
Information Technology and Control 2023/4/521058

Few-shot Sentiment
Analysis Based on
Adaptive Prompt
Learning and Contrastive
Learning

ITC 4/52
Information Technology
and Control
Vol. 52 / No. 4 / 2023
pp. 1058-1072
DOI 10.5755/j01.itc.52.4.34021

Few-shot Sentiment Analysis Based on Adaptive
Prompt Learning and Contrastive Learning

Received 2023/05/04 Accepted after revision 2023/07/25

HOW TO CITE: Shi, C., Zhai, R., Song, Y., Yu, J., Li, H., Wang, Y., Wang, L. (2023). Few-shot Sentiment
Analysis Based on Adaptive Prompt Learning and Contrastive Learning. Information Technology
and Control, 52(4), 1058-1072. https://doi.org/10.5755/j01.itc.52.4.34021

Cong Shi, Rui Zhai, Yalin Song, Junyang Yu, Han Li, Yingqi Wang, Longge Wang
School of Software, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Research Center
of Intelligent Data Processing, Henan University, Kaifeng 475004, China

Corresponding author: zr@henu.edu.cn

Traditional deep learning-based strategies for sentiment analysis rely heavily on large-scale labeled datasets
for model training, but these methods become less effective when dealing with small-scale datasets. Fine-tun-
ing large pre-trained models on small datasets is currently the most commonly adopted approach to tackle this
issue. Recently, prompt-based learning has gained significant attention as a promising research area. Although
prompt-based learning has the potential to address data scarcity problems by utilizing prompts to reformulate
downstream tasks, the current prompt-based methods for few-shot sentiment analysis are still considered in-
efficient. To tackle this challenge, an adaptive prompt-based learning method is proposed, which includes two
aspects. Firstly, an adaptive prompting construction strategy is proposed, which can capture the semantic in-
formation of texts by utilizing a dot-product attention structure, improving the quality of the prompt templates.
Secondly, contrastive learning is applied to the implicit word vectors obtained twice during the training stage
to alleviate over-fitting in few-shot learning processes. This improves the generalization ability of the model
by achieving data enhancement while keeping the semantic information of input sentences unchanged. Ex-
perimental results on the ERPSTMT datasets of FewCLUE demonstrate that the proposed method have great
ability to construct suitable adaptive prompts and outperforms the state-of-the-art baselines.
KEYWORDS: Few-shot Sentiment Analysis; Adaptive Prompt Learning; Contrastive Learning; Dot-Product
Attention; Semantic information of tests.

mailto:obodovskiy58@gmail.com

1059Information Technology and Control 2023/4/52

1. Introduction
Sentiment analysis mainly involves the use of deep
learning strategies and natural language process-
ing (NLP) to identify, extract, and analyze the emo-
tional tone of texts [21]. It is a research focus in the
fields of NLP and has applications in numerous ar-
eas, including social media, customer feedback, and
political analysis. However, traditional sentiment
analysis techniques face significant challenges when
confronted with small-scale datasets. To overcome
this challenge, few-shot learning has emerged as a via-
ble solution for handling few-shot sentiment analysis
tasks. In recent years, two categories of approaches
have been proposed, namely the “pre-training-fine-
tuning” and “pre-training-prompt-prediction” para-
digms.
The “pre-training-prompt-prediction” paradigm has
gained more attention than the “pre-training-fine-
tuning” paradigm in recent years. It involves obtain-
ing a pre-trained model through unsupervised train-
ing on large-scale data using large models like BERT
[4]. The model is then fine-tuned on small sample
datasets and makes predictions using prompt learn-
ing methods. The construction of prompt templates is
the key of this approach since an appropriate prompt
definitely improves the performance of the model.
However, the existing hand-crafted prompt template
construction method, PET [24], and the automat-
ic prompt template construction method, P-tuning
[19], do not fully utilize the semantic information of
the input sentences during the process of template
construction. Additionally, the prediction accuracy
of different templates vary greatly in the hand-craft-
ed prompt template construction method, making it
challenging to find the “best” prompt template. Thus,
the current research challenge is how to automatical-
ly construct templates by fully utilizing the semantic
information of the input text.
Few-shot learning [1, 8, 25, 26, 6] involves the use of
a small quantity of labeled data for model training.
This approach transfers the knowledge the model has
learned from massive quantities of unlabeled data to
less sample data. Contrastive learning is often used in
few-shot learning tasks to train the model by compar-
ing the similarity between two samples and learning
a better representation. It minimizes the distance be-
tween samples of the same class and maximizes the

distance between samples of different classes. Regu-
larization techniques have a great impact on prevent-
ing over-fitting and improving the generalization abil-
ity of the deep learning models, especially in few-shot
learning tasks. While Dropout is a commonly used
regularization method, Liang et al. [14] have pointed
out that a nonnegligible inconsistency exists between
the training and inference stages of Dropout. That is,
the randomly sampled submodel (caused by Dropout)
obtained in the training stage is inconsistent with the
full model (without Dropout) in the inference stage.
To address the aforementioned problems, we propose
a few-shot sentiment analysis method that leverages
adaptive prompt learning and contrastive learning.
Specifically, we design an adaptive prompt module to
automatically create prompt templates based on the
semantic information of texts. It enables the model
to focus on the most informative features of the input
sequences. In addition, we apply a method of contras-
tive learning to enhance the performance of senti-
ment analysis on small sample data and improve the
generalization ability of our model. The contributions
of this paper are shown as follows:
1 We propose a method based on few-shot learning

for sentiment analysis, called Adaptive Prompt
with R-Drop (APRD), which utilizes an attention
mechanism and is particularly effective in low-re-
source scenarios. Furthermore, we demonstrate
that pre-training on existing labeled datasets from
diverse domains can significantly enhance the
ability of prompt template construction, leading to
improved model performance.

2 We employ the R-Drop contrastive learning meth-
od in the inference stage to enhance the robustness
of the model against dropout. R-Drop adds a regu-
larization term to the model, making the outputs
consistent under different dropout rates, which
enhances the similarity of “model averaging” and
“weight averaging”. As a result, this approach alle-
viates over-fitting and improves the generalization
ability of our model.

The other parts of this article are organized as fol-
lows: First, in Section 2, we express a summary of the
main related works in areas of few-shot learning and
sentiment analysis. Next, in Section 3, we provide a
detailed introduction to proposed method, which fo-

Information Technology and Control 2023/4/521060

cuses on the mechanisms, mathematical analysis, and
training process of the adaptive prompt module and
the contrastive learning module. Then, in Section 4,
we present the results of our experiments along with
related analyses. Finally, in Section 5, we provide a
summary of our article and discuss our further re-
search directions.

2. Related Work
Researches on sentiment analysis has become prev-
alent in NLP since 2000 [29]. To date, it has mainly
undergone two major phases: the period of tradi-
tional sentiment analysis and that of the deep learn-
ing-based sentiment analysis.

2.1. Period of Traditional Sentiment Analysis

The period of traditional sentiment analysis can be
divided into two stages, which are discussed in the
following subsections.

2.1.1. The Stage of ‘Emotional Dictionary and
Rules’
Such methods perform sentimental tendency classi-
fication of text sentences by manually constructing a
sentiment dictionary and applying a dictionary and
rules-based approach to it. Specifically, they utilize the
dictionary to get the emotion value of the emotional
words in the text, and then try to determine the overall
sentiment tendency of the text by conducting a weight-
ed calculation on them [3, 20]. However, these methods
tend to ignore the association between words, leading
to an unchangeable emotional value of words in differ-
ent scenarios and contexts. Therefore, the establish-
ment of the relevant sentiment dictionaries that target
specific scenarios to raise the accuracy rate of classifi-
cation is necessary. Due to the flexibility of languages,
constructing a sentiment dictionary of both generosity
and high-quality remains challenging.

2.1.2. The ‘Stage of Feature Engineering’
During this stage, task-specific models are trained
solely on input-output sample datasets of the target
task. N-gram model is used in combination with clas-
sical machine learning classifiers such as K-Nearest
Neighbor (KNN), Naive Bayes, Maximum Entropy,
and SVM to perform supervised learning [11]. How-

ever, these methods are not able to take into account
the relationship between variables and have poor
generalization performance. Li et al. built a model
with a priori knowledge of categorized information
using Term Frequency-Inverse Document Frequen-
cy (TF-IDF) to extract the most meaningful features
from unstructured texts [15]. This algorithm is easy to
implement and understand but relies heavily on the
corpus and has low precision. To sum up, the short-
comings of traditional machine learning-based senti-
ment analysis are apparent: it requires a high-quality
corpus that matches the processed text for training,
resulting in poor algorithmic accuracy.

2.2. Deep Learning-based Sentiment Analysis

Classical neural networks such as Recursive Neural
Networks (RNNs), Convolutional Neural Networks
(CNNs), Long Short-Term Memory (LSTM) networks,
and Bi-LSTM networks have all been applied in sen-
timent analysis tasks [5]. Li et al. proposed a stacking
structure called BCSA of Bi-LSTM and CNN to im-
prove the ability of the model to recognize sentiment
[14]. Chen et al. proposed HUSN, which enhance hier-
archical neural networks on basis of users’ reviewing
habits [2]. Sadr et al. constructed a model that employs
RNN, making use of its tree structure as a substitute
for the pooling layer in the convolutional network, for
the purpose of capturing long-term dependencies and
reducing the loss of local information [23]. Deep learn-
ing-based methods have made marvelous progress
compared with traditional methods. However, these
algorithms are not applicable when faced with small
amounts of labeled data. Additionally, significant in-
novations made in the NLP field have been promptly
applied in sentiment analysis tasks. Mikolov et al. pro-
posed the Continuous Bag of Words (CBOW) model
combined with Skip-Gram model, which uses contex-
tual words to predict target words and uses the target
words to predict the surrounding words of the text [13].
Sun et al. used GloVe to train word vectors and Bi-di-
rectional Gated Recurrent Unit (BGRU) to obtain con-
textual information. They also used an attention mech-
anism to process sparse data, which was confirmed to
be effective on the IMDB dataset [27]. However, Word-
2Vec and GloVe obtain static word vectors, which ig-
nore the relationship of the word context, leading to the
failure of the model in capturing advanced semantic
information from the text.

1061Information Technology and Control 2023/4/52

As the role of fully-supervised learning becomes in-
creasingly smaller, recent research findings in the
field of NLP have been applied in sentiment analysis
tasks, including “pre-training-fine-tuning” paradigm
and the burgeoning “pre-training-prompt-predic-
tion” paradigm.

2.2.1. “Pre-training-fine-tuning” Paradigm
This paradigm involves pre-training models with
fixed architectures on large-scale unlabeled data to
predict the probability of observed textual data as a
language model (LM), which is then fine-tuned using
a small quantity of manually labeled data in down-
stream tasks. Pre-trained language models (PLMs)
aim to train models on large quantities of corpus to
enable them to learn the probability distributions
for every single word in the corpus, building models
that fit these textual distributions. The contextu-
al problem of ignoring contextual connections was
solved by the proposal of dynamic word vector algo-
rithms ELMo [22] and BERT [4]. To train word vec-
tors, Liu et al. [18] and Fang et al. [7] used BERT as a
pre-trained language model instead of Word2Vec and
GloVe, resulting in better classification results when
embedded into other models. Sun et al. [27] used a
deep belief network (DBN) to solve the problem of
sparse text features, while Heikal et al. [9] defined an
integrated model from the best CNN model and Bi-
LSTM model, which greatly improved classification
accuracy. However, all the methods mentioned above
have high requirements on fine-tuning strategies of
models, together with the parameters of the model
and complexity, which are difficult to control.

2.2.2. “Pre-training-prompt-prediction”
Paradigm
With the rising of prompt learning, the “Pre-train-
ing-prompt-prediction” paradigm has become a
new research hotspot. This approach is character-
ized by training a single LM in a completely unsu-
pervised manner to solve a large number of tasks
after providing a suitable set of prompts. Schick et
al. proposed the training strategy Pattern Exploiting
Training (PET) for semi-supervised tasks [8]. In this
strategy, the input sample is redefined as cloze sen-
tences under the aim of helping the language model
constuct the given task. This is the first strategy of
prompt learning. Prompt learning requires the de-
sign of a prompt template, which can be obtained

through manual design [5]. Hu et al. proposed the
KPT method based on PET, which extended and im-
proved the labeled words of PET by introducing a
knowledge base to it [10]. Ye et al. proposed an ontol-
ogy-enhanced knowledge prompt method, short for
OntoPrompt. In this strategy, external knowledge is
implanted into the framework of prompt learning in
text form to realize the model’s perception of tasks
and domains [31]. From the above works, we can see
that the quality of the prompt templates has strong
influence on the performance of downstream tasks.
Therefore, it is essential to find the most appropriate
prompt in prompt learning methods. Liu et al. [24]
proposed the P-tuning method. It achieved the auto-
matic construction of the template by using tokens
never seen in the model to form the prompt, which
transforming the template construction problem
into a continuous parameter optimization problem.
Although these methods improved the defect of PET
of strong subjectivity and small coverage to some ex-
tent, they still failed to fully exploit the semantic in-
formation of the input text in the process of rapidly
building the prompt templates.
Utilizing a pre-trained LM for sentiment analysis
tasks through prompt learning is a challenging task.
Firstly, it is not easy to find suitable prompt tem-
plates, as they require specific design considerations.
Secondly, using a prompt learning method with only
a single prompt to guide a pre-trained LM to com-
plete a sentiment analysis task may be a suboptimal
approach, as the results may differ significantly from
the pre-trained targets.

