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Anomaly detection aims at detecting the data instances that deviate from the majority of data, and it is widely 
used in various fields for its ability to ensure the quality of the overall data. However, traditional anomaly de-
tection methods face the problems such as low efficiency due to high data complexity and lack of data labels. 
At the same time, most methods only learn the forward features of time-series data, while lacking attention 
to the reverse features. For these disadvantages, this paper designs an anomaly detection approach called 
BiTCN-MHA based on the bidirectional temporal convolutional network (BiTCN) and multi-head attention 
(MHA) mechanism, which learns the features of anomalous data by capturing the forward and reverse tem-
poral features in the time-series data, as well as solves the problems of feature information overload and 
neuron “death” by using MHA mechanism and ELU activation function, respectively, thereby quickly and 
accurately detecting anomalous data. Extensive experiments on six public datasets show that compared with 
eight state-of-the-arts, the proposed BiTCN-MHA method can improve the precision, recall, AUC and F1-
Score by about 6.10%, 10.16%, 4.06% and 8.50%, respectively, especially having better detection performance 
on small time-series data.
KEYWORDS: Anomaly Detection, Bidirectional Temporal Convolutional Network, Multi-head Attention 
Mechanism, ELU Activation Function.
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1. Introduction
As a major form of data, time-series data is widely 
found in financial transactions [40], traffic network 
monitoring [35], and other industries, and the effec-
tively processing of time-series data can enhance 
the effect of data-based prediction and monitoring. 
However, some abnormal data are often existing in 
the collected time-series data due to equipment fail-
ure, environmental changes and other factors, and the 
existence of abnormal data seriously affects the relat-
ed work based on data, thus, there is an urgent need 
for an effective means to detect the abnormal data, 
thereby guaranteeing fthe safety of time-series data. 
For this reason, the anomaly detection methods aim-
ing to detect outliers from the data that deviate from 
majority of data have been a hot research topic, and 
it has become one of the important means to ensure 
data quality [19].
To accurately detect anomalous data, scholars have 
successively proposed anomaly detection methods, 
such as statistical distribution-based method HBOS 
[17], clustering-based method SOM [30], direct pro-
jection-based method Z-Glyph [7], etc. feature asso-
ciation-based method [3], [4], [5], etc. However, these 
methods cannot autonomously learn the features 
of original temporal data and require massive sam-
ples to obtain better detection results, which causes 
these methods losing their application value in many 
scenarios. The development of deep learning tech-
nology makes it widely applied in image recognition, 
speech recognition, traffic detection and other fields. 
In comparison with traditional methods or machine 
learning models, deep learning technologies can en-
hance the efficiency of anomaly detection through its 
own powerful learning ability, therefore, deep learn-
ing-based approaches have been widely and deeply 
researched [32]. Specifically, deep learning-based ap-
proaches are mainly composed of SE (self-encoder)-
based approaches and GAN (generative adversarial 
network)-based approaches. SE-based approaches 
train the models to learn the concept of real target 
classes by minimizing the differences between orig-
inal images and generated images, while GAN-based 
approaches achieve Nash equilibrium by using a game 
approach to obtain better detection results.
However, the vast majority of existing deep learn-
ing-based anomaly detection methods cannot handle 

time-series data well, and thus causing ineffective in 
anomaly detection. To address the anomaly detec-
tion in a more targeted manner for the time-series 
data, many anomaly detection models have been in-
tensively studied, such as RNN (Recurrent Neural 
Networks) [36], LSTM (Long Short-Term Memory) 
[20] and GRU (Gated Recurrent Units) [12]. Although 
these models show an improvement in detection per-
formance over CNNs and their variants, these models 
cannot handle common dynamic periodic or acyclic 
patterns well in complex environments, especially 
the recursive models like LSTM require large compu-
tations and train slow as well as cannot continuously 
and effectively model the long-term trends. In addi-
tion, some time-series data contain semantic features 
that are bidirectional, and the unidirectional models 
have some shortcomings in detection due to learning 
only one-way features.
Since TCN (Temporal Convolutional Neural Net-
work) can obtain the temporal features of time-series 
data much better, this paper proposes an anomaly de-
tection method based on the bidirectional TCN and 
MHA (Multi-Head Attention) mechanism. It first 
changes the unidirectional structure of TCN model 
to bidirectional structure of BiTCN model, there-
by learning the bidirectional semantic features of 
time-series data better; And then, it uses the MHA 
mechanism to provide larger weights to the features 
that cause the data to be judged as anomalous data. 
In addition, the commonly used activation function 
of ReLU is changed to ELU to avoid neuron “death” 
problem. The contributions of this paper can be sum-
marized as follows:
1 We change the conventional unidirectional TCN 

model into a bi-directional structure (BiTCN) to 
capture the forward and reverse semantic features of 
time-series data. Specifically, the forward TCN mod-
el structure is used to extract the forward semantic 
features of preprocessed time-series data, and then 
invert the forward semantic features and input them 
to the reverse TCN model structure for extracting 
reverse features, finally the forward and reverse fea-
tures are fused as the final features to be learned.

2 We replace the activation function of ReLU in the 
traditional TCN model with the ELU to help BiTCN 
model solve the neuron “death” problem. Specifical-
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ly, we apply the ELU instead of ReLU to avoid the 
gradient of “0” when semantic feature is negative, 
thus alleviating the neuron “death” problem.

3 We apply the MHA mechanism to set larger weights 
to the features that cause the data to be judged as 
anomalous, thus avoiding the problem of feature 
information overload during the learning process.

