Information Technology and Control
Vol. 52 / No. 4 / 2023

CBEET: Constructing Certificate-based Encryption with
Equality Test in the CB-PKS Received 2023/04/03 \quad Accepted after revision 2023/10/19

HOW TO CITE: Tsai, T.-T., Lin, H.-Y., Wu, C.-Y. (2023). CBEET: Constructing Certificate-based Encryption with Equality Test in the CB-PKS. Information Technology and Control, 52(4), 935-951. https://doi.org/10.5755/j01.itc.52.4.33765

CBEET: Constructing Certificate-based Encryption with Equality Test in the CB-PKS

Tung-Tso Tsai, Han-Yu Lin, Cheng-Ye Wu
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan

Corresponding author: hanyu@email.ntou.edu.tw

To maintain the confidentiality of private data, encryption mechanisms have become prevalent. Researchers always strive to design secure and efficient encryption mechanisms in both symmetric and asymmetric key systems. Certificate-based public key systems (CB-PKS) belong to the family of asymmetric key systems. CBPKS offers solutions to both the key escrow problem present in identity-based public key systems, and the need to construct a public key infrastructure in traditional public key systems. The past saw a wealth of research into the encryption mechanisms in the CB-PKS, called certificate-based encryption (CBE). Indeed, encrypted data (ciphertext) can be used in other applications such as the comparison of personal medical data as two ciphertexts can be compared to determine if they contain the same data (plaintext). However, the equality test of two ciphertexts in the CB-PKS is an open issue since research which has empirically studied is scant. The purpose of this paper is to propose the first certificate-based encryption with equality test (CBEET), and to prove that it is secure under the bilinear Diffie-Hellman (BDH) assumption.
KEYWORDS: Certificate-based cryptography, encryption, equality test, bilinear pairing.

1. Introduction

In traditional public key systems [1, 3, 31], a sender can use a receiver's public key to encrypt a message (data) and send it to the receiver via public channels. However, the relationship between the public key and the receiver's identity must be confirmed before such encryption procedure is executed, because the public key is composed of arbitrary random numbers. The
purpose of establishing public key infrastructures (PKI) is to connect the public key with the receiver's identity. To avoid the construction of PKI, an identi-ty-based public key system (ID-PKS) was proposed by Shamir [18], in which the receiver's public key can be regarded as her/his identity such as social security number or e-mail address. Based on the concept
of ID-PKS, many identity-based encryption (IBE) schemes [2, 4, 17, 22, 23] have been proposed.
A concept of public key encryption with keyword search (PKEKS) was proposed by Boneh et al. [3], in which users can upload an encrypted keyword (ciphertext) to the cloud server, and the ciphertext can be found by the cloud server with the authorizations from users. It is worth noting that the cloud server cannot know the message (plaintext) in the ciphertext. However, PKEKS has a restriction that the cloud server can only target a single user in the search process in the sense that all the ciphertexts that can be successfully searched must be encrypted from the same public key. To overcome this restriction, Yang et al. [28] proposed public key encryption with equality test (PKEET), in which the cloud server can use the comparison of ciphertexts to search the target ciphertext, while ciphertexts can be encrypted under different public keys.
Based on the first PKEET [28], Tang [21] proposed a new PKEET, in which the property of fine-gained authorization was considered to enable users to own this authorization over ciphertexts. To clearly point out the specific users who can perform the equality test for ciphertexts, Ma et al. [16] presented a delegation mechanism for PKEET, namely public key encryption with delegated equality test (PKE-DET). To filter testable ciphertexts, public key encryption with filtered equality test (PKE-FET) was proposed by Huang et al. [11]. For enhancing the security of PKEET, Duong et al. [5] proposed a PKEET in the standard model, while the PKEET is secure under the hardness assumption of lattices. Zeng et al. [32] hired the hash proof system to propose a secure PKEET in the standard model. Recently, the work of PKEET in the standard model are still valued and several PKEETs have been proposed in the literature [6,12].
Indeed, PKEET is a cryptographic mechanism designed under the traditional public key systems (PKS) which rely on the construction of PKI to manage certificates. To tackle the problem, Ma [15] proposed a new scheme, namely identity-based with equality test (IBEET) in the ID-PKS. Although Ma [15] presented the security analysis for the IBEET scheme, Liao et al. [14] pointed out that the scheme is insecure. For improving the performance on computational cost, Wu et al. [26] proposed an efficient IBEET scheme. In the above IBEET schemes, there is only one type of authorization from users to the cloud server. To make
the way of authorization more flexible, three types of authorization were presented and used into IBEET [13]. In addition, to resist the attack of quantum computing, an IBEET scheme from lattices was proposed by Zhang and Xu [33].
However, the ID-PKS had a drawback, namely, the key escrow problem since each user's private key is generated by the key generator center (KGC) of the ID-PKS. To remove the key escrow problem, certificate-based public key system (CB-PKS) was proposed by Gentry [8], which not only eliminates the key escrow problem in the ID-PKS, but also avoids the construction of PKI in traditional public key systems. Based on the CBPKS, a large number of certificate-based encryption (CBE) schemes have been published in the literature [7, 9, 19, 25, 29, 30] to protect the confidentiality of private data. Research related to CBE continues to be explored to this day. Shareef and Sagheer [20] presented an enhanced CBE scheme for big data environments by combining AES and (ECDSA-ECDH) techniques. The goal of this scheme is to improve encryption efficiency and security in big data scenarios. In order to avoid relying on random oracles for security analysis, Guo et al. [10] introduced an efficient CBE scheme without random oracles. On the other hand, to enable secure keyword searching in cloud environments, Uyyala [24] presented a secure channel-independent certificate-based searchable encryption scheme that can withstand outside and inside keyword guessing attacks. To protect data security under leakage risks while satisfying the efficiency and scalability requirements of cloud computing environments, Zhou et al. [34] introduced a continuous leakage-resilient cer-tificate-based signcryption scheme applied in cloud computing.
As mentioned in the previous PKEETs and IBEETs, the encrypted data (ciphertext) can be used in other applications such as the comparison of personal medical data since two ciphertexts can be compared whether they contain the same plaintext. Relevant PKEET scheme [31] and IBEET scheme [13] have been proposed in both traditional PKS and ID-PKS, respectively. To the best of our knowledge, there is no related work on equality test of ciphertexts in the CB-PKS. Table 1 lists the comparisons between the PKE scheme [31], the PKEET scheme [6], IBE scheme [23], IBEET scheme [13], CBE scheme [25] and our CBEET scheme in terms of public key setting,