3. Structure of the Model and the
Whole Training Process
This paper introduces an Adaptive Prompt Template
Construction Method (APRD) that combines con-
trastive learning with dot-product attention mecha-
nisms. The model comprises three parts: the Encod-
ing and Embedding module, the Adaptive Prompt
Learning module, and the Contrastive Learning mod-
ule, as illustrated in Figure 1. The Adaptive Prompt
Learning module aims to dynamically construct tem-
plates based on input sequences, while the Contras-
tive Learning module amplifies data and mitigates
overfitting.

Information Technology and Control 2023/4/521062

3.1. Encoding and Embedding
Module

This part comprises two layers: the
One-Hot Encoding layer and the
Word Embedding layer. Its purpose
is to encode and generate word em-
beddings for each word { }1 2, nx x x
in the input sequence X , transform-
ing them into 512-dimensional vec-
tors. The resulting set of vectors is
denoted as { }1 2, nx x x , as shown in
Figure 2.

3.2. Adaptive Prompt Learning
Module

The idea for improvement in this
module is based on the traditional
hand-crafted prompt learning meth-
od (HPL). Therefore, we first intro-
duce the HPL model. The structure
of the model is shown in Figure 3.
Suppose there is a pre-trained model
M, and the input sequence is a sen-
tence X that have already been toke-
nized. Let n stands for the length of
the sentence X, and the dimension of
the word vector in word embedding
layer is 512. By sending X to the
one-hot encoding layer and the word
embedding layer, a set of 512-di-
mensional vectors with a length of
n is obtained, which is denoted as
{ }1 2, nx x x . Next, a hand-craft-
ed prompt template is denoted as

[]{ }1 2 1, , ,i i mp p p MASK p p+  , where
[]MASK is a 512-dimensional vector
obtained after being converted by the
word embedding matrix. Then, we
use the set of 512-dimensional vec-
tors of []{ }1 2 1, , ,i i mp p p MASK p p+ 

and { }1 2, nx x x
as the input se-

quence of the pre-trained language
model M (such as BERT), from
which a set of 512-dimensional
vectors with a length of m + n is ob-
tained, denoted as { }1 2, m no o o + .

Figure 1
Framework of the whole model

Figure 2
Structure of the Encoding and Embedding module

3.1 Encoding and Embedding module
This part comprises two layers: the One-Hot Encoding
layer and the Word Embedding layer. Its purpose is to
encode and generate word embeddings for each word

{ }1 2, nx x x in the input sequence X , transforming

them into 512-dimensional vectors. The resulting set of

vectors is denoted as { }1 2, nx x x , as shown in Figure 2.

Figure 2 Structure of the Encoding and Embedding module

The idea for improvement in this module is based on the
traditional hand-crafted prompt learning method (HPL).

Therefore, we first introduce the HPL model. The
structure of the model is shown in Figure 3.

3.1 Encoding and Embedding module
This part comprises two layers: the One-Hot Encoding
layer and the Word Embedding layer. Its purpose is to
encode and generate word embeddings for each word

{ }1 2, nx x x in the input sequence X , transforming

them into 512-dimensional vectors. The resulting set of

vectors is denoted as { }1 2, nx x x , as shown in Figure 2.

Figure 2 Structure of the Encoding and Embedding module

The idea for improvement in this module is based on the
traditional hand-crafted prompt learning method (HPL).

Therefore, we first introduce the HPL model. The
structure of the model is shown in Figure 3.

1063Information Technology and Control 2023/4/52

Figure 3
Whole model structure of the traditional hand-crafted prompt learning
method (HPL)

Figure 3 Whole model structure of the traditional hand-crafted prompt learning method (HPL)

Suppose there is a pre-trained model M , and the input
sequence is a sentence X that have already been
tokenized. Let n stands for the length of the sentence
X , and the dimension of the word vector in word
embedding layer is 512. By sending X to the one-hot
encoding layer and the word embedding layer, a set of
512-dimensional vectors with a length of 𝑛𝑛𝑛𝑛 is

obtained, which is denoted as{ }1 2, nx x x . Next, a

hand-crafted prompt template is denoted as

[]{ }1 2 1, , ,i i mp p p MASK p p+ 

, where []MASK is a

512-dimensional vector obtained after being converted
by the word embedding matrix. Then, we use the set
of 512-dimensional vectors of

[]{ }1 2 1, , ,i i mp p p MASK p p+ 

and { }1 2, nx x x
as

the input sequence of the pre-trained language model
M (such as BERT), from which a set of
512-dimensional vectors with a length of 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 is

obtained, denoted as { }1 2, m no o o + . Finally, the

output{ }1 2, m no o o + of the pre-trained language model is

utilized to calculate the probability of the location of the

[]MASK in the input template. The word with the highest

probability in the word list is then selected as the “best word”.
For instance, to perform sentiment analysis on the sentence
“The weather is good”, a manually-crafted prompt template

such as "It is very []MASK today" can be used. Assuming

that the language expresser is set as {“good”, “bad”}, the
manually-crafted prompt model combines the constructed

template and the original text as “It is very []MASK today.

The weather is good.” Ultimately, the pre-trained language
model M returns the predicted value of the sentence.
Compared to the manually-crafted prompt template method in
Figure 3, our adaptive prompt learning method can
automatically create prompt by the adaptive prompt layer. The
whole structure of the adaptive prompt module is shown in
Figure 4.

Finally, the output { }1 2, m no o o +
of the pre-trained language model is
utilized to calculate the probability
of the location of the []MASK

in the

input template. The word with the
highest probability in the word list
is then selected as the “best word”.
For instance, to perform senti-
ment analysis on the sentence “The
weather is good”, a manually-craft-
ed prompt template such as “It is
very []MASK

today” can be used. As-

suming that the language expresser
is set as {“good”, “bad”}, the man-
ually-crafted prompt model com-
bines the constructed template and
the original text as “It is very []MASK
today. The weather is good.” Ulti-
mately, the pre-trained language
model M returns the predicted val-
ue of the sentence.
Compared to the manually-crafted
prompt template method in Figure
3, our adaptive prompt learning
method can automatically create
prompt by the adaptive prompt
layer. The whole structure of the
adaptive prompt module is shown
in Figure 4.
In this module, we adopt the se-
q2seq structure based on the
dot-product attention mechanism
as the adaptive prompt layer. The
max prompt length is set to 300. It
is composed of an encoder, a de-
coder, and the dot-product atten-
tion structure. As shown in the left
part { }1 2, nx x x of Figure 5, the
encoder encodes the input sentenc-
es word by word, yielding a set of
512-dimensional vectors of length

{ }1, 2, ,: ,k k n kn h h h . The function
of the structure that links the en-
coder and decoder is to apply the
attention structure to use the se-
quence { }1, 2, ,,k k n kh h h

to generate

Figure 4
Whole structure of the adaptive prompt learning module

Figure 4 Whole structure of the adaptive prompt learning module

In this module, we adopt the seq2seq structure based
on the dot-product attention mechanism as the
adaptive prompt layer. The max prompt length is set to
300. It is composed of an encoder, a decoder, and the
dot-product attention structure. As shown in the left

part { }1 2, nx x x of Figure 5, the encoder encodes

the input sentences word by word, yielding a set of
512-dimensional vectors of length

{ }1, 2, ,: ,k k n kn h h h . The function of the structure

that links the encoder and decoder is to apply the

attention structure to use the sequence { }1, 2, ,,k k n kh h h

to

generate the context vector c . The right part of Figure 5
shows how the decoder uses the context vector c to decode
and generate the outputs. In summary, the function of this
module is to automatically create the prompt template based
on the contents of the input text. Compared with traditional
methods, our strategy fully utilizes the contextual information
of the input X to automatically construct an adaptive
training prompt template, which strengthens the correlation
between the prompt information in the template and the input
sequence X .

Information Technology and Control 2023/4/521064

Figure 5
Structure of the adaptive prompt learning layer

Figure 5 Structure of the adaptive prompt learning layer

(1) The encoder

We use a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘 layers as
our encoder. The input to this module is a set of

512-dimensional vectors of length { }1 2: , nn x x x ,

which is obtained after the input sequence X goes
through the one-hot encoding layer and the word
embedding layer. The output of the encoder is a set of
512-dimensional vectors of length

{ }1, 2, ,: ,k k n kn h h h .

The inputs of the first layer are the words inputted at
the current moment, the cell state, and the hidden state
of the previous moment, while the outputs are the cell
state and hidden state of the current moment. In the
subsequent layers, the inputs are the hidden state of
the previous layer at the current moment and the cell
state and hidden state of the previous moment, while
the outputs are the cell state and hidden state of the
current moment. The detailed mathematical principles
are shown in Equations (1)-(6) as follows:

(), 1, , 1,t j i t j t ji W h hσ − − =   (1)

(), 1, , 1,t j f t j t jf W h hσ − − =   (2)

(), 1, , 1,t j o t j t jo W h hσ − − =   , (3)

,t jh is the hidden state at time t in layer j

(special ones are when layer is ,11, t tj h x= =),

, , ,, ,t j t j t ji f o stand for the state of the input gate, forgetting gate

and output gate at time t in layer j , respectively. , ,i f oW W W

represent the learnable parameters of the model. Then the cell
state can be calculated as follows:

(), 1, , 1tanh ,t j C t j t jC W h h− − =  


 (4)

,, , 1, , t jt j t j t j t jC f C i C−= +


  (5)

(), , ,tanht j t j t jh o C=  . (6)

,t jC indicates the cell state at time t in layer j , while

,t jC


indicates the candidate information state at time t in

layer j . σ and tanh represent the sigmoid and tanh

activation functions, respectively. CW represents the learnable

parameters of the model.  stands for element-wise
multiplication.

(2) The decoder

Our encoder is also a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘
layers. The input to the encoder includes the id of the target
template generated at the previous moment, the cell state, and
hidden state of the previous moment. The output of the
encoder includes the cell state and hidden state of the current
moment. For the subsequent layers, the input includes the
hidden state of the previous layer at the current moment,

the context vector c . The right part of Figure 5 shows
how the decoder uses the context vector c to decode
and generate the outputs. In summary, the function
of this module is to automatically create the prompt
template based on the contents of the input text.
Compared with traditional methods, our strategy ful-
ly utilizes the contextual information of the input X to
automatically construct an adaptive training prompt
template, which strengthens the correlation between
the prompt information in the template and the input
sequence X.
1 The encoder
We use a unidirectional LSTM encoder of k layers as
our encoder. The input to this module is a set of 512-di-
mensional vectors of length { }1 2: , nn x x x , which is
obtained after the input sequence X goes through the
one-hot encoding layer and the word embedding lay-
er. The output of the encoder is a set of 512-dimen-
sional vectors of length { }1, 2, ,: ,k k n kn h h h .
The inputs of the first layer are the words inputted
at the current moment, the cell state, and the hidden
state of the previous moment, while the outputs are
the cell state and hidden state of the current moment.
In the subsequent layers, the inputs are the hidden
state of the previous layer at the current moment and
the cell state and hidden state of the previous mo-
ment, while the outputs are the cell state and hidden

state of the current moment. The detailed mathemat-
ical principles are shown in Equations (1)-(6) as fol-
lows:

(), 1, , 1,t j i t j t ji W h hσ − − =   (1)

(), 1, , 1,t j f t j t jf W h hσ − − =   (2)

(), 1, , 1,t j o t j t jo W h hσ − − =   , (3)

where ,t jh
is the hidden state at time t in layer j (special

ones are when layer is ,11, t tj h x= =), , , ,, ,t j t j t ji f o

stand

for the state of the input gate, forgetting gate and out-
put gate at time t in layer j, respectively. , ,i f oW W W
represent the learnable parameters of the model.
Then the cell state can be calculated as follows:

Figure 5 Structure of the adaptive prompt learning layer

(1) The encoder

We use a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘 layers as
our encoder. The input to this module is a set of

512-dimensional vectors of length { }1 2: , nn x x x ,

which is obtained after the input sequence X goes
through the one-hot encoding layer and the word
embedding layer. The output of the encoder is a set of
512-dimensional vectors of length

{ }1, 2, ,: ,k k n kn h h h .

