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The automatic driving system based on a single-mode sensor is susceptible to the external environment in pe-
destrian detection. This paper proposes a fusion of light and thermal infrared multimodal pedestrian detection 
methodology. Firstly, 1 × 1 convolution and dilated convolution square measure are introduced within the resid-
ual network, and also the ROIAlign methodology is employed to exchange the ROIPooling methodology to map 
the candidate box to the feature layer to optimize the Faster R-CNN. Secondly, the generalized intersection over 
union (GIoU) loss function is employed as the loss function of prediction box positioning regression. Finally, 
to explore the performance of multimodal image pedestrian detection methods in different fusion periods in 
the improved Faster R-CNN, four forms of multimodal neural network structures are designed to fuse visible 
and thermal infrared pictures. Experimental results show that the proposed algorithm performs better on the 
KAIST dataset than current mainstream detection algorithms. Compared to the conventional ACF + T + THOG 
pedestrian detector, the AP is 8.38 percentage points greater. The miss rate is 5.34 percentage points lower than 
the visible light pedestrian detector.
KEYWORDS: Multimodal Pedestrian Detection; Faster R-CNN; Generalized Intersection Over Union; Feature 
Fusion.
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1. Introduction
With the progress of computer vision technology, pe-
destrian detection plays a crucial role within the field 
of target detection, which is widely utilized in auto-
matic driving, intelligent monitoring, public securi-
ty, robots, video image analysis, and other fields [22]. 
The early pedestrian detection algorithm commonly 
uses the single-mode pedestrian detection method. 
In this method, the pedestrian target has a variety of 
transformations of its posture and scale. It is suscep-
tible to external environmental factors such as light, 
occlusion, weather, and sophisticated background 
[26]. Therefore, researchers specialize in multimod-
al pedestrian detection, multimodal pedestrian de-
tection [3] is a pedestrian detection technology that 
combines visible light and thermal infrared images. 
Its purpose is to simultaneously aggregate the de-
tailed texture features of visible light images and the 
thermal radiation features of thermal infrared images 
and improve the visible light pedestrian detector in 
dim light, rain and snow, haze, and other weather con-
ditions. The poor imaging effect of the image makes 
up for the defects of the thermal infrared image pe-
destrian detectors [28] with fewer texture details, 
low signal-to-noise ratio, and significant influence by 
background information and obtain complementary 
information of the target of interest in order to obtain 
more robust and accurate pedestrian detection re-
sults. Research on multimodal pedestrian detection 
techniques will ensure pedestrians’ safety, accelerate 
the comprehensive landing of driverless car products, 
and assist the development of smart cities.
At present, deep learning has made significant prog-
ress in target detection tasks. A few researchers have 
begun applying deep learning techniques to detect 
pedestrians, particularly when using a deep con-
volutional neural network (CNN) [6]. In the target 
detection algorithm based on CNN, the Single Shot 
MultiBox Detector (SSD) [16] and You Only Look 
Once (YOLO) [22] algorithms describe a one-stage 
target detection approach. The prominent character-
istic of the YOLO algorithm is that the original image 
is directly divided into grids and location regression 
and classification. The algorithm is fast, but the po-
sitioning accuracy is low, especially in small target 
detection. SSD algorithm performs regression and 
prediction based on feature maps of different scales, 

effectively improving targets’ detection ability at dif-
ferent scales. However, the approach needs to address 
the issue of highly unbalanced positive and negative 
samples, making model training more challenging [5]. 
The other algorithm is a two-stage detection meth-
od represented by the Faster Region Convolutional 
Neural Network (Faster R-CNN) algorithm [23]. The 
goal is to filter the candidate box using a heuristic ap-
proach (e.g., selective search) or a Region Proposal 
Network (RPN), then determine whether the candi-
date box is inside the target box. Corrected is the goal 
classification or location. Faster R-CNN, in contrast 
to SSD and YOLO algorithms, first trains the RPN 
network using the extracted basic features so that it 
can generally distinguish between foreground and 
background and then uses the detection network to 
produce precise detection boxes. Faster R-CNN cuts 
through the candidate box detection bottleneck and 
integrates the entire algorithmic process of region 
formation, feature extraction, network training, tar-
get classification, and location regression into a com-
plete end-to-end learning framework.
Although the visible and thermal infrared image fu-
sion-based multimodal pedestrian detection technol-
ogy can be designed to combine the characteristics, 
benefits, and technical advantages of conventional 
visible and thermal infrared images simultaneously, 
whether the fused image can weaken the surrounding 
background or strengthen the characteristics of pe-
destrians, the choice of image feature fusion method 
and period has a significant impact on the detection 
effect of the pedestrian detector. The existing visible 
and thermal infrared pedestrian detection research 
does not have a standard fusion method, which is still 
in the exploratory stage.
In summary, this paper constructs a multimodal pe-
destrian detection network based on Faster-RCNN 
and improves it to explore multimodal pedestrian de-
tectors. The main contributions are as follows: 
1 The feature extraction network is optimized, and 

