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Traditional deep learning-based strategies for sentiment analysis rely heavily on large-scale labeled datasets 
for model training, but these methods become less effective when dealing with small-scale datasets. Fine-tun-
ing large pre-trained models on small datasets is currently the most commonly adopted approach to tackle this 
issue. Recently, prompt-based learning has gained significant attention as a promising research area. Although 
prompt-based learning has the potential to address data scarcity problems by utilizing prompts to reformulate 
downstream tasks, the current prompt-based methods for few-shot sentiment analysis are still considered in-
efficient. To tackle this challenge, an adaptive prompt-based learning method is proposed, which includes two 
aspects. Firstly, an adaptive prompting construction strategy is proposed, which can capture the semantic in-
formation of texts by utilizing a dot-product attention structure, improving the quality of the prompt templates. 
Secondly, contrastive learning is applied to the implicit word vectors obtained twice during the training stage 
to alleviate over-fitting in few-shot learning processes. This improves the generalization ability of the model 
by achieving data enhancement while keeping the semantic information of input sentences unchanged. Ex-
perimental results on the ERPSTMT datasets of FewCLUE demonstrate that the proposed method have great 
ability to construct suitable adaptive prompts and outperforms the state-of-the-art baselines.
KEYWORDS: Few-shot Sentiment Analysis; Adaptive Prompt Learning; Contrastive Learning; Dot-Product 
Attention; Semantic information of tests.
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1. Introduction
Sentiment analysis mainly involves the use of deep 
learning strategies and natural language process-
ing (NLP) to identify, extract, and analyze the emo-
tional tone of texts [21]. It is a research focus in the 
fields of NLP and has applications in numerous ar-
eas, including social media, customer feedback, and 
political analysis. However, traditional sentiment 
analysis techniques face significant challenges when 
confronted with small-scale datasets. To overcome 
this challenge, few-shot learning has emerged as a via-
ble solution for handling few-shot sentiment analysis 
tasks. In recent years, two categories of approaches 
have been proposed, namely the “pre-training-fine-
tuning” and “pre-training-prompt-prediction” para-
digms.
The “pre-training-prompt-prediction” paradigm has 
gained more attention than the “pre-training-fine-
tuning” paradigm in recent years. It involves obtain-
ing a pre-trained model through unsupervised train-
ing on large-scale data using large models like BERT 
[4]. The model is then fine-tuned on small sample 
datasets and makes predictions using prompt learn-
ing methods. The construction of prompt templates is 
the key of this approach since an appropriate prompt 
definitely improves the performance of the model. 
However, the existing hand-crafted prompt template 
construction method, PET [24], and the automat-
ic prompt template construction method, P-tuning 
[19], do not fully utilize the semantic information of 
the input sentences during the process of template 
construction. Additionally, the prediction accuracy 
of different templates vary greatly in the hand-craft-
ed prompt template construction method, making it 
challenging to find the “best” prompt template. Thus, 
the current research challenge is how to automatical-
ly construct templates by fully utilizing the semantic 
information of the input text.
Few-shot learning [1, 8, 25, 26, 6] involves the use of 
a small quantity of labeled data for model training. 
This approach transfers the knowledge the model has 
learned from massive quantities of unlabeled data to 
less sample data. Contrastive learning is often used in 
few-shot learning tasks to train the model by compar-
ing the similarity between two samples and learning 
a better representation. It minimizes the distance be-
tween samples of the same class and maximizes the 

distance between samples of different classes. Regu-
larization techniques have a great impact on prevent-
ing over-fitting and improving the generalization abil-
ity of the deep learning models, especially in few-shot 
learning tasks. While Dropout is a commonly used 
regularization method, Liang et al. [14] have pointed 
out that a nonnegligible inconsistency exists between 
the training and inference stages of Dropout. That is, 
the randomly sampled submodel (caused by Dropout) 
obtained in the training stage is inconsistent with the 
full model (without Dropout) in the inference stage.
To address the aforementioned problems, we propose 
a few-shot sentiment analysis method that leverages 
adaptive prompt learning and contrastive learning. 
Specifically, we design an adaptive prompt module to 
automatically create prompt templates based on the 
semantic information of texts. It enables the model 
to focus on the most informative features of the input 
sequences. In addition, we apply a method of contras-
tive learning to enhance the performance of senti-
ment analysis on small sample data and improve the 
generalization ability of our model. The contributions 
of this paper are shown as follows:
1 We propose a method based on few-shot learning 

for sentiment analysis, called Adaptive Prompt 
with R-Drop (APRD), which utilizes an attention 
mechanism and is particularly effective in low-re-
source scenarios. Furthermore, we demonstrate 
that pre-training on existing labeled datasets from 
diverse domains can significantly enhance the 
ability of prompt template construction, leading to 
improved model performance.

