
935Information Technology and Control 2023/4/52

CBEET: Constructing
Certificate-based Encryption
with Equality Test in the CB-PKS

ITC 4/52
Information Technology
and Control
Vol. 52 / No. 4 / 2023
pp. 935-951
DOI 10.5755/j01.itc.52.4.33765

CBEET: Constructing Certificate-based Encryption with
Equality Test in the CB-PKS

Received 2023/04/03 Accepted after revision 2023/10/19

HOW TO CITE: Tsai, T.-T., Lin, H.-Y., Wu, C.-Y. (2023). CBEET: Constructing Certificate-based
Encryption with Equality Test in the CB-PKS. Information Technology and Control, 52(4), 935-951.
https://doi.org/10.5755/j01.itc.52.4.33765

Tung-Tso Tsai, Han-Yu Lin, Cheng-Ye Wu
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan

Corresponding author: hanyu@email.ntou.edu.tw

To maintain the confidentiality of private data, encryption mechanisms have become prevalent. Researchers
always strive to design secure and efficient encryption mechanisms in both symmetric and asymmetric key
systems. Certificate-based public key systems (CB-PKS) belong to the family of asymmetric key systems. CB-
PKS offers solutions to both the key escrow problem present in identity-based public key systems, and the need
to construct a public key infrastructure in traditional public key systems. The past saw a wealth of research into
the encryption mechanisms in the CB-PKS, called certificate-based encryption (CBE). Indeed, encrypted data
(ciphertext) can be used in other applications such as the comparison of personal medical data as two cipher-
texts can be compared to determine if they contain the same data (plaintext). However, the equality test of two
ciphertexts in the CB-PKS is an open issue since research which has empirically studied is scant. The purpose
of this paper is to propose the first certificate-based encryption with equality test (CBEET), and to prove that it
is secure under the bilinear Diffie-Hellman (BDH) assumption.
KEYWORDS: Certificate-based cryptography, encryption, equality test, bilinear pairing.

1. Introduction
In traditional public key systems [1, 3, 31], a sender
can use a receiver’s public key to encrypt a message
(data) and send it to the receiver via public channels.
However, the relationship between the public key and
the receiver’s identity must be confirmed before such
encryption procedure is executed, because the public
key is composed of arbitrary random numbers. The

purpose of establishing public key infrastructures
(PKI) is to connect the public key with the receiver’s
identity. To avoid the construction of PKI, an identi-
ty-based public key system (ID-PKS) was proposed
by Shamir [18], in which the receiver’s public key can
be regarded as her/his identity such as social secu-
rity number or e-mail address. Based on the concept

mailto:obodovskiy58@gmail.com

Information Technology and Control 2023/4/52936

of ID-PKS, many identity-based encryption (IBE)
schemes [2, 4, 17, 22, 23] have been proposed.
A concept of public key encryption with keyword
search (PKEKS) was proposed by Boneh et al. [3], in
which users can upload an encrypted keyword (ci-
phertext) to the cloud server, and the ciphertext can be
found by the cloud server with the authorizations from
users. It is worth noting that the cloud server cannot
know the message (plaintext) in the ciphertext. How-
ever, PKEKS has a restriction that the cloud server can
only target a single user in the search process in the
sense that all the ciphertexts that can be successfully
searched must be encrypted from the same public key.
To overcome this restriction, Yang et al. [28] proposed
public key encryption with equality test (PKEET), in
which the cloud server can use the comparison of ci-
phertexts to search the target ciphertext, while cipher-
texts can be encrypted under different public keys.
Based on the first PKEET [28], Tang [21] proposed
a new PKEET, in which the property of fine-gained
authorization was considered to enable users to own
this authorization over ciphertexts. To clearly point
out the specific users who can perform the equality
test for ciphertexts, Ma et al. [16] presented a del-
egation mechanism for PKEET, namely public key
encryption with delegated equality test (PKE-DET).
To filter testable ciphertexts, public key encryption
with filtered equality test (PKE-FET) was proposed
by Huang et al. [11]. For enhancing the security of
PKEET, Duong et al. [5] proposed a PKEET in the
standard model, while the PKEET is secure under the
hardness assumption of lattices. Zeng et al. [32] hired
the hash proof system to propose a secure PKEET
in the standard model. Recently, the work of PKEET
in the standard model are still valued and several
PKEETs have been proposed in the literature [6, 12].
Indeed, PKEET is a cryptographic mechanism de-
signed under the traditional public key systems (PKS)
which rely on the construction of PKI to manage cer-
tificates. To tackle the problem, Ma [15] proposed a
new scheme, namely identity-based with equality test
(IBEET) in the ID-PKS. Although Ma [15] presented
the security analysis for the IBEET scheme, Liao et
al. [14] pointed out that the scheme is insecure. For
improving the performance on computational cost,
Wu et al. [26] proposed an efficient IBEET scheme.
In the above IBEET schemes, there is only one type of
authorization from users to the cloud server. To make

the way of authorization more flexible, three types of
authorization were presented and used into IBEET
[13]. In addition, to resist the attack of quantum com-
puting, an IBEET scheme from lattices was proposed
by Zhang and Xu [33].
However, the ID-PKS had a drawback, namely, the key
escrow problem since each user’s private key is gener-
ated by the key generator center (KGC) of the ID-PKS.
To remove the key escrow problem, certificate-based
public key system (CB-PKS) was proposed by Gentry
[8], which not only eliminates the key escrow problem
in the ID-PKS, but also avoids the construction of PKI
in traditional public key systems. Based on the CB-
PKS, a large number of certificate-based encryption
(CBE) schemes have been published in the literature
[7, 9, 19, 25, 29, 30] to protect the confidentiality of pri-
vate data. Research related to CBE continues to be ex-
plored to this day. Shareef and Sagheer [20] presented
an enhanced CBE scheme for big data environments
by combining AES and (ECDSA-ECDH) techniques.
The goal of this scheme is to improve encryption effi-
ciency and security in big data scenarios. In order to
avoid relying on random oracles for security analysis,
Guo et al. [10] introduced an efficient CBE scheme
without random oracles. On the other hand, to enable
secure keyword searching in cloud environments,
Uyyala [24] presented a secure channel-independent
certificate-based searchable encryption scheme that
can withstand outside and inside keyword guessing
attacks. To protect data security under leakage risks
while satisfying the efficiency and scalability require-
ments of cloud computing environments, Zhou et al.
[34] introduced a continuous leakage-resilient cer-
tificate-based signcryption scheme applied in cloud
computing.
As mentioned in the previous PKEETs and IBEETs,
the encrypted data (ciphertext) can be used in oth-
er applications such as the comparison of personal
medical data since two ciphertexts can be compared
whether they contain the same plaintext. Relevant
PKEET scheme [31] and IBEET scheme [13] have
been proposed in both traditional PKS and ID-PKS,
respectively. To the best of our knowledge, there is
no related work on equality test of ciphertexts in
the CB-PKS. Table 1 lists the comparisons between
the PKE scheme [31], the PKEET scheme [6], IBE
scheme [23], IBEET scheme [13], CBE scheme [25]
and our CBEET scheme in terms of public key setting,

937Information Technology and Control 2023/4/52

eliminating PKI construction, avoiding key escrow
problem and possessing equality test property. After
comparing with other existing schemes, we attempt
to propose the first CBEET scheme that provides the
equality test of ciphertexts in the CB-PKS.
Although the existing IBEET schemes [13, 15, 26]
possessed the property of equality test of ciphertexts,
they cannot avoid the key escrow problem. On the
other hand, a well-known fact is that the existing CBE
schemes [9, 25, 30] can avoid the key escrow problem.
However, these CBE schemes do not provide a mech-
anism for equality test. In this paper, we extend CBE
schemes to propose the first propose the first certifi-
cate-based encryption with equality test. Several spe-
cific contributions are shown as below.
 _ We extend the syntax and security notions of

CBE and consider the property of equality test of
ciphertexts to define a novel syntax and security
notions of CBEET.

 _ A concrete CBEET scheme is proposed under the
syntax of CBEET.

 _ We demonstrate that the proposed CBEET scheme
is secure under the bilinear Diffie-Hellman (BDH)
assumption.

 _ Compared with the existing schemes, the proposed
CBEET scheme not only retains the efficiency
of encryption and decryption, but also has the
mechanism of equality test.

The rest of this paper is as follows. Preliminaries are
given in Section 2. Section 3 shows the definitions of
the syntax and security notions. A concrete CBEET
scheme is presented in Section 4. Section 5 analyzes
the security of the CBEET scheme. A comparison

and a conclusion are given in Sections 6 and 7, re-
spectively.

2. Preliminaries
Two preliminaries including the concept of bilinear
pairings [4] and the bilinear Diffie-Hellman (BDH)
assumption [15] are introduced in this section. Two
definitions related to bilinear pairings and the BDH
assumption are given as below.
Definition 1. (Bilinear pairings). Assume that q is
large prime number and it is the order for three mul-
tiplicative cyclic groups, namely G1, G2 and GT. We say
that e: G1 × G2 → GT is an asymmetric bilinear pairing
if e has the following three properties.
1 Bilinearity: for any x, y Zq

*, e(Ux, Vy) = e(U, V)xy,
where U and V respectively are generators in G1
and G2.

2 Non-degeneracy: e(U, V) ≠ 1, where the definitions
of U and V are the same as (1) above.

3 Computability: e(g1, g2) is efficiently computable
for all g1 ∈ G1, g2 ∈ G2.

Definition 2. (BDH assumption). Assume that 𝒢 =
(q, G1, G2, GT, e, U, Ua, Uc, V, Va, Vb) is the instance of
the BDH problem, where a, b, c ∈ Zq

* are unknown
for any probabilistic polynomial time (PPT) adver-
sary A. Then, A’s advantage of computing e(U, V)abc
is negligible and defined as Pr[A(U, Ua, Uc, V, Va, Vb) =
e(U, V)abc] < ϵ.
To improve readability for readers, we have compiled
Table 2, which contains a comprehensive list of sym-
bols employed in the proposed CBEET.

