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Rapid identification of seed vitality plays key roles in the cultivation of the agricultural and forestry crops. This 
study discusses the use of compose a specular like technology, the computer algorithm and the feasibility of 
the physical system identification under different osmanthus seed vigor, in order to improve the ability to rec-
ognize. Two varieties of Osmanthus seeds (JinQiGui and RiXiangGui) were artificially aged and then hyper-
spectral data were collected. Multivariate scattering correction (MSC) and competitive adaptive reweighted 
sampling algorithm (CARS) were used for spectral preprocessing and feature wavelength selection, respec-
tively. The extreme learning machine (ELM) and k-nearest neighbor (KNN) were used to establish the spectral 
discriminant model, and convolutional neural network was used in the computer image discriminant model. 
When MSC+CARS is combined with the above Discriminative model, nearly 100% recognition can be achieved 
with fewer bands. Compared with machine learning model, image-depth learning model can get higher model 
accuracy for different vigor JQG and RXG without complex preprocessing. These results indicate that hyper-
spectral imaging technology can effectively distinguish different vigor of Osmanthus fragrans seeds based on 
computer technology and physical system. Combining deep neural networks with image information is of great 
importance for research and development of portable high precision seed vitality spectral imagers.
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1. Introduction
Seed vitality is the sum of seed germination rate, ger-
mination rate, seedling growth potential, plant stress 
resistance, and production potential, and is an im-
portant indicator for evaluating seed quality [4]. The 
seeds of high vigor can sprout rapidly or uniformly 
in the field to ensure the whole seedling and the field 
density of crops. It can also lay a good foundation for 
increasing production and at the same time have a 
strong resistance to field adversity. Therefore, select-
ing seeds with high vigor before sowing is of great sig-
nificance to plant growth and yield increase.
Osmanthus fragrans, one of the ten famous tradition-
al Chinese flowers [5], is an excellent ornamental and 
practical garden tree species that integrates greening, 
beautification, and fragrance. Osmanthus fragrans 
has important medicinal value. As a raw material, os-
manthus tea is widely promoted, and it is also widely 
used in garden construction. Through artificial culti-
vation, natural hybridization and artificial selection, a 
rich variety of cultivated varieties have been formed. 
However, the storage conditions of osmanthus seeds 
are complex, and there are significant differences in 
seed vitality, this makes it difficult to identify seed vi-
ability and is not conducive to direct planting.
Similar to other agricultural and forestry crops, tra-
ditional methods for testing the vitality of osmanthus 
seeds include both physiological and biochemical 
aspects. Standard germination test [12], polymerase 
chain reaction [6], immunoassay test [11] and tetra-
zole staining method [5, 9] are often used to deter-
mine seed vigor. Although these traditional methods 
can be used to visually detect the vigor of seeds, these 
methods have many disadvantages, such as cumber-
some operation, subjectivity in experiments, large 
environmental impacts, destructive effects on seeds, 
and long cycles.
In recent years, near-infrared spectroscopy, Fourier 
spectroscopy, and Raman spectroscopy based on op-
tical properties have been used to identify seed vigor 
to distinguish, and certain research results have been 
obtained. For example, Song et al. demonstrated the 
successful put into practice of the NIR spectroscopy 
for non-destructive and rapid evaluation of the rice 
seed vitality [14]. FT-NIR spectroscopy correctly 
classified the active and inactive seeds of three corn 
seeds with an accuracy of 100% and a prediction abil-

ity of more than 95% [1]. However, these methods 
based on point scanning cannot get the complete in-
formation of the object.
In contrast, there are relatively few studies on de-
tecting seed vitality of forest crops. Based on hyper-
spectral imaging data, the germination rates of three 
Australian native tree species can be accurately and 
non-destructively determined, with recognition abil-
ity of more than 80% [16]. It is feasible to combine 
hyperspectral imaging technique with Re-current 
neural network to predict the seed vigor of Sophora 
sinensis [8]. In summary, hyperspectral imaging tech-
nology has made some progress in identifying various 
seed vigor. However, it has not yet realized non-de-
structive detection of the vigor Osmanthus fragrans 
seeds, so this study took Osmanthus fragrans seeds 
with different vigor as the research object.
The specific goals this research are summarized as 
follows: (1) to the collect hyperspectral information 
of Osmanthus fragrans seeds with different varieties 
and vigor; (2) to compare the effects of preprocessing 
on PCA visualization; (3) to study the influence of pre 
processing and feature selection on the vigor model 
of the spectrum machine learning; (4) to analyze the 
results and advantages of CNN in the image seed vi-
tality recognition model. The main research of this 
article established a vitality recognition model for 
osmanthus seeds from the perspectives of spectrum 
and image, which would provide a basis for achieving 
fast, accurate, and non-destructive identification of 
seed vitality. It also laid a theoretical foundation for 
the development of portable instruments that can be 
used for registering seeds with multiple varieties and 
vitality.

