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The current intelligent recommendation models in online learning systems suffer from data sparsity and cold start 
problems. To address the data sparsity problem, a collaborative filtering recommendation algorithm model (SACM-
CF) based on an automatic coding machine is proposed in the study. The model can extract the online learning behav-
ior features of users and match these features with the learning resource features to improve the recommendation 
precision. For the cold-start problem, the study proposes a CBCNN model based on CNN, using the language model 
as the input of the model and the implicit factor as the output of the model. To avoid the problem of over-smoothing 
the implicit factor model, which affects the recommendation precision, an improved matrix decomposition method 
is proposed to constrain the output of the CNN and improve the model precision. The RMSE of SACM-CF is 0.844 
and the MAE is 0.625. The MAE value of CBCNN is 0.72, the recall value is 0.65, the recommendation precision is 
0.954 and the F1-score is 0.84. The metrics of SACM-CF and CBCNN are better than the existing state-of-the-art 
recommendation models. SACM-CF and CBCNN outperform the existing state-of-the-art intelligent recommen-
dation models in all metrics. Therefore, the SACM-CF model and the CBCNN model can effectively improve the 
precision of the online learning system in recommending interesting learning resources to users, thus avoiding users’ 
wasted learning time in searching and selecting learning resources and improving users’ learning efficiency.
KEYWORDS: online learning; behavioral features; CNN; personalized recommendation; language model; au-
tomatic coder.
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1. Introduction
Online learning is a way for users to learn and teach in 
a virtual space through the Internet and computers. 
Under the influence of the epidemic, online learning 
has become one of the important ways of education for 
contemporary students and one of the main ways of ac-
quiring new knowledge for many learners. Currently, 
many schools are using online learning methods as the 
main teaching method, which enables students to learn 
at home and avoid delaying their learning progress due 
to inability to reach school. Personalized intelligent 
recommendation models play an important role in on-
line learning. However, the current intelligent recom-
mendation models in online learning systems suffer 
from data sparsity and cold start problems. The data 
sparsity problem refers to the fact that the recommen-
dation precision of the algorithm decreases signifi-
cantly when the data of users is small. The cold-start 
problem means that if a user is a newly registered user 
and lacks relevant basic information, the recommen-
dation algorithm cannot predict the learning resources 
that the user may be interested in based on the user’s 
historical data and his or her own feature data. CNN 
is a deep learning model based on bio-visual cognitive 
mechanism, which is the most mature and widely used 
model in the current image recognition and speech 
recognition fields. Sun et al. [14] applied the combina-
tion of artificial intelligence modules and knowledge 
recommendation to the online intelligent English 
teaching platform, and developed an online intelligent 
English teaching system with deep learning support. 
The test application results showed that the system ef-
fectively helped students to improve their learning effi-
ciency and made learning more targeted [14]. Xie et al. 
artificially solved the cold start problem of traditional 
collaborative filtering scheme using simple inner prod-
uct interaction mode, and proposed a hybrid recom-
mendation model based on deep learning and stack in-
tegration strategy [20]. Experiments on MovieLens lm 
dataset showed that the precision of the modified hy-
brid recommendation model was improved to some ex-
tent [20]. Takama et al. [15] developed a matrix-based 
collaborative filtering recommendation method for 
personal values. The research results showed that the 
proposed method recommended more unexpected 
items than the method based on matrix decomposition 
while maintaining precision and recall [15]. Based on 
the above research, it can be seen that recommenda-