Table 1
Comparisons between the existing schemes and our CBEET scheme

Schemes Public-key setting Eliminating PKI
construction

Avoiding key
escrow problem

Possessing equality
test property

Yu et al.’s PKE scheme [31] PKI-based No Yes No

Duong et al.’s PKEET scheme [6] PKI-based No Yes Yes

Tseng et al.’s IBE scheme [23] ID-based Yes No No

Li et al.’s IBEET scheme [13] ID-based Yes No Yes

Wu et al.’s CBE scheme [25] Certificate-based Yes Yes No

Our CBEET cheme Certificate-based Yes Yes Yes

Information Technology and Control 2023/4/52938

Table 2
Symbols

Symbol Meaning

SSK
SPP

The system secret key
The system public parameters

USK
UPKpair

UPKA
UPKB
Certpair

CertA
CertB
M

The user secret key
The user public key pair
The first part of user public key pair
The second part of user public key pair
The user certificate pair
The first part of user certificate pair
The second part of user certificate pair
The message

CT
TD

The ciphertext
The trapdoor

3. Syntax and Security Notions
Inspired by previous works related to CBE [7, 29] and
the properties of equality test [5, 15], we define a new
syntax and new security notions of CBEET. Based
on the syntax of CBE, we present the new syntax of
CBEET by adding the Trapdoor and Test algorithms.
Following the security notions of CBE, we present the
new security notions of CBEET by adding two new
types of adversaries who can obtain the trapdoor from
the Trapdoor algorithm.

3.1. Syntax of CBEET
There are three roles: the certification authority (CA),
the users (sender/receiver) and the cloud server (CS)
in the syntax of CBEET. We use Figure 1 to depict the
generation of user’s full secret key and public key.
The CA performs the Setup algorithm to generate the
system secret key SSK and system public parameters
SPP. A user can set her/his user secret key USK and
user public key pair UPKpair = (UPKA, UPKB) accord-
ing to the system public parameters SPP. Immediate-
ly, the user sends her/his identity ID and user public
key pair UPKpair to the CA. The user certificate pair
Certpair can be calculated by the CA. And, Certpair is re-
turned to the user via secure channels. Notice that the
user’s full secret key consists of user secret key USK
and user certificate pair Certpair. Figure 2 describes
the process of encryption and decryption. A sender
can use the identity ID and public key pair UPKpair of
the receiver to encrypt the plaintext (message M) and

Figure 1
Generation of user’s full secret key and public key

Figure 2
The process of encryption and decryption

Figure 3
The work of the CS for testing

Figure 1 Generation of user’s full secret key and public

key.

Figure 2 The process of encryption and decryption.

Figure 3 The work of the CS for testing.

3.2 Security Notions of CBEET

We know that there are two types of adversaries in
the CB-PKC systems [7, 29]. One is a non-system
member (external adversary), and the other is the
CA who could be honest-but-curious since the CA
possesses the system secret key SSK. In order to
satisfy the equality test properties [5, 15], we must

consider the situation that adversaries can
obtain the trapdoor TD in the security
notions. The following are four types of
adversaries in the proposed CBEET.

−− Type I adversary is an external adversary
who has the ability of replacing the user
public key pair UPKpair.

−− Type II adversary is the CA who has the
system secret key SSK which is used to
calculate the user’s certificate pair Certpair.

−− Type III adversary is the same as Type I
adversary, except that the trapdoor TD
can be obtained.

−− Type IV adversary is the same as Type II
adversary, except that the trapdoor TD
can be obtained.

Based on the security notions of CBE [7, 29],
we add the equality test properties [5, 15] to
define two new security games (later
presented in Definitions 3 and 4) for the
CBEET. The first security game named the
GCBEET-IND-CCA is used to model
indistinguishabilty under chosen ciphertext
attacks from Type I and Type II adversaries.
The second security game named the GCBEET-

OW-CCA is used to model one-wayness under
chosen ciphertext attacks from Type III and
Type IV adversaries.

Definition 3 (GCBEET-IND-CCA). Assume that A is
the PPT adversary (including Type I and
Type II) for a CBEET scheme. We say that the
scheme is secure for indistinguishabilty
under chosen ciphertext attacks if A’s
advantage of winning the following game
with a challenger C can be negligible.

−− Setup. The challenger C performs the
Setup of CBEET with a security parameter
λ to gain the system secret key SSK and
system public parameters SPP. The
challenger C sends SPP to the adversary A.
Further, the SSK will also be transmitted if
A is Type II adversary.

−− Phase 1. The adversary A may issue the
following queries.

 User secret key query: When receiving
this query with an identity ID, the
challenger C performs the UserKeyGen
of CBEET to gain user secret key USK
and user public key pair UPKpair. Then,
C returns the USK to A if the identity ID
did not appear in User public key replace
query.

Figure 1 Generation of user’s full secret key and public

key.

Figure 2 The process of encryption and decryption.

Figure 3 The work of the CS for testing.

3.2 Security Notions of CBEET

We know that there are two types of adversaries in
the CB-PKC systems [7, 29]. One is a non-system
member (external adversary), and the other is the
CA who could be honest-but-curious since the CA
possesses the system secret key SSK. In order to
satisfy the equality test properties [5, 15], we must

consider the situation that adversaries can
obtain the trapdoor TD in the security
notions. The following are four types of
adversaries in the proposed CBEET.

−− Type I adversary is an external adversary
who has the ability of replacing the user
public key pair UPKpair.

−− Type II adversary is the CA who has the
system secret key SSK which is used to
calculate the user’s certificate pair Certpair.

−− Type III adversary is the same as Type I
adversary, except that the trapdoor TD
can be obtained.

−− Type IV adversary is the same as Type II
adversary, except that the trapdoor TD
can be obtained.

Based on the security notions of CBE [7, 29],
we add the equality test properties [5, 15] to
define two new security games (later
presented in Definitions 3 and 4) for the
CBEET. The first security game named the
GCBEET-IND-CCA is used to model
indistinguishabilty under chosen ciphertext
attacks from Type I and Type II adversaries.
The second security game named the GCBEET-

OW-CCA is used to model one-wayness under
chosen ciphertext attacks from Type III and
Type IV adversaries.

Definition 3 (GCBEET-IND-CCA). Assume that A is
the PPT adversary (including Type I and
Type II) for a CBEET scheme. We say that the
scheme is secure for indistinguishabilty
under chosen ciphertext attacks if A’s
advantage of winning the following game
with a challenger C can be negligible.

−− Setup. The challenger C performs the
Setup of CBEET with a security parameter
λ to gain the system secret key SSK and
system public parameters SPP. The
challenger C sends SPP to the adversary A.
Further, the SSK will also be transmitted if
A is Type II adversary.

−− Phase 1. The adversary A may issue the
following queries.

 User secret key query: When receiving
this query with an identity ID, the
challenger C performs the UserKeyGen
of CBEET to gain user secret key USK
and user public key pair UPKpair. Then,
C returns the USK to A if the identity ID
did not appear in User public key replace
query.

Figure 1 Generation of user’s full secret key and public

key.

Figure 2 The process of encryption and decryption.

Figure 3 The work of the CS for testing.

3.2 Security Notions of CBEET

We know that there are two types of adversaries in
the CB-PKC systems [7, 29]. One is a non-system
member (external adversary), and the other is the
CA who could be honest-but-curious since the CA
possesses the system secret key SSK. In order to
satisfy the equality test properties [5, 15], we must

consider the situation that adversaries can
obtain the trapdoor TD in the security
notions. The following are four types of
adversaries in the proposed CBEET.

−− Type I adversary is an external adversary
who has the ability of replacing the user
public key pair UPKpair.

−− Type II adversary is the CA who has the
system secret key SSK which is used to
calculate the user’s certificate pair Certpair.

−− Type III adversary is the same as Type I
adversary, except that the trapdoor TD
can be obtained.

−− Type IV adversary is the same as Type II
adversary, except that the trapdoor TD
can be obtained.

Based on the security notions of CBE [7, 29],
we add the equality test properties [5, 15] to
define two new security games (later
presented in Definitions 3 and 4) for the
CBEET. The first security game named the
GCBEET-IND-CCA is used to model
indistinguishabilty under chosen ciphertext
attacks from Type I and Type II adversaries.
The second security game named the GCBEET-

OW-CCA is used to model one-wayness under
chosen ciphertext attacks from Type III and
Type IV adversaries.

Definition 3 (GCBEET-IND-CCA). Assume that A is
the PPT adversary (including Type I and
Type II) for a CBEET scheme. We say that the
scheme is secure for indistinguishabilty
under chosen ciphertext attacks if A’s
advantage of winning the following game
with a challenger C can be negligible.

−− Setup. The challenger C performs the
Setup of CBEET with a security parameter
λ to gain the system secret key SSK and
system public parameters SPP. The
challenger C sends SPP to the adversary A.
Further, the SSK will also be transmitted if
A is Type II adversary.

−− Phase 1. The adversary A may issue the
following queries.

 User secret key query: When receiving
this query with an identity ID, the
challenger C performs the UserKeyGen
of CBEET to gain user secret key USK
and user public key pair UPKpair. Then,
C returns the USK to A if the identity ID
did not appear in User public key replace
query.

obtain the ciphertext CT. After receiving the cipher-
text CT, the receiver can use the associated USK and
Certpair to decrypt and obtain the plaintext. Figure 3 in-

939Information Technology and Control 2023/4/52

troduces the work of the CS for testing. Each user can
send her/his own trapdoor and ciphertexts to the CS
who can compare the ciphertexts to confirm whether
any two ciphertexts contain the same plaintext. Next,
we formally introduce the syntax of CBEET which in-
cludes the following seven algorithms.
 _ Setup: The CA inputs a security parameter λ to

gain the system secret key SSK and system public
parameters SPP.

 _ UserKeyGen: The user inputs the system public
parameters SPP to gain her/his user secret key
USK and user public key pair UPKpair = (UPKA,
UPKB). Moreover, the user sends her/his UPKpair
to the CA.

 _ CertGen: The CA inputs the system public
parameters SPP, user’s identity ID, system secret
key SSK and user public key pair UPKpair to calculate
the user’s certificate pair Certpair. In addition, the
CA sends Certpair to the user via a secure channel.

 _ Encryption: A sender inputs the system public
parameters SPP, user’s identity ID, user public key
pair UPKpair and a message M ∈ {0, 1}λ to generate a
ciphertext CT.

 _ Decryption: The receiver inputs the system public
parameters SPP, the ciphertext CT, her/his user
secret key USK and Certpair to obtain the message M.

 _ Trapdoor: The user inputs public parameters PP,
her/his Certpair and user secret key USK to obtain a
trapdoor TD. Then, the user sends TD to the CS via
a secure channel.

 _ Test: For any two users Ui and Uj, the CS inputs the
system public parameters SPP, two ciphertexts
CTi, CTj and two trapdoors TDi, TDj to return 1 or 0.

3.2. Security Notions of CBEET
We know that there are two types of adversaries in the
CB-PKC systems [7, 29]. One is a non-system mem-
ber (external adversary), and the other is the CA who
could be honest-but-curious since the CA possess-
es the system secret key SSK. In order to satisfy the
equality test properties [5, 15], we must consider the
situation that adversaries can obtain the trapdoor TD
in the security notions. The following are four types of
adversaries in the proposed CBEET.
 _ Type I adversary is an external adversary who has

the ability of replacing the user public key pair
UPKpair.

