
19Information Technology and Control 2024/1/53

Classification of
Medicinal Plant Leaves
for Types and Diseases
with Hybrid Deep
Learning Methods

ITC 1/53
Information Technology
and Control
Vol. 53 / No. 1 / 2024
pp. 19-36
DOI 10.5755/j01.itc.53.1.34345

Classification of Medicinal Plant Leaves for Types and
Diseases with Hybrid Deep Learning Methods

Received 2023/06/09 Accepted after revision 2024/01/17

HOW TO CITE: Kayaalp, K. (2024). Classification of Medicinal Plant Leaves for Types and Diseases
with Hybrid Deep Learning Methods. Information Technology and Control, 53(1), 19-36. https://doi.
org/10.5755/j01.itc.53.1.34345

Corresponding author: kiyaskayaalp@isparta.edu.tr

Kıyas Kayaalp
Department of Computer Engineering, Faculty of Technology, Isparta University of Applied Sciences,
Isparta, Turkey; e-mail: kiyaskayaalp@isparta.edu.tr

Leaf images are often used to detect plant diseases because most disease symptoms appear on the leaves. Ana-
lyzes performed by experts in the laboratory environment are expensive and time consuming. Therefore, there
is a need for automated plant disease detection systems that are both economical and can help diagnose early
symptoms more accurately. In this study, a deep learning-based methodology is presented for the classifica-
tion of leaf diseases of plants, which are very similar in color, texture, vein and shape and cannot be noticed by
non-experts, which are important for traditional medicine and pharmaceutical industry. In the model develop-
ment process, 7 pre-learning deep learning algorithms and an image data set created from plant leaves in ten
categories were preferred. The proposed model classifies the plant type and diseased condition in the dataset.
In the first step of training the model, different learning rates were tested with optimum hyperparameters. In
the second part, a test accuracy rate of 98.69% was achieved with the DenseNet121 model, with increased data.
At the last stage, after the edge detection processes, the test accuracy value of 67.92% was reached with the
DenseNet 121 model.
KEYWORDS: CNN algorithms, edge detection, image classification, medicinal plant leaves, Multi-class de-
tection.

Information Technology and Control 2024/1/5320

1. Introduction
Plants are not only a source of oxygen for living
things, but also a source of food. The fruits, flowers,
grains, stems, and leaves of plants can be used in
different areas such as food, medicine, and perfum-
ery. In plants, leaves are the first messenger of plant
diseases [2]. Plant diseases and pests can cause agri-
cultural and ecological losses. For this reason, early
detection of plant diseases is important as that of
other living things. Traditionally, farmers and plant
pathologists use their eyes to detect diseases and
make decisions based on their experience. This is
not true as many types of diseases can look the same
in the early stage.
In addition, their experiences need to be passed on
from generation to generation [5]. There is a need for
an accurate disease detector associated with a reli-
able database to assist farmers, especially the young
and inexperienced. Recently, it continues to be used
in many areas such as the detection of diseases and
the application of appropriate treatment methods in
precision agriculture technology applications with
computer vision and Deep learning (DL) or Machine
learning (ML) algorithms [29, 36].
Computer vision, image processing, and machine
learning algorithms are often used in various ap-
plications such as segmentation, classification, and
pattern recognition. In recent years, DL technologies
have been preferred to detect plant species and solve
various agricultural problems. Different systems for
agricultural product analysis based on leaf images
continue to be developed [16, 22]. Numerous studies
use different Convolutional Neural Networks (CNN)
to identify plant diseases. According to these studies,
different plant diseases affecting the same plant spe-
cies or different plant species are categorized. In stud-
ies on different plant species such as sycamore and
peach, when the leaf images are examined in terms of
shape, it is seen that they are quite different from each
other. However, in some medicinal plant leaves, it has
been determined that the distinctive features of the
leaves such as color, shape, texture, length, width, and
veins are very similar to each other. Because of these
similarities, non-experts find it difficult to distinguish
between these plants and their diseases.
Alstonia Scholaris leaves are used by Indians for in-
testinal complaints, chronic diarrhea, and dysentery.

It is also used in the treatment of cancer and tumor
along with malaria [1]. Arjun leaf is often used for the
treatment of cardiovascular ailments and hyperten-
sion. In addition, it has an ulcer-protective effect. It
is also used to prevent bone loss and increase bone
mineral density [9]. Mango peel and juice are an oily
mixture of organic compounds with allergenic prop-
erties called urushoil [23]. In traditional medicine,
guava leaves are used to treat diarrhea [18]. Parts of
the Jamun tree such as leaves, seeds, flowers, fruits,
and bark are used in diabetes, allergies, viral infec-
tions, inflammation, and stomach ulcers [14].
In this experimental study, a classification study was
carried out with deep learning architectures using im-
ages of healthy and diseased leaves of Alstonia Schol-
aris, Arjun, Mango, Guava and Jamun trees, which are
of great importance for the pharmaceutical industry
and traditional medicine. The study was carried out
using original, augmented and image processing data-
sets. The contributions and original aspects of the
proposed study to the literature are given below.
 _ An approach is presented for the classification of

plant diseases with similar physical characteristics
such as color, texture, vein and shape, which are of
worldwide importance and used in the treatment
of many diseases, in ten different categories.

 _ The performance of VGG16, ResNet50V2,
DenseNet121, MobileNet, Xception, InceptionV3
and EfficientNetB3 pre-learning models were
evaluated in plant leaf diseases.

 _ Comparison of the performance ratios of the
original, augmented, and obtained data sets with
image processing technique is presented.

 _ The effect of different learning rate values on
educational performance is shown.

The organization of this article: In Section 2, the im-
portance of artificial intelligence-based plant classifi-
cation in the literature and the differences in the study
are explained. The DL methods used in Section 3 and
the features of the dataset used for leaf category and
leaf disease recognition in Section 4 are explained in
detail. The details of the experimental study and the
comparison of the results obtained are evaluated in
Section 5. In the last step, the conclusion of the article
and future studies are given.

21Information Technology and Control 2024/1/53

2. Literature Review
In order to determine the place of the proposed study
in the literature and to create its contributions, stud-
ies on plant classification and disease type detection
were examined. Some of the studies conducted in the
literature to detect various plant diseases using deep
learning and artificial intelligence techniques are as
follows. Since plant leaves carry the symptoms of plant
diseases, it is possible to find out what type of disease
is present in the plant by examining the leaves. Shape,
texture, color, and vein characteristics are used in
the classification of leaf types and diseases with deep
learning methods [25]. According to Yigit et al. [38],
they classified 32 different plant species using five dif-
ferent deep learning models. In the study, an accuracy
rate of 92.53% was obtained with the SVM model.
Studies on the detection and classification of diseas-
es from leaf images of different plant species con-
tinue in the literature. Of those, the data set, which
includes ten different diseases, including 21184 im-
ages, was used by Negi et al. [19]. In the study using
CNN architecture, ten diseases were classified with
a 96.02% success rate. In another study conducted
for ten plants, the classification of healthy and dis-
eased leaves was made by the Sahu and Minz [26].
With the self-adaptive deer hunting optimization
(SA-DHOA) suggested by the authors, weighted fea-
ture extraction is performed and classification is per-
formed with SCNN (SVM+CNN). Citrus leaf disease
was to be classified by Sujatha et al. [33] using ML and
DL (InceptionV3, VGG16, VGG19). In the study in
which fours diseases (Black spot, Canker, Greening,
Melanose) and Healthy conditions of citrus leaf were
classified, the best result was obtained with 89.5%
VGG16. In order to effectively identify and categorize
diseases in pomegranates, a plant with a temperate
climate similar to citrus, Madhavan et al. [17] devel-
oped a framework. In the study, a 98.07% success rate
was obtained for five diseases, six of which were using
image processing techniques.
Studies on the detection and classification of leaf dis-
eases of plants such as avocado, mango, guava, jamun,
and arjun growing in the tropical climate zone con-
tinue. Saleem et al. [27] created a new dataset of leaf
diseases of five trees. The region-based fully convolu-
tional network (RFCN), after utilizing multiple DL ar-
chitectures, produced the best performance in a study
that provided a DL-based technique to identify and

locate leaf disease. Kavitha Lakshmi and Savarimuthu
[11] proposed a new deep learning DPD-DS framework
to detect multiclass plant leaf diseases. In the Mask-
RCNN-based framework, healthy and diseased leaves
of apple, grape, mango, pomegranate, and pongamia
pinnata plants were classified with 80.01% F1-Score.
It was aimed to classify the disease by using low reso-
lution images of plant leaf diseases with the Pham et
al. [20]. ANN approach using a dataset consisting of
450 images belonging to four different classes, three
of which are diseased Anthracnose, Gall Midge, Pow-
dery Mildew, and Healthy. The proposed multi-layer
perceptron (MLP) model gave better results than VGG,
AlexNet, and ResNet-50. In another study with the
mango plant, Prabu and Chelliah [21] used a dataset of
380 images, three diseased and healthy ones. The Mo-
bileNetV2 deep learning model for feature extraction
and the DVM as the classifier were used in the study,
and the classification was performed with an accuracy
of 94.5%. Kour and Arora [13] presented a new method
for classifying seven different plants, Guava, Jamun,
Mango, Grape, Apple, Tomato, and Arjun, based on
their leaf image. In the study, 95.23% segmentation and
classification Accuracy was obtained with the Particle
swarm optimization algorithm using 1813 leaf imag-
es. Russel and Selvaraj [24] tested their proposed six
parallel CNN models in the study conducted with me-
dicinal plants and other plant datasets. Plant Village,
MepcoTropicLeaf, and the Data repository of leaf im-
age datasets had a success rate of 98.61%, 90.86%, and
90.02%, respectively.
In the literature, it has been observed that two meth-
ods are generally used in studies on the classification
of plant diseases. In the first method, plants that dif-
fer from each other in shape, texture, vein, and color
such as grapes, apples, corn, and potatoes are used.
Secondly, they are only studies to detect different dis-
eases of the same plant such as mango or citrus. First,
the fact that leaves have different physical properties
is an easily distinguishable feature for deep learning
algorithms. In second, it is an easily distinguishable
feature that only the diseases are different in the de-
tection of diseases in leaves with the same physical
characteristics. However, the classification of plants
with the same physical characteristics as color, tex-
ture, shape, and veins and their diseases, is a difficult
process compared to other methods.

Information Technology and Control 2024/1/5322

3. Deep Neural Networks
Today, the use of deep learning architectures has in-
creased for object detection, recognition and classifi-
cation processes in images. Widely used deep learn-
ing methods are preferred in many different fields. It
is no longer used for object detection in a simple im-
age, but even for the detection of various diseases on
MR images in the health sector. In addition, remark-
able studies have been carried out in many areas such
as the determination of seed types in agricultural
activities [37], measurement of product quality [28],
classification of collected products.
We can design the deep learning model by ourselves,
layer by layer, or we can use pre-developed and trained
ready-made models. The fact that the performance
of these models has been proven and the layer struc-
tures to be used have been defined, which facilitates
the development of the model. When using the model,
you only need to define the input layer and the output
layers in the last section.

3.1. Pre-Trained CNN Models
Deep learning algorithms have different models used
in many areas such as classification, detection and
prediction. CNN algorithm is widely preferred in im-
age-based operations. Researchers use different CNN
architectures to train models depending on their in-
tended use and application. Similarly, seven state-of-
the-art pre-trained architectures were selected in the
study to design the classification system according to
the health and disease status of plants: VGG16, Res-
Net50V2, DenseNet121, MobileNet, Xception, Incep-
tionV3, EfficientNetB3. Brief information about the
CNN architectures used in the study is given.

3.1.1. VGG16
The VGG16 architecture consists of 21 layers, 13 con-
volutional, 5 pooling, and 3 fully connected layers
in total. The image input resolution is 224×224 pix-
els. The convolutional filter size is 3×3 pixels. Fully
connected layers utilized for feature extraction make
up the final layers [31].

3.1.2. ResNet50V2
ResNet (Residual Network), in 2015 by He et al. [6]
was developed to facilitate the training of networks
that are significantly deeper. ResNet consists of 34

layers and compared to VGG, the number of filters
is less and not too complex. In Resnet50, every 2 lay-
ers in ResNet are replaced with a 3-layer bottleneck
block, and a 34-layer structure is created.