structures such as 1 × 1 convolution and dilated 
convolution are introduced to enhance the expres-
sion of the network feature layer. In addition, the 
ROIAlign method replaces the ROIPooling meth-
od to map the candidate box to the feature layer to 
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eliminate the quantitative loss and improve the de-
tection ability of small target pedestrians. 

2 By optimizing the loss function and introducing 
GIOU into the loss function [24], the prediction 
frame moves to the target frame to improve the 
positioning accuracy and the target detection ac-
curacy. 

3 Four neural network structures fusing visible and 
thermal infrared images are designed to explore 
the performance of multimodal image pedestrian 
detection methods in different fusion periods in 
the improved Faster R-CNN. Finally, it was test-
ed on the KAIST dataset and found that the pixel 
fusion pedestrian detector has a better missed de-
tection rate and accuracy than other pedestrian 
detectors.

2. Correlation Study
2.1. Pedestrian Detection Based on Visible 
Light Image
Many different strategies have been put out in recent 
years to improve the performance of visible light pe-
destrian detectors, primarily to address the issues 
of pedestrian occlusion, congestion, and scale dif-
ference. Angelov et al. [1] use a cascade classifier to 
increase the accuracy of deep neural networks. The 
disadvantage is that time consumption will increase 
as the image size increases ALFNet was proposed by 
Liu et al. [15], expanding the SSD target identification 
method with cascade and multistage ideas. The cas-
cade structure is employed to increase IoU (intersec-
tion-over-union) continually. While improving the 
accuracy of pedestrian detection, it can also enjoy the 
speed of SSD. Xie et al. [26] extracted the image fore-
ground by the Gaussian mixture model to avoid the 
interference of complex backgrounds. Huang et al. [9] 
proposed a Region NMS technique effectively elimi-
nates superfluous frames without producing a signif-
icant amount of false positives by using the viewable 
region with reduced occlusion to tackle the pedestri-
an detection problem in crowded settings. Zhang et 
al. proposed the AR-CNN algorithm [27]. By enhanc-
ing the secondary classification operation of the tar-
get candidate box and the loss function of the Faster 
R-CNN algorithm, the detection effect of occluded 
pedestrians is increased. From the mask-guided at-

tention mechanism perspective, Pang et al. proposed 
the MGAN algorithm (Mask-guided Attention Net-
work) [21] to increase the detection effect of occluded 
pedestrians. Lin et al. [13] incorporated multiscale pe-
destrian attention mechanisms to enhance the ability 
of the network to recognize small-scale pedestrian 
targets and employed convolution layers with various 
resolutions and receptive fields for detection. Pang et 
al. [20] suggested a multiscale MCF network based on 
JCS-Net to improve the knowledge of tiny target pe-
destrians. With the concept of a multi-stage progres-
sive localization mechanism, Liu et al. presented the 
ALFNet method [15], which increased the detection 
effect of multiscale pedestrians.

2.2. Pedestrian Detection Based on 
Multimodal Images
In order to effectively remove the pedestrian shadow 
region, Choi et al. [4] devised a combined bilateral fil-
tering technique that included the edge information 
of the visible light picture with the white space of 
the thermal image. Hwang et al. proposed the ACF + 
T + THOG algorithm, which is additionally ofttimes 
applied as a Baseline algorithm, using a massive 
public multimodal dataset (KAIST) [10]. Two modal 
features were extracted using the ACF feature ex-
traction methodology, multiple modal features were 
fused using the feature cascade approach, and targets 
were classified using the improved boosting decision 
tree (BDT). Wagner et al. [17] created two decision 
networks (early-fusion and late-fusion) based on Caf-
feeNet and applied DNN to multimodal pedestrian 
identification for the first time. Experimental results 
on the KAIST dataset show that late-fusion perfor-
mance is significantly better than early-fusion.
Based on Faster R-CNN at various DNN stages, Liu 
et al. [14] created four bi-branch convolutional neural 
network fusion architectures. The Halfway Fusion 
construction is the best. Faster RCNN-C and Faster 
RCNN-T are two separate pedestrian detectors that 
were trained separately. It was discovered that the 
two detectors provided complementary information 
while identifying human occurrences, proving the 
rationality and necessity of multimodal image fusion 
detection for pedestrians. Konig et al. constructed Fu-
sion RPN + BDT fusion network by fusing dual branch 
RPNs on middle convolution features [12]. To fill the 
gap in pixel-level picture fusion, Hou [8] developed 
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a technique based on the SSD framework. In place 
of directly predicting the border box, Alexander [18] 
suggested an anchorless small-scale multimodal pe-
destrian identification approach that learns pedes-
trian representation based on object center and scale. 
The outcomes demonstrate the efficacy of the method 
for small-scale pedestrian detection.