2. Materials and Methods
2.1. Seed Sample Preparation
Osmanthus fragrans seeds for the experiment were 
purchased from the Beijing seed market in Septem-
ber 2020, including two varieties of Jinqiugui and 
Rixianggui, which are referred to as JQG and RXG 
in this article. After bringing the seeds back to the 
laboratory, remove impurities and insufficient seeds. 
After that, the two types of seeds are divided into two 
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groups. One group did not do any treatment as a con-
trol group (viable seeds, with germination potential), 
and the other group was placed in an artificial aging 
box at 100°C for artificial aging, and the aging time 
was 12 hours (non-viable seeds, accompanied by lack 
of germination ability). After the aging was over and 
the seeds return to room temperature, 240 samples 
were selected from the aged and unaged seeds to start 
hyperspectral data collection. Finally, the germina-
tion ability of viable and inviable seeds was verified 
through standard germination experiments, with ger-
mination rates of 85.42% and 0, respectively.

2.2. Hyperspectral Data Acquisition and 
Correction
The spectrometer has a scanning range of 400-
1000nm, covering visible light and part of the 
near-infrared region, and the spectral resolution of 
4.6875nm, including 115 bands. In the processed of 
data acquisition, the scanning speed of the spectrom-
eter is 30 lines, the resolution of an acquired image is 
520*696. Two 150W halogen lamps (OSRAM GCA; 
Sylvania, Gloucester, MA, USA) were used as the light 
source. The distance in the hyperspectral imaging 
lens and sample was set to 25 cm, and the number of 
samples can be collected at a time was 80. Therefore, 
three repeated experiments were required for each 
type of experimental object. Part of the sample image 
at 727.8nm is shown in Figure 1.

Figure 1
Partial sample image at 727.8nm 
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rent generated in the camera from interfering with 
hyperspectral information [10]. The specific correc-
tion formula is as follows:
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tensity values of all pixels in the ROI corresponding to 
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Due to the noise in the images corresponding to some 
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be clear. Finally, a total of 61 bands of images under 
575.3-894.3nm were selected for segmentation. After the 
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Figure 2. Some examples of hyperspectral images of 
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2.4. Hyperspectral Data Preprocessing 
The pre-processing of hyperspectral data includes 
denoising and dimensionality reduction of the spec-
tral data. In the study, multiple scattering competi-
tive and correction adaptive weighted sampling al-
gorithms are used to achieve spectral denoising and 
feature extraction, respectively. Multivariate scat-
tering correction (MSC) [7] can effective eliminated 
the spectral differences caused by different scattering 
levels, thereby enhancing correlation in the spectrum 
and the data. The method corrects the baseline devi-
ation and the deviation phenomenon of the spectral 
data through ideal spectrums, and separates the ef-
fective spectral information from the scattered signal 
through mathematical calculation, so as to eliminate 
the scattering effect while retaining the effective 
spectral information [17, 18].
The competitive adaptive Reweighted sampling 
(CARS) [2] uses adaptive reweighted sampling (ARS) 
technology to select wavelength points with large 
absolute value of regression coefficients. By remov-
ing the wavelength points with less weight and using 
interactive validation to select the subset with the 
smallest root-mean-square error of cross-validation 
(RMSECV) values, the optimal variable combination 
can be effectively found.