4 We conduct extensive experiments to test the 
BiTCN-MHA method, the results verify that 
compared with eight state-of-the-arts, the pro-
posed BiTCN-MHA can accurately detect anom-
alies from time-series data as well as has higher 
stability.

The remainder can be organized as follows. Section 2 
introduces the related works on anomaly detection. 
Section 3 describes the anomaly detection method 
called BiTCN-MHA based on bidirectional TCN and 
MHA mechanism. Section 4 presents the experimen-
tal results. Finally, we summarize the whole paper 
and briefly explain the future work in Section 5.

2. Related Works
This section briefly reviewed the related works of 
traditional anomaly detection approaches and deep 
learning-based approaches.

2.1. Traditional Anomaly Detection 
Approaches
The traditional anomaly detection approaches are 
mainly composed of rule-based approaches, statis-
tical-based approaches and machine learning-based 
approaches. Among them, rule-based processing is 
the most common anomaly detection method, and 
the definition of rule is mainly divided into two cat-
egories: (1) algorithmic automatic extraction, which 
is a relatively simple extraction method and mainly 
detects anomalous data through pre-set extraction 
rules, such as EDE-FRMiner [18]; (2) expert knowl-
edge extraction, which manually specifies rules by 
experts and then determines whether the data are 
anomalous or not. However, rule-based approaches 
usually faced: (1) limited by the experience of experts, 
there are large deviations in detection results due to 
insufficient specified rules; (2) the rule base needs to 
be updated in time, otherwise new anomalies cannot 
be detected in time; (3) the overhead of detection us-

ing matching rules is high. In the statistical-based 
approaches, the measured data need to obey a certain 
distribution and use the data for parameter estima-
tion. The simpler methods include box plot, Crubbs 
test, 3σ criterion, etc., and the more complex ones 
include vector autoregressive (VAR), autoregres-
sive moving level search (ARMA), etc.; However, the 
above methods are more suitable for low-dimension-
al data and need the measured data to meet assumed 
distribution. Machine learning-based approaches 
are composed of supervised learning [25], unsuper-
vised learning [16] and weakly supervised learning 
[44] approaches. The difference between them lies in 
the labeling strength of the measured data. Although 
machine learning-based approaches can achieve 
good performance in many tasks [22], [6], [9], they 
are extremely challenging to apply due to the lack of 
high-quality labels in the measured dataset in most 
real cases and their inability to autonomously learn 
the features of data.

2.2. Deep Learning-based Anomaly Detection 
Approaches
Deep unsupervised learning-based approach [29] and 
deep weakly supervised learning-based approach [26], 
[29] had excellent ability to obtain complex internal 
relationships from unlabeled data or small portions 
with finitely labeled data, i.e., they address the chal-
lenging problem of high quality labeling in machine 
learning. For example, convolutional neural network 
(CNN) has been widely used in anomaly detection for 
its advantages of hierarchical feature extraction and 
translation invariance. On the basis of CNN, different 
modifications of CNN have been widely developed, 
such as neural heuristic analysis and sonar analysis 
using ROI (Region of Interest). Neural heuristic analy-
sis [23] combines the concepts of neural networks and 
heuristics to solve complex optimization problems, it 
uses the neural network models to learn from data and 
develops the heuristic methods for decision-making or 
problem-solving tasks; In addition, it also adjusts and 
improves their performance based on experience and 
feedback through utilizing the learning ability of neu-
ral networks. Sonar analysis using ROI [34] is used to 
analyze the specific areas in sonar images or data that 
are expected to contain important information or fea-
tures, it improves the efficiency and accuracy of sonar 
target detection or image segmentation via combining 
ROI analysis with cellular neural networks.
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In particular, to be more relevant to the context of 
anomaly detection on time-series data, this subsection 
focuses on deep learning-based approaches on time-se-
ries data. Specifically, deep learning-based approaches 
are mainly composed of prediction-based and recon-
struction-based [13] approaches. Prediction-based 
approach determines the presence of anomalies by 
predicting the data at the next timestamp, while recon-
struction-based method encodes and decodes the nor-
mal data by deep neural networks to capture patterns 
in normal data as well as detects the anomalous data.
The current prediction-based approaches mainly in-
clude: anomaly detection approaches based on RNN 
or its variants (e.g., DeepLSTM [8]), CNN-based 
approaches (e.g., DeepAnt [29]), GNN-based ap-
proaches (e.g., GDN [15]), HTM-based approaches 
(e.g., RADM [31]), and Transformer-based approach-
es (e.g., SAND [37]). The above methods capture the 
timing information in the time-series data through 
different structures of the model, but generally use 
the forward description of time-series data to pre-
process it to generate a sequence that fits the model. 
Such methods have the problem of ineffectiveness in 
dealing with some time-series data containing bidi-
rectional semantic information.
Reconstruction-based approaches are mainly clas-
sified into: AE-based approaches (e.g., USAD [2]), 
VAE-based approaches (e.g., LSTM-VAE [33]), and 
GAN-based approaches (e.g., MAD-GAN [24]). These 
approaches first encode normal data based on the re-
construction principle and use deep neural networks 
to map it into a low-dimensional space, they then de-
code the encoding result into the original space to 
reconstruct an approximate original data as well as 
measure the abnormal degree of data by computing 
the differences between reconstructed data and orig-
inal ones. In contrast, the self-encoders or variational 
self-encoders are often used as deep neural networks 
due to their compression and reconstruction capabili-
ties. These methods do not require a priori knowledge 
or over-labeled data and can learn anomalous patterns 
directly from unlabeled data, but they have limitations 
such as low sensitivity to assumptions about normal 
data distribution and data imbalance. On other hand, 
the GAN-based anomaly detection methods use gener-
ators to generate the data similar to normal data as well 
as use discriminators to distinguish generated data 
from real data, thereby identifying the anomalous data 

