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The classic feature extraction techniques used in recent research on computer-aided diagnosis (CAD) of liver 
cancer have several disadvantages, including duplicated features and substantial computational expenses. Mod-
ern deep learning methods solve these issues by implicitly detecting complex structures in massive quantities of 
healthcare image data. This study suggests a unique bio-inspired deep-learning way for improving liver cancer 
prediction outcomes. Initially, a novel semantic segmentation technique known as UNet++ is proposed to extract 
liver lesions from computed tomography (CT) images. Second, a hybrid approach that combines the Chaotic Cuck-
oo Search algorithm and AlexNet is indicated as a feature extractor and classifier for liver lesions. LiTS, a freely 
accessible database that contains abdominal CT images, was employed for liver tumor diagnosis and investiga-
tion. The segmentation results were evaluated using the Dice similarity coefficient and Correlation coefficient. 
Concerning the performance metrics such as accuracy, precision, and recall, the recommended method performs 
better than existing algorithms producing the highest values such as 99.2%, 98.6%, and 98.8%, respectively.
KEYWORDS: Liver tumor, Semantic Segmentation, UNet++, Chaotic Cuckoo Search, AlexNet.

1. Introduction
The liver, the second most massive organ in the hu-
man body and the one that weighs the most is on the 
right side of the stomach. The parts of the body, such 
as the gallbladder, intestines, and pancreas, are all 

connected with the liver’s right and left lobes. The 
liver interacts with several other organs. The nu-
merous cells that make up the liver are the source of 
primary and metastatic liver cancer, which is carried 
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on by malignant tissue from other organs. Among all 
liver malignancies, hepatocellular carcinoma is one 
of the most prevalent types of liver disease. Liver can-
cer is by far the most commonly diagnosed illness in 
the world. The World Health Organization, or WHO, 
reports that liver cancer was responsible for nearly 
eight million fatalities in 2019, of which 675,000 were 
due to hepatocellular carcinoma [22]. More than 
400,000 fatalities yearly are caused by liver cancer, 
especially prevalent in certain parts of Africa [27].
Specialists in radiology and oncology employ images 
obtained from either computed tomography (CT) or 
magnetic resonance imaging (MRI) to observe the 
structure and appearance of the liver. These anom-
alies are essential for preliminary identification and 
advancement in primary and second-stage liver carci-
noma malignancy [15]. Typically, manual techniques 
or methods are partially manual to interpret CT scans 
of the liver, but such approaches are laborious, ex-
pensive, unreliable, and susceptible to inaccuracy. 
Several computation techniques have been developed 
to address these issues that enhance the detection of 
liver cancer. Due to several problems, such as dimin-
ished contrast between the liver and its adjacent or-
gans, modifications in the number of cancerous cells, 
the tumor’s tiny dimensions, tissue anomalies, and 
sporadic expansion of tumors, these methods failed 
to segment and identify liver lesions effectively [12]. 
Therefore, an entirely novel approach is required to 
subdue these challenges.
As liver disease is one of the leading causes of early 
death in individuals, the treatment procedures for the 
patients must be cutting-edge and efficient. Liver sur-
gical treatment is a typical therapy for liver disorders 
[13]. This procedure involves extracting the liver from 
CT images, conducting computational evaluation, 
gathering data on pathological conditions, and offering 
an empirical basis for surgical plans. Even physical-
ly designing the liver by skilled professionals can be 
highly individualistic and laborious due to the detailed 
background information, hazy boundaries, and various 
shapes [6]. As a result, the fundamental goal of liver 
surgery, and one with significant practical implica-
tions, is the study of automatic liver segmentation.
Several researchers have investigated the concept of 
medical image segmentation to increase the precision 
and efficacy of both evaluation and therapy. Automat-
ic liver segmentation is necessary for several process-

es, including a liver transplant and three-dimensional 
positioning in radiotherapy processes. Although semi 
or entirely automated approaches for segmenting liver 
CT scans have been presented recently [32], accurate 
liver segmentation is still reasonably challenging for 
specific reasons. Initially, the volume of the liver and 
its adjacent body parts, such as the heart and stom-
ach, are identical. Second, the curvature of the liver 
is obscured by substantial quantity changes. Further-
more, medical imaging frequently reveals significant 
structural changes like hepatitis and big lesions. Its 
intensity, meanwhile, clearly differs from typical liv-
er activity [31]. Finally, each person has a unique liver 
shape. Due to the aforementioned reasons, current 
methods find it challenging to segment the liver’s tiny 
dimensions and intricate contour. Thus, they need 
help using the automatic liver segmentation method 
for clinical assessment and therapy.
The motivation behind this work is to address the 
limitations and challenges associated with tradition-
al feature extraction techniques in computer-aided 
diagnosis (CAD) of liver cancer. The classic methods 
often suffer from duplicated features and substantial 
computational expenses, hindering their effectiveness 
in accurately predicting and diagnosing liver tumors.
The researchers are motivated to leverage the power 
of modern deep learning methods, which have shown 
great potential in detecting complex structures in 
large volumes of healthcare image data. By utilizing 
deep learning, they aim to overcome the drawbacks of 
traditional techniques and improve the outcomes of 
liver cancer prediction
Furthermore, in the literature, features that have 
been manually generated constitute the foundation 
of the majority of suggested solutions for liver can-
cer detection. Numerous perceptual identifiers have 
been examined, including appearance, shape, and 
mixtures. To describe appearance and form, Ma-
chine learning approaches such as Support Vector 
Machines and Artificial Neural Networks have been 
employed frequently together with the grey gradient 
overlay vector features, Fourier exponent statistics, 
and initial-order metrics for categorization purposes 
[1]. Even though these techniques are adequate, cre-
ating custom characteristics that best fit a given clas-
sification problem might be challenging. Additionally, 
these techniques need to adequately convey the en-
tire structure of features from image data. In recent 
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years, feature engineering has been deemphasized in 
favor of the significance of visualization learning in 
diagnosing liver cancer [4]. 
One type of visualization learning method, deep learn-
ing, can extract significant and intermediate concep-
tual characteristics from visual data [5]. Deep learning 
can learn incredibly complicated patterns, which is one 
of its benefits. Deep learning algorithms model transi-
tional representations of image data that other algo-
rithms find challenging to understand by using hidden 
layers between inputs and output layers. Consequently, 
they can produce substantial feature representations 
precisely from unprocessed clinical imagery [9].
The proposed research is anticipated to answer the 
following research questions,
a How can we develop a completely automated sys-