tion models combined with deep learning algorithms 
have significantly improved recommendation preci-
sion compared to traditional methods. Among them, 
research on the scalability of deep learning recommen-
dation model frameworks is very important, but there 
is relatively little research in this area. By using deep 
learning to represent data and integrating data from 
multiple sources, recommendation effectiveness can 
be further improved. To solve the above problems, the 
research constructs a collaborative filtering recom-
mendation algorithm model based on automatic cod-
er and a content-based convolutional neural network 
recommendation model (CBCNN), aiming to solve 
the above two problems, improve the recommenda-
tion precision of learning resources, and improve the 
learning efficiency of users. The innovation of the re-
search mainly includes the following two aspects. On 
the one hand, it proposes the SACM-CF model, which 
can effectively extend the framework by combining 
structured data of users or objects; on the other hand, it 
is to design a CBCNN model to provide intelligent and 
personalized learning resource service technology for 
students, enhance their learning autonomy and stim-
ulate their learning enthusiasm. Although GCN, GAN 
and Deep reinforcement learning is better than CF and 
CNN at mining hidden user features and real-time on-
line interaction, but it is difficult to train, the model is 
not interpretable, flexible and extensible enough, and it 
is not suitable for personalized intelligent recommen-
dation technology [7, 22].

2. Related Works
With the continuous development of Internet+ edu-
cation, online learning has become one of the import-
ant ways of education for contemporary students and 
one of the main ways for many learners to acquire new 
knowledge. Mukhtar et al. [10] explored the impact of 
the New Coronation epidemic on the education sec-
tor and the changes in students’ learning behavior 
and learning styles during the epidemic. This was fol-
lowed by an analysis of the advantages, limitations of 
online learning modalities during the Covid-2019 and 
based on the results of the analysis, recommendations 
for the transformation of online learning modalities 
were made [10]. Nambiar surveyed the views of teach-
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ers and students in several schools in India, thus ex-
ploring the role played by online learning during the 
Covid-2019 and the impact of the Covid-2019 on on-
line learning modalities [11]. Fauzi et al. [5] conducted 
survey interviews with dozens of teachers in Banten 
and West Java to explore the evaluation of online 
learning in elementary school under the impact of the 
epidemic in terms of learning facilities, Internet us-
age, learning styles, and parental cooperation. 80% of 
the surveyed teachers believed that the current online 
learning approach should be improved. Bahasoan [3] 
used an online survey method to survey a of a random 
sample of students, thus analyzing the effectiveness 
of the online learning system. The results of the anal-
ysis showed that online learning is less efficient and 
more costly than traditional teaching methods, but it 
is also a better option in special cases [3]. Verawardi-
na et al. [18] reviewed the development of schools in 
recent years under the epidemic and discussed the 
role played by online learning in it and concluded that 
the online learning approach helped students to fill 
the educational gap during the epidemic [18]. Wei et 
al. [19] explored the impact of students’ perceptions 
of online learning, teachers’ readiness on students’ 
performance and satisfaction, and explored wheth-
er teachers’ pre-preparation for online learning was 
important. Agung et al. [1] analyzed students’ perfor-
mance in online English learning in one region and 
analyzed students’ evaluation and perceptions. Sima-
mora [13] selected the papers of some performing arts 
education students to analyze and extract valid infor-
mation from them in order to analyze the problems 
and solutions of online learning during the epidemic.
CNN is a deep learning model based on bio-visual 
cognitive mechanism, which is currently the most 
mature and widely used model in the field of image 
recognition and speech recognition. The current ap-
plication of CNN contains medical imaging, public 
administration, financial management, security man-
agement, etc., and has received wide attention from 
researchers. Zhou et al. [24] introduced the downs-
ampling operator, thus changing the network width 
of the convolutional layer, and conducted an in-depth 
discussion and analysis of the approximation theory 
of CNN to demonstrate the performance of CNN in 
data feature learning. Valueva et al. [17] applied the re-
sidual number system (RNS) to CNN for the purpose 
of reducing the hardware cost. The structure shows 
that after applying RNS, the hardware cost can be re-