by computing the differences between generated and 
real data. This category of anomaly detection approach 
has better generalization ability and stronger robust-
ness, but has the problems such as unstable model 
training and susceptibility to noisy data.
In summary, the detection performance of most popu-
lar and advanced deep learning-based approaches (e.g., 
DAGMM [45], CAE_M [42], MTAD-GAT [43], MAD-
GAN [24], GDN [15], USAD [2], DTAAD [41], TranAD 
[39] faces significantly deficient when dealing with 
the time-series data with bidirectional semantics due 
to the failure to consider the bidirectional semantic 
of the data. To better detect the anomalous data from 
time-series data, we propose an efficient anomaly de-
tection approach called BiTCN-MHA based on BiTCN 
and MHA mechanism, which breaks the bottleneck 
of anomaly detection by introducing the bidirectional 
model, MHA mechanism and ELU activation function. 
The comparison of BiTCN-MHA and reviewed anom-
aly detection methods are shown in Table 1.

Table 1
The comparative characteristic of anomaly detection 
approaches

Models Used activation 
function

Feature weight 
learning

DAGMM [45] Tanh ×

CAE_M [42] Sigmoid ×

MAD-GAN [24] LeakyReLU ×

GDN [15] LeakyreLU+Sigmoid √

USAD [2] ReLU+Sigmoid ×

DTAAD [41] Sigmoid √

MTAD-GAT [43] LeakyReLU ×

TranAD [39] Sigmoid ×

BiTCN-MHA (proposed) ELU √

3. Anomaly Detection Method 
BiTCN-MHA
In this section, we elaborate the proposed BiTCN-
MHA approach based on BiTCN and MHA (Multi-
Head Attention) mechanism, which consists of three 
main components: bi-bidirectional TCN model, ELU 
activation function and MHA mechanism.
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3.1. The Framework of BiTCN-MHA
This subsection introduces the framework of BiTCN-
MHA, and it is shown in Figure 1.
Firstly, the time-series data are processed into two 
input forms satisfying the forward TCN model and 
the reverse TCN model by preprocessing operations. 
Secondly, the processed input sequences are fed into 
the forward and reverse TCN models to extract the 
forward and reverse features of the data (containing 
all features of the data but not one feature), and the 
activation function of ELU is used to solve the neuron 
“death” problem during the learning process. Then, 
the forward features (C) and reverse features (C’) of 
network traffic are fused using Equation (7) to provide 
more features for MHA layer. Next, the MHA mecha-
nism is applied to give larger weights to the features 
that cause the data to be judged as anomalous, thereby 
avoiding the overload problem of feature information 
in the learning process and thus improving the detec-
tion efficiency. Finally, the probability of each data be-
ing anomaly data is output as the result. The details of 
each stage are described in Subsections 3.2-3.5.

3.2. Preprocessing of Time-series Data
The time-series data is a set of data objects with 
temporal sequence marked by the timestamp T, it is 
shown in Equation (1).
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Firstly, the time-series data are processed into two 
input forms satisfying the forward TCN model 
and the reverse TCN model by preprocessing 
operations. Secondly, the processed input 
sequences are fed into the forward and reverse 
TCN models to extract the forward and reverse 
features of the data (containing all features of the 
data but not one feature), and the activation 
function of ELU is used to solve the neuron 
"death" problem during the learning process. And 
then, the forward features (C) and reverse features 
(C’) of network traffic are fused using Equation (7) 
to provide more features for MHA layer. Next, the 
MHA mechanism is applied to give larger weights 
to the features that cause the data to be judged as 
anomalous, thereby avoiding the overload 
problem of feature information in the learning 
process and thus improving the detection 
efficiency. Finally, the probability of each data 
being anomaly data is output as the result. The 
details of each stage are described in Subsections 
3.2-3.5. 
3.2. Preprocessing of Time-series Data 
The time-series data is a set of data objects with 
temporal sequence marked by the timestamp T, it 
is shown in Equation (1). 

( ) ( ) ( )
1 2{ ,  ,..., }i i i

TS x x x= ,                   (1) 

where ( )
1

ix is the first value of ith dimension of 
time-series data, T is the temporal length of 
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Meanwhile, for the anomaly detection 
process, the existing approach defines it as 
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To further improve the detection efficiency, 
the same time-series data preprocessing as 
DTAAD is used, i.e., normalized training 
data and test data. In addition, a 50dB white 
noise was added to the data as data 
enhancement and sliced into the sliding time 
window, the specific preprocessing-related 
equations is shown in Equations (2)-(4). 
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where xt and εt denote the signal and noise, 
respectively, and the ratio of signal to noise is in 
dB. The max(τ) and min(τ) mean the maximum 
vector and minimum vector in the training time 
series τ. The ε is a very small constant to prevent 
overflow by division by zero for the entire input 
data in the range (0,1). 

Through the above data pre-processing operation, 
the processed data is used as the training set for 
training BiTCN-MHA model. 

3.3. BiTCN Model 
TCN model is usually used for processing the 
sequential data, it is composed of many stacking 
residual blocks. Each residual block consists of a 
causal convolution module, an inflation 
convolution module and a residual connection. 
Among them, the causal convolution module 
ensures the output of current moment only having 

the connection with the previous moments 
but not influenced by later moments by 
restricting the movement direction of 
convolution kernel, which helps TCN to 
obtain more accurate information as well as 
reduce the model parameters and 
computation when processing the time-series 
data. 