2 We employ the R-Drop contrastive learning meth-
od in the inference stage to enhance the robustness 
of the model against dropout. R-Drop adds a regu-
larization term to the model, making the outputs 
consistent under different dropout rates, which 
enhances the similarity of “model averaging” and 
“weight averaging”. As a result, this approach alle-
viates over-fitting and improves the generalization 
ability of our model.

The other parts of this article are organized as fol-
lows: First, in Section 2, we express a summary of the 
main related works in areas of few-shot learning and 
sentiment analysis. Next, in Section 3, we provide a 
detailed introduction to proposed method, which fo-
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cuses on the mechanisms, mathematical analysis, and 
training process of the adaptive prompt module and 
the contrastive learning module. Then, in Section 4, 
we present the results of our experiments along with 
related analyses. Finally, in Section 5, we provide a 
summary of our article and discuss our further re-
search directions.

2. Related Work
Researches on sentiment analysis has become prev-
alent in NLP since 2000 [29]. To date, it has mainly 
undergone two major phases: the period of tradi-
tional sentiment analysis and that of the deep learn-
ing-based sentiment analysis.

2.1. Period of Traditional Sentiment Analysis

The period of traditional sentiment analysis can be 
divided into two stages, which are discussed in the 
following subsections.

2.1.1. The Stage of ‘Emotional Dictionary and 
Rules’
Such methods perform sentimental tendency classi-
fication of text sentences by manually constructing a 
sentiment dictionary and applying a dictionary and 
rules-based approach to it. Specifically, they utilize the 
dictionary to get the emotion value of the emotional 
words in the text, and then try to determine the overall 
sentiment tendency of the text by conducting a weight-
ed calculation on them [3, 20]. However, these methods 
tend to ignore the association between words, leading 
to an unchangeable emotional value of words in differ-
ent scenarios and contexts. Therefore, the establish-
ment of the relevant sentiment dictionaries that target 
specific scenarios to raise the accuracy rate of classifi-
cation is necessary. Due to the flexibility of languages, 
constructing a sentiment dictionary of both generosity 
and high-quality remains challenging.

2.1.2. The ‘Stage of Feature Engineering’ 
During this stage, task-specific models are trained 
solely on input-output sample datasets of the target 
task. N-gram model is used in combination with clas-
sical machine learning classifiers such as K-Nearest 
Neighbor (KNN), Naive Bayes, Maximum Entropy, 
and SVM to perform supervised learning [11]. How-

ever, these methods are not able to take into account 
the relationship between variables and have poor 
generalization performance. Li et al. built a model 
with a priori knowledge of categorized information 
using Term Frequency-Inverse Document Frequen-
cy (TF-IDF) to extract the most meaningful features 
from unstructured texts [15]. This algorithm is easy to 
implement and understand but relies heavily on the 
corpus and has low precision. To sum up, the short-
comings of traditional machine learning-based senti-
ment analysis are apparent: it requires a high-quality 
corpus that matches the processed text for training, 
resulting in poor algorithmic accuracy.

2.2. Deep Learning-based Sentiment Analysis

Classical neural networks such as Recursive Neural 
Networks (RNNs), Convolutional Neural Networks 
(CNNs), Long Short-Term Memory (LSTM) networks, 
and Bi-LSTM networks have all been applied in sen-
timent analysis tasks [5]. Li et al. proposed a stacking 
structure called BCSA of Bi-LSTM and CNN to im-
prove the ability of the model to recognize sentiment 
[14]. Chen et al. proposed HUSN, which enhance hier-
archical neural networks on basis of users’ reviewing 
habits [2]. Sadr et al. constructed a model that employs 
RNN, making use of its tree structure as a substitute 
for the pooling layer in the convolutional network, for 
the purpose of capturing long-term dependencies and 
reducing the loss of local information [23]. Deep learn-
ing-based methods have made marvelous progress 
compared with traditional methods. However, these 
algorithms are not applicable when faced with small 
amounts of labeled data. Additionally, significant in-
novations made in the NLP field have been promptly 
applied in sentiment analysis tasks. Mikolov et al. pro-
posed the Continuous Bag of Words (CBOW) model 
combined with  Skip-Gram model, which uses contex-
tual words to predict target words and uses the target 
words to predict the surrounding words of the text [13]. 
Sun et al. used GloVe to train word vectors and Bi-di-
rectional Gated Recurrent Unit (BGRU) to obtain con-
textual information. They also used an attention mech-
anism to process sparse data, which was confirmed to 
be effective on the IMDB dataset [27]. However, Word-
2Vec and GloVe obtain static word vectors, which ig-
nore the relationship of the word context, leading to the 
failure of the model in capturing advanced semantic 
information from the text.
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As the role of fully-supervised learning becomes in-
creasingly smaller, recent research findings in the 
field of NLP have been applied in sentiment analysis 
tasks, including “pre-training-fine-tuning” paradigm 
and the burgeoning “pre-training-prompt-predic-
tion” paradigm.

