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Leaf images are often used to detect plant diseases because most disease symptoms appear on the leaves. Ana-
lyzes performed by experts in the laboratory environment are expensive and time consuming. Therefore, there 
is a need for automated plant disease detection systems that are both economical and can help diagnose early 
symptoms more accurately. In this study, a deep learning-based methodology is presented for the classifica-
tion of leaf diseases of plants, which are very similar in color, texture, vein and shape and cannot be noticed by 
non-experts, which are important for traditional medicine and pharmaceutical industry. In the model develop-
ment process, 7 pre-learning deep learning algorithms and an image data set created from plant leaves in ten 
categories were preferred. The proposed model classifies the plant type and diseased condition in the dataset. 
In the first step of training the model, different learning rates were tested with optimum hyperparameters. In 
the second part, a test accuracy rate of 98.69% was achieved with the DenseNet121 model, with increased data. 
At the last stage, after the edge detection processes, the test accuracy value of 67.92% was reached with the 
DenseNet 121 model.
KEYWORDS: CNN algorithms, edge detection, image classification, medicinal plant leaves, Multi-class de-
tection. 
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1. Introduction
Plants are not only a source of oxygen for living 
things, but also a source of food. The fruits, flowers, 
grains, stems, and leaves of plants can be used in 
different areas such as food, medicine, and perfum-
ery. In plants, leaves are the first messenger of plant 
diseases [2]. Plant diseases and pests can cause agri-
cultural and ecological losses. For this reason, early 
detection of plant diseases is important as that of 
other living things. Traditionally, farmers and plant 
pathologists use their eyes to detect diseases and 
make decisions based on their experience. This is 
not true as many types of diseases can look the same 
in the early stage. 
In addition, their experiences need to be passed on 
from generation to generation [5]. There is a need for 
an accurate disease detector associated with a reli-
able database to assist farmers, especially the young 
and inexperienced. Recently, it continues to be used 
in many areas such as the detection of diseases and 
the application of appropriate treatment methods in 
precision agriculture technology applications with 
computer vision and Deep learning (DL) or Machine 
learning (ML) algorithms [29, 36].
Computer vision, image processing, and machine 
learning algorithms are often used in various ap-
plications such as segmentation, classification, and 
pattern recognition. In recent years, DL technologies 
have been preferred to detect plant species and solve 
various agricultural problems. Different systems for 
agricultural product analysis based on leaf images 
continue to be developed [16, 22]. Numerous studies 
use different Convolutional Neural Networks (CNN) 
to identify plant diseases. According to these studies, 
different plant diseases affecting the same plant spe-
cies or different plant species are categorized. In stud-
ies on different plant species such as sycamore and 
peach, when the leaf images are examined in terms of 
shape, it is seen that they are quite different from each 
other. However, in some medicinal plant leaves, it has 
been determined that the distinctive features of the 
leaves such as color, shape, texture, length, width, and 
veins are very similar to each other. Because of these 
similarities, non-experts find it difficult to distinguish 
between these plants and their diseases.
Alstonia Scholaris leaves are used by Indians for in-
testinal complaints, chronic diarrhea, and dysentery. 

It is also used in the treatment of cancer and tumor 
along with malaria [1]. Arjun leaf is often used for the 
treatment of cardiovascular ailments and hyperten-
sion. In addition, it has an ulcer-protective effect. It 
is also used to prevent bone loss and increase bone 
mineral density [9]. Mango peel and juice are an oily 
mixture of organic compounds with allergenic prop-
erties called urushoil [23]. In traditional medicine, 
guava leaves are used to treat diarrhea [18]. Parts of 
the Jamun tree such as leaves, seeds, flowers, fruits, 
and bark are used in diabetes, allergies, viral infec-
tions, inflammation, and stomach ulcers [14]. 
In this experimental study, a classification study was 
carried out with deep learning architectures using im-
ages of healthy and diseased leaves of Alstonia Schol-
aris, Arjun, Mango, Guava and Jamun trees, which are 
of great importance for the pharmaceutical industry 
and traditional medicine. The study was carried out 
using original, augmented and image processing data-
sets. The contributions and original aspects of the 
proposed study to the literature are given below.
 _ An approach is presented for the classification of 

plant diseases with similar physical characteristics 
such as color, texture, vein and shape, which are of 
worldwide importance and used in the treatment 
of many diseases, in ten different categories.

 _ The performance of VGG16, ResNet50V2, 
DenseNet121, MobileNet, Xception, InceptionV3 
and EfficientNetB3 pre-learning models were 
evaluated in plant leaf diseases.

 _ Comparison of the performance ratios of the 
original, augmented, and obtained data sets with 
image processing technique is presented.

 _ The effect of different learning rate values on 
educational performance is shown.