Compared to the deep neural network 
models with similar functions such as RNN, 
LSTM and GRU, TCN is more efficient in 
processing time-series data for the following 
reasons. (1) TCN contains only convolutional 
and pooling layers, it has a simpler structure 
is easy to implement and accelerate the 
training speed; (2) TCN captures the long-
term dependencies by setting up a "causal 
convolution module" to maintain the 
temporality of the time-series data during the 
convolution process; (3) TCN enhances the 
modeling ability by stacking multiple 
convolutional layers and uses techniques 
such as residual join and batch normalization 
to enhance the training effect. Numerous 
experiments were confirmed that TCN can 
achieve better results when dealing with the 
time-series data [41], [10], [11]. 
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3.3. BiTCN Model
TCN model is usually used for processing the sequen-
tial data, it is composed of many stacking residual 
blocks. Each residual block consists of a causal con-
volution module, an inflation convolution module 
and a residual connection. Among them, the causal 
convolution module ensures the output of current 
moment only having the connection with the previ-
ous moments but not influenced by later moments 
by restricting the movement direction of convolution 
kernel, which helps TCN to obtain more accurate in-
formation as well as reduce the model parameters and 
computation when processing the time-series data.
Compared to the deep neural network models with 
similar functions such as RNN, LSTM and GRU, 
TCN is more efficient in processing time-series data 
for the following reasons. (1) TCN contains only con-
volutional and pooling layers, it has a simpler struc-
ture is easy to implement and accelerate the training 
speed; (2) TCN captures the long-term dependencies 
by setting up a “causal convolution module” to main-
tain the temporality of the time-series data during the 
convolution process; (3) TCN enhances the modeling 
ability by stacking multiple convolutional layers and 
uses techniques such as residual join and batch nor-
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malization to enhance the training effect. Numerous 
experiments were confirmed that TCN can achieve 
better results when dealing with the time-series data 
[41], [10], [11].
In order to further improve the detection efficiency on 
time-series data, a bidirectional TCN model (BiTCN, 
including forward TCN and inverse TCN) is used to 
learn the forward and inverse features of time-series 
data, respectively. Both forward and inverse TCN 
models use a one-dimensional fully convolutional 
neural network (1D-FCN) to ensure that each hidden 
layer has the same characteristics as the input layer 
and applies a generalized convolution operation to 
guarantee the output only correlated with the time 
step value in the previous layer and earlier time steps, 
i.e., the 1D-FCN and causal convolutional model are 
used to process the time-series data. The structure of 
proposed BiTCN model formed by the combination of 
forward and inverse TCNs is shown in Figure 2.
In addition, the interval sampling and the setting of 
different expansion coefficients are used to obtain 
larger sensory fields, and thus reducing the training 
time and improving the detection efficiency. Usual-
ly, the expansion factor of the model is set to d=2n-1, 
where n means the number of convolutional layers. 
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With the increasing number of layers, the interval 
sampling distance becomes larger, a larger perceptu-
al field can be obtained, i.e., capturing more temporal 
information. In particular, the subsequent dimension 
is set to 1 to describe the preprocessing of time-series 
data more conveniently, and the overall preprocess-
ing of high-dimensional time-series data is the same 
as that of one-dimensional ones. Specifically, the 
one-dimensional sequence X=(x1, x2,..., xT) contain-
ing temporal information can be obtained after pre-
processing, where T also represents the timestamp 
length, and the expansion convolution operation in 
TCN is shown in Equation (5).
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In Equation (5), d is the expansion coefficient, k is 
the size of convolution filter, and s-d.i represents 
the information based on the index of d pointing to 
the past, i.e., the past direction. The forward 
feature extraction against the time-series data can 
be accomplished by Equation (2). Similarly, the 
one-dimensional sequence X=(x1, x2,..., xT) is 
inverted to generate the one-dimensional sequence 

X’=(xT, xT-1,,..., x1), and the generated X’ is 
adopted to extract the reverse features 
through inflated convolution operation like 
forward sequence. 

Finally, X and F(X) are passed together into 
the next layer of network structure using 
residual connections to avoid information 
loss when passing between layers. 
Specifically, X and F(X) are nonlinearly 
transformed with the use of ELU, which will 
be described in Subsection 3.4. 

3.4. Activation Function of ELU  
The commonly used activation function in 
TCN is an unsaturated one called ReLU. 
Although ReLU has the advantages of fast 
computation, effective in gradient 
disappearance, and no saturation for the 
positive part, it has some significant 
disadvantages: (1) The gradient is 0 when the 
input is negative, resulting in no activation 
(death) of neurons, which let the model 
cannot learn and update; (2) When the input 
value is too large, the output of activation 
function becomes very large, i.e., the neuron 
"explosion" problem occurs, which leads to 
network instability; (3) ReLU is a non-zero 
mean function, which may cause the output 
of some neurons to be always negative, thus 
reducing the model fitting ability. 

