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In order to improve visual recognition accuracy of pepper and provide reliable technical support for agricul-
tural production, an improved YOLOv4 algorithm for pepper target recognition and detection was proposed in 
this paper. By adding Mosaic data enhancement and CBAM (Conventional block attention module) attention 
mechanism to the primitive character extraction network, the method enhanced the learning ability of the tar-
get detection algorithm, made the network effectively suppress the interference features, and increased the 
attention to effective features. To improve the accuracy of identification. The improved network model was 
trained, verified and tested on the self-made data set. The results showed that the proposed algorithm could 
effectively improve the accuracy of pepper recognition under natural light, and finally improved the mean Av-
erage Precision (mAP) of the existing YOLOv4 algorithm from 88.95% to 98.36%.
KEYWORDS: Improved YOLOv4, Data augmentation, CBAM attention mechanism.

1. Introduction
With the acceleration of aging year by year, it is ex-
tremely urgent to propose a picking robot that can 
replace human labor, so as to alleviate the substantial 
increase in labor costs. Great progress has been made 

in the research of picking robot abroad, but it is still 
in the primary stage in China. In the field of fruit and 
vegetable picking, researches mainly focus on the 
picking and recognition of spherical fruits, while re-
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searches on the picking and recognition of irregular 
fruits and vegetables such as ripe peppers in natural 
environment are few. Accurate crop target identifica-
tion and detection technology is one of the key tech-
nologies to realize agricultural automation. As one of 
the important cash crops, the improvement of pro-
duction and quality of pepper is of great significance 
for ensuring domestic market supply and promoting 
agricultural modernization. Therefore, to carry out 
pepper target identification and detection research, 
to improve the precision and intelligent level of pep-
per planting, promote our agricultural modernization 
has important significance.
Some researchers in China have identified and detect-
ed pepper by various means, among which Ding [5] 
team from Tianjin University of Technology adopted 
the optimized convolution neural network method 
with deep learning mechanism to improve the recog-
nition rate.  First of all, the image is collected and bi-
narized, the neural network modeling is carried out by 
Matlab, and the advantages of self-learning are used for 
training and testing. The accuracy of recognition rate 
of chili image by convolutional neural network was 
verified by simulation. Compared with the traditional 
BP neural network, this phenomenon shows that it has 
good generalization ability and robustness, but the re-
call rate of this method is low, and the recognition accu-
racy needs to be improved. By deepening the network 
depth, Yang [20] and his team from Wuhan University 
of Technology designed a four-layer network structure 
to recognize millet pepper image, which can effective-
ly realize the recognition of millet pepper and has high 
recognition accuracy, but poor recognition efficiency. 
Li [9] from Agricultural University of Hebei collected 
images of dried chili, designed the background, lighting 
and display of the images, used line analysis method 
and minimum boundary rectangle method to segment 
images of dried chili, and adopted naive Bayes method 
to grade dried chili, effectively improving the accuracy 
of classification of dried chili. However, the complexity 
of this method is high, and the efficiency of this method 
is poor.
In view of the problems of low recognition accuracy 
and poor recognition efficiency of existing methods, 
high precision identification of pepper can only be 
achieved under ideal industrial environment. This 
paper studies a pepper target recognition and detec-
tion method based on improved YOLO v4 to solve the 
problem of low recognition success rate. By adding 
Mosaic data enhancement and CBAM (Conventional 

block attention module) attention mechanism to the 
primitive character extraction network, the method 
enhanced the learning ability of the target detection 
algorithm, made the network effectively suppress the 
interference features, and increased the attention to 
effective features. In order to improve the accuracy of 
identification, to complete the accurate identification 
of pepper target.