duced by an order of magnitude and the reduction is 
around 7.5% to 38%. Raghu et al. [12] discussed and 
analyzed the phenomenon that both visual trans-
formers and CNNs have better performance in image 
classification and compared the performance of CNN 
and visual transformers in image classification tasks. 
Tripathi [16] proposed an image classification tech-
nique based on CNN and validated the technique with 
a publicly available image dataset. The validation re-
sults show that the technique has a satisfactory image 
classification effect and can meet the needs of general 
image classification tasks [16]. A human action rec-
ognition model based on CNN was constructed by Xu 
et al. and analyzed for the application of this model in 
sports training, physical education, and dance teach-
ing. After conducting tests, the recognition precision 
of the model was higher than existing action recogni-
tion techniques [21]. Lou et al. [8] applied CNN to face 
recognition. After its validation with a machine vision 
public dataset, the precision of the model was found 
to be able to meet the requirements of practical appli-
cations, proving the usefulness and developability of 
the model. Using CNN, Zhang et al. [23] constructed a 
fusion framework that can be applied to most types of 
images, making image fusion more efficient and accu-
rate. Experimental tests found that the generalization 
ability of the image fusion model was significantly im-
proved after the application of the framework and the 
performance of the framework model was better than 
the existing state-of-the-art image fusion models [23]. 
Allugunti [2] used CNN to identify and classify the up-
loaded medical images to identify and classify the skin 
diseases of patients. The model was tested using data 
from a hospital and the model has high precision for 
recognition and classification of skin diseases [2].
From the above, it can be seen that there are currently 
many research results related to online learning and 
CNN, indicating that the academic community at-
taches great importance to both online learning and 
CNN. However, the current research on online learn-
ing is more about the significance and shortcomings 
of online learning, and does not explore the problem of 
too many learning resources in online learning, which 
makes it difficult for learners to choose. In addition, 
for the current problem of data sparsity and cold start 
of recommendation algorithms in online learning, the 
study proposes a CNN-based intelligent recommen-
dation algorithm for online learning resources to im-
prove learning efficiency.
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3. CNN-based Intelligent 
Recommendation Model
3.1. Intelligent Recommendation Algorithm 
Based on ACM-CF
Online learning is a way of acquiring knowledge on-
line by using information technology and Internet 
technology. The mainstream way of online learning is 
that users learn through the learning resources in the 
online learning system. However, generally speaking, 
there are a large number of learning resources in on-
line learning systems, and it is often difficult for users 

to distinguish which resources they need. Intelligent 
recommendation algorithms can recommend re-
sources that may be of interest to users based on data 
mining. At present, the more common intelligent rec-
ommendation algorithms are association rule-based 
recommendation algorithm and collaborative filter-
ing algorithm (CF), and the general process of the two 
recommendation algorithms is shown in Figure 1.
Since association rules require more sample data to 
ensure recommendation precision, and the model is 
not efficient and less practical, collaborative filtering 
(CF) model is more often used to achieve intelligent 
recommendation in practical applications. However, 

Figure 1
The general flow of two recommendation algorithms

(a) Association rule recommendation algorithm

(b) Collaborative filtering recommendation algorithm
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In Equation (1), mnr  is the user's m  rating of 
the item resource n . In the ACM-based 
recommendation model, the historical user 
behavior data in Equation (1) is used as input, 
and ACM extracts the features of the historical 
data to predict the user's ratings of other items 
based on the user's rating features for some 
items. Based on the above, the ACM-CF model 
is shown in Figure 2. 

In Figure 2, iw  represents the connection 
weights between network layers. The 
object-based ACM can be expressed as Equation 
(2). 
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on the traditional collaborative filtering recommen-
dation algorithm suffers from the problem of data 
sparsity, i.e., the recommendation precision of the al-
gorithm decreases significantly when the user’s data 
is small. To address this problem, the study proposes 
an automatic coding machine based collaborative fil-
tering recommendation algorithm (ACM-CF). ACM 
is essentially an unsupervised feature extraction 
model, which is more commonly used in image fea-
ture classification tasks of large order of magnitude. 
The study uses ACM to construct a recommendation 
model so that it extracts the features of the data input 
to the model, and then uses the extracted features to 
reduce the input data so that the output of the model 
is approximately equal to the input. And among in-
telligent recommendation tasks, the input data can 
be represented as a user-item evaluation matrix, as 
shown in Equation (1).
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ACM-CF model

In Figure 2, wi represents the connection weights be-
tween network layers. The object-based ACM can be 
expressed as Equation (2).
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At this point, the supervised ACM model can 
be represented by Equation (3). 
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items. Therefore, these data features are introduced 
into the recommendation model to improve the quali-
ty of feature extraction of user data by the ACM mod-
el. The principle of this operation is that if there are 
similar feature attributes between users or items, 
then similar users will also be interested in similar 
items. Take movie recommendation as an example, 
if multiple item resources that user likes are action 
movies, then it is assumed that the user likes action 
movies. The supervised ACM recommendation mod-
el is shown in Figure 3.
At this point, the supervised ACM model can be rep-
resented by Equation (3).