3. Proposed Method
3.1. Design of Pedestrian Detection Network 
Based on Faster R-CNN
In order to enable the detection algorithm to locate 
and detect pedestrian targets quickly and effectively, 
this paper uses ResNet (Deep Residual Network) [11] 
to replace the traditional VGG16 (Visual Geometry 
Group Network) [2] as the shared convolution layer 
to obtain more abundant semantic information. It 
introduces a 1×1 convolution design in the residual 
network structure, reducing the dimension of the fea-
ture map and the model parameters. The dilated con-
volution design is introduced to obtain more dense 
and expressive features in the same receptive field 
and enhance the capacity on the network to recognize 
small target pedestrians. In addition, the ROIAlign 
method replaces the ROIPooling method to map the 
candidate box to the feature layer to eliminate the 
quantitative loss. Finally, the design and optimization 
of the loss function in this paper are proposed so that 
the network can better regress the candidate boxes to 
increase pedestrian detection accuracy and reduce 
the missed detection rate.

3.1.1. Faster R-CNN Network Structure
The feature extraction network (Backbone), Region 
Proposal Network (RPN), and detection network 
comprise the Faster R-CNN network. The feature ex-
traction network completes the feature extraction of 
the input image to obtain the feature map, which can 
be replaced by basic feature extraction networks such 
as ResNet and VGG. The candidate box extraction 
network generates a high-quality target candidate box 
(region proposal) on the feature map; finally, the fea-
ture map and the generated candidate boxes are sent 
to the detection network and processed into fixed-
size feature vectors by ROIPooling operation. Lastly, 
the target classification and boundary box regression 
are realized through full connection.

3.1.2. Improved Residual Learning Module
The residual learning module is a ResNet network 
structure model proposed by Dr. He in 2015 as a solu-
tion to the issue of gradient information disappear-
ance or gradient explosion in deep networks. The re-
sidual idea is to add the original input feature x to F (x) 
after convolution, pooling, and nonlinear activation 
functions. It is continuously learning new features 
without sacrificing performance to enhance network 
performance. Figure 1(a) shows the structure of the 
residual learning module.

Figure 1
Improved residual learning unit. (a) Residual Learning 
Unit of ResNet50 networks; (b) Residual Learning Unit 
with 1×1 Convolution
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By introducing nonlinear activation functions (e.g., 
relu), 1 × 1 convolution strengthens the nonlinear 
characteristics of the network and enhances the 
ability of the network to express complex features. 
Controlling the number of convolution kernels 
reduces feature dimension, speeds up network 
operation, and improves training efficiency. With 
these benefits of the 1 × 1 convolution kernel in 
mind, this study introduces the convolution kernel 
and batch normalization (BN) approach to quicken 

the convergence of the ResNet50 network. 
Figure 1(b) shows the organizational structure 
of the improved residual learning module. 
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Dilated convolutions inject holes into the 
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dilation rate (dr) to control the size of the 
expansion of the convolution kernel so that the 
hole convolution operation in the feature layer 
has a larger field of vision than the general 
convolution operation without losing 
resolution [19], which is convenient for better 
aggregation of image feature information. The 
convolution hole with a dilation rate of two is 
shown in Figure 2. In pedestrian detection 
tasks, detecting small target pedestrians from 
long distances is challenging. Dilated 
convolution can obtain denser and more 
expressive features in the same receptive field, 
which has more advantages for detecting 
small target pedestrians. With different 
expansion rates, the receptive field will be 
different. This paper captures multiscale 
information by adjusting the expansion rate 
parameters. 
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characteristics of the network and enhances the abil-
ity of the network to express complex features. Con-
trolling the number of convolution kernels reduces 
feature dimension, speeds up network operation, and 
improves training efficiency. With these benefits of 
the 1 × 1 convolution kernel in mind, this study intro-
duces the convolution kernel and batch normalization 
(BN) approach to quicken the convergence of the Res-
Net50 network. Figure 1(b) shows the organizational 
structure of the improved residual learning module.