2. Yolov4 Network
YOLO network has developed rapidly in recent years, 
which is one of the representative target detection 
networks. Its main working principle is to take the 
detection task as a regression problem for rapid de-
tection, which has faster detection speed than region-
al candidate networks and can complete end-to-end 
prediction [11].
YOLOv4, proposed in 2020, is an improved version 
of YOLOV3. It is based on the original YOLO target 
detection framework, and tries the advanced optimi-
zation methods in the field of deep learning in recent 
years, and carries out some improvements in data 
augmentation, backbone network, network training, 
activation function, loss function and other aspects 
[3].  YOLOv4 develops a simple and efficient model, 
which realizes the perfect combination of detection 
speed and detection accuracy. It is one of the efficient 
and powerful models in the existing target detection 
algorithms. At the same time, YOLO series belongs to 
an open source Python language code, which is con-
venient to conduct improvement on this basis [8], As 
shown in Figure 1.
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the differences between pepper and other 
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3.1 Mosaic Data Augmentation 

Traditional data augmentation methods 
include rotation, clipping, flipping, 
deformation and scaling, noise addition, color 
disturbance, etc. In the improved YOLOv4 
algorithm, Mosaic data enhancement was 
added after the traditional data enhancement 
to achieve the purpose of expanding data [23], 
so as to improve the Yolov4 network's ability 
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as to obtain information quickly and accurately and 
make accurate judgments.  Attention mechanism 
should be added to neural algorithm because of this 
phenomenon, and the performance of network mod-
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CBAM can achieve better effects than SENet, and 
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improved, thus improving the performance of Yolov4 
network [9]. The schematic diagram of its implemen-
tation is as follows. CBAM will process the channel 
and spatial attention mechanism for the input fea-
ture layer, respectively. This is a simple and effective 
attention module for feedforward convolution neural 
network. Given an intermediate feature graph, the at-
tention module of the feedforward convolutional neu-
ral network will successively infer the attention graph 
along two independent dimensions, and then multi-
ply the attention graph by the input feature graph for 
adaptive feature modification. Because CBAM is a 
lightweight general-purpose module, it can be seam-
lessly integrated into any CNN architecture and can 
be trained end-to-end with basic CNN [12, 14, 16-17, 
19], as shown in Figure 3.

Figure 3
Convolution Attention Module

Figure 4 
Channel Attention Module
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In the formula, σ represents Sigmoid function, 
AvgPool、M axPool represents global average 

pooling and global maximum pooling, 
respectively, F represents specific stream input 
characteristic mapping, MPL represents multi-
layer perceptron, W0 and W1 represent 
weights of neurons at the first layer and 
neurons at the second layer, respectively, and 
Favgc 、Fmaxc  represents global average pooling 
and global maximum pooling specific stream 
input characteristic mapping, respectively. 

The specific flow is that the input feature map 
F (H × W × C) is pooled by global maximum 
pooling and global average pooling based on 
width and height, respectively, to obtain two 
feature maps of 1 × 1 × C, and then they are 
sent to a two-layer neural network MLP, 
where the number of neurons in the first layer 
is C/r (r is the reduction rate), the activation 
function is Relu, and the number of neurons in 
the second layer is C. Then, the MLP output 
features are added based on element-wise 
operation, and then the sigmoid activation 
operation is performed to generate the final 
channel attention feature that is, 
𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐(𝐹𝐹𝐹𝐹) . Finally, 𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐(𝐹𝐹𝐹𝐹)  and the input feature 
graph F are multiplied by element-wise 
operation to generate the input features 
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Figure 5 shows the working principle of 
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results are stacked, and the number of 
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In the formula, σ represents Sigmoid function, AvgPool, 
MaxPool represents global average pooling and global 
maximum pooling, respectively, F represents specific 
stream input characteristic mapping, MPL represents 
multi-layer perceptron, W0 and W1 represent weights 
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the specific configuration is shown in Table 1.
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× W × 1 feature maps, and then these two 
feature maps are spliced as channels. Then, 
after a 7 × 7 convolution operation, the 
dimension is reduced to one channel, that is, H 
× W × 1. Then, the spatial attention feature 
(𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠(𝐹𝐹𝐹𝐹)) is generated by sigmoid. Finally, the 
feature and the input feature of the module are 
multiplied to get the final feature. 

 

4. Experiment and Analysis 

4.1 Design the Steps and Flow of the 
Experiment 

In the experiment, the data set was first made, 
then build the pytorch network framework in 
Python environment, build YOLOv4 model in 

4.3. Experimental Parameters
By evaluating the performance of the workstation ex-
perimental equipment and the experimental environ-
ment, the experimental parameters are set as follows: 
the number of training periods (epoch) of images is 
100, the first 50 times are freezing stages, the number 
of images sent to the network in each batch (Batch_
size) is 32, and the learning rate (Learning_rate, Lr) 
is 0.001; The last 50 times are the thawing stage, the 
number of images sent to the network in each batch is 
16, and the learning rate is 0.0001. In order to speed up 
the data reading, num_works is set to 4, and the input 
image resolution (Input_shape) is 416 × 416.