Table 1
Comparisons between the existing schemes and our CBEET scheme

Schemes	Public-key setting	Eliminating PKI construction	Avoiding key escrow problem	Possessing equality test property
Yu et al.'s PKE scheme [31]	PKI-based	No	Yes	No
Duong et al.'s PKEET scheme [6]	PKI-based	No	Yes	Yes
Tseng et al.'s IBE scheme [23]	ID-based	Yes	No	No
Li et al.'s IBEET scheme [13]	ID-based	Yes	No	Yes
Wu et al.'s CBE scheme [25]	Certificate-based	Yes	Yes	No
Our CBEET cheme	Certificate-based	Yes	Yes	Yes

eliminating PKI construction, avoiding key escrow problem and possessing equality test property. After comparing with other existing schemes, we attempt to propose the first CBEET scheme that provides the equality test of ciphertexts in the CB-PKS.
Although the existing IBEET schemes [13, 15, 26] possessed the property of equality test of ciphertexts, they cannot avoid the key escrow problem. On the other hand, a well-known fact is that the existing CBE schemes [9, 25, 30] can avoid the key escrow problem. However, these CBE schemes do not provide a mechanism for equality test. In this paper, we extend CBE schemes to propose the first propose the first certifi-cate-based encryption with equality test. Several specific contributions are shown as below.

- We extend the syntax and security notions of CBE and consider the property of equality test of ciphertexts to define a novel syntax and security notions of CBEET.
- A concrete CBEET scheme is proposed under the syntax of CBEET.
- We demonstrate that the proposed CBEET scheme is secure under the bilinear Diffie-Hellman (BDH) assumption.
- Compared with the existing schemes, the proposed CBEET scheme not only retains the efficiency of encryption and decryption, but also has the mechanism of equality test.

The rest of this paper is as follows. Preliminaries are given in Section 2. Section 3 shows the definitions of the syntax and security notions. A concrete CBEET scheme is presented in Section 4. Section 5 analyzes the security of the CBEET scheme. A comparison
and a conclusion are given in Sections 6 and 7, respectively.