In this paper, we adopt the ELU instead of 
ReLU to solve the neuron "death" problem of 
the ReLU, the structure of ELU is shown in 
Equation (6). When x>0, the ELU function is a 
linear function with a gradient of 1, while the 
ELU can take negative values when x≤0, 
where a is usually 1. The ELU function does 
not simply set all negative axis information to 
"0", but retains the negative axis gradient. 
Therefore, ELU effectively alleviates the 
gradient disappearance (i.e., neuron "death") 
problem. In addition, since ELU is a one-
sided saturation function, it has a faster 
convergence speed compared to the 
activation functions such as ReLU, 
LeakyReLU, PReLU, etc. 
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3.5. Multi-head Attention Mechanism
Although changing the unidirectional TCN model to a 
bidirectional structure and using the ELU can improve 
the anomaly detection to some extent. However, the 
model treats all features of time-series data as equal-
ly important during the training process, which allows 
unimportant features affecting the effectiveness of im-
portant features for anomaly detection. The attention 
mechanism, which prevents information overload and 
assigns different weights to different features, can be 
used in the training of models to effectively enhance 
the detection efficiency. Therefore, this paper applies 
the MHA mechanism to the BiTCN model.
Firstly, the extracted forward and reverse features 
are fused according to Equation (7), and the fused 
features are then added into the MHA mechanism, 
where C and C’ represent the forward and reverse 
features, respectively, and Cfinal represents the fused 
features.
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obtain h sets of three vectors Q, K, and V, i.e., 
query vector, key vector, and value vector. The Q, 
K and V are mapped to a low-latitude space 
according to Equation (8) to obtain Q’, K’ and V’. 
The WQ, WK and WV are the linear transformation 
matrices of Q, K and V, respectively, dmodel denotes 
the dimension of original input vector, dk denotes 
the dimension of linearly transformed vector, and 
Q’, K’ and V’ are the mapped query vector, key 
vector and value vector, respectively. 
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Finally, the attention of Q’, K’ and V’ are 
calculated by Equation (9), and the h-group 
calculated results are concatenated in the last 
dimension to form the final results of MHA 
mechanism. 
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3.6. Training Process of BiTCN-MHA 

After introducing the details BiTCN model, 
ELU activation function and MHA 
mechanism, the training process of BiTCN-
MHA based on bidirectional TCN and MHA 
mechanism is shown in Algorithm 1. Firstly, 
the pre-processed features X are reversed, 
and the features of X and X’ are input into 
the BiTCN model. And then, pooling the 
extracted forward and reverse features 
through fully connected layer, and the 
obtained features are nonlinearly varied and 
spliced by the ELU activation function. 
Finally, the spliced features are processed for 
model training according to Equations (8)-(9). 

 
Algorithm 1: BiTCN-MHA 
Input: Time-series data DataTime, Learning rate L, Batch b, 
Epoch e, Dropout D 
Output: Detection result R 
01.X=DataProcessing (DataTime) 
02.X‘=reverse(X) 
03.for each e do 
04.   for each b do 
05.      extract times-series features according to L and D 
06.      lable‘←classification result based on TCN 
07.      calculate loss function 
08.      renew weight values W1 and W2 

09.      get forward and reverse features c and c‘ 

10.   end for 
11.end for 
12.h=ELU(W1*c+b1),  h‘=ELU(W2*c‘+b2) 
13.H=(softmax(h)+softmax(h‘))/2 
14.R=multi-headattention(H) 
15.return R 

The computational complexity of proposed 
BiTCN-MHA algorithm is O(h1+h2), it mainly 
depends on the computational complexity of 
data processing O(h1) and BiTCN operations 
O(h2). Among them, O(h1) depends on the 
dimension d of the preprocessed temporal 
data, O(h2) is generally represented as the 
product of three variables k, l and m2, where k 
represents the size of a kernel, l represents 
the input length, m represents the number of 
output channels or feature maps in the 
convolutional layer. 

 
4. Experiments and Analysis 
The BiTCN-MHA model is compared with 
eight state-of-the-art anomaly detection 
models (including DAGMM [45], CAE_M 
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dmodel denotes the dimension of original input vector, 
dk denotes the dimension of linearly transformed vec-
tor, and Q’, K’ and V’ are the mapped query vector, key 
vector and value vector, respectively.
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3.6. Training Process of BiTCN-MHA
After introducing the details BiTCN model, ELU acti-
vation function and MHA mechanism, the training pro-
cess of BiTCN-MHA based on bidirectional TCN and 
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size of a kernel, l represents the input length, m rep-
resents the number of output channels or feature 
maps in the convolutional layer.

4. Experiments and Analysis
The BiTCN-MHA model is compared with eight 
state-of-the-art anomaly detection models (including 
DAGMM [45], CAE_M [42], MTAD-GAT [43], MAD-
GAN [24], GDN [15], USAD [2], DTAAD [41], TranAD 
[39]) on six datasets in this section to verify its detec-
tion effectiveness, and then the ablation experiments 
are conducted to demonstrate the necessity of each 
part of BiTCN-MHA model.
The running environment of the experiment is Win 
10 with two I7-10700 2.90GHz CPUs, one NVIDIA 
GeForce RTX 3060 Ti GPU and the BiTCN-MHA is 
realized in python 3.10.6.

4.1. The Introduction of Time-series Datasets
In the experiment, we use six datasets (including 
SWaT [27], SMAP [21], MBA [28], UCR [14], NAB 
[1], SMD [38]) to verify the efficiency of BiTCN-
MHA method, and the details of the used datasets are 
shown in Table 2. In the experiment, the ratio of train-
ing datasets and testing datasets is chosen as 4:1.
1 SWaT (Secure Water Treatment): The data is gen-

erated by a continuously operating water treatment 
system, each row of data contains a time stamp and 
the corresponding sensor/actuator measurements.

2 SMAP (Soil Moisture Active Passive): The data is 
collected from Soil Moisture Remote Sensing de-
veloped by NASA, and the anomalies are extracted 
from anomaly reports generated by spacecraft de-
tection systems.

3 MBA (MIT-BIH Supraventricular Arrhythmia): 
This dataset is the first standard metric for ar-
rhythmia detector evaluation, it has been used over 
500 basic tests.