4.4. Preparation of Material Data Set
The production process of material data set is as fol-
lows: (1) A total of 500 images of pepper in natural 
light environment are collected by Hikvision indus-
trial camera, and different pepper plants are photo-
graphed from different angles during the collection 
process;  (2) Use PhotoScape to unify the name and 
size of all images; (3) labelImg image annotation tool 
is used to annotate images, and different materials are 
manually labeled to generate XML label files; Finally, 
the mature pepper label name Red pepper is formed, 
and the training set and verification set are generated 
according to the ratio of 9: 1.

4.5. Evaluation Indicators
Commonly used evaluation indicators in YOLOv4-ti-
ny are as follows: Precision, Recall and F1 values are 
the harmonic mean values of Precision and Recall, 
which are equivalent to the comprehensive evalua-
tion indexes of Precision and Recall values, AP mean 
values (mAP) of all categories in the multi-classifica-
tion detection model and frames per second (FPS). 
Among them, the larger the mAP is, the higher the 

Table 1 
Experimental environment

Name Model/version

Python 3.7.6

CPU Intel (R) i9-9900K CPU

GPU NVIDIA GeForce RTX 2080

Network framework Pytorch1.2

Industrial camera HIKVISION MV-CA050-10GC 500

Industrial lens HIKROBOT MVL-MF0828M-8MP



883Information Technology and Control 2023/4/52

recognition accuracy of the model is. The above in-
dexes have corresponding calculation formulas, and 
the specific formulas are as follows:

pytorch, improve the model, and finally 
implement training, and analyze and evaluate 
the training data. 

4.2 Experimental Environment 

All experiments are run on the same 
workstation, and the specific configuration is 
shown in Table 1. 
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specific formulas are as follows: 
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In the Formula (4)-(7), TP is True Positive, FP 
is False Positive, TN is True Negative, FN is 
False Negative, AP is the area under P-R 
curve, and P-R curve is Precision-Recall curve 
[9]. 

4.6 Pepper Recognition Experiment 

In the material recognition experiment, firstly, 
the original YOLOv4 model recognition 
algorithm is used to train the data set, and the 
training weight is YOLOv4_weights_voc. pth, 
which is an open source weight file on the 
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Total number of samples = TP + FP + TN + FN (7)

In the Formula (4)-(7), TP is True Positive, FP is 
False Positive, TN is True Negative, FN is False Neg-
ative, AP is the area under P-R curve, and P-R curve is 
Precision-Recall curve [9].

4.6. Pepper Recognition Experiment
In the material recognition experiment, firstly, the 
original YOLOv4 model recognition algorithm is 
used to train the data set, and the training weight is 
YOLOv4_weights_voc. pth, which is an open source 
weight file on the Internet. After the training, the 
weight file is generated and applied to image prediction 
and real-time detection. Because the shape of distant 
pepper is not obvious, it can be seen from Figure 6 that 
the fuzzy recognition rate of distant pepper is lower.
As shown in Figure 7, Epoch-Loss diagram shows the 
data saved after three trainings. During the training 
period, a weight file is generated every poch, and the 
graph of train loss and val loss decreasing with the 
increase of poch is drawn. It can be seen from the fig-
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Internet. After the training, the weight file is 
generated and applied to image prediction 
and real-time detection. Because the shape of 
distant pepper is not obvious, it can be seen 
from Figure 6 that the fuzzy recognition rate of 
distant pepper is lower. 
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As shown in Figure 7, Epoch-Loss diagram 
shows the data saved after three trainings. 
During the training period, a weight file is 
generated every poch, and the graph of train 
loss and val loss decreasing with the increase 
of poch is drawn. It can be seen from the figure 
that with the addition of the two mechanisms, 
the loss descending speed and the final 
convergence position of the improved 
YOLOv4 are obviously improved during 
training, so it is concluded that the 
introduction of the two mechanisms can 
improve the fitting ability of the network. 