.
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parametrization. In Equation (2), the first half is 
the model fitted and trained with the input 
data, and the second half is the set of 
regularization terms, which mainly prevent the 
model from overfitting and thus degrading the 
performance. In recommendation systems for 
online learning, the user-item rating matrix is 
often very sparse. To solve this problem, a 

supervised ACM-based recommendation 
method is proposed in the study. In online 
learning systems, in addition to the user's 
historical learning data, other characteristics 
often exist, such as the user's age, occupation, 
and profession. Using these data, it is also 
possible to construct feature models of users 
and items. Therefore, these data features are 
introduced into the recommendation model to 
improve the quality of feature extraction of user 
data by the ACM model. The principle of this 
operation is that if there are similar feature 
attributes between users or items, then similar 
users will also be interested in similar items. 
Take movie recommendation as an example, if 
multiple item resources that user likes are 
action movies, then it is assumed that the user 
likes action movies. The supervised ACM 
recommendation model is shown in Figure 3. 
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In Equation (3), we, be is the parameter in the feature 
extraction stage, wr, br is the parameter in the feature 
reconstruction stage, wc, bc  is the parameter in the 
feature classification stage, FR( ) is the loss function 
in the feature reconstruction stage, FC( ) is the loss 
function in the feature classification stage, and α, β 
is two regular factors, which mainly serve to control 
the weights of the terms in Equation (3). At this point, 
there is Equation (4).
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In Equation (4),  h
 is a superimposed ACM 

model accumulated from multiple ACM 
models. Based on the above, a supervised 
ACM-CF model (SACM-CF) is constructed to 
avoid the degradation of recommendation due 
to data sparsity. In the SACM-CF model, a 
regular term based on the matrix Frobenius 
parametrization is included to better avoid the 
data sparsity problem in the recommendation 
algorithm. However, this regular term also 
brings some problems for the recommendation 
algorithm, such as the parameters are too 
smooth and the model performance is affected 
by the input data distribution. Therefore, the 
study introduces the Huber function to 
constrain the regular term, as in Equation (5). 
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In Equation (5),   is the truncation parameter 
in the Huber function, and its value is 
determined on a case-by-case basis. Combining 
the above, the construction of SACM-CF model 
is completed to overcome the problem of sparse 
data in the resource recommendation problem. 
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and his or her own characteristic data, and 
cannot accurately recommend resources to the 
user. The study proposes a content-based 
recommendation model (CBCNN) using CNN, 
a deep learning model based on bio-visual 
cognitive mechanisms, which is currently the 
most mature and widely used model in the 
fields of image recognition and speech 
recognition. Its basic topology is shown in 
Figure 4. 
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Huber function, and its value is determined on a case-
by-case basis. Combining the above, the construction 
of SACM-CF model is completed to overcome the 
problem of sparse data in the resource recommenda-
tion problem.