 _ Type II adversary is the CA who has the system
secret key SSK which is used to calculate the user’s
certificate pair Certpair.

 _ Type III adversary is the same as Type I adversary,
except that the trapdoor TD can be obtained.

 _ Type IV adversary is the same as Type II adversary,
except that the trapdoor TD can be obtained.

Based on the security notions of CBE [7, 29], we add
the equality test properties [5, 15] to define two new
security games (later presented in Definitions 3 and
4) for the CBEET. The first security game named the
GCBEET-IND-CCA is used to model indistinguishabilty un-
der chosen ciphertext attacks from Type I and Type
II adversaries. The second security game named the
GCBEET-OW-CCA is used to model one-wayness under cho-
sen ciphertext attacks from Type III and Type IV ad-
versaries.
Definition  3 (GCBEET-IND-CCA). Assume that A is the
PPT adversary (including Type I and Type II) for a
CBEET scheme. We say that the scheme is secure for
indistinguishabilty under chosen ciphertext attacks
if A’s advantage of winning the following game with a
challenger C can be negligible.
 _ Setup. The challenger C performs the Setup

of CBEET with a security parameter λ to gain
the system secret key SSK and system public
parameters SPP. The challenger C sends SPP to
the adversary A. Further, the SSK will also be
transmitted if A is Type II adversary.

 _ Phase 1. The adversary A may issue the following
queries.
 ▪ User secret key query: When receiving this query

with an identity ID, the challenger C performs
the UserKeyGen of CBEET to gain user secret
key USK and user public key pair UPKpair. Then,
C returns the USK to A if the identity ID did not
appear in User public key replace query.

 ▪ User public key query: When receiving this query
with an identity ID, the challenger C returns the
associated user public key pair UPKpair.

 ▪ User public key replace query: When receiving
this query with an identity ID and UPK´pair, the
challenger C replaces the user public key pair
UPKpair related to the identity ID with UPK´pair.

 ▪ Certification query: When receiving this query
with an identity ID and the associated user public
key pair UPKpair, the challenger C performs the

Information Technology and Control 2023/4/52940

CertGen of CBEET to gain the certificate pair
Certpair. Then, C returns the Certpair to A.

 ▪ Decryption query: When receiving this query
with an identity ID and the associated ciphertext
CT, the challenger C performs the Decryption of
CBEET to gain the resulting message M. Then, C
returns it to A.

 ▪ Trapdoor query: When receiving this query
with an identity ID, the challenger C performs
the Trapdoor of CBEET to gain the resulting
trapdoor TD. Then, C returns it to A.

 ▪ Challenge. The adversary A sends a message
pair (M0

*, M1
) and a target identity ID to C.

Then, C randomly chooses a random value rv ∈
{0, 1} to perform the Encryption of CBEET with
SPP, ID*, UPK*

pair and Mrv
* to obtain a challenge

ciphertext CT*. Then, C returns CT* to A. In
addition, three restrictions must be satisfied as
below.

 ▪ Whether the adversary A belongs to Type I or
Type II, ID* cannot appear in the Trapdoor query.

 ▪ If the adversary A belongs to Type I, ID* cannot
appear in the Certification query.

 ▪ If the adversary A belongs to Type II, ID* cannot
appear in both the User secret key query and
User public key replace query.

 _ Phase 2. The adversary A can continue to issue the
same queries as in phase 1.

 _ Guess. The adversary A sends a value rv´ ∈ {0, 1}
and wins this game GCBEET-IND-CCA if rv´ = rv. Here, we
denote A’s advantage as AdvA (λ) = | Pr[rv = rv´] – 1/2 |.

Definition  4 (GCBEET-OW-CCA). Assume that A is the
PPT adversary (including Type III and Type IV) for
a CBEET scheme. We say that the scheme is secure
for one-wayness under chosen ciphertext attacks if
A’s advantage of winning the following game with a
challenger C can be negligible.
 _ Setup. The challenger C performs the Setup

of CBEET with a security parameter λ to gain
the system secret key SSK and system public
parameters SPP. The challenger C sends SPP to
the adversary A. Further, the SSK will also be
transmitted if A is Type IV adversary.

 _ Phase 1. This phase is the same as in the phase 1 of
the game GCBEET-IND-CCA.

 _ Challenge. The adversary A sends a target identity
ID* to C. Then, C randomly chooses a random
message M* to perform the Encryption of CBEET
with SPP, ID*, UPK*

pair and M* to obtain a challenge
ciphertext CT*. Then, C returns CT* to A. In addition,
two restrictions must be satisfied as below.
 ▪ If the adversary A belongs to Type III, ID* cannot

appear in the Certification query.
 ▪ If the adversary A belongs to Type IV, ID* cannot

appear in both the User secret key query and
User public key replace query.

 _ Phase 2. The adversary A can continue to issue the
same queries as in phase 1.

Guess. The adversary A sends a message M´ and wins
this game GCBEET-OW-CCA if M´ = M*. Here, we denote A’s
advantage as AdvA (λ) = | Pr[M*= M´] – 1/2 |.

4. Concrete CBEET Scheme
Our proposed CBEET scheme, as shown in Figure 4,
consists of three roles: the CA, the users (sender/re-
ceiver), and the CS. The CA executes both the Setup
and CertGen algorithms, while the users are respon-
sible for the UserKeyGen, Encryption, Decryption,
and Trapdoor algorithms. The CS takes charge of
executing the Test algorithm. We can obtain the de-
tailed process of executing these algorithms from the
following.
 _ Setup: The CA inputs a security parameter λ to gain

𝒢 = (q, G1, G2, GT, e) defined in Section 2. Then, the
CA sets the system secret key SSK = s and system
public parameters SPP = (𝒢, U, V, SPK, H1, H2, H3,
H4, H5, H6) by performing the following steps.
 ▪ Randomly choose a value s ∈ Zq

*, and set SSK = s.
 ▪ Pick two generators U ∈ G1 and V ∈ G2, and

calculate system public key SPK = Us.
 ▪ Set six hash functions: H1: {0, 1}* × G2

1 → G2, H2:
{0, 1}* × G2

1 → G2, H3: GT × G2
1 → {0, 1}λ+l, H4: {0, 1}

λ → G2, H5: {0, 1}λ+l → Zq
*, H6: GT → G2, where l is a

fixed length.

Note that the CA will securely store the SSK to main-
tain its confidentiality, while the SPP will be made
publicly available to all users.
 _ UserKeyGen: The user inputs the system public

parameters SPP to gain V and SPK. Then, the user

941Information Technology and Control 2023/4/52

randomly chooses a value x ∈ Zq
* to set her/his user

secret key USK = x and user public key pair UPKpair
= (UPKA, UPKB) = (SPKx, Vx) = (Usx, Vx). Moreover,
the user sends her/his UPKpair to the CA. Here, the
user will securely store the user secret key USK to
maintain its confidentiality, while the user public
key pair UPKpair will be made publicly available to
all users.

 _ CertGen: The CA inputs the system public
parameters SPP, an identity ID, system secret key
SSK and user public key pair UPKpair to calculate the
user’s certificate pair Certpair = (CertA, CertB), where
CertA = H1(ID, UPKA, UPKB)SSK = H1(ID, UPKA,
UPKB)s and CertB = H2(ID, UPKA, UPKB)SSK =
H2(ID, UPKA, UPKB)s. In addition, the CA sends
Certpair to the user via a secure channel. Here,
the user will securely store Certpair to maintain
its confidentiality. Next, the user can compute
the two equations, namely e(CertA, U) = e(H1(ID,
UPKA, UPKB), SPK) and e(CertB, U) = e(H2(ID,
UPKA, UPKB), SPK), to ascertain the origin of
the certificate pair Certpair. If the two equations
hold true, Certpair is confirmed to be from the CA;
otherwise, it is not.

 _ Encryption: A sender inputs the system public
parameters SPP, an identity ID, user public key
pair UPKpair and a message M ∈ {0, 1}λ to generate a
ciphertext CT if e(UPKA, V) = e(SPK, UPKB) holds.
The specific details of the ciphertext CT = (CT1,
CT2, CT3, CT4) are shown as below:
 ▪ CT1 = Uα, where α = H5(M, κ) and κ ∈ {0, 1}l is

chosen in random.
 ▪ CT2 = Uβ, where β ∈ Zq

* is a random value.
 ▪ CT3 = H3(e(UPKA, H1(ID, UPKA, UPKB)β), CT1,

CT2)⊕(M || κ).
 ▪ CT4 = H4(M)α ·H6(e(UPKA, H2(ID, UPKA, UPKB)β)).

 _ Decryption: The receiver inputs the system public
parameters SPP, the ciphertext CT, her/his user
secret key USK and Certpair to obtain the message
M by performing the following steps:
 ▪ Compute CT3⊕H3(e(CT2, CertAx), CT1, CT2) to

gain M′ || κ′.
Compute α′ = H5(M′, κ′) and return the message M′ as
M if CT1 = and CT4 = H4 ·H6(e(CT2, CertBx))
both hold.

The process of gaining the message M can be seen in
the following.
CT3⊕H3(e(CT2, CertAx), CT1, CT2)
= H3(e(UPKA, H1(ID, UPKA, UPKB)β),

CT1, CT2)⊕(M || κ)⊕H3(e(CT2,
CertAx), CT1, CT2)

= H3(e(Usx, H1(ID, UPKA, UPKB)β), CT1,
CT2)⊕(M || κ)⊕H3(e(Uβ, CertAx),
CT1, CT2)

= H3(e(Usx, H1(ID, UPKA, UPKB)β), CT1,
CT2)⊕(M || κ)⊕H3(e(Uβ, H1(ID,
UPKA, UPKB)sx), CT1, CT2)

= H3(e(U, H1(ID, UPKA, UPKB)sxβ), CT1,
CT2)⊕(M || κ)⊕H3(e(U, H1(ID,
UPKA, UPKB)sxβ), CT1, CT2)

= (M || κ).
 _ Trapdoor: The user inputs system public

parameters SPP, her/his Certpair and user secret
key USK to obtain a trapdoor TD = CertBUSK =
H2(ID, UPKA, UPKB)sx. Then, the user sends TD
to the CS via a secure channel. Here, the CS will
securely store TD to maintain its confidentiality.
Next, the CS can compute the equation, namely
e(TD, U) = e(H2(ID, UPKA, UPKB), UPKA), to
ascertain the origin of the trapdoor TD. If the
equation holds true, TD is confirmed to be from the
user; otherwise, it is not.