The organization of this article: In Section 2, the im-
portance of artificial intelligence-based plant classifi-
cation in the literature and the differences in the study 
are explained. The DL methods used in Section 3 and 
the features of the dataset used for leaf category and 
leaf disease recognition in Section 4 are explained in 
detail. The details of the experimental study and the 
comparison of the results obtained are evaluated in 
Section 5. In the last step, the conclusion of the article 
and future studies are given. 
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2. Literature Review
In order to determine the place of the proposed study 
in the literature and to create its contributions, stud-
ies on plant classification and disease type detection 
were examined. Some of the studies conducted in the 
literature to detect various plant diseases using deep 
learning and artificial intelligence techniques are as 
follows. Since plant leaves carry the symptoms of plant 
diseases, it is possible to find out what type of disease 
is present in the plant by examining the leaves. Shape, 
texture, color, and vein characteristics are used in 
the classification of leaf types and diseases with deep 
learning methods [25]. According to Yigit et al. [38], 
they classified 32 different plant species using five dif-
ferent deep learning models. In the study, an accuracy 
rate of 92.53% was obtained with the SVM model.
Studies on the detection and classification of diseas-
es from leaf images of different plant species con-
tinue in the literature. Of those, the data set, which 
includes ten different diseases, including 21184 im-
ages, was used by Negi et al. [19]. In the study using 
CNN architecture, ten diseases were classified with 
a 96.02% success rate. In another study conducted 
for ten plants, the classification of healthy and dis-
eased leaves was made by the Sahu and Minz [26]. 
With the self-adaptive deer hunting optimization 
(SA-DHOA) suggested by the authors, weighted fea-
ture extraction is performed and classification is per-
formed with SCNN (SVM+CNN). Citrus leaf disease 
was to be classified by Sujatha et al. [33] using ML and 
DL (InceptionV3, VGG16, VGG19). In the study in 
which fours diseases (Black spot, Canker, Greening, 
Melanose) and Healthy conditions of citrus leaf were 
classified, the best result was obtained with 89.5% 
VGG16. In order to effectively identify and categorize 
diseases in pomegranates, a plant with a temperate 
climate similar to citrus, Madhavan et al. [17] devel-
oped a framework. In the study, a 98.07% success rate 
was obtained for five diseases, six of which were using 
image processing techniques. 
Studies on the detection and classification of leaf dis-
eases of plants such as avocado, mango, guava, jamun, 
and arjun growing in the tropical climate zone con-
tinue. Saleem et al. [27] created a new dataset of leaf 
diseases of five trees. The region-based fully convolu-
tional network (RFCN), after utilizing multiple DL ar-
chitectures, produced the best performance in a study 
that provided a DL-based technique to identify and 

locate leaf disease. Kavitha Lakshmi and Savarimuthu 
[11] proposed a new deep learning DPD-DS framework 
to detect multiclass plant leaf diseases. In the Mask-
RCNN-based framework, healthy and diseased leaves 
of apple, grape, mango, pomegranate, and pongamia 
pinnata plants were classified with 80.01% F1-Score. 
It was aimed to classify the disease by using low reso-
lution images of plant leaf diseases with the Pham et 
al. [20]. ANN approach using a dataset consisting of 
450 images belonging to four different classes, three 
of which are diseased Anthracnose, Gall Midge, Pow-
dery Mildew, and Healthy. The proposed multi-layer 
perceptron (MLP) model gave better results than VGG, 
AlexNet, and ResNet-50. In another study with the 
mango plant, Prabu and Chelliah [21] used a dataset of 
380 images, three diseased and healthy ones. The Mo-
bileNetV2 deep learning model for feature extraction 
and the DVM as the classifier were used in the study, 
and the classification was performed with an accuracy 
of 94.5%. Kour and Arora [13] presented a new method 
for classifying seven different plants, Guava, Jamun, 
Mango, Grape, Apple, Tomato, and Arjun, based on 
their leaf image. In the study, 95.23% segmentation and 
classification Accuracy was obtained with the Particle 
swarm optimization algorithm using 1813 leaf imag-
es. Russel and Selvaraj [24] tested their proposed six 
parallel CNN models in the study conducted with me-
dicinal plants and other plant datasets. Plant Village, 
MepcoTropicLeaf, and the Data repository of leaf im-
age datasets had a success rate of 98.61%, 90.86%, and 
90.02%, respectively.
In the literature, it has been observed that two meth-
ods are generally used in studies on the classification 
of plant diseases. In the first method, plants that dif-
fer from each other in shape, texture, vein, and color 
such as grapes, apples, corn, and potatoes are used. 
Secondly, they are only studies to detect different dis-
eases of the same plant such as mango or citrus. First, 
the fact that leaves have different physical properties 
is an easily distinguishable feature for deep learning 
algorithms. In second, it is an easily distinguishable 
feature that only the diseases are different in the de-
tection of diseases in leaves with the same physical 
characteristics. However, the classification of plants 
with the same physical characteristics as color, tex-
ture, shape, and veins and their diseases, is a difficult 
process compared to other methods.
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3. Deep Neural Networks
Today, the use of deep learning architectures has in-
creased for object detection, recognition and classifi-
cation processes in images. Widely used deep learn-
ing methods are preferred in many different fields. It 
is no longer used for object detection in a simple im-
age, but even for the detection of various diseases on 
MR images in the health sector. In addition, remark-
able studies have been carried out in many areas such 
as the determination of seed types in agricultural 
activities [37], measurement of product quality [28], 
classification of collected products.
We can design the deep learning model by ourselves, 
layer by layer, or we can use pre-developed and trained 
ready-made models. The fact that the performance 
of these models has been proven and the layer struc-
tures to be used have been defined, which facilitates 
the development of the model. When using the model, 
you only need to define the input layer and the output 
layers in the last section.

3.1. Pre-Trained CNN Models 
Deep learning algorithms have different models used 
in many areas such as classification, detection and 
prediction. CNN algorithm is widely preferred in im-
age-based operations. Researchers use different CNN 
architectures to train models depending on their in-
tended use and application. Similarly, seven state-of-
the-art pre-trained architectures were selected in the 
study to design the classification system according to 
the health and disease status of plants: VGG16, Res-
Net50V2, DenseNet121, MobileNet, Xception, Incep-
tionV3, EfficientNetB3. Brief information about the 
CNN architectures used in the study is given.