3.2. CBCNN-based Learning Resource 
Recommendation
The study proposes a SACM-CF model that solves 
the data sparsity problem in resource recommenda-
tion. However, in addition to this problem, there is a 
cold-start problem in resource recommendation. The 
cold-start problem refers to the fact that if a user is 
a newly registered user in an online learning system 
and lacks relevant basic information, the recommen-
dation algorithm cannot predict the learning resourc-
es that the user may be interested in based on the us-
er’s historical data and his or her own characteristic 
data, and cannot accurately recommend resources to 
the user. The study proposes a content-based recom-
mendation model (CBCNN) using CNN, a deep learn-
ing model based on bio-visual cognitive mechanisms, 
which is currently the most mature and widely used 
model in the fields of image recognition and speech 
recognition. Its basic topology is shown in Figure 4.
The basic principle of CBNN is that the text informa-
tion in the learning resources that already exist in the 
learning system is used as a recommendation basis, 
and the feature vectors of users and learning resource 
items are calculated in a certain way. Subsequently, 
the feature vectors are fitted with the corresponding 
text information in CNN. After the final training, the 
CNN is used to achieve the recommendation of learn-
ing resources. In this model, the CNN has 4 layers with 
the structure of convolutional layer-local sampling 
layer-convolutional layer-full connection layer. A lan-
guage model is used as the input of the CBCNN model. 
The language model is capable of transforming textual 
information into computable digital information while 
preserving the semantic features of the text. The lan-
guage model used in the study is the topic model, which 
is capable of mining the semantic features of words 
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in a large amount of textual information and mapping 
these semantic features to particular topics, so that all 
words are represented as probabilities on each topic. 
The training of the topic model uses the hidden Dir-
ichlet distribution (LDA). After vector features of tex-
tual information are obtained by the topic model, they 
are fed into the first layer. In the first layer, if the k -di-
mensional word vector of the i th word within the text 
information in the learning resource can be represent-
ed as k

ix ∈ℜ , then the vector representation of this text 
information is as Equation (6) when the length of the 
text information is n.
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Equation (6) when the length of the text 
information is n . 
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At this point there is a convolutional filter in the 

convolutional layer of the CNN 
sk , 

which can be used to compute the feature 
vectors of the s  word vectors in the text 
message, as in Equation (7). 

 i ic f x b  
. (7) 

In Equation (7),  f
 is a nonlinear activation 

function and the Sigmoid function is used for 
the study. It is a bias parameter in a CNN. All 
the words in the text message are feature 
computed through a convolutional filter, which 
finally produces a feature map, expressed as 
Equation (8). 
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On the feature map, a local sampling operation 
can be performed at the second layer to obtain 
  local eigenvalues, as in Equation (9). 
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(9) 

In the third layer, there exists the convolution 

filter 
 , which is utilized to perform the 

convolution operation on all the local 
eigenvalues to produce new eigenvalues as in 
Equation (10). 
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. (10) 

In Equation (10), w  is the weight between the 
two layers of the network. After getting the new 
feature values, these feature vectors are input to 
the last layer, where the output is the implied 
factor. The main use of the implied factor model 
is to obtain features of users and learning 
resource items. The conventional regular factors 
in the implicit factor model are generally vector 
two parametres to prevent the problem of 
overfitting the data. However, such regular 
factors pose another problem, i.e., the model 
over-smoothing problem. In the CBCNN model, 
the features of the implied factor are the output 
of the CNN, and the over-smoothing problem 
will lead to the implied factor features not being 
obvious, making the training of the CNN 
poorer and eventually leading to poorer 
resource recommendation. Therefore, a sparse 
prior is needed to constrain the output results. 
Based on the above, the study proposes an 
improved matrix decomposition method that 
uses a sparse prior to constrain the output 
results of the CNN. At this time, the objective 
function of the model is shown in Equation (11). 
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In Equation (11), the first term is the data 
fidelity term, and the second and third terms 
are the canonical terms. U  is the correlation 
matrix between the user and the implied factor, 
V  is the correlation matrix between the 
learning resource items and the implied factor, 

ijr  denotes the user's i  rating of the learning 

resource items j , and 1 2,   is two canonical 
factors that adjust the relative strength between 
the constraint and fidelity terms in Equation 
(11), and the matrix U  and the matrix V  

become more sparse when 1 2,   rises. Next, 
the split Bregman iteration method is used to 
optimally solve Equation (11). First, the two 
matrices U  and V  are randomly initialized 
and the matrix V  is fixed as a constant to 
optimize the matrix U . After optimization, fix 
the matrix U  and treat it as a constant to 

. (6)