2.2.1. “Pre-training-fine-tuning” Paradigm
This paradigm involves pre-training models with 
fixed architectures on large-scale unlabeled data to 
predict the probability of observed textual data as a 
language model (LM), which is then fine-tuned using 
a small quantity of manually labeled data in down-
stream tasks. Pre-trained language models (PLMs) 
aim to train models on large quantities of corpus to 
enable them to learn the probability distributions 
for every single word in the corpus, building models 
that fit these textual distributions. The contextu-
al problem of ignoring contextual connections was 
solved by the proposal of dynamic word vector algo-
rithms ELMo [22] and BERT [4]. To train word vec-
tors, Liu et al. [18] and Fang et al. [7] used BERT as a 
pre-trained language model instead of Word2Vec and 
GloVe, resulting in better classification results when 
embedded into other models. Sun et al. [27] used a 
deep belief network (DBN) to solve the problem of 
sparse text features, while Heikal et al. [9] defined an 
integrated model from the best CNN model and Bi-
LSTM model, which greatly improved classification 
accuracy. However, all the methods mentioned above 
have high requirements on fine-tuning strategies of 
models, together with the parameters of the model 
and complexity, which are difficult to control.

2.2.2. “Pre-training-prompt-prediction” 
Paradigm
With the rising of prompt learning, the “Pre-train-
ing-prompt-prediction” paradigm has become a 
new research hotspot. This approach is character-
ized by training a single LM in a completely unsu-
pervised manner to solve a large number of tasks 
after providing a suitable set of prompts. Schick et 
al. proposed the training strategy Pattern Exploiting 
Training (PET) for semi-supervised tasks [8]. In this 
strategy, the input sample is redefined as cloze sen-
tences under the aim of helping the language model 
constuct the given task. This is the first strategy of 
prompt learning. Prompt learning requires the de-
sign of a prompt template, which can be obtained 

through manual design [5]. Hu et al. proposed the 
KPT method based on PET, which extended and im-
proved the labeled words of PET by introducing a 
knowledge base to it [10]. Ye et al. proposed an ontol-
ogy-enhanced knowledge prompt method, short for 
OntoPrompt. In this strategy, external knowledge is 
implanted into the framework of prompt learning in 
text form to realize the model’s perception of tasks 
and domains [31]. From the above works, we can see 
that the quality of the prompt templates has strong 
influence on the performance of downstream tasks. 
Therefore, it is essential to find the most appropriate 
prompt in prompt learning methods. Liu et al. [24] 
proposed the P-tuning method. It achieved the auto-
matic construction of the template by using tokens 
never seen in the model to form the prompt, which 
transforming the template construction problem 
into a continuous parameter optimization problem. 
Although these methods improved the defect of PET 
of strong subjectivity and small coverage to some ex-
tent, they still failed to fully exploit the semantic in-
formation of the input text in the process of rapidly 
building the prompt templates. 
Utilizing a pre-trained LM for sentiment analysis 
tasks through prompt learning is a challenging task. 
Firstly, it is not easy to find suitable prompt tem-
plates, as they require specific design considerations. 
Secondly, using a prompt learning method with only 
a single prompt to guide a pre-trained LM to com-
plete a sentiment analysis task may be a suboptimal 
approach, as the results may differ significantly from 
the pre-trained targets.

3. Structure of the Model and the 
Whole Training Process
This paper introduces an Adaptive Prompt Template 
Construction Method (APRD) that combines con-
trastive learning with dot-product attention mecha-
nisms. The model comprises three parts: the Encod-
ing and Embedding module, the Adaptive Prompt 
Learning module, and the Contrastive Learning mod-
ule, as illustrated in Figure 1. The Adaptive Prompt 
Learning module aims to dynamically construct tem-
plates based on input sequences, while the Contras-
tive Learning module amplifies data and mitigates 
overfitting.
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3.1. Encoding and Embedding 
Module

This part comprises two layers: the 
One-Hot Encoding layer and the 
Word Embedding layer. Its purpose 
is to encode and generate word em-
beddings for each word { }1 2, nx x x
in the input sequence X , transform-
ing them into 512-dimensional vec-
tors. The resulting set of vectors is 
denoted as { }1 2, nx x x , as shown in 
Figure 2. 