 

 

Figure 7  

Epoch-Loss Diagram 

 

(a) YOLOv4 

 

(b) YOLOv4 + Mosaic + CBAM 
 

After running the map_out program, the 
related files of running results appear. 
Through the statistics of the original YOLOv4-
tiny model and the data obtained after adding 
Mosaic data augmentation and ECA attention 
mechanism, respectively, the statistics are 
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Table 3 
YOLOv4 + Mosaic data augmentation + CBAM attention 
mechanism related parameters of four materials

Parameter name Precision Recall F1 AP

Parameter value 100.00% 100.00% 0.94 98.36

From the statistical data of the above three tables, it can 
be seen that with the enhancement of Mosaic data and 
the introduction of CBAM attention mechanism, the 
learning intensity of the model has increased, and more 
attention has been paid to the key details of the image. 
The recognition accuracy of the improved YOLOv4 in 
distant fuzzy peppers has steadily improved.

Parameter 
name 

Precision Recall F1 AP 

Parameter 
value 

100.00% 100.00% 0.94 98.36 

 

From the statistical data of the above three 
tables, it can be seen that with the 
enhancement of Mosaic data and the 
introduction of CBAM attention mechanism, 
the learning intensity of the model has 
increased, and more attention has been paid to 
the key details of the image. The recognition 
accuracy of the improved YOLOv4 in distant 
fuzzy peppers has steadily improved. 

 

Table 4  

Statistical table of test data 

Evaluatio
n index 

Precisi
on 

Recal
l 

F1 AP mAP FP
S 

Before 
improve
ment 

85.00
% 

75.00
% 

0.8
7 

88.93
% 

88.95
% 

24 

After 
improve
ment 

100.00
% 

100.0
0% 

0.9
4 

98.36
% 

98.36
% 

30 

C

AP
mAP

c

k
k∑

== 1                             （8） 

 

Figure 8 

Four types of materials and comprehensive 
mAP values 

 

(a) Before improvement 

 

(b) After improvement 
 

From the statistical data in Table 4 and Figure 
8, it can be seen that with the enhancement of 
Mosaic data and the introduction of CBAM 
attention mechanism, the recognition accuracy 
of improved YOLOv4-tiny in brass and red 
copper is steadily improved, the 
comprehensive Precision value is increased by 
4.66%, Recall is slightly decreased after 
improvement, F1 is increased by 0.01 as a 
whole, and AP value is increased by 3.83% 
after improvement. The mAP value increased 
by 3.84%. 

 

Figure 9 

Improved YOLOv4 image recognition effect 

 

(a) Image for detection 

 

(b) Image for YOLOv4 detection 

(8)

Table 4 
Statistical table of test data

Evaluation index Precision Recall F1 AP mAP FPS

Before improvement 85.00% 75.00% 0.87 88.93% 88.95% 24

After improvement 100.00% 100.00% 0.94 98.36% 98.36% 30

Figure 8
Four types of materials and comprehensive mAP values

(a) Before improvement (b) After improvement

From the statistical data in Table 4 and Figure 8, it 
can be seen that with the enhancement of Mosaic data 
and the introduction of CBAM attention mechanism, 
the recognition accuracy of improved YOLOv4-tiny 
in brass and red copper is steadily improved, the com-
prehensive Precision value is increased by 4.66%, 
Recall is slightly decreased after improvement, F1 
is increased by 0.01 as a whole, and AP value is in-
creased by 3.83% after improvement. The mAP value 
increased by 3.84%.
Finally, as shown in Figure 9, the image recogni-
tion results in the data set show that the improved 
YOLOv4 has a great improvement in pepper recogni-
tion accuracy compared with the original YOLOv4, 
and its recognition accuracy is higher, which has a 
strong comprehensive recognition ability for com-
mon peppers under natural light in multi-spatial an-
gle situations.

Parameter 
name 

Precision Recall F1 AP 

Parameter 
value 

100.00% 100.00% 0.94 98.36 

 

From the statistical data of the above three 
tables, it can be seen that with the 
enhancement of Mosaic data and the 
introduction of CBAM attention mechanism, 
the learning intensity of the model has 
increased, and more attention has been paid to 
the key details of the image. The recognition 
accuracy of the improved YOLOv4 in distant 
fuzzy peppers has steadily improved. 