At this point there is a convolutional filter in the con-
volutional layer of the CNN skω∈ℜ , which can be 
used to compute the feature vectors of the S word vec-
tors in the text message, as in Equation (7).
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In Equation (11), the first term is the data fidelity 
term, and the second and third terms are the canon-
ical terms. U is the correlation matrix between the 
user and the implied factor, V is the correlation ma-
trix between the learning resource items and the 
implied factor, rij denotes the user’s i rating of the 
learning resource items j, and 1 2,γ γ  is two canonical 
factors that adjust the relative strength between the 
constraint and fidelity terms in Equation (11), and the 
matrix U and the matrix V become more sparse when 

1 2,γ γ  rises. Next, the split Bregman iteration meth-
od is used to optimally solve Equation (11). First, the 
two matrices U and V are randomly initialized and the 
matrix V is fixed as a constant to optimize the matrix 
U. After optimization, fix the matrix U and treat it as a 
constant to optimize the matrix V. Perform the above 
operation repeatedly until the objective function con-
verges completely. In summary, the CBCNN model 
is constructed to solve the cold start problem in re-
source recommendation, improve the recommenda-
tion precision, and enhance the learning efficiency 
of users. the basic structure of the CBCNN model is 
shown in Figure 5.

Figure 5
Basic structure of CBCNN model
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The rise of online learning has given learners 
more choices of learning methods and 
facilitated learners to choose the resources they 
want to learn at any time. However, the number 
of learning resources in online learning systems 
is too large, which makes it difficult for users to 
get the learning resources they want and are 
interested in. In this context, intelligent 
recommendation algorithms have been 
developed as a matter of course. However, in 
the existing intelligent recommendation 
algorithms, there are data sparsity problems 
and cold start problems, which lead to low 
recommendation precision of intelligent 
recommendation algorithms and cannot achieve 
the ideal recommendation effect. For the data 
sparsity problem, the study proposes a 

SACM-CF model, and for the cold start 
problem, the study proposes a CBCNN model, 
which improves the effect of intelligent 
recommendation. Firstly, the SACM-CF model 
was trained and tested using data from the 
online learning systems of three universities, 
namely Chongqing University's online open 
course platform, Tencent University's 
T-Learning online learning platform, and China 
University's MOOC National Quality Course 
online learning platform. The dataset collected a 
total of 50,000 learning video information and 
30,000 learning book information, which were 
divided into a training set and a test set at a 
ratio of 7:3. The parameters of the CBCNN 
model are set as follows: the number of 
convolutional filters is 100, the sampling area is 
5, the number of hidden factors in the hidden 
factor model is 40, and 1 2,   is 0.01 and 
0.0038, respectively. The SACM-CF model is 
compared with several existing state-of-the-art 
collaborative filtering models, including the 
probabilistic matrix decomposition 
collaborative filtering model (PMF), the 
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model, which improves the effect of intelligent rec-
ommendation. Firstly, the SACM-CF model was 
trained and tested using data from the online learning 
systems of three universities, namely Chongqing Uni-
versity’s online open course platform, Tencent Uni-
versity’s T-Learning online learning platform, and 
China University’s MOOC National Quality Course 
online learning platform. The dataset collected a to-
tal of 50,000 learning video information and 30,000 
learning book information, which were divided into a 
training set and a test set at a ratio of 7:3. The parame-
ters of the CBCNN model are set as follows: the num-
ber of convolutional filters is 100, the sampling area is 
5, the number of hidden factors in the hidden factor 
model is 40, and 1 2,γ γ  is 0.01 and 0.0038, respective-
ly. The SACM-CF model is compared with several 
existing state-of-the-art collaborative filtering mod-
els, including the probabilistic matrix decomposition 
collaborative filtering model (PMF), the Bayesian 
probabilistic matrix combined with structured col-
laborative filtering model (BMFSI), the collaborative 
filtering model based on automatic coding machine 
extracting structured features fused into matrix de-
composition (mSDA-CF), the collaborative filtering 
based on restricted Boltzmann machine (RBM-CM), 
and AutoRec (AutoRec).
After testing the models using the same datasets, the 
RMSEs of several models are shown in Table 1. In Ta-
ble 1, the RMSE values of the SACM-CF model were 
higher than those of the existing improved collabo-
rative filtering models on all three school datasets 
of the online learning system. On the three school 
datasets, the average RMSE value of the SACM-CF 