The inputs of the first layer are the words inputted at
the current moment, the cell state, and the hidden state
of the previous moment, while the outputs are the cell
state and hidden state of the current moment. In the
subsequent layers, the inputs are the hidden state of
the previous layer at the current moment and the cell
state and hidden state of the previous moment, while
the outputs are the cell state and hidden state of the
current moment. The detailed mathematical principles
are shown in Equations (1)-(6) as follows:

(), 1, , 1,t j i t j t ji W h hσ − − =   (1)

(), 1, , 1,t j f t j t jf W h hσ − − =   (2)

(), 1, , 1,t j o t j t jo W h hσ − − =   , (3)

,t jh is the hidden state at time t in layer j

(special ones are when layer is ,11, t tj h x= =),

, , ,, ,t j t j t ji f o stand for the state of the input gate, forgetting gate

and output gate at time t in layer j , respectively. , ,i f oW W W

represent the learnable parameters of the model. Then the cell
state can be calculated as follows:

(), 1, , 1tanh ,t j C t j t jC W h h− − =  


 (4)

,, , 1, , t jt j t j t j t jC f C i C−= +


  (5)

(), , ,tanht j t j t jh o C=  . (6)

,t jC indicates the cell state at time t in layer j , while

,t jC


indicates the candidate information state at time t in

layer j . σ and tanh represent the sigmoid and tanh

activation functions, respectively. CW represents the learnable

parameters of the model.  stands for element-wise
multiplication.

(2) The decoder

Our encoder is also a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘
layers. The input to the encoder includes the id of the target
template generated at the previous moment, the cell state, and
hidden state of the previous moment. The output of the
encoder includes the cell state and hidden state of the current
moment. For the subsequent layers, the input includes the
hidden state of the previous layer at the current moment,

(4)

Figure 5 Structure of the adaptive prompt learning layer

(1) The encoder

We use a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘 layers as
our encoder. The input to this module is a set of

512-dimensional vectors of length { }1 2: , nn x x x ,

which is obtained after the input sequence X goes
through the one-hot encoding layer and the word
embedding layer. The output of the encoder is a set of
512-dimensional vectors of length

{ }1, 2, ,: ,k k n kn h h h .

The inputs of the first layer are the words inputted at
the current moment, the cell state, and the hidden state
of the previous moment, while the outputs are the cell
state and hidden state of the current moment. In the
subsequent layers, the inputs are the hidden state of
the previous layer at the current moment and the cell
state and hidden state of the previous moment, while
the outputs are the cell state and hidden state of the
current moment. The detailed mathematical principles
are shown in Equations (1)-(6) as follows:

(), 1, , 1,t j i t j t ji W h hσ − − =   (1)

(), 1, , 1,t j f t j t jf W h hσ − − =   (2)

(), 1, , 1,t j o t j t jo W h hσ − − =   , (3)

,t jh is the hidden state at time t in layer j

(special ones are when layer is ,11, t tj h x= =),

, , ,, ,t j t j t ji f o stand for the state of the input gate, forgetting gate

and output gate at time t in layer j , respectively. , ,i f oW W W

represent the learnable parameters of the model. Then the cell
state can be calculated as follows:

(), 1, , 1tanh ,t j C t j t jC W h h− − =  


 (4)

,, , 1, , t jt j t j t j t jC f C i C−= +


  (5)

(), , ,tanht j t j t jh o C=  . (6)

,t jC indicates the cell state at time t in layer j , while

,t jC


indicates the candidate information state at time t in

layer j . σ and tanh represent the sigmoid and tanh

activation functions, respectively. CW represents the learnable

parameters of the model.  stands for element-wise
multiplication.

(2) The decoder

Our encoder is also a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘
layers. The input to the encoder includes the id of the target
template generated at the previous moment, the cell state, and
hidden state of the previous moment. The output of the
encoder includes the cell state and hidden state of the current
moment. For the subsequent layers, the input includes the
hidden state of the previous layer at the current moment,

(5)

Figure 5 Structure of the adaptive prompt learning layer

(1) The encoder

We use a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘 layers as
our encoder. The input to this module is a set of

512-dimensional vectors of length { }1 2: , nn x x x ,

which is obtained after the input sequence X goes
through the one-hot encoding layer and the word
embedding layer. The output of the encoder is a set of
512-dimensional vectors of length

{ }1, 2, ,: ,k k n kn h h h .

The inputs of the first layer are the words inputted at
the current moment, the cell state, and the hidden state
of the previous moment, while the outputs are the cell
state and hidden state of the current moment. In the
subsequent layers, the inputs are the hidden state of
the previous layer at the current moment and the cell
state and hidden state of the previous moment, while
the outputs are the cell state and hidden state of the
current moment. The detailed mathematical principles
are shown in Equations (1)-(6) as follows:

(), 1, , 1,t j i t j t ji W h hσ − − =   (1)

(), 1, , 1,t j f t j t jf W h hσ − − =   (2)

(), 1, , 1,t j o t j t jo W h hσ − − =   , (3)

,t jh is the hidden state at time t in layer j

(special ones are when layer is ,11, t tj h x= =),

, , ,, ,t j t j t ji f o stand for the state of the input gate, forgetting gate

and output gate at time t in layer j , respectively. , ,i f oW W W

represent the learnable parameters of the model. Then the cell
state can be calculated as follows:

(), 1, , 1tanh ,t j C t j t jC W h h− − =  


 (4)

,, , 1, , t jt j t j t j t jC f C i C−= +


  (5)

(), , ,tanht j t j t jh o C=  . (6)

,t jC indicates the cell state at time t in layer j , while

,t jC


indicates the candidate information state at time t in

layer j . σ and tanh represent the sigmoid and tanh

activation functions, respectively. CW represents the learnable

parameters of the model.  stands for element-wise
multiplication.

(2) The decoder

Our encoder is also a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘
layers. The input to the encoder includes the id of the target
template generated at the previous moment, the cell state, and
hidden state of the previous moment. The output of the
encoder includes the cell state and hidden state of the current
moment. For the subsequent layers, the input includes the
hidden state of the previous layer at the current moment,

(6)

,t jC indicates the cell state at time t in layer j, while

Figure 5 Structure of the adaptive prompt learning layer

(1) The encoder

We use a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘 layers as
our encoder. The input to this module is a set of

512-dimensional vectors of length { }1 2: , nn x x x ,

which is obtained after the input sequence X goes
through the one-hot encoding layer and the word
embedding layer. The output of the encoder is a set of
512-dimensional vectors of length

{ }1, 2, ,: ,k k n kn h h h .

The inputs of the first layer are the words inputted at
the current moment, the cell state, and the hidden state
of the previous moment, while the outputs are the cell
state and hidden state of the current moment. In the
subsequent layers, the inputs are the hidden state of
the previous layer at the current moment and the cell
state and hidden state of the previous moment, while
the outputs are the cell state and hidden state of the
current moment. The detailed mathematical principles
are shown in Equations (1)-(6) as follows:

(), 1, , 1,t j i t j t ji W h hσ − − =   (1)

(), 1, , 1,t j f t j t jf W h hσ − − =   (2)

(), 1, , 1,t j o t j t jo W h hσ − − =   , (3)

,t jh is the hidden state at time t in layer j

(special ones are when layer is ,11, t tj h x= =),

, , ,, ,t j t j t ji f o stand for the state of the input gate, forgetting gate

and output gate at time t in layer j , respectively. , ,i f oW W W

represent the learnable parameters of the model. Then the cell
state can be calculated as follows:

(), 1, , 1tanh ,t j C t j t jC W h h− − =  


 (4)

,, , 1, , t jt j t j t j t jC f C i C−= +


  (5)

(), , ,tanht j t j t jh o C=  . (6)

,t jC indicates the cell state at time t in layer j , while

,t jC


indicates the candidate information state at time t in

layer j . σ and tanh represent the sigmoid and tanh

activation functions, respectively. CW represents the learnable

parameters of the model.  stands for element-wise
multiplication.

(2) The decoder

Our encoder is also a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘
layers. The input to the encoder includes the id of the target
template generated at the previous moment, the cell state, and
hidden state of the previous moment. The output of the
encoder includes the cell state and hidden state of the current
moment. For the subsequent layers, the input includes the
hidden state of the previous layer at the current moment,

 indicates the candidate information state at time

1065Information Technology and Control 2023/4/52

t in layer j. σ and tanh represent the sigmoid and
tanh activation functions, respectively. CW represents
the learnable parameters of the model.

Figure 5 Structure of the adaptive prompt learning layer

(1) The encoder

We use a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘 layers as
our encoder. The input to this module is a set of

512-dimensional vectors of length { }1 2: , nn x x x ,

which is obtained after the input sequence X goes
through the one-hot encoding layer and the word
embedding layer. The output of the encoder is a set of
512-dimensional vectors of length

{ }1, 2, ,: ,k k n kn h h h .

The inputs of the first layer are the words inputted at
the current moment, the cell state, and the hidden state
of the previous moment, while the outputs are the cell
state and hidden state of the current moment. In the
subsequent layers, the inputs are the hidden state of
the previous layer at the current moment and the cell
state and hidden state of the previous moment, while
the outputs are the cell state and hidden state of the
current moment. The detailed mathematical principles
are shown in Equations (1)-(6) as follows:

(), 1, , 1,t j i t j t ji W h hσ − − =   (1)

(), 1, , 1,t j f t j t jf W h hσ − − =   (2)

(), 1, , 1,t j o t j t jo W h hσ − − =   , (3)

,t jh is the hidden state at time t in layer j

(special ones are when layer is ,11, t tj h x= =),

, , ,, ,t j t j t ji f o stand for the state of the input gate, forgetting gate

and output gate at time t in layer j , respectively. , ,i f oW W W

represent the learnable parameters of the model. Then the cell
state can be calculated as follows:

(), 1, , 1tanh ,t j C t j t jC W h h− − =  


 (4)

,, , 1, , t jt j t j t j t jC f C i C−= +


  (5)

(), , ,tanht j t j t jh o C=  . (6)

,t jC indicates the cell state at time t in layer j , while

,t jC


indicates the candidate information state at time t in

layer j . σ and tanh represent the sigmoid and tanh

activation functions, respectively. CW represents the learnable

parameters of the model.  stands for element-wise
multiplication.

(2) The decoder

Our encoder is also a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘
layers. The input to the encoder includes the id of the target
template generated at the previous moment, the cell state, and
hidden state of the previous moment. The output of the
encoder includes the cell state and hidden state of the current
moment. For the subsequent layers, the input includes the
hidden state of the previous layer at the current moment,

 stands for
element-wise multiplication.
2 The decoder
Our encoder is also a unidirectional LSTM encoder
of k layers. The input to the encoder includes the id
of the target template generated at the previous mo-
ment, the cell state, and hidden state of the previous
moment. The output of the encoder includes the cell
state and hidden state of the current moment. For the
subsequent layers, the input includes the hidden state
of the previous layer at the current moment, along
with the cell state and hidden state of the previous
moment. The output consists of the cell state and hid-
den state of the current moment. Subsequently, the
hidden state of the last layer is utilized as the query
for the attention mechanism. This helps in comput-
ing the contextual features of the current moment in
the encoder sequence { }1, 2, ,,k k n kh h h . Finally, the
hidden state of the last layer is combined in various
ways and fed into a linear layer. This generates the id
of the prediction template for the next moment. The
mathematical principles underlying these operations
are presented in Equations (7)-(17):

()' ' ' '
, 1, , 1, ,t j i t j t j ti W h h cσ − − =   (7)

()' ' ' '
, 1, , 1, ,t j f t j t j tf W h h cσ − − =   (8)

()' ' ' '
, 1, , 1, ,t j o t j t j to W h h cσ − − =   , (9)

where '
,t jh

stands for the hidden state at time t in lay-

er j (special ones are when layer is '
,1 11, t tj h y −= = ,

' ' '
, , ,, ,t j t j t ji f o

stand for the state of the input gate, for-

getting gate and output gate at time t in layer j, respec-
tively. ' ' ', ,t f oW W W

represent the learnable parameters

of the model. f represents the fully connected neural
network. Then the cell state can be calculated as follows:

along with the cell state and hidden state of the
previous moment. The output consists of the cell state
and hidden state of the current moment. Subsequently,
the hidden state of the last layer is utilized as the query
for the attention mechanism. This helps in computing
the contextual features of the current moment in the

encoder sequence { }1, 2, ,,k k n kh h h
. Finally, the

hidden state of the last layer is combined in various
ways and fed into a linear layer. This generates the id
of the prediction template for the next moment. The
mathematical principles underlying these operations
are presented in Equations (7)-(17):

()' ' ' '
, 1, , 1, ,t j i t j t j ti W h h cσ − − =  

 (7)

()' ' ' '
, 1, , 1, ,t j f t j t j tf W h h cσ − − =   (8)

()' ' ' '
, 1, , 1, ,t j o t j t j to W h h cσ − − =   , (9)

where '
,t jh stands for the hidden state at time t in

layer j (special ones are when layer is

'
,1 11, t tj h y −= =), ' ' '

, , ,, ,t j t j t ji f o

stand for the state of

the input gate, forgetting gate and output gate at time

t in layer j , respectively. ' ' ', ,t f oW W W represent the

learnable parameters of the model. f represents the
fully connected neural network. Then the cell state can
be calculated as follows:

()' ' ' '
, 1, , 1tanh , ,t j C t j t j tC W h h c− − =  


 (10)

' ' ' ' '
, , 1, , ,t j t j t j t j t jC f C i C−= +



  (11)

()' ' '
, , ,tanht j t j t jh o C=  , (12)

where '
,t jC indicates the cell state at time t in layer

𝑗𝑗𝑗𝑗, while '
,t jC


indicates the candidate information state

at time t in layer j . σ and tanh indicate the

sigmoid and tanh activation functions, respectively.