tem for segmenting and categorizing liver lesions 
using deep learning?

b What is the most effective method for semantic 
segmenting liver tumors with improved accuracy?

c Is it possible to hybridize bio-inspired algorithms 
with deep learning approaches to provide a highly 
feasible solution for feature extraction and classifi-
cation of liver lesions more precisely?

To resolve the above research questions, this paper 
proposes a hybrid bio-inspired deep learning ap-
proach to liver cancer detection employing CT imag-
es, contrary to contemporary technologies based on 
either feature extraction approaches or combinations 
of feature engineering and deep learning techniques. 
The processes of segmentation, feature extraction, 
and categorization of liver lesions are examined due 
to integrating deep learning models with Meta heu-
ristic bio-inspired optimization techniques.
The main contributions of this work are,
1 To propose a novel semantic segmentation tech-

nique, UNet++, to segment the liver lesion CT im-
ages effectively.

2 To employ the Chaotic Cuckoo Search algorithm 
and AlexNet architecture as feature extractors and 
classifiers for liver tumor diagnosis. 

3 To demonstrate the performance supremacy of the 
proposed UNet++-Chaotic Cuckoo Search algo-
rithm-AlexNet approach by comparing it with the 
existing models for liver cancer detection in the 
literature. 

The remainder of this paper is organized as follows. 
Section 2 investigates the state-of-the-art works on 
liver cancer diagnosis using machine learning and 
deep learning techniques. Section 3 presents the 
proposed methods, such as UNet++, Chaotic Cuckoo 
Search algorithm and AlexNet. Section 4 discusses 
the performance of the suggested approach by ana-
lyzing the experimental results obtained. Section 5 
concludes the present research.

2. Related Works
This section emphasizes the current literature works 
that employ machine learning and deep learning tech-
niques for Liver cancer detection and diagnosis. Most 
of the reports presently accessible have concentrated 
on the automatic segmentation of liver tumors using 
CT images [10]. Collecting information is generally 
simple in clinical settings because CT is frequently 
employed in preliminary preparation because of its 
inexpensive cost. Authors in [17] created a two-phase 
cancer segmentation approach based on conventional 
algorithms that involve initial delineation by thresh-
old-setting and anatomical procedures and enhance-
ment through grouping and a physical reconfigurable 
model. According to [21], the degree set technique 
with an adaptive computing ripple-scanning method-
ology for activation can segregate liver metastases in 
a semi-automated form.
The liver was segmented using a three-dimensional 
linear stable structure characterization by the re-
searchers in [24], and the liver lesion was segregat-
ed using vertex slices with contour and augmenta-
tion restrictions. Using Grassmannian multivariate 
strategies for learning, the work in [2] was developed 
using an autonomous classification system for meta-
static liver cancers based on distinguishing features 
between malignant and healthy tissue. To accom-
plish integrated separation of the liver and lesions 
with three-dimensional compact conditional chaotic 
fields, authors in [19] initially stacked two completely 
convolutional neural networks. To decrease the per-
centage of false positives, liver tumors were segment-
ed using a two-dimensional U-net [28] and super-
vised learning-based selection screening.  
Researchers in [29] developed a semi-dimensional 
complex CNN that used limited-range residual links 
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from the ResNet architecture and extended-range by-
pass connections from U-Net architecture to create 
an outline of segmentation. Additionally, research sci-
entists in [33] developed a complete, separate-stage 
framework for liver and lesion identification that did 
not require routine additional processing. In the dis-
tinctive dual densely coupled UNet proposed in [26], 
interconnection characteristics were determined us-
ing an intense two-dimensional U-net. At the same 
time, geometric parameters were systematically con-
solidated using an intense three-dimensional U-net. 
To improve liver and lesion categorization, authors in 
[30] changed the basic U-net layout by including im-
age-dependent advanced characteristics.
A unique liver lesion fragmentation technique was 
suggested in [8] utilizing CT images. They used a 
three-dimensional asymmetrical residual network 
(3D ARN) and a dynamic boundary model to opti-
mize the liver carcinoma cells. First, cancer contend-
ers found using the 3D ARN are used to segment the 
liver. To develop contenders for segmenting the liver 
tumor, which may require more precise lesion data in 
the prospective area, this study [16] suggests modi-
fying the hyper pixel delineation approach using in-
formation from the neighborhood at varying levels. 
It improves the network’s susceptibility to details of 
liver lesions and minimizes the processing challenge 
brought on by duplicate information. 
Deep learning-based models for the detection of liver 
cancer using Horizon Transformation and Stochastic 
model were proposed by authors in [23]. This method 
depends on the Stochastic integrated model and indi-
cator-controlled horizon transformation for accurate 
detection. Real-time medical setting evaluation of the 
proposed method uses clinical information from vari-
ous individuals [7]. The dense neural model classifier 
generated an optimal reliability of 98.25% with little 
test loss, which is the key benefit of this automatic 
identification. The employment of the dense neural 
model in the detection process is the primary method 
for finding liver tumors. The proposed approach [25] 
is examined to locate the cancerous area on CT imag-
es, which would help with a timely diagnosis during 
therapeutic and surgical decisions.
The Dual Feature Extraction technique utilizing ar-
tificial neural networks and cross-validation tech-
niques for liver cancer was developed in [18]. This ap-
proach is based on artificial intelligence and employs 