3.1.3. DenseNet121
DenseNet connects its layers to all other layers in a
feed-forward manner. Layers take input values from
the previous layers and pass their values to the next
layers. Most importantly, unlike ResNets, it never
combines features via aggregation before moving to a
layer; instead, it combines properties. Therefore, any
layer has inputs consisting of feature maps of all pre-
vious convolutional blocks [8].

3.1.4. InceptionV3
The basic model, InceptionV1, was first released as
GoogLeNet in 2014. InceptionV3 is an improved ver-
sion of that model. InceptionV3 consists of a large
number of convolution and maximum pooling steps,
and the final stage includes a fully connected neural
network [34].

3.1.5. MobileNet
An effective and portable CNN architecture called
MobileNet is utilized in practical applications. In
order to provide lighter models, MobileNet predomi-
nantly uses deeply separable convolutions as opposed
to the conventional convolutions utilized in earlier
architectures. Deeply separable convolution layers
consist of deep convolution and point convolution [7].

3.1.6. EfficientNetB3
EfficientNet is among the most efficient models achiev-
ing high accuracy in both ImagiNet and pervasive im-
age classification transfer learning tasks. EfficientNet
is an advanced neural network architecture and scal-
ing method that evenly scales all depth/width/resolu-
tion dimensions using a composite coefficient [35]. A
family of models (B0 to B7) that represent a good trade-
off between efficiency and accuracy at different scales
are provided by EfficientNet as a heuristic method for
scaling the model. It allows the efficiency-oriented ba-
sic model (B0) to beat models of all sizes while avoiding
extensive grid search of hyperparameters.

3.1.7. Xception
Xception architecture, which is a powerful version
of Inception architecture, is short for “Extreme In-

23Information Technology and Control 2024/1/53

ception”. It consists of 71 layers in total. There are 36
convolution layers within these layers. Between these
convolution layers, there are 14 jump link layers.
These layers require less computation than normal
convolutional layers [3].

4. Material and Methods
The system architecture of the study on the deep
learning-based medicinal plant leaf recognition and
disease detection framework is shown in Figure 1. In
this experimental study, after preprocessing and data
augmentation of five different plant leaf images se-
lected from the Mendeley dataset, the data were ran-
domly partitioned for training, validation and testing.
After the optimum hyperparameter determination
process, seven different deep learning algorithms
were applied. The classification success of the models
was measured by classifying leaf images that had nev-

Figure 1
A block representation of the suggested system for identifying and categorizing plants and their diseases

4.1 Dataset Description University in Katra, India between March and May 2019

[30, 4]. In the data set, there are 4503 leaf images of 2278

er been seen before by deep learning models trained
with leaf images of healthy and diseased plants.

4.1. Dataset Description
The Mendeley Dataset used in the study was created
by researchers from Shri Mata Vaishno Devi Univer-
sity in Katra, India between March and May 2019 [30,
4]. In the data set, there are 4503 leaf images of 2278
healthy and 2225 diseased leaves of 12 economically
and environmentally beneficial plants named Mango,
Arjun, Alstonia Scholaris, Guava, Bael, Jamun, Jatro-
pha, Pongamia Pinnata, Basil, Pomegranate, Lemon
and Chinar. The leaves of each crop are divided into
two categories according to their state of health,
namely healthy and diseased. In the study, five dif-
ferent species similar to each other in terms of color,
texture, vein, and size were preferred. These are im-
ages of healthy and diseased leaves of Alstonia Schol-
aris, Arjun, Mango, Guava, and Jamun trees. As can
be seen in Figure 2, the shapes, vein structures, and

Figure 2
Healthy and diseased images of plants with similar characteristics in the medicical plant dataset

5

Alstonia Scholaris, Guava, Bael, Jamun, Jatropha,
Pongamia Pinnata, Basil, Pomegranate, Lemon and
Chinar. The leaves of each crop are divided into two
categories according to their state of health, namely
healthy and diseased. In the study, five different
species similar to each other in terms of color, texture,
vein, and size were preferred. These are images of
healthy and diseased leaves of Alstonia Scholaris,
Arjun, Mango, Guava, and Jamun trees. As can be
seen in Figure 2, the shapes, vein structures, and
colors of the leaves are so similar that they can hardly
be distinguished from each other.

The names of the leaves used in the study, the number
of healthy and diseased, and the disease category are
given in Table 1. Out of a total of 2363 leaf images, 1127
are in the healthy category and 1236 are in the diseased
category. Images are originally 4000×6000 pixels, 24-bit
depth, horizontal and vertical resolutions of 96 dpi. For
training deep learning algorithms in image classification,
images were resized because of the high computational
cost of preserving the original resolution. In all deep
learning architectures used, all the images of the dataset
are resized by using the non-adaptive methods of
interpolation and the images were converted to 224×224
pixels.

Figure 2

Healthy and diseased images of plants with similar characteristics in the medicical plant dataset.

Table 1

Plant leaf types, diseases, and numbers used in the data set
Plant Name Healthy Images Disease Category Diseased Images Total Images

Alstonia Scholaris 179 Leaf spot 254 433
Arjun 220 Leaf spot 232 452
Guava 277 Fungal disease 142 419
Jamun 281 Fungal disease 344 625
Mango 170 Anthracnose 264 434
Total 1127 1236 2363

4.2 Data Augmentation
The leaf images used in the study are the leaves of the
Alstonia Scholaris, Arjun, Mango, Guava and Jamun
trees in the Mendeley dataset. The leaves belonging to
these five different species were divided into diseased
and healthy according to their types and used as ten
different classes. The study was carried out in three

different sections using data sets created using original,
data augmentation and image processing techniques.
In the first part, the study was carried out using the
data in the data set without any data augmentation. Of
the dataset, 68% was allocated for training, 16% for
testing and 16% for validation. 1601 images were used
for training, 381 for testing, and 381 for validation
(Table 2).

5

Alstonia Scholaris, Guava, Bael, Jamun, Jatropha,
Pongamia Pinnata, Basil, Pomegranate, Lemon and
Chinar. The leaves of each crop are divided into two
categories according to their state of health, namely
healthy and diseased. In the study, five different
species similar to each other in terms of color, texture,
vein, and size were preferred. These are images of
healthy and diseased leaves of Alstonia Scholaris,
Arjun, Mango, Guava, and Jamun trees. As can be
seen in Figure 2, the shapes, vein structures, and
colors of the leaves are so similar that they can hardly
be distinguished from each other.

The names of the leaves used in the study, the number
of healthy and diseased, and the disease category are
given in Table 1. Out of a total of 2363 leaf images, 1127
are in the healthy category and 1236 are in the diseased
category. Images are originally 4000×6000 pixels, 24-bit
depth, horizontal and vertical resolutions of 96 dpi. For
training deep learning algorithms in image classification,
images were resized because of the high computational
cost of preserving the original resolution. In all deep
learning architectures used, all the images of the dataset
are resized by using the non-adaptive methods of
interpolation and the images were converted to 224×224
pixels.

Figure 2

Healthy and diseased images of plants with similar characteristics in the medicical plant dataset.

Table 1

Plant leaf types, diseases, and numbers used in the data set
Plant Name Healthy Images Disease Category Diseased Images Total Images

Alstonia Scholaris 179 Leaf spot 254 433
Arjun 220 Leaf spot 232 452
Guava 277 Fungal disease 142 419
Jamun 281 Fungal disease 344 625
Mango 170 Anthracnose 264 434
Total 1127 1236 2363

4.2 Data Augmentation
The leaf images used in the study are the leaves of the
Alstonia Scholaris, Arjun, Mango, Guava and Jamun
trees in the Mendeley dataset. The leaves belonging to
these five different species were divided into diseased
and healthy according to their types and used as ten
different classes. The study was carried out in three

different sections using data sets created using original,
data augmentation and image processing techniques.
In the first part, the study was carried out using the
data in the data set without any data augmentation. Of
the dataset, 68% was allocated for training, 16% for
testing and 16% for validation. 1601 images were used
for training, 381 for testing, and 381 for validation
(Table 2).

Healthy

Diseased

Alstonia Scholaris Arjun Guava Jamun Mango

Information Technology and Control 2024/1/5324

colors of the leaves are so similar that they can hardly
be distinguished from each other.
The names of the leaves used in the study, the num-
ber of healthy and diseased, and the disease category
are given in Table 1. Out of a total of 2363 leaf images,
1127 are in the healthy category and 1236 are in the
diseased category. Images are originally 4000×6000
pixels, 24-bit depth, horizontal and vertical resolu-
tions of 96 dpi. For training deep learning algorithms
in image classification, images were resized because
of the high computational cost of preserving the origi-
nal resolution. In all deep learning architectures used,
all the images of the dataset are resized by using the
non-adaptive methods of interpolation and the imag-
es were converted to 224×224 pixels.

4.2. Data Augmentation
The leaf images used in the study are the leaves of the
Alstonia Scholaris, Arjun, Mango, Guava and Jamun
trees in the Mendeley dataset. The leaves belonging to
these five different species were divided into diseased

Table 1
Plant leaf types, diseases, and numbers used in the data set

Plant Name Healthy Images Disease Category Diseased Images Total Images

Alstonia Scholaris 179 Leaf spot 254 433

Arjun 220 Leaf spot 232 452

Guava 277 Fungal disease 142 419

Jamun 281 Fungal disease 344 625

Mango 170 Anthracnose 264 434

Total 1127 1236 2363

Table 2
Plant leaf types, diseases, and numbers used in the data set

Plant
Train Train (Augmented) Validation / Test

Healthy Diseased Healthy Diseased Healthy Diseased

Alstonia Scholaris 121 168 1000 1000 29 43

Arjun 150 158 1000 1000 35 37

Mango 187 96 1000 1000 45 23

Guava 191 234 1000 1000 45 55

Jamun 116 180 1000 1000 27 42

Total 765 836 5000 5000 181 200

and healthy according to their types and used as ten dif-
ferent classes. The study was carried out in three differ-
ent sections using data sets created using original, data
augmentation and image processing techniques. In the
first part, the study was carried out using the data in the
data set without any data augmentation. Of the dataset,
68% was allocated for training, 16% for testing and 16%
for validation. 1601 images were used for training, 381
for testing, and 381 for validation (Table 2).
In addition to using more advanced techniques for
data replication, some basic augmentation tech-
niques were applied to all classes to increase the num-
ber of samples and robustness against unseen data. In
the second part of the study, data augmentation was
performed on the images by using horizontal rotation,
horizontal and vertical scrolling, image zooming and
zooming methods. After the data augmentation pro-
cess, as seen in Table 2, 1000 images were obtained
for both diseased and healthy species. Thus, a total of
10000 visuals were created in ten classrooms for edu-
cational purposes.

25Information Technology and Control 2024/1/53

4.3. Edge Detection
Edges in images contain meaningful, important in-
formation and features. If an edge detector is applied
to an image, the amount of data that needs to be pro-
cessed is reduced and less relevant information is
filtered out. In the third part of this study, a data set
was created from healthy and diseased leaf images
augmented using the Canny Edge Detector Algorithm
(CEDA) in Python.
CEDA is an edge operator that can detect a wide va-
riety of edges in an image, developed by JF Canny in
1986. CEDA reduces irrelevant image details within
the image, allowing more important features of imag-
es to be revealed. Thus, only the outline of the image is
left to create less clutter and lower error rates for ma-
chines. CEDA consists of four steps: noise reduction,
density gradient calculation, non-maximum suppres-
sion, and hysteresis thresholding. Detailed descrip-
tions for Canny edge detection are as follows:
Step 1: Noise Reduction
The picture is softened using a Gaussian filter to elim-
inate extraneous textures and details. The equation
for the Gaussian Filter Kernel is provided in Equation
1. Standard convolution techniques are used to com-
pute and apply the Gaussian filter.

6

Table 2
Plant leaf types, diseases, and numbers used in the data set

Plant Train Train (Augmented) Validation / Test
Healthy Diseased Healthy Diseased Healthy Diseased

Alstonia Scholaris 121 168 1000 1000 29 43
Arjun 150 158 1000 1000 35 37
Mango 187 96 1000 1000 45 23
Guava 191 234 1000 1000 45 55
Jamun 116 180 1000 1000 27 42
Total 765 836 5000 5000 181 200

In addition to using more advanced techniques for
data replication, some basic augmentation techniques
were applied to all classes to increase the number of
samples and robustness against unseen data. In the
second part of the study, data augmentation was
performed on the images by using horizontal rotation,
horizontal and vertical scrolling, image zooming and
zooming methods. After the data augmentation
process, as seen in Table 2, 1000 images were obtained
for both diseased and healthy species. Thus, a total of
10000 visuals were created in ten classrooms for
educational purposes.

