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Globally, chronic kidney disease (CKD) is steadily increasing.  Computer-aided automated diagnostic (CAD) 
methods play a significant part in predicting CKD. Due to their highly effective classification accuracy, CAD 
systems like deep learning algorithms are essential in diagnosing diseases. This research creates an innova-
tive categorization model with a metaheuristic algorithm based on the best characteristic selection to diag-
nose chronic kidney disease. Data with the absence of values were first removed during the pre-processing 
phase. Then, the optimal assortment of attributes is chosen using the Squirrel Search algorithm, a metaheuris-
tic method that aids in more precise disorder prediction or categorization. Conditional Variational Genera-
tive Adversarial Networks were suggested for classification to identify the presence of CKD. A combination of 
two powerful techniques, Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) are 
used. These networks can generate data based on specific conditions, making them well-suited for conditional 
generation tasks. Performance measures such as accuracy, precision, recall, and F1 score were evaluated on 
the benchmark CKD dataset to determine the efficiency of the suggested feature selection-based classifier. Ac-
cording to the experimental findings, the proposed method outperformed existing classification models with 
accuracy, precision, recall, and F1 score values of 99.2%, 98.4%, 98.6%, and 98.9%, respectively.
KEYWORDS: Chronic Kidney Disease, Deep Learning, Squirrel Search Algorithm, Generative Adversarial 
Networks.
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1. Introduction
Chronic Kidney Disease (CKD) is a condition where 
kidney function gradually declines over time. It is a 
primary global health concern due to its increasing 
prevalence worldwide. CKD comprises a group of 
disorders that gradually damage the kidneys, reduc-
ing their ability to perform essential bodily functions 
over an extended period [5]. This condition can lead 
to kidney failure, high blood pressure, nerve damage, 
and other health issues. Estimates suggest that near-
ly two million people worldwide are affected by kid-
ney failure, particularly in developing countries like 
Afghanistan, Bangladesh, Nepal, India, Sri Lanka, 
and Pakistan [21]. In the United States, CKD affects 
approximately seven million people each year. It is 
recommended that individuals with associated risk 
factors such as high cholesterol. Diabetes or a histo-
ry of kidney disease should undergo regular annual 
check-ups to monitor abnormal test results [14]. Vari-
ous laboratory tests, including measuring glomerular 
filtration rate and assessing protein levels in urine 
and blood, are commonly used for CKD diagnosis. 
These circumstances raise two significant concerns: 
the reliability of assessment tests and the increasing 
healthcare costs.
As those with End-Stage Renal Disease (ESRD) main-
tain their health through dialysis treatments such as 
hemodialysis, peritoneal, or a kidney transplant, early 
identification of CKD is essential and helpful in re-
ducing medical resource usage [18]. Diagnostic tests 
employing plasma nitrogen levels and creatinine 
measurement are frequently used to diagnose CKD in 
its early stages. A technological way to diagnose CKD 
effectively is to analyze ultrasound scans of patients. 
Ultrasound imaging has several benefits, including 
the fact that it is safe, does not include radiation, is 
affordable, and is accessible [1]. Additionally, because 
the fatty deposits and collagen are farther down, ultra-
sonic imaging for obese individuals may have a lower 
accurate forecasting ratio and worse resolution. The 
precision of ultrasonics is primarily dependent on 
the technician’s skills. However, the CT scan outcome 
provides a better-intensity image, making it easier to 
see the structure, dimension, and internal layout [15].
Electronic medical record systems, information 
gathered from insurance asserts, CT scan results, lab 
examination outcomes, and other data sets have all 

been produced due to the digitization of the medical 
sector [21]. The traditional healthcare system can-
not efficiently and reliably diagnose CKD due to the 
enormous amount of accessible data. Thus, it is es-
sential to undertake prospective healthcare analytics 
to leverage data [4]. Traditional healthcare admin-
istration has limitations, but predictive techniques 
like machine learning, deep learning models, and al-
gorithms can help alleviate such constraints. Imple-
menting Deep learning-based diagnosis may lessen 
the need for surgical operations and increase the ef-
fectiveness of current medical interventions [18]. 
Healthcare professionals may develop innovative 
solutions using advanced analytics to prompt CKD 
examination, related health concerns, and even rec-
ommendations for personalized treatment when they 
integrate this information with other data sources [5]. 
Early CKD identification can stop the progression of 
ESRD using Deep learning models. The feature se-
lection technique may be used to overcome the con-
straint of dimensionality issues in categorizing the 
large dataset [15]. There are 2n alternative solutions 
for the FS selection issue with n features, and the dif-
ficulty increases by a factor of 2 for each additional 
feature. In recent studies, swarm intelligence (SI) al-
gorithms have been chosen to handle FS since it is re-
garded as an NP-complete issue by selecting the best 
feature group [8, 25]. 
The primary motivation behind conducting this re-
search is driven by the growing global prevalence 
of chronic kidney disease (CKD) and the need for 
accurate and efficient diagnostic methods. As CKD 
becomes increasingly common, developing reliable 
tools for early detection and categorization of the 
disease has become essential. Traditional diagnostic 
procedures may be unable to keep up with the rising 
demand, making it crucial to explore innovative ap-
proaches to improve the accuracy and efficiency of 
CKD diagnosis. There is a need for advanced diagnos-
tic methods that can help healthcare professionals 
identify and categorize CKD cases accurately and effi-
ciently. Deep learning can learn complex patterns and 
features from medical data. They can reveal subtle in-
dicators of CKD that are difficult for human observers 
to detect. The research aims to create an innovative 
categorization model that improves the accuracy of 