2.5. Development of Discriminant Model
Extreme Learning Machine (ELM) has the charac-
teristics of fast learning speed and simple parameter 
setting, and has advantages in learning rate and gen-
eralization ability. The feedforward network neural 
network unit is the basic element of the standard 
ELM when it is constructed as a neural network. In 
addition to the output and input layers, the model also 
contains hidden layers. The output function of hidden 
layer is represented as:
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K-nearest neighbor algorithm (KNN) is the simplest 
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where x is the input; h(x) is the excitation function or 
feature mapping that maps the input from the original 
space to the feature space; β is the output weight.
K-nearest neighbor algorithm (KNN) is the simplest 
methods in data mining classification. All samples 
are classified by calculating the distance between 
predefined and unknown samples [13]. This similar 
sample splitting mode makes KNN classification al-
gorithm more conducive to the parallel processing 
of large data sets, and has good classification perfor-
mance for imbalanced data sets. In this paper, cross 
validation is used to calculate the error rate for each 
k classifier. Using Euclidean distance to calculate the 
distance between points, the formula for calculating 
the distance between two points (x1 and x2) in n-di-
mensional space is as follows:
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CNN has the ability to assist automatic feature learn-
ing and is the efficient high-performance method for 
the hyperspectral data analysis. The input layer of 
CNN is capable of processing multidimensional data 
and can directly use pictures as input to the network. 
Therefore, in this study, the image information of os-
manthus seeds with different vitality is used as in-
put, and the two-dimensional convolutional neural 
network is used to realize the rapid recognition of 
seed vitality. 
The CNN network structure diagram used in this 
study is shown in Figure 3. Two layers of convolution 
kernels were used, both of which were 5x5 in size, 

Figure 3
Convolutional neural network structure diagram for seed vigor recognition
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The CNN network structure diagram used in this study 
is shown in Figure 3. Two layers of convolution kernels 
were used, both of which were 5x5 in size, and the 
number of neurons in the hidden layer was 8 and 16, 
respectively. Using the maximum pooling method, the 
core size of the pooling layer was 2x2. Use Batch nor-
mation before a fully connected layer with 32 neurons, 
16 neurons, and 2 neurons. It can reduce the jitter of da-
ta between different batches and increase the generali-
zation ability to a certain extent. Finally, Softmax was 
used to complete the sorting of viable and non-viable 
Osmanthus fragrans seeds. Among them, Rectified Lin-
ear Units (ReLu) was used as the activation function. 
The batch size was 128, with a learning rate of 0.001, and 
100 iterations per training. 
 

3. Experimental Results 
3.1 Spectral Feature Analysis 
Figure 4 shows the average absorption spectra of two 
varieties of Osmanthus fragrans seeds (including viable 
and non-viable) in the 400-1000 nm spectral region. It 
can be seen from the figure that JQG and RXG show 
similar change trend even if the varieties are different. In 
addition, artificial aging changed the vitality of seeds, 
and many biochemical reactions occurred inside the 
seeds during this process. These reactions will change or 
destroy the chemical bond, which will be reflected in the 
seed absorption curve. The peaks and troughs of viable 
seeds and non-viable seeds were in the similar positions, 
and they only differed in reflectivity, which was mani-
fested in that the spectral reflectance value of non-viable 
seeds is lower than that of viable seeds. Peaks and val-
leys can reflect some information about the internal 
composition of the seed. For example, the absorption 
region near 880nm is caused by the third harmonic 
stretching of O-H functional group the water-related [3], 
and the adsorption peak near 970nm belongs to the 2nd 
overtone of the O-H bond [18]. Spectral research pro-
vided the qualitative analysis results for the differentia-

tion of Osmanthus fragrans seeds with different vigor. 
In order to achieve accurate differentiation, further dis-
cussion is needed. 

 
Figure 4. Average spectra of different vigor/variety 
seeds 

 
3.2 Qualitative Analysis by PCA 
PCA was used to realize the clustering and visualizing 
the spectral data of different vigor seeds. In Figure 5, the 
green represents the viable seed sample, whereas the 
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and the number of neurons in the hidden layer was 
8 and 16, respectively. Using the maximum pooling 
method, the core size of the pooling layer was 2x2. 
Use Batch normation before a fully connected layer 
with 32 neurons, 16 neurons, and 2 neurons. It can 
reduce the jitter of data between different batches 
and increase the generalization ability to a certain 
extent. Finally, Softmax was used to complete the 
sorting of viable and non-viable Osmanthus fra-
grans seeds. Among them, Rectified Linear Units 
(ReLu) was used as the activation function. The 
batch size was 128, with a learning rate of 0.001, and 
100 iterations per training.