 _ Test: For any two users Ui and Uj, the CS inputs
the system public parameters SPP, two ciphertexts
CTi, CTj and two trapdoors TDi, TDj, where CTi =
(CTi1, CTi2, CTi3, CTi4) and CTj = (CTj1, CTj2, CTj3,
CTj4) to return 1 or 0 by performing the following
steps.
 ▪ Compute Ti and Tj as below.

 ▪ Ti =

=

=

=

=

Information Technology and Control 2023/4/52942

 ▪ Tj =

= =

=

=

 ▪ Calculate e(CTi1, Tj) and e(CTj1, Ti) as below.
 ▪ e(CTi1, Tj) = e()

=

 ▪ e(CTj1, Ti) = e()

=
 ▪ Return 1 if e(CTi1, Tj) = e(CTj1, Ti). Otherwise,

return 0.

Theorem 1. Assume that six hash functions Hi, for i ∈
[1, 6], are random oracles and A1 is a Type I adversary
against the CB-PKEET scheme with advantage ϵ in
the security game GCBEET-IND-CCA. Then, there is an al-
gorithms C to solve the BDH problem with advantage

ϵ′ ≥ (1/) [ϵ/e(qcer + qtrap + 1) – qd/q - /q],

where , , qcer, qtrap and qd respectively are query
times to random oracle H3, random oracle H6, certifi-
cation query, trapdoor query and decryption query.
Proof. An algorithm C is given an instance of the BDH
problem: (𝒢, U, Ua, Uc, V, Va, Vb) where 𝒢 = (q, G1, G2, GT,
ê). Let D = ê(U, V)abc ∈ GT be the solution of the BDH
problem. The algorithm C simulates a challenger to
find D by interacting with A1 in the following security
game GCBEET-IND-CCA.
 _ Setup. The challenger C generates the system

public parameter SPP = (𝒢, U, V, SPK, H1, H2, H3,
H4, H5, H6) by setting SPK = Ua. Then, the system
public parameter SPP is sent to A1. Here, H1, H2,…,
H6 are hash functions as random oracles. Because
C’s responses to queries to these random oracles
issued from A1 must be consistent, C must maintain
the several lists, namely LH1, LH2, …, LH6, LKey which
are defined in phase 1 below.

 _ Phase 1. The adversary A1 may issue the following
queries.
 ▪ H1 query. When receiving this query with an

identity ID and the user public key pair UPKpair
= (UPKA, UPKB), the challenger C uses them to
search the list LH1 of the form [ID, UPKA, UPKB,
σ, cn].
 ▪ If (ID, UPKA, UPKB) appears on the list LH1, C

uses the corresponding σ and cn to return
if cn = 0 or if cn = 1.

 ▪ Otherwise, C uses the identity ID to perform
user public key query to gain σ and cn, and C
records them into the list LH1.

 ▪ H2 query. When receiving this query with an
identity ID and the user public key pair UPKpair
= (UPKA, UPKB), the challenger C uses them to
search the list LH2 of the form [ID, UPKA, UPKB,
τ, cn].
 ▪ If (ID, UPKA, UPKB) appears on the list LH2, C

uses the corresponding τ and cn to return
if cn = 0 or if cn = 1.

Figure 4
Visual representation of the CBEET scheme

 =

=

=

 =

 Tj =

 =
=

 =

 =

 Calculate e(CTi1, Tj) and e(CTj1, Ti) as below.

 e(CTi1, Tj) = e()

 =

 e(CTj1, Ti) = e()

 =

 Return 1 if e(CTi1, Tj) = e(CTj1, Ti). Otherwise,
return 0.

Figure 4 Visual representation of the CBEET scheme.

5. Security Analysis
As mentioned in Section 3, four types of attackers
were defined. Meanwhile, two security games
GCBEET-IND-CCA and GCBEET-OW-CCA respectively were
used to model indistinguishabilty under chosen
ciphertext attacks and one-wayness under chosen
ciphertext attacks. As considering these security
notions, four theorems are given to demonstrate that
the proposed CB-PKEET scheme is secure.

Theorem 1. Assume that six hash functions
Hi, for i ∈ [1, 6], are random oracles and A1 is
a Type I adversary against the CB-PKEET
scheme with advantage ϵ in the security
game GCBEET-IND-CCA. Then, there is an
algorithms C to solve the BDH problem with
advantage

ϵ′ ≥ (1/) [ϵ/e(qcer + qtrap + 1) – qd/q - /q],

where , , qcer, qtrap and qd respectively are
query times to random oracle H3, random
oracle H6, certification query, trapdoor query
and decryption query.

Proof. An algorithm C is given an instance of
the BDH problem: (𝒢𝒢𝒢𝒢, U, Ua, Uc, V, Va, Vb)
where 𝒢𝒢𝒢𝒢 = (q, G1, G2, GT, ê). Let D = ê(U, V)abc ∈
GT be the solution of the BDH problem. The
algorithm C simulates a challenger to find D
by interacting with A1 in the following
security game GCBEET-IND-CCA.

−− Setup. The challenger C generates the
system public parameter SPP = (𝒢𝒢𝒢𝒢, U, V,
SPK, H1, H2, H3, H4, H5, H6) by setting SPK
= Ua. Then, the system public parameter
SPP is sent to A1. Here, H1, H2,…, H6 are
hash functions as random oracles. Because
C’s responses to queries to these random
oracles issued from A1 must be consistent,
C must maintain the several lists, namely
LH1, LH2, …, LH6, LKey which are defined in
phase 1 below.

−− Phase 1. The adversary A1 may issue the
following queries.

 H1 query. When receiving this query
with an identity ID and the user public
key pair UPKpair = (UPKA, UPKB), the
challenger C uses them to search the list
LH1 of the form [ID, UPKA, UPKB, σ,
cn].

 If (ID, UPKA, UPKB) appears on the
list LH1, C uses the corresponding σ
and cn to return if cn = 0 or if
cn = 1.

 Otherwise, C uses the identity ID to
perform user public key query to gain
σ and cn, and C records them into
the list LH1.

 H2 query. When receiving this query
with an identity ID and the user public
key pair UPKpair = (UPKA, UPKB), the
challenger C uses them to search the list
LH2 of the form [ID, UPKA, UPKB, τ,
cn].

5. Security Analysis
As mentioned in Section 3, four types of attackers
were defined. Meanwhile, two security games GC-

BEET-IND-CCA and GCBEET-OW-CCA respectively were used to
model indistinguishabilty under chosen ciphertext
attacks and one-wayness under chosen ciphertext
attacks. As considering these security notions, four
theorems are given to demonstrate that the proposed
CB-PKEET scheme is secure.

943Information Technology and Control 2023/4/52

 ▪ Otherwise, C uses the identity ID to perform
user public key query to gain τ and cn, and C
records them into the list LH2.

 ▪ H3 query. When receiving this query with a
value μ ∈ GT and two points CT1, CT2 ∈ G1, the
challenger C uses them to search the list LH3 of
the form [μ, CT1, CT2, φ].
 ▪ If (μ, CT1, CT2) appears on the list LH3, C

returns the corresponding φ.
 ▪ Otherwise, C randomly chooses a value φ ∈ {0,

1}λ+l as answer to A1, and records [μ, CT1, CT2,
φ] into the list LH3.

 ▪ H4 query. When receiving this query with a value
M ∈{0, 1}λ, the challenger C uses it to search the
list LH4 of the form [M, γ].
 ▪ If M appears on the list LH4, C returns the

corresponding γ.
 ▪ Otherwise, C randomly chooses a point γ ∈ G2

as answer to A1, and records [M, γ] into the list
LH4.

 ▪ H5 query. When receiving this query with two
values M {0, 1}λ, κ ∈{0, 1}l, the challenger C uses
them to search the list LH5 of the form [M, κ, θ].
 ▪ If (M, κ) appears on the list LH5, C returns the

corresponding θ.
 ▪ Otherwise, C randomly chooses a value θ ∈ Zq

*
as answer to A1, and records [M, γ] into the list
LH5.

 ▪ H6 query. When receiving this query with a value
ζ ∈ GT, the challenger C uses it to search the list
LH6 of the form [ζ, η].
 ▪ If ζ appears on the list LH6, C returns the

corresponding η.
 ▪ Otherwise, C randomly chooses a point η ∈ G2

as answer to A1, and records [ζ, η] into the list
LH6.

 ▪ User public key query. When receiving this
query with an identity ID, the challenger C
randomly chooses two values σ ∈ Zq

*, τ ∈ Zq
* and a

coin cn ∈ {0, 1}. Then C respectively records two
tuples [ID, UPKA, UPKB, σ, cn] and [ID, UPKA,
UPKB, τ, cn] into the lists LH1 and LH2 by doing
the following setting.
 ▪ If cn = 0 with the probability Pr[cn = 0] = υ,

C runs the UserKeyGen algorithm to obtain
the user secret key USK = x. Then, C uses it

to calculate user public key UPKpair = (UPKA,
UPKB) = (SPKx , Vx). Further, the certificate
pair Certpair = (CertA, CertB) = (,)
can be obtained by performing the CertGen
algorithm. Finally, C records [ID, USK, UPKA,
UPKB, CertA, CertB, 0] into the list LKey, and
returns UPKpair = (UPKA, UPKB) to A1.

 ▪ Otherwise, C runs the UserKeyGen algorithm
to obtain the user secret key USK = x. Then,
C uses it to calculate user public key UPKpair
= (UPKA, UPKB) = (SPKx , Vx). Finally, C
records [ID, USK, UPKA, UPKB, -, -, 1] into
the list Lkey, and returns UPKpair = (UPKA,
UPKB) to A1.

 ▪ User secret key query. When receiving this query
with an identity ID, the challenger C uses it to
search the list Lkey of the form [ID, USK, UPKA,
UPKB, CertA, CertB, cn].
 ▪ If ID appears on the list Lkey, C returns the

corresponding USK.
 ▪ Otherwise, C uses the identity ID to perform

user public key query to gain USK, and C
returns it.

 ▪ User Public key replace query. When receiving
this query with an identity ID and a new user
public key pair UPKpair′ = (UPKA′, UPKB′), the
challenger C checks whether ê(UPKA′, V) =
ê(SPK, UPKB′) or not.
 ▪ If ê(UPKA′, V) = ê(SPK, UPKB′) holds, the

original user public key UPKpair = (UPKA,
UPKB) related to the identity ID will be
replaced with UPKpair′.

 ▪ Otherwise, C returns ⊥ to A1.
 ▪ Certification query. When receiving this query

with an identity ID and user public key UPKpair
= (UPKA, UPKB), the challenger C uses them to
search the list Lkey of the form [ID, USK, UPKA,
UPKB, CertA, CertB, cn].
 ▪ If (ID, UPKA, UPKB) appears on the list Lkey,

C returns the corresponding certificate pair
Certpair = (CertA, CertB) if cn = 0 or aborts this
game if cn = 1.