4 UCR (HexagonML): This dataset is composed of 
multivariate time series data obtained from re-
al-world sources.
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Table 2
The information about the used datasets

Datasets Entities 
(Dimensions) Numbers Anomalies(%)

SwaT 51 (1) 946719 11.98

SMAP 25 (55) 562800 13.13

MBA 2 (8) 200000 0.14

UCR 1 (4) 7500 1.88

NAB 1 (6) 8066 1.92

SMD 38 (4) 1416840 4.16

5 NAB (Numenta Anomaly Benchmark): This data-
set has 50 different time-series, each dataset con-
tains a csv file and a label file containing anomalous 
time periods in the time series.

6 SMD (Server Machine Dataset): This dataset is 
collected from a large Internet company within 
five weeks, it records relevant information gener-
ated by the server.

4.2. Evaluation Metrics
Aimed at evaluating the efficiency of BiTCN-MHA 
approach, we used four evaluation metrics (including 
P (Precision), R (Recall), AUC value and F1-score) in 
the experiment, their definitions are shown in Equa-
tions (10)-(13).
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where m is the total number of positive and 
negative samples, xi and yi are the horizontal 
and vertical coordinates of the ith point on 
ROC curve, and yi is the intercept of ROC 
curve on the x-axis. The model has better 
model performance when AUC value is 
much closer to 1, while the model has worse 
performance when the AUC value is close to 
0.5. In Equations (11)-(13), true positive (TP) 
represents the number of correctly detected 
samples, false negative (FN) represents the 
number of samples from a category that are 
incorrectly detected to other categories, false 
positive (FP) represents the number of 
samples that are incorrectly detected. 

4.3. Detection Efficiency of BiTCN-
MHA model 
The BiTCN-MHA model is compared with 
eight baselines on six publicly available time-
series datasets in this section, we repeat the 
experiment for 50 times and calculate the 
average experimental result, it is shown in 
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where m is the total number of positive and negative 
samples, xi and yi are the horizontal and vertical co-
ordinates of the ith point on ROC curve, and yi is the 
intercept of ROC curve on the x-axis. The model has 
better model performance when AUC value is much 
closer to 1, while the model has worse performance 

when the AUC value is close to 0.5. In Equations (11)-
(13), true positive (TP) represents the number of 
correctly detected samples, false negative (FN) rep-
resents the number of samples from a category that 
are incorrectly detected to other categories, false pos-
itive (FP) represents the number of samples that are 
incorrectly detected.

4.3. Detection Efficiency of BiTCN-MHA 
model
The BiTCN-MHA model is compared with eight 
baselines on six publicly available time-series data-
sets in this section, we repeat the experiment for 50 
times and calculate the average experimental result, 
it is shown in Table 3.
As is shown in Table 3 that the proposed BiTCN-MHA 
model can obtain better precision, recall, F1-score 
and AUC metrics compared with these eight models 
on most datasets. On the datasets UCR and SMD, the 
AUC metric of DAGMM model achieves slightly high-
er AUC metric than BiTCN-MHA model, it is owing to 
that the DAGMM using deep autoencoding Gaussian 
mixture model to learn the features of datasets, which 
can effectively detect the potential anomalies in the 
datasets. Compared with other efficient approaches, 
the BiTCN-MHA model performs better on all six 
publicly available datasets, it is attributes the BiTCN-
MHA model uses bidirectional TCN to learn the bidi-
rectional features of the datasets as well as uses ELU 
to avoid the neuron “death” and MHA mechanism to 
provide different weights to different features based 
on their importance to the determining of anomalies, 
these three techniques used in the BiTCN-MHA can 
greatly improve the detection efficiency of anoma-
lies. Specific, the CAE_M model performs worse in 
the nine compared models in most cases, while the 
F1-score and AUC of other models are not stable on 
different datasets. Specially, on the NAB dataset, the 
proposed BiTCN-MHA model can achieve an average 
AUC of 0.93453, while the average AUC of DAGMM, 
CAE_M, MAD-GAN, GDN, USAD , DTADD, MTAD-
GAT and TranAD are 0.75462 (23.84%#), 0.66629 
(40.26%#), 0.81463 (14.72%#), 0.79627 (17.36%#), 
0.66637 (40.24%#), 0.86508 (8.03%#), 0.90115 
(3.7%#), 0.81225 (15.05%#), the proposed BiTCN-
MHA model has a largest increase on the AUC met-
ric; Similarly, the proposed BiTCN-MHA model can 
achieve an average F1-Score of 0.89206, while the 
average F1-Score of DAGMM, CAE_M, MAD-GAN, 
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Table 3
Detection efficiency of BiTCN-MHA and state-of-the-arts on six time-series datasets