3. Experimental Results
3.1. Spectral Feature Analysis

Figure 4 shows the average absorption spectra of two 
varieties of Osmanthus fragrans seeds (including 
viable and non-viable) in the 400-1000 nm spectral 
region. It can be seen from the figure that JQG and 
RXG show similar change trend even if the variet-
ies are different. In addition, artificial aging changed 
the vitality of seeds, and many biochemical reactions 
occurred inside the seeds during this process. These 
reactions will change or destroy the chemical bond, 

which will be reflected in the seed absorption curve. 
The peaks and troughs of viable seeds and non-viable 
seeds were in the similar positions, and they only dif-
fered in reflectivity, which was manifested in that the 
spectral reflectance value of non-viable seeds is lower 
than that of viable seeds. Peaks and valleys can reflect 
some information about the internal composition 
of the seed. For example, the absorption region near 
880nm is caused by the third harmonic stretching of 
O-H functional group the water-related [3], and the 
adsorption peak near 970nm belongs to the 2nd over-
tone of the O-H bond [18]. Spectral research provided 
the qualitative analysis results for the differentiation 
of Osmanthus fragrans seeds with different vigor. In 
order to achieve accurate differentiation, further dis-
cussion is needed.

3.2. Qualitative Analysis by PCA

PCA was used to realize the clustering and visualizing 
the spectral data of different vigor seeds. In Figure 5, 
the green represents the viable seed sample, whereas 
the blue represents the non-viable seed sample. Fig-
ure 5(a)-(b) shows the clustering results of JQG and 
RXG under the original spectrum. 
The contribution rates of the first three principal 
components are respectively given on the corre-
sponding axis. In both JQG and RXG samples, the cu-
mulative contribution rate of the first three principal 
components reached more than 85%. It can represent 
most information. The spectral clustering results of 
the surviving and non-surviving JQG seeds were very 
scattered and could not be effectively distinguished. 
Although RXG samples have obvious clustering char-
acteristics, they cannot identify vigor well.
Therefore, MSC was used to the spectral data prepro-
cess to reduce the influence of the noise and improve 
the clustering performance. Figure 5(c)-(d) shows 
the corresponding visualization results of the MSC 
pre-processing spectra. Compared with original spec-
tral data, although there were some abnormal points, 
the preprocessing can enhance the clustering of the 
sample points and make a clear distinction in viable 
and non-viable seeds. The visualization of PCA fur-
ther proves the practicability of using hyperspectral 
technology to identify seed vigor, and this result will 
be verified through model establishment and quanti-
tative analysis.

Figure 4
Average spectra of different vigor/variety seeds

 

directly use pictures as input to the network. Therefore, 
in this study, the image information of osmanthus seeds 
with different vitality is used as input, and the 

two-dimensional convolutional neural network is used 
to realize the rapid recognition of seed vitality.  

 

 

 
 

The CNN network structure diagram used in this study 
is shown in Figure 3. Two layers of convolution kernels 
were used, both of which were 5x5 in size, and the 
number of neurons in the hidden layer was 8 and 16, 
respectively. Using the maximum pooling method, the 
core size of the pooling layer was 2x2. Use Batch nor-
mation before a fully connected layer with 32 neurons, 
16 neurons, and 2 neurons. It can reduce the jitter of da-
ta between different batches and increase the generali-
zation ability to a certain extent. Finally, Softmax was 
used to complete the sorting of viable and non-viable 
Osmanthus fragrans seeds. Among them, Rectified Lin-
ear Units (ReLu) was used as the activation function. 
The batch size was 128, with a learning rate of 0.001, and 
100 iterations per training. 
 