3.1.1. VGG16
The VGG16 architecture consists of 21 layers, 13 con-
volutional, 5 pooling, and 3 fully connected layers 
in total. The image input resolution is 224×224 pix-
els. The convolutional filter size is 3×3 pixels. Fully 
connected layers utilized for feature extraction make 
up the final layers [31]. 

3.1.2. ResNet50V2
ResNet (Residual Network), in 2015 by He et al. [6] 
was developed to facilitate the training of networks 
that are significantly deeper. ResNet consists of 34 

layers and compared to VGG, the number of filters 
is less and not too complex. In Resnet50, every 2 lay-
ers in ResNet are replaced with a 3-layer bottleneck 
block, and a 34-layer structure is created.

3.1.3. DenseNet121
DenseNet connects its layers to all other layers in a 
feed-forward manner. Layers take input values from 
the previous layers and pass their values to the next 
layers. Most importantly, unlike ResNets, it never 
combines features via aggregation before moving to a 
layer; instead, it combines properties. Therefore, any 
layer has inputs consisting of feature maps of all pre-
vious convolutional blocks [8].

3.1.4. InceptionV3
The basic model, InceptionV1, was first released as 
GoogLeNet in 2014. InceptionV3 is an improved ver-
sion of that model. InceptionV3 consists of a large 
number of convolution and maximum pooling steps, 
and the final stage includes a fully connected neural 
network [34].

3.1.5. MobileNet
An effective and portable CNN architecture called 
MobileNet is utilized in practical applications. In 
order to provide lighter models, MobileNet predomi-
nantly uses deeply separable convolutions as opposed 
to the conventional convolutions utilized in earlier 
architectures. Deeply separable convolution layers 
consist of deep convolution and point convolution [7].

3.1.6. EfficientNetB3
EfficientNet is among the most efficient models achiev-
ing high accuracy in both ImagiNet and pervasive im-
age classification transfer learning tasks. EfficientNet 
is an advanced neural network architecture and scal-
ing method that evenly scales all depth/width/resolu-
tion dimensions using a composite coefficient [35]. A 
family of models (B0 to B7) that represent a good trade-
off between efficiency and accuracy at different scales 
are provided by EfficientNet as a heuristic method for 
scaling the model. It allows the efficiency-oriented ba-
sic model (B0) to beat models of all sizes while avoiding 
extensive grid search of hyperparameters.

3.1.7. Xception
Xception architecture, which is a powerful version 
of Inception architecture, is short for “Extreme In-
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ception”. It consists of 71 layers in total. There are 36 
convolution layers within these layers. Between these 
convolution layers, there are 14 jump link layers. 
These layers require less computation than normal 
convolutional layers [3].

4. Material and Methods
The system architecture of the study on the deep 
learning-based medicinal plant leaf recognition and 
disease detection framework is shown in Figure 1. In 
this experimental study, after preprocessing and data 
augmentation of five different plant leaf images se-
lected from the Mendeley dataset, the data were ran-
domly partitioned for training, validation and testing. 
After the optimum hyperparameter determination 
process, seven different deep learning algorithms 
were applied. The classification success of the models 
was measured by classifying leaf images that had nev-

Figure 1 
A block representation of the suggested system for identifying and categorizing plants and their diseases
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colors of the leaves are so similar that they can hardly 
be distinguished from each other.
The names of the leaves used in the study, the num-
ber of healthy and diseased, and the disease category 
are given in Table 1. Out of a total of 2363 leaf images, 
1127 are in the healthy category and 1236 are in the 
diseased category. Images are originally 4000×6000 
pixels, 24-bit depth, horizontal and vertical resolu-
tions of 96 dpi. For training deep learning algorithms 
in image classification, images were resized because 
of the high computational cost of preserving the origi-
nal resolution. In all deep learning architectures used, 
all the images of the dataset are resized by using the 
non-adaptive methods of interpolation and the imag-
es were converted to 224×224 pixels.

4.2. Data Augmentation
The leaf images used in the study are the leaves of the 
Alstonia Scholaris, Arjun, Mango, Guava and Jamun 
trees in the Mendeley dataset. The leaves belonging to 
these five different species were divided into diseased 