'
CW represent the learnable parameters of the model.

 stands for element-wise multiplication.

Finally, the output tp can be calculated as follows:

,
1

n

t t i ik
i

c w h
=

=∑ (13)

()()
()()

'

,
'

1

exp ,

exp ,

tk ik
t i n

tk ik
i

score h h
w

score h h
=

=

∑
 (14)

()' ', T
tk tk ik tkscore h h h h= (15)

()' ', T
tk tk ik tkscore h h h W hα= (16)

'

' '

max

,arg max
* ,

tk tt

tk t tk t

soft

h cp
f

h c h c

 
 
  +=  
        

 (17)

To capture the input details more effectively, we utilize the
hidden state of the decoding layer as the query for the
attention structure. This query enables the model to identify
the relevant information in the encoder sequence

{ }1, 2, ,,k k n kh h h

and calculate the contextual features of the

current moment. Subsequently, the hidden state of the
decoding layer is combined with that of the last layer in
various ways and fed into the linear layer. This generates the
id of the prediction template for the next moment.

3.3 Contrastive Learning Module
Overfitting is a common problem in few-shot learning due to
the limited availability of data. To mitigate its impact, we
incorporate the technique of R-Drop, which was proposed by
Liang et al. [13] based on contrastive learning. This approach
enables us to amplify the data while preserving the semantic
information. By doing so, we can reduce overfitting and
improve the generalization ability of the model. The
mathematical analysis of this approach is presented below:

Given the training dataset (){ } 1
,

n
i i i

D x y
=

= , our goal is to

learn a model ()WP x y , where n represents the number

of training samples, (),i ix y is the labeled data pairs. ix

stands for the input data, while iy corresponds to its

corresponding label. In this task, ix represents the sentence to

(10)

along with the cell state and hidden state of the
previous moment. The output consists of the cell state
and hidden state of the current moment. Subsequently,
the hidden state of the last layer is utilized as the query
for the attention mechanism. This helps in computing
the contextual features of the current moment in the

encoder sequence { }1, 2, ,,k k n kh h h
. Finally, the

hidden state of the last layer is combined in various
ways and fed into a linear layer. This generates the id
of the prediction template for the next moment. The
mathematical principles underlying these operations
are presented in Equations (7)-(17):

()' ' ' '
, 1, , 1, ,t j i t j t j ti W h h cσ − − =  

 (7)

()' ' ' '
, 1, , 1, ,t j f t j t j tf W h h cσ − − =   (8)

()' ' ' '
, 1, , 1, ,t j o t j t j to W h h cσ − − =   , (9)

where '
,t jh stands for the hidden state at time t in

layer j (special ones are when layer is

'
,1 11, t tj h y −= =), ' ' '

, , ,, ,t j t j t ji f o

stand for the state of

the input gate, forgetting gate and output gate at time

t in layer j , respectively. ' ' ', ,t f oW W W represent the

learnable parameters of the model. f represents the
fully connected neural network. Then the cell state can
be calculated as follows:

()' ' ' '
, 1, , 1tanh , ,t j C t j t j tC W h h c− − =  


 (10)

' ' ' ' '
, , 1, , ,t j t j t j t j t jC f C i C−= +



  (11)

()' ' '
, , ,tanht j t j t jh o C=  , (12)

where '
,t jC indicates the cell state at time t in layer

𝑗𝑗𝑗𝑗, while '
,t jC


indicates the candidate information state

at time t in layer j . σ and tanh indicate the

sigmoid and tanh activation functions, respectively.

'
CW represent the learnable parameters of the model.

 stands for element-wise multiplication.

Finally, the output tp can be calculated as follows:

,
1

n

t t i ik
i

c w h
=

=∑ (13)

()()
()()

'

,
'

1

exp ,

exp ,

tk ik
t i n

tk ik
i

score h h
w

score h h
=

=

∑
 (14)

()' ', T
tk tk ik tkscore h h h h= (15)

()' ', T
tk tk ik tkscore h h h W hα= (16)

'

' '

max

,arg max
* ,

tk tt

tk t tk t

soft

h cp
f

h c h c

 
 
  +=  
        

 (17)

To capture the input details more effectively, we utilize the
hidden state of the decoding layer as the query for the
attention structure. This query enables the model to identify
the relevant information in the encoder sequence

{ }1, 2, ,,k k n kh h h

and calculate the contextual features of the

current moment. Subsequently, the hidden state of the
decoding layer is combined with that of the last layer in
various ways and fed into the linear layer. This generates the
id of the prediction template for the next moment.

3.3 Contrastive Learning Module
Overfitting is a common problem in few-shot learning due to
the limited availability of data. To mitigate its impact, we
incorporate the technique of R-Drop, which was proposed by
Liang et al. [13] based on contrastive learning. This approach
enables us to amplify the data while preserving the semantic
information. By doing so, we can reduce overfitting and
improve the generalization ability of the model. The
mathematical analysis of this approach is presented below:

Given the training dataset (){ } 1
,

n
i i i

D x y
=

= , our goal is to

learn a model ()WP x y , where n represents the number

of training samples, (),i ix y is the labeled data pairs. ix

stands for the input data, while iy corresponds to its

corresponding label. In this task, ix represents the sentence to

(11)

along with the cell state and hidden state of the
previous moment. The output consists of the cell state
and hidden state of the current moment. Subsequently,
the hidden state of the last layer is utilized as the query
for the attention mechanism. This helps in computing
the contextual features of the current moment in the

encoder sequence { }1, 2, ,,k k n kh h h
. Finally, the

hidden state of the last layer is combined in various
ways and fed into a linear layer. This generates the id
of the prediction template for the next moment. The
mathematical principles underlying these operations
are presented in Equations (7)-(17):

()' ' ' '
, 1, , 1, ,t j i t j t j ti W h h cσ − − =  

 (7)

()' ' ' '
, 1, , 1, ,t j f t j t j tf W h h cσ − − =   (8)

()' ' ' '
, 1, , 1, ,t j o t j t j to W h h cσ − − =   , (9)

where '
,t jh stands for the hidden state at time t in

layer j (special ones are when layer is

'
,1 11, t tj h y −= =), ' ' '

, , ,, ,t j t j t ji f o

stand for the state of

the input gate, forgetting gate and output gate at time

t in layer j , respectively. ' ' ', ,t f oW W W represent the

learnable parameters of the model. f represents the
fully connected neural network. Then the cell state can
be calculated as follows:

()' ' ' '
, 1, , 1tanh , ,t j C t j t j tC W h h c− − =  


 (10)

' ' ' ' '
, , 1, , ,t j t j t j t j t jC f C i C−= +



  (11)

()' ' '
, , ,tanht j t j t jh o C=  , (12)

where '
,t jC indicates the cell state at time t in layer

𝑗𝑗𝑗𝑗, while '
,t jC


indicates the candidate information state

at time t in layer j . σ and tanh indicate the

sigmoid and tanh activation functions, respectively.

'
CW represent the learnable parameters of the model.

 stands for element-wise multiplication.

Finally, the output tp can be calculated as follows:

,
1

n

t t i ik
i

c w h
=

=∑ (13)

()()
()()

'

,
'

1

exp ,

exp ,

tk ik
t i n

tk ik
i

score h h
w

score h h
=

=

∑
 (14)

()' ', T
tk tk ik tkscore h h h h= (15)

()' ', T
tk tk ik tkscore h h h W hα= (16)

'

' '

max

,arg max
* ,

tk tt

tk t tk t

soft

h cp
f

h c h c

 
 
  +=  
        

 (17)

To capture the input details more effectively, we utilize the
hidden state of the decoding layer as the query for the
attention structure. This query enables the model to identify
the relevant information in the encoder sequence

{ }1, 2, ,,k k n kh h h

and calculate the contextual features of the

current moment. Subsequently, the hidden state of the
decoding layer is combined with that of the last layer in
various ways and fed into the linear layer. This generates the
id of the prediction template for the next moment.

3.3 Contrastive Learning Module
Overfitting is a common problem in few-shot learning due to
the limited availability of data. To mitigate its impact, we
incorporate the technique of R-Drop, which was proposed by
Liang et al. [13] based on contrastive learning. This approach
enables us to amplify the data while preserving the semantic
information. By doing so, we can reduce overfitting and
improve the generalization ability of the model. The
mathematical analysis of this approach is presented below:

Given the training dataset (){ } 1
,

n
i i i

D x y
=

= , our goal is to

learn a model ()WP x y , where n represents the number

of training samples, (),i ix y is the labeled data pairs. ix

stands for the input data, while iy corresponds to its

corresponding label. In this task, ix represents the sentence to

(12)

where '
,t jC indicates the cell state at time t in layer j,

while

Figure 5 Structure of the adaptive prompt learning layer

(1) The encoder

We use a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘 layers as
our encoder. The input to this module is a set of

512-dimensional vectors of length { }1 2: , nn x x x ,

which is obtained after the input sequence X goes
through the one-hot encoding layer and the word
embedding layer. The output of the encoder is a set of
512-dimensional vectors of length

{ }1, 2, ,: ,k k n kn h h h .

The inputs of the first layer are the words inputted at
the current moment, the cell state, and the hidden state
of the previous moment, while the outputs are the cell
state and hidden state of the current moment. In the
subsequent layers, the inputs are the hidden state of
the previous layer at the current moment and the cell
state and hidden state of the previous moment, while
the outputs are the cell state and hidden state of the
current moment. The detailed mathematical principles
are shown in Equations (1)-(6) as follows:

(), 1, , 1,t j i t j t ji W h hσ − − =   (1)

(), 1, , 1,t j f t j t jf W h hσ − − =   (2)

(), 1, , 1,t j o t j t jo W h hσ − − =   , (3)

,t jh is the hidden state at time t in layer j

(special ones are when layer is ,11, t tj h x= =),

, , ,, ,t j t j t ji f o stand for the state of the input gate, forgetting gate

and output gate at time t in layer j , respectively. , ,i f oW W W

represent the learnable parameters of the model. Then the cell
state can be calculated as follows:

(), 1, , 1tanh ,t j C t j t jC W h h− − =  


 (4)

,, , 1, , t jt j t j t j t jC f C i C−= +


  (5)

(), , ,tanht j t j t jh o C=  . (6)

,t jC indicates the cell state at time t in layer j , while

,t jC


indicates the candidate information state at time t in

layer j . σ and tanh represent the sigmoid and tanh

activation functions, respectively. CW represents the learnable

parameters of the model.  stands for element-wise
multiplication.

(2) The decoder

Our encoder is also a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘
layers. The input to the encoder includes the id of the target
template generated at the previous moment, the cell state, and
hidden state of the previous moment. The output of the
encoder includes the cell state and hidden state of the current
moment. For the subsequent layers, the input includes the
hidden state of the previous layer at the current moment,

 indicates the candidate information state
at time t in layer j. σ and tanh indicate the sigmoid
and tanh activation functions, respectively. '

CW repre-
sent the learnable parameters of the model.

Figure 5 Structure of the adaptive prompt learning layer

(1) The encoder

We use a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘 layers as
our encoder. The input to this module is a set of

512-dimensional vectors of length { }1 2: , nn x x x ,

which is obtained after the input sequence X goes
through the one-hot encoding layer and the word
embedding layer. The output of the encoder is a set of
512-dimensional vectors of length

{ }1, 2, ,: ,k k n kn h h h .