3.1.3. Introducing Dilated Convolution
Dilated convolutions inject holes into the standard 
convolution and introduce the dilation rate (dr) to 
control the size of the expansion of the convolution 
kernel so that the hole convolution operation in the 
feature layer has a larger field of vision than the gen-
eral convolution operation without losing resolution 
[19], which is convenient for better aggregation of im-
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age feature information. The convolution hole with a 
dilation rate of two is shown in Figure 2. In pedestri-
an detection tasks, detecting small target pedestrians 
from long distances is challenging. Dilated convolu-
tion can obtain denser and more expressive features 
in the same receptive field, which has more advantag-
es for detecting small target pedestrians. With differ-
ent expansion rates, the receptive field will be differ-
ent. This paper captures multiscale information by 
adjusting the expansion rate parameters.

Figure 2 
The Dilated Convolution of dr = 2
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Table 1 
Features of four converged network architectures

Network structure Fusion method Integration phase

Pixel fusion network Color space 
fusion Input layer

Early fusion network

Feature map 
channel fusion

After Stage 0

Middle fusion network After Stage 2

Late fusion network After Stage 4

3.2.1. Pixel Level Fusion Network Structure
The pixel fusion network is based on the fusion of 
visible light and thermal infrared images at the pixel 
level as the input image without changing the Faster 
R-CNN network structure. Compared with the orig-
inal network, only the image fusion process is added 
before the input layer. This paper applies the color 
space fusion method to achieve pixel fusion. The fu-
sion method is shown in Figure 3. Firstly, the visible 
light image is converted from RGB color space to HSV 
color space, where H represents hue, S represents sat-
uration, and V represents transparency. The raw ther-
mal infrared image is then fused with the H channel of 
the visible light’s HSV color space. The fused H chan-
nel replaces the original H channel in the HSV space. 
Finally, the image is transformed from HSV space to 
RGB color space by the color model transformation 
method to obtain the fused image. It can be seen from 
the figure that the visible light image with thermal 
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Figure 4 
Input the fused image into Faster-RCNN

 
 

 

Based on the improved Faster R-CNN algorithm, 
this paper constructs Pixel Fusion Network, Early 
Fusion Network, Middle Fusion Network, and Late 
Fusion Network. The pixel fusion method is 
designed to retain the color information of the 
image better to improve the quality and clarity of 
the image. The design of the latter three fusions is 
to comprehensively utilize different feature 
expressions to better fuse image information, 
improve the accuracy and robustness of target 
detection, and further explore the influence of 
different fusion periods on the detection effect of 
pedestrian detectors. 

Summarize the above four fusion network 
structure. Its characteristics are shown in Table 1. 

 

Table 1  
Features of four converged network architectures. 
 

Network structure Fusion method Integration phase 
Pixel fusion 

network Color space fusion Input layer 

Early fusion 
network Feature map 

channel fusion 

After Stage 0 

Middle fusion 
network After Stage 2 

Late fusion 
network After Stage 4 

3.2.1. Pixel Level Fusion Network Structure 

The pixel fusion network is based on the 
fusion of visible light and thermal infrared 
images at the pixel level as the input image 
without changing the Faster R-CNN network 
structure. Compared with the original 
network, only the image fusion process is 
added before the input layer. This paper 
applies the color space fusion method to 
achieve pixel fusion. The fusion method is 
shown in Figure 3. Firstly, the visible light 
image is converted from RGB color space to 
HSV color space, where H represents hue, S 
represents saturation, and V represents 
transparency. The raw thermal infrared image 
is then fused with the H channel of the visible 
light's HSV color space. The fused H channel 
replaces the original H channel in the HSV 
space. Finally, the image is transformed from 
HSV space to RGB color space by the color 
model transformation method to obtain the 
fused image. It can be seen from the figure that 
the visible light image with thermal infrared 
image information becomes clearer in color, 
making pedestrians more identifiable.

 

Figure 3  

Fusion Process of Visible and Infrared Images. 