a ten-fold cross-validation of the network, validating 
the effect of the proposed system on 87 cancerous 
patients and 354 normal individuals. The proposed 
method’s accuracy, characteristic measure, and time 
for computation are comparable to those of the one-
way analysis of variance approach for identifying the 
feature group [11]. The accuracy of diagnosis in both 
approaches is considerably improved as the number 
of features increases.

Table 1 
Comparison of existing works on liver cancer diagnosis

Refer-
ence Techniques used Imaging 

Modalities Outcomes

[17] Support Vector 
Machines CT

Accuracy = 82.53%
Precision = 81.25%
Recall = 80.14%

[2] Random Forest MRI
Accuracy = 85.5%
Precision = 84.68%
Recall = 84.12%

[19]

Fully 
Convolutional 
Neural Network 
(FCNN)

CT

Accuracy= 87.36%
Sensitivity= 86.25%
Specificity= 86.12%

[28] Logistic 
Regression MRI

Accuracy = 84.65%
Precision = 83.25%
Recall = 83.16%

[29]

Generative 
Adversarial 
Networks 
(GAN)

MRI

Accuracy= 89.9%
Sensitivity= 88.7%
Specificity= 88.5%

[8] Inception V3 CT
Accuracy = 91.2%
Precision = 90.6%
Recall = 90.3%

[16] FCNN + GAN CT
Accuracy = 93.5%
Precision = 92.9%
Recall = 92.6%

It can be observed from the literature analysis that 
though several works employ deep learning tech-
niques for liver lesion classification, there is still 
scope for research that combines feature extraction, 
segmentation, and variety. Thus, this work is intend-
ed to integrate Semantic Segmentation using deep 
learning techniques with bio-inspired algorithms for 
feature extraction and pre-trained CNN architecture 
for classification purposes of liver tumors. 
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3. Proposed Methodology
This part suggests a novel technique for detecting 
liver cancer using CT images. The method present-
ed in this work is entirely based on deep learning, 
as opposed to the typical feature engineering tech-
niques designed to suit particular healthcare pattern 
identification tasks. However, a deep learning ap-
proach needs more computational power to operate 
at an adequate rate. This paper explores the effects 
of combining various deep-learning networks with 
bio-inspired algorithms to enhance the segmenta-
tion, feature extraction, and categorization of liv-
er lesions to address this issue. Figure 1 shows the 
three phases of the suggested method for diagnosing 
liver cancer.

3.1. UNet++
Regarding image segmentation, U-Net is specifically 
designed for use in the medical imaging sectors. The 
architecture consists of a bottleneck that functions 
as a turning point, a widening path, where the dimen-
sions of the feature maps grow according to the mask’s 
size, and a shrinking path where the dimensions of 
the feature maps reduce as the course broadens by an 
amount of 2 until it reaches the value of 1024, which is 
generally the highest acceptable value for CNNs.
In essence, UNet++ expanded the network by includ-
ing deep multilayer blocks and an intricate superviso-
ry model that stacks at the highest level. The addition 
of a deep multilayer block is the initial architectural 
modification. UNet++ changes the regular passing 
of the feature maps produced by the encoding pro-
cess to the decoding process at the equivalent level in 
U-Net. The semantic separation between the feature 
maps of the encoding and decoding processes would 
be bridged by the recently implemented deep links, 
making learning for the model simpler because the 
feature maps would be more semantically equivalent. 
The feature maps represented by am, n are determined 
using (1) when the value of n equals zero and (2) when 
the value of n is more significant than zero.
UNet++ is an extension of the original UNet architec-
ture, which is widely used for semantic segmentation 
tasks. It improves upon the UNet model by introduc-
ing a nested and dense skip pathway structure, allow-
ing for better feature representation and capturing 
more detailed contextual information.