3.2. Adaptive Prompt Learning 
Module

The idea for improvement in this 
module is based on the traditional 
hand-crafted prompt learning meth-
od (HPL). Therefore, we first intro-
duce the HPL model. The structure 
of the model is shown in Figure 3.
Suppose there is a pre-trained model 
M, and the input sequence is a sen-
tence X that have already been toke-
nized. Let n stands for the length of 
the sentence X, and the dimension of 
the word vector in word embedding 
layer is 512. By sending X  to the 
one-hot encoding layer and the word 
embedding layer, a set of 512-di-
mensional vectors with a length of 
n is obtained, which is denoted as
{ }1 2, nx x x . Next, a hand-craft-
ed prompt template is denoted as

[ ]{ }1 2 1, , ,i i mp p p MASK p p+  , where
[ ]MASK is a 512-dimensional vector 
obtained after being converted by the 
word embedding matrix. Then, we 
use the set of 512-dimensional vec-
tors of [ ]{ }1 2 1, , ,i i mp p p MASK p p+ 

and { }1 2, nx x x  
as the input se-

quence of the pre-trained language 
model M (such as BERT), from 
which a set of 512-dimensional 
vectors with a length of m + n is ob-
tained, denoted as { }1 2, m no o o + . 

Figure 1
Framework of the whole model

Figure 2
Structure of the Encoding and Embedding module
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Figure 3
Whole model structure of the traditional hand-crafted prompt learning 
method (HPL)
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to 

generate the context vector c . The right part of Figure 5 
shows how the decoder uses the context vector c  to decode 
and generate the outputs. In summary, the function of this 
module is to automatically create the prompt template based 
on the contents of the input text. Compared with traditional 
methods, our strategy fully utilizes the contextual information 
of the input X  to automatically construct an adaptive 
training prompt template, which strengthens the correlation 
between the prompt information in the template and the input 
sequence X . 
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Figure 5
Structure of the adaptive prompt learning layer
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2 The decoder
Our encoder is also a unidirectional LSTM encoder 
of k layers. The input to the encoder includes the id 
of the target template generated at the previous mo-
ment, the cell state, and hidden state of the previous 
moment. The output of the encoder includes the cell 
state and hidden state of the current moment. For the 
subsequent layers, the input includes the hidden state 
of the previous layer at the current moment, along 
with the cell state and hidden state of the previous 
moment. The output consists of the cell state and hid-
den state of the current moment. Subsequently, the 
hidden state of the last layer is utilized as the query 
for the attention mechanism. This helps in comput-
ing the contextual features of the current moment in 
the encoder sequence { }1, 2, ,,k k n kh h h . Finally, the 
hidden state of the last layer is combined in various 
ways and fed into a linear layer. This generates the id 
of the prediction template for the next moment. The 
mathematical principles underlying these operations 
are presented in Equations (7)-(17):
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To capture the input details more effectively, we utilize the 
hidden state of the decoding layer as the query for the 
attention structure. This query enables the model to identify 
the relevant information in the encoder sequence 

{ }1, 2, ,,k k n kh h h

and calculate the contextual features of the 

current moment. Subsequently, the hidden state of the 
decoding layer is combined with that of the last layer in 
various ways and fed into the linear layer. This generates the 
id of the prediction template for the next moment. 
 
3.3 Contrastive Learning Module 
Overfitting is a common problem in few-shot learning due to 
the limited availability of data. To mitigate its impact, we 
incorporate the technique of R-Drop, which was proposed by 
Liang et al. [13] based on contrastive learning. This approach 
enables us to amplify the data while preserving the semantic 
information. By doing so, we can reduce overfitting and 
improve the generalization ability of the model. The 
mathematical analysis of this approach is presented below: 
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n
i i i

D x y
=
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corresponding label. In this task, ix represents the sentence to 
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To capture the input details more effectively, we utilize the 
hidden state of the decoding layer as the query for the 
attention structure. This query enables the model to identify 
the relevant information in the encoder sequence 

{ }1, 2, ,,k k n kh h h

and calculate the contextual features of the 

current moment. Subsequently, the hidden state of the 
decoding layer is combined with that of the last layer in 
various ways and fed into the linear layer. This generates the 
id of the prediction template for the next moment. 
 
3.3 Contrastive Learning Module 
Overfitting is a common problem in few-shot learning due to 
the limited availability of data. To mitigate its impact, we 
incorporate the technique of R-Drop, which was proposed by 
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information. By doing so, we can reduce overfitting and 
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layers. The input to the encoder includes the id of the target 
template generated at the previous moment, the cell state, and 
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moment. For the subsequent layers, the input includes the 
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along with the cell state and hidden state of the 
previous moment. The output consists of the cell state 
and hidden state of the current moment. Subsequently, 
the hidden state of the last layer is utilized as the query 
for the attention mechanism. This helps in computing 
the contextual features of the current moment in the 

encoder sequence { }1, 2, ,,k k n kh h h
. Finally, the 

hidden state of the last layer is combined in various 
ways and fed into a linear layer. This generates the id 
of the prediction template for the next moment. The 
mathematical principles underlying these operations 
are presented in Equations (7)-(17): 
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To capture the input details more effectively, we utilize the 
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the limited availability of data. To mitigate its impact, we 
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improve the generalization ability of the model. The 
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To capture the input details more effectively, we uti-
lize the hidden state of the decoding layer as the que-
ry for the attention structure. This query enables the 
model to identify the relevant information in the en-
coder sequence { }1, 2, ,,k k n kh h h and calculate the con-
textual features of the current moment. Subsequent-
ly, the hidden state of the decoding layer is combined 
with that of the last layer in various ways and fed into 
the linear layer. This generates the id of the prediction 
template for the next moment.

