. The results indicate that federated 
learning can achieve very stable results, even with a 
large number of training nodes. Specifically, when the 
number of training rounds reaches approximately 50, 
the CNN training method based on federated learn-
ing can achieve accuracy stability. Therefore, we can 
generate a model through the above process without 
collecting data generated by vehicles, and conduct 
mining training on vehicle data effectively.

 
 

 

 
Algorithm 1: AdaFL Algorithm 
Input: Vehicular Clients: 𝑂𝑂𝑂𝑂 =  {𝑜𝑜𝑜𝑜1 , 𝑜𝑜𝑜𝑜2 ,· · · , 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁  }. 𝐵𝐵𝐵𝐵 
is the local mini-batch size, 𝐸𝐸𝐸𝐸 is the number of local 
epochs, 𝛼𝛼𝛼𝛼 is the learning rate, ▽ 𝐿𝐿𝐿𝐿(· ; ·) is the 
gradient optimization function. 
Output: ℳ𝑗𝑗𝑗𝑗 
1. Initialize 𝜔𝜔𝜔𝜔∗. 
2. for communication round 𝑡𝑡𝑡𝑡 =  1, 2,· · · do 
3.    {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀  }  ←  select VCs from 𝑂𝑂𝑂𝑂  to join in this 

round; 
4.    TMC broadcasts global model 𝜔𝜔𝜔𝜔∗ to {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀  }; 
5.    for each VC 𝑜𝑜𝑜𝑜 ∈  {𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀  } do 
6.       Initialize 𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)  =  𝜔𝜔𝜔𝜔∗; 
7.       𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ← 𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿(𝑜𝑜𝑜𝑜,𝜔𝜔𝜔𝜔(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡)); 
8.       Calculate the KL divergence 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)�||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��; 
9.       if 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  ≤  𝛼𝛼𝛼𝛼 then 
10.          Computing �̄�𝜔𝜔𝜔𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ←

𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 �𝜔𝜔𝜔𝜔�𝑖𝑖𝑖𝑖,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)� ||𝜔𝜔𝜔𝜔�𝑗𝑗𝑗𝑗,(𝑜𝑜𝑜𝑜,𝑡𝑡𝑡𝑡+1)��; 
11.       else 
12.          cos𝜃𝜃𝜃𝜃 = ∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖×𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖)2×𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 ∑ (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1

= 𝐴𝐴𝐴𝐴⋅𝐵𝐵𝐵𝐵
|𝐴𝐴𝐴𝐴|×|𝐵𝐵𝐵𝐵|

 

13.          𝛩𝛩𝛩𝛩 =  [𝜃𝜃𝜃𝜃1 ,𝜃𝜃𝜃𝜃2 ,𝜃𝜃𝜃𝜃3 ,· · · ,𝜃𝜃𝜃𝜃𝐾𝐾𝐾𝐾 ] 
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4.3 Predictive Model Aggregation 
To be able to adapt to the rapid movement of 
vehicles, our aggregation calculations involve two 
stages. The first stage involves the initial local 
model aggregation task, which is primarily 
concentrated in the RSU. When the RSU receives 
local model submissions from various vehicles 
within its communication radius R, it performs 
aggregation calculations, generating partially 
aggregated sub-models, which are then sent to the 
SPC for further aggregation of all sub-models. This 
step generates the final predictive global model. 
Subsequently, the SPC transmits the generated 
global model to each participating vehicle in the 
training for a new round of model updates.   

5. Simulation Experiment 
To demonstrate the effectiveness of the AdaFL 
system, we utilized a CNN model to construct a 
prediction model based on the MNIST and 
FashionMNIST dataset, training data from 100 
clients. Notably, the authors randomly assigned the 
dataset to each client based on the type of data they 
obtain to satisfy the characteristics of non-IID. The 

experiment environment employed an 
Intel(R) Core (TM), i7-12600 CPU@3.40GHZ, 
and 16.00GB of RAM, RTX3090 of GPU, to 
serve as our central server. 
Figure 3 

Prediction accuracy by CNN model on MNIST test 
set. 
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Figure 6, the green color represents the byte stream 
of communication required to collect vehicle data 
for centralized training in the traditional form. The 
consumption of this communication resource is 
mainly to complete the transmission of vehicle 
data. The orange color represents the consumption 
of communication resources required to use the 
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participating in the model training and submitting 
the model by each client. 
 
Figure 5  

The choice of 𝛼𝛼𝛼𝛼. 

 
Figure 6 

Comparison of the communication burden with 
centralized data collection. 