Here is a how UNet++ works:
Encoder: The UNet++ architecture begins with an 
encoder network, which consists of multiple convo-
lutional layers. The encoder gradually reduces the 
spatial dimensions of the input image while extract-
ing high-level features through downsampling oper-
ations, such as max pooling or strided convolutions. 
These features capture the global context of the im-
age.
Skip Connections: Unlike the original UNet, UNet++ 
employs a nested and dense skip connection design. 
At each stage of the encoder, skip connections are 
established to connect the feature maps with corre-
sponding decoder stages. This allows for the flow of 
information from the encoder to the decoder, preserv-
ing important features at different scales.
Decoder: The decoder network in UNet++ is respon-
sible for upsampling the feature maps to the original 
image size. It performs upsampling operations, such 
as transposed convolutions or upsampling followed 
by convolutions, to gradually increase the spatial di-
mensions while recovering fine-grained details. The 
decoder also incorporates the feature maps received 
from the skip connections, enabling the fusion of 
multi-scale information.
Dense Skip Pathways: In UNet++, the skip connec-
tions are made denser compared to the original UNet 
architecture. Instead of having a single skip connec-
tion at each level, UNet++ introduces additional skip 
connections from lower-level feature maps to high-
er-level feature maps. This dense connectivity en-
hances the flow of information and facilitates the ex-
traction of more detailed and contextual information.
Final Prediction: At the end of the decoder, a final 
prediction layer produces the segmentation output. 
This layer typically uses a convolutional operation 
with an appropriate number of output channels, cor-
responding to the number of classes to be segment-
ed. A suitable activation function, such as sigmoid 
or softmax, is applied to generate the pixel-wise seg-
mentation probabilities or labels.
By utilizing the nested and dense skip pathway struc-
ture, UNet++ captures hierarchical features and con-
textual information at multiple scales. This enables 
more accurate and detailed segmentation of objects 
or regions of interest in the input images, such as liver 
lesions in the case of liver cancer diagnosis.
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3.2 Chaotic Cuckoo Search Algorithm 
A dataset with n features can choose 2n subsets of 
those features. The problem about the choice of 
features gradually transforms into a class of 
optimization problems when the value of n is 
sufficiently huge, since the main issue is how to 
choose a particular group of these feature 
combinations that improve the training efficiency 
of the machine model. In contrast to conventional 
optimization issues, the feature selection challenge 
is unique. It is recognized as a periodic linear 
problem, with the solution being to demonstrate and 
update at each corner of the hypercube. The search 
space is an n-dimensional matrix structure of the 
Boolean type as in (8), 
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to 0, it means that the particular feature is not 
chosen and alternatively if the value is 1, it indicates 
that the feature is chosen. 
Based on an overview of the invasive and 
productive habits of cuckoos in nature, the 
algorithm creates a method for searching using 
biologically inspired heuristics. Each egg in the nest 
is a solution for a series of optimization problems. 
Then the cuckoo egg can be described as an entirely 
novel solution, which is utilized to substitute the 
less-than-ideal solution in the nest while solving the 
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In the above equations, C denotes the convolution 
function and W represents the widening layer for the 
input a with levels m and n. 
As per the architecture, the feature maps generated for the 
first level are shown in Equations (3)-(6). 
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simpler and the model benefits from having two modes 
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for the UNet++ model is constructed by combining 
binary cross entropy technique with the dice loss. This 
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3.2 Chaotic Cuckoo Search Algorithm 
A dataset with n features can choose 2n subsets of 
those features. The problem about the choice of 
features gradually transforms into a class of 
optimization problems when the value of n is 
sufficiently huge, since the main issue is how to 
choose a particular group of these feature 
combinations that improve the training efficiency 
of the machine model. In contrast to conventional 
optimization issues, the feature selection challenge 
is unique. It is recognized as a periodic linear 
problem, with the solution being to demonstrate and 
update at each corner of the hypercube. The search 
space is an n-dimensional matrix structure of the 
Boolean type as in (8), 
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In the above equation, when the value of fk is equal 
to 0, it means that the particular feature is not 
chosen and alternatively if the value is 1, it indicates 
that the feature is chosen. 
Based on an overview of the invasive and 
productive habits of cuckoos in nature, the 
algorithm creates a method for searching using 
biologically inspired heuristics. Each egg in the nest 
is a solution for a series of optimization problems. 
Then the cuckoo egg can be described as an entirely 
novel solution, which is utilized to substitute the 
less-than-ideal solution in the nest while solving the 
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A new intricate supervisory model has been added to 
UNet++ as the second upgrade. Intricate Supervision 
is simpler and the model benefits from having two 
modes of operation such as Accurate and Fast mode. 
The former mode operates by taking an average of the 
outcomes from all the branches whereas the latter 
does not consider all the branches for selecting the 
outcomes. The loss function for the UNet++ model is 
constructed by combining binary cross entropy tech-
nique with the dice loss. This loss function is mathe-
matically represented as in (7),
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A dataset with n features can choose 2n subsets of 
those features. The problem about the choice of fea-
tures gradually transforms into a class of optimiza-
tion problems when the value of n is sufficiently huge, 
since the main issue is how to choose a particular 
group of these feature combinations that improve 
the training efficiency of the machine model. In con-
trast to conventional optimization issues, the feature 
selection challenge is unique. It is recognized as a 
periodic linear problem, with the solution being to 
demonstrate and update at each corner of the hyper-
cube. The search space is an n-dimensional matrix 
structure of the Boolean type as in (8),
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where fk ⍷{0, 1}.
In the above equation, when the value of fk is equal to 
0, it means that the particular feature is not chosen 
and alternatively if the value is 1, it indicates that the 
feature is chosen.
Based on an overview of the invasive and productive 
habits of cuckoos in nature, the algorithm creates a 
method for searching using biologically inspired heu-
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ristics. Each egg in the nest is a solution for a series 
of optimization problems. Then the cuckoo egg can be 
described as an entirely novel solution, which is uti-
lized to substitute the less-than-ideal solution in the 
nest while solving the particular optimization prob-
lem. The host nest is referred to as a member of the 
population in the binary cuckoo algorithm, and the 
nest enables the cuckoo to lay a single or several more 
eggs. The nests with superior fitness scores continue 
to exist as the number of cycles grows. This indicates 
that the optimal eggs are preserved later in the algo-
rithm’s iteration, keeping the favorable characteris-
tics. The problem is formulated mathematically as in 
(9) to (11) by employing a sigmoid function to map the 
features in the continuous space.
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In Equations (10)-(11), 𝛿𝛿𝛿𝛿  can be considered as a value 
between 0 and 1.  
 