4.3 Edge Detection
Edges in images contain meaningful, important
information and features. If an edge detector is applied
to an image, the amount of data that needs to be
processed is reduced and less relevant information is
filtered out. In the third part of this study, a data set
was created from healthy and diseased leaf images
augmented using the Canny Edge Detector Algorithm
(CEDA) in Python.

CEDA is an edge operator that can detect a wide
variety of edges in an image, developed by JF Canny
in 1986. CEDA reduces irrelevant image details within
the image, allowing more important features of images
to be revealed. Thus, only the outline of the image is
left to create less clutter and lower error rates for
machines. CEDA consists of four steps: noise reduction,
density gradient calculation, non-maximum
suppression, and hysteresis thresholding. Detailed
descriptions for Canny edge detection are as follows:

Step 1: Noise Reduction

The picture is softened using a Gaussian filter to
eliminate extraneous textures and details. The
equation for the Gaussian Filter Kernel is provided in
Equation 1. Standard convolution techniques are used
to compute and apply the Gaussian filter.

𝐻𝐻𝑖𝑖𝑖𝑖 = 1
2𝜋𝜋𝜋𝜋2 𝑒𝑒𝑒𝑒𝑒𝑒 (− (𝑖𝑖−(𝑘𝑘+1))2+(𝑖𝑖−(𝑘𝑘+1))2

2𝜋𝜋2) ; 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ (2𝑘𝑘 + 1). (1)

Step 2: Calculating Intensity Gradient

To obtain the edge strength, the gradient density of the
image is calculated using Sobel kernels (Gx and Gy)
(Equation 2). 2 dimensional spatial gradient
calculations are made by bending the image in both
horizontal and vertical dimensions with 3×3 Gx and Gy
cores [15].

𝐺𝐺𝑥𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] , 𝐺𝐺𝑦𝑦 = [
 1 2 1
 0 0 0
−1 −2 −1

] . (2)

With Equation 3, the edge gradient density is
calculated. Equation 4 below can be used to determine
the edge orientation once the x and y gradients are
known.

𝐺𝐺 = √𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2 (3)

𝜃𝜃 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥

). (4)

Step 3: Non-maximum Suppression

Each area of the image is scanned to remove any
additional sets of pixels that do not make edges after
the gradient direction and gradient size have been
determined. By doing this, cells that might not be an
edge are removed.

Step 4: Hysteresis Thresholding

To find out if the edges are genuine, this is done. It is
necessary to have Minimum and Maximum threshold
numbers. True edges are all edges with density
gradients larger than the maximum value. All edges
below the minimum value are considered false edges
and are removed [12].

4.4. Hyperparameter Tuning
Hyperparameter tuning is one of the most important
elements that increase the efficiency of machine
learning models. During the training of the models,
each classifier learns some parameters on its own, but
each model has several hyperparameters that can be

(1)

Step 2: Calculating Intensity Gradient
To obtain the edge strength, the gradient density of the
image is calculated using Sobel kernels (Gx and Gy)
(Equation 2). 2 dimensional spatial gradient calcula-
tions are made by bending the image in both horizontal
and vertical dimensions with 3×3 Gx and Gy cores [15].

6

Table 2
Plant leaf types, diseases, and numbers used in the data set

Plant Train Train (Augmented) Validation / Test
Healthy Diseased Healthy Diseased Healthy Diseased

Alstonia Scholaris 121 168 1000 1000 29 43
Arjun 150 158 1000 1000 35 37
Mango 187 96 1000 1000 45 23
Guava 191 234 1000 1000 45 55
Jamun 116 180 1000 1000 27 42
Total 765 836 5000 5000 181 200

In addition to using more advanced techniques for
data replication, some basic augmentation techniques
were applied to all classes to increase the number of
samples and robustness against unseen data. In the
second part of the study, data augmentation was
performed on the images by using horizontal rotation,
horizontal and vertical scrolling, image zooming and
zooming methods. After the data augmentation
process, as seen in Table 2, 1000 images were obtained
for both diseased and healthy species. Thus, a total of
10000 visuals were created in ten classrooms for
educational purposes.

4.3 Edge Detection
Edges in images contain meaningful, important
information and features. If an edge detector is applied
to an image, the amount of data that needs to be
processed is reduced and less relevant information is
filtered out. In the third part of this study, a data set
was created from healthy and diseased leaf images
augmented using the Canny Edge Detector Algorithm
(CEDA) in Python.

CEDA is an edge operator that can detect a wide
variety of edges in an image, developed by JF Canny
in 1986. CEDA reduces irrelevant image details within
the image, allowing more important features of images
to be revealed. Thus, only the outline of the image is
left to create less clutter and lower error rates for
machines. CEDA consists of four steps: noise reduction,
density gradient calculation, non-maximum
suppression, and hysteresis thresholding. Detailed
descriptions for Canny edge detection are as follows:

Step 1: Noise Reduction

The picture is softened using a Gaussian filter to
eliminate extraneous textures and details. The
equation for the Gaussian Filter Kernel is provided in
Equation 1. Standard convolution techniques are used
to compute and apply the Gaussian filter.

𝐻𝐻𝑖𝑖𝑖𝑖 = 1
2𝜋𝜋𝜋𝜋2 𝑒𝑒𝑒𝑒𝑒𝑒 (− (𝑖𝑖−(𝑘𝑘+1))2+(𝑖𝑖−(𝑘𝑘+1))2

2𝜋𝜋2) ; 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ (2𝑘𝑘 + 1). (1)

Step 2: Calculating Intensity Gradient

To obtain the edge strength, the gradient density of the
image is calculated using Sobel kernels (Gx and Gy)
(Equation 2). 2 dimensional spatial gradient
calculations are made by bending the image in both
horizontal and vertical dimensions with 3×3 Gx and Gy
cores [15].

𝐺𝐺𝑥𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] , 𝐺𝐺𝑦𝑦 = [
 1 2 1
 0 0 0
−1 −2 −1

] . (2)

With Equation 3, the edge gradient density is
calculated. Equation 4 below can be used to determine
the edge orientation once the x and y gradients are
known.

𝐺𝐺 = √𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2 (3)

𝜃𝜃 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥

). (4)

Step 3: Non-maximum Suppression

Each area of the image is scanned to remove any
additional sets of pixels that do not make edges after
the gradient direction and gradient size have been
determined. By doing this, cells that might not be an
edge are removed.

Step 4: Hysteresis Thresholding

To find out if the edges are genuine, this is done. It is
necessary to have Minimum and Maximum threshold
numbers. True edges are all edges with density
gradients larger than the maximum value. All edges
below the minimum value are considered false edges
and are removed [12].

4.4. Hyperparameter Tuning
Hyperparameter tuning is one of the most important
elements that increase the efficiency of machine
learning models. During the training of the models,
each classifier learns some parameters on its own, but
each model has several hyperparameters that can be

(2)

With Equation 3, the edge gradient density is calcu-
lated. Equation 4 below can be used to determine the
edge orientation once the x and y gradients are known.

6

Table 2
Plant leaf types, diseases, and numbers used in the data set

Plant Train Train (Augmented) Validation / Test
Healthy Diseased Healthy Diseased Healthy Diseased

Alstonia Scholaris 121 168 1000 1000 29 43
Arjun 150 158 1000 1000 35 37
Mango 187 96 1000 1000 45 23
Guava 191 234 1000 1000 45 55
Jamun 116 180 1000 1000 27 42
Total 765 836 5000 5000 181 200

In addition to using more advanced techniques for
data replication, some basic augmentation techniques
were applied to all classes to increase the number of
samples and robustness against unseen data. In the
second part of the study, data augmentation was
performed on the images by using horizontal rotation,
horizontal and vertical scrolling, image zooming and
zooming methods. After the data augmentation
process, as seen in Table 2, 1000 images were obtained
for both diseased and healthy species. Thus, a total of
10000 visuals were created in ten classrooms for
educational purposes.

4.3 Edge Detection
Edges in images contain meaningful, important
information and features. If an edge detector is applied
to an image, the amount of data that needs to be
processed is reduced and less relevant information is
filtered out. In the third part of this study, a data set
was created from healthy and diseased leaf images
augmented using the Canny Edge Detector Algorithm
(CEDA) in Python.

CEDA is an edge operator that can detect a wide
variety of edges in an image, developed by JF Canny
in 1986. CEDA reduces irrelevant image details within
the image, allowing more important features of images
to be revealed. Thus, only the outline of the image is
left to create less clutter and lower error rates for
machines. CEDA consists of four steps: noise reduction,
density gradient calculation, non-maximum
suppression, and hysteresis thresholding. Detailed
descriptions for Canny edge detection are as follows:

Step 1: Noise Reduction

The picture is softened using a Gaussian filter to
eliminate extraneous textures and details. The
equation for the Gaussian Filter Kernel is provided in
Equation 1. Standard convolution techniques are used
to compute and apply the Gaussian filter.

𝐻𝐻𝑖𝑖𝑖𝑖 = 1
2𝜋𝜋𝜋𝜋2 𝑒𝑒𝑒𝑒𝑒𝑒 (− (𝑖𝑖−(𝑘𝑘+1))2+(𝑖𝑖−(𝑘𝑘+1))2

2𝜋𝜋2) ; 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ (2𝑘𝑘 + 1). (1)

Step 2: Calculating Intensity Gradient

To obtain the edge strength, the gradient density of the
image is calculated using Sobel kernels (Gx and Gy)
(Equation 2). 2 dimensional spatial gradient
calculations are made by bending the image in both
horizontal and vertical dimensions with 3×3 Gx and Gy
cores [15].

𝐺𝐺𝑥𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] , 𝐺𝐺𝑦𝑦 = [
 1 2 1
 0 0 0
−1 −2 −1

] . (2)

With Equation 3, the edge gradient density is
calculated. Equation 4 below can be used to determine
the edge orientation once the x and y gradients are
known.

𝐺𝐺 = √𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2 (3)

𝜃𝜃 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥

). (4)

Step 3: Non-maximum Suppression

Each area of the image is scanned to remove any
additional sets of pixels that do not make edges after
the gradient direction and gradient size have been
determined. By doing this, cells that might not be an
edge are removed.

Step 4: Hysteresis Thresholding

To find out if the edges are genuine, this is done. It is
necessary to have Minimum and Maximum threshold
numbers. True edges are all edges with density
gradients larger than the maximum value. All edges
below the minimum value are considered false edges
and are removed [12].

4.4. Hyperparameter Tuning
Hyperparameter tuning is one of the most important
elements that increase the efficiency of machine
learning models. During the training of the models,
each classifier learns some parameters on its own, but
each model has several hyperparameters that can be

(3)

6

Table 2
Plant leaf types, diseases, and numbers used in the data set

Plant Train Train (Augmented) Validation / Test
Healthy Diseased Healthy Diseased Healthy Diseased

Alstonia Scholaris 121 168 1000 1000 29 43
Arjun 150 158 1000 1000 35 37
Mango 187 96 1000 1000 45 23
Guava 191 234 1000 1000 45 55
Jamun 116 180 1000 1000 27 42
Total 765 836 5000 5000 181 200

In addition to using more advanced techniques for
data replication, some basic augmentation techniques
were applied to all classes to increase the number of
samples and robustness against unseen data. In the
second part of the study, data augmentation was
performed on the images by using horizontal rotation,
horizontal and vertical scrolling, image zooming and
zooming methods. After the data augmentation
process, as seen in Table 2, 1000 images were obtained
for both diseased and healthy species. Thus, a total of
10000 visuals were created in ten classrooms for
educational purposes.

4.3 Edge Detection
Edges in images contain meaningful, important
information and features. If an edge detector is applied
to an image, the amount of data that needs to be
processed is reduced and less relevant information is
filtered out. In the third part of this study, a data set
was created from healthy and diseased leaf images
augmented using the Canny Edge Detector Algorithm
(CEDA) in Python.

CEDA is an edge operator that can detect a wide
variety of edges in an image, developed by JF Canny
in 1986. CEDA reduces irrelevant image details within
the image, allowing more important features of images
to be revealed. Thus, only the outline of the image is
left to create less clutter and lower error rates for
machines. CEDA consists of four steps: noise reduction,
density gradient calculation, non-maximum
suppression, and hysteresis thresholding. Detailed
descriptions for Canny edge detection are as follows:

Step 1: Noise Reduction

The picture is softened using a Gaussian filter to
eliminate extraneous textures and details. The
equation for the Gaussian Filter Kernel is provided in
Equation 1. Standard convolution techniques are used
to compute and apply the Gaussian filter.