 

Table 4  

Statistical table of test data 

Evaluatio
n index 

Precisi
on 

Recal
l 

F1 AP mAP FP
S 

Before 
improve
ment 

85.00
% 

75.00
% 

0.8
7 

88.93
% 

88.95
% 

24 

After 
improve
ment 

100.00
% 

100.0
0% 

0.9
4 

98.36
% 

98.36
% 

30 

C

AP
mAP

c

k
k∑

== 1                             （8） 

 

Figure 8 

Four types of materials and comprehensive 
mAP values 

 

(a) Before improvement 

 

(b) After improvement 
 

From the statistical data in Table 4 and Figure 
8, it can be seen that with the enhancement of 
Mosaic data and the introduction of CBAM 
attention mechanism, the recognition accuracy 
of improved YOLOv4-tiny in brass and red 
copper is steadily improved, the 
comprehensive Precision value is increased by 
4.66%, Recall is slightly decreased after 
improvement, F1 is increased by 0.01 as a 
whole, and AP value is increased by 3.83% 
after improvement. The mAP value increased 
by 3.84%. 

 

Figure 9 

Improved YOLOv4 image recognition effect 

 

(a) Image for detection 

 

(b) Image for YOLOv4 detection 

Parameter 
name 

Precision Recall F1 AP 

Parameter 
value 

100.00% 100.00% 0.94 98.36 

 

From the statistical data of the above three 
tables, it can be seen that with the 
enhancement of Mosaic data and the 
introduction of CBAM attention mechanism, 
the learning intensity of the model has 
increased, and more attention has been paid to 
the key details of the image. The recognition 
accuracy of the improved YOLOv4 in distant 
fuzzy peppers has steadily improved. 

 

Table 4  

Statistical table of test data 

Evaluatio
n index 

Precisi
on 

Recal
l 

F1 AP mAP FP
S 

Before 
improve
ment 

85.00
% 

75.00
% 

0.8
7 

88.93
% 

88.95
% 

24 

After 
improve
ment 

100.00
% 

100.0
0% 

0.9
4 

98.36
% 

98.36
% 

30 

C

AP
mAP

c

k
k∑

== 1                             （8） 

 

Figure 8 

Four types of materials and comprehensive 
mAP values 

 

(a) Before improvement 

 

(b) After improvement 
 

From the statistical data in Table 4 and Figure 
8, it can be seen that with the enhancement of 
Mosaic data and the introduction of CBAM 
attention mechanism, the recognition accuracy 
of improved YOLOv4-tiny in brass and red 
copper is steadily improved, the 
comprehensive Precision value is increased by 
4.66%, Recall is slightly decreased after 
improvement, F1 is increased by 0.01 as a 
whole, and AP value is increased by 3.83% 
after improvement. The mAP value increased 
by 3.84%. 

 

Figure 9 

Improved YOLOv4 image recognition effect 

 

(a) Image for detection 

 

(b) Image for YOLOv4 detection 



885Information Technology and Control 2023/4/52

5. Summary
This paper introduces an automatic identification 
and detection method of pepper under natural light 
based on improved YOLOv4. In this method, Mosaic 
data enhancement algorithm and CBAM attention 
mechanism are added to the main trunk feature ex-
traction network of the network model. By expanding 
the data set and paying attention to useful features 
and ignoring useless features, it makes up for the 
problem of less pictures in the data set and makes the 
learning intensity of the network higher. Meanwhile, 
it also meets the requirements of grasping important 

features, and effectively improves the utilization rate 
of model features.
By analyzing and evaluating the experimental re-
sults with various evaluation indexes, the improved 
YOLOv4 has improved the recognition accuracy of 
pepper, and the final mAP value has increased from 
88.95% to 98.36%, thus ensuring the recognition 
speed and accuracy on the premise of real-time. How-
ever, the network has weak ability to recognize over-
lapping peppers, and the overlapping peppers in the 
lens will make the recognition rate drop sharply. In 
the future, it is necessary to improve the weak recog-
nition rate of stacked materials.
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