RGB
image

RGB to 
HSV

HSV to 
RGB

fusion Fusion H

H

S

V

Fusion
image

 
 

Figure 4  
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The fused image is input into the Faster R-CNN net-
work for pedestrian detection, as shown in Figure 4. 
Considering the classification and regression of small 
target pedestrians, ROIAlign replaces ROIPooling in 
the original Faster R-CNN network

3.2.2. Early Fusion Network Structure
The early fusion network structure is shown in Fig-
ure 5. At the same time, the visible light image and 
the thermal infrared image are input into the feature 
extraction network (e.g., ResNet50) for convolution 
to extract features. After the feature extraction of 
the early ResNet50 network, the feature layers cor-
responding to the two are obtained, respectively. The 
obtained feature layers are fused, that is, the superpo-
sition operation of the channels. The five blue boxes 
in the figure represent the convolutional layer, the 
five stages corresponding to the Backbone network 
in ResNet50 (Stage 0 to Stage 4). The fusion methods 
used in the early, middle, and late stages are all feature 
map channel fusion, identified by the green box in the 
fusion network structure diagram. The difference is 
that the fusion period is different. Early and middle 
fusion require size transformation of the fused fea-
ture maps, denoted by the yellow boxes, to meet the 
size requirements of subsequent network layers. Oth-
er parts of the algorithm remain unchanged.

3.2.3. Middle Fusion Network Structure
The middle fusion network structure is shown in Fig-
ure 6. The visible light and thermal infrared images 

Figure 5 
Different Early Fusion Network Structure

  

that the fusion period is different. Early and middle 
fusion require size transformation of the fused 
feature maps, denoted by the yellow boxes, to meet 
the size requirements of subsequent network layers. 
Other parts of the algorithm remain unchanged. 

Figure 5  

Different Early Fusion Network Structure.  

 
 

3.2.3. Middle Fusion Network Structure 

The middle fusion network structure is shown in 
Figure 6. The visible light and thermal infrared 
images are, respectively, input into the ResNet50 for 
feature extraction. The features are fused in the 
middle of the feature extraction network (i.e., after 
Stage 2), and the fused feature map proceeds to 
subsequent stages for feature extraction. 

 

Figure 6  

Middle Fusion Network Structure.  

 

 

3.2.4. The Late Fusion Network Structure 

The later fusion network is similar to the 
middle stage. After the feature extraction of 
visible and thermal infrared images (i.e., Stage 
4), the feature channel is fused to obtain the 
fused feature map and input it into the 
detection network. The network structure is 
shown in Figure 7. 

 

Figure 7  

Late Fusion Network Structure. 

 
 

3.3. Design of Loss Function 
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are, respectively, input into the ResNet50 for feature 
extraction. The features are fused in the middle of the 
feature extraction network (i.e., after Stage 2), and the 
fused feature map proceeds to subsequent stages for 
feature extraction.

3.2.4. The Late Fusion Network Structure
The later fusion network is similar to the middle 
stage. After the feature extraction of visible and ther-
mal infrared images (i.e., Stage 4), the feature channel 
is fused to obtain the fused feature map and input it 
into the detection network. The network structure is 
shown in Figure 7.

3.3. Design of Loss Function
The Loss function of the Faster-RCNN RPN network 
has two components: the Loss of Target Detection 
and the Loss of Regression Prediction, as shown in 
Formula 1.

{ } { }( ) ( ) ( )* *1 1= , ,i i cls i i reg i i
cls regi i

L p t L p p L t t
N N

λ+∑ ∑， (1)

Among them, i represents the i detection box, is the 
probability of targeting anchor prediction, *

ip is the 
label of anchor corresponding to Ground Truth

GTlabel : ( )
( )

* 0

1i
Negative samples background

p
Positive samples pedestrians

= 


.

{ , , , }i x y w ht t t t t= , represents the four parameterized 
coordinates corresponding to the detection box, 
namely the normalized offset and scaling scale be-
tween the anchor and the detection box, and *

it  rep-
resents the normalized offset and scaling scale be-
tween the anchor and the truth value.
The classification tasks use cross-entropy loss and 
the calculation of ( )*,cls i iL p p  as shown in Formula 2.

( ) ( )( )* * *, log 1 1l i i is ic i iL pp p p p p = − + − − 
. (2)

When *
ip  is 0, the regression loss is 0, and when *

ip  is 
1, the return loss needs to be considered. The calcula-
tion formula of regression loss, ( )*,reg i iL t t in Formula 
1 is shown in Formula 3.

( ) ( )* *,reg i i i iL t t R t t= − , (3)

where R is:

( )
2

1
0.5 1

0.5L
x if x

smooth x
x otherwise

 <= 
−

(4)

x represents the value of *
i it t− . 