𝐻𝐻𝑖𝑖𝑖𝑖 = 1
2𝜋𝜋𝜋𝜋2 𝑒𝑒𝑒𝑒𝑒𝑒 (− (𝑖𝑖−(𝑘𝑘+1))2+(𝑖𝑖−(𝑘𝑘+1))2

2𝜋𝜋2) ; 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ (2𝑘𝑘 + 1). (1)

Step 2: Calculating Intensity Gradient

To obtain the edge strength, the gradient density of the
image is calculated using Sobel kernels (Gx and Gy)
(Equation 2). 2 dimensional spatial gradient
calculations are made by bending the image in both
horizontal and vertical dimensions with 3×3 Gx and Gy
cores [15].

𝐺𝐺𝑥𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] , 𝐺𝐺𝑦𝑦 = [
 1 2 1
 0 0 0
−1 −2 −1

] . (2)

With Equation 3, the edge gradient density is
calculated. Equation 4 below can be used to determine
the edge orientation once the x and y gradients are
known.

𝐺𝐺 = √𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2 (3)

𝜃𝜃 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥

). (4)

Step 3: Non-maximum Suppression

Each area of the image is scanned to remove any
additional sets of pixels that do not make edges after
the gradient direction and gradient size have been
determined. By doing this, cells that might not be an
edge are removed.

Step 4: Hysteresis Thresholding

To find out if the edges are genuine, this is done. It is
necessary to have Minimum and Maximum threshold
numbers. True edges are all edges with density
gradients larger than the maximum value. All edges
below the minimum value are considered false edges
and are removed [12].

4.4. Hyperparameter Tuning
Hyperparameter tuning is one of the most important
elements that increase the efficiency of machine
learning models. During the training of the models,
each classifier learns some parameters on its own, but
each model has several hyperparameters that can be

(4)

Step 3: Non-maximum Suppression
Each area of the image is scanned to remove any ad-
ditional sets of pixels that do not make edges after the
gradient direction and gradient size have been deter-
mined. By doing this, cells that might not be an edge
are removed.
Step 4: Hysteresis Thresholding
To find out if the edges are genuine, this is done. It is
necessary to have Minimum and Maximum threshold
numbers. True edges are all edges with density gradi-
ents larger than the maximum value. All edges below
the minimum value are considered false edges and are
removed [12].

4.4. Hyperparameter Tuning
Hyperparameter tuning is one of the most important
elements that increase the efficiency of machine learn-
ing models. During the training of the models, each
classifier learns some parameters on its own, but each
model has several hyperparameters that can be tuned
that it cannot learn automatically. Since it is very diffi-
cult and time consuming to adjust each hyperparame-
ter individually, this process can be done automatically
with the Grid Search optimization (GSO) algorithm.
Grid Search Optimization Algorithm
Input: Hyper-parameters h1,…,hk,
 Itreations per stage X=<X1,…,Xz>,
 Total number of stages Z,
 Training data per stage Dtrain=<Dtrain

1,…,Dtrain
z>,

 Validation data Dval,
 Validation accuracy λ
Output: Hyper parameters h*
 for stage z=1 to Z do
 for i=1 to Y
 λi=evaluate λ(hi,Ds

train,Dval)
 end
 for j=Y+1 toXz

 g=grid_search(hi,λi)j-1
i=1

 hj=max_argsh€aa(h,g)
 λi=evaluate λ(hi,Ds

train,Dval)
 end
 reset h1:k=best k configs €(h1,…hXz)
 end
return h*=max argsh€(hX1,…,hXz)λj

Information Technology and Control 2024/1/5326

The k best arrangement based on validation accuracy
passing through the prior stage Y is first assessed on
the training data for the current stage, Dtrain, during
each stage z. The grid search algorithm is then intro-
duced with these k parameters and tied for Xs-Y itera-
tions on Dtrain, where XS is the total number of phase z
repetitions. The execution of the following step is now
started using the top configurations that rely on the va-
lidity accuracy. Following the run, all S organizes the
computation and extracts the configuration from all
of the hyperparameters considered by all stages with
the exceptional verification precision. The algorithm
eventually provides the configuration output with the
most astounding validation accuracy near the conclu-
sion of a substantial number of steps [10].

4.5. Performance Evaluation
To analyze the performances of the deep learning
methods used in the study, the metrics accuracy (A),
precision (P), recall (R), and F1-score (F1), whose
mathematical equations are given in 5, 6, 7, and 8, re-
spectively, are used. The metrics used are expressed
mathematically as:

7

tuned that it cannot learn automatically. Since it is very
difficult and time consuming to adjust each
hyperparameter individually, this process can be done
automatically with the Grid Search optimization (GSO)
algorithm.

Grid Search Optimization Algorithm
Input: Hyper-parameters h1,…,hk,

 Itreations per stage X=<X1,…,Xz>,

 Total number of stages Z,

 Training data per stage Dtrain=<Dtrain1,…,Dtrainz>,

 Validation data Dval,

 Validation accuracy 

Output:Hyper parameters h*

 for stage z=1 to Z do

 for i=1 to Y

 i=evaluate (hi,Dstrain,Dval)

 end

 for j=Y+1 toXz

 g=grid_search(hi,i)j-1i=1

 hj=max_argsh€aa(h,g)

 i=evaluate (hi,Dstrain,Dval)

 end

 reset h1:k=best k configs €(h1,…hXz)

 end

return h*=max argsh€(hX1,…,hXz)j

The k best arrangement based on validation accuracy
passing through the prior stage Y is first assessed on
the training data for the current stage, Dtrain, during
each stage z. The grid search algorithm is then
introduced with these k parameters and tied for Xs-Y
iterations on Dtrain, where XS is the total number of
phase z repetitions. The execution of the following step
is now started using the top configurations that rely on
the validity accuracy. Following the run, all S
organizes the computation and extracts the
configuration from all of the hyperparameters
considered by all stages with the exceptional
verification precision. The algorithm eventually
provides the configuration output with the most

astounding validation accuracy near the conclusion of
a substantial number of steps [10].
4.5 Performance Evaluation
To analyze the performances of the deep learning
methods used in the study, the metrics accuracy (A),
precision (P), recall (R), and F1-score (F1), whose
mathematical equations are given in 5, 6, 7, and 8,
respectively, are used. The metrics used are expressed
mathematically as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇) (5)

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) (6)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) (7)

𝐹𝐹1 = 2 × ((𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)/(𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)) (8)

Here, TP (true positive) means that what is actually
true is correct as a result of the estimation, TN (true
negative) means that what is actually wrong is also
wrong as a result of the estimation, FP (false positive)
means that what should be wrong in reality is correct
as a result of the estimation, FN (false negative) means
that what should be true in reality is wrong as a result
of the estimation. In our study, Accuracy for real data
and precision, recall, and F1-score metrics for
augmented data were used.

5. Results and Discussion
In this section, classification analysis was performed
with VGG16, ResNet50V2, DenseNet121, MobileNet,
Xception, EfficientNetB3, and InceptionV3 models
created by transfer learning for the classification of
medicinal plant images. In the study, a computer
equipped with Intel I9 3.56 GHz Processor, 32 GB Ram,
and 11 GB Nvidia Graphics card was used. The study
was carried out in Jupyter Notebook using the Python
programming language on the Anaconda platform.

CEDA was used in Python Spyder to segment the leaf
veins in the images. Edge detection was tested on
images of healthy and diseased leaves, and examples
of the results obtained are presented in Figure 3. The
main and secondary veins are clearly visible on
healthy leaves. In diseased leaves, although the veins
were not clear, a mixture of diseased areas and veins
was obtained.

(5)

7

tuned that it cannot learn automatically. Since it is very
difficult and time consuming to adjust each
hyperparameter individually, this process can be done
automatically with the Grid Search optimization (GSO)
algorithm.

Grid Search Optimization Algorithm
Input: Hyper-parameters h1,…,hk,

 Itreations per stage X=<X1,…,Xz>,

 Total number of stages Z,

 Training data per stage Dtrain=<Dtrain1,…,Dtrainz>,

 Validation data Dval,

 Validation accuracy 

Output:Hyper parameters h*

 for stage z=1 to Z do

 for i=1 to Y

 i=evaluate (hi,Dstrain,Dval)

 end

 for j=Y+1 toXz

 g=grid_search(hi,i)j-1i=1

 hj=max_argsh€aa(h,g)

 i=evaluate (hi,Dstrain,Dval)

 end

 reset h1:k=best k configs €(h1,…hXz)

 end

return h*=max argsh€(hX1,…,hXz)j

The k best arrangement based on validation accuracy
passing through the prior stage Y is first assessed on
the training data for the current stage, Dtrain, during
each stage z. The grid search algorithm is then
introduced with these k parameters and tied for Xs-Y
iterations on Dtrain, where XS is the total number of
phase z repetitions. The execution of the following step
is now started using the top configurations that rely on
the validity accuracy. Following the run, all S
organizes the computation and extracts the
configuration from all of the hyperparameters
considered by all stages with the exceptional
verification precision. The algorithm eventually
provides the configuration output with the most

astounding validation accuracy near the conclusion of
a substantial number of steps [10].
4.5 Performance Evaluation
To analyze the performances of the deep learning
methods used in the study, the metrics accuracy (A),
precision (P), recall (R), and F1-score (F1), whose
mathematical equations are given in 5, 6, 7, and 8,
respectively, are used. The metrics used are expressed
mathematically as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇) (5)

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) (6)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) (7)

𝐹𝐹1 = 2 × ((𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)/(𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)) (8)

Here, TP (true positive) means that what is actually
true is correct as a result of the estimation, TN (true
negative) means that what is actually wrong is also
wrong as a result of the estimation, FP (false positive)
means that what should be wrong in reality is correct
as a result of the estimation, FN (false negative) means
that what should be true in reality is wrong as a result
of the estimation. In our study, Accuracy for real data
and precision, recall, and F1-score metrics for
augmented data were used.

5. Results and Discussion
In this section, classification analysis was performed
with VGG16, ResNet50V2, DenseNet121, MobileNet,
Xception, EfficientNetB3, and InceptionV3 models
created by transfer learning for the classification of
medicinal plant images. In the study, a computer
equipped with Intel I9 3.56 GHz Processor, 32 GB Ram,
and 11 GB Nvidia Graphics card was used. The study
was carried out in Jupyter Notebook using the Python
programming language on the Anaconda platform.

CEDA was used in Python Spyder to segment the leaf
veins in the images. Edge detection was tested on
images of healthy and diseased leaves, and examples
of the results obtained are presented in Figure 3. The
main and secondary veins are clearly visible on
healthy leaves. In diseased leaves, although the veins
were not clear, a mixture of diseased areas and veins
was obtained.

(6)

7

tuned that it cannot learn automatically. Since it is very
difficult and time consuming to adjust each
hyperparameter individually, this process can be done
automatically with the Grid Search optimization (GSO)
algorithm.

Grid Search Optimization Algorithm
Input: Hyper-parameters h1,…,hk,

 Itreations per stage X=<X1,…,Xz>,

 Total number of stages Z,

 Training data per stage Dtrain=<Dtrain1,…,Dtrainz>,

 Validation data Dval,

 Validation accuracy 

Output:Hyper parameters h*

 for stage z=1 to Z do

 for i=1 to Y

 i=evaluate (hi,Dstrain,Dval)

 end

 for j=Y+1 toXz

 g=grid_search(hi,i)j-1i=1

 hj=max_argsh€aa(h,g)

 i=evaluate (hi,Dstrain,Dval)

 end

 reset h1:k=best k configs €(h1,…hXz)

 end

return h*=max argsh€(hX1,…,hXz)j

The k best arrangement based on validation accuracy
passing through the prior stage Y is first assessed on
the training data for the current stage, Dtrain, during
each stage z. The grid search algorithm is then
introduced with these k parameters and tied for Xs-Y
iterations on Dtrain, where XS is the total number of
phase z repetitions. The execution of the following step
is now started using the top configurations that rely on
the validity accuracy. Following the run, all S
organizes the computation and extracts the
configuration from all of the hyperparameters
considered by all stages with the exceptional
verification precision. The algorithm eventually
provides the configuration output with the most

astounding validation accuracy near the conclusion of
a substantial number of steps [10].
4.5 Performance Evaluation
To analyze the performances of the deep learning
methods used in the study, the metrics accuracy (A),
precision (P), recall (R), and F1-score (F1), whose
mathematical equations are given in 5, 6, 7, and 8,
respectively, are used. The metrics used are expressed
mathematically as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇) (5)

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) (6)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) (7)

𝐹𝐹1 = 2 × ((𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)/(𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)) (8)

Here, TP (true positive) means that what is actually
true is correct as a result of the estimation, TN (true
negative) means that what is actually wrong is also
wrong as a result of the estimation, FP (false positive)
means that what should be wrong in reality is correct
as a result of the estimation, FN (false negative) means
that what should be true in reality is wrong as a result
of the estimation. In our study, Accuracy for real data
and precision, recall, and F1-score metrics for
augmented data were used.