Methods Metrics SWaT SMAP MBA UCR NAB SMD

DAGMM

P 0.97895 0.87853 0.93471 0.57843 0.77412 0.90017

R 0.69459 0.75849 0.93954 0.59293 0.51015 0.89771

F1-score 0.81261 0.81411 0.93712 0.58559 0.61501 0.89894

AUC 0.84250 0.95328 0.95158 0.99852 0.75462 0.98855

CAE_M

P 0.96991 0.82340 0.83745 0.71233 0.78771 0.91167

R 0.63048 0.82476 0.96706 0.77534 0.62744 0.91920

F1-score 0.76420 0.82408 0.89760 0.74250 0.69850 0.91542

AUC 0.83851 0.95202 0.94570 0.98772 0.66629 0.93085

MAD-GAN

P 0.94775 0.82338 0.92174 0.87741 0.86514 0.99970

R 0.70744 0.75366 0.88674 0.75062 0.60677 0.85444

F1-score 0.81015 0.78698 0.90390 0.80908 0.71328 0.92138

AUC 0.84050 0.94569 0.94879 0.99459 0.81463 0.86565

GDN

P 0.97412 0.77842 0.85662 0.69183 0.81301 0.71174

R 0.69047 0.91343 0.99736 0.92224 0.61325 0.64241

F1-score 0.80813 0.84054 0.92165 0.79059 0.69914 0.67530

AUC 0.83904 0.95572 0.96251 0.99660 0.79627 0.94796

USAD

P 0.99886 0.74730 0.88799 0.89412 0.84211 0.98541

R 0.67774 0.92298 0.97642 0.80767 0.54741 0.86398

F1-score 0.80755 0.82590 0.93011 0.84870 0.66351 0.92071

AUC 0.83861 0.94731 0.94675 0.99082 0.66637 0.97542

DTAAD

P 0.94770 0.84599 0.96637 0.88884 0.88796 0.87884

R 0.68083 0.91199 0.99540 0.92527 0.82349 0.89409

F1-score 0.79240 0.87775 0.98067 0.90669 0.85451 0.88640

AUC 0.83702 0.96916 0.97392 0.98924 0.86508 0.98536

TranAD

P 0.97458 0.82770 0.95697 0.91076 0.88888 0.99743

R 0.69381 0.97244 0.95759 0.98129 0.85623 0.90653

F1-score 0.81057 0.89425 0.95728 0.94471 0.87225 0.91987

AUC 0.84227 0.96541 0.96747 0.97354 0.90115 0.98258

MTAD-GAT 

P 0.97190 0.79770 0.91192 0.78034 0.84276 0.81198

R 0.69102 0.99988 0.93562 0.95191 0.69689 0.90921

F1-score 0.80774 0.88742 0.92362 0.85763 0.76291 0.85785

AUC 0.83554 0.95112 0.95431 0.99651 0.81225 0.90510

BiTCN-MHA

P 0.98527 0.89514 0.99881 0.90243 0.88412 0.92447

R 0.69318 0.99508 0.97752 0.99999 0.90014 0.91903

F1-score 0.81381 0.94247 0.98805 0.94871 0.89206 0.92174

AUC 0.84406 0.97160 0.98572 0.99784 0.93453 0.98390
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GDN, USAD, DTADD, MTAD-GAT and TranAD 
are 0.61501 (45.05%#), 0.69850 (27.71%#), 0.71328 
(25.06%#), 0.69914 (27.59%#), 0.66351 (34.45%#), 
0.85451 (4.39%#), 0.87225 (2.27%#), 0.76291 
(16.93%#). The improvement of BiTCN-MHA on 
other datasets is similar with that on dataset NAB. In 
general, extensive experimental results verify that the 
BiTCN-MHA model can accurately detect anomalies 
from time-series data.

4.4. Stability of BiTCN-MHA Model
In addition to the detection efficiency, the stability is 
an important factor to measure the detection perfor-
mance, therefore, we perform experiments to verify 
whether the BiTCN-MHA model has stability com-
pared with other models on metrics of F1-score and 
AUC. The experiment is also run for 50 times, and the 
final result is presented in Figures 3-4.

Figure 3
The stability of F1-score metric on compared anomaly detection methods

It can be seen from Figures 3-4 that the BiTCN-MHA 
model has no outlier in both F1-score and AUC met-
rics. Except for the AUC metric of BiTCN-MHA on 
the MBA dataset that is slightly lower than DTAAD in 
some experiments, and the F1-score metric of BiTCN-
MHA on the SMD dataset that is slightly lower than 
MAD-GAN in some experiments, the F1-score metric 
as well as the AUC metric of BiTCN-MHA model are 
higher than compared anomaly detection models. 
As presented in Figures 3(a)-(f ) and Figures 4(a)-
(f ), the proposed BiTCN-MHA model has a relative-
ly short interquartile range, which means that the 
BiTCN-MHA model has a stable detection perfor-
mance. Although the interquartile range of detection 
results of the BiTCN-MHA model on some time-se-
ries datasets is slightly larger than the range of com-
pared methods, but the detection efficiency is higher, 
and the BiTCN-MHA model does not show any outli-

(a) SWaT (b) SMAP (c) MBA

(d) UCR (e) NAB (f ) SMD



Information Technology and Control 2024/1/5348

Figure 4
The stability of AUC metric on seven anomaly detection methods

(a) SWaT (b) SMAP (c) MBA

(d) UCR (e) NAB (f ) SMD

ers, which also indicates BiTCN-MHA model having 
higher detection performance and better stability.
In comparison with eight state-of-the-arts, the 
BiTCN-MHA model uses the bidirectional TCN mod-
el to forward and backward learn the time-series data, 
thereby better grasping the bidirectional features of 
time-series data; In addition, we change the habit of 
using ReLU in the TCN model and apply the ELU to 
avoid neuron “death”, therefore, the BiTCN-MHA 
model does not converge quickly and thus achieving 
better convergence. In the BiTCN-MHA model, we 
also incorporate the MHA mechanism to set higher 
weights to more important features, thus allowing the 
detection model to focus on those features that are 
more closely associated with the anomalies. These 
improvements can better enable the BiTCN-MHA 
model to perform well in anomaly detection.