The Chaotic Cuckoo Search algorithm is improvised with 
chaotic maps and Levi Flight components. While the 
feature selection problem can only be solved within the 
range [0, 1], the standard cuckoo search algorithm 
updates the cuckoo at any location, also known as the 
continuous space. There are Y cuckoos in the population, 
and there are X qualities that each cuckoo possesses for a 
population of size Y. It indicates that each person's search 
space is a X * Y matrix. Each nest in the Chaotic Cuckoo 
Search method generates a unique binary string, with 
every one of the bits indicating a distinct feature. If a bit 
is set to 1, it means that the feature has been chosen, and 
if set to 0, it is rejected. 

 
The chaotic condition of randomness turns out to be 
pretty structured, as revealed by the chaos theory, 
which was first proposed to examine 
meteorological circulation trends. Minor 
modifications to the preliminary test setup can 
result in large modifications to the behavior that 
follows. Therefore, to provide a foundation for 
algorithmic resolution and to boost population 
variety during the preliminary phase, a chaotic map 
is included in the preliminary phase. Chebyshev 
map is employed as the chaotic map, which is 
mathematically represented as in (12), 
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Algorithm 1. Chaotic Cuckoo Search algorithm
Input: Initialize Population N, feature set F, chaotic 
map cbmap 
Output: Current BEST cuckoo
Step 1: Arrange individuals in Cuckoo Population 
based on fitness
Step 2: Select BEST cuckoos
Step 3: Modify dimstride using chebyshev chaotic map 
cbmap as per Equation (12)
Step 4: Pick a cuckoo in random and update its solu-
tion by leveraging Levy Flight
Step 5: Assess the fitness function of chosen cuckoo, Fold

Step 6: Select a nest location (new location)
Step 7: if (Fold< Fnew)
Step 8:      Update the cuckoo in new nest location
Step 9: end if
Step 10: For every iteration, WORST cuckoos are re-
jected and BEST ones are retained
Step 11: Arrange individuals in current Cuckoo Popu-
lation with BEST cuckoos
Step 12: return Current BEST cuckoo
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3.3. AlexNet
This architecture is stacked with convolutional layers 
and fully connected layers. Each neuron is a convo-
lutional kernel in the filters that comprise each con-
volutional layer. The kernel is a numeric vector that 
multiplies its weights by the corresponding values of 
a selected portion of the pixels involved in the original 
image. The pixels that are chosen from the original 
image share the same kernel size. The values that are 
produced are then added together to produce a single 
value that corresponds to the numerical value of each 
pixel in the final result. The outcome of the convolu-
tional layer is generated by moving the kernel across 
the input image. The kernel moves across the pixels in 
both dimensions in every single layer. The mathemat-
ical formulation of the convolution process is repre-
sented in (15),
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4. Results and Discussion  
This section presents the results obtained by 
applying LiTS dataset to the proposed 
methodology for liver segmentation and liver 
classification 
4.1 Dataset Description 
The dataset utilized in this research is the LiTS, 
Liver Tumor Segmentation related benchmark 
dataset. The research sample in this dataset includes 
a combination of primary and metastatic liver 
tumor diseases. The ratio between the tumors and 
background varied for each of the lesions. The 
dataset contains 201 CT images of the abdomen 
with 194 images representing the lesions. The 
dataset is split into training and testing sets with 131 
CT images for training and 70 for testing. The 
imaging quality extends from 0.56 mm to 1.0 mm, 
while the dimension of the slice depth spans from 
0.45 mm to 6.0 mm. Longitudinal segments can be 
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In the above equation, Fmap(m, n) denotes the feature 
map with m columns and n rows, Ip(a, b) represents 
the input vector with coordinates a and b, Sk(i, j) rep-
resents kernel with elements across i and j.
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A neighborhood feature map is produced by a pool-
ing operation that adds up similar information in 
that region to produce a single value. There are five 
convolutional layers in AlexNet, with pooling layers 
placed after each of the first three convolutional lay-

ers. Rectified Linear Unit is included as the activa-
tion function for each layer and batch normalization 
is implemented to overcome the issue of overfitting. 
After the five convolutional layers which perform the 
task of feature extraction, three fully connected lay-
ers accomplish the classification purposes. Dropout is 
introduced after fully combined layers to skip certain 
units to generalize the network. The softmax activa-
tion function is incorporated in the output layer of the 
AlexNet architecture, which is represented as in (16),
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4. Results and Discussion 
This section presents the results obtained by apply-
ing LiTS dataset to the proposed methodology for liv-
er segmentation and liver classification.