 ▪ Otherwise, C performs user public key query
to record the corresponding information.
Then, C runs the query again to return Certpair
= (CertA, CertB) or abort this game.

Information Technology and Control 2023/4/52944

 ▪ Decryption query. When receiving this query
with an identity ID and ciphertext CT = (CT1,
CT2, CT3, CT4), the challenger C uses them to
search the list Lkey of the form [ID, USK, UPKA,
UPKB, CertA, CertB, cn].
 ▪ If ID appears on the list Lkey and cn = 0, C uses

the corresponding USK, CertA and CertB to
perform the Decryption algorithm. Then, C
returns the output.

 ▪ Otherwise, C uses (CT1, CT2) to search the list
LH3 of the form [μ, CT1, CT2, φ]. If (CT1, CT2)
can be found, C calculates M′ || κ′ = CT3⊕φ by
using the corresponding φ. Then, M′ || κ′ is
used to search the list LH4 of the form [M, γ]
and the list LH5 of the form [M, κ, θ]. If η can
be found on the list LH6 of the form [ζ, η] such
that CT 4 = γ·η holds, C calculates CT1′ = Uθ.
If CT1′ = CT1, C returns M′ to A1. Otherwise,
returns ⊥ to A1.

 ▪ Trapdoor query. When receiving this query with
an identity ID, the challenger C uses it to search
the list Lkey of the form [ID, USK, UPKA, UPKB,
CertA, CertB, cn].
 ▪ If ID appears on the list Lkey, C returns the

corresponding trapdoor TD = CertBUSK if cn =
0 or aborts this game if cn = 1.

 ▪ Otherwise, C performs user public key query
to record the corresponding information.
Then, C runs the query again to return TD or
abort this game.

 _ Challenge. The adversary A1 sends a message pair
(M0

*, M1
) and a target identity ID to C. Then, C

uses ID* to search the list Lkey of the form [ID, USK,
UPKA, UPKB, CertA, CertB, cn]. If cn = 0, C aborts
this game. Otherwise, C pick a random value rv ∈
{0, 1}, and uses Mrv

 * and κ to issue H5 query to gain
θ, where the value κ ∈ {0, 1}l is chosen in random.
Further, C sets CT1

* = Uθ, CT2
* = Uc, CT3

* ∈ {0, 1}λ+l
and CT4

* ∈ G2. Here, CT3
* and CT4

* respectively are
a random value in {0, 1}λ+l and a random point in G2.
Finally, C runs the target ciphertext CT * = (CT1

*,
CT2

*, CT3
*, CT4

*).
 _ Phase 2. The adversary A1 can continue to issue the

same queries as in phase 1.
 _ Guess. The adversary A1 sends a value rv´ ∈ {0, 1} as

the answer to guess. A1 wins this game if rv´ = rv. C
randomly selects a tuple [μ*, CT1

*, CT2
, φ] from the

list LH3 of the form [μ, CT1, CT2, φ] to gain μ*. Then,
D = (μ*)(x*σ*)^-1 is outputted as the solution of the BDH
problem.

Analysis. We first discuss the simulations of hash
functions, namely H1, H2,…, H6. Obviously, we can say
that the hash functions H1, H2, H4, and H5 as the ran-
dom oracles are perfect simulations since the inputs
and outputs of the random oracles are independent
of the solution of the BDH problem. Assume that
EventH3

* and EventH6
* are two events of issuing the

H3 query with (e(U, V)abcx*σ*, CT1
*, CT2

*) and H6 query
with (e(U, V)abcx*τ*), respectively. Here, we say that the
hash functions H3 and H6 as the random oracles are
perfect simulations if both two events EventH3

* and
EventH6

* did not occur. We then discuss the simula-
tions of the decryption query. We denote EventDec-
Fail as the event that the ciphertext is valid, and the
challenger C is unable to decrypt it. The probability of
this event is Pr[EventDecFail] ≤ qd/q.
Moreover, we denote Event = (EventH3

* ∨ EventH6
*

∨ EventDecFail)|¬ EventAbor as the event that this
game will not be aborted, where EventAbort is the
event that the challenger C aborts this game. We can
obtain probability Pr[rv = rv′ |¬ Event] ≤ 1/2 if the
event Event does not occur. Further, we get
Pr[rv = rv′] = Pr[rv = rv′|Event]Pr[Event]

+ Pr[rv = rv′|¬ Event]Pr[¬Event]
≤ Pr[Event] + (1/2)·Pr[¬Event]
= Pr[Event] + (1/2)·(1 – Pr[Event])
= (1/2)·Pr[Event] + 1/2.

According to the sense of ϵ, we have ϵ = Pr[rv = rv′] –
1/2. Hence, we obtain ϵ = Pr[rv = rv′] – 1/2 ≤ Pr[Event]
≤ (Pr[EventH3

*] + Pr[EventH6
*] + Pr[EventDec-

Fail]) / Pr[¬EventAbor]. By this inequality, we have
Pr[EventH3

*] ≥ ϵ·Pr[¬EventAbor] – Pr[EventDecFail]
– Pr[EventH6

*]. Since Pr[¬EventAbor] = (1 −),
we can gain Pr[¬EventAbor] ≥ 1/ e(qcer + qtrap + 1) when

 = 1 – 1/(qcer + qtrap + 1). We then have Pr[EventH3
*] ≥

ϵ/e(qcer + qtrap + 1) – qd/q - /q.
If the event EventH3

* occurs, the adversary A1 can
know the the the target ciphertext CT * is invalid.
H3(e(P, Q)abcx*σ*, CT1

*, CT2
*) has been recorded in the

list LH3. We can say that the challenger C wins this
game if the correct element was chosen in the list LH3.
Therefore, the challenger C can solve the BDH prob-
lem with advantage

945Information Technology and Control 2023/4/52

ϵ′ ≥ (1/)Pr[EventH3
*]

 ≥ (1/)·[ϵ/e(qcer + qtrap + 1) – qd/q - /q].

Theorem 2. Assume that six hash functions Hi, for i ∈
[1, 6], are random oracles and A2 is a Type II adversary
against the CB-PKEET scheme with advantage ϵ in
the security game GCBEET-IND-CCA. Then, there is an al-
gorithms C to solve the BDH problem with advantage

ϵ′ ≥ (1/) [ϵ/e(qtrap + 1) – qd/q - /q],

where , , qtrap and qd respectively are query times
to random oracle H3, random oracle H6, trapdoor que-
ries and decryption queries.
Proof. An algorithm C is given an instance of the BDH
problem: (𝒢, U, Ua, Uc, V, Va, Vb) where 𝒢 = (q, G1, G2, GT,
ê). Let D = ê(U, V)abc ∈ GT be the solution of the BDH
problem. The algorithm C simulates a challenger to
find D by interacting with A2 in the following security
game GCBEET-IND-CCA.
 _ Setup. The challenger C generates the system

public parameter SPP = (𝒢, U, V, SPK, H1, H2, H3, H4,
H5, H6) by setting SPK = Us, where s ∈ Zq

* is random
value as the system secret key SSK. Then, the
system public parameter SPP is sent to A2. Here,
H1, H2,…, H6 are hash functions as random oracles.
Because C’s responses to queries to these random
oracles issued from A2 must be consistent, C must
maintain the several lists, namely LH1, LH2, …, LH6,
LKey which are defined in phase 1 below.

 _ Phase 1. The adversary A2 may issue the following
queries.
 ▪ H1-H6 queries. The response is similar to the

proof of Theorem 1.
 ▪ User public key query. When receiving this

query with an identity ID, the challenger C
randomly chooses two values σ ∈ Zq

*, τ ∈ Zq
* and a

coin cn ∈ {0, 1}. Then C respectively records two
tuples [ID, UPKA, UPKB, σ, cn] and [ID, UPKA,
UPKB, τ, cn] into the lists LH1 and LH2 by doing
the following setting.
 ▪ If cn = 0 with the probability Pr[cn = 0] = υ,

C runs the UserKeyGen algorithm to obtain
the user secret key USK = x. Then, C uses it
to calculate user public key UPKpair = (UPKA,
UPKB) = (SPKx , Vx). Further, the certificate
pair Certpair = (CertA, CertB) = (,) can
be obtained by performing the CertGen
algorithm. Finally, C records [ID, USK, UPKA,

UPKB, CertA, CertB, 0] into the list LKey, and
returns UPKpair = (UPKA, UPKB) to A2.

 ▪ Otherwise, C randomly select a value x′ ∈ Zq
*

as the user secret key USK′. Then, C uses it
to calculate user public key UPKpair = (UPKA,
UPKB) = (SPKax′, Vax′). Further, the certificate
pair Certpair = (CertA, CertB) = (,) can be
obtained by owning system secret key SSK = s.
Finally, C records [ID, USK′, UPKA, UPKB,
CertA, CertB, 1] into the list Lkey, and returns
UPKpair = (UPKA, UPKB) to A2. Note that the
user secret key USK = x is treated as ax′.

 ▪ User secret key query. The response is similar to
the proof of Theorem 1.

 ▪ Decryption query. The response is similar to the
proof of Theorem 1.

 ▪ Trapdoor query. The response is similar to the
proof of Theorem 1.

 _ Challenge. The adversary A2 sends a message pair
(M0

*, M1
) and a target identity ID to C. Then, C

uses ID* to search the list Lkey of the form [ID, USK,
UPKA, UPKB, CertA, CertB, cn]. If cn = 0, C aborts
this game. Otherwise, C pick a random value rv ∈
{0, 1}, and uses Mrv

 * and κ to issue H5 query to gain
θ, where the value κ ∈ {0, 1}l is chosen in random.
Further, C sets CT1

* = Uθ, CT2
* = Uc, CT3

* ∈ {0, 1}λ+l
and CT4

* ∈ G2. Here, CT3
* and CT4

* respectively are
a random value in {0, 1}λ+l and a random point in G2.
Finally, C runs the target ciphertext CT * = (CT1

*,
CT2

*, CT3
*, CT4

*).
 _ Phase 2. The adversary A2 can continue to issue

the same queries as in phase 1.