Table 1 
Plant leaf types, diseases, and numbers used in the data set

Plant Name Healthy Images Disease Category Diseased Images Total Images

Alstonia Scholaris 179 Leaf spot 254 433

Arjun 220 Leaf spot 232 452

Guava 277 Fungal disease 142 419

Jamun 281 Fungal disease 344 625

Mango 170 Anthracnose 264 434

Total 1127 1236 2363

Table 2 
Plant leaf types, diseases, and numbers used in the data set

Plant
Train Train (Augmented) Validation / Test

Healthy Diseased Healthy Diseased Healthy Diseased

Alstonia Scholaris 121 168 1000 1000 29 43

Arjun 150 158 1000 1000 35 37

Mango 187 96 1000 1000 45 23

Guava 191 234 1000 1000 45 55

Jamun 116 180 1000 1000 27 42

Total 765 836 5000 5000 181 200

and healthy according to their types and used as ten dif-
ferent classes. The study was carried out in three differ-
ent sections using data sets created using original, data 
augmentation and image processing techniques. In the 
first part, the study was carried out using the data in the 
data set without any data augmentation. Of the dataset, 
68% was allocated for training, 16% for testing and 16% 
for validation. 1601 images were used for training, 381 
for testing, and 381 for validation (Table 2).
In addition to using more advanced techniques for 
data replication, some basic augmentation tech-
niques were applied to all classes to increase the num-
ber of samples and robustness against unseen data. In 
the second part of the study, data augmentation was 
performed on the images by using horizontal rotation, 
horizontal and vertical scrolling, image zooming and 
zooming methods. After the data augmentation pro-
cess, as seen in Table 2, 1000 images were obtained 
for both diseased and healthy species. Thus, a total of 
10000 visuals were created in ten classrooms for edu-
cational purposes.
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4.3. Edge Detection
Edges in images contain meaningful, important in-
formation and features. If an edge detector is applied 
to an image, the amount of data that needs to be pro-
cessed is reduced and less relevant information is 
filtered out. In the third part of this study, a data set 
was created from healthy and diseased leaf images 
augmented using the Canny Edge Detector Algorithm 
(CEDA) in Python.
CEDA is an edge operator that can detect a wide va-
riety of edges in an image, developed by JF Canny in 
1986. CEDA reduces irrelevant image details within 
the image, allowing more important features of imag-
es to be revealed. Thus, only the outline of the image is 
left to create less clutter and lower error rates for ma-
chines. CEDA consists of four steps: noise reduction, 
density gradient calculation, non-maximum suppres-
sion, and hysteresis thresholding. Detailed descrip-
tions for Canny edge detection are as follows:
Step 1: Noise Reduction
The picture is softened using a Gaussian filter to elim-
inate extraneous textures and details. The equation 
for the Gaussian Filter Kernel is provided in Equation 
1. Standard convolution techniques are used to com-
pute and apply the Gaussian filter.
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Step 2: Calculating Intensity Gradient 

To obtain the edge strength, the gradient density of the 
image is calculated using Sobel kernels (Gx and Gy) 
(Equation 2). 2 dimensional spatial gradient 
calculations are made by bending the image in both 
horizontal and vertical dimensions with 3×3 Gx and Gy 
cores [15]. 

𝐺𝐺𝑥𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] , 𝐺𝐺𝑦𝑦 = [
   1    2    1
   0    0    0
−1 −2 −1

] .                           (2) 

With Equation 3, the edge gradient density is 
calculated. Equation 4 below can be used to determine 
the edge orientation once the x and y gradients are 
known. 

𝐺𝐺 = √𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2                                                                    (3) 

𝜃𝜃 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥

).                                                                   (4) 
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In addition to using more advanced techniques for 
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samples and robustness against unseen data. In the 
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for both diseased and healthy species. Thus, a total of 
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additional sets of pixels that do not make edges after 
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To find out if the edges are genuine, this is done. It is 
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gradients larger than the maximum value. All edges 
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Step 3: Non-maximum Suppression
Each area of the image is scanned to remove any ad-
ditional sets of pixels that do not make edges after the 
gradient direction and gradient size have been deter-
mined. By doing this, cells that might not be an edge 
are removed.
Step 4: Hysteresis Thresholding
To find out if the edges are genuine, this is done. It is 
necessary to have Minimum and Maximum threshold 
numbers. True edges are all edges with density gradi-
ents larger than the maximum value. All edges below 
the minimum value are considered false edges and are 
removed [12].

4.4. Hyperparameter Tuning
Hyperparameter tuning is one of the most important 
elements that increase the efficiency of machine learn-
ing models. During the training of the models, each 
classifier learns some parameters on its own, but each 
model has several hyperparameters that can be tuned 
that it cannot learn automatically. Since it is very diffi-
cult and time consuming to adjust each hyperparame-
ter individually, this process can be done automatically 
with the Grid Search optimization (GSO) algorithm.
Grid Search Optimization Algorithm
Input: Hyper-parameters h1,…,hk,
          Itreations per stage X=<X1,…,Xz>,
          Total number of stages Z,
          Training data per stage Dtrain=<Dtrain

1,…,Dtrain
z>,

          Validation data Dval,
          Validation accuracy λ
Output: Hyper parameters h*
          for stage z=1 to Z do
              for i=1 to Y
                 λi=evaluate λ(hi,Ds

train,Dval)
             end
             for j=Y+1 toXz

                g=grid_search(hi,λi)j-1
i=1 

               hj=max_argsh€aa(h,g)
               λi=evaluate λ(hi,Ds

train,Dval)
            end
          reset h1:k=best k configs €(h1,…hXz)
       end
return h*=max argsh€(hX1,…,hXz)λj
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The k best arrangement based on validation accuracy 
passing through the prior stage Y is first assessed on 
the training data for the current stage, Dtrain, during 
each stage z. The grid search algorithm is then intro-
duced with these k parameters and tied for Xs-Y itera-
tions on Dtrain, where XS is the total number of phase z 
repetitions. The execution of the following step is now 
started using the top configurations that rely on the va-
lidity accuracy. Following the run, all S organizes the 
computation and extracts the configuration from all 
of the hyperparameters considered by all stages with 
the exceptional verification precision. The algorithm 
eventually provides the configuration output with the 
most astounding validation accuracy near the conclu-
sion of a substantial number of steps [10].

4.5. Performance Evaluation
To analyze the performances of the deep learning 
methods used in the study, the metrics accuracy (A), 
precision (P), recall (R), and F1-score (F1), whose 
mathematical equations are given in 5, 6, 7, and 8, re-
spectively, are used. The metrics used are expressed 
mathematically as:
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the validity accuracy. Following the run, all S 
organizes the computation and extracts the 
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considered by all stages with the exceptional 
verification precision. The algorithm eventually 
provides the configuration output with the most 

astounding validation accuracy near the conclusion of 
a substantial number of steps [10]. 
4.5 Performance Evaluation 
To analyze the performances of the deep learning 
methods used in the study, the metrics accuracy (A), 
precision (P), recall (R), and F1-score (F1), whose 
mathematical equations are given in 5, 6, 7, and 8, 
respectively, are used. The metrics used are expressed 
mathematically as: 
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𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =   𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)                                   (6) 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)          (7) 

𝐹𝐹1 = 2 × ((𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)/(𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅)) (8)

Here, TP (true positive) means that what is actually 
true is correct as a result of the estimation, TN (true 
negative) means that what is actually wrong is also 
wrong as a result of the estimation, FP (false positive) 
means that what should be wrong in reality is correct 
as a result of the estimation, FN (false negative) means 
that what should be true in reality is wrong as a result 
of the estimation. In our study, Accuracy for real data 
and precision, recall, and F1-score metrics for 
augmented data were used. 