4.1. Dataset Description
The dataset utilized in this research is the LiTS, Liver 
Tumor Segmentation related benchmark dataset. The 
research sample in this dataset includes a combina-
tion of primary and metastatic liver tumor diseases. 
The ratio between the tumors and background varied 
for each of the lesions. The dataset contains 201 CT 
images of the abdomen with 194 images represent-
ing the lesions. The dataset is split into training and 
testing sets with 131 CT images for training and 70 for 
testing. The imaging quality extends from 0.56 mm to 
1.0 mm, while the dimension of the slice depth spans 
from 0.45 mm to 6.0 mm. Longitudinal segments can 
be 42 or up to 1026 in number. There are typically be-
tween 0 and 12 malignancies. The lesions range in di-
mension from 38 mm to 1231 mm. Comparing the test 
set to the training set, more tumor incidences are seen 
in the test set. The statistical analysis results reveal 
no significant difference between the liver volumes in 
the training and test sets. In the train and test sets, the 
mean lesion HU value is 65 and 59, correspondingly. 
The dataset used in the experimentation of the pro-
posed research is available in the following link,
https://www.kaggle.com/datasets/andrewmvd/lits-
png
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4.2. Performance Evaluation of Liver Lesion 
Segmentation Using UNet++

The performance of the proposed UNet++ segmen-
tation method is assessed using metrics such as Dice 
similarity coefficient and Correlation coefficient.
The Dice similarity coefficient (DSC) is a popular 
metric for evaluating the accuracy of automated or 
partially automated segmentation techniques. DSC is 
a preferred technique for contrasting binary portions 
of an image. The DSC has been customized for imag-
ery segmentation. It is a common practice to compare 
the separated portion of the fundamental truth with 
the output of automated or partially automated seg-
mentation methods. A collection must be constructed 
for each DSC calculation between two sections. It is 
mathematically formulated, as shown in (17). Here B 
represents the image in binary form, and A means the 
fundamental truth.
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of the fundamental truth with the output of automated or 
partially automated segmentation methods. A collection 
must be constructed for each DSC calculation between 
two sections. It is mathematically formulated, as shown 
in (17). Here B represents the image in binary form, and 
A means the fundamental truth. 
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The correlation coefficient compares the image 
with the fundamental truth based on the intensity of 
the pixels in the images. It is defined 
mathematically as in (18), where x and y 
parameters denote the pixel positions in the images.  
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The performance of the UNet++ model used in the 
proposed research is compared with some of the 
best deep learning-based semantic segmentation 
models such as YOLACT, YOLOV7, Mask 
Regional-CNN, and Fully Convolutional 
Networks. YOLACT produces the least dice and 
correlation coefficient values of 0.943 and 0.938, 
respectively. YOLOV7 exhibits a 0.955 dice value 
and 0.9479 correlation value. The results obtained 
by Mask R-CNN are closer to YOLOV7. Fully 
Convolutional Networks produce higher results 
than other deep models, with a 0.979 dice 
coefficient and 0.972 correlation coefficient. 
However, the results produced by the deep 
learning-based semantic segmentation models are 
lower than the outcomes achieved by the UNet++ 
model with dice and correlation coefficient values 
of 0.988 and 0.983, correspondingly. 
 

Table 2  
Performance Evaluation of Deep Learning based Segmentation Methods 

Techniques Dice coefficient Correlation Coefficient 

YOLACT 0.943 0.938 

YOLOV7 0.955 0.949 

Mask R-CNN 0.962 0.954 

Fully Convolutional Networks 0.979 0.972 

Proposed UNet++ 0.988 0.983 
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UNet  0.957 0.949 

SegNet-UNet  0.962 0.958 

HFCNN  0.976 0.969 
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(18), where x and y parameters denote the pixel posi-
tions in the images. 
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The performance of the UNet++ model used in the 
proposed research is compared with some of the 
best deep learning-based semantic segmentation 
models such as YOLACT, YOLOV7, Mask 
Regional-CNN, and Fully Convolutional 
Networks. YOLACT produces the least dice and 
correlation coefficient values of 0.943 and 0.938, 
respectively. YOLOV7 exhibits a 0.955 dice value 
and 0.9479 correlation value. The results obtained 
by Mask R-CNN are closer to YOLOV7. Fully 
Convolutional Networks produce higher results 
than other deep models, with a 0.979 dice 
coefficient and 0.972 correlation coefficient. 
However, the results produced by the deep 
learning-based semantic segmentation models are 
lower than the outcomes achieved by the UNet++ 
model with dice and correlation coefficient values 
of 0.988 and 0.983, correspondingly. 
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HFCNN  0.976 0.969 

. (18)