Aiming at the problems of complex environmental 
changes, rain and snow weather, and small target 
pedestrian detection in pedestrian detection tasks, 
GIoU is used as the loss function of Faster to increase 
the accuracy of further target positioning R-CNN 
prediction box positioning regression. 
GIoU introduces penalty terms based on IoU. Ac-
cording to the GIoU principle, GIoU IoU≤  and 
0 1IoU≤ ≤  so 0 1IoU≤ ≤ . In addition, when the 
C-frame is introduced, and A and B are not inter-
sected, 1 A BGIoU

C
= − +

 , it is vital to maximizing 

GIoU to reduce the loss value, which then calls for the 
C-frame to be minimum or maximum so that A and B 
are always close. To effectively improve the target po-
sitioning accuracy. The improved Faster R-CNN total 
loss function formula is as follows:
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4. Experimental Results and Analysis
4.1. Datasets and Preprocessing
The experimental portion of this study uses the pub-
lic KAIST multimodal pedestrian dataset. The en-
tire original KAIST pedestrian dataset consists of 45 
168 pairs of images. Each pair of images contains two 
modal information of RGB color image and thermal 
infrared image, and 103 128 dense annotations [10]. 
The original data set is extracted every ten frames to 
produce the experiment’s reduced data set. Finally, 
2000 pairs of multimodal images make up the test 
set, compared to 2516 pairs in the training set. 

4.2. Parameter Setting of the Experimental 
Environment Set
This experiment uses PyTorch open source frame-
work to implement training based on GeForce GTX 
1660Ti GPU. During training, conv1 and conv2 
parameters are fixed, and the parameters of the 
remaining convolution layer need to be adjusted 
according to the backpropagation algorithm. The 
experimental model consisted of 150 epochs, where 
the initial 50 epoch learning rate was set to 1e-4, each 
epoch decayed by 0.95. The learning rate of the sub-
sequent 100 epochs began from 1e-5, and each epoch 
decayed by 0.95. 

4.3. Evaluation Criterion
Currently, the commonly used evaluation indexes of 
pedestrian detection include average precision (AP), 
mean average precision (mAP), frame per second 
(FPS), Precision, and Recall. Miss Rate is the loss 
rate, representing the proportion of undetected pe-
destrians within the total variety of pedestrians. FPPI 
represents the number of pedestrians, which will be 
correctly retrieved in each graph. Following are the 
calculation formulas of Precision, Recall, Miss Rate, 
AP, mAP, Miss Rate, and FPPI:

TPPrecision
TP FP

=
+

(6)

TPRrecall
TP FN

=
+

(7)

1 2 np p p
AP

n
+ + +

=


(8)

0 1 2

k

i
i k

AP
AP AP AP

mAP
k k

= + + +
= =
∑

 (9)

 1Miss Rate Recall= − (10)

FPFPPI
the number of image

= . (11)

The performance evaluation indices are the AP, Miss 
Rate-FPPI curve, and log-average miss rate. The area 
of the curve formed by exactitude as the vertical axis 
and recall as the horizontal axis is known as AP. The 
longitudinal axis of the Miss Rate-FPPI curve is the 
miss rate, and the horizontal axis is FPPI. The lower 
the Miss Rate-FPPI curve, the better the effect. The 
log-average miss rate is similar to mAP. The vertical 
axis of the curve is the log of miss rate, and the hori-
zontal axis is FPPI. The smaller the index value, the 
higher the detector performance.

4.4. Ablation Experiments

Based on the visible light and thermal infrared data-
sets selected, this paper used ResNet50 as the back-
bone network. Ablation experiments compared tra-
ditional Faster R-CNN and improved Faster R-CNN 
algorithms. Table 2 shows that mAP increased by 
2.53 percentage points after improving the back-
bone feature extraction network by introducing 
1×1 convolution and dilated convolution. Selecting 
ROIAlign’s pooling operation increased mAP by 3.5 
percentage points. Improving the loss function in-
creased mAP by 3.49 percentage points. Combining 
all improvements increased mAP by 4.55 percentage 
points.
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4.5. Design of Pedestrian Detection Network 
Based on Faster R-CNN
In this paper, six groups of experiments are designed 
to explore and study the pedestrian detection prob-
lem of visible and thermal infrared images, namely, 
the visible light image pedestrian detector (Faster 
R-CNN-N). Thermal infrared image pedestrian de-
tector (Faster R-CNN-T), pixel fusion pedestrian de-
tector (Faster R-CNN-F), early fusion pedestrian de-
tector (Early-Fusion-N-T), middle fusion pedestrian 
detector (Middle-Fusion-N-T), late fusion pedestrian 
detector (Late-Fusion-N-T). 
After the training, the model parameters are obtained, 
and the test set is tested. Figure 6 displays the pedes-
trian detection results of six pedestrian detectors. 
The detector accurately identifies the forecast as a 
pedestrian in the green box, which indicates this. The 
detector marks the prediction as inaccurate despite 
the red box indicating it is pedestrian. The blue box 
shows Ground Truth.
Figure 8 displays several pedestrian detection out-
comes from the pixel fusion pedestrian detector, the 
visible pedestrian detector, and the thermal infrared 
pedestrian detector. There was a false detection in the 
visible image pedestrian detector and the thermal in-
frared pedestrian detector in the first line of images. 
False detection was removed from the pedestrian de-
tector of the pixel fusion image. In the second line of 
images, there were two false detections in the thermal 