Guess. The adversary A2 sends a value rv´ ∈ {0, 1} as
the answer to guess. A2 wins this game if rv´ = rv. C
randomly selects a tuple [μ*, CT1

*, CT2
, φ] from the

list LH3 of the form [μ, CT1, CT2, φ] to gain μ*. Then, D =
μ*/ is outputted as the solution of the BDH
problem.
Analysis. We first discuss the simulations of hash
functions, namely H1, H2,…, H6. Obviously, we can say
that the hash functions H1, H2, H4, and H5 as the ran-
dom oracles are perfect simulations since the inputs
and outputs of the random oracles are independent
of the solution of the BDH problem. Assume that
EventH3

* and EventH6
* are two events of issuing the

H3 query with (, CT1
*, CT2

*) and H6 query

Information Technology and Control 2023/4/52946

with (), respectively. Here, we say that
the hash functions H3 and H6 as the random oracles
are perfect simulations if both two events EventH3

*
and EventH6

* did not occur. We then discuss the simu-
lations of the decryption query. We denote EventDec-
Fail as the event that the ciphertext is valid, and the
challenger C is unable to decrypt it. The probability of
this event is Pr[EventDecFail] ≤ qd/q.
Moreover, we denote Event = (EventH3

* ∨ EventH6
*

∨ EventDecFail)|¬ EventAbor as the event that this
game will not be aborted, where EventAbort is the
event that the challenger C aborts this game. We can
obtain probability Pr[rv = rv′ |¬ Event] ≤ 1/2 if the
event Event does not occur. Further, we get
Pr[rv = rv′] = Pr[rv = rv′|Event]Pr[Event]

+ Pr[rv = rv′|¬ Event]Pr[¬Event]
≤ Pr[Event] + (1/2)·Pr[¬Event]
= Pr[Event] + (1/2)·(1 – Pr[Event])
= (1/2)·Pr[Event] + 1/2.

According to the sense of ϵ, we have ϵ = Pr[rv =
rv′] – 1/2. Hence, we obtain ϵ = Pr[rv = rv′] – 1/2 ≤
Pr[Event] ≤ (Pr[EventH3

*] + Pr[EventH6
*] + Pr[Event-

DecFail]) / Pr[¬EventAbor]. By this inequality, we
have Pr[EventH3

*] ≥ ϵ·Pr[¬EventAbor] – Pr[Event-
DecFail] – Pr[EventH6

*]. Since Pr[¬EventAbor] =
 (1 −), we can gain Pr[¬EventAbor] ≥ 1/e(qtrap + 1)
when = 1 – 1/(qtrap + 1). We then have Pr[EventH3

*] ≥
ϵ/e(qtrap + 1) – qd/q - /q.
If the event EventH3

* occurs, the adversary A2 can
know the the the target ciphertext CT * is invalid.
H3(, CT1

*, CT2
*) has been recorded in the

list LH3. We can say that the challenger C  wins this
game if the correct element was chosen in the list LH3.
Therefore, the challenger C  can solve the BDH prob-
lem with advantage
ϵ′ ≥ (1/)Pr[EventH3

*]
 ≥ (1/)·[ϵ/e(qtrap + 1) – qd/q - /q].

Theorem 3. Assume that six hash functions Hi, for i
∈ [1, 6], are random oracles and A3 is a Type III adver-
sary against the CB-PKEET scheme with advantage ϵ
in the security game GCBEET-OW-CCA. Then, there is an al-
gorithms C to solve the BDH problem with advantage

ϵ′ ≥ (1/) [(ϵ - 1/2λ)/ e(qcer + 1) – qd/q],

where , qcer and qd respectively are query times to
random oracle H3, certification queries and decryp-
tion queries.

Proof. An algorithm C is given an instance of the BDH
problem: (𝒢, U, Ua, Uc, V, Va, Vb) where 𝒢 = (q, G1, G2, GT,
ê). Let D = ê(U, V)abc ∈ GT be the solution of the BDH
problem. The algorithm C simulates a challenger to
find D by interacting with A3 in the following security
game GCBEET-OW-CCA.
 _ Setup. The challenger C generates the system

public parameter SPP = (𝒢, U, V, SPK, H1, H2, H3,
H4, H5, H6) by setting SPK = Ua. Then, the system
public parameter SPP is sent to A3. Here, H1, H2,…,
H6 are hash functions as random oracles. Because
C’s responses to queries to these random oracles
issued from A3 must be consistent, C must maintain
the several lists, namely LH1, LH2, …, LH6, LKey which
are defined in phase 1 below.

 _ Phase 1. The adversary A3 may issue the following
queries.
 ▪ H1 query. The response is similar to the proof of

Theorem 1.
 ▪ H2 query. When receiving this query with an

identity ID and the user public key pair UPKpair
= (UPKA, UPKB), the challenger C uses them to
search the list LH2 of the form [ID, UPKA, UPKB,
τ, cn].
 ▪ If (ID, UPKA, UPKB) appears on the list LH2, C

uses the corresponding τ to return .
 ▪ Otherwise, C uses the identity ID to perform

user public key query to gain τ, and C records
it into the list LH2.

 ▪ H3-H6 queries. The response is similar to the
proof of Theorem 1.

 ▪ User public key query. The response is similar to
the proof of Theorem 1.

 ▪ User secret key query. The response is similar to
the proof of Theorem 1.

 ▪ Certification query. The response is similar to
the proof of Theorem 1.

 ▪ Decryption query. When receiving this query
with an identity ID and ciphertext CT = (CT1,
CT2, CT3, CT4), the challenger C uses them to
search the list Lkey of the form [ID, USK, UPKA,
UPKB, CertA, CertB, cn].
 ▪ If ID appears on the list Lkey and cn = 0, C uses

the corresponding USK, CertA and CertB to
perform the Decryption algorithm. Then, C
returns the output.

947Information Technology and Control 2023/4/52

 ▪ Otherwise, C uses (CT1, CT2) to search the list
LH3 of the form [μ, CT1, CT2, φ]. If (CT1, CT2)
can be found, C calculates M′ || κ′ = CT3⊕φ
by using the corresponding φ. Then, M′ ||
κ′ is used to search the list LH4 of the form
[M, γ] and the list LH5 of the form [M, κ, θ].
In addition, C uses ID to search the list Lkey
of the form [ID, USK, UPKA, UPKB, CertA,
CertB, cn] to calculate CertBUSK = Vaτx. If η can
be found on the list LH6 of the form [e(CT2,
CertBUSK), η] such that CT 4 = γ·η holds, C
calculates CT1′ = Uθ. If CT1′ = CT1, C returns M′
to A3. Otherwise, returns ⊥ to A3.

 ▪ Trapdoor query. When receiving this query with
an identity ID, the challenger C uses it to search
the list Lkey of the form [ID, USK, UPKA, UPKB,
CertA, CertB, cn].
 ▪ If ID appears on the list Lkey, C returns the

corresponding trapdoor TD = CertBUSK.
 ▪ Otherwise, C performs user public key query

to record the corresponding information.
Then, C runs the query again to return TD.

Challenge. The adversary A3 sends a target identity
ID* to C. Then, C uses ID* to search the list Lkey of the
form [ID, USK, UPKA, UPKB, CertA, CertB, cn]. If cn
= 0, C aborts this game. Otherwise, C picks a random
message M* ∈ {0, 1}λ and a value κ ∈ {0, 1}l, and then
uses M* and κ to issue H5 query to gain θ. In addition, C
uses M* and (Uc, Vaτ*x*) to issue H4 query and H6 query
to gain γ and η. Further, C sets CT1

* = Uθ, CT2
* = Uc, CT3

*
∈ {0, 1}λ+l and CT4

* = γθ·η. Here, CT3
* is a random value

in {0, 1}λ+l. Finally, C runs the target ciphertext CT * =
(CT1

*, CT2
*, CT3

*, CT4
*).

Phase 2. The adversary A3 can continue to issue the
same queries as in phase 1.
Guess. The adversary A3 sends a message M´ ∈ {0, 1}λ
as the answer to guess. A3 wins this game if M´ = M*. C
randomly selects a tuple [μ*, CT1

*, CT2
, φ] from the list

LH3 of the form [μ, CT1, CT2, φ] to gain μ*. Then, D = (μ*)

(x*σ*)^-1 is outputted as the solution of the BDH problem.
Analysis. We first discuss the simulations of hash
functions, namely H1, H2,…, H6. Obviously, we can say
that the hash functions H1, H2, H4, H5 and H6 as the
random oracles are perfect simulations since the in-
puts and outputs of the random oracles are independ-
ent of the solution of the BDH problem. Assume that
EventH3

* is a events of issuing the H3 query with ((U,

V)abcx*σ*, CT1
*, CT2

*). Here, we say that the hash func-
tions H3 as the random oracles is perfect simulations
if events EventH3

* did not occur. We then discuss
the simulations of the decryption query. We denote
EventDecFail as the event that the ciphertext is valid,
and the challenger C is unable to decrypt it. The prob-
ability of this event is Pr[EventDecFail] ≤ qd/q.
Moreover, we denote Event = (EventH3

* ∨ EventDec-
Fail)|¬ EventAbor as the event that this game will not
be aborted, where EventAbort is the event that the
challenger C aborts this game. We can obtain proba-
bility Pr[M´ = M* |¬ Event] ≤ 1/2λ if the event Event
does not occur. Further, we get
Pr[rv = rv′] = Pr[M′ = M*|Event]Pr[Event]

+ Pr[rv = rv′|¬ Event]Pr[¬Event]
≤ Pr[Event] + (1/2λ)·Pr[¬Event]
= Pr[Event] + (1/2λ)·(1 – Pr[Event])
= (1/2λ)·Pr[Event] + 1/2λ.

According to the sense of ϵ, we have ϵ = Pr[M´ = M*] –
1/2λ. Hence, we obtain ϵ = Pr[M′ = M*] – 1/2λ ≤ Pr[Event]
≤ (Pr[EventH3

*] + Pr[EventDecFail]) / Pr[¬Event-
Abor]. By this inequality, we have Pr[EventH3

*] ≥
(ϵ - 1/2λ)·Pr[¬EventAbor] – Pr[EventDecFail]. Since
Pr[¬EventAbor] = (1 −), we can gain Pr[¬Event-
Abor] ≥ 1/e(qcer + 1) when = 1 – 1/(qcer + 1). We then
have Pr[EventH3

*] ≥ (ϵ - 1/2λ)/e(qcer + 1) – qd/q.
If the event EventH3

* occurs, the adversary A3 can
know the the the target ciphertext CT * is invalid.
H3(e(U, V)abcx*σ*, CT1

*, CT2
*) has been recorded in the

list LH3. We can say that the challenger C wins this
game if the correct element was chosen in the list LH3.
Therefore, the challenger C can solve the BDH prob-
lem with advantage
ϵ′ ≥ (1/)Pr[EventH3

*]
 ≥ (1/)·[(ϵ - 1/2λ)/e(qcer + 1) – qd/q].