2. Preliminaries

Two preliminaries including the concept of bilinear pairings [4] and the bilinear Diffie-Hellman (BDH) assumption [15] are introduced in this section. Two definitions related to bilinear pairings and the BDH assumption are given as below.
Definition 1. (Bilinear pairings). Assume that q is large prime number and it is the order for three multiplicative cyclic groups, namely G_{1}, G_{2} and G_{T}. We say that $e: G_{1} \times G_{2} \rightarrow G_{T}$ is an asymmetric bilinear pairing if e has the following three properties.
1 Bilinearity: for any $x, y Z_{q}^{*}, e\left(U^{x}, V^{y}\right)=e(U, V)^{x y}$, where U and V respectively are generators in G_{1} and G_{2}.
2 Non-degeneracy: $e(U, V) \neq 1$, where the definitions of U and V are the same as (1) above.
3 Computability: $e\left(g_{1}, g_{2}\right)$ is efficiently computable for all $g_{1} \in G_{1}, g_{2} \in G_{2}$.
Definition 2. (BDH assumption). Assume that $\mathcal{G}=$ ($q, G_{1}, G_{2}, G_{T}, e, U, U^{a}, U^{c}, V, V^{a}, V^{b}$) is the instance of the BDH problem, where $a, b, c \in Z_{q}^{*}$ are unknown for any probabilistic polynomial time (PPT) adversary \mathcal{A}. Then, \mathcal{A} 's advantage of computing $e(U, V)^{a b c}$ is negligible and defined as $\operatorname{Pr}\left[\mathcal{A}\left(U, U^{a}, U^{c}, V, V^{a}, V^{b}\right)=\right.$ $\left.e(U, V)^{a b c}\right]<\epsilon$.
To improve readability for readers, we have compiled Table 2, which contains a comprehensive list of symbols employed in the proposed CBEET.

Table 2
Symbols

Symbol	Meaning
SSK	The system secret key
SPP	The system public parameters
$U S K$	The user secret key
$U P K_{\text {pair }}$	The user public key pair
$U P K A$	The first part of user public key pair
UPKB	The second part of user public key pair
Cert pair $^{\text {CertA }}$	The user certificate pair
CertB	The first part of user certificate pair
M	The second part of user certificate pair
$C T$	The message
$T D$	The ciphertext

3. Syntax and Security Notions

Inspired by previous works related to $\operatorname{CBE}[7,29]$ and the properties of equality test $[5,15]$, we define a new syntax and new security notions of CBEET. Based on the syntax of CBE, we present the new syntax of CBEET by adding the Trapdoor and Test algorithms. Following the security notions of CBE, we present the new security notions of CBEET by adding two new types of adversaries who can obtain the trapdoor from the Trapdoor algorithm.

3.1. Syntax of CBEET

There are three roles: the certification authority (CA), the users (sender/receiver) and the cloud server (CS) in the syntax of CBEET. We use Figure 1 to depict the generation of user's full secret key and public key. The CA performs the Setup algorithm to generate the system secret key $S S K$ and system public parameters $S P P$. A user can set her/his user secret key $U S K$ and user public key pair $U P K_{\text {pair }}=(U P K A, U P K B)$ according to the system public parameters $S P P$. Immediately, the user sends her/his identity $I D$ and user public key pair $U P K_{\text {pair }}$ to the CA. The user certificate pair Cert $_{\text {pair }}$ can be calculated by the CA. And, Cert ${ }_{\text {pair }}$ is returned to the user via secure channels. Notice that the user's full secret key consists of user secret key USK and user certificate pair Cert $_{\text {pair }}$. Figure 2 describes the process of encryption and decryption. A sender can use the identity $I D$ and public key pair $U P K_{\text {pair }}$ of the receiver to encrypt the plaintext (message M) and

Figure 1
Generation of user's full secret key and public key

Figure 2
The process of encryption and decryption

Figure 3
The work of the CS for testing

obtain the ciphertext $C T$. After receiving the ciphertext $C T$, the receiver can use the associated $U S K$ and Cert $_{\text {pair }}$ to decrypt and obtain the plaintext. Figure 3 in-
troduces the work of the CS for testing. Each user can send her/his own trapdoor and ciphertexts to the CS who can compare the ciphertexts to confirm whether any two ciphertexts contain the same plaintext. Next, we formally introduce the syntax of CBEET which includes the following seven algorithms.