The inputs of the first layer are the words inputted at
the current moment, the cell state, and the hidden state
of the previous moment, while the outputs are the cell
state and hidden state of the current moment. In the
subsequent layers, the inputs are the hidden state of
the previous layer at the current moment and the cell
state and hidden state of the previous moment, while
the outputs are the cell state and hidden state of the
current moment. The detailed mathematical principles
are shown in Equations (1)-(6) as follows:

(), 1, , 1,t j i t j t ji W h hσ − − =   (1)

(), 1, , 1,t j f t j t jf W h hσ − − =   (2)

(), 1, , 1,t j o t j t jo W h hσ − − =   , (3)

,t jh is the hidden state at time t in layer j

(special ones are when layer is ,11, t tj h x= =),

, , ,, ,t j t j t ji f o stand for the state of the input gate, forgetting gate

and output gate at time t in layer j , respectively. , ,i f oW W W

represent the learnable parameters of the model. Then the cell
state can be calculated as follows:

(), 1, , 1tanh ,t j C t j t jC W h h− − =  


 (4)

,, , 1, , t jt j t j t j t jC f C i C−= +


  (5)

(), , ,tanht j t j t jh o C=  . (6)

,t jC indicates the cell state at time t in layer j , while

,t jC


indicates the candidate information state at time t in

layer j . σ and tanh represent the sigmoid and tanh

activation functions, respectively. CW represents the learnable

parameters of the model.  stands for element-wise
multiplication.

(2) The decoder

Our encoder is also a unidirectional LSTM encoder of 𝑘𝑘𝑘𝑘
layers. The input to the encoder includes the id of the target
template generated at the previous moment, the cell state, and
hidden state of the previous moment. The output of the
encoder includes the cell state and hidden state of the current
moment. For the subsequent layers, the input includes the
hidden state of the previous layer at the current moment,

 stands
for element-wise multiplication.
Finally, the output can be calculated as follows:

,
1

n

t t i ik
i

c w h
=

=∑ (13)

()()
()()

'

,
'

1

exp ,

exp ,

tk ik
t i n

tk ik
i

score h h
w

score h h
=

=

∑
(14)

()' ', T
tk tk ik tkscore h h h h= (15)

()' ', T
tk tk ik tkscore h h h W hα= (16)

()' ', T
tk tk ik tkscore h h h W hα= (16)

along with the cell state and hidden state of the
previous moment. The output consists of the cell state
and hidden state of the current moment. Subsequently,
the hidden state of the last layer is utilized as the query
for the attention mechanism. This helps in computing
the contextual features of the current moment in the

encoder sequence { }1, 2, ,,k k n kh h h
. Finally, the

hidden state of the last layer is combined in various
ways and fed into a linear layer. This generates the id
of the prediction template for the next moment. The
mathematical principles underlying these operations
are presented in Equations (7)-(17):

()' ' ' '
, 1, , 1, ,t j i t j t j ti W h h cσ − − =  

 (7)

()' ' ' '
, 1, , 1, ,t j f t j t j tf W h h cσ − − =   (8)

()' ' ' '
, 1, , 1, ,t j o t j t j to W h h cσ − − =   , (9)

where '
,t jh stands for the hidden state at time t in

layer j (special ones are when layer is

'
,1 11, t tj h y −= =), ' ' '

, , ,, ,t j t j t ji f o

stand for the state of

the input gate, forgetting gate and output gate at time

t in layer j , respectively. ' ' ', ,t f oW W W represent the

learnable parameters of the model. f represents the
fully connected neural network. Then the cell state can
be calculated as follows:

()' ' ' '
, 1, , 1tanh , ,t j C t j t j tC W h h c− − =  


 (10)

' ' ' ' '
, , 1, , ,t j t j t j t j t jC f C i C−= +



  (11)

()' ' '
, , ,tanht j t j t jh o C=  , (12)

where '
,t jC indicates the cell state at time t in layer

𝑗𝑗𝑗𝑗, while '
,t jC


indicates the candidate information state

at time t in layer j . σ and tanh indicate the

sigmoid and tanh activation functions, respectively.

'
CW represent the learnable parameters of the model.

 stands for element-wise multiplication.

Finally, the output tp can be calculated as follows:

,
1

n

t t i ik
i

c w h
=

=∑ (13)

()()
()()

'

,
'

1

exp ,

exp ,

tk ik
t i n

tk ik
i

score h h
w

score h h
=

=

∑
 (14)

()' ', T
tk tk ik tkscore h h h h= (15)

()' ', T
tk tk ik tkscore h h h W hα= (16)

'

' '

max

,arg max
* ,

tk tt

tk t tk t

soft

h cp
f

h c h c

 
 
  +=  
        

 (17)

To capture the input details more effectively, we utilize the
hidden state of the decoding layer as the query for the
attention structure. This query enables the model to identify
the relevant information in the encoder sequence

{ }1, 2, ,,k k n kh h h

and calculate the contextual features of the

current moment. Subsequently, the hidden state of the
decoding layer is combined with that of the last layer in
various ways and fed into the linear layer. This generates the
id of the prediction template for the next moment.

3.3 Contrastive Learning Module
Overfitting is a common problem in few-shot learning due to
the limited availability of data. To mitigate its impact, we
incorporate the technique of R-Drop, which was proposed by
Liang et al. [13] based on contrastive learning. This approach
enables us to amplify the data while preserving the semantic
information. By doing so, we can reduce overfitting and
improve the generalization ability of the model. The
mathematical analysis of this approach is presented below:

Given the training dataset (){ } 1
,

n
i i i

D x y
=

= , our goal is to

learn a model ()WP x y , where n represents the number

of training samples, (),i ix y is the labeled data pairs. ix

stands for the input data, while iy corresponds to its

corresponding label. In this task, ix represents the sentence to

(17)

To capture the input details more effectively, we uti-
lize the hidden state of the decoding layer as the que-
ry for the attention structure. This query enables the
model to identify the relevant information in the en-
coder sequence { }1, 2, ,,k k n kh h h and calculate the con-
textual features of the current moment. Subsequent-
ly, the hidden state of the decoding layer is combined
with that of the last layer in various ways and fed into
the linear layer. This generates the id of the prediction
template for the next moment.

3.3. Contrastive Learning Module
Overfitting is a common problem in few-shot learn-
ing due to the limited availability of data. To mitigate
its impact, we incorporate the technique of R-Drop,
which was proposed by Liang et al. [13] based on con-
trastive learning. This approach enables us to amplify
the data while preserving the semantic information.
By doing so, we can reduce overfitting and improve
the generalization ability of the model. The mathe-

Information Technology and Control 2023/4/521066

matical analysis of this approach is presented below:
Given the training dataset (){ } 1

,
n

i i i
D x y

=
= , our goal

is to learn a model ()WP x y , where n represents the
number of training samples, (),i ix y is the labeled
data pairs. ix stands for the input data, while iy cor-
responds to its corresponding label. In this task, ix
represents the sentence to be classified, and iy rep-
resents the predicted class label of the model. We
denote the probability distribution of the map func-
tion as ()WP y x , and indicate the Kull-Leibler (KL)
divergence between the two distributions 1P and 2P as

()1 2KLD P P . The goal of the method is to minimize the
negative log-likelihood loss function, the details are
shown as follows:

()
1

1 log
n

W
nll i i

i
L P y x

n =

= −∑ . (18)

In the training stage, we employ submodels that con-
sist of random R-Drop units. However, in the infer-
ence stage, we use the full model without Dropout.
Moreover, the submodels that arise from the random-
ly sampled Dropout units are dissimilar and lack con-
straints. Taking into account the randomness of the
structure caused by Dropout and the above observa-
tions, we use the R-Drop method to regulate Dropout
in the output predictions of the submodels.
During each training step, the input data xi is fed twice
through the network to obtain two distributions pre-
dicted by the model, which are recorded as ()1

W
i iP y x

and ()2
W

i iP y x , respectively. Since the Dropout oper-
ator drops random units in the model, the two forward
transitions are based on two different sub-models,
even though they are in the same model. The dropped
units of each layer in the output path ()1

W
i iP y x are

different from the correct path of the output distri-
bution ()2

W
i iP y x . Consequently, the distributions

of ()1
W

i iP y x and ()2
W

i iP y x are different for the same
input data pair.
Then, in each training step, the R-Drop method aims
to minimize the bidirectional Kullback-Leibler (KL)
divergence between the two output distributions for
the same sample to regularize the prediction of the
model. The formulas for this are as follows:

() ()()
() ()()

1 2

2 1

1
2

W W
KL i i i ii

KL W W
KL i i i i

D P y x P y x
L

D P y x P y x

 
 =   + 

. (19)

Two positive transferred negative log-likelihood are
used to learn the target i

NLLL :

() ()1 2log logi W W
NLL i i i iL P y x P y x= − − (20)

The final training goal is to minimize the Li of (xi, yi):

() ()
() ()()
() ()()

1 2

1 2

2 1

log log

2

i i i
NLL KL

W W
i i i i

W W
KL i i i i

W W
KL i i i i

L L L

P y x P y x

D P y x P y x

D P y x P y x

α

α

= + ⋅

= − −

 
 +  +  

, (21)

where α is the coefficient weight for controlling i
KLL .

This approach helps to further regularize the model
space, leading to an improved generalization ability.
By comparing Equation (18) with Equation (21), we
can observe that during the training step, a KL-diver-
gence loss i

NLLL is added after performing two forward
processing.

3.4. Training Process
The complete training process of the model can be di-
vided into three steps as follows:
Step  1: Conduct the forward propagation process.
Suppose there is a pre-trained model M, and the in-
put sequence is a sentence X that have already been
tokenized, and n stands for the length of the sentence
X. The dimension of the word vector in the word em-
bedding layer is 512. By sending X to the one-hot en-
coding layer, and then the word embedding layer, we
obtain a set of 512-dimensional vectors with a length
of n, denoted as { }1 2, nx x x . Next, this set of 512-di-
mensional vectors is used as the input to the adaptive
prompt layer proposed in this paper. The output is a
set of 512-dimensional vectors of length s, denoted as
{ }1 2, sp p p . Then, this set of 512 dimensional vec-
tors { }1 2, sp p p

of length s, together with []MASK
and { }1 2, nx x x

become the input of the pre-trained
language model M (e.g., BERT) (where []MASK is
a 512 dimensional vector of length 1 obtained after
being processed by the word embedding matrix).
The output is a set of 512 dimensional vectors with a
length of s + n + 1, denoted as { }1 2 1, s no o o + + .
Step 2: To introduce implicit data enhancement in
the training step, the Kullback-Leibler (KL) diver-
gence is used to enhance the effectiveness of the

1067Information Technology and Control 2023/4/52

model. Considering the randomness of dropout when
passing through the network of the model, the data
is passed and Step 1 is repeated each time, resulting
in another set of 512-dimensional vectors of length

1s n+ + denoted as { }1 2

* * *
1, s no o o + + .

Step 3: Do the backpropagation process by comput-
ing the negative log-likelihood for { }1 2 1, s no o o + + and { }1 2

* * *
1, s no o o + + , respectively, and calculate the

KL divergence between the two sets { }1 2 1, s no o o + +
and { }1 2

* * *
1, s no o o + + . By combining these two loss

parts and performing backpropagation, we can up-
date the learnable parameters in the model.

4. Study and Analysis of the Results
In this section, we present the datasets used for our
experiments, as well as the comparative experiments
conducted with other algorithms, and the migration
experiments based on various fields, all of which are
described in detail.

4.1. Datasets
We evaluated our model using the FewCLUE public
datasets, specifically the EPRSTMT (E-commerce
Product Review Dataset for Sentiment Analysis)
task, which involves binary classification of senti-
ment analysis on e-commerce product reviews. The
dataset was collected by ICIP Lab of Beijing Normal
University and consists of a training set (160), valida-
tion set (160), public test set (610), test set (753), and
unlabeled corpus set (19565). Since the training set is
small with only 160 samples and the number of test
data is more than 600, this presents a typical few-shot
learning scenario. The ratio of labels in this dataset is
Negative: Positive=86:74, indicating a balanced dis-
tribution, and implying that difficult samples may not
exist. Based on Figure 6, the length of the input text is
generally below 350 words, with only a few instances
having more than 300 words, thus indicating that this
task involves short text classification.
Other datasets we used in the migration experiment in-
cluding the following: the social media public sentiment
datasets (the data of reviews on Sina Weibo, including
more than 100,000 data points, about 50,000 positive
and negative comments each), the user comments data
from a take-out platform (comment data collected by a
delivery platform, with 4,000 positive comments and

about 8,000 negative comments), the hotel comment
dataset (including more than 7,000 hotel review data
points, with over 5,000 positive and 2,000 negative
comments), and the online shopping data of ten catego-
ries (books, tablets, mobile phones, fruit, water heaters,
shampoo, Mengniu, hotels, computers, clothes, with a
total of more than 60,000 reviews, about 30,000 posi-
tive and negative comments each).