1075Information Technology and Control 2023/4/52

CKD diagnosis. This innovation is driven by recog-
nizing existing methods’ limitations and the desire 
to push the boundaries of what is possible in disease 
classification.
To address these problems, a novel classification 
model for the diagnosis of CKD based on Feature 
Selection is provided in the present research. Data 
with values that were unavailable were first removed 
during the pre-processing phase. Then, the opti-
mal collection of characteristics was chosen using a 
metaheuristic method called Squirrel Search Algo-
rithm (SSA), which is based on the concept of flying 
squirrels’ behavior. The optimal supply of features 
chosen by this metaheuristic optimization process 
aids in more precise disease prognosis or categoriza-
tion. Conditional Variational Generative Adversarial 
Networks (CVGAN) have been suggested as a classi-
fication method to determine the presence of chron-
ic kidney disease. A series of tests were run on the 
benchmark CKD dataset to evaluate the performance 
of the recommended model.
The main contributions of this work are,
1 To propose a novel deep learning model, such as a 

Conditional Variational Generative Adversarial 
Network for categorizing Chronic Kidney disease.

2 To employ a recently developed Squirrel Search 
Algorithm to select the most optimal features from 
the benchmark CKD dataset to improve the effica-
cy of the classification performed by the CVGAN 
deep learning model.

3 To assess the performance of the proposed model 
by comparing it against conventional deep learning 
models with and without feature selection tech-
niques and further compare the proposed model 
with existing works from the literature to demon-
strate its performance supremacy.

The remainder of the paper is organized as follows. 
Section 2 discusses the existing works in the litera-
ture associated with chronic kidney disease classi-
fication incorporating Machine Learning and Deep 
Learning models. Section 3 describes the proposed 
methodology, which includes the preprocessing 
phase and a brief description of CVGAN and SSA 
techniques.  Section 4 presents the results of execut-
ing experiments using the CVGAN-SSA model by ap-
plying it to the CKD dataset. Section 5 concludes the 
present research.

2. Related Works
It is apparent from a review of the published works 
that researchers are now primarily interested in di-
agnosing CKD. The investigations strongly empha-
sized using Machine Learning and Deep Learning 
algorithms. However, researchers have recently been 
interested in deep learning models because of their 
widespread adoption. 
Kidney diseases are diagnosed using 14 ML tech-
niques with an ensemble model [7]. Here, the 13 types 
of input features are used, such as diastolic BP, specif-
ic gravity, Albumin, Glucose, RBC, blood urea, serum, 
sodium, hemoglobin, potassium, hypertension, CKD, 
and blood counts. The Bayesian network, SVM, ran-
dom forest, rotation forest, logistic regression, deci-
sion tree, Naive Bayes, KNN, Logistic model tree, J48, 
and Ada Boost models were re-tested with the above 
input features. The voting and stacking are used to 
ensemble the high probability outcome and analyze 
the performance of the model.
Ten ML algorithms [5] are applied to construct pre-
diction models, incorporating 19 demographic, medi-
cal history, behavioral, and biochemical features. The 
study employs three feature ranking techniques to 
assess the significance of each feature. This research 
leverages ML algorithms to address a crucial health-
care challenge by providing a method for the early 
prediction of CKD in T1DM patients using readily 
available clinical data. The findings suggest that RF 
and LightGBM are promising models for this task, po-
tentially improving CKD diagnosis and intervention 
in this high-risk patient population.
The study [6] utilizes a substantial dataset com-
prising sixteen years of longitudinal data from 1375 
T1DM patients gathered from the multi-center Epi-
demiology of Diabetes Interventions and Complica-
tions (EDIC) clinical trials conducted across the USA 
and Canada. Seventeen routinely available features 
are considered. Three feature ranking algorithms, 
including extreme gradient boosting (XGB), random 
forest (RF), and extremely randomized trees clas-
sifier (ERT), are employed to create ranked feature 
lists. Logistic regression analyses are then conducted 
to construct CKD prediction models based on these 
rated features. Eight top-ranked features, including 
hypertension, duration of diabetes, drinking habit, 
triglycerides, ACE inhibitors, low-density lipoprotein 
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(LDL) cholesterol, age, and smoking habit, are identi-
fied as the most critical for predicting CKD in T1DM 
patients. A multivariate logistic regression-based 
CKD prediction model is developed using these fea-
tures, achieving a high accuracy of 90.04% in internal 
data validation and 88.59% in test data validation. 
The proposed model exhibits excellent performance 
and offers a practical solution for identifying CKD in 
T1DM patients during routine checkups. Including a 
nomogram further enhances the applicability of the 
model in clinical practice, making it a valuable tool 
for early CKD detection in this at-risk patient popu-
lation.
The potential of Computer-aided automated diagnos-
tic (CAD) systems is profound learning algorithms in 
enhancing CKD prediction due to their high classifi-
cation accuracy. The study explores the application 
of seven state-of-the-art deep learning algorithms to 
predict and classify CKD using various clinical fea-
tures [1]. The research meticulously evaluates the 
performance of these algorithms, measuring accura-
cy, precision, recall, loss, validation loss, computation 
time, prediction ratio, and AUC. Notably, algorithms 
such as ANN, Simple RNN, and MLP achieve high 
accuracy levels of 99%, 96%, and 97%, respectively, 
along with efficient prediction ratios and reduced 
processing time. These deep learning models outper-
form traditional data classification techniques, offer-
ing superior predictive capabilities. Moreover, the ar-
ticle proposes integrating the best-performing deep 
learning models into the Internet of Medical Things 
(IoMT) to enhance CKD prediction through more ef-
ficient and effective deep learning methods. This inte-
gration is envisioned to advance predictive analytics 
for CKD while considering its associated risk factors.
The primary objective of the research [30] is to pre-
dict and classify CKD using ML approaches, lever-
aging a publicly available dataset from the Irvine ML 
Repository comprising 400 instances. Various ML 
methods, including Support Vector Machine (SVM), 
K-Nearest Neighbors (KNN), Random Forest (RF), 
Logistic Regression (LR), Decision Tree (DT) Classi-
fiers, and eXtreme Gradient Boosting (XGBoost), are 
employed as base learners.
The research [28] focuses on developing a ma-
chine-learning model for forecasting CKD occurrence 
using publicly available data. The process involves 
comprehensive data preprocessing steps, including 