3. Experimental Results 
3.1 Spectral Feature Analysis 
Figure 4 shows the average absorption spectra of two 
varieties of Osmanthus fragrans seeds (including viable 
and non-viable) in the 400-1000 nm spectral region. It 
can be seen from the figure that JQG and RXG show 
similar change trend even if the varieties are different. In 
addition, artificial aging changed the vitality of seeds, 
and many biochemical reactions occurred inside the 
seeds during this process. These reactions will change or 
destroy the chemical bond, which will be reflected in the 
seed absorption curve. The peaks and troughs of viable 
seeds and non-viable seeds were in the similar positions, 
and they only differed in reflectivity, which was mani-
fested in that the spectral reflectance value of non-viable 
seeds is lower than that of viable seeds. Peaks and val-
leys can reflect some information about the internal 
composition of the seed. For example, the absorption 
region near 880nm is caused by the third harmonic 
stretching of O-H functional group the water-related [3], 
and the adsorption peak near 970nm belongs to the 2nd 
overtone of the O-H bond [18]. Spectral research pro-
vided the qualitative analysis results for the differentia-

tion of Osmanthus fragrans seeds with different vigor. 
In order to achieve accurate differentiation, further dis-
cussion is needed. 

 
Figure 4. Average spectra of different vigor/variety 
seeds 

 
3.2 Qualitative Analysis by PCA 
PCA was used to realize the clustering and visualizing 
the spectral data of different vigor seeds. In Figure 5, the 
green represents the viable seed sample, whereas the 
blue represents the non-viable seed sample. Figure 
5(a)-(b) shows the clustering results of JQG and RXG 
under the original spectrum. The contribution rates of 
the first three principal components are respectively 
given on the corresponding axis. In both JQG and RXG 
samples, the cumulative contribution rate of the first 
three principal components reached more than 85%. It 
can represent most information. The spectral clustering 
results of the surviving and non-surviving JQG seeds 
were very scattered and could not be effectively distin-
guished. Although RXG samples have obvious cluster-
ing characteristics, they cannot identify vigor well. 
Therefore, MSC was used to the spectral data preprocess 
to reduce the influence of the noise and improve the 
clustering performance. Figure 5(c)-(d) shows the cor-
responding visualization results of the MSC 
pre-processing spectra. Compared with original spectral 
data, although there were some abnormal points, the 
preprocessing can enhance the clustering of the sample 
points and make a clear distinction in viable and 
non-viable seeds. The visualization of PCA further 

400 500 600 700 800 900 1000

Wavelength(nm)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ef

le
ct

an
ce

JQG-Viable

RXG-Non-viable

JQG-Viable

RXG-Non-viable



Information Technology and Control 2023/4/52892

3.3. Seed Vigor Detection Model Based On 
Full Band
Machine learning algorithms are often combined 
with spectra to identify seed vigor. Therefore, this 
study used KNN and ELM to establish the recogni-
tion model of Osmanthus fragrans seeds with differ-
ent vigor for quantitative analysis. In the model, the 
training and test sets are randomly divided according 
to 3:1, and the average of 10 runs of each model is used 
as the final result.
Table 1 shows the identification accuracy of seed vig-
or under different varieties and models. As it can see 

Figure 5
The result graph of PCA qualitative clustering: (a) JQG+ raw spectrum; (b) RXG+ raw spectrum; (c) JQG+ MSC 
preprocessed spectrum; (d) RXG+ MSC preprocessed spectrum. (The green represents the viable seed sample, the blue 
represents the non-viable seed sample)
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chine learning method combined with spectral data 
can effectively identify different vigor of Osmanthus 
fragrans seeds, and the appropriate pretreatment 
method is an effective way to improve the accuracy.

3.4. Optimal Feature Band Selection and 
Extraction
When using full-band spectral data as input, there 
is redundant information, which affects the perfor-
mance of the model competition. In order to increase 
the speed of analysis and modeling capabilities, one 
should use the adaptive weight weighted sampling 
algorithm (CARS) to extract the raw spectral data 
collection and preprocessing spectra data set on the 
characteristics of the wavelength. When CARS is 
used for feature selection, monte carlo sampling op-
eration is set to 200 times, CARS run a total of 1000 