3.3. Contrastive Learning Module
Overfitting is a common problem in few-shot learn-
ing due to the limited availability of data. To mitigate 
its impact, we incorporate the technique of R-Drop, 
which was proposed by Liang et al. [13] based on con-
trastive learning. This approach enables us to amplify 
the data while preserving the semantic information. 
By doing so, we can reduce overfitting and improve 
the generalization ability of the model. The mathe-
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matical analysis of this approach is presented below:
Given the training dataset ( ){ } 1

,
n

i i i
D x y

=
= , our goal 

is to learn a model ( )WP x y , where n represents the 
number of training samples, ( ),i ix y  is the labeled 
data pairs. ix  stands for the input data, while iy  cor-
responds to its corresponding label. In this task, ix
represents the sentence to be classified, and iy  rep-
resents the predicted class label of the model. We 
denote the probability distribution of the map func-
tion as ( )WP y x , and indicate the Kull-Leibler (KL) 
divergence between the two distributions 1P  and 2P  as 

( )1 2KLD P P . The goal of the method is to minimize the 
negative log-likelihood loss function, the details are 
shown as follows:

( )
1

1 log
n

W
nll i i

i
L P y x

n =

= −∑ . (18)

In the training stage, we employ submodels that con-
sist of random R-Drop units. However, in the infer-
ence stage, we use the full model without Dropout. 
Moreover, the submodels that arise from the random-
ly sampled Dropout units are dissimilar and lack con-
straints. Taking into account the randomness of the 
structure caused by Dropout and the above observa-
tions, we use the R-Drop method to regulate Dropout 
in the output predictions of the submodels.
During each training step, the input data xi is fed twice 
through the network to obtain two distributions pre-
dicted by the model, which are recorded as ( )1

W
i iP y x  

and ( )2
W

i iP y x , respectively. Since the Dropout oper-
ator drops random units in the model, the two forward 
transitions are based on two different sub-models, 
even though they are in the same model. The dropped 
units of each layer in the output path ( )1

W
i iP y x  are 

different from the correct path of the output distri-
bution ( )2

W
i iP y x . Consequently, the distributions 

of ( )1
W

i iP y x  and ( )2
W

i iP y x  are different for the same 
input data pair.
Then, in each training step, the R-Drop method aims 
to minimize the bidirectional Kullback-Leibler (KL) 
divergence between the two output distributions for 
the same sample to regularize the prediction of the 
model. The formulas for this are as follows:
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Two positive transferred negative log-likelihood are 
used to learn the target i
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where α is the coefficient weight for controlling i
KLL . 

This approach helps to further regularize the model 
space, leading to an improved generalization ability. 
By comparing Equation (18) with Equation (21), we 
can observe that during the training step, a KL-diver-
gence loss i

NLLL  is added after performing two forward 
processing.

3.4. Training Process
The complete training process of the model can be di-
vided into three steps as follows:
Step  1: Conduct the forward propagation process. 
Suppose there is a pre-trained model M, and the in-
put sequence is a sentence X that have already been 
tokenized, and n stands for the length of the sentence 
X. The dimension of the word vector in the word em-
bedding layer is 512. By sending X to the one-hot en-
coding layer, and then the word embedding layer, we 
obtain a set of 512-dimensional vectors with a length 
of n, denoted as { }1 2, nx x x . Next, this set of 512-di-
mensional vectors is used as the input to the adaptive 
prompt layer proposed in this paper. The output is a 
set of 512-dimensional vectors of length s, denoted as 
{ }1 2, sp p p . Then, this set of 512 dimensional vec-
tors { }1 2, sp p p  

of length s, together with [ ]MASK  
and { }1 2, nx x x  

become the input of the pre-trained 
language model M (e.g., BERT) (where [ ]MASK  is 
a 512 dimensional vector of length 1 obtained after 
being processed by the word embedding matrix). 
The output is a set of 512 dimensional vectors with a 
length of s + n + 1, denoted as { }1 2 1, s no o o + + .
Step 2: To introduce implicit data enhancement in 
the training step, the Kullback-Leibler (KL) diver-
gence is used to enhance the effectiveness of the 
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model. Considering the randomness of dropout when 
passing through the network of the model, the data 
is passed and Step 1 is repeated each time, resulting 
in another set of 512-dimensional vectors of length 

1s n+ +  denoted as { }1 2

* * *
1, s no o o + + .