 
Figure 7 

Comparison of cosine similarity calculation 

 
Lastly, to further validate the effectiveness of 
our proposed method, simulations were 
conducted to show that the cosine similarity 
calculation proposed in this study can reduce 
the number of interactive rounds of federated 
learning training, as shown in Figure 7. The 
figure contains two curves, where the green 
line represents the result of the federal 
aggregation calculation using the cosine 
similarity proposed in this paper, while the 
red line represents the prediction result after 
the aggregation calculation using the 
traditional fed learning aggregation 
algorithm.  

In Table 1, on FashionMNIST dataset, we also 
compared our proposed AdaFL with the 
centralized data collection (CDC) and CNN 
network with respect to the metrics byte 
stream size (BSS) and Map. Through 
comparisons, our proposed algorithm can 
achieve similar model prediction results with 
fewer rounds. Thus, our proposed cosine 
similarity calculation method has a positive 
impact and can improve the model 
aggregation calculation in federated learning 
training. 

number of training rounds varies with the value of α 
in the form of a quadratic function with an upward 
opening. The curve has a minimum value, and when  
α = 0.5, the number of rounds required for the entire 
algorithm to stabilize is the least.
To further demonstrate the effectiveness of our pro-
posed scheme in maximizing the saving of commu-
nication resources in the network, we compared the 
byte stream size (BSS) in different scenarios with or 
without vehicle data outsourcing, as shown in Figure 
5. The results showcase that the algorithm proposed 
in this paper can significantly reduce communication 
resources consumption and enhance the utilization 
rate of vehicle data. In Figure 6, the green color rep-
resents the byte stream of communication required to 
collect vehicle data for centralized training in the tra-
ditional form. The consumption of this communica-
tion resource is mainly to complete the transmission 
of vehicle data. The orange color represents the con-
sumption of communication resources required to 
use the method proposed in this paper. The consump-
tion is primarily the resource consumption when par-
ticipating in the model training and submitting the 
model by each client.
Lastly, to further validate the effectiveness of our pro-
posed method, simulations were conducted to show 
that the cosine similarity calculation proposed in this 
study can reduce the number of interactive rounds 
of federated learning training, as shown in Figure 7. 
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The figure contains two curves, where the green line 
represents the result of the federal aggregation calcu-
lation using the cosine similarity proposed in this pa-
per, while the red line represents the prediction result 
after the aggregation calculation using the traditional 
fed learning aggregation algorithm. 
In Table 1, on FashionMNIST dataset, we also com-
pared our proposed AdaFL with the centralized data 
collection (CDC) and CNN network with respect to 
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Lastly, to further validate the effectiveness of 
our proposed method, simulations were 
conducted to show that the cosine similarity 
calculation proposed in this study can reduce 
the number of interactive rounds of federated 
learning training, as shown in Figure 7. The 
figure contains two curves, where the green 
line represents the result of the federal 
aggregation calculation using the cosine 
similarity proposed in this paper, while the 
red line represents the prediction result after 
the aggregation calculation using the 
traditional fed learning aggregation 
algorithm.  

In Table 1, on FashionMNIST dataset, we also 
compared our proposed AdaFL with the 
centralized data collection (CDC) and CNN 
network with respect to the metrics byte 
stream size (BSS) and Map. Through 
comparisons, our proposed algorithm can 
achieve similar model prediction results with 
fewer rounds. Thus, our proposed cosine 
similarity calculation method has a positive 
impact and can improve the model 
aggregation calculation in federated learning 
training. 

the metrics byte stream size (BSS) and Map. Through 
comparisons, our proposed algorithm can achieve 
similar model prediction results with fewer rounds. 
Thus, our proposed cosine similarity calculation 
method has a positive impact and can improve the 
model aggregation calculation in federated learning 
training.

6. Conclusion
This paper presented a system designed for efficient 
utilization of vehicular data by utilizing adaptive fed-
erated learning via weight coefficient, without vehic-
ular data transmission. To achieve this objective, we 
proposed two vehicle data usage mechanisms. The 
first mechanism involved using a vehicle node for dis-
tributed training of vehicular data, thus facilitating 
the mining process of the vehicular data. The second 
mechanism aimed to improve the efficiency of local 
model aggregation in federated learning by introduc-
ing information entropy and cosine similarity calcu-
lation into the system algorithm. In future research, 
we plan to further explore adaptive federated learning 
aggregation and develop adaptive aggregation com-
puting for a wider range of scenarios. This will enable 
us to unlock the full potential of adaptive federated 
learning for various applications.
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Table 1
Performance comparison between AdaFL and 
centralized data collection (CDC) and CNN network on 
FashionMNIST dataset

Round
BSS [Kb] Map [%]

CDC AdaFL CNN AdaFL

20 1.6*105 0.06*105 85.2 89.4

40 1.6*105 0.11*105 88.4 91.6

60 1.6*105 0.14*105 89.1 92.4

80 1.6*105 0.17*105 91.7 92.7

100 1.6*105 0.21*105 92.0 92.7
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