 
5. Results and Discussion 
In this section, classification analysis was performed 
with VGG16, ResNet50V2, DenseNet121, MobileNet, 
Xception, EfficientNetB3, and InceptionV3 models 
created by transfer learning for the classification of 
medicinal plant images. In the study, a computer 
equipped with Intel I9 3.56 GHz Processor, 32 GB Ram, 
and 11 GB Nvidia Graphics card was used. The study 
was carried out in Jupyter Notebook using the Python 
programming language on the Anaconda platform. 

CEDA was used in Python Spyder to segment the leaf 
veins in the images. Edge detection was tested on 
images of healthy and diseased leaves, and examples 
of the results obtained are presented in Figure 3. The 
main and secondary veins are clearly visible on 
healthy leaves. In diseased leaves, although the veins 
were not clear, a mixture of diseased areas and veins 
was obtained. 
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tuned that it cannot learn automatically. Since it is very 
difficult and time consuming to adjust each 
hyperparameter individually, this process can be done 
automatically with the Grid Search optimization (GSO) 
algorithm. 

Grid Search Optimization Algorithm 
Input: Hyper-parameters h1,…,hk, 

          Itreations per stage X=<X1,…,Xz>, 

          Total number of stages Z, 

          Training data per stage Dtrain=<Dtrain1,…,Dtrainz>, 

          Validation data Dval, 

          Validation accuracy  

Output:Hyper parameters h* 

          for stage z=1 to Z do 

              for i=1 to Y 

                 i=evaluate (hi,Dstrain,Dval) 

             end 

             for j=Y+1 toXz 

                g=grid_search(hi,i)j-1i=1  

               hj=max_argsh€aa(h,g) 

               i=evaluate (hi,Dstrain,Dval) 

            end 

          reset h1:k=best k configs €(h1,…hXz) 

       end 

return h*=max argsh€(hX1,…,hXz)j 

The k best arrangement based on validation accuracy 
passing through the prior stage Y is first assessed on 
the training data for the current stage, Dtrain, during 
each stage z. The grid search algorithm is then 
introduced with these k parameters and tied for Xs-Y 
iterations on Dtrain, where XS is the total number of 
phase z repetitions. The execution of the following step 
is now started using the top configurations that rely on 
the validity accuracy. Following the run, all S 
organizes the computation and extracts the 
configuration from all of the hyperparameters 
considered by all stages with the exceptional 
verification precision. The algorithm eventually 
provides the configuration output with the most 

astounding validation accuracy near the conclusion of 
a substantial number of steps [10]. 
4.5 Performance Evaluation 
To analyze the performances of the deep learning 
methods used in the study, the metrics accuracy (A), 
precision (P), recall (R), and F1-score (F1), whose 
mathematical equations are given in 5, 6, 7, and 8, 
respectively, are used. The metrics used are expressed 
mathematically as: 
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Here, TP (true positive) means that what is actually 
true is correct as a result of the estimation, TN (true 
negative) means that what is actually wrong is also 
wrong as a result of the estimation, FP (false positive) 
means that what should be wrong in reality is correct 
as a result of the estimation, FN (false negative) means 
that what should be true in reality is wrong as a result 
of the estimation. In our study, Accuracy for real data 
and precision, recall, and F1-score metrics for 
augmented data were used. 
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In the study, pre-trained models with good 
classification success were used to create new models 
using the transfer learning method. By altering the 
layers of the current architectures, the transfer learning 
technique enables the model to be successfully trained. 
By altering the layers of preexisting architectures, 
models can be effectively trained using the transfer 
learning technique [32]. In order to obtain high 
accuracy in the deep learning algorithms used in the 
study, the GSO technique was tested in the selection of 
the optimum hyperparameters in the ranges shown in 
Table 3 and optimum values were obtained. 
Table 3  

Tested hyperparameters and their values 
Hyperparameter Range value Best value 
Dropout 0.1, 0.2, 0.3, 0.4, 0.5 0.2, 0.4 
Batch size 32, 64, 128, 256 64 
Epochs 30, 50, 60, 90 50 
Learning rate 0.001, 0.003, 0.01, 

0.0001, 0.00001 
0.001, 0.0001 

In the study, as shown in Table 4, using seven different 
deep learning methods, ten different categories of five 
different plants (Alstonia Scholaris, Arjun, Mango, 
Guava and Jamun) were classified. Images of 
224×224×3 pixels were given to the input of the models, 

Adam optimizer was used as the optimizer, Softmax 
was used as the classifier, and activation function 
ReLU was used. Table 4 provides additional 
information about the various experimental 
parameters used in this experimental study. 
Table 4  

Experimental setup with many study-related characteristics 
Parameters Values 

Deep learning 
models 

M1=VGG16,      M2=ResNet50V2,     
M3=DenseNet121,  M4=Xception,    
M5=InceptionV3,      
M6=MobileNet,  M7=EfficientNetB3 