Step 3: Do the backpropagation process by comput-
ing the negative log-likelihood for { }1 2 1, s no o o + +  and { }1 2

* * *
1, s no o o + + , respectively, and calculate the 

KL divergence between the two sets { }1 2 1, s no o o + +
and { }1 2

* * *
1, s no o o + + . By combining these two loss 

parts and performing backpropagation, we can up-
date the learnable parameters in the model.

4. Study and Analysis of the Results
In this section, we present the datasets used for our 
experiments, as well as the comparative experiments 
conducted with other algorithms, and the migration 
experiments based on various fields, all of which are 
described in detail.

4.1. Datasets
We evaluated our model using the FewCLUE public 
datasets, specifically the EPRSTMT (E-commerce 
Product Review Dataset for Sentiment Analysis) 
task, which involves binary classification of senti-
ment analysis on e-commerce product reviews. The 
dataset was collected by ICIP Lab of Beijing Normal 
University and consists of a training set (160), valida-
tion set (160), public test set (610), test set (753), and 
unlabeled corpus set (19565). Since the training set is 
small with only 160 samples and the number of test 
data is more than 600, this presents a typical few-shot 
learning scenario. The ratio of labels in this dataset is 
Negative: Positive=86:74, indicating a balanced dis-
tribution, and implying that difficult samples may not 
exist. Based on Figure 6, the length of the input text is 
generally below 350 words, with only a few instances 
having more than 300 words, thus indicating that this 
task involves short text classification.
Other datasets we used in the migration experiment in-
cluding the following: the social media public sentiment 
datasets (the data of reviews on Sina Weibo, including 
more than 100,000 data points, about 50,000 positive 
and negative comments each), the user comments data 
from a take-out platform (comment data collected by a 
delivery platform, with 4,000 positive comments and 

about 8,000 negative comments), the hotel comment 
dataset (including more than 7,000 hotel review data 
points, with over 5,000 positive and 2,000 negative 
comments), and the online shopping data of ten catego-
ries (books, tablets, mobile phones, fruit, water heaters, 
shampoo, Mengniu, hotels, computers, clothes, with a 
total of more than 60,000 reviews, about 30,000 posi-
tive and negative comments each).

Figure 6
Text length distribution graph of each piece of data (with 
label)
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including the following: the social media public 
sentiment datasets (the data of reviews on Sina Weibo, 
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each). 
 
Table 1 Summary table of the large datasets used in  
migration experiment 
Name of datasets Number 

of data 
points 

Number 
of 
positive 
commen
ts 

Number 
of 
negative 
commen
ts 

weibo_senti_100k 119,988 59,993 59,995 
waimai_10k 11,987  4,000 7,987 

Table 1
Summary table of the large datasets used in  migration 
experiment

Name of datasets
Number 
of data 
points

Number 
of positive 
comments

Number of 
negative 

comments

weibo_senti_100k 119,988 59,993 59,995

waimai_10k 11,987 4,000 7,987

ChnSentiCorp_htl_all 7,766 5,322 2,444

online_shopping_10_cats 58,274 27,228 31,046

4.2. Parameters Setting
In our experiment, we employed an A100 36G graphics 
card and the PyTorch 1.12 framework. To capture all 
the information of the input sentences, we set the max-
imum sentence length to twice the length of the digits 
in the dataset used in this paper. We used Albert-large 
as the pre-trained language model, which reduces the 
number of parameters of BERT while maintaining its 
performance and improving the efficiency of parame-
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ters [12]. The batch size was set to 10, and the output 
length of the adaptive prompt layer was 2 for Chinese 
and 4 for English, with α set to 4. The model employed 
the Adam optimizer and utilized different learning 
rates for different optimization methods.

4.3. Optimization Strategy
The model proposed in this study comprises of two 
trainable components: the parameters of the pre-
trained model and the parameters of the dot-product 
attention in the adaptive prompt layer. On basis of 
this, our optimization method can be classified into 
two categories: the first involves fine-tuning all pa-
rameters (prompt + LM tuning). In this setting, there 
are prompt-related parameters that can be fine-tuned 
together with all or part of the parameters of the pre-
trained models [17]. The second involves fine-tuning 
only the attention part (fixed LM prompt tuning). In 
this scenario, the additional prompt-relevant param-
eters are introduced besides the parameters of the 
pre-trained model, fixed-LM prompt tuning strategy 
updates only the parameters of the prompt using the 
supervision signal obtained from the downstream 
training samples while keeping the entire pre-trained 
LM unchanged [17].

4.4. Results
We show our experiment results in three parts ac-
cording to our testing targets and parameters setting 
strategies.