imputation of missing data, data balancing using the 
SMOTE algorithm, and feature scaling. The study 
employs the chi-squared test to extract a minimal 
set of relevant and highly correlated features for pre-
diction. Multiple machine learning models [25] are 
implemented, including decision tree (DT), random 
forest, and multi-class AdaBoosted DTs. The study 
focuses on improving the early prediction of CKD, 
particularly in the context of imbalanced and limit-
ed-size datasets, a common issue in medical research. 
Through rigorous analysis using various validation 
techniques [4], such as hold-out validation, multiple 
stratified cross-validation, and nested cross-vali-
dation, the DT model emerges as the top performer, 
achieving a high accuracy score of 98.99% when using 
manual augmentation and SMOTE.
A severe and long-lasting ailment that can be caused 
by factors such as kidney malfunction or malignancy 
is discussed [13]. The study emphasizes the impor-
tance of early detection and intervention to slow or 
halt the progression of CKD, potentially preventing 
the need for life-preserving interventions like dialy-
sis or surgery. The research [12] explores the predic-
tion of CKD using various machine learning models, 
including logistic regression, probit, random forest, 
decision tree, k-nearest neighbor, and support vector 
machine (SVM) with four different kernel functions. 
The dataset is derived from a case-control study in-
volving CKD patients from a specific region in Pakis-
tan. Multiple performance measures, such as accura-
cy, Brier score, sensitivity, Youden’s index, specificity, 
and F1 score, with additional  the Diebold and Maria-
no test is conducted to assess
The article [17] addresses a significant challenge in 
pathology related to chronic kidney disease (CKD) 
diagnosis through kidney biopsy samples. Tradition-
al visual classification methods used by pathologists 
are qualitative, semi-quantitative at best, and suf-
fer from substantial interobserver variability. The 
study introduces an innovative approach using un-
supervised machine learning to overcome these lim-
itations and discover predictive features for patient 
outcomes. The study [21] proposes a Deep Neural 
Network-based Multi-Layer Perceptron Classifier 
for CKD diagnosis. The model is trained using data 
from 400 individuals, considering various symptoms 
and signs, including age, blood sugar, and red blood 
cell count. The study [32] analyzed data from 1263 
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CKD patients and 1948 non-CKD patients admitted 
to a hospital over ten years. Various machine learning 
algorithms were employed to create prediction mod-
els, including XGBoost, random forest, Naive Bayes, 
support vector machine, and multivariate logistic 
regression. Additionally, the study introduced a new 
MD-BERT-LGBM model to process unstructured 
data and compared its performance with structured 
data models.
The article [33] addresses the significant global health 
problem of chronic kidney disease (CKD) and aims to 
identify critical biomarkers and develop an integrated 
model for the early prediction of CKD. The research 
leverages existing RNA-seq data and clinical infor-
mation from CKD patients from the Gene Expression 
Omnibus (GEO) database. A computational approach 
combines the random forest (RF) and artificial neu-
ral network (ANN) methodologies for gene biomark-
er identification and model construction. The article 
[22] discusses the application of machine learning al-
gorithms (MLAs) in predicting early chronic kidney 
disease (CKD) and its progression [29]. The primary 
aim is to review existing publications on this topic to 
understand the potential of MLAs in improving the 
diagnosis and management of CKD.
 The use of machine learning to predict the risk of end-
stage renal disease (ESRD) in sepsis survivors who 
also have chronic kidney disease (CKD) is discussed 
[18]. The main goal is to predict the risk of ESRD de-
velopment in patients who survive sepsis and have 
CKD. It utilizes a machine learning approach to an-
alyze a dataset of sepsis survivors and CKD patients 
to build a predictive model. The study includes 11,661 
sepsis survivors from a database of 112,628 CKD 
patients, with a follow-up period of approximately 
3.5 years. Various machine learning algorithms, in-
cluding random forest, extra trees, extreme gradient 
boosting, light gradient boosting machine (LGBM), 
and gradient boosting decision tree (GBDT), were 
employed to predict the risk of ESRD development.
Chronic Kidney Disease (CKD) is a significant issue 
proposing a novel hybrid approach for diagnosing 
the disease and predicting its progression [23]. A fil-
ter-based system using the ReliefF method to assign 
weights and ranks to each feature in the dataset. Di-
mensionality reduction using Principal Component 
Analysis (PCA) to extract the most informative sub-
set of features. To enhance processing speed, the re-