Figure 6
Text length distribution graph of each piece of data (with
label)

step, the Kullback-Leibler (KL) divergence is used to
enhance the effectiveness of the model. Considering
the randomness of dropout when passing through the
network of the model, the data is passed and Step 1 is
repeated each time, resulting in another set of
512-dimensional vectors of length 1s n+ + denoted

as { }1 2

* * *
1, s no o o + + .

Step 3: Do the backpropagation process by computing

the negative log-likelihood for { }1 2 1, s no o o + + and

{ }1 2

* * *
1, s no o o + + , respectively, and calculate the KL

divergence between the two sets { }1 2 1, s no o o + +

and { }1 2

* * *
1, s no o o + + . By combining these two loss

parts and performing backpropagation, we can update
the learnable parameters in the model.

4. Study and Analysis of the Results
In this section, we present the datasets used for our
experiments, as well as the comparative experiments

conducted with other algorithms, and the migration
experiments based on various fields, all of which are
described in detail.

4.1 Datasets
We evaluated our model using the FewCLUE public datasets,
specifically the EPRSTMT (E-commerce Product Review
Dataset for Sentiment Analysis) task, which involves binary
classification of sentiment analysis on e-commerce product
reviews. The dataset was collected by ICIP Lab of Beijing
Normal University and consists of a training set (160),
validation set (160), public test set (610), test set (753), and
unlabeled corpus set (19565). Since the training set is small
with only 160 samples and the number of test data is more
than 600, this presents a typical few-shot learning scenario.
The ratio of labels in this dataset is Negative: Positive=86:74,
indicating a balanced distribution, and implying that difficult
samples may not exist. Based on Figure 6, the length of the
input text is generally below 350 words, with only a few
instances having more than 300 words, thus indicating that
this task involves short text classification.

Figure 6 Text length distribution graph of each piece of data (with label)

Other datasets we used in the migration experiment
including the following: the social media public
sentiment datasets (the data of reviews on Sina Weibo,
including more than 100,000 data points, about 50,000
positive and negative comments each), the user
comments data from a take-out platform (comment
data collected by a delivery platform, with 4,000
positive comments and about 8,000 negative
comments), the hotel comment dataset (including
more than 7,000 hotel review data points, with over
5,000 positive and 2,000 negative comments), and the
online shopping data of ten categories (books, tablets,
mobile phones, fruit, water heaters, shampoo,

Mengniu, hotels, computers, clothes, with a total of more than
60,000 reviews, about 30,000 positive and negative comments
each).

Table 1 Summary table of the large datasets used in
migration experiment
Name of datasets Number

of data
points

Number
of
positive
commen
ts

Number
of
negative
commen
ts

weibo_senti_100k 119,988 59,993 59,995
waimai_10k 11,987 4,000 7,987

Table 1
Summary table of the large datasets used in migration
experiment

Name of datasets
Number
of data
points

Number
of positive
comments

Number of
negative

comments

weibo_senti_100k 119,988 59,993 59,995

waimai_10k 11,987 4,000 7,987

ChnSentiCorp_htl_all 7,766 5,322 2,444

online_shopping_10_cats 58,274 27,228 31,046

4.2. Parameters Setting
In our experiment, we employed an A100 36G graphics
card and the PyTorch 1.12 framework. To capture all
the information of the input sentences, we set the max-
imum sentence length to twice the length of the digits
in the dataset used in this paper. We used Albert-large
as the pre-trained language model, which reduces the
number of parameters of BERT while maintaining its
performance and improving the efficiency of parame-

Information Technology and Control 2023/4/521068

ters [12]. The batch size was set to 10, and the output
length of the adaptive prompt layer was 2 for Chinese
and 4 for English, with α set to 4. The model employed
the Adam optimizer and utilized different learning
rates for different optimization methods.

4.3. Optimization Strategy
The model proposed in this study comprises of two
trainable components: the parameters of the pre-
trained model and the parameters of the dot-product
attention in the adaptive prompt layer. On basis of
this, our optimization method can be classified into
two categories: the first involves fine-tuning all pa-
rameters (prompt + LM tuning). In this setting, there
are prompt-related parameters that can be fine-tuned
together with all or part of the parameters of the pre-
trained models [17]. The second involves fine-tuning
only the attention part (fixed LM prompt tuning). In
this scenario, the additional prompt-relevant param-
eters are introduced besides the parameters of the
pre-trained model, fixed-LM prompt tuning strategy
updates only the parameters of the prompt using the
supervision signal obtained from the downstream
training samples while keeping the entire pre-trained
LM unchanged [17].

4.4. Results
We show our experiment results in three parts ac-
cording to our testing targets and parameters setting
strategies.

4.4.1. Prompt + LM Tuning
In this section of our experiment, we employed the
full model parameter adjustment method to evaluate
the performance of our model on the eprstmt dataset
from FewCLUE, which includes 32 training sets and
about 600 test sets. In this setting, the fine-tuning of
the pre-trained model plays a dominant role in the
entire training process, while the attention part acts
as an auxiliary component. Specifically, the manual-
ly-crafted prompt templates play a major role, and the
adaptive prompt templates serve as a complement
and enhancement to the manucally-crafted prompts.
The learning rate is set to 1e-5. The results of this ex-
periment are presented in Table 1.
Specifically, the zero-shot learning method uses only
the prompt to construct the template, and then predicts
through the pre-trained model without fine-tuning the

parameters of the pre-trained model. We use the re-
sults of zero-shot learning to evaluate the quality of the
hand-crafted template. In this case, it can be seen that
the quality of the hand-crafted template has a greater
impact on the HPL method and a smaller impact on
the APRD method. The APRD method can also achieve
higher accuracy when the hand-crafted template is not
so good. On the other hand, the APRD model can out-
perform the HPL model when the manually-crafted
prompt is good. Thus, this model can learn to adjust the
weights of both hand-crafted and adaptive prompts to
return better results. Overall, this finding confirms that
APRD performs better than the HPL model.
In order to examine the impact of the adaptive prompt
component on the hand-crafted prompt method and
compare its accuracy with that of the HPL method,
we created a hybrid prompt learning model by com-
bining the hand-crafted prompt component and the
adaptive prompt component. The structure of the
model is illustrated in Figure 7.
The hybrid prompt learning strategy combines both
the word vector generated by the adaptive prompt
layer and that generated by the hand-crafted prompt
layer. The template is represented as a triple by the
hybrid prompt embedding layer:

() () []() () () () () (){ }* * *
1 2 1 1 2 1 2, , , , , , ,i m nX P p e p e p e MASK e p e p p p e x e x e x+=    

() () []() () () () () (){ }* * *
1 2 1 1 2 1 2, , , , , , ,i m nX P p e p e p e MASK e p e p p p e x e x e x+=     ,

where P represents the manually-crafted prompt
template, p* represents the sequence of the embed-
ding vector of the adaptive prompt, and X stands for
the sequence of the input text. The set of the final
prediction results of the model is (){ },y p i i W= ∈ ,
which is calculated by the pre-trained model. In this
strategy, both the adaptive and hand-crafted prompt

Table 2
Accuracy of different strategies under different manual
prompts in the eprstmt dataset

Prompt Zero-shot Learning HPL APRD

_ _开心
(happy) 75.3% 83.6% 84.7%

_ _高兴 (glad) 69.9% 79.5% 84.4%

_ _不错 (good) 65.2% 80% 83.1%

_ _还行 (OK) 52.1% 77.4% 82.6%

1069Information Technology and Control 2023/4/52

Figure 7 Structure of the hybrid prompt model

The hybrid prompt learning strategy combines both the
word vector generated by the adaptive prompt layer and
that generated by the hand-crafted prompt layer. The

template is represented as a triple by the hybrid prompt
embedding layer:

() () []() () () () () (){ }* * *
1 2 1 1 2 1 2, , , , , , ,i m nX P p e p e p e MASK e p e p p p e x e x e x+=     ,

where P represents the manually-crafted prompt

template, *p represents the sequence of the

embedding vector of the adaptive prompt, and X
stands for the sequence of the input text. The set of the
final prediction results of the model is

(){ },y p i i W= ∈ , which is calculated by the

pre-trained model. In this strategy, both the adaptive
and hand-crafted prompt parts influence the final
outcome. The results in this section show that this
model can obtain output results by learning to adjust

the weights of P and *p . Therefore, theoretically,

the model has the advantages of both hand-crafted
prompt and adaptive prompts. The effectiveness of the
model can be further improved when a “good”
hand-crafted prompt template is found. The adaptive

prompt module can generate good prompt templates even if a
“good” hand-crafted prompt template is not found. This
proves the effect of the adaptive prompt module on the model.

4.4.2 Fixed LM Prompt Tuning
To further test the ability of the dot-product attention part in
the APRD method, we conducted an experiment where we
removed the hand-crafted prompt method and used only the
attention part to generate prompts. The parameters of the
pre-trained language model were frozen in this experiment.
The goal of the attention structure was to learn the embedding
representation of the adaptive prompt in the language model,
so as to make it perform like the real text sequence through
the embedding layer.
We conducted experiments on both small sample datasets
(EPRSTMT of FewCLUE datasets) and large-scale datasets
(microblog data). The results on the large-scale dataset
showed that the model achieved an accuracy of over 93%,

Figure 7
Structure of the hybrid prompt model

parts influence the final outcome. The results in this
section show that this model can obtain output re-
sults by learning to adjust the weights of P and p*.
Therefore, theoretically, the model has the advantag-
es of both hand-crafted prompt and adaptive prompts.
The effectiveness of the model can be further im-
proved when a “good” hand-crafted prompt template
is found. The adaptive prompt module can generate
good prompt templates even if a “good” hand-crafted
prompt template is not found. This proves the effect
of the adaptive prompt module on the model.

4.4.2. Fixed LM Prompt Tuning
To further test the ability of the dot-product attention
part in the APRD method, we conducted an exper-

iment where we removed the hand-crafted prompt
method and used only the attention part to generate
prompts. The parameters of the pre-trained language
model were frozen in this experiment. The goal of the
attention structure was to learn the embedding rep-
resentation of the adaptive prompt in the language
model, so as to make it perform like the real text se-
quence through the embedding layer.
We conducted experiments on both small sample
datasets (EPRSTMT of FewCLUE datasets) and
large-scale datasets (microblog data). The results
on the large-scale dataset showed that the model
achieved an accuracy of over 93%, while on the small
sample dataset, the accuracy was only around 66%.
Our experiments demonstrate that the model per-
forms well on large-scale datasets, but shows poor

Information Technology and Control 2023/4/521070

performance on small sample datasets. We hypothe-
size that in the scenario of large datasets, due to the
availability of sufficient samples, the model can learn
the adaptive prompt and its embedding representa-
tion in the pre-trained model through the dot-product
attention structure. However, in the case of limited
samples, the attention structure struggles to learn
both parts simultaneously, leading to over-fitting.
In conclusion, our experiments suggest that the em-
bedded representation can only be learned on large-
scale datasets. Our findings also demonstrate that the
model has the ability to learn an adaptive prompt with
sufficient samples. Therefore, in order to further veri-
fy the ability of the dot-product attention structure to
learn the embedded representation of the pre-trained
model and the generality of the adaptive prompt, we
conducted a migration experiment.

4.4.3. Migration Experiment
Sentiment analysis spans across various domains
such as delivery, reviews on social media, e-com-
merce, and catering. Although there may be diversi-
ties among these domains, sentiment classification is
usually required. The main reason why past models
cannot be directly used across domains is due to the
differences in words and language structures used to
express sentiment, leading to variations in param-
eters in the word vector and fully connected layers.
Hence, an effective automated prompt construc-
tion method should be capable of learning adaptive
prompts in general fields and deliver satisfactory re-
sults in unknown domains.
In this part of the experiment, we conducted a
mixed-data experiment where we combined senti-
ment analysis datasets in the online shopping field,
the hotel field, themicroblog field, and the takeout
field for the training set. We used EPRSTMT dataset
as the test set. The learning rate was set at 1e-6, and
the result is presented in Figures 8-9.
It can be observed that the proposed model can success-
fully learn to construct general adaptive prompts for

Figure 8
Accuracy of the datasets of different fields

Figure 9
Accuracy of the test dataset

while on the small sample dataset, the accuracy was
only around 66%.
Our experiments demonstrate that the model performs
well on large-scale datasets, but shows poor
performance on small sample datasets. We
hypothesize that in the scenario of large datasets, due
to the availability of sufficient samples, the model can
learn the adaptive prompt and its embedding
representation in the pre-trained model through the
dot-product attention structure. However, in the case
of limited samples, the attention structure struggles to
learn both parts simultaneously, leading to over-fitting.
In conclusion, our experiments suggest that the
embedded representation can only be learned on
large-scale datasets. Our findings also demonstrate
that the model has the ability to learn an adaptive
prompt with sufficient samples. Therefore, in order to
further verify the ability of the dot-product attention
structure to learn the embedded representation of the
pre-trained model and the generality of the adaptive

prompt, we conducted a migration experiment.