- Setup: The CA inputs a security parameter λ to gain the system secret key $S S K$ and system public parameters $S P P$.
- UserKeyGen: The user inputs the system public parameters $S P P$ to gain her/his user secret key $U S K$ and user public key pair $U P K_{\text {pair }}=(U P K A$, $U P K B)$. Moreover, the user sends her/his $U P K_{\text {pair }}$ to the CA.
- CertGen: The CA inputs the system public parameters $S P P$, user's identity $I D$, system secret key $S S K$ and user public key pair $U P K_{\text {pair }}$ to calculate the user's certificate pair Cert $_{p a i r}$. In addition, the CA sends Cert pair to the user via a secure channel.
- Encryption: A sender inputs the system public parameters $S P P$, user's identity $I D$, user public key pair $U P K_{\text {pair }}$ and a message $M \in\{0,1\}^{\lambda}$ to generate a ciphertext CT.
- Decryption: The receiver inputs the system public parameters $S P P$, the ciphertext $C T$, her/his user secret key USK and Cert $_{\text {pair }}$ to obtain the message M.
- Trapdoor: The user inputs public parameters PP, her/his Cert $_{p a i r}$ and user secret key USK to obtain a trapdoor TD. Then, the user sends $T D$ to the CS via a secure channel.
- Test: For any two users U_{i} and U_{j}, the CS inputs the system public parameters $S P P$, two ciphertexts $C T_{i}, C T_{j}$ and two trapdoors $T D_{i}, T D_{j}$ to return 1 or 0.

3.2. Security Notions of CBEET

We know that there are two types of adversaries in the CB-PKC systems [7, 29]. One is a non-system member (external adversary), and the other is the CA who could be honest-but-curious since the CA possesses the system secret key $S S K$. In order to satisfy the equality test properties [5,15], we must consider the situation that adversaries can obtain the trapdoor $T D$ in the security notions. The following are four types of adversaries in the proposed CBEET.

- Type I adversary is an external adversary who has the ability of replacing the user public key pair $U P K_{\text {pair }}$.
- Type II adversary is the CA who has the system secret key $S S K$ which is used to calculate the user's certificate pair Cert ${ }_{\text {pair }}$.
- Type III adversary is the same as Type I adversary, except that the trapdoor $T D$ can be obtained.
- Type IV adversary is the same as Type II adversary, except that the trapdoor TD can be obtained.

Based on the security notions of CBE [7, 29], we add the equality test properties [5,15] to define two new security games (later presented in Definitions 3 and 4) for the CBEET. The first security game named the $G_{\text {CBEET-IND-CCA }}$ is used to model indistinguishabilty under chosen ciphertext attacks from Type I and Type II adversaries. The second security game named the $G_{\text {CBEET-ow-CCA }}$ is used to model one-wayness under chosen ciphertext attacks from Type III and Type IV adversaries.
Definition 3 ($\left.G_{\text {CBEET-Ind-cCA }}\right)$. Assume that \mathcal{A} is the PPT adversary (including Type I and Type II) for a CBEET scheme. We say that the scheme is secure for indistinguishabilty under chosen ciphertext attacks if A's advantage of winning the following game with a challenger C can be negligible.

- Setup. The challenger C performs the Setup of CBEET with a security parameter λ to gain the system secret key $S S K$ and system public parameters $S P P$. The challenger C sends $S P P$ to the adversary \mathcal{A}. Further, the $S S K$ will also be transmitted if \mathcal{A} is Type II adversary.
- Phase 1. The adversary \mathcal{A} may issue the following queries.
- User secret key query: When receiving this query with an identity $I D$, the challenger C performs the UserKeyGen of CBEET to gain user secret key $U S K$ and user public key pair $U P K_{\text {pair. }}$. Then, C returns the $U S K$ to \mathcal{A} if the identity $I D$ did not appear in User public key replace query.
- User public key query: When receiving this query with an identity $I D$, the challenger C returns the associated user public key pair $U P K_{\text {pair }}$.
- User public key replace query: When receiving this query with an identity $I D$ and $U P K^{\prime}{ }_{p a i r}$, the challenger C replaces the user public key pair $U P K_{\text {pair }}$ related to the identity $I D$ with $U P K_{\text {pair }}^{\prime}$.
- Certification query: When receiving this query with anidentity $I D$ and the associated user public key pair $U P K_{\text {pair }}$, the challenger C performs the

CertGen of CBEET to gain the certificate pair Cert $_{\text {pair }}$. Then, C returns the Cert $_{\text {pair }}$ to \mathcal{A}.