4.4.1. Prompt + LM Tuning
In this section of our experiment, we employed the 
full model parameter adjustment method to evaluate 
the performance of our model on the eprstmt dataset 
from FewCLUE, which includes 32 training sets and 
about 600 test sets. In this setting, the fine-tuning of 
the pre-trained model plays a dominant role in the 
entire training process, while the attention part acts 
as an auxiliary component. Specifically, the manual-
ly-crafted prompt templates play a major role, and the 
adaptive prompt templates serve as a complement 
and enhancement to the manucally-crafted prompts. 
The learning rate is set to 1e-5. The results of this ex-
periment are presented in Table 1.
Specifically, the zero-shot learning method uses only 
the prompt to construct the template, and then predicts 
through the pre-trained model without fine-tuning the 

parameters of the pre-trained model. We use the re-
sults of zero-shot learning to evaluate the quality of the 
hand-crafted template. In this case, it can be seen that 
the quality of the hand-crafted template has a greater 
impact on the HPL method and a smaller impact on 
the APRD method. The APRD method can also achieve 
higher accuracy when the hand-crafted template is not 
so good. On the other hand, the APRD model can out-
perform the HPL model when the manually-crafted 
prompt is good. Thus, this model can learn to adjust the 
weights of both hand-crafted and adaptive prompts to 
return better results. Overall, this finding confirms that 
APRD performs better than the HPL model.
In order to examine the impact of the adaptive prompt 
component on the hand-crafted prompt method and 
compare its accuracy with that of the HPL method, 
we created a hybrid prompt learning model by com-
bining the hand-crafted prompt component and the 
adaptive prompt component. The structure of the 
model is illustrated in Figure 7. 
The hybrid prompt learning strategy combines both 
the word vector generated by the adaptive prompt 
layer and that generated by the hand-crafted prompt 
layer. The template is represented as a triple by the 
hybrid prompt embedding layer:

( ) ( ) [ ]( ) ( ) ( ) ( ) ( ) ( ){ }* * *
1 2 1 1 2 1 2, , , , , , ,i m nX P p e p e p e MASK e p e p p p e x e x e x+=    

( ) ( ) [ ]( ) ( ) ( ) ( ) ( ) ( ){ }* * *
1 2 1 1 2 1 2, , , , , , ,i m nX P p e p e p e MASK e p e p p p e x e x e x+=     ,

where P represents the manually-crafted prompt 
template, p* represents the sequence of the embed-
ding vector of the adaptive prompt, and X stands for 
the sequence of the input text. The set of the final 
prediction results of the model is ( ){ },y p i i W= ∈ , 
which is calculated by the pre-trained model. In this 
strategy, both the adaptive and hand-crafted prompt 

Table 2
Accuracy of different strategies under different manual 
prompts in the eprstmt dataset

Prompt Zero-shot Learning HPL APRD

_ _开心 
(happy) 75.3% 83.6% 84.7%

_ _高兴 (glad) 69.9% 79.5% 84.4%

_ _不错 (good) 65.2% 80% 83.1%

_ _还行 (OK) 52.1% 77.4% 82.6%



1069Information Technology and Control 2023/4/52

 
Figure 7 Structure of the hybrid prompt model 

 
The hybrid prompt learning strategy combines both the 
word vector generated by the adaptive prompt layer and 
that generated by the hand-crafted prompt layer. The 

template is represented as a triple by the hybrid prompt 
embedding layer: 

( ) ( ) [ ]( ) ( ) ( ) ( ) ( ) ( ){ }* * *
1 2 1 1 2 1 2, , , , , , ,i m nX P p e p e p e MASK e p e p p p e x e x e x+=     , 

 
where P represents the manually-crafted prompt 

template, *p  represents the sequence of the 

embedding vector of the adaptive prompt, and X  
stands for the sequence of the input text. The set of the 
final prediction results of the model is 

( ){ },y p i i W= ∈ , which is calculated by the 

pre-trained model. In this strategy, both the adaptive 
and hand-crafted prompt parts influence the final 
outcome. The results in this section show that this 
model can obtain output results by learning to adjust 

the weights of P  and *p . Therefore, theoretically, 

the model has the advantages of both hand-crafted 
prompt and adaptive prompts. The effectiveness of the 
model can be further improved when a “good” 
hand-crafted prompt template is found. The adaptive 

prompt module can generate good prompt templates even if a 
“good” hand-crafted prompt template is not found. This 
proves the effect of the adaptive prompt module on the model. 
 
4.4.2 Fixed LM Prompt Tuning 
To further test the ability of the dot-product attention part in 
the APRD method, we conducted an experiment where we 
removed the hand-crafted prompt method and used only the 
attention part to generate prompts. The parameters of the 
pre-trained language model were frozen in this experiment. 
The goal of the attention structure was to learn the embedding 
representation of the adaptive prompt in the language model, 
so as to make it perform like the real text sequence through 
the embedding layer. 
We conducted experiments on both small sample datasets 
(EPRSTMT of FewCLUE datasets) and large-scale datasets 
(microblog data). The results on the large-scale dataset 
showed that the model achieved an accuracy of over 93%, 

Figure 7
Structure of the hybrid prompt model

parts influence the final outcome. The results in this 
section show that this model can obtain output re-
sults by learning to adjust the weights of P and  p*. 
Therefore, theoretically, the model has the advantag-
es of both hand-crafted prompt and adaptive prompts. 
The effectiveness of the model can be further im-
proved when a “good” hand-crafted prompt template 
is found. The adaptive prompt module can generate 
good prompt templates even if a “good” hand-crafted 
prompt template is not found. This proves the effect 
of the adaptive prompt module on the model.