5. Results and Discussion
In this section, classification analysis was performed
with VGG16, ResNet50V2, DenseNet121, MobileNet,
Xception, EfficientNetB3, and InceptionV3 models
created by transfer learning for the classification of
medicinal plant images. In the study, a computer
equipped with Intel I9 3.56 GHz Processor, 32 GB Ram,
and 11 GB Nvidia Graphics card was used. The study
was carried out in Jupyter Notebook using the Python
programming language on the Anaconda platform.

CEDA was used in Python Spyder to segment the leaf
veins in the images. Edge detection was tested on
images of healthy and diseased leaves, and examples
of the results obtained are presented in Figure 3. The
main and secondary veins are clearly visible on
healthy leaves. In diseased leaves, although the veins
were not clear, a mixture of diseased areas and veins
was obtained.

(7)

7

tuned that it cannot learn automatically. Since it is very
difficult and time consuming to adjust each
hyperparameter individually, this process can be done
automatically with the Grid Search optimization (GSO)
algorithm.

Grid Search Optimization Algorithm
Input: Hyper-parameters h1,…,hk,

 Itreations per stage X=<X1,…,Xz>,

 Total number of stages Z,

 Training data per stage Dtrain=<Dtrain1,…,Dtrainz>,

 Validation data Dval,

 Validation accuracy 

Output:Hyper parameters h*

 for stage z=1 to Z do

 for i=1 to Y

 i=evaluate (hi,Dstrain,Dval)

 end

 for j=Y+1 toXz

 g=grid_search(hi,i)j-1i=1

 hj=max_argsh€aa(h,g)

 i=evaluate (hi,Dstrain,Dval)

 end

 reset h1:k=best k configs €(h1,…hXz)

 end

return h*=max argsh€(hX1,…,hXz)j

The k best arrangement based on validation accuracy
passing through the prior stage Y is first assessed on
the training data for the current stage, Dtrain, during
each stage z. The grid search algorithm is then
introduced with these k parameters and tied for Xs-Y
iterations on Dtrain, where XS is the total number of
phase z repetitions. The execution of the following step
is now started using the top configurations that rely on
the validity accuracy. Following the run, all S
organizes the computation and extracts the
configuration from all of the hyperparameters
considered by all stages with the exceptional
verification precision. The algorithm eventually
provides the configuration output with the most

astounding validation accuracy near the conclusion of
a substantial number of steps [10].
4.5 Performance Evaluation
To analyze the performances of the deep learning
methods used in the study, the metrics accuracy (A),
precision (P), recall (R), and F1-score (F1), whose
mathematical equations are given in 5, 6, 7, and 8,
respectively, are used. The metrics used are expressed
mathematically as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇) (5)

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) (6)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) (7)

𝐹𝐹1 = 2 × ((𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)/(𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)) (8)

Here, TP (true positive) means that what is actually
true is correct as a result of the estimation, TN (true
negative) means that what is actually wrong is also
wrong as a result of the estimation, FP (false positive)
means that what should be wrong in reality is correct
as a result of the estimation, FN (false negative) means
that what should be true in reality is wrong as a result
of the estimation. In our study, Accuracy for real data
and precision, recall, and F1-score metrics for
augmented data were used.

5. Results and Discussion
In this section, classification analysis was performed
with VGG16, ResNet50V2, DenseNet121, MobileNet,
Xception, EfficientNetB3, and InceptionV3 models
created by transfer learning for the classification of
medicinal plant images. In the study, a computer
equipped with Intel I9 3.56 GHz Processor, 32 GB Ram,
and 11 GB Nvidia Graphics card was used. The study
was carried out in Jupyter Notebook using the Python
programming language on the Anaconda platform.

CEDA was used in Python Spyder to segment the leaf
veins in the images. Edge detection was tested on
images of healthy and diseased leaves, and examples
of the results obtained are presented in Figure 3. The
main and secondary veins are clearly visible on
healthy leaves. In diseased leaves, although the veins
were not clear, a mixture of diseased areas and veins
was obtained.

(8)

Here, TP (true positive) means that what is actually
true is correct as a result of the estimation, TN (true
negative) means that what is actually wrong is also
wrong as a result of the estimation, FP (false positive)
means that what should be wrong in reality is cor-
rect as a result of the estimation, FN (false negative)
means that what should be true in reality is wrong as
a result of the estimation. In our study, Accuracy for
real data and precision, recall, and F1-score metrics
for augmented data were used.

5. Results and Discussion
In this section, classification analysis was performed
with VGG16, ResNet50V2, DenseNet121, MobileN-
et, Xception, EfficientNetB3, and InceptionV3 mod-
els created by transfer learning for the classification
of medicinal plant images. In the study, a computer
equipped with Intel I9 3.56 GHz Processor, 32 GB Ram,
and 11 GB Nvidia Graphics card was used. The study
was carried out in Jupyter Notebook using the Python
programming language on the Anaconda platform.

Figure 3
Healthy and diseased leaf images obtained with CEDA

8

Figure 3

Healthy and diseased leaf images obtained with CEDA

In the study, pre-trained models with good
classification success were used to create new models
using the transfer learning method. By altering the
layers of the current architectures, the transfer learning
technique enables the model to be successfully trained.
By altering the layers of preexisting architectures,
models can be effectively trained using the transfer
learning technique [32]. In order to obtain high
accuracy in the deep learning algorithms used in the
study, the GSO technique was tested in the selection of
the optimum hyperparameters in the ranges shown in
Table 3 and optimum values were obtained.
Table 3

Tested hyperparameters and their values
Hyperparameter Range value Best value
Dropout 0.1, 0.2, 0.3, 0.4, 0.5 0.2, 0.4
Batch size 32, 64, 128, 256 64
Epochs 30, 50, 60, 90 50
Learning rate 0.001, 0.003, 0.01,

0.0001, 0.00001
0.001, 0.0001

In the study, as shown in Table 4, using seven different
deep learning methods, ten different categories of five
different plants (Alstonia Scholaris, Arjun, Mango,
Guava and Jamun) were classified. Images of
224×224×3 pixels were given to the input of the models,

Adam optimizer was used as the optimizer, Softmax
was used as the classifier, and activation function
ReLU was used. Table 4 provides additional
information about the various experimental
parameters used in this experimental study.
Table 4

Experimental setup with many study-related characteristics
Parameters Values

Deep learning
models

M1=VGG16, M2=ResNet50V2,
M3=DenseNet121, M4=Xception,
M5=InceptionV3,
M6=MobileNet, M7=EfficientNetB3

Input Image
Dimensions 224×224×3 pixels

Activation
Function ReLU

Optimizer Adam
Loss Function Categorical cross-entropy
Batch Size 64
Learning Rates L1 = 0.001, L2 = 0.0001
Epoch 50
Number of
Categories 10

5.1 Comparision Between DL Architecture
In the first part of the study, the images collected from

8

Figure 3

Healthy and diseased leaf images obtained with CEDA

In the study, pre-trained models with good
classification success were used to create new models
using the transfer learning method. By altering the
layers of the current architectures, the transfer learning
technique enables the model to be successfully trained.
By altering the layers of preexisting architectures,
models can be effectively trained using the transfer
learning technique [32]. In order to obtain high
accuracy in the deep learning algorithms used in the
study, the GSO technique was tested in the selection of
the optimum hyperparameters in the ranges shown in
Table 3 and optimum values were obtained.
Table 3

Tested hyperparameters and their values
Hyperparameter Range value Best value
Dropout 0.1, 0.2, 0.3, 0.4, 0.5 0.2, 0.4
Batch size 32, 64, 128, 256 64
Epochs 30, 50, 60, 90 50
Learning rate 0.001, 0.003, 0.01,

0.0001, 0.00001
0.001, 0.0001

In the study, as shown in Table 4, using seven different
deep learning methods, ten different categories of five
different plants (Alstonia Scholaris, Arjun, Mango,
Guava and Jamun) were classified. Images of
224×224×3 pixels were given to the input of the models,

Adam optimizer was used as the optimizer, Softmax
was used as the classifier, and activation function
ReLU was used. Table 4 provides additional
information about the various experimental
parameters used in this experimental study.
Table 4

Experimental setup with many study-related characteristics
Parameters Values

Deep learning
models

M1=VGG16, M2=ResNet50V2,
M3=DenseNet121, M4=Xception,
M5=InceptionV3,
M6=MobileNet, M7=EfficientNetB3

Input Image
Dimensions 224×224×3 pixels

Activation
Function ReLU

Optimizer Adam
Loss Function Categorical cross-entropy
Batch Size 64
Learning Rates L1 = 0.001, L2 = 0.0001
Epoch 50
Number of
Categories 10

5.1 Comparision Between DL Architecture
In the first part of the study, the images collected from

8

Figure 3

Healthy and diseased leaf images obtained with CEDA

In the study, pre-trained models with good
classification success were used to create new models
using the transfer learning method. By altering the
layers of the current architectures, the transfer learning
technique enables the model to be successfully trained.
By altering the layers of preexisting architectures,
models can be effectively trained using the transfer
learning technique [32]. In order to obtain high
accuracy in the deep learning algorithms used in the
study, the GSO technique was tested in the selection of
the optimum hyperparameters in the ranges shown in
Table 3 and optimum values were obtained.
Table 3

Tested hyperparameters and their values
Hyperparameter Range value Best value
Dropout 0.1, 0.2, 0.3, 0.4, 0.5 0.2, 0.4
Batch size 32, 64, 128, 256 64
Epochs 30, 50, 60, 90 50
Learning rate 0.001, 0.003, 0.01,

0.0001, 0.00001
0.001, 0.0001

In the study, as shown in Table 4, using seven different
deep learning methods, ten different categories of five
different plants (Alstonia Scholaris, Arjun, Mango,
Guava and Jamun) were classified. Images of
224×224×3 pixels were given to the input of the models,

Adam optimizer was used as the optimizer, Softmax
was used as the classifier, and activation function
ReLU was used. Table 4 provides additional
information about the various experimental
parameters used in this experimental study.
Table 4

Experimental setup with many study-related characteristics
Parameters Values

Deep learning
models

M1=VGG16, M2=ResNet50V2,
M3=DenseNet121, M4=Xception,
M5=InceptionV3,
M6=MobileNet, M7=EfficientNetB3

Input Image
Dimensions 224×224×3 pixels

Activation
Function ReLU

Optimizer Adam
Loss Function Categorical cross-entropy
Batch Size 64
Learning Rates L1 = 0.001, L2 = 0.0001
Epoch 50
Number of
Categories 10

5.1 Comparision Between DL Architecture
In the first part of the study, the images collected from

8

Figure 3

Healthy and diseased leaf images obtained with CEDA

In the study, pre-trained models with good
classification success were used to create new models
using the transfer learning method. By altering the
layers of the current architectures, the transfer learning
technique enables the model to be successfully trained.
By altering the layers of preexisting architectures,
models can be effectively trained using the transfer
learning technique [32]. In order to obtain high
accuracy in the deep learning algorithms used in the
study, the GSO technique was tested in the selection of
the optimum hyperparameters in the ranges shown in
Table 3 and optimum values were obtained.
Table 3

Tested hyperparameters and their values
Hyperparameter Range value Best value
Dropout 0.1, 0.2, 0.3, 0.4, 0.5 0.2, 0.4
Batch size 32, 64, 128, 256 64
Epochs 30, 50, 60, 90 50
Learning rate 0.001, 0.003, 0.01,

0.0001, 0.00001
0.001, 0.0001

In the study, as shown in Table 4, using seven different
deep learning methods, ten different categories of five
different plants (Alstonia Scholaris, Arjun, Mango,
Guava and Jamun) were classified. Images of
224×224×3 pixels were given to the input of the models,

Adam optimizer was used as the optimizer, Softmax
was used as the classifier, and activation function
ReLU was used. Table 4 provides additional
information about the various experimental
parameters used in this experimental study.
Table 4

Experimental setup with many study-related characteristics
Parameters Values

Deep learning
models

M1=VGG16, M2=ResNet50V2,
M3=DenseNet121, M4=Xception,
M5=InceptionV3,
M6=MobileNet, M7=EfficientNetB3

Input Image
Dimensions 224×224×3 pixels

Activation
Function ReLU

Optimizer Adam
Loss Function Categorical cross-entropy
Batch Size 64
Learning Rates L1 = 0.001, L2 = 0.0001
Epoch 50
Number of
Categories 10

5.1 Comparision Between DL Architecture
In the first part of the study, the images collected from

Alstonia Scholaris Arjun Guava Jamun Mango

Healthy (Original Color)

Diseased (Original Color)

Healthy Canny Edge Detection

Diseased Canny Edge Detection

27Information Technology and Control 2024/1/53

CEDA was used in Python Spyder to segment the leaf
veins in the images. Edge detection was tested on imag-
es of healthy and diseased leaves, and examples of the
results obtained are presented in Figure 3. The main and
secondary veins are clearly visible on healthy leaves.
In diseased leaves, although the veins were not clear, a
mixture of diseased areas and veins was obtained.
In the study, pre-trained models with good classifica-
tion success were used to create new models using the
transfer learning method. By altering the layers of the
current architectures, the transfer learning technique
enables the model to be successfully trained. By al-
tering the layers of preexisting architectures, models
can be effectively trained using the transfer learning
technique [32]. In order to obtain high accuracy in the
deep learning algorithms used in the study, the GSO
technique was tested in the selection of the optimum
hyperparameters in the ranges shown in Table 3 and
optimum values were obtained.