Input Image 
Dimensions 224×224×3 pixels 

Activation 
Function ReLU 

Optimizer Adam 
Loss Function Categorical cross-entropy 
Batch Size 64 
Learning Rates L1 = 0.001,   L2 = 0.0001 
Epoch 50 
Number of 
Categories 10 
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CEDA was used in Python Spyder to segment the leaf 
veins in the images. Edge detection was tested on imag-
es of healthy and diseased leaves, and examples of the 
results obtained are presented in Figure 3. The main and 
secondary veins are clearly visible on healthy leaves. 
In diseased leaves, although the veins were not clear, a 
mixture of diseased areas and veins was obtained.
In the study, pre-trained models with good classifica-
tion success were used to create new models using the 
transfer learning method. By altering the layers of the 
current architectures, the transfer learning technique 
enables the model to be successfully trained. By al-
tering the layers of preexisting architectures, models 
can be effectively trained using the transfer learning 
technique [32]. In order to obtain high accuracy in the 
deep learning algorithms used in the study, the GSO 
technique was tested in the selection of the optimum 
hyperparameters in the ranges shown in Table 3 and 
optimum values were obtained.

Table 3 
Tested hyperparameters and their values

Hyperparameter Range value Best value

Dropout 0.1, 0.2, 0.3, 0.4, 0.5 0.2, 0.4
Batch size 32, 64, 128, 256 64
Epochs 30, 50, 60, 90 50

Learning rate
0.001, 0.003, 0.01, 
0.0001, 0.00001

0.001, 0.0001

In the study, as shown in Table 4, using seven differ-
ent deep learning methods, ten different categories 
of five different plants (Alstonia Scholaris, Arjun, 
Mango, Guava and Jamun) were classified. Images of 
224×224×3 pixels were given to the input of the mod-
els, Adam optimizer was used as the optimizer, Soft-
max was used as the classifier, and activation function 
ReLU was used. Table 4 provides additional informa-
tion about the various experimental parameters used 
in this experimental study.

5.1. Comparision Between DL Architecture
In the first part of the study, the images collected from 
ten different classes and categories of the data set be-
fore the data augmentation process were divided into 
training (68%), test (16%) and validation (16%) sets. A 
total of 2363 images were used, of which 1601 images 
were used for training, 381 images for testing, and 381 
images for validation.
In the proposed framework, seven different pre-learn-
ing models with different feature extraction strate-
gies, namely VGG16, ResNet50V2, DenseNet121, Mo-
bileNet, Xception, InceptionV3, and EfficientNetB3, 
were selected. Some layers needed to be updated in 
order to train with leaf images using the weights of 
the pre-trained models used in the research. Input 
for the entire link layer is 4096 in all models after 
the input layer values are set. The input of the full 
link layer has been modified to ten in all models due 
to the study’s dataset having ten classes; as output 
layers, Flatten, Dense and Dropout layers in VGG16 
model, GlobalAveragePooling2D and Dense layers in 
ResNet50V2, DenseNet121, InceptionV3, Xception 
and MobileNet models, GlobalAveragePooling2D, 
BatchNormalization and Dropout layers in Efficient-
NetB3 model. In addition, the parameter value is set 
to 0.2 in the dropout layer. Softmax function is used 
for classification in the last layer of the model. Adam 
optimizer is preferred as the optimizer function. The 
loss function chosen is the categorical cross-entropy. 
The epoch value is set to 50 and the stack size is 64. 
Models were tested separately, using values of 0.001 
and 0.0001 as learning rates.
The accuracy values obtained from the training, vali-
dation and testing data for two different learning val-
ues and all models are given in Table 5. In the data used 
by the training values, the best results were obtained 
with DenseNet121 with a learning rate of 0.0001 and 
with the VGG16 model with a learning rate of 0.001. In 

Table 4 
Experimental setup with many study-related characteristics

Parameters Values

Deep learning models

M1=VGG16, 
M2=ResNet50V2,     
M3=DenseNet121,  
M4=Xception,    
M5=InceptionV3,      
M6=MobileNet,  
M7=EfficientNetB3

Input Image Dimensions 224×224×3 pixels

Activation Function ReLU

Optimizer Adam

Loss Function Categorical cross-entropy

Batch Size 64

Learning Rates L1 = 0.001,   L2 = 0.0001

Epoch 50

Number of Categories 10
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the validation and test values, DenseNet121 at 0.0001 
learning rate and VGG16 model at 0.001 learning rate 
achieved the best results.
In the training data set, very close results were ob-
tained in the MobileNet and DenseNet121 models for 
0.0001 learning rate, and in VGG16 and DenseNet121 
models for 0.001 learning rate. The DenseNet121 
model gave quality results for both learning rates. 
In the validation and test datasets, the MobileNet 
and DenseNet121 models for 0.0001 learning rate, 
DenseNet121 and VGG16 models for 0.001 learning 
rate were the most successful models.