The performance of the UNet++ model used in the pro-
posed research is compared with some of the best deep 
learning-based semantic segmentation models such 
as YOLACT, YOLOV7, Mask Regional-CNN, and Fully 
Convolutional Networks. YOLACT produces the least 
dice and correlation coefficient values of 0.943 and 
0.938, respectively. YOLOV7 exhibits a 0.955 dice val-
ue and 0.9479 correlation value. The results obtained 
by Mask R-CNN are closer to YOLOV7. Fully Convo-
lutional Networks produce higher results than other 
deep models, with a 0.979 dice coefficient and 0.972 
correlation coefficient. However, the results produced 
by the deep learning-based semantic segmentation 
models are lower than the outcomes achieved by the 
UNet++ model with dice and correlation coefficient 
values of 0.988 and 0.983, correspondingly.
In Figure 4 various segmentation performance is 
compared. However, Unet++ with semantic segmne-
tation works better in obtaining high accuracy com-
pared to exsisting technique
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4.3 Performance Evaluation of Liver Lesion 
Classification Using Chaotic Cuckoo Search and 
AlexNet  
The performance of the proposed Chaotic Cuckoo Search 
with AlexNet architecture for liver lesion classification is 
evaluated using metrics such as Accuracy, Precision, 
Recall, F1 Score, and Specificity.  
Pretrained CNN architectures such as VGG16, 
ResNet50, InceptionV3, DenseNet121, and 

MobileNetV2 are implemented for the LiTS 
dataset to assess the performance of these models 
for liver tumor classification and compare it against 
the results produced by the AlexNet model. The 
obtained results are shown in Table 5. The accuracy 
of VGG16 for classification is 94.3%, ResNet50‘s 
accuracy is 95.6%, Inception V3 exhibits 96.7% 
accuracy, DenseNet121 is 97.3% accurate and 
MobileNetV2 model exhibits an accuracy of 
98.1%. Compared to the other models, AlexNet 
model is 98.9% accurate in categorizing liver 
tumors.  
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Performance Comparison CNN architectures Vs Proposed AlexNet 

Techniques Accuracy (%) Precision (%) Recall (%) F1 Score (%) Specificity (%) 
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MobileNetV2 98.1 97.5 97.7 97.9 97.1 

Proposed - AlexNet 98.9 98.3 98.5 98.4 98.1 
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rate and MobileNetV2 model exhibits an accuracy of 
98.1%. Compared to the other models, AlexNet model 
is 98.9% accurate in categorizing liver tumors. 
The AlexNet model is combined with the Chaot-
ic Cuckoo Search algorithm to perform feature ex-
traction and classification in the proposed system. 
To prove the performance superiority of this combi-
nation, AlexNet architecture is integrated with algo-
rithms such as Particle Swarm Optimization (PSO), 
Ant Colony Optimization (ACO), Grey Wolf Optimi-
zation (GWO), Salp Swarm Optimization (SSO), and 
Cuckoo Search Algorithm (CSA). It was observed that 
AlexNet-PSO classifies with an accuracy of 95.2%, 
which is the least among the other combinations. 
AlexNet-ACO produces accuracy, precision, and re-
call values of 96.4%, 95.8%, and 96.1%, respectively. 
The accuracy exhibited by AlexNet-GWO and Alex-
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The AlexNet model is combined with the Chaotic 
Cuckoo Search algorithm to perform feature extraction 
and classification in the proposed system. To prove the 
performance superiority of this combination, AlexNet 
architecture is integrated with algorithms such as Particle 
Swarm Optimization (PSO), Ant Colony Optimization 
(ACO), Grey Wolf Optimization (GWO), Salp Swarm 
Optimization (SSO), and Cuckoo Search Algorithm 
(CSA). It was observed that AlexNet-PSO classifies with 
an accuracy of 95.2%,  which is the least among the other 
combinations. AlexNet-ACO produces accuracy, 

precision, and recall values of 96.4%, 95.8%, and 
96.1%, respectively. The accuracy exhibited by 
AlexNet-GWO and AlexNet-SSO is quite close, 
with discounts of 97.3% and 97.9%. The 
Traditional Cuckoo Search algorithm was 98.5% 
accurate in making predictions compared to 
different algorithms. However, it is lower than the 
accuracy produced by the proposed AlexNet-
Chaotic Cuckoo Search Algorithm, which is 
99.2%. 

 
Table 5  
Performance Comparison by varying bio-inspired algorithms 

Data Samples Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) 

300 97.66 95.52 97.45 97.89 

600 97.78 95.95 97.85 97.95 

900 97.98 96.65 98.45 98.12 

1200 98.45 96.78 98.75 98.56 

1500 98.95 97.45 98.98 98.78 

Average 98.16 96.47 98.29 98.26 
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UNet-3DCNN-C LSTM [20] 93.6 92.8 93.2 

GAN-ResNet50-Inceptionresnetv2 [21] 94.7 94.2 94.4 

Table 5 
Performance Comparison by varying bio-inspired algorithms

Data Samples Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

300 97.66 95.52 97.45 97.89

600 97.78 95.95 97.85 97.95

900 97.98 96.65 98.45 98.12

1200 98.45 96.78 98.75 98.56

1500 98.95 97.45 98.98 98.78

Average 98.16 96.47 98.29 98.26

Table 6 
Performance Comparison Existing Vs Proposed methods

Techniques Accuracy (%) Precision (%) Recall (%)