search employs simultaneous execution on multiple 
processors. The performance of ML algorithms in 
detecting CKD is reviewed [20] wisely. The study [26] 
preprocesses the data by replacing missing values 
with the average associated features of the database. 
The optimal parameters of the deep neural network 
model are determined through multiple trials. Recur-
sive Feature Elimination (RFE) is used to select the 
most important features for classification. Key fea-
tures selected by RFE include Hemoglobin, Specific 
Gravity, Serum Creatinine, Red Blood Cell Count, Al-
bumin, Packed Cell Volume, and Hypertension. The 
set features are then passed to various machine learn-
ing classifiers for comparison.
The study [16] utilizes data from the National Heal-
th and Nutrition Examination Survey (NHANES) in 
the USA from 1999 to 2012.  Insulin resistance is as-
sessed using the homeostasis model assessment of IR 
(HOMA-IR). ML algorithms, including random forest 
(RF), eXtreme Gradient Boosting (XGBoost), logistic 
regression, and deep neural learning (DNN), are em-
ployed to build predictive models.
It is evident from the analysis of the existing works 
on CKD that machine-learning algorithms have been 
employed extensively for the classification of renal 
disease. A limited amount of research is leveraging 
advanced deep-learning models for CKD classifica-
tion. Additionally, feature selection algorithms are 
also used scarcely with deep learning models to select 
the maximally optimal features. Hence, this research 
is motivated to develop a unique deep learning-based 
model by integrating it with a metaheuristic optimi-
zation algorithm to choose the best characteristics 
from the dataset to improve the precision of the clas-
sification.

3. Proposed Methodology
This section elaborates on the proposed methodology, 
including preprocessing, feature selection, and clas-
sification phases. The preprocessing stage was used 
to analyze the dataset to find and remove the missing 
values. Also, the conversion of categorical to numer-
ical values was executed. Feature selection is per-
formed using the Squirrel Search algorithm, which 
selects the most optimal features from the original 
CKD dataset. CVGAN model is used to accomplish 
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the classification tasks to identify whether the indi-
vidual is affected by CKD or not. Further, the perfor-
mance of the proposed model was also assessed using 
various metrics. The workflow of the proposed meth-
odology is depicted in Figure 1.

3.1. Preprocessing
The legitimate CKD healthcare dataset from the UCI 
machine learning repository was considered for the 
disease detection in the proposed work. Certifiable 
archives sometimes include inaccurate data impo-
tent against noise and are occasionally missing. This 
is due to their frequently enormous size and different 
points of origin. Pre-processing must be considered 
while classifying CKD data to improve the data qual-
ity used in the extraction procedure. This procedure 
is used to exclude unnecessary data from the health-
care dataset. Preprocessing is therefore required to 
increase the reliability of predictions while maintain-
ing the integrity of the data.
Using deep learning, the absence of information in 
the healthcare information set might pose a con-
cern. Each character in the medical data is typically 
thought to influence how one would rate one’s health 
substantially. Therefore, the method used to trans-
form the unprocessed information into a dataset free 
from errors is known as data pre-processing. The fun-
damental stage of every DL model or classifier meth-
od is training. Preprocessing was done by turning 
categorical text data columns into flat numeric data 
columns. There are two possible definitions for cate-
gorical numerical data: 0 (negative statement) and 1 
(positive statement). 
To fill up the missing variables, imputations with 
multiple values were used. The interpolation meth-
od was based on logistic regression for categorical 
data and linear regression for continuous variables. It 
preserves the statistical properties of the data, which 
can be necessary for downstream analyses and mod-
eling. Numerous aspersions replace missing values 
in the dataset n times, where n is often a low number 
between 3 and 10. To create ten separate datasets, we 
used numerous imputations for ten iterations. We 
selected the dataset with the variables’ averages and 
standard deviations closest to those of the original 
dataset to reduce the data to a subset with a realistic 
range of values. The missing values for the complete 
set of data were then filled in.

3.2. Squirrel Search Algorithm
When flying squirrels start their scavenging, the 
search for food process commences. The squir-
rels jump from one tree to another for food supplies 
during the warm months of the year. They ingest 
acorns as soon as they come across them because the 
climate is sufficiently hot for them to satisfy their dai-
ly energy demands more rapidly on a diet of plentiful 
acorns. After obtaining their daily energy needs, they 
begin looking for the best food source for the winter: 
hickory nuts. Hickory nut storage will help them meet 
their energy needs in harsh weather, cut down on ex-
pensive scavenging journeys, and boost the likelihood 
of survival.  Flying squirrel activity resumes after the 
completion of the winter season. This continuous cy-
cle lasts until a squirrel’s lifetime and is the basic idea 
for the Squirrel Search algorithm. 
Like any other population-based algorithm, the 
Squirrel Search algorithm starts with an initial set of 
populations with K squirrels. The starting position of 
the squirrel in the forest is represented through (1)

(0,1) ( )k lower upper lowerSQ SQ R SQ SQ= + × − , (1)

where lowerSQ  and 
upperSQ  are the higher and lower lim-

its of the squirrels with (0,1)R  representing a random 
number between 0 and 1.
The fitness function of the squirrels in motion is de-
noted using (2),

1 2( , , ..... )kFF func SQ SQ SQ= . (2)

A flying squirrel with low fitness value has been re-
ported on the hickory nut tree. The following three 
top flying squirrels are thought to be on acorn nut 
trees and are anticipated to migrate to hickory nut 
trees. It is expected that the surviving flying squirrels 
will be on typical trees. More randomly, it is assumed 
that some squirrels would walk towards the hickory 
nut tree after consuming their daily energy needs. 
The surviving squirrels will visit Acorn nut trees. The 
presence of attackers constantly affects the flying 
squirrel’s foraging habits. The location refresh strate-
gy, along with the possibility of an attacker present, is 
used to represent this natural behavior.
If an attacker is not present, the squirrel flies effort-
lessly explores the forest for its preferred meal, but 
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when an attacker is present, it becomes wary and 
must take short, unplanned excursions to look for a 
hiding place. The location refresh strategy of squir-
rels are denoted in (3) to (5). Equation (3) represents 
the motion of the squirrels from acorn nut trees to 
hickory nut trees.