Theorem 4. Assume that six hash functions Hi, for i
∈ [1, 6], are random oracles and A4 is a Type IV adver-
sary against the CB-PKEET scheme with advantage ϵ
in the security game GCBEET-OW-CCA. Then, there is an al-
gorithms C to solve the BDH problem with advantage

ϵ′ ≥ (1/) [4(ϵ - 1/2λ) – qd/q],
where and qd respectively are query times to ran-
dom oracle H3 and decryption queries.
Proof. An algorithm C is given an instance of the BDH
problem: (𝒢, U, Ua, Uc, V, Va, Vb) where 𝒢 = (q, G1, G2, GT,

Information Technology and Control 2023/4/52948

ê). Let D = ê(U, V)abc ∈ GT be the solution of the BDH
problem. The algorithm C simulates a challenger to
find D by interacting with A4 in the following security
game GCBEET-OW-CCA.
 _ Setup. The challenger C generates the system

public parameter SPP = (𝒢, U, V, SPK, H1, H2, H3, H4,
H5, H6) by setting SPK = Us, where s ∈ Zq

* is random
value as the system secret key SSK. Then, the
system public parameter SPP is sent to A4. Here,
H1, H2,…, H6 are hash functions as random oracles.
Because C’s responses to queries to these random
oracles issued from A4 must be consistent, C must
maintain the several lists, namely LH1, LH2, …, LH6,
LKey which are defined in phase 1 below.

 _ Phase 1. The adversary A4 may issue the following
queries.
 ▪ H1 query. it is similar to the proof of Theorem 1.
 ▪ H2 query. it is similar to the proof of Theorem 3.
 ▪ H3-H6 queries. it is similar to the proof of

Theorem 1.
 ▪ User public key query. it is similar to the proof of

Theorem 2.
 ▪ Decryption query. it is similar to the proof of

Theorem 3.
 ▪ Trapdoor query. it is similar to the proof of

Theorem 3.

Challenge. The adversary A4 sends a target identity
ID* to C. Then, C uses ID* to search the list Lkey of the
form [ID, USK, UPKA, UPKB, CertA, CertB, cn]. If cn =
0, C aborts this game. Otherwise, C picks a random
message M* ∈ {0, 1}λ and a value κ ∈ {0, 1}l, and then
uses M* and κ to issue H5 query to gain θ. In addition,
C uses M* and (Uc, Vaτ*x*) to issue H4 query and H6 que-
ry to gain γ and η. Further, C sets CT1

* = Uθ, CT2
* = Uc,

CT3
* ∈ {0, 1}λ+l and CT4

* = γθ·η. Here, CT3
* is a random

value in {0, 1}λ+l. Finally, C runs the target ciphertext
CT * = (CT1

*, CT2
*, CT3

*, CT4
*).

Phase 2. The adversary A4 can continue to issue the
same queries as in phase 1.
Guess. The adversary A4 sends a message M′ ∈ {0, 1}λ

as the answer to guess. A4 wins this game if M′ = rv.
C randomly selects a tuple [μ*, CT1

*, CT2
, φ] from the

list LH3 of the form [μ, CT1, CT2, φ] to gain μ*. Then, D =
D = (μ*) (s^2 x*σ*)^-1 is outputted as the solution of the BDH
problem.

Analysis. We first discuss the simulations of hash
functions, namely H1, H2,…, H6. Obviously, we can
say that the hash functions H1, H2, H4, H5 and H6 as
the random oracles are perfect simulations since
the inputs and outputs of the random oracles are
independent of the solution of the BDH problem.
Assume that EventH3

* is a events of issuing the H3
query with (, CT1

*, CT2
*). Here, we say

that the hash functions H3 as the random oracles is
perfect simulations if events EventH3

* did not occur.
We then discuss the simulations of the decryption
query. We denote EventDecFail as the event that the
ciphertext is valid, and the challenger C is unable to
decrypt it. The probability of this event is Pr[Event-
DecFail] ≤ qd/q.
Moreover, we denote Event = (EventH3

* ∨ EventDec-
Fail)|¬ EventAbor as the event that this game will not
be aborted, where EventAbort is the event that the
challenger C aborts this game. We can obtain prob-
ability Pr[rv = rv′ |¬ Event] ≤ 1/2λ if the event Event
does not occur. Further, we get
Pr[rv = rv′] = Pr[rv = rv′|Event]Pr[Event]

+ Pr[rv = rv′|¬ Event]Pr[¬Event]
≤ Pr[Event] + (1/2λ)·Pr[¬Event]
= Pr[Event] + (1/2λ)·(1 – Pr[Event])
= (1/2λ)·Pr[Event] + 1/2λ.

According to the sense of ϵ, we have ϵ = Pr[rv = rv′] – 1/2λ.
Hence, we obtain ϵ = Pr[rv = rv′] – 1/2λ ≤ Pr[Event] ≤
(Pr[EventH3

*] + Pr[EventDecFail]) / Pr[¬Event-
Abor]. By this inequality, we have Pr[EventH3

*] ≥
(ϵ - 1/2λ)·Pr[¬EventAbor] – Pr[EventDecFail]. Since
Pr[¬EventAbor] = (1 −), we can gain Pr[¬Event-
Abor] ≥ 1/4 when = 1 – 1/(1 + 1). We then have
Pr[EventH3

*] ≥ 4(ϵ - 1/2λ) – qd/q.
If the event EventH3

* occurs, the adversary A4 can
know the the the target ciphertext CT * is invalid.
H3(, CT1

*, CT2
*) has been recorded in the

list LH3. We can say that the challenger C wins this
game if the correct element was chosen in the list LH3.
Therefore, the challenger C can solve the BDH prob-
lem with advantage
ϵ′ ≥ (1/)Pr[EventH3

*]
 ≥ (1/)·[4(ϵ - 1/2λ) – qd/q].

949Information Technology and Control 2023/4/52

6. Comparison
In this section, we give a comparison of our proposed
CBEET scheme with the IBEET scheme [15] and the
CBE scheme [19]. We employ two notations to analyze
the computational cost of encryption, decryption and
equality test. The two notations are defined as below.
 _ Costpair: the cost of performing a bilinear pairing

operation e: G1 × G2 → GT.
 _ Costexp: the cost of performing an exponentiation

operation in G1, G2 or GT.

We utilize the relevant simulation results [27] to ob-
tain Costpair ≈ 20ms and Costexp ≈ 7ms. The relevant
simulations are executed in a PC environment where
the hardware specification is Intel Core i7 CPU 1.80
Ghz processor. The inputs of relevant simulations
are a finite field Fq, G1, G2 and GT, where q is a 512-bit
prime number, and q is the order for three groups G1,
G2 and GT. We also obtain Costpair ≈ 96ms and Costexp ≈
31ms in a mobile device environment where the hard-
ware specification is Intel 624-MHz PXA270 CPU.
Table 3 presents the comparisons of our proposed
CBEET scheme with the IBEET scheme [15] and the
CBE scheme [19] in terms of computational cost, key
escrow problem and equality test property. For the
computational cost in the procedure of encryption,
the CBE scheme [19] is the best, but it does not have
the property of providing equality test. On the oth-
er hand, the computational cost for decryption and
equality test of our CBEET scheme is almost the same
as that of the IBEET scheme [15]. However, there ex-
ists the key escrow problem in the IBEET scheme.

The KGC keeps the private key for each user and may
use the private key without the user’s knowledge.
Conversely, our CBEET scheme not only avoids the
key escrow problem, but also retains the performance
of encryption, decryption and equality test.

7. Conclusions and Future Work
We introduced a new syntax of CBEET, which in-
corporates the equality test into CBE. Additionally,
novel security notions were proposed. Building upon
the syntax of CBEET, we presented the first CBEET
scheme. Based on the BDH problem, our scheme has
been rigorously proven secure against four distinct
adversaries in the GCBEET-IND-CCA and GCBEET-OW-CCA se-
curity games. This proposed scheme ensures data
confidentiality, even when the data is stored on the
cloud. The cloud servers are unable to access the
content of the data, but still being able to perform
tasks of equality test. As compared with the exist-
ing IBEET scheme and CBE scheme, our CBEET
scheme not only avoids the key escrow problem, but
also retains the performance of encryption, decryp-
tion and equality test.
When considering future research, it is important to
focus on enhancing the proposed scheme’s security
properties, such as anonymity, mutual authentication,
freshness, and resistance to replay attacks. Hence, for
future research, it is crucial to address these short-
comings and develop a scheme that ensures mutual
authentication, freshness, anonymity, and resistance

Table 3
Comparisons of our CBEET with existing IBEET and CBE

Ma’s IBEET scheme [15] Shao’s CBE scheme [19] Our CBEET scheme

Computational cost for
encryption on a mobile device

2Costpair + 6Costexp

(≈ 378 ms)
Costpair + 2Costexp

(≈ 158 ms)
2Costpair + 5Costexp

(≈ 347 ms)

Computational cost for
decryption on a mobile device

2Costpair + 2Costexp

(≈ 254 ms)
2Costpair + 2Costexp

(≈ 254 ms)
2Costpair + 4Costexp

(≈ 316 ms)

Computational cost for equality
test on a PC

4Costpair

(≈ 80 ms) - 4Costpair

(≈ 80 ms)

Avoiding key escrow problem No Yes Yes

Possessing equality test
property Yes No Yes

Information Technology and Control 2023/4/52950

to replay attacks. This can involve exploring tech-
niques to safeguard user identities, prevent unau-
thorized access to secret data stored in devices, and
implement measures to detect and prevent message
tampering during transmission. By addressing these
concerns, the proposed scheme can be significantly
improved in terms of its overall security properties.
Additionally, we should also consider the adversary’s
capability to steal the user’s device and access data

from its memory, and even potentially acquire keys
for decryption purposes. These security features are
worth investigating as part of our research agenda.

Acknowledgement
This research was partially supported by Ministry
of Science and Technology, Taiwan, under contract
no. MOST 110-2222-E-019-001-MY2 and MOST
110-2221-E-019-041-MY3.

References
1. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.