Table 1
Seed vigor recognition results based on the original spectrum

Spectral type Model
JQG RXG

Training set Test set Training set Test set

Original spectrum
KNN 91.07% 81.67% 81.39% 55.83%

ELM 98.05% 92.5% 88.33% 83.33%

MSC preprocessed 
spectrum

KNN 97.78% 92.5% 97.5% 96.67%

ELM 100% 98.33% 100% 99.16%
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Figure 6. Feature band selection using CARS: (a) JQG+ raw spectrum; (b) JQG+ MSC preprocessed spectrum. 
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Figure 6
Feature band selection using CARS: (a) JQG+ raw spectrum; (b) JQG+ MSC preprocessed spectrum

times. By recording the run results for further analy-
sis, we can identify the variables that give the model 
good generalization performance. 
Figure 6 shows the process of applying CARS to se-
lect characteristic bands in the raw spectral data and 
preprocessed spectral datas of JQG. The number of 
sampling the variables decreased rapidly in first stage 
of the exponentially decreasing function, and then de-
creased very slowly in the second stage. Under differ-
ent data sets, the RMSECV value showed a downward 
trend at the beginning of the sampling operation, and 
then changed in a gentle manner in the middle of the 
sampling operation. Finally, due to the elimination of 
some key variables (represented by asterisks) from 
the optimal subset, the information was lost, and then 
RMSECV grew rapidly. Therefore, the optimal subset 
corresponding to the lowest RMSECV value was set 
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of optimal bands. The number of characteristic bands 
and specific band values extracted by CARS for dif-
ferent data sets are given in Table 2. They differ little 
in number, but differ in band distribution. The role of 
different band combinations will be further demon-
strated by modeling.

3.5. Seed Vigor Detection Model Based on 
Characteristic Band
The seed viability detection models of JQG and 
RXG were established using the feature band data 
set extracted by CARS as input. The results of the 
training and test sets for each model are shown in 
Table 3. Taking the accuracy of the test set as ref-
erence, compared with the full-band model in Table 
2, the accuracy of the model at this time has been 
improved to some extent. For both JQG and RXG’s 

Table 2
Feature selection results under multiple spectral inputs

Spectral 
type

Research 
sample

Feature 
number Wavelength (nm)

Orginal 
spectrum

JQG 54

436.2, 477.2, 502.9, 508.0, 518.3, 528.7, 549.4, 554.6, 559.8, 564.9, 570.1, 575.4, 580.6, 585.8, 
596.2, 606.6, 611.9, 627.6, 643.3, 659.1, 664.3, 669.6, 690.7, 696.0, 706.6, 717.2, 722.5, 727.8, 
733.1, 738.5, 749.1, 765.1, 770.5, 775.8, 786.5, 791.9, 797.2, 807.9, 813.3, 818.7, 824.1, 829.4, 
834.8, 840.2, 861.8, 867.2, 878.1, 894.3, 910.6, 921.5, 932.4, 954.3, 970.7, 992.7

RXG 36
461.8, 477.2, 487.4, 492.5, 497.7, 518.3, 528.7, 533.8, 564.9, 611.9, 617.1, 669.6, 690.7, 775.8, 
797.2, 807.9, 813.3, 818.7, 829.5, 834.8, 845.6, 851.0, 856.4, 861.8, 872.6, 878.1, 894.3, 905.2, 
910.6, 916.1, 921.5, 926.9, 932.4, 937.9, 954.3, 987.2

MSC 
preprocessed 
spectrum

JQG 42
466.8, 472.0, 502.9, 513.2, 533.8, 539.0, 570.1, 575.3, 580.5, 585.8, 590.9, 601.4, 627.6, 696.0, 
701.3, 706.6, 743.8, 765.1, 781.1, 786.5, 791.9, 797.2, 802.6, 807.9, 813.3, 818.7, 824.1, 829.4, 
834.8, 845.6, 851.0, 861.8, 867.2, 878.1, 888.9, 894.3, 910.6, 921.5, 932.4, 937.9, 959.7, 987.2

RXG 39
487.4, 502.9, 523.5, 533.8, 539.0, 570.1, 575.3, 580.5, 596.2, 601.4, 627.6, 638.1, 669.6, 
690.7, 696.0, 701.3, 717.2, 727.8, 743.8, 754.4, 765.1, 775.8, 786.5, 791.9, 797.2, 802.6, 807.9, 
813.3,818.7, 840.2, 851.0, 861.8, 867.2, 872.6, 878.1, 894.3, 910.6, 921.5, 970.7

original spectral data sets, the model’s improve-
ment is not very significant, with a maximum ac-
curacy improvement of 5%. In addition, the ELM 
model performs better than the KNN model with 
a large difference. MSC and CARS were combined 
to pre-process the spectral data, and the accuracy 
of the model was up to 100%, which showed that 
the different vigor of osmanthus seeds were ef-
fectively identified. Compared with the spectrum 
model without MSC pre-processing, the difference 
between the KNN and ELM models is very small, 
which enhances the generalization ability of the 
model. The above results show that the effective 
information in hyperspectrum can be extracted by 
using appropriate feature selection methods, and 
the model performance can be improved while the 
model input can be reduced.