5.2. Effects of Data Augmentation Techniques
In the second part of the study, a total of 10762 images 
were obtained for ten different categories belonging 
to five different healthy and diseased plant classes 
by using horizontal rotation, horizontal and vertical 
scrolling and image zooming methods. The images of 
healthy and diseased leaves of each plant for training 
were rounded out to 1000, so that 10000 images were 
used for training, 381 images for validation, and 381 
images for testing.
In this part of the experimental study, seven different 
deep learning models with different feature extraction 
strategies used in the first part were used. First, in the 
preprocessing step, the input image values are sized 
to 224×224 pixels. For transfer learning, VGG16, Res-
Net50V2, DenseNet121, InceptionV3, Xception, Mo-
bileNet, EfficientNetB3 models were added as output 
layer as -1 for axis, 0.99 for momentum and 0.001 for 

Table 5 
Train and validation accuracy of deep learning models for the original dataset

Model

Training Accuracy (%) Validation Accuracy (%) Test Accuracy (%)

Learning rate

0.0001 0.001 0.0001 0.001 0.0001 0.001

VGG16 72.46 86.92 70.32 84.44 70.02 83.28

ResNet50V2 79.11 69.64 76.48 67.78 77.03 66.23

DenseNet121 86.08 84.86 82.78 80.93 80.87 81.02

Xception 80.66 79.66 74.98 78.04 75.02 76.08

InceptionV3 72.39 73.39 69.66 69.52 67.27 69.13

MobileNet 82.88 70.38 80.38 66.46 80.56 67.61

EfficientNetB3 74.11 60.81 78.79 60.73 75.23 60.55

epsilon in BatchNormalization layer. Then, 256 value 
and ReLU function were used for the added dense lay-
er. Moreover, in the dropout layer the parameter val-
ue is set to 0.4. The softmax function was used as the 
activation function of the model. Adam was chosen as 
the optimizer function. Categorical crossentropy was 
used as the loss function. Batch size is set to 64, learn-
ing rate is set to 0.001, and epoch value is set to 50. The 
graphical representation of the accuracy and loss val-
ues of the training and validation sets obtained after 
training the models with augmented data is given in 
Figure 4.
The train, validation and test accuracy values ob-
tained from all models after the data augmentation 
process, and the tested and faulty image values are 
given in Table 6. Among the deep learning models 
studied, the DenseNet121 model showed the highest 
educational success. Model 381 has 99.99% training 
success, 98.69% test success and only five error values 
in 381 test images. The best result in validation per-
formance was obtained from the EfficientNetB3 mod-
el with a rate of 98.89%. After this model, the best test 
performance values were obtained from Efficient-
NetB3 and Xception models. The VGG16 model was 
the model with the lowest accuracy. In studies with 
data augmentation, the success of the DenseNet121 
model stands out, as in studies with original data.
The confusion matrix of the DenseNet121 model, 
which has the highest classification accuracy as a re-
sult of the models tested after the training with data 
augmentation, which is the second stage of the study, 
is given in Figure 5.
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Figure 4 
Accuracy and loss graph for deep learning models after data augmentation (a)VGG16, (b)ResNet50V2, (c)DenseNet121, 
(d)Xception, (e)InceptionV3, (f )MobileNet, (g) EfficientNetB3
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The performance evaluation 
values (F1-Score, Recall and 
Precision) of the DenseNet121 
model, in which the best perfor-
mance value was obtained after 
the data increase, are presented 
in Figure 6 for each category.

5.3. Effects of Edge 
Detection Technique  
In the third part of the study, 
10762 images obtained by data 
augmentation were divided into 
leaf vein segments using the 
CEDA code in Python. 10000 
images were used for training 
new data, 381 images for valida-
tion and 381 images for testing. 
Since the results obtained in the 
second part of the experimen-
tal study were more successful 
than the first part, the transfer 
learning structure used in the 
second part was preferred in 
this part as well. The graphical 
representation of the accuracy 
and loss values of the training 
and validation sets of the seg-
ment images obtained by edge 
detection is given in Figure 7.
The train, verification and test 
accuracy values obtained from 
all models after the edge de-
tection process, and the tested 
and faulty image values are giv-
en in Table 7. Among the deep 
learning models examined, the 
DenseNet121 model showed 
the highest educational suc-
cess. Model 381 has 80.86% 
training, 75.64% validation 
and 67.92% test success values 
in 381 test images. After this 
model, the best test perfor-

Figure 5 
Confusion matrix for DenseNet121 on a test batch of unobserved images for data 
augmentation

Figure 6 
Performance evaluation of the DenseNet121 model with data augmentation
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Figure 7 
Accuracy and loss graph for deep learning models after edge detection (a)VGG16, (b)ResNet50V2, (c)DenseNet121, (d)
Xception, (e)InceptionV3, (f )MobileNet, (g)EfficientNetB3
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mance values were obtained 
from MobileNet and Xception 
models. The VGG16 model 
was the model with the lowest 
accuracy. In studies with edge 
detection, the success of the 
DenseNet121 model stands out, 
as in studies with original and 
data augmentation data.
As a result of the models tested 
after the training with CEDA, 
which is the third stage of the 
study, the highest classification 
was obtained in the DenseNet121 
algorithm. The confusion matrix 
of the model with the highest ac-
curacy is given in Figure 8.
The performance evaluation 
values of the DenseNet121 
model, in which the best per-
formance value is obtained af-
ter edge detection, is presented 
in Figure 9 for each category.

5.4. Discussion
Finally, the proposed method is 
discussed and the importance of 
each processing step is shown. 
Figure 1 shows the proposed 
framework for describing and 
classifying plants and their dis-
eases. In the first stage of the pro-
posed study, it was seen that bet-
ter results were obtained with a 
test learning rate of 0.001 in the 
results obtained from different 
learning methods with the orig-
inal data. In the second stage of 
data augmentation, the DenseN-
et121 model with the best test 
accuracy was obtained. It was 
determined that the test success 
rate obtained from the original 
data increased by 18.50% with 
the data increase. In the third 
stage, the expected test success 
rate could not be obtained after 
the edge detection process. 