Key-privacy in Public Key Encryption. In: ASIA-
CRYPT’01, 2001, LNCS 2248, 566-582. https://doi.
org/10.1007/3-540-45682-1_33

2. Bellare, M., Waters, B., Yilek, S. Identity-based En-
cryption Secure Against Selective Opening Attack.
In: TCC’11, 2011, LNCS 6597, 235-252. https://doi.
org/10.1007/978-3-642-19571-6_15

3. Boneh, D., Crescenzo, G. D., Ostrovsky, R., Persiano, G.
Public Key Encryption with Keyword Search. In: EU-
ROCRYPT’04, 2004, LNCS 3027, 506-522. https://doi.
org/10.1007/978-3-540-24676-3_30

4. Boneh, D., Franklin, M. Identity-based Encryption from
the Weil Pairing. In: CRYPTO’01, 2001, LNCS 2139,
213-229. https://doi.org/10.1007/3-540-44647-8_13

5. Duong, D. H., Fukushima, K., Kiyomoto, S., Roy, P. S.,
Susilo, W. A Lattice-based Public Key Encryption with
Equality Test in Standard Model. In: ACISP’19, 2019,
LNSC 11547, 138-155. https://doi.org/10.1007/978-3-
030-21548-4_8

6. Duong, D. H., Roy, P.S., Susilo, W., Fukushima, K., Ki-
yomoto, S., Sipasseuth, A. Chosen-ciphertext Lat-
tice-based Public Key Encryption with Equality Test in
Standard Model. Theoretical Computer Science, 2022,
905, 31-53. https://doi.org/10.1016/j.tcs.2021.12.013

7. Galindo, D., Morillo, P., Ràfols, C. Improved Certifi-
cate-based Encryption in the Standard Model. Jour-
nal of systems and software, 2008, 81(7), 1218-1226.
https://doi.org/10.1016/j.jss.2007.09.009

8. Gentry, C. Certificate-based Encryption and the Certif-
icate Revocation Problem. In: EUROCRYPT’03, 2003,
LNCS 2656, 272-293. https://doi.org/10.1007/3-540-
39200-9_17

9. Guo, Y., Li, J., Lu, Y., Zhang, Y., Zhang, F. Provably Secure
Certificate-based Encryption with Leakage Resilience.

Theoretical Computer Science, 2018, 711, 1-10. https://
doi.org/10.1016/j.tcs.2017.10.020

10. Guo, L., Lu, Y., Miao, Q., Zu, G., Wang, Z. An Efficient
Certificate-Based Encryption Scheme Without Ran-
dom Oracles. In: International Conference on Artificial
Intelligence and Security’22, 2022, LNCS 13340, 97-
107. https://doi.org/10.1007/978-3-031-06791-4_8

11. Huang, K., Tso, R., Chen, Y. C. Somewhat Semantic Secure
Public Key Encryption with Filtered-equality-test in the
Standard Model and Its Extension to Searchable Encryp-
tion. Journal of Computer and System Sciences, 2017, 89,
400-409. https://doi.org/10.1016/j.jcss.2017.06.001

12. Lee, H. T., Ling, S., Seo, J. H., Wang, H., Youn, T. Pub-
lic Key Encryption with Equality Test in the Stan-
dard Model. Information Sciences, 2020, 516, 89-108.
https://doi.org/10.1016/j.ins.2019.12.023

13. Li, H., Huang, Q., Ma, S., Shen, J., Susilo, W. Autho-
rized Equality Test on Identity-based Ciphertexts for
Secret Data Sharing via Cloud Storage. IEEE Access,
2019, 7, 25409-25421. https://doi.org/10.1109/AC-
CESS.2019.2899680

14. Liao, Y., Chen, H., Huang, W., Mohammed, R., Pan, H.,
Zhou, S. Insecurity of an IBEET Scheme and an ABEET
Scheme. IEEE Access, 2019, 7, 25087-25094. https://
doi.org/10.1109/ACCESS.2019.2900752

15. Ma, S. Identity-based Encryption with Outsourced Equal-
ity Test in Cloud Computing. Information Sciences, 2016,
328, 389-402. https://doi.org/10.1016/j.ins.2015.08.053

16. Ma, S., Zhang, M., Huang, Q., Yang, B. Public Key En-
cryption with Delegated Equality Test in a Multi-user
Setting. The Computer Journal, 2015, 58(4), 986-1002.
https://doi.org/10.1093/comjnl/bxu026

17. Sahai, A., Waters, B. Fuzzy Identity-based Encryp-
tion. In: EUROCRYPT’03, 2003, LNCS 3494, 457-473.
https://doi.org/10.1007/11426639_27

https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-642-19571-6_15
https://doi.org/10.1007/978-3-642-19571-6_15
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-030-21548-4_8
https://doi.org/10.1007/978-3-030-21548-4_8
https://doi.org/10.1016/j.tcs.2021.12.013
https://doi.org/10.1016/j.jss.2007.09.009
https://doi.org/10.1007/3-540-39200-9_17
https://doi.org/10.1007/3-540-39200-9_17
https://doi.org/10.1016/j.tcs.2017.10.020
https://doi.org/10.1016/j.tcs.2017.10.020
https://doi.org/10.1007/978-3-031-06791-4_8
https://doi.org/10.1016/j.jcss.2017.06.001
https://doi.org/10.1016/j.ins.2019.12.023
https://doi.org/10.1109/ACCESS.2019.2899680
https://doi.org/10.1109/ACCESS.2019.2899680
https://doi.org/10.1109/ACCESS.2019.2900752
https://doi.org/10.1109/ACCESS.2019.2900752
https://doi.org/10.1016/j.ins.2015.08.053
https://doi.org/10.1093/comjnl/bxu026
https://doi.org/10.1007/11426639_27

951Information Technology and Control 2023/4/52

18. Shamir, A. Identity-based Cryptosystems and Signa-
ture Schemes. In: CRYPTO’84, 1984, LNCS 196, 47-53.
https://doi.org/10.1007/3-540-39568-7_5

19. Shao, Z. Enhanced Certificate-based Encryption from
Pairings. Computers and Electrical Engineering,
2011, 37(2), 136-146. https://doi.org/10.1016/j.com-
peleceng.2011.01.007

20. Shareef, O. S. F., Sagheer, A. M. Improved Certifi-
cate-based Encryption Scheme in the Big Data: Com-
bining AES and (ECDSA-ECDH). Ibn AL- Haitham
Journal for Pure and Applied Sciences, 2021, 2021, 82-
95. https://doi.org/10.30526/2021.IHICPAS.2655

21. Tang, Q. Public Key Encryption Schemes Supporting
Equality Test with Authorisation of Different Gran-
ularity. International Journal of Applied Cryptog-
raphy, 2012, 2(4), 304-321. https://doi.org/10.1504/
IJACT.2012.048079

22. Tsai, T. T., Tseng, Y. M., Wu, T. Y. Efficient Revocable
Multi-receiver ID-based Encryption. Information
Technology and Control, 2013, 42(2), 159-169. https://
doi.org/10.5755/j01.itc.42.2.2244

23. Tseng, Y. M., Tsai, T. T., Huang, S. S., Huang, C. P. Iden-
tity-based Encryption with Cloud Revocation Au-
thority and Its Applications. IEEE Transactions on
Cloud Computing, 2018, 6(4), 1041-1053. https://doi.
org/10.1109/TCC.2016.2541138

24. Uyyala, P. Secure Channel Free Certificate-Based
Searchable Encryption Withstanding Outside and
Inside Keyword Guessing Attacks. The International
Journal of Analytical and Experimental Modal Analy-
sis, 2021, 13, 2467-2474.

25. Wu, J. D., Tseng, Y. M., Huang, S. S., Tsai, T. T. Leak-
age-resilient Certificate-based Key Encapsulation
Scheme Resistant to Continual Leakage. IEEE Open
Journal of the Computer Society, 2020, 1, 131-144.
https://doi.org/10.1109/OJCS.2020.3008961

26. Wu, L., Zhang, Y., Choo, K. K. R., He, D. Efficient and Se-
cure Identity-based Encryption Scheme with Equality

Test in Cloud Computing. Future Generation Comput-
er Systems, 2017, 73, 22-31. https://doi.org/10.1016/j.
future.2017.03.007

27. Xiong, H., Qin, Z. Revocable and Scalable Certificateless
Remote Authentication Protocol with Anonymity for
Wireless Body Area Networks. IEEE Transactions on
Information Forensics and Security, 2015, 10(7), 1442-
1455. https://doi.org/10.1109/TIFS.2015.2414399

28. Yang, G., Tan, C. H., Huang, Q., Wong, D. S. Probabi-
listic Public Key Encryption with Equality Test. In:
CT-RSA’10, 2010, LNCS 5985, 119-131. https://doi.
org/10.1007/978-3-642-11925-5_9

29. Yao, J., Li J., Zhang, Y. Certificate-based Encryption
Scheme without Pairing. KSII Transactions on Inter-
net and Information Systems, 2013, 7(6), 1480-1491.
https://doi.org/10.3837/tiis.2013.06.008

30. Yu, Q., Li, J., Zhang, Y. Leakage-resilient Certifi-
cate-based Encryption. Security and Communication
Networks, 2015, 8, 3346-3355. https://doi.org/10.1002/
sec.1258

31. Yu, Z., Gao, C. Z., Jing, Z., Gupta, B. B., Cai, Q. A Practi-
cal Public Key Encryption Scheme Based on Learning
Parity with Noise. IEEE Access, 2018, 6, 31918-31923.
https://doi.org/10.1109/ACCESS.2018.2840119

32. Zeng, M., Chen, J., Zhang, K., Qian, H. Public Key En-
cryption with Equality Test via Hash Proof System.
Theoretical Computer Science, 2019, 795, 20-35.
https://doi.org/10.1016/j.tcs.2019.05.033

33. Zhang, X., Xu, C. Trapdoor Security Lattice-based Pub-
lic-key Searchable Encryption with a Designated Cloud
Server. Wireless Personal Communications, 2018,
100(3), 907-921. https://doi.org/10.1007/s11277-018-
5357-6

34. Zhou, Y., Xu, Y., Qiao, Z., Yang, B., Zhang, M. Continu-
ous Leakage-resilient Certificate-based Signcryption
Scheme and Application in Cloud Computing. Theo-
retical Computer Science, 2021, 860, 1-22. https://doi.
org/10.1016/j.tcs.2021.01.024

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1016/j.compeleceng.2011.01.007
https://doi.org/10.1016/j.compeleceng.2011.01.007
https://doi.org/10.30526/2021.IHICPAS.2655
https://doi.org/10.1504/IJACT.2012.048079
https://doi.org/10.1504/IJACT.2012.048079
https://doi.org/10.5755/j01.itc.42.2.2244
https://doi.org/10.5755/j01.itc.42.2.2244
https://doi.org/10.1109/TCC.2016.2541138
https://doi.org/10.1109/TCC.2016.2541138
https://doi.org/10.1109/OJCS.2020.3008961
https://doi.org/10.1016/j.future.2017.03.007
https://doi.org/10.1016/j.future.2017.03.007
https://doi.org/10.1109/TIFS.2015.2414399
https://doi.org/10.1007/978-3-642-11925-5_9
https://doi.org/10.1007/978-3-642-11925-5_9
https://doi.org/10.1002/sec.1258
https://doi.org/10.1002/sec.1258
https://doi.org/10.1109/ACCESS.2018.2840119
https://doi.org/10.1016/j.tcs.2019.05.033
https://doi.org/10.1007/s11277-018-5357-6
https://doi.org/10.1007/s11277-018-5357-6
https://doi.org/10.1016/j.tcs.2021.01.024
https://doi.org/10.1016/j.tcs.2021.01.024