1
1( )

x x xd d d

d d d d
m ct probydSQ SQ c M SQ SQ V AE+ = + × ≥−× , (3)

where cm is the distance moved by the squirrel, V1 is 
an arbitrary number between 0 and 1, SQd

xd denotes 
the position of squirrel on acorn nut tree and SQd

yd de-
notes the position of squirrels on hickory nut trees. 
Mct is a constant value with respect to the motion of 
the squirrel. AEprob denotes the attacker’s existence 
probability whose value is set to 0.1.
The location update in case of movement of the squir-
rel from ordinary trees to acorn nut in search of food 
is represented in (4),

2

1 ( )
z d zd d

d d d d

m ct probzd z
SQ SQ c M SQ SQ V AE+ × ×= ≥+ − , (4)

where V2 is an arbitrary number between 0 and 1. 
SQd

zd  denotes the position of squirrels on ordinary 
trees. The other possible case of location update 
happens when squirrels that are present on regular 
trees after eating acorn nuts move in search of hick-
ory nut trees to save food for the winter season and 
is shown in (5),

3

1 ( )
z d zd d

d d d d

m ct probzd z
SQ SQ c M SQ SQ V AE+ × ×= ≥+ − . (5)

The value of cm which is the distance moved by the squir-
rel is determined using the formulation shown in (6),

tan
m

m
l

c
θ

= , (6)

where lm  denotes the loss incurred in the distance due 
to the movement of squirrels. θ denotes the angle at 
which the squirrel descends when it moves from one 
location to another.
Seasonal variations have a big impact on how squirrels 
graze. Owing to their tiny size, elevated temperature 
levels, and perilous feeding, they lose a large amount 
of heat at low temperatures. Compared to autumn, 
climatic factors make them less active in winter. As 
a result, weather changes impact squirrel movement, 
and accounting for this behavior may result in a more 
rational strategy to optimization. The seasonal track-
ing constraint is formulated as Hcs < Hmin. The value of 
Hcs is computed using (7) and Hmin is determined using 
(8) as follows.

2
, ,

1
( )

c
d

cs xd i yd i
i

H SQ SQ
=

= −∑ (7)

6

min /( /2.5)

10
(364) iS S

EH
−

= , (8)

where s and si are the present and highest values of it-
erations correspondingly.
After the winter season, the squirrels change their lo-
cations as per the representation in (14),

( ) ( )new
zd lower upper lowerSQ SQ Levy k SQ SQ= + × − (9)

Where ( )Levy k  denotes the Levy distribution, which 
helps for effective search. Researchers apply Levy 
flight, a potent mathematical technique, to enhance 
the overall discovery capabilities of several me-
ta-heuristic algorithms. Levy flights aid in the iden-
tification of new potential solutions that are distant 
from the most effective one currently available. Fig-
ure 2 depicts the steps involved in the Squirrel Search 
algorithm.

Figure 1 
Proposed CV-GAN work flow model
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constant value with respect to the motion of the squirrel. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 denotes the attacker’s existence probability 
whose value is set to 0.1. 
The location update in case of movement of the 
squirrel from ordinary trees to acorn nut in search 
of food is represented in (4), 
 

2

1 ( )
z d zd d

d d d d

m ct probzd z
SQ SQ c M SQ SQ V AE+ × ×= ≥+ − ,      (4) 

where 𝑉𝑉𝑉𝑉2 is an arbitrary number between 0 and 1. 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑧𝑧𝑧𝑧𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  denotes the position of squirrels on ordinary 
trees. The other possible case of location update 
happens when squirrels that are present on regular 
trees after eating acorn nuts move in search of 
hickory nut trees to save food for the winter season 
and is shown in (5), 
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Algorithm 1. Squirrel Search algorithm

Input: Initial population of k squirrels
Output: d

ydSQ  squirrel location on hickory nut tree
Step 1: Set locations of squirrels as d

xdSQ , d
ydSQ , d

ydSQ  
denoting the squirrels on acorn nut trees, hickory nut 
trees and ordinary trees, respectively
Step 2: Compute the survival function for the squirrels
Step 3: Arrange the squirrels based on the survival 
rate of squirrels
Step 4: Initialize the locations of squirrels randomly on 
acorn nut trees, hickory nut trees and ordinary trees
Step 5: for s=1 to k1 (represents the motion of the 
squirrels from acorn nut trees to hickory nut trees)
Step 6: if 1 probV AE≥

Step 7: 1 ( )
xd xd dx

d d d d
m c yt dSQ SQ c M SQ SQ+ ×= −×+

Step 8: else
Step 9: 1d

xdSQ + = arbitrary location 
Step 10: for s=1 to k2 ( represents movement of the squir-
rel from ordinary trees to acorn nut in search of food)
Step 11: if 2 probV AE≥