4.4.2. Fixed LM Prompt Tuning
To further test the ability of the dot-product attention 
part in the APRD method, we conducted an exper-

iment where we removed the hand-crafted prompt 
method and used only the attention part to generate 
prompts. The parameters of the pre-trained language 
model were frozen in this experiment. The goal of the 
attention structure was to learn the embedding rep-
resentation of the adaptive prompt in the language 
model, so as to make it perform like the real text se-
quence through the embedding layer.
We conducted experiments on both small sample 
datasets (EPRSTMT of FewCLUE datasets) and 
large-scale datasets (microblog data). The results 
on the large-scale dataset showed that the model 
achieved an accuracy of over 93%, while on the small 
sample dataset, the accuracy was only around 66%.
Our experiments demonstrate that the model per-
forms well on large-scale datasets, but shows poor 
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performance on small sample datasets. We hypothe-
size that in the scenario of large datasets, due to the 
availability of sufficient samples, the model can learn 
the adaptive prompt and its embedding representa-
tion in the pre-trained model through the dot-product 
attention structure. However, in the case of limited 
samples, the attention structure struggles to learn 
both parts simultaneously, leading to over-fitting.
In conclusion, our experiments suggest that the em-
bedded representation can only be learned on large-
scale datasets. Our findings also demonstrate that the 
model has the ability to learn an adaptive prompt with 
sufficient samples. Therefore, in order to further veri-
fy the ability of the dot-product attention structure to 
learn the embedded representation of the pre-trained 
model and the generality of the adaptive prompt, we 
conducted a migration experiment.

4.4.3. Migration Experiment
Sentiment analysis spans across various domains 
such as delivery, reviews on social media, e-com-
merce, and catering. Although there may be diversi-
ties among these domains, sentiment classification is 
usually required. The main reason why past models 
cannot be directly used across domains is due to the 
differences in words and language structures used to 
express sentiment, leading to variations in param-
eters in the word vector and fully connected layers. 
Hence, an effective automated prompt construc-
tion method should be capable of learning adaptive 
prompts in general fields and deliver satisfactory re-
sults in unknown domains.
In this part of the experiment, we conducted a 
mixed-data experiment where we combined senti-
ment analysis datasets in the online shopping field, 
the hotel field, themicroblog field, and the takeout 
field for the training set. We used EPRSTMT dataset 
as the test set. The learning rate was set at 1e-6, and 
the result is presented in Figures 8-9. 
It can be observed that the proposed model can success-
fully learn to construct general adaptive prompts for 

Figure 8
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Figure 9
Accuracy of the test dataset
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Table 3
The main results for different methods on FewCLUE datasets

Method Fine-Tuning PET P-tuning LM-BFF EFL APRD

Accuracy 65.4% 86.7%  88.3% 85.6% 84.9% 89.2%

mixed fields and performs well in other fields with an 
average accuracy of 89.2%, which is significantly higher 
than the results of methods employed in other sections 
on the FewCLUE datasets, as presented in Table 3. 
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5. Conclusion
In this paper, we first make a conclusion of the limita-
tions of existing main prompt learning strategies and 
few-shot learning methods, then propose a new senti-
ment analysis method by the combination of adaptive 
prompt learning and contrastive learning. The advan-
tages of our work are summarized as follows:
1 We successfully integrate hand-crafted prompts 

and adaptive prompts into a single model.
2 We introduce a dot-product attention structure 

and leverage contextual information to automati-
cally generate adaptive prompts.

3 The model APRD we proposed can learn to create 
general adaptive prompt by doing training on large 
sentiment analysis datasets.

4 However, the model performs well only on large-
scale datasets, as the dot-product attention struc-
ture fails to learn the adaptive prompt and the em-
bedded representation in the pre-trained model 
simultaneously, leading to over-fitting. To improve 
the performance of the model, our future research 
will focus on the following areas: 1) Develop a more 
efficient parameter fine-tuning method based on the 
pre-trained prompt; 2) Extend our method to other 
NLP tasks, such as other types of text classification 
and machine reading comprehension; 3) Enhance 

the ability of the model to perform multi-language 
sentiment analysis tasks, particularly on English 
sentiment analysis datasets; 4) Try to make refine-
ments and explore the possibility of using this meth-
od in fine-grained or cross-grained sentiment analy-
sis tasks.
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