Table 3
Tested hyperparameters and their values

Hyperparameter Range value Best value

Dropout 0.1, 0.2, 0.3, 0.4, 0.5 0.2, 0.4
Batch size 32, 64, 128, 256 64
Epochs 30, 50, 60, 90 50

Learning rate
0.001, 0.003, 0.01,
0.0001, 0.00001

0.001, 0.0001

In the study, as shown in Table 4, using seven differ-
ent deep learning methods, ten different categories
of five different plants (Alstonia Scholaris, Arjun,
Mango, Guava and Jamun) were classified. Images of
224×224×3 pixels were given to the input of the mod-
els, Adam optimizer was used as the optimizer, Soft-
max was used as the classifier, and activation function
ReLU was used. Table 4 provides additional informa-
tion about the various experimental parameters used
in this experimental study.

5.1. Comparision Between DL Architecture
In the first part of the study, the images collected from
ten different classes and categories of the data set be-
fore the data augmentation process were divided into
training (68%), test (16%) and validation (16%) sets. A
total of 2363 images were used, of which 1601 images
were used for training, 381 images for testing, and 381
images for validation.
In the proposed framework, seven different pre-learn-
ing models with different feature extraction strate-
gies, namely VGG16, ResNet50V2, DenseNet121, Mo-
bileNet, Xception, InceptionV3, and EfficientNetB3,
were selected. Some layers needed to be updated in
order to train with leaf images using the weights of
the pre-trained models used in the research. Input
for the entire link layer is 4096 in all models after
the input layer values are set. The input of the full
link layer has been modified to ten in all models due
to the study’s dataset having ten classes; as output
layers, Flatten, Dense and Dropout layers in VGG16
model, GlobalAveragePooling2D and Dense layers in
ResNet50V2, DenseNet121, InceptionV3, Xception
and MobileNet models, GlobalAveragePooling2D,
BatchNormalization and Dropout layers in Efficient-
NetB3 model. In addition, the parameter value is set
to 0.2 in the dropout layer. Softmax function is used
for classification in the last layer of the model. Adam
optimizer is preferred as the optimizer function. The
loss function chosen is the categorical cross-entropy.
The epoch value is set to 50 and the stack size is 64.
Models were tested separately, using values of 0.001
and 0.0001 as learning rates.
The accuracy values obtained from the training, vali-
dation and testing data for two different learning val-
ues and all models are given in Table 5. In the data used
by the training values, the best results were obtained
with DenseNet121 with a learning rate of 0.0001 and
with the VGG16 model with a learning rate of 0.001. In

Table 4
Experimental setup with many study-related characteristics

Parameters Values

Deep learning models

M1=VGG16,
M2=ResNet50V2,
M3=DenseNet121,
M4=Xception,
M5=InceptionV3,
M6=MobileNet,
M7=EfficientNetB3

Input Image Dimensions 224×224×3 pixels

Activation Function ReLU

Optimizer Adam

Loss Function Categorical cross-entropy

Batch Size 64

Learning Rates L1 = 0.001, L2 = 0.0001

Epoch 50

Number of Categories 10

Information Technology and Control 2024/1/5328

the validation and test values, DenseNet121 at 0.0001
learning rate and VGG16 model at 0.001 learning rate
achieved the best results.
In the training data set, very close results were ob-
tained in the MobileNet and DenseNet121 models for
0.0001 learning rate, and in VGG16 and DenseNet121
models for 0.001 learning rate. The DenseNet121
model gave quality results for both learning rates.
In the validation and test datasets, the MobileNet
and DenseNet121 models for 0.0001 learning rate,
DenseNet121 and VGG16 models for 0.001 learning
rate were the most successful models.

5.2. Effects of Data Augmentation Techniques
In the second part of the study, a total of 10762 images
were obtained for ten different categories belonging
to five different healthy and diseased plant classes
by using horizontal rotation, horizontal and vertical
scrolling and image zooming methods. The images of
healthy and diseased leaves of each plant for training
were rounded out to 1000, so that 10000 images were
used for training, 381 images for validation, and 381
images for testing.
In this part of the experimental study, seven different
deep learning models with different feature extraction
strategies used in the first part were used. First, in the
preprocessing step, the input image values are sized
to 224×224 pixels. For transfer learning, VGG16, Res-
Net50V2, DenseNet121, InceptionV3, Xception, Mo-
bileNet, EfficientNetB3 models were added as output
layer as -1 for axis, 0.99 for momentum and 0.001 for

Table 5
Train and validation accuracy of deep learning models for the original dataset

Model

Training Accuracy (%) Validation Accuracy (%) Test Accuracy (%)

Learning rate

0.0001 0.001 0.0001 0.001 0.0001 0.001

VGG16 72.46 86.92 70.32 84.44 70.02 83.28

ResNet50V2 79.11 69.64 76.48 67.78 77.03 66.23

DenseNet121 86.08 84.86 82.78 80.93 80.87 81.02

Xception 80.66 79.66 74.98 78.04 75.02 76.08

InceptionV3 72.39 73.39 69.66 69.52 67.27 69.13

MobileNet 82.88 70.38 80.38 66.46 80.56 67.61

EfficientNetB3 74.11 60.81 78.79 60.73 75.23 60.55

epsilon in BatchNormalization layer. Then, 256 value
and ReLU function were used for the added dense lay-
er. Moreover, in the dropout layer the parameter val-
ue is set to 0.4. The softmax function was used as the
activation function of the model. Adam was chosen as
the optimizer function. Categorical crossentropy was
used as the loss function. Batch size is set to 64, learn-
ing rate is set to 0.001, and epoch value is set to 50. The
graphical representation of the accuracy and loss val-
ues of the training and validation sets obtained after
training the models with augmented data is given in
Figure 4.
The train, validation and test accuracy values ob-
tained from all models after the data augmentation
process, and the tested and faulty image values are
given in Table 6. Among the deep learning models
studied, the DenseNet121 model showed the highest
educational success. Model 381 has 99.99% training
success, 98.69% test success and only five error values
in 381 test images. The best result in validation per-
formance was obtained from the EfficientNetB3 mod-
el with a rate of 98.89%. After this model, the best test
performance values were obtained from Efficient-
NetB3 and Xception models. The VGG16 model was
the model with the lowest accuracy. In studies with
data augmentation, the success of the DenseNet121
model stands out, as in studies with original data.
The confusion matrix of the DenseNet121 model,
which has the highest classification accuracy as a re-
sult of the models tested after the training with data
augmentation, which is the second stage of the study,
is given in Figure 5.

29Information Technology and Control 2024/1/53

Figure 4
Accuracy and loss graph for deep learning models after data augmentation (a)VGG16, (b)ResNet50V2, (c)DenseNet121,
(d)Xception, (e)InceptionV3, (f)MobileNet, (g) EfficientNetB3

10

The train, validation and test accuracy values obtained
from all models after the data augmentation process,
and the tested and faulty image values are given in
Table 6. Among the deep learning models studied, the
DenseNet121 model showed the highest educational
success. Model 381 has 99.99% training success, 98.69%
test success and only five error values in 381 test
images. The best result in validation performance was

obtained from the EfficientNetB3 model with a rate of
98.89%. After this model, the best test performance
values were obtained from EfficientNetB3 and
Xception models. The VGG16 model was the model
with the lowest accuracy. In studies with data
augmentation, the success of the DenseNet121 model
stands out, as in studies with original data.

Figure 4
Accuracy and loss graph for deep learning models after data augmentation (a)VGG16, (b)ResNet50V2, (c)DenseNet121,
(d)Xception, (e)InceptionV3, (f)MobileNet, (g) EfficientNetB3

Table 6
Training accuracies and test/fault values of deep learning models for the augmented data set

Model Train
Accuracy (%)

Validation
Accuracy (%)

Test
Accuracy (%) Test / Fault

VGG16 98.27 95.67 95.01 381 / 19
ResNet50V2 99.98 97.50 97.90 381 / 8
DenseNet121 99.99 98.28 98.69 381 / 5
Xception 99.98 98.75 98.16 381 / 7
InceptionV3 99.97 98.15 97.38 381 / 10
MobileNet 99.86 98.00 97.64 381 / 9
EfficientNetB3 99.98 98.89 98.43 381 / 6

The confusion matrix of the DenseNet121 model,
which has the highest classification accuracy as a result
of the models tested after the training with data

augmentation, which is the second stage of the study,
is given in Figure 5.

The performance evaluation values (F1-Score, Recall

Table 6
Training accuracies and test/fault values of deep learning models for the augmented data set

Model Train Accuracy (%) Validation Accuracy (%) Test Accuracy (%) Test / Fault

VGG16 98.27 95.67 95.01 381 / 19

ResNet50V2 99.98 97.50 97.90 381 / 8

DenseNet121 99.99 98.28 98.69 381 / 5

Xception 99.98 98.75 98.16 381 / 7

InceptionV3 99.97 98.15 97.38 381 / 10

MobileNet 99.86 98.00 97.64 381 / 9

EfficientNetB3 99.98 98.89 98.43 381 / 6

Information Technology and Control 2024/1/5330

The performance evaluation
values (F1-Score, Recall and
Precision) of the DenseNet121
model, in which the best perfor-
mance value was obtained after
the data increase, are presented
in Figure 6 for each category.

5.3. Effects of Edge
Detection Technique
In the third part of the study,
10762 images obtained by data
augmentation were divided into
leaf vein segments using the
CEDA code in Python. 10000
images were used for training
new data, 381 images for valida-
tion and 381 images for testing.
Since the results obtained in the
second part of the experimen-
tal study were more successful
than the first part, the transfer
learning structure used in the
second part was preferred in
this part as well. The graphical
representation of the accuracy
and loss values of the training
and validation sets of the seg-
ment images obtained by edge
detection is given in Figure 7.
The train, verification and test
accuracy values obtained from
all models after the edge de-
tection process, and the tested
and faulty image values are giv-
en in Table 7. Among the deep
learning models examined, the
DenseNet121 model showed
the highest educational suc-
cess. Model 381 has 80.86%
training, 75.64% validation
and 67.92% test success values
in 381 test images. After this
model, the best test perfor-

Figure 5
Confusion matrix for DenseNet121 on a test batch of unobserved images for data
augmentation

Figure 6
Performance evaluation of the DenseNet121 model with data augmentation

11

and Precision) of the DenseNet121 model, in which the
best performance value was obtained after the data

increase, are presented in Figure 6 for each category.