UNet-3DCNN-C LSTM [20] 93.6 92.8 93.2

GAN-ResNet50-Inceptionresnetv2 [21] 94.7 94.2 94.4

Watershed-Gaussian Mixture Model-DNN [27] 96.1 95.6 95.9

UNet- Grey Wolf Class Topper Optimization [29] 97.6 96.7 97.3

DFS U-Net - Improved CNN [30] 98.6 98.2 98.3

Proposed UNet++ Chaotic Cuckoo Search, AlexNet 99.2 98.6 98.8
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The performance of the proposed system is compared 
with few existing works on liver lesion segmentation and 
liver tumor classification. The existing models 
considered for comparison includes UNet-3DCNN-
CLSTM [20], GAN-ResNet50-Inception Resnet V2 [21], 
Watershed-Gaussian Mixture Model-DNN [27], UNet- 
Grey Wolf Class Topper Optimization [29] and DFS U-
Net - Improved CNN [30]. UNet-3DCNN-C LSTM 
model utilizes UNet for image segmentation, 3DCNN for 
feature optimization and C-LSTM for classification[31-
33]. This model produces accuracy, precision and recall 
as 93.6%, 92.8% and 93.2% respectively. GAN-
ResNet50-Inceptionresnetv2 produces an accuracy of 
94.7%, precision of 94.2% and recall of 94.4%. 
Watershed-Gaussian Mixture Model-DNN produces 
slightly better accuracy of 96.1% and UNet with Grey 
Wolf Class Topper Optimization is accurate with 97.6%. 
DFS U-Net - Improved CNN employs hybrid DFS U-Net 
for segmentation and Improved CNN for classification to 
produce an accuracy of 98.6%. The proposed model is 
capable enough to exhibit highest accuracy, precision and 
recall values such as 99.2%, 98.6% and 98.8% 
respectively compared to the existing models. 
 

4.4 Limitations of the Present Research 
One clear drawbacks of the sample dataset that is 
employed in the current research is that it prohibits 
us from extending the findings. Despite 
the favorable outcomes generated by UNet++, 
there are some restrictions. By setting up 
additional epochs, adopting larger amounts of 
information, incorporating a variety of datasets, or 
using various methods of preprocessing could help 
to get over these restrictions. Moreover, it is 
important to interpret the results delivered carefully 
and to do additional research with a more 
substantial sample to ensure that the results are 
adequately validated. Like other deep learning 
models, UNet++ may be prone to overfitting, 
especially when trained on limited data. Overfitting 
occurs when the model learns to perform well on 
the training data but fails to generalize to new, 
unseen data. Regularization techniques such as 
dropout or data augmentation can help mitigate this 
issue. 
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This study put forth a novel method for detecting 
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us from extending the findings. Despite the  favor-
able outcomes generated by UNet++, there are some 
restrictions. By setting up additional  epochs, adopt-
ing larger amounts of information, incorporating a 
variety of datasets, or using various methods of pre-
processing could help to get over these restrictions. 
Moreover, it is important to interpret the results de-
livered  carefully and to do additional research with 
a more substantial sample to ensure that the results 
are adequately validated. Like other deep learning 
models, UNet++ may be prone to overfitting, especial-
ly when trained on limited data. Overfitting occurs 
when the model learns to perform well on the training 
data but fails to generalize to new, unseen data. Reg-
ularization techniques such as dropout or data aug-
mentation can help mitigate this issue.
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5. Conclusion
This study put forth a novel method for detecting liv-
er cancer from CT scans that combined a variety of 
deep learning models with an optimization algorithm 
that was bio-inspired. First, a unique semantic seg-
mentation technique called UNet++ was suggested for 
extracting liver lesions from CT images. In contrast to 
previous studies on the diagnosis of liver cancer, which 
use the conventional feature-based classification ap-
proaches, the suggested approach utilizes the Chaotic 
Cuckoo Search algorithm as a feature extractor and 
AlexNet architecture as classifier. Segmentation re-
sults produced by UNet++ were compared with other 
segmentation techniques such as UNet, SegNet-UNet, 
HFCNN and Faster R-CNN. It was found that UNet++ 
produced the highest dice coefficient of 0.988 and 
correlation coefficient of 0.983. Classification results 
produced by AlexNet were compared with other CNN 
architectures such as VGG16, ResNet50, InceptionV3, 
DenseNet121 and MobileNetV2. Further, the AlexNet 

model was combined with bio-inspired optimization 
algorithms such as Particle Swarm Optimization, Ant 
Colony Optimization, Grey Wolf Optimization, Salp 
Swarm Optimization and Cuckoo Search Algorithm. 
In contrast to the other algorithms, AlexNet with Cha-
otic Cuckoo Search algorithm produced the highest 
accuracy of 99.2%. The performance exhibited by the 
proposed method is also evaluated against existing 
approaches in the literature and found the proposed 
method excels with highest accuracy, precision and re-
call. The drawback of the proposed approach is that it 
was employed only to CT images and the results were 
evaluated. Future research on the identification of liver 
cancer will combine various modalities, including ul-
trasound imaging and magnetic resonance imaging, to 
create a multimodal predictive strategy incorporating 
deep learning. Through the advantages of comprehen-
sive multimodal integration of medical imagery, this 
strategy has the potential to boost diagnosis reliability.
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