Table 2
Ablation analysis experimental

1×1 convolution dilated convolution ROIAlign method GIOU loss V-AP T-AP mAP

76.87 75.25 76.06

√ 78.58 75.83 77.20

√ 79.82 75.16 77.49

√ √ 81.68 75.50 78.59

√ 80.44 78.69 79.56

√ 80.88 78.23 79.55

√ √ √ √ 82.03 79.13 80.58

Note: V-AP represents the AP value corresponding to the visible pedestrian detector, and T-AP represents the AP value 
corresponding to the thermal infrared pedestrian detector.

Figure 8 
Detection results of different pedestrian detectors (the 
green box represents TP, the red box represents FP, and the 
blue box represents ground truth)

 
 

 

 
 

Figure 8 displays several pedestrian detection 
outcomes from the pixel fusion pedestrian detector, 
the visible pedestrian detector, and the thermal 
infrared pedestrian detector. There was a false 
detection in the visible image pedestrian detector 
and the thermal infrared pedestrian detector in the 
first line of images. False detection was removed 
from the pedestrian detector of the pixel fusion 
image. In the second line of images, there were two 
false detections in the thermal infrared pedestrian 
detector but none in the visible pedestrian detector 
or the pedestrian detector of the pixel fusion image. 
The experimental results demonstrate that the pixel 
fusion visible light image and the thermal infrared 
image have the advantages of complementary 
information, which makes the pixel fusion 
pedestrian detector have excellent performance. To 
a certain extent, the pixel fusion pedestrian detector 
can eliminate the false pedestrians predicted by the 
visible light pedestrian detector and the thermal 

infrared pedestrian detector. 
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Comparison of pedestrian detection results of 
pixel fusion pedestrian detector, visible 
pedestrian detector, and thermal infrared 
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Table 3  

Comparison of experimental results. 

Experiment AP(%) miss rate 
(%) 

Log average 
miss rate(%) Fps(f/s) Model size 

（（M）） MIoU/% 

ACF+T+THOG [10] 74.86 64.46 / 32.00 / / 

Faster RCNN-C [14] / 61.19 / / / / 

Faster R-CNN-N 82.03 56.01 48 5.68 108 52.4 

Faster R-CNN-T 79.13 56.12 51 6.07 108 52.4 

Faster R-CNN-F 83.24 50.67 47 5.53 108 52.4 
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infrared pedestrian detector but none in the visible 
pedestrian detector or the pedestrian detector of the 
pixel fusion image. The experimental results demon-
strate that the pixel fusion visible light image and the 
thermal infrared image have the advantages of com-
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plementary information, which makes the pixel fu-
sion pedestrian detector have excellent performance. 
To a certain extent, the pixel fusion pedestrian detec-
tor can eliminate the false pedestrians predicted by 
the visible light pedestrian detector and the thermal 
infrared pedestrian detector.
Figure 9 displays several pedestrian detection out-
comes from the pixel fusion pedestrian detector, the 
visible pedestrian detector, and the thermal infrared 
pedestrian detector. There was a false detection in the 
visible image pedestrian detector and the thermal in-
frared pedestrian detector in the first line of images. 
False detection was removed from the pedestrian de-
tector of the pixel fusion image. In the second line of 
images, there were two false detections in the thermal 
infrared pedestrian detector but none in the visible 
pedestrian detector or the pedestrian detector of the 
pixel fusion image. The experimental results demon-
strate that the pixel fusion visible light image and the 
thermal infrared image have the advantages of com-
plementary information, which makes the pixel fu-
sion pedestrian detector have excellent performance. 
To a certain extent, the pixel fusion pedestrian detec-
tor can eliminate the false pedestrians predicted by 
the visible light pedestrian detector and the thermal 
infrared pedestrian detector.
The experimental results of the ACF + T + THOG pe-
destrian detector, FasterRCNN pedestrian detector, 
and the six pedestrian detectors designed in this pa-
per on the KAIST dataset are shown in Table 3. The 
AP of the traditional FasterRCNN, the visible light, 