Figure 5
Confusion matrix for DenseNet121 on a test batch of unobserved images for data augmentation

Figure 6

Performance evaluation of the DenseNet121 model with data augmentation

5.3 Effects of Edge Detection Technique
In the third part of the study, 10762 images obtained
by data augmentation were divided into leaf vein
segments using the CEDA code in Python. 10000
images were used for training new data, 381 images for

validation and 381 images for testing. Since the results
obtained in the second part of the experimental study
were more successful than the first part, the transfer
learning structure used in the second part was
preferred in this part as well. The graphical
representation of the accuracy and loss values of the

31Information Technology and Control 2024/1/53

Figure 7
Accuracy and loss graph for deep learning models after edge detection (a)VGG16, (b)ResNet50V2, (c)DenseNet121, (d)
Xception, (e)InceptionV3, (f)MobileNet, (g)EfficientNetB3

12

training and validation sets of the segment images
obtained by edge detection is given in Figure 7.

Figure 7

Accuracy and loss graph for deep learning models after edge detection (a)VGG16, (b)ResNet50V2, (c)DenseNet121,
(d)Xception, (e)InceptionV3, (f)MobileNet, (g)EfficientNetB3

The train, verification and test accuracy values
obtained from all models after the edge detection
process, and the tested and faulty image values are
given in Table 7. Among the deep learning models
examined, the DenseNet121 model showed the highest
educational success. Model 381 has 80.86% training,

75.64% validation and 67.92% test success values in 381
test images. After this model, the best test performance
values were obtained from MobileNet and Xception
models. The VGG16 model was the model with the
lowest accuracy. In studies with edge detection, the
success of the DenseNet121 model stands out, as in
studies with original and data augmentation data.

Table 7

Training accuracies and test/fault values of deep learning models for the edge detection data set

Model Train
Accuracy (%)

Validation
Accuracy (%)

Test
Accuracy (%)

Test / Fault

VGG16 75.63 68.84 63.39 381 / 202
ResNet50V2 78.34 71.90 65.37 381 / 130
DenseNet121 80.86 75.64 67.92 381 / 119
Xception 78.81 72.96 67.55 381 / 127
InceptionV3 77.09 71.55 65.02 381 / 136
MobileNet 76.72 69.44 67.74 381 / 123
EfficientNetB3 79.41 73.06 64.20 381 / 142

Table 7
Training accuracies and test/fault values of deep learning models for the edge detection data set

Model Train Accuracy (%) Validation Accuracy (%) Test Accuracy (%) Test / Fault

VGG16 75.63 68.84 63.39 381 / 202

ResNet50V2 78.34 71.90 65.37 381 / 130

DenseNet121 80.86 75.64 67.92 381 / 119

Xception 78.81 72.96 67.55 381 / 127

InceptionV3 77.09 71.55 65.02 381 / 136

MobileNet 76.72 69.44 67.74 381 / 123

EfficientNetB3 79.41 73.06 64.20 381 / 142

Information Technology and Control 2024/1/5332

mance values were obtained
from MobileNet and Xception
models. The VGG16 model
was the model with the lowest
accuracy. In studies with edge
detection, the success of the
DenseNet121 model stands out,
as in studies with original and
data augmentation data.
As a result of the models tested
after the training with CEDA,
which is the third stage of the
study, the highest classification
was obtained in the DenseNet121
algorithm. The confusion matrix
of the model with the highest ac-
curacy is given in Figure 8.
The performance evaluation
values of the DenseNet121
model, in which the best per-
formance value is obtained af-
ter edge detection, is presented
in Figure 9 for each category.

5.4. Discussion
Finally, the proposed method is
discussed and the importance of
each processing step is shown.
Figure 1 shows the proposed
framework for describing and
classifying plants and their dis-
eases. In the first stage of the pro-
posed study, it was seen that bet-
ter results were obtained with a
test learning rate of 0.001 in the
results obtained from different
learning methods with the orig-
inal data. In the second stage of
data augmentation, the DenseN-
et121 model with the best test
accuracy was obtained. It was
determined that the test success
rate obtained from the original
data increased by 18.50% with
the data increase. In the third
stage, the expected test success
rate could not be obtained after
the edge detection process.

Figure 9
Performance evaluation of DenseNet121 model with CEDA

Figure 8
Confusion matrix for DenseNet121 after CEDA

13

As a result of the models tested after the training with
CEDA, which is the third stage of the study, the
highest classification was obtained in the DenseNet121
algorithm. The confusion matrix of the model with the
highest accuracy is given in Figure 8.

The performance evaluation values of the
DenseNet121 model, in which the best performance
value is obtained after edge detection, is presented in
Figure 9 for each category.

Figure 8

Confusion matrix for DenseNet121 after CEDA

Figure 9

Performance evaluation of DenseNet121 model with CEDA

33Information Technology and Control 2024/1/53

Finally, the accuracy of the proposed method and its
differences with similar studies in the literature are
given in Table 8. In the literature, studies have been
carried out on the classification of plant leaves with
different colors, textures, veins and sizes. For exam-
ple, Negi et al. [19] tried to detect leaf diseases using
the leaves of nine different plants such as Apple, Corn,
Grape, and the leaves of ten different plants such as
Sahu and Minz [26], Apple, Pepper and Tomato. Since
the physical properties of the leaves used in this and
similar studies are very different from each other,
disease detection is easier than plants with the same
physical properties [25]. Sujatha et al. [33], Madha-
van et al. [17], Pham et al. [20] and Prabu and Chelli-
ah [21] examined the diseases of only one plant and
stated that they worked in maximum five different
categories. However, when the number of categories
(classification) increases, the classification process
becomes 2-3 times more difficult. Although leaves
with similar physical properties were studied in this
experimental study [4] and in ten different categories,
a higher success rate was obtained than the studies
given in Table 8. In addition, although leaves with dif-
ferent physical properties (Basil, Jatropha, and Chi-
nar etc.) are used, which makes classification easier

Table 8
A summary of studies on the classification of plant leaves and their diseases in the literature

References Techniques used No. of
categories

No. of
images

Accuracy
(%)

Negi et al. [19] CNN 10 21184 96.02

Sahu and Minz [26] SVM+CNN 10 1269 90.33

Sujatha et al. [33] Inception-V3, VGG16, VGG19 4 609 89.5

Madhavan et al. [17] Multi-class SVM 5 201 98.07

Saleem et al. [27]
Faster RCNN ResNet-50, RFCN ResNet-101, EfficientNet,
and RetinaNet

20 3545 93.80

Kavitha Lakshmi and
Savarimuthu [11]

Mask-RCNN 7 3953 80.01

Pham et al. [20] Multi-layer perceptron (MLP), VGG16, AlexNet, ResNet-50 4 450 89.41

Prabu and Chelliah [21] MobileNetV2, SVM 4 380 94.5

Kour and Arora [13]
Particle Swarm Optimization Based Support Vector
Machine (P-SVM)

7 1813 95.23

Russel and Selvaraj [24] Unified model with six parallel CNNs 24 4503 90.02

Article model
VGG16, ResNet50V2, DenseNet121, MobileNet, Xception,
InceptionV3, EfficientNetB3

10 2363 98.69

15

Figure 10

Comparative analysis results of the study with similar studies in the literature

6. Conclusions
In this study, which consists of three parts, the test
performance of deep learning models obtained with a
small number of images, the test performance obtained
when using more images by increasing the data, and
the test performance obtained when using images
obtained after image processing techniques are tried to
be compared. In all three sections, settings close to each
other were used for all learning models. Input size,
activation function, loss function, batch value and
learning rate value for images are used the same in all
models. Only the optimizer and epoch values have
been changed.

As a result of training the models using a small number
of images without data augmentation: When the
Learning Rate value is set to 0.0001, the most successful
model was the DenseNet121 model with 80.87%, and
the most successful model was the VGG16 model with
83.28% when the Learning Rate value was set to 0.001.
As a result of training the models by increasing the
number of images by increasing the data, DenseNet121
was the most successful of the trainings with a test
accuracy of 98.69%. Among the 381 images tested, the
DenseNet121 model had the least errors with five false
image values. The model with the most incorrect
image values was the VGG16 model with 19 incorrect
image values. After the edge detection of leaf images

with CEDA, the best test performance was obtained
with the DenseNet121 model with 67.92% in the
trainings made as a result of training the models. It is
seen that the classification success rate obtained in the
edge detection process for leaf images with similar
color, texture and vein structure is lower than the
original images. Looking at the whole study, the
DenseNet121 model achieved high educational
success in both data augmentation and non-data
augmentation studies. In the future, a more advanced
data set will be created with different disease
categories for each medicinal plant and studies will be
carried out to determine the diseased area with deep
learning methods.

FUNDING
The author received no specific funding for this study.

CONFLICTS OF INTEREST
The author declares to not have any conflicts of interest
regarding reporting on the present study.
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no
datasets were generated during the current study.

References

15

Figure 10

Comparative analysis results of the study with similar studies in the literature

6. Conclusions
In this study, which consists of three parts, the test
performance of deep learning models obtained with a
small number of images, the test performance obtained
when using more images by increasing the data, and
the test performance obtained when using images
obtained after image processing techniques are tried to
be compared. In all three sections, settings close to each
other were used for all learning models. Input size,
activation function, loss function, batch value and
learning rate value for images are used the same in all
models. Only the optimizer and epoch values have
been changed.

As a result of training the models using a small number
of images without data augmentation: When the
Learning Rate value is set to 0.0001, the most successful
model was the DenseNet121 model with 80.87%, and
the most successful model was the VGG16 model with
83.28% when the Learning Rate value was set to 0.001.
As a result of training the models by increasing the
number of images by increasing the data, DenseNet121
was the most successful of the trainings with a test
accuracy of 98.69%. Among the 381 images tested, the
DenseNet121 model had the least errors with five false
image values. The model with the most incorrect
image values was the VGG16 model with 19 incorrect
image values. After the edge detection of leaf images

with CEDA, the best test performance was obtained
with the DenseNet121 model with 67.92% in the
trainings made as a result of training the models. It is
seen that the classification success rate obtained in the
edge detection process for leaf images with similar
color, texture and vein structure is lower than the
original images. Looking at the whole study, the
DenseNet121 model achieved high educational
success in both data augmentation and non-data
augmentation studies. In the future, a more advanced
data set will be created with different disease
categories for each medicinal plant and studies will be
carried out to determine the diseased area with deep
learning methods.

FUNDING
The author received no specific funding for this study.

CONFLICTS OF INTEREST
The author declares to not have any conflicts of interest
regarding reporting on the present study.
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no
datasets were generated during the current study.

References

15

Figure 10

Comparative analysis results of the study with similar studies in the literature

6. Conclusions
In this study, which consists of three parts, the test
performance of deep learning models obtained with a
small number of images, the test performance obtained
when using more images by increasing the data, and
the test performance obtained when using images
obtained after image processing techniques are tried to
be compared. In all three sections, settings close to each
other were used for all learning models. Input size,
activation function, loss function, batch value and
learning rate value for images are used the same in all
models. Only the optimizer and epoch values have
been changed.

As a result of training the models using a small number
of images without data augmentation: When the
Learning Rate value is set to 0.0001, the most successful
model was the DenseNet121 model with 80.87%, and
the most successful model was the VGG16 model with
83.28% when the Learning Rate value was set to 0.001.
As a result of training the models by increasing the
number of images by increasing the data, DenseNet121
was the most successful of the trainings with a test
accuracy of 98.69%. Among the 381 images tested, the
DenseNet121 model had the least errors with five false
image values. The model with the most incorrect
image values was the VGG16 model with 19 incorrect
image values. After the edge detection of leaf images

with CEDA, the best test performance was obtained
with the DenseNet121 model with 67.92% in the
trainings made as a result of training the models. It is
seen that the classification success rate obtained in the
edge detection process for leaf images with similar
color, texture and vein structure is lower than the
original images. Looking at the whole study, the
DenseNet121 model achieved high educational
success in both data augmentation and non-data
augmentation studies. In the future, a more advanced
data set will be created with different disease
categories for each medicinal plant and studies will be
carried out to determine the diseased area with deep
learning methods.

FUNDING
The author received no specific funding for this study.

CONFLICTS OF INTEREST
The author declares to not have any conflicts of interest
regarding reporting on the present study.
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no
datasets were generated during the current study.

References

Figure 10
Comparative analysis results of the study with similar
studies in the literature

Information Technology and Control 2024/1/5334

in the study conducted by Russel and Selvaraj [24],
the study is 9.63% more successful. Moreover, it was
observed that the highest classification success rate
was obtained among the classification studies con-
ducted with ten categories (Figure 10).