model is 0.844, which is 0.16 lower than that of the 
AutoRec model, 0.016 lower than that of the RBM-
CM model, 0.021 lower than that of the mSDA-CF 
model, 0.027 lower than that of the BMFSI model, 
and 0.038 lower than that of the PMF model. this in-
dicates that the SACM-CF model has a lower recom-
mendation root mean square error is smaller and the 
recommendation effect is better. The above results 
show the superiority of the structured information 
extraction method of the SACM-CF model. Com-
pared with other collaborative filtering algorithms 
based on automatic coding set, the proposed mod-
el can still achieve better results, which shows that 
SACM-CF model’s collaborative framework has its 
own advantages.
The MAEs of several models are shown in Table 2. In 
Table 2, the MAE values of the SACM-CF model are 
higher than those of the existing improved collabo-
rative filtering models on all three school datasets of 
the online learning system. On the three school data-
sets, the average MAE value of the SACM-CF model 
is 0.625, which is 0.31 lower than that of the AutoRec 
model, 0.047 lower than that of the RBM-CM model, 
0.058 lower than that of the mSDA-CF model, 0.115 
lower than that of the BMFSI model, and 0.094 lower 
than that of the PMF model. This indicates that the ab-
solute recommendation error of the SACM-CF model 
is smaller and the recommendation effect is better. In 
summary, the SACM-CF model proposed in the study 
can effectively overcome the data sparsity problem, 
thus improving the recommendation effect of learning 
resources in online learning systems and enhancing 
users’ learning efficiency and learning interest.

Table 1
RMSE of several models

Model
Database

Average
School 1 School 2 School 3

PMF 0.920 0.853 0.872 0.882

BMFSI 0.904 0.842 0.868 0.871

mSDA-CF 0.901 0.840 0.854 0.865

RBM-CM 0.892 0.838 0.850 0.860

AutoRec 0.884 0.832 0.841 0.852

SACM-CF 0.876 0.824 0.832 0.844

Table 2
MAE of several models

Model
Database

Average
School 1 School 2 School 3

PMF 0.792 0.669 0.695 0.719

BMFSI 0.774 0.763 0.682 0.740

mSDA-CF 0.700 0.674 0.675 0.683

RBM-CM 0.692 0.652 0.671 0.672

AutoRec 0.674 0.640 0.653 0.656

SACM-CF 0.654 0.608 0.614 0.625
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4.2. Performance Analysis of CBCNN Model
In order to solve the cold-start problem of current in-
telligent recommendation algorithms, which cannot 
provide personalized, intelligent and accurate learn-
ing resource recommendation results for new users, 
the study proposes a CBCNN model with certain op-
timization. Compare the CBCNN model with several 
existing advanced recommendation algorithms, in-
cluding the Glocal-K model, IGMC model, and MG-
GAT model [6, 9, 4]. The variation curves of output 
precision of several models during training are shown 
in Figure 6. It can be seen that on all the same train-
ing sample sets, the CBCNN model requires the least 
number of iterations to achieve the target precision. 
At 103 iterations, the CBCNN model achieved the tar-
get precision, while the Glocal-K model required 248 
iterations, 145 more than CBCNN. The IGMC mod-
el requires 342 times, 239 more than CBCNN. The 
MG-GAT model requires 473 times, 370 more than 
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The recommended precision and F1 value of the mod-
el are shown in Figure 8, where the recommended 
number N is 50. It can be seen that the recommenda-
tion precision and F1 value of CBCNN are higher than 
other models. As the number of recommendations 
continues to increase, the recommendation precision 
and F1 value of the model are also constantly improv-
ing. When the number of recommendations exceeds 
a certain number of times, the precision of the mod-
el’s recommendations and the rate of increase in F1 
value slow down until they no longer change. This 
is because after learning and training, the precision 
of the model has reached its optimal state. In Figure 
8(a), when the number of model iterations is 350, the 
recommendation precision of CBCNN is 0.989, which 