Step 12: SQd+1
zd  = SQd

zd + cm × Mct ×(SQd
xd – SQd

zd)
Step 13: else
Step 14: SQd+1

zd = arbitrary location 
Step 15: for s=1 to k3 ( represents the movement of the 
squirrel from ordinary trees to hickory nut trees)
Step 16: if V3  ≥ AEprob  
Step 17: 1 ( )d d d d

m czd zd yd dt zSQ SQ c M SQ SQ+ ×= −×+
Step 18: else
Step 19: 1d

zdSQ + = arbitrary location 
Step 20: Calculate seasonal constraint csH  as per (7)
Step 21: Determine minimum seasonal constraint 
Hmin as per (8)
Step 21: if ( mincsH H< )
Step 22: Relocate the squirrels as per (9)
Step 23: return to the optimal location of the squirrel, 

d
ydSQ

3.3. Conditional Variational Generative 
Adversarial Networks
This section describes the CVGAN model for per-
forming classification. The first component in the 

CVGAN model is the encoder, which maps the input 
to its appropriate representation according to the 
category to which the data belongs. The loss incurred 
during this process is denoted as in (9),

( )2 2 21 log 1
2lossEn φ δ φ= − + + − , (9)

where ϕ and δ represents the average and skewness of 
the output that is produced by the encoder.
The second component in the CVGAN model is the 
generator network, which produces data distributed 
over the complete set of samples. This network pro-
duces data by distributing information from the third 
component, the discriminator. This discriminator 
network is responsible for differentiating between 
positive or negative samples in the data, and its loss is 
formulated as in (10),

[log ( )] [log(1 ( ( )))]loss a cDC En DC a En Dc Gn c= − − − , (10)

where a is the input to the encoder network with the 
distribution of samples denoted as c.
The generator network employs a function for map-
ping the attributes according to the optimal solution. 
The characteristic distribution centers of the fake 
specimens must coincide with the characteristic dis-
tribution centers of authentic samples to enable the 
target function to work. The loss function reduced by 
the generator network concerning the discriminator 
is represented in (11),

2

2

1
( ) ( ( ))

2loss a f c fGnDc En Dc a En Dc Gn c= − , (11)

where Dcf denotes the attributes passed on to the hid-
den layers in the network.
Further, the target function is mapped by using the 
mean value of the attributes and the loss reduced con-
cerning the classifier is represented as in (12),

2

2

1
( ) ( ( , ))

2
loss a f c f

B

b

GnCl En Cl a En Cl Gn c b= −∑ , (12)

where CLf denotes the outputs of the hidden layers 
and b is the target labels for the corresponding input 
a. The cumulative generator loss is shown in (13),

( )2 22

2 2 2

1 ' ( ) ( ') ( ) ( ')
2loss f f f fGn a a DC a DC a Cl a Cl a= − + − + − , (13)
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where a and a' denote the input data and the data pro-
duced by the generator network.
The fourth component, which is the classifier, takes 
a' as input and generates the output, which is decoded 
to value based on probability using the softmax func-
tion. The loss of the classifier network is reduced us-
ing (14),

[log ( | ')]loss aCl En P b a= − . (14)

The aggregate loss of the CVGAN model is represent-
ed as shown in (15),

loss loss loss loss loss loss lossAgg En Gn GnDc GnCl Dc Cl= + + + − + . (15)

The target functions of all four components in the 
CVGAN model complement one another and finally 
aid the algorithm to produce the best outcomes.

4. Results 
4.1. Dataset Description
The experiments were implemented using Python 
3.10.11 by applying the proposed model to the CKD data-
set. The dataset can be accessed using the given link:
https://archive.ics.uci.edu/ml/datasets/chronic_kid-
ney_disease
The CKD dataset is composed of samples counting to 
400 with 25 characteristics. Two class labels finally 
provide whether the individual is affected by CKD or 
NOT_CKD. Among the 400 samples in the dataset, 
250 belong to the CKD target class and 150 belong to 
the NOT_CKD target class. 

4.2. Experimental Results
The performance of the proposed CVGAN-SSA mod-
el is evaluated using standard metrics used for clas-
sification, such as Accuracy, Precision, Recall, and 
F1-Score. Initially, the classification technique CV-
GAN is applied to the entire dataset containing all the 
features without using the SSA technique for feature 
selection, and the results are obtained. Further, SSA 
is used for selecting optimal features and then classi-
fication is performed again using CVGAN. The results 
produced by the proposed model with and without 
the feature selection technique are compared against 
conventional deep learning models to comprehend 

the performance superiority of the CVGAN classifi-
cation technique. Table 2 summarizes the results of 
traditional deep learning models and the proposed 
CVGAN model.