6. Conclusions
In this study, which consists of three parts, the test
performance of deep learning models obtained with
a small number of images, the test performance ob-
tained when using more images by increasing the
data, and the test performance obtained when using
images obtained after image processing techniques
are tried to be compared. In all three sections, settings
close to each other were used for all learning models.
Input size, activation function, loss function, batch
value and learning rate value for images are used the
same in all models. Only the optimizer and epoch val-
ues have been changed.
As a result of training the models using a small num-
ber of images without data augmentation: When the
Learning Rate value is set to 0.0001, the most success-
ful model was the DenseNet121 model with 80.87%,
and the most successful model was the VGG16 model
with 83.28% when the Learning Rate value was set to
0.001. As a result of training the models by increasing
the number of images by increasing the data, DenseN-
et121 was the most successful of the trainings with a

test accuracy of 98.69%. Among the 381 images tested,
the DenseNet121 model had the least errors with five
false image values. The model with the most incorrect
image values was the VGG16 model with 19 incorrect
image values. After the edge detection of leaf images
with CEDA, the best test performance was obtained
with the DenseNet121 model with 67.92% in the train-
ings made as a result of training the models. It is seen
that the classification success rate obtained in the edge
detection process for leaf images with similar color,
texture and vein structure is lower than the original
images. Looking at the whole study, the DenseNet121
model achieved high educational success in both data
augmentation and non-data augmentation studies. In
the future, a more advanced data set will be created
with different disease categories for each medicinal
plant and studies will be carried out to determine the
diseased area with deep learning methods.

Funding

The author received no specific funding for this study.

Conflicts Of Interest

The author declares to not have any conflicts of inter-
est regarding reporting on the present study.

Data Availability Statement

Data sharing not applicable to this article as no data-
sets were generated during the current study.

References
1. Baliga, M. S. Alstonia Scholaris Linn R Br in the Treat-

ment and Prevention of Cancer: Past, Present, and Fu-
ture. Integrative Cancer Therapies, 2010, 9(3), 261-269.
https://doi.org/10.1177/1534735410376068

2. Basnet, B., Bang, J. The State-of-the-Art of Knowl-
edge-Intensive Agriculture: A Review on Applied Sens-
ing Systems and Data Analytics. Journal of Sensors,
2018, 1-13. https://doi.org/10.1155/2018/3528296

3. Chollet, F. Xception: Deep Learning with Depthwise Sep-
arable Convolutions. Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017,
1251-1258. https://doi.org/10.1109/CVPR.2017.195

4. Chouhan, S. S., Singh, U. P., Kaul, A., Jain, S. A Data Re-
pository of Leaf Images: Practice towards Plant Conser-

vation with Plant Pathology. In 2019 4th International
Conference on Information Systems and Computer
Networks (ISCON), 2019, 700-707. IEEE. https://doi.
org/10.1109/ISCON47742.2019.9036158

5. Fu, L., Gao, F., Wu, J., Li, R., Karkee, M., Zhang, Q. Ap-
plication of Consumer RGB-D Cameras for Fruit De-
tection and Localization in Field: A Critical Review.
Computers and Electronics in Agriculture, 2020, 177,
105687. https://doi.org/10.1016/j.compag.2020.105687

6. He, K., Zhang, X., Ren, S., Sun, J. Deep Residual Learn-
ing for Image Recognition. Proceedings of the IEEE
Conference on Computer Vision and Pattern Rec-
ognition, 2016, 770-780. https://doi.org/10.1109/
CVPR.2016.90

35Information Technology and Control 2024/1/53

7. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., Adam, H. Mo-
bilenets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. ArXiv Preprint, 2017. ArX-
iv:1704.04861.

8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.
Q. Densely Connected Convolutional Networks. Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, 4700-4708. https://doi.
org/10.1109/CVPR.2017.243

9. Jain, S., Yadav, P. P., Gill, V., Vasudeva, N., Singla, N.
Terminalia Arjuna, a Sacred Medicinal Plant: Phyto-
chemical and Pharmacological Profile. Phytochemistry
Reviews, 2009, 8(2), 491-502. https://doi.org/10.1007/
s11101-009-9134-8

10. Kaur, S., Aggarwal, H., Rani, R. Hyper-Parameter Optimi-
zation of Deep Learning Model for Prediction of Parkin-
son’s Disease. Machine Vision and Applications, 2020,
31, 1-15. https://doi.org/10.1007/s00138-020-01078-1

11. Kavitha Lakshmi, R., Savarimuthu, N. DPD-DS for
Plant Disease Detection Based on Instance Segmenta-
tion. Journal of Ambient Intelligence and Humanized
Computing, 2021, 1-11. https://doi.org/10.1007/s12652-
021-03440-1

12. Kieu, S. T. H., Bade, A., Hijazi, M. H. A., Kolivand, H.
COVID-19 Detection Using Integration of Deep Learn-
ing Classifiers and Contrast-Enhanced Canny Edge De-
tected X-Ray Images. It Professional, 2021, 23(4), 51-
56. https://doi.org/10.1109/MITP.2021.3052205

13. Kour, V. P., Arora, S. Particle Swarm Optimization
Based Support Vector Machine (P-SVM) for the Seg-
mentation and Classification of Plants. IEEE Access,
2019, 7, 29374-29385. https://doi.org/10.1109/AC-
CESS.2019.2901900

14. Kumar, S., Sharma, S., Kumar, V., Sharma, A., Kaur, R.,
Saini, R. Jamun (Syzygium Cumini (L.) Skeels): The
Conventional Underutilized Multifunctional Plant-
an Exotic Gleam into Its Food and Functional Signifi-
cance. Industrial Crops and Products, 2023, 191, 115873.
https://doi.org/10.1016/j.indcrop.2022.115873

15. Li, F., Du, X., Zhang, L., Liu, A. Image Feature Fusion
Method Based on Edge Detection. Information Tech-
nology and Control, 2023, 52(1), 5-24. https://doi.
org/10.5755/j01.itc.52.1.31549

16. Ling, X., Zhao, Y., Gong, L., Liu, C., Wang, T. Dual-Arm
Cooperation and Implementing for Robotic Harvest-
ing Tomato Using Binocular Vision. Robotics and Au-
tonomous Systems, 2019, 114, 134-143. https://doi.
org/10.1016/j.robot.2019.01.019

17. Madhavan, M. V., Thanh, D. N. H., Khamparia, A., Pande,
S., Malik, R., Gupta, D. Recognition and Classification
of Pomegranate Leaves Diseases by Image Processing
and Machine Learning Techniques. Computers, Mate-
rials & Continua, 2021, 66(3), 2939-2955. https://doi.
org/10.32604/cmc.2021.012466

18. Mukhtar, H. M., Ansari, S. H., Bhat, Z. A., Naved, T.,
Singh, P. Antidiabetic Activity of an Ethanol Extract
Obtained from the Stem Bark of Psidium Guajava
(Myrtaceae). Die Pharmazie-An International Journal
of Pharmaceutical Sciences, 2006, 61(8), 725-727.

19. Negi, A., Kumar, K., Chauhan, P. Deep Neural Net-
work-Based Multi-Class Image Classification for Plant
Diseases. Agricultural Informatics, Wiley, 2021, 117-
129. https://doi.org/10.1002/9781119769231.ch6

20. Pham, T. N., Van Tran, L., Dao, S. V. T. Early Disease
Classification of Mango Leaves Using Feed-Forward
Neural Network and Hybrid Metaheuristic Feature Se-
lection. IEEE Access, 2020, 8, 189960-189973. https://
doi.org/10.1109/ACCESS.2020.3031914

21. Prabu, M., Chelliah, B. J. Mango Leaf Disease Identi-
fication and Classification Using a CNN Architecture
Optimized by Crossover-Based Levy Flight Distribution
Algorithm. Neural Computing and Applications, 2022,
34(9), 7311-7324. https://doi.org/10.1007/s00521-021-
06726-9

22. Qin, F., Liu, D., Sun, B., Ruan, L., Ma, Z., Wang, H. Iden-
tification of Alfalfa Leaf Diseases Using Image Recog-
nition Technology. PLOS ONE, 2016, 11(12), e0168274.
https://doi.org/10.1371/journal.pone.0168274

23. Rocha Ribeiro, S. M., Queiroz, J. H., Lopes Ribeiro de
Queiroz, M. E., Campos, F. M., Pinheiro Sant’Ana, H. M.
Antioxidant in Mango (Mangifera Indica L.) Pulp. Plant
Foods for Human Nutrition, 2007, 62(1), 13-17. https://
doi.org/10.1007/s11130-006-0035-3

24. Russel, N. S., Selvaraj, A. Leaf Species and Disease
Classification Using Multiscale Parallel Deep CNN Ar-
chitecture. Neural Computing and Applications, 2022,
34(21), 19217-19237. https://doi.org/10.1007/s00521-
022-07521-w

25. Sachar, S., Kumar, A. Survey of Feature Extraction and
Classification Techniques to Identify Plant through
Leaves. Expert Systems with Applications, 2021, 167,
114181. https://doi.org/10.1016/j.eswa.2020.114181

26. Sahu, K., Minz, S. Self-adaptive-deer Hunting Optimi-
zation-based Optimal Weighted Features and Hybrid
Classifier for Automated Disease Detection in Plant
Leaves. Expert Systems, 2022, 39(7), e12982. https://
doi.org/10.1111/exsy.12982

Information Technology and Control 2024/1/5336

27. Saleem, M. H., Potgieter, J., Arif, K. M. A. A Perfor-
mance-Optimized Deep Learning-Based Plant Disease
Detection Approach for Horticultural Crops of New
Zealand. IEEE Access, 2022, 10, 89798-89822. https://
doi.org/10.1109/ACCESS.2022.3201104

28. Salvucci, G., Pallottino, F., De Laurentiis, L., Del Frate,
F., Manganiello, R., Tocci, F., Vasta, S., Figorilli, S., Bas-
sotti, B., Violino, S., Ortenzi, L., Antonucci, F. Fast Olive
Quality Assessment through RGB Images and Advanced
Convolutional Neural Network Modeling. European
Food Research and Technology, 2022, 248(5), 1395-
1405. https://doi.org/10.1007/s00217-022-03971-7

29. SepúLveda, D., Fernández, R., Navas, E., Armada, M.,
González-De-Santos, P. Robotic Aubergine Harvest-
ing Using Dual-Arm Manipulation. IEEE Access,
2020, 8, 121889-121904. https://doi.org/10.1109/AC-
CESS.2020.3006919

30. Siddharth, S. C., Ajay, K., Uday, P. S. A Database of Leaf
Images: Practice towards Plant Conservation with
Plant Pathology. Mendeley Data, Madhav Institute of
Technology & Science, 2019.

31. Simonyan, K., Zisserman, A. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition.
ArXiv Preprint, 2014. ArXiv:1409.1556. https://doi.
org/10.48550/arXiv.1409.1556

32. Singh, D., Taspinar, Y. S., Kursun, R., Cinar, I., Koklu,
M., Ozkan, I. A., Lee, H. N. Classification and Analysis
of Pistachio Species with Pre-Trained Deep Learn-

ing Models. Electronics, 2022, 11(7), 981. https://doi.
org/10.3390/electronics11070981

33. Sujatha, R., Chatterjee, J. M., Jhanjhi, N. Z., Brohi, S. N.
Performance of Deep Learning vs Machine Learning in
Plant Leaf Disease Detection. Microprocessors and Mi-
crosystems, 2021, 80, 103615. https://doi.org/10.1016/j.
micpro.2020.103615

34. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna,
Z. Rethinking the Inception Architecture for Computer
Vision. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016, 2818-2826.
https://doi.org/10.1109/CVPR.2016.308

35. Tan, M., Le, Q. Efficientnet: Rethinking Model Scaling
for Convolutional Neural Networks. International Con-
ference on Machine Learning, PMLR, 2019, 6105-6114.

36. Tang, Y., Chen, M., Wang, C., Luo, L., Li, J., Lian, G., Zou, X.
Recognition and Localization Methods for Vision-Based
Fruit Picking Robots: A Review. Frontiers in Plant Science,
2020, 11, 510. https://doi.org/10.3389/fpls.2020.00510

37. Yasar, A. Benchmarking Analysis of CNN Models for
Bread Wheat Varieties. European Food Research and
Technology, 2022. https://doi.org/10.1007/s00217-022-
04172-y

38. Yigit, E., Sabanci, K., Toktas, A., Kayabasi, A. A Study
on Visual Features of Leaves in Plant Identification Us-
ing Artificial Intelligence Techniques. Computers and
Electronics in Agriculture, 2019, 156, 369-377. https://
doi.org/10.1016/j.compag.2018.11.036

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