Figure 8 
Recommended precision and F1-score of the model
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number of iterations of the model is 350, the F1 
value of CBCNN is 0.985, which is 0.21, 0.23, 
and 0.46 higher than the Glocal-K model, IGMC 

model, and MG-GAT model, respectively. The 
above results may be due to the higher data 
density on the object compared to the user, 
making the proposed model more effective in 
feature extraction or similarity measurement. 
Cold start is usually an important issue in 
recommendation systems. Most methods that 
use a complete cold start may not achieve good 
results, but the methods proposed in the study 
achieved good results, indicating that CBCNN 
can effectively solve the cold start problem 
where new resources cannot be recommended 
within a certain range. In summary, the study 
of the CBCNN model constructed based on 
CNN can effectively avoid the cold start 
problem and improve the recommendation 
precision of the recommendation model. The 
SACM-CF model and the CBCNN model can 
effectively improve the precision of the online 
learning system in recommending interested 
learning resources to users, thus avoiding users' 
wasting learning time by searching and 
selecting learning resources, and improving 
users' learning efficiency. 
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is 0.264, 0.283, and 0.452 higher than the recommen-
dation precision of Glocal-K model, IGMC model, and 
MG-GAT model, respectively. In Figure 8(b), when 
the number of iterations of the model is 350, the F1 
value of CBCNN is 0.985, which is 0.21, 0.23, and 0.46 
higher than the Glocal-K model, IGMC model, and 
MG-GAT model, respectively. The above results may 
be due to the higher data density on the object com-
pared to the user, making the proposed model more 
effective in feature extraction or similarity measure-
ment. Cold start is usually an important issue in rec-
ommendation systems. Most methods that use a com-
plete cold start may not achieve good results, but the 
methods proposed in the study achieved good results, 
indicating that CBCNN can effectively solve the cold 
start problem where new resources cannot be recom-
mended within a certain range. In summary, the study 
of the CBCNN model constructed based on CNN can 
effectively avoid the cold start problem and improve 
the recommendation precision of the recommenda-
tion model. The SACM-CF model and the CBCNN 
model can effectively improve the precision of the 
online learning system in recommending interested 
learning resources to users, thus avoiding users’ wast-
ing learning time by searching and selecting learning 
resources, and improving users’ learning efficiency.

5. Conclusion
In recent years, with the deep integration of the Inter-
net and the field of education, learning models repre-
sented by online learning have received widespread 
attention. Personalized resource recommendation 
service technology can effectively solve the prob-
lems of information overload and information loss 
caused by the information explosion era. Therefore, 
this technology has become a top priority in the fields 
of educational informatization and intelligent infor-
mation processing. However, traditional intelligent 
recommendation algorithms have issues with sparse 
data and cold start, resulting in unsatisfactory rec-
ommendation results. In response to the problem of 
data sparsity, the SACM-CF model was studied and 
constructed. In response to the cold start problem, 
the CBCNN model was studied and optimized. The 
research results show that in the performance anal-
ysis of the SACM-CF model, the average RMSE val-
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ue and the average MAE value of this model are both 
the lowest, 0.844 and 0.625, respectively, compared 
with other models. In the performance analysis of the 
CBCNN model, the lowest MAE value of the model is 
0.72, which is 0.05, 0.06 and 0.08 lower than the KNN-
CF model, the EBCF model and the CTR model, re-
spectively; the highest recall value is 0.65; the highest 
recommended precision is 0.954; the F1-score is 0.84, 
which is 0.09, 0.11 and 0.17 higher than the KNN-CF 
model, the EBCF model and the CTR model, respec-

tively. This indicates that the model proposed in the 
study is reasonable and feasible, and can to some ex-
tent solve the cold start problem of new resources. In 
summary, the two models proposed in the study can 
solve the data sparsity and cold start problems and 
improve the recommendation precision. The study 
did not explore the fusion of multiple recommenda-
tion algorithms to make the comprehensive perfor-
mance of the recommendation models better, which 
is a problem that needs to be addressed subsequently.
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