Table 2 
Comparison of traditional DL models and proposed model 
without feature selection

Model Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1 Score 
(%)

DNN 88.5 87.4 87.8 88.1

LSTM 89.2 88.1 88.4 88.9

SAE 90.3 89.2 89.6 90.1

MLP 91.5 90.5 90.9 91.2

RBFN 93.7 92.5 92.8 93.2

Bi-GRU 95.6 94.1 94.5 95.2

CVGAN 97.5 96.8 97.1 97.3

The traditional deep learning models taken for com-
parison purposes include Deep Neural Networks 
(DNN), Long short-term Term Memory Networks 
(LSTM), Stacked Autoencoders (SAE), Multilayer 
Perceptron (MLP), Radial Basis Function Networks 
(RBFN) and Bi-directional Gated Recurrent Units 
(Bi-GRU). The experiments are conducted on the 
CKD dataset utilizing these models and the results 
are obtained without a feature selection process. 
The accuracy of DNN is  88.5%, LSTM is 89.2%, SAE 
is 90.3%, MLP is 91.5%, RBFN is 93.7%, Bi-GRU is 
95.6%, and the proposed CVGAN model for chronic 
kidney disease prediction produces an accuracy of 
97.5% which is the highest among all the models. Sim-
ilarly, for the other metrics, such as Precision, Recall, 
and F1 Score, the proposed model exhibits higher 
values than the other deep learning models. Further, 
the Squirrel Search Algorithm is applied to extract 
optimal features from the CKD dataset. These select-
ed features are passed on to the classification model. 
The characteristics such as age, bp, al, su, rbc, bgr, bu, 
sc, hemo, wbcc, rbcc, htn, and dm are selected by the 
SSA technique from the CKD dataset. The extracted 
features are presented in Table 3. We have run  100 
epochs for two iterations with an accuracy of  97.3%.    
The actual affected and predicted results are used to 
calculate the accuracy, precision, and recall.          
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Figure 4
Performance Comparison of classification techniques without feature selection 
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Table 3
Selected Features using SSA technique

Feature No. Feature Name

F1 age-Age

F2 bp-Blood Pressure

F4 al-Albumin

F5 su-Sugar

F6 rbc-Red Blood Cells

F10 bgr-Blood Glucose Random

F11 bu-Blood Urea

F12 sc-Serum Creatinine

F15 hemo-hemoglobin

F17 wbcc-White Blood Cell Count

F18 rbcc-Red Blood Cell Count

F19 htn-Hypertension
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Table 4 
Comparison of traditional DL models and proposed model 
with selected features

Model Accuracy 
(%)

Precision 
(%)

Recall  
(%)

F1 Score 
(%)

DNN 90.5 89.9 90.1 90.3

LSTM 91.8 90.7 91.2 91.5

SAE 92.6 91.6 92.1 92.2

MLP 93.7 92.4 92.8 93.3

RBFN 95.6 94.2 94.7 95.3

Bi-GRU 97.8 96.4 96.8 97.3

CVGAN 99.2 98.4 98.6 98.9

The results achieved after applying the deep learning 
models and the proposed model to the selected fea-
tures using the SSA technique are shown in Table 4. 
It can be noted that there is an improvement in the 
performance of the models after utilizing the feature 

selection algorithm. The accuracy of the DNN model 
is increased to 90.5%, precision is improved to 89.9%, 
recall to 90.1% and F1 Score is 90.3%. The accuracy of 
LSTM, SAE, MLP, RBFN, and Bi-GRU are enhanced 
as 91.8%, 92.6%, 93.7%, 95.6%, and 97.8%, respectively. 
Similar to accuracy, the precision, recall, and F1 score 
values also increase on employing the feature selec-
tion. However, the proposed model produces the high-
est accuracy, precision, recall, and F1 score values at 
99.2%, 98.4%, 98.6%, and 98.9%, correspondingly.
In addition to this, the performance of the proposed 
CVGAN-SSA model is also compared with the ex-
isting methods in the literature, such as  Residual 
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Figure 5
Performance Comparison of classification techniques with feature selection SSA  
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Comparison of existing models and proposed model 

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

RDA-UNET [23] - 96.34 96.88 - 

OFFO-DNN [3] 98.89 - - - 

MKSVM-FFO [2] 98.5 - - - 

EDL-CDSS [9] 96.91 - - 96.92 

HMANN [10] 97.5 - - - 

Proposed - CVGAN-SSA  99.2 98.4 98.6 98.9 

 

The proposed model, CVGAN-SSA, has the highest 
accuracy (99.2%) compared to all the existing models 
(RDA-UNET, OFFO-DNN, MKSVM-FFO, EDL-
CDSS, and HMANN). This suggests that the CVGAN-
SSA model performs exceptionally well regarding 
overall prediction accuracy. 

The proposed model has a precision of 98.4% and a 
recall of 98.6%. The proposed precision and recall values 
of the model indicate its ability to make accurate positive 
predictions (high precision) and correctly identify 
positive cases (high recall). The F1 score, which 
balances precision and recall, has yet to be reported for 
several models. However, the proposed CVGAN-SSA 
model achieves an F1 score of 98.9%, indicating a solid 
balance between precision and recall, making it a well-
rounded model. Drawing specific conclusions without 
detailed information on the training data, validation 
process, and specific tasks is challenging. However, the 

table suggests that the proposed CVGAN-SSA 
model outperforms the other models in terms of 
accuracy, precision, recall, and F1 score, 
demonstrating its superiority in this comparison. 