Figure 9 
Comparison of pedestrian detection results of pixel fusion 
pedestrian detector, visible pedestrian detector, and 
thermal infrared pedestrian detector
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Table 3 
Comparison of experimental results

Experiment AP(%) miss rate
(%)

Log average
miss rate(%) Fps(f/s) Model size

(M) MIoU/%

ACF+T+THOG [10] 74.86 64.46 / 32.00 / /

Faster RCNN-C [14] / 61.19 / / / /

Faster R-CNN-N 82.03 56.01 48 5.68 108 52.4

Faster R-CNN-T 79.13 56.12 51 6.07 108 52.4

Faster R-CNN-F 83.24 50.67 47 5.53 108 52.4

Early-Fusion-N-T 66.11 70.94 63 4.29 108 52.4

Middle-Fusion-N-T 67.15 72.27 63 4.47 148 71.8

Late-Fusion-N-T 76.39 57.35 52 3.04 159 77.1

thermal infrared, and pixel fusion algorithm based 
on the improved FasterRCNN is superior to the ACF 
+ T + THOG pedestrian detection algorithm based 
on traditional machine learning, which verifies that 
convolutional neural network has unique advantages 
in the field of target detection. Among the six pedes-
trian detectors, the pixel fusion pedestrian detector 
is superior to others in AP and miss rate. It is supe-
rior to the pedestrian detector of the fusion network 
in detection speed and model size, achieving the best 
pedestrian detection effect. The AP of the pixel fusion 
pedestrian detector is 8.38 percentage points higher 
than that of the ACF + T + THOG pedestrian detec-
tor, and the miss rate is 5.34 percentage points lower 
than that of the visible light pedestrian detector Fast-
er R-CNN-N, 10.52 percentage points lower than the 
Faster R-CNN-C pedestrian detector in reference 
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[14], and 13.79 percentage points lower than the ACF 
+ T + THOG pedestrian detector.
The comparison of miss rate-fppi curves of six pedes-
trian detectors is shown in Figure 10. In the diagram, 
take the miss rate when the fppi equals 10-1, where the 
pixel fusion pedestrian detector obtains the lowest 
miss rate. The best performance of the feature map 
channel fusion network detector is the late fusion 
network structure, and the miss rate is 13.59 percent-
age points and 14.92 percentage points lower than the 
early fusion pedestrian detector and the middle fu-
sion pedestrian detector, respectively.

Figure 10 
Comparison of miss-rate-fppi curves of different 
pedestrian detectors
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stages, respectively. 
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Of the six experimental groups, the pixel fusion pe-
destrian detector has the lowest missed detection 
rate and the most excellent accuracy for detecting 
pedestrians. Compared to a single visible picture 
or thermal infrared image, the pixel fusion image of 
visible and thermal infrared images provides com-
plementary information. The latter three pedestrian 
detectors based on feature map channel fusion are 
inferior to others in detection accuracy and missed 
detection rate. The possible reasons are as follows. 
Firstly, the fusion network intensifies the complex-
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ity of pedestrian features but does not extract more 
effective pedestrian features. Secondly, the fusion 
network strengthens the characteristics of the sur-
rounding background while strengthening pedestrian 
features, making it challenging to identify pedestrian 
targets. Because the fusion network is a dual-branch 
network, the model parameters are more than the 
single-branch network, which makes the FPS of the 
fusion network pedestrian detector lower.

5. Conclusions
Four neural network structures for fusing visible and 
thermal infrared pictures are developed based on the 
improved Faster R-CNN, and the experimental study 
is done using the public KAIST multimodal pedes-
trian data set. It is discovered that the pixel fusion 
pedestrian detector outperforms existing pedestrian 
detectors in terms of missed detection rate and de-
tection accuracy. The later fusion pedestrian detector 
achieves the best pedestrian detection performance 
among the latter three pedestrian detectors based on 
feature map channel fusion. It demonstrates that the 
pedestrian detector combined with thermal infrared 
and visible images has certain benefits over the pe-
destrian detector of a single image, which has some 
reference significance for the ensuing study on the 
multimodal pedestrian detector.
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