Table 3
Identification results of seed vigor based on preprocessed spectrum

Spectral type Model
JQG RXG

Training set Test set Training set Test set

Original spectrum
KNN 90.83% 80.83% 81.67% 59.17%

ELM 97.78% 95% 93.33% 88.33%

MSC preprocessed spectrum
KNN 99.17% 100% 99.72% 100%

ELM 100% 99.17% 100% 100%
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3.6. Recognition of Seed Vigor Using Image 
Combined with CNN

Although spectroscopy combined with machine 
learning algorithms can achieve accurate identifica-
tion of Osmanthus fragrans seeds with different vig-
or, it needs to try variety of preprocessing methods 
and feature selection methods to achieve the ideal 
model effect, and the process is cumbersome. In 
addtion, a two-dimensional deep learning network 
combined with image information collected by hy-
perspectral was introduced to quickly identify seed 
vigor. Modeling and analysis were also carried out 
for the full-band image and the feature-band image 
extracted by CARS. When training model, training 
set and testing set are random divided according to 
the proportion of 3:1.

Table 4
Model performance of seed vigor discrimination based on image information combined with CNN

Table 4 shows the performance of each model, includ-
ing the belt and the discriminant result of each model. 
It can be seen that in the image model, the accuracy 
and loss functions of the training set and the test set 
show a high degree of consistency. Compared to the 
spectrum-machine learning model, the image-deep 
learning model has better recognition performance 
for different vitality seeds. In both full band and char-
acteristic band models, the accuracy was close to 
100%, and the loss function was close to 0. Moreover, 
the ability to recognize different vigorous JQG seeds 
and RXG seeds was equivalent, which proves that the 
model had a stronger generalization function. In sum-
mary, when identifying Osmanthus fragrans seeds 
with different vigor, Deep learning approach can ef-
fectively extract the image characteristics of deep 
make the model more accurate.

Model input

JQG RXG

Training set Test set Training set Test set

Acc Loss Acc Loss Acc Loss Acc Loss

ALL (61) 100% 5.4e-6 99.85% 0.0046 100% 7.3e-6 99.88% 0.0034

CARS (37) 100% 5.3e-6 99.91% 0.002 100% 6.4e-6 99.55% 0.0152

4. Conclusions
This article highlights music-like technology com-
bined with a variety of machine learning and deep 
learning algorithms to identify the living and non-liv-
ing Osmanthus flower seeds of two varieties. The spec-
tral changes of different varieties of Osmanthus seeds 
were similar, and the average spectral reflectance of 
active seeds was higher than that of inactive seeds. 
Through the visual analysis of PCA+MSC, the quali-
tative differentiation of seeds with different vigor was 
realized. ELM performs better than KNN in spectrum 
machine learning models. Moreover, the ability to rec-
ognize JQG was better, but the overall accuracy of orig-
inal spectral model was lower. The application of the 
MSC and CARS can achieve higher accurate recogni-
tion with less input, and the model accuracy rate was 
close to 100%. Different from machine learning model, 

depth model with image as input can achieve good rec-
ognition effect without complex preprocessing. It can 
be seen that both spectral information and image in-
formation can play a key role in identifying seed vigor. 
This study shows that it is feasible to use hyperspectral 
imaging to identify different varieties and vigour of os-
manthus seeds. In addition, the proposed approach of 
spectrum traditional machine learning and image deep 
learning can enhance the recognition ability of hyper-
spectral information through the combination of dif-
ferent features and multiple algorithms. In subsequent 
research, more algorithms can be used as an attempt 
to distinguish seeds of different vitality and varieties, 
thereby increasing the generalization adaptability and 
ability of the model and facilitating the development of 
portable instruments.
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