4.5. Ablation Experiments
Influence of bidirectional TCN structure: We inves-
tigate the performance of BiTCN-MHA with the unidi-
rectional TCN-MHA model on six datasets, and the ex-
perimental result is shown in Table 4. Compared with 
the unidirectional structure, the use of BiTCN in the 
detection of anomalies can improve the detection effi-
ciency. The reason is that the learning of bidirectional 
semantic features can promote BiTCN to identify and 
capture the correlation of features, which can enable 
the detection model to understand the relationship 
between features more accurately and facilitate the 
extraction of richer and more informative feature rep-
resentations, thus improving the accuracy and robust-
ness of the model. This also clearly demonstrates the 
advantages of including bidirectional feature learning 
in the proposed BiTCN-MHA model.



49Information Technology and Control 2024/1/53

Table 4
Detection efficiency of BiTCN-MHA method without some components

Methods Metrics SWaT SMAP MBA UCR NAB SMD

With 
unibidirectional 
structure

P 0.96541 0.95772 0.95124 0.94545 0.78874 0.87667

R 0.66318 0.89583 0.97374 0.91751 0.99960 0.93817

F1-score 0.78625 0.92574 0.96236 0.93127 0.88174 0.90638

AUC 0.81238 0.93893 0.96451 0.95374 0.90392 0.94562

With ReLU

P 0.85228 0.99981 0.99475 0.99112 0.78412 0.99986

R 0.71015 0.84636 0.91489 0.87373 0.99296 0.82131

F1-score 0.77475 0.91671 0.95315 0.92873 0.87627 0.90183

AUC 0.79548 0.93074 0.96748 0.94127 0.89528 0.93562

Without MHA

P 0.78942 0.98713 0.91948 0.97359 0.79657 0.97885

R 0.70687 0.84237 0.96647 0.87875 0.94711 0.82661

F1-score 0.74587 0.90902 0.94239 0.92374 0.86534 0.89631

AUC 0.77513 0.92407 0.95317 0.93672 0.88725 0.92582

BiTCN-MHA

P 0.87221 0.96987 0.99666 0.99901 0.94276 0.99583

R 0.76274 0.91658 0.97959 0.90323 0.84653 0.85791

F1-score 0.81381 0.94247 0.98805 0.94871 0.89206 0.92174

AUC 0.84406 0.97160 0.98572 0.99784 0.93453 0.98390

Influence of ELU activation function: We investi-
gate the effect of BiTCN-MHA model under the ReLU 
activation function as well as the ELU activation func-
tion. Table 4 shows the detection results, where “With 
ReLU“ represents the results under using ReLU. Table 
4 shows that the detection efficiency with the use of 
ELU is higher than that with the use of ReLU activation 
function in both F1-score and AUC metrics. This is due 
to the fact that the ELU activation function effectively 
mitigates the gradient disappearance problem and has 
a faster convergence rate due to the fact that ELU is a 
one-sided saturation function. Compared with ELU, 
ReLU activation function has poor fitting ability, easy 
to fall into gradient “explosion” and neuron “death” as 
well as unsaturated for negative numbers.
Influence of MHA mechanism: We also compare the 
effectiveness of using the MHA and without using the 
MHA model for anomaly detection on six publicly avail-
able datasets, and the final result is presented in Table 
4. It is shown in Table 4 that the BiTCN-MHA model 
outperforms the model without MHA in both F1-score 
and AUC metrics; therefore, the use of MHA mecha-
nism in the anomaly detection model can improve the 

detection efficiency, which is caused by that the models 
incorporating MHA mechanism simultaneously focus 
on different features in the input sequence, which can 
learn a richer and more comprehensive feature rep-
resentation; In addition, each attention head focus on 
different semantic information, which allows the mod-
el to better understand the structure and semantics as-
sociated with the input sequence, thereby being more 
robust to input perturbations.
In general, extensive ablation experiments show that 
the bidirectional structure of TCN model, the ELU 
activation function and the MHA mechanism are es-
sential for the BiTCN-MHA model. The simultane-
ous use of these three components in BiTCN-MHA 
can effectively improve the detection accuracy and 
stability for the time-series data.

5. Conclusion
In this paper, we propose an anomaly detection ap-
proach called BiTCN-MHA based on BiTCN and 
MHA mechanism. BiTCN-MHA mainly relies on the 
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BiTCN model to extract the temporal features in the 
time-series data, it first normalizes and adds noise to 
the original data to improve its quality, and then feds 
the data after pre-processing into the forward TCN 
model and reverse TCN model to extract the forward 
and reverse features of data more effectively. And 
then, the ELU activation function is used instead of 
ReLU to solve the problem of neuron “death”. In ad-
dition, it also uses the MHA mechanism to set larger 
weight to important features to avoid the overload 
problem of feature information, thereby enhancing 
the detection efficiency of abnormal data. To evaluate 
the effectiveness of BiTCN-MHA approach, we con-
duct massive experiments on six publicly-available 
datasets. Extensive results present that the BiTCN-
MHA improves precision, recall, AUC and F1-Score 
by about 6.10%, 10.16%, 4.06% and 8.50% respectively 
on six datasets. The stability experimental result also 
shows that BiTCN-MHA approach can accurately de-
tect the abnormal data with high stability. In addition, 
the ablation experimental results verify that each 

component of BiTCN-MHA can improve the detec-
tion efficiency of abnormal data, and the combination 
of BiTCN model, ELU activation function and MHA 
mechanism are the best choose in the detection of ab-
normal data.
Although the proposed BiTCN-MHA method outper-
forms the eight state-of-the-arts on several publicly 
available datasets and performs more consistently 
on most of the datasets, its stability is not as good as 
the compared methods on some publicly available 
datasets. Therefore, we would like to change the loss 
function as well as introduce some depth modules 
(e.g., residual network models) in the future to fur-
ther upgrade the detection efficiency and stability of 
the BiTCN-MHA method.
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