4.4 Discussion  

Deep learning techniques like C-VGANs have 
demonstrated remarkable predictive power in 
various domains. Their ability to learn complex 
patterns in data makes them attractive for medical 
diagnosis tasks, including CKD prediction. The 
Squirrel Search algorithm offers a metaheuristic 
approach to feature selection. It aims to find the 
optimal attributes that contribute the most to the 
classification task. This automated feature 
selection process is crucial in improving model 
efficiency and reducing the risk of overfitting. 

dual-attention module with UNet (RDA-UNET), 
Oppositional based FireFly Optimization with Deep 
Neural Network (OFFO-DNN), MultiKernel SVM 
with FruitFly Optimization algorithm (MKSVM-
FFO), Ensemble of deep learning based clinical de-
cision support systems (EDL-CDSS) and Heteroge-
neous Modified Artificial NeuralNetwork (HMANN). 
The RDA-UNET model offers precision and recall 
values of 96.34% and 96.88%, respectively. OFFO-
DNN produces an accuracy of 98.89% in classifying 
chronic renal disease effectively, while the MKSVM-
FFO combination exhibits an accuracy of 98.5%. The 
EDL-CDSS model is 96.91% accurate in categorizing 

Table 5 
Comparison of existing models and proposed model

Model Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1 Score 
(%)

RDA-UNET [23] - 96.34 96.88 -

OFFO-DNN [3] 98.89 - - -

MKSVM-FFO [2] 98.5 - - -

EDL-CDSS [9] 96.91 - - 96.92

HMANN [10] 97.5 - - -

Proposed - 
CVGAN-SSA 99.2 98.4 98.6 98.9

kidney disease, with an F1 score of 96.92%. Table 5 
presents a comparison between the existing models 
and the proposed model. The HMANN model, which 
incorporates a Support Vector Machine and multilay-
er Perceptron with a Backpropagation technique, pro-
duces an accuracy of 97.5%. Compared to the existing 
models in the literature, the proposed CVGAN-SSO 
has a superior accuracy of 99.2%, precision of 98.4%, 
recall of 98.6% and F1 Score of 98.9%.
The proposed model, CVGAN-SSA, has the high-
est accuracy (99.2%) compared to all the existing 
models (RDA-UNET, OFFO-DNN, MKSVM-FFO, 
EDL-CDSS, and HMANN). This suggests that the 
CVGAN-SSA model performs exceptionally well re-
garding overall prediction accuracy.
The proposed model has a precision of 98.4% and a re-
call of 98.6%. The proposed precision and recall values 
of the model indicate its ability to make accurate posi-
tive predictions (high precision) and correctly identi-
fy positive cases (high recall). The F1 score, which bal-
ances precision and recall, has yet to be reported for 
several models. However, the proposed CVGAN-SSA 
model achieves an F1 score of 98.9%, indicating a sol-
id balance between precision and recall, making it a 
well-rounded model. Drawing specific conclusions 
without detailed information on the training data, 
validation process, and specific tasks is challeng-
ing. However, the table suggests that the proposed 
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CVGAN-SSA model outperforms the other models 
in terms of accuracy, precision, recall, and F1 score, 
demonstrating its superiority in this comparison.

4.3. Discussion 
Deep learning techniques like C-VGANs have demon-
strated remarkable predictive power in various do-
mains. Their ability to learn complex patterns in data 
makes them attractive for medical diagnosis tasks, 
including CKD prediction. The Squirrel Search al-
gorithm offers a metaheuristic approach to feature 
selection. It aims to find the optimal attributes that 
contribute the most to the classification task. This 
automated feature selection process is crucial in 
improving model efficiency and reducing the risk of 
overfitting.
C-VGANs are well-suited for conditional generation 
tasks. In the context of CKD diagnosis, the model can 
generate data based on specific conditions, allowing it 
to identify the presence of CKD under various scenar-
ios. This adaptability is essential when dealing with 
complex medical data.
The combination of advanced feature selection 
(Squirrel Search) and deep learning (C-VGANs) is 
relatively novel and innovative. This research likely 
pushes the boundaries of CKD diagnosis by leverag-
ing the strengths of both techniques.

4.4. Limitations of Current Research
The results might need to be revised since the dataset 
is tiny. Finding a dataset with more characteristics 
and higher occurrences is challenging. The dynamic 
acquisition of information from the Internet of Med-
ical Things platform is even more difficult. However, 
overfitting was avoided during optimization by ad-
justing the parameters used to quantify the difference 
in variance between the training and test datasets. 
Several input layers, hidden layers, and optimizers 

were effectively implemented in this research. Thus, 
despite having 400 records, it can be claimed that the 
models were balanced with training data.

5. Conclusion
The present research investigated the classification of 
health-related data to quickly identify the patient’s ill-
ness. Evaluating the optimal subset of attributes from 
many characteristics of the CKD dataset is a crucial 
problem in health-related data classification. The sug-
gested Squirrel Search algorithm was used to choose 
the best features after the data traversed a preliminary 
processing step in which values that were not present 
were eliminated. Based on the best subset of character-
istics, the classification was performed to identify the 
existence and nonexistence of CKD. The CVGAN ap-
proach was used for performing the classification tasks. 
On CKD datasets, the performance parameters such as 
precision, recall, F1 score, and accuracy reached their 
maximum value using CVGAN. According to the find-
ings, the suggested CVGAN-SSA produced promising 
classification results of 99.2% accuracy compared to 
other existing methodologies. Innovative algorithms 
or prediction approaches may be added for CKD diag-
nosis, and new extraction techniques may be utilized 
to eliminate missing information. Developing cut-
ting-edge and composite optimization techniques for 
identifying features and healthcare data categorization 
can be considered the focus of future efforts.
The current research likely used a specific CKD data-
set. Testing the model on diverse and more extensive 
datasets from different sources, demographics, and 
clinical settings is essential to ensure that the model 
performs consistently and robustly in real-world sce-
narios. Also, we need to develop methods to visualize 
and understand the features that the model uses for 
diagnosis.
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