4.4.3 Migration Experiment
Sentiment analysis spans across various domains such as
delivery, reviews on social media, e-commerce, and catering.
Although there may be diversities among these domains,
sentiment classification is usually required. The main reason
why past models cannot be directly used across domains is
due to the differences in words and language structures used
to express sentiment, leading to variations in parameters in the
word vector and fully connected layers. Hence, an effective
automated prompt construction method should be capable of
learning adaptive prompts in general fields and deliver
satisfactory results in unknown domains.
In this part of the experiment, we conducted a mixed-data
experiment where we combined sentiment analysis datasets in
the online shopping field, the hotel field, themicroblog field,
and the takeout field for the training set. We used EPRSTMT
dataset as the test set. The learning rate was set at 1e-6, and
the result is presented in Figures 8-9.

Figure 8 Accuracy of the datasets of different fields

Figure 9 Accuracy of the test dataset

It can be observed that the proposed model can
successfully learn to construct general adaptive
prompts for mixed fields and performs well in other

fields with an average accuracy of 89.2%, which is
significantly higher than the results of methods employed in
other sections on the FewCLUE datasets, as presented in

while on the small sample dataset, the accuracy was
only around 66%.
Our experiments demonstrate that the model performs
well on large-scale datasets, but shows poor
performance on small sample datasets. We
hypothesize that in the scenario of large datasets, due
to the availability of sufficient samples, the model can
learn the adaptive prompt and its embedding
representation in the pre-trained model through the
dot-product attention structure. However, in the case
of limited samples, the attention structure struggles to
learn both parts simultaneously, leading to over-fitting.
In conclusion, our experiments suggest that the
embedded representation can only be learned on
large-scale datasets. Our findings also demonstrate
that the model has the ability to learn an adaptive
prompt with sufficient samples. Therefore, in order to
further verify the ability of the dot-product attention
structure to learn the embedded representation of the
pre-trained model and the generality of the adaptive

prompt, we conducted a migration experiment.

4.4.3 Migration Experiment
Sentiment analysis spans across various domains such as
delivery, reviews on social media, e-commerce, and catering.
Although there may be diversities among these domains,
sentiment classification is usually required. The main reason
why past models cannot be directly used across domains is
due to the differences in words and language structures used
to express sentiment, leading to variations in parameters in the
word vector and fully connected layers. Hence, an effective
automated prompt construction method should be capable of
learning adaptive prompts in general fields and deliver
satisfactory results in unknown domains.
In this part of the experiment, we conducted a mixed-data
experiment where we combined sentiment analysis datasets in
the online shopping field, the hotel field, themicroblog field,
and the takeout field for the training set. We used EPRSTMT
dataset as the test set. The learning rate was set at 1e-6, and
the result is presented in Figures 8-9.

Figure 8 Accuracy of the datasets of different fields

Figure 9 Accuracy of the test dataset

It can be observed that the proposed model can
successfully learn to construct general adaptive
prompts for mixed fields and performs well in other

fields with an average accuracy of 89.2%, which is
significantly higher than the results of methods employed in
other sections on the FewCLUE datasets, as presented in

while on the small sample dataset, the accuracy was
only around 66%.
Our experiments demonstrate that the model performs
well on large-scale datasets, but shows poor
performance on small sample datasets. We
hypothesize that in the scenario of large datasets, due
to the availability of sufficient samples, the model can
learn the adaptive prompt and its embedding
representation in the pre-trained model through the
dot-product attention structure. However, in the case
of limited samples, the attention structure struggles to
learn both parts simultaneously, leading to over-fitting.
In conclusion, our experiments suggest that the
embedded representation can only be learned on
large-scale datasets. Our findings also demonstrate
that the model has the ability to learn an adaptive
prompt with sufficient samples. Therefore, in order to
further verify the ability of the dot-product attention
structure to learn the embedded representation of the
pre-trained model and the generality of the adaptive

prompt, we conducted a migration experiment.

4.4.3 Migration Experiment
Sentiment analysis spans across various domains such as
delivery, reviews on social media, e-commerce, and catering.
Although there may be diversities among these domains,
sentiment classification is usually required. The main reason
why past models cannot be directly used across domains is
due to the differences in words and language structures used
to express sentiment, leading to variations in parameters in the
word vector and fully connected layers. Hence, an effective
automated prompt construction method should be capable of
learning adaptive prompts in general fields and deliver
satisfactory results in unknown domains.
In this part of the experiment, we conducted a mixed-data
experiment where we combined sentiment analysis datasets in
the online shopping field, the hotel field, themicroblog field,
and the takeout field for the training set. We used EPRSTMT
dataset as the test set. The learning rate was set at 1e-6, and
the result is presented in Figures 8-9.

Figure 8 Accuracy of the datasets of different fields

Figure 9 Accuracy of the test dataset

It can be observed that the proposed model can
successfully learn to construct general adaptive
prompts for mixed fields and performs well in other

fields with an average accuracy of 89.2%, which is
significantly higher than the results of methods employed in
other sections on the FewCLUE datasets, as presented in

while on the small sample dataset, the accuracy was
only around 66%.
Our experiments demonstrate that the model performs
well on large-scale datasets, but shows poor
performance on small sample datasets. We
hypothesize that in the scenario of large datasets, due
to the availability of sufficient samples, the model can
learn the adaptive prompt and its embedding
representation in the pre-trained model through the
dot-product attention structure. However, in the case
of limited samples, the attention structure struggles to
learn both parts simultaneously, leading to over-fitting.
In conclusion, our experiments suggest that the
embedded representation can only be learned on
large-scale datasets. Our findings also demonstrate
that the model has the ability to learn an adaptive
prompt with sufficient samples. Therefore, in order to
further verify the ability of the dot-product attention
structure to learn the embedded representation of the
pre-trained model and the generality of the adaptive

prompt, we conducted a migration experiment.

4.4.3 Migration Experiment
Sentiment analysis spans across various domains such as
delivery, reviews on social media, e-commerce, and catering.
Although there may be diversities among these domains,
sentiment classification is usually required. The main reason
why past models cannot be directly used across domains is
due to the differences in words and language structures used
to express sentiment, leading to variations in parameters in the
word vector and fully connected layers. Hence, an effective
automated prompt construction method should be capable of
learning adaptive prompts in general fields and deliver
satisfactory results in unknown domains.
In this part of the experiment, we conducted a mixed-data
experiment where we combined sentiment analysis datasets in
the online shopping field, the hotel field, themicroblog field,
and the takeout field for the training set. We used EPRSTMT
dataset as the test set. The learning rate was set at 1e-6, and
the result is presented in Figures 8-9.

Figure 8 Accuracy of the datasets of different fields

Figure 9 Accuracy of the test dataset

It can be observed that the proposed model can
successfully learn to construct general adaptive
prompts for mixed fields and performs well in other

fields with an average accuracy of 89.2%, which is
significantly higher than the results of methods employed in
other sections on the FewCLUE datasets, as presented in

while on the small sample dataset, the accuracy was
only around 66%.
Our experiments demonstrate that the model performs
well on large-scale datasets, but shows poor
performance on small sample datasets. We
hypothesize that in the scenario of large datasets, due
to the availability of sufficient samples, the model can
learn the adaptive prompt and its embedding
representation in the pre-trained model through the
dot-product attention structure. However, in the case
of limited samples, the attention structure struggles to
learn both parts simultaneously, leading to over-fitting.
In conclusion, our experiments suggest that the
embedded representation can only be learned on
large-scale datasets. Our findings also demonstrate
that the model has the ability to learn an adaptive
prompt with sufficient samples. Therefore, in order to
further verify the ability of the dot-product attention
structure to learn the embedded representation of the
pre-trained model and the generality of the adaptive

prompt, we conducted a migration experiment.

4.4.3 Migration Experiment
Sentiment analysis spans across various domains such as
delivery, reviews on social media, e-commerce, and catering.
Although there may be diversities among these domains,
sentiment classification is usually required. The main reason
why past models cannot be directly used across domains is
due to the differences in words and language structures used
to express sentiment, leading to variations in parameters in the
word vector and fully connected layers. Hence, an effective
automated prompt construction method should be capable of
learning adaptive prompts in general fields and deliver
satisfactory results in unknown domains.
In this part of the experiment, we conducted a mixed-data
experiment where we combined sentiment analysis datasets in
the online shopping field, the hotel field, themicroblog field,
and the takeout field for the training set. We used EPRSTMT
dataset as the test set. The learning rate was set at 1e-6, and
the result is presented in Figures 8-9.

Figure 8 Accuracy of the datasets of different fields

Figure 9 Accuracy of the test dataset

It can be observed that the proposed model can
successfully learn to construct general adaptive
prompts for mixed fields and performs well in other

fields with an average accuracy of 89.2%, which is
significantly higher than the results of methods employed in
other sections on the FewCLUE datasets, as presented in

while on the small sample dataset, the accuracy was
only around 66%.
Our experiments demonstrate that the model performs
well on large-scale datasets, but shows poor
performance on small sample datasets. We
hypothesize that in the scenario of large datasets, due
to the availability of sufficient samples, the model can
learn the adaptive prompt and its embedding
representation in the pre-trained model through the
dot-product attention structure. However, in the case
of limited samples, the attention structure struggles to
learn both parts simultaneously, leading to over-fitting.
In conclusion, our experiments suggest that the
embedded representation can only be learned on
large-scale datasets. Our findings also demonstrate
that the model has the ability to learn an adaptive
prompt with sufficient samples. Therefore, in order to
further verify the ability of the dot-product attention
structure to learn the embedded representation of the
pre-trained model and the generality of the adaptive

prompt, we conducted a migration experiment.

4.4.3 Migration Experiment
Sentiment analysis spans across various domains such as
delivery, reviews on social media, e-commerce, and catering.
Although there may be diversities among these domains,
sentiment classification is usually required. The main reason
why past models cannot be directly used across domains is
due to the differences in words and language structures used
to express sentiment, leading to variations in parameters in the
word vector and fully connected layers. Hence, an effective
automated prompt construction method should be capable of
learning adaptive prompts in general fields and deliver
satisfactory results in unknown domains.
In this part of the experiment, we conducted a mixed-data
experiment where we combined sentiment analysis datasets in
the online shopping field, the hotel field, themicroblog field,
and the takeout field for the training set. We used EPRSTMT
dataset as the test set. The learning rate was set at 1e-6, and
the result is presented in Figures 8-9.

Figure 8 Accuracy of the datasets of different fields

Figure 9 Accuracy of the test dataset

It can be observed that the proposed model can
successfully learn to construct general adaptive
prompts for mixed fields and performs well in other

fields with an average accuracy of 89.2%, which is
significantly higher than the results of methods employed in
other sections on the FewCLUE datasets, as presented in

while on the small sample dataset, the accuracy was
only around 66%.
Our experiments demonstrate that the model performs
well on large-scale datasets, but shows poor
performance on small sample datasets. We
hypothesize that in the scenario of large datasets, due
to the availability of sufficient samples, the model can
learn the adaptive prompt and its embedding
representation in the pre-trained model through the
dot-product attention structure. However, in the case
of limited samples, the attention structure struggles to
learn both parts simultaneously, leading to over-fitting.
In conclusion, our experiments suggest that the
embedded representation can only be learned on
large-scale datasets. Our findings also demonstrate
that the model has the ability to learn an adaptive
prompt with sufficient samples. Therefore, in order to
further verify the ability of the dot-product attention
structure to learn the embedded representation of the
pre-trained model and the generality of the adaptive

prompt, we conducted a migration experiment.

4.4.3 Migration Experiment
Sentiment analysis spans across various domains such as
delivery, reviews on social media, e-commerce, and catering.
Although there may be diversities among these domains,
sentiment classification is usually required. The main reason
why past models cannot be directly used across domains is
due to the differences in words and language structures used
to express sentiment, leading to variations in parameters in the
word vector and fully connected layers. Hence, an effective
automated prompt construction method should be capable of
learning adaptive prompts in general fields and deliver
satisfactory results in unknown domains.
In this part of the experiment, we conducted a mixed-data
experiment where we combined sentiment analysis datasets in
the online shopping field, the hotel field, themicroblog field,
and the takeout field for the training set. We used EPRSTMT
dataset as the test set. The learning rate was set at 1e-6, and
the result is presented in Figures 8-9.