Figure 9 
Performance evaluation of DenseNet121 model with CEDA

Figure 8 
Confusion matrix for DenseNet121 after CEDA
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Finally, the accuracy of the proposed method and its 
differences with similar studies in the literature are 
given in Table 8. In the literature, studies have been 
carried out on the classification of plant leaves with 
different colors, textures, veins and sizes. For exam-
ple, Negi et al. [19] tried to detect leaf diseases using 
the leaves of nine different plants such as Apple, Corn, 
Grape, and the leaves of ten different plants such as 
Sahu and Minz [26], Apple, Pepper and Tomato. Since 
the physical properties of the leaves used in this and 
similar studies are very different from each other, 
disease detection is easier than plants with the same 
physical properties [25]. Sujatha et al. [33], Madha-
van et al. [17], Pham et al. [20] and Prabu and Chelli-
ah [21] examined the diseases of only one plant and 
stated that they worked in maximum five different 
categories. However, when the number of categories 
(classification) increases, the classification process 
becomes 2-3 times more difficult. Although leaves 
with similar physical properties were studied in this 
experimental study [4] and in ten different categories, 
a higher success rate was obtained than the studies 
given in Table 8. In addition, although leaves with dif-
ferent physical properties (Basil, Jatropha, and Chi-
nar etc.) are used, which makes classification easier 

Table 8 
A summary of studies on the classification of plant leaves and their diseases in the literature

References Techniques used No. of 
categories

No. of 
images

Accuracy 
(%)

Negi et al. [19] CNN 10 21184 96.02

Sahu and Minz [26] SVM+CNN 10 1269 90.33

Sujatha et al. [33] Inception-V3, VGG16, VGG19 4 609 89.5

Madhavan et al. [17] Multi-class SVM 5 201 98.07

Saleem et al. [27] 
Faster RCNN ResNet-50, RFCN ResNet-101, EfficientNet, 
and RetinaNet

20 3545 93.80

Kavitha Lakshmi and 
Savarimuthu [11] 

Mask-RCNN 7 3953 80.01

Pham et al.  [20] Multi-layer perceptron (MLP), VGG16, AlexNet, ResNet-50 4 450 89.41

Prabu and Chelliah [21] MobileNetV2, SVM 4 380 94.5

Kour and Arora [13] 
Particle Swarm Optimization Based Support Vector 
Machine (P-SVM)

7 1813 95.23

Russel and Selvaraj [24] Unified model with six parallel CNNs 24 4503 90.02

Article model
VGG16, ResNet50V2, DenseNet121, MobileNet, Xception, 
InceptionV3, EfficientNetB3

10 2363 98.69
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Comparative analysis results of the study with similar studies in the literature 
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obtained after image processing techniques are tried to 
be compared. In all three sections, settings close to each 
other were used for all learning models. Input size, 
activation function, loss function, batch value and 
learning rate value for images are used the same in all 
models. Only the optimizer and epoch values have 
been changed. 

As a result of training the models using a small number 
of images without data augmentation: When the 
Learning Rate value is set to 0.0001, the most successful 
model was the DenseNet121 model with 80.87%, and 
the most successful model was the VGG16 model with 
83.28% when the Learning Rate value was set to 0.001. 
As a result of training the models by increasing the 
number of images by increasing the data, DenseNet121 
was the most successful of the trainings with a test 
accuracy of 98.69%. Among the 381 images tested, the 
DenseNet121 model had the least errors with five false 
image values. The model with the most incorrect 
image values was the VGG16 model with 19 incorrect 
image values. After the edge detection of leaf images 

with CEDA, the best test performance was obtained 
with the DenseNet121 model with 67.92% in the 
trainings made as a result of training the models. It is 
seen that the classification success rate obtained in the 
edge detection process for leaf images with similar 
color, texture and vein structure is lower than the 
original images. Looking at the whole study, the 
DenseNet121 model achieved high educational 
success in both data augmentation and non-data 
augmentation studies. In the future, a more advanced 
data set will be created with different disease 
categories for each medicinal plant and studies will be 
carried out to determine the diseased area with deep 
learning methods. 
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in the study conducted by Russel and Selvaraj [24], 
the study is 9.63% more successful. Moreover, it was 
observed that the highest classification success rate 
was obtained among the classification studies con-
ducted with ten categories (Figure 10).

6. Conclusions
In this study, which consists of three parts, the test 
performance of deep learning models obtained with 
a small number of images, the test performance ob-
tained when using more images by increasing the 
data, and the test performance obtained when using 
images obtained after image processing techniques 
are tried to be compared. In all three sections, settings 
close to each other were used for all learning models. 
Input size, activation function, loss function, batch 
value and learning rate value for images are used the 
same in all models. Only the optimizer and epoch val-
ues have been changed.
As a result of training the models using a small num-
ber of images without data augmentation: When the 
Learning Rate value is set to 0.0001, the most success-
ful model was the DenseNet121 model with 80.87%, 
and the most successful model was the VGG16 model 
with 83.28% when the Learning Rate value was set to 
0.001. As a result of training the models by increasing 
the number of images by increasing the data, DenseN-
et121 was the most successful of the trainings with a 

test accuracy of 98.69%. Among the 381 images tested, 
the DenseNet121 model had the least errors with five 
false image values. The model with the most incorrect 
image values was the VGG16 model with 19 incorrect 
image values. After the edge detection of leaf images 
with CEDA, the best test performance was obtained 
with the DenseNet121 model with 67.92% in the train-
ings made as a result of training the models. It is seen 
that the classification success rate obtained in the edge 
detection process for leaf images with similar color, 
texture and vein structure is lower than the original 
images. Looking at the whole study, the DenseNet121 
model achieved high educational success in both data 
augmentation and non-data augmentation studies. In 
the future, a more advanced data set will be created 
with different disease categories for each medicinal 
plant and studies will be carried out to determine the 
diseased area with deep learning methods.
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