Figure 8 Accuracy of the datasets of different fields

Figure 9 Accuracy of the test dataset

It can be observed that the proposed model can
successfully learn to construct general adaptive
prompts for mixed fields and performs well in other

fields with an average accuracy of 89.2%, which is
significantly higher than the results of methods employed in
other sections on the FewCLUE datasets, as presented in

while on the small sample dataset, the accuracy was
only around 66%.
Our experiments demonstrate that the model performs
well on large-scale datasets, but shows poor
performance on small sample datasets. We
hypothesize that in the scenario of large datasets, due
to the availability of sufficient samples, the model can
learn the adaptive prompt and its embedding
representation in the pre-trained model through the
dot-product attention structure. However, in the case
of limited samples, the attention structure struggles to
learn both parts simultaneously, leading to over-fitting.
In conclusion, our experiments suggest that the
embedded representation can only be learned on
large-scale datasets. Our findings also demonstrate
that the model has the ability to learn an adaptive
prompt with sufficient samples. Therefore, in order to
further verify the ability of the dot-product attention
structure to learn the embedded representation of the
pre-trained model and the generality of the adaptive

prompt, we conducted a migration experiment.

4.4.3 Migration Experiment
Sentiment analysis spans across various domains such as
delivery, reviews on social media, e-commerce, and catering.
Although there may be diversities among these domains,
sentiment classification is usually required. The main reason
why past models cannot be directly used across domains is
due to the differences in words and language structures used
to express sentiment, leading to variations in parameters in the
word vector and fully connected layers. Hence, an effective
automated prompt construction method should be capable of
learning adaptive prompts in general fields and deliver
satisfactory results in unknown domains.
In this part of the experiment, we conducted a mixed-data
experiment where we combined sentiment analysis datasets in
the online shopping field, the hotel field, themicroblog field,
and the takeout field for the training set. We used EPRSTMT
dataset as the test set. The learning rate was set at 1e-6, and
the result is presented in Figures 8-9.

Figure 8 Accuracy of the datasets of different fields

Figure 9 Accuracy of the test dataset

It can be observed that the proposed model can
successfully learn to construct general adaptive
prompts for mixed fields and performs well in other

fields with an average accuracy of 89.2%, which is
significantly higher than the results of methods employed in
other sections on the FewCLUE datasets, as presented in

Table 3
The main results for different methods on FewCLUE datasets

Method Fine-Tuning PET P-tuning LM-BFF EFL APRD

Accuracy 65.4% 86.7% 88.3% 85.6% 84.9% 89.2%

mixed fields and performs well in other fields with an
average accuracy of 89.2%, which is significantly higher
than the results of methods employed in other sections
on the FewCLUE datasets, as presented in Table 3.

1071Information Technology and Control 2023/4/52

5. Conclusion
In this paper, we first make a conclusion of the limita-
tions of existing main prompt learning strategies and
few-shot learning methods, then propose a new senti-
ment analysis method by the combination of adaptive
prompt learning and contrastive learning. The advan-
tages of our work are summarized as follows:
1 We successfully integrate hand-crafted prompts

and adaptive prompts into a single model.
2 We introduce a dot-product attention structure

and leverage contextual information to automati-
cally generate adaptive prompts.

3 The model APRD we proposed can learn to create
general adaptive prompt by doing training on large
sentiment analysis datasets.

4 However, the model performs well only on large-
scale datasets, as the dot-product attention struc-
ture fails to learn the adaptive prompt and the em-
bedded representation in the pre-trained model
simultaneously, leading to over-fitting. To improve
the performance of the model, our future research
will focus on the following areas: 1) Develop a more
efficient parameter fine-tuning method based on the
pre-trained prompt; 2) Extend our method to other
NLP tasks, such as other types of text classification
and machine reading comprehension; 3) Enhance

the ability of the model to perform multi-language
sentiment analysis tasks, particularly on English
sentiment analysis datasets; 4) Try to make refine-
ments and explore the possibility of using this meth-
od in fine-grained or cross-grained sentiment analy-
sis tasks.

Data Sharing Agreement
The datasets used and/or analyzed during the current
study are available from the corresponding author on
reasonable request.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of inter-
est with respect to the research, author-ship, and/or
publication of this article.

Funding
This work is supported by National Natural Science
Foundation of China (12201185), the Kaifeng Science
and Technology R&D Project No.2201009, Henan
Province Science and Technology R&D Project
(232102210031, 232102210029, and 222102210034),
and the Postgraduate Education Reform and
Quality Improvement Project of Henan Province
(YIS2022ID26).

References
1. Brown, T. B., Mann, B., Ryder, N., et al. Language Models

are Few-shot Learners. International Conference on Neu-
ral Information Processing Systems, 2020, 1877-1901.

2. Chen, J., Yu, J., Zhao, S., Zhang, Y. User’s Review Hab-
its Enhanced Hierarchical Neural Network for Docu-
ment-Level Sentiment Classification. Neural Processing
Letters, 2021, 53(3), 2095-2111. https://doi.org/10.1007/
s11063-021-10423-y

3. Chen, L. C., Lee, C. M., Chen, M. Y. Exploration of Social
Media for Sentiment Analysis Using Deep Learning.
Soft Computing-A Fusion of Foundations, Methodolo-
gies and Applications, 2020, 24(11), 8187-8197. https://
doi.org/10.1007/s00500-019-04402-8

4. Devlin, J., Chang, M W., Lee, K., Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for
Language Understanding. Association for Computation-
al Linguistics: Human Language Technologies, 2019, (1),
4171-4186. https://doi.org/10.18653/v1/N19-1423

5. Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H.
T., Sun, M. OpenPrompt: An Open-source Framework
for Prompt-learning. Association for Computational
Linguistics: System Demonstrations, 2022, 105-113.
https://doi.org/10.18653/v1/2022.acl-demo.10

6. Ding, N., Chen, Y., Han, X., Xu, G., Xie, P., Zheng, H. T., Liu,
Z., Li, J., Kim, H. G. Prompt-learning for Fine-grained
Entity Typing. ArXiv, 2021, 2108, 10604. https://doi.
org/10.18653/v1/2022.findings-emnlp.512

7. Fang, Y., Sun, J., Han, B. Research on Text Sentiment
Analysis Method Based on BERT. Information Tech-
nology and Informatization, 2020, (2), 108-111.

8. Gao, T., Fisch, A., Danqi, C. Making Pre-trained Language
Models Better Few-shot Learners. ArXiv: 2012. 15723,
2021. https://doi.org/10.18653/v1/2021.acl-long.295

9. Heikal, M., Torki, M., El-Makky, N. Sentiment Analy-
sis of Arabic Tweets Using Deep Learning. Proceedings
of the 4th Annual International Conference on Arabic

https://doi.org/10.1007/s11063-021-10423-y
https://doi.org/10.1007/s11063-021-10423-y
https://doi.org/10.1007/s00500-019-04402-8
https://doi.org/10.1007/s00500-019-04402-8
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2022.findings-emnlp.512
https://doi.org/10.18653/v1/2022.findings-emnlp.512
https://doi.org/10.18653/v1/2021.acl-long.295

Information Technology and Control 2023/4/521072

Computational Linguistics. 2018, 114-122. https://doi.
org/10.1016/j.procs.2018.10.466

10. Hu, S., Ding, N., Wang, H., Liu, Z., Li, J., Wu, W., Sun, M.
Knowledgeable Prompt-tuning: Incorporating Knowl-
edge into Prompt Verbalizer for Text Classification. As-
sociation for Computational Linguistics, 2022, 1, 2225-
2240. https://doi.org/10.18653/v1/2022.acl-long.158

11. Lafferty, J., Mccallum, A., Pereira, F. C. N. Conditional
Random Fields: Probabilistic Models for Segmenting
and Labeling Sequence Data. The Eighteenth Interna-
tional Conference on Machine Learning. 2001, 282-289.

12. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
Soricut, R. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. ArXiv, 2019,
1909, 11942.

13. Le, Q V., Mikolov, T. Distributed Representations of Sen-
tences and Documents. The 31st International Confer-
ence on International Conference on Machine Learning.
2014, 2(32), 118-1196.

14. Li, D., Sun, L., Xu, X., Wang, Z., Zhang, J., Du, W. BLSTM
and CNN Stacking Architecture for Speech Emotion
Recognition. Neural Processing Letters. 2021, 53, 4097-
4115. https://doi.org/10.1007/s11063-021-10581-z

15. Li, G., Lin, Z., Wang, H., Wei, X. A Discriminative Ap-
proach to Sentiment Classification. Neural Process Let-
ters, 2020, 51, 749-758. https://doi.org/10.1007/s11063-
019-10108-7

16. Liang, X., Wu, L., Li, J., Wang, W., et al. R-drop: Regular-
ized Dropout for Neural Networks. Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems, 2021, 10890-10905.

17. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.
Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing.
ACM Computing Surveys, 2021, 55(9), 1-35. https://doi.
org/10.1145/3560815

18. Liu, S., Feng, X. Text Sentiment Analysis Based on BERT.
Journal of Information Security Research, 2020, 6(3),
220-227.

19. Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., Tang,
J. GPT Understands, too. ArXiv, 2021, 2103, 10385.

20. Pan, D. H., Yuan, J. L., Li, L., Sheng, D. Deep Neural Net-
work-Based Classification Model for Sentiment Anal-
ysis. 6th International Conference on Behavioral, Eco-
nomic and Socio-Cultural Computing (BESC), 2019, 1-4.
https://doi.org/10.1109/BESC48373.2019.8963171

21. Pang, B., Lee, L. Opinion Mining and Sentiment Analysis.
Foundations and Trends in Information Retrieval, 2008,
2(1-2), 130-135. https://doi.org/10.1561/1500000011

22. Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., Zettlemoyer, L. Deep Contextualized Word
Representations. Association for Computational Lin-
guistics: Human Language Technologies. Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), 2018, 1,
2227-2237. https://doi.org/10.18653/v1/N18-1202

23. Sadr, H., Pedram, M. M., Teshnehlab, M. A Robust Sen-
timent Analysis Method Based on Sequential Combina-
tion of Convolutional and Recursive Neural Networks.
Neural Process Letters, 2019, 50, 2745-2761. https://doi.
org/10.1007/s11063-019-10049-1

24. Schick, T., Schütze, H. Exploiting Cloze Questions for
Few Shot Text Classification and Natural Language In-
ference. Association for Computational Linguistics,
2021, Main Volume, 255-269. https://doi.org/10.18653/
v1/2021.eacl-main.20

25. Schick, T., Schütze, H. Exploiting Cloze-questions for
Few-shot Text Classification and Natural Language
Inference. Association for Computational Linguistics:
2021, Main Volume, 255-269. Association for Compu-
tational Linguistics. https://doi.org/10.18653/v1/2021.
eacl-main.20

26. Schick, T., Schütze, H. Few-shot Text Generation with
Natural Language Instructions. Conference on Empiri-
cal Methods in Natural Language Processing, 2021, Main
Volume, 390-402. https://doi.org/10.18653/v1/2021.
emnlp-main.32

27. Sun, M., Yang, L., Zhengfei, Z., Tao, Q. Sentiment Analysis
Based on BGRU and Self-Attention Mechanism. Journal
of Jianghan University (Natural Science Edition), 2020,
48(4), 80-89.

28. Sun, X., Peng, X., Hu, M., Ren, F. Extended Multi-modal-
ity Features and Deep Learning Based Microblog Short
Text Sentiment Analysis. Journal of Electronics & Infor-
mation Technology, 2017, 39(9), 2048-2055.

29. Tong, R. M. An Operational System for Detecting and
Tracking Opinions in On-line Discussion. ACM Sigir
Workshop on Operational Text Classification, 2001, 1-6.

30. Yadav, A., Vishwakarma, D. K. Sentiment Analysis Us-
ing Deep Learning Architectures: A Review. Artificial
Intelligence Review, 2020, 53, 4335-4385. https://doi.
org/10.1007/s10462-019-09794-5

31. Ye, H., Zhang, N., Deng, S., Chen, X., Chen, H., Xiong, F.,
Chen, X., Chen, H. Ontology-enhanced Prompt-tun-
ing for Few-shot Learning. Proceedings of the ACM
Web Conference 2022. 2022, 778-787. https://doi.
org/10.1145/3485447.3511921

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.procs.2018.10.466
https://doi.org/10.1016/j.procs.2018.10.466
https://doi.org/10.18653/v1/2022.acl-long.158
https://doi.org/10.1007/s11063-021-10581-z
https://doi.org/10.1007/s11063-019-10108-7
https://doi.org/10.1007/s11063-019-10108-7
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1109/BESC48373.2019.8963171
https://doi.org/10.1561/1500000011
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1007/s11063-019-10049-1
https://doi.org/10.1007/s11063-019-10049-1
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.emnlp-main.32
https://doi.org/10.18653/v1/2021.emnlp-main.32
https://doi.org/10.1007/s10462-019-09794-5
https://doi.org/10.1007/s10462-019-09794-5
https://doi.org/10.1145/3485447.3511921
https://doi.org/10.1145/3485447.3511921