- Decryption query: When receiving this query with an identity $I D$ and the associated ciphertext $C T$, the challenger C performs the Decryption of CBEET to gain the resulting message M. Then, C returns it to \mathcal{A}.
- Trapdoor query: When receiving this query with an identity $I D$, the challenger C performs the Trapdoor of CBEET to gain the resulting trapdoor $T D$. Then, C returns it to \mathcal{A}.
- Challenge. The adversary \mathcal{A} sends a message pair ($M_{0}{ }^{*}, M_{1}^{*}$) and a target identity $I D^{*}$ to C. Then, C randomly chooses a random value $r v \in$ $\{0,1\}$ to perform the Encryption of CBEET with $S P P, I D^{*}, U P K^{*}{ }_{p a i r}$ and $M_{r v}{ }^{*}$ to obtain a challenge ciphertext $C T^{*}$. Then, C returns $C T^{*}$ to \mathcal{A}. In addition, three restrictions must be satisfied as below.
- Whether the adversary \mathcal{A} belongs to Type I or Type II, ID* cannot appear in the Trapdoor query.
- If the adversary \mathcal{A} belongs to Type I, $I D^{*}$ cannot appear in the Certification query.
- If the adversary \mathcal{A} belongs to Type II, $I D^{*}$ cannot appear in both the User secret key query and User public key replace query.
- Phase 2. The adversary \mathcal{A} can continue to issue the same queries as in phase 1.
- Guess. The adversary \mathcal{A} sends a value $r v^{\prime} \in\{0,1\}$ and wins this game $G_{\text {CBEET-IND-CCA }}$ if $r v^{\prime}=r v$. Here, we denote \mathcal{A} 's advantage as $\operatorname{Adv}_{\mathcal{A}}(\lambda)=\left|\operatorname{Pr}\left[r v=r v^{\prime}\right]-1 / 2\right|$.

Definition 4 ($G_{\text {CBEet-ow-cCA }}$). Assume that \mathcal{A} is the PPT adversary (including Type III and Type IV) for a CBEET scheme. We say that the scheme is secure for one-wayness under chosen ciphertext attacks if A's advantage of winning the following game with a challenger C can be negligible.

- Setup. The challenger C performs the Setup of CBEET with a security parameter λ to gain the system secret key $S S K$ and system public parameters $S P P$. The challenger C sends $S P P$ to the adversary \mathcal{A}. Further, the $S S K$ will also be transmitted if \mathcal{A} is Type IV adversary.
- Phase 1. This phase is the same as in the phase 1 of the game $G_{\text {CBEET-IND-CCA }}$.
- Challenge. The adversary \mathcal{A} sends a target identity $I D^{*}$ to C. Then, C randomly chooses a random message M^{*} to perform the Encryption of CBEET with $S P P, I D^{*}, U P K^{*}$ pair and M^{*} to obtain a challenge ciphertext $C T^{*}$. Then, C returns $C T^{*}$ to \mathcal{A}. In addition, two restrictions must be satisfied as below.
- If the adversary \mathcal{A} belongs to Type III, ID* cannot appear in the Certification query.
- If the adversary \mathcal{A} belongs to Type IV, ID* cannot appear in both the User secret key query and User public key replace query.
- Phase 2. The adversary \mathcal{A} can continue to issue the same queries as in phase 1.

Guess. The adversary \mathcal{A} sends a message M^{\prime} and wins this game $G_{\text {CBEET-ow-CCA }}$ if $M^{\prime}=M^{*}$. Here, we denote $\not \mathcal{A}^{\prime}$ s advantage as $\operatorname{Adv}_{\mathcal{A}}(\lambda)=\left|\operatorname{Pr}\left[M^{*}=M^{\prime}\right]-1 / 2\right|$.

4. Concrete CBEET Scheme

Our proposed CBEET scheme, as shown in Figure 4, consists of three roles: the CA, the users (sender/receiver), and the CS. The CA executes both the Setup and CertGen algorithms, while the users are responsible for the UserKeyGen, Encryption, Decryption, and Trapdoor algorithms. The CS takes charge of executing the Test algorithm. We can obtain the detailed process of executing these algorithms from the following.

- Setup: The CA inputs a security parameter λ to gain $\mathcal{G}=\left(q, G_{1}, G_{2}, G_{T}, e\right)$ defined in Section 2. Then, the CA sets the system secret key $S S K=s$ and system public parameters $S P P=\left(\mathcal{G}, U, V, S P K, H_{1}, H_{2}, H_{3}\right.$, H_{4}, H_{5}, H_{6}) by performing the following steps.
- Randomly choose a value $s \in Z_{q}^{*}$, and $\operatorname{set} S S K=s$.
- Pick two generators $U \in G_{1}$ and $V \in G_{2}$, and calculate system public key $S P K=U^{s}$.
- Set six hash functions: $H_{1}:\{0,1\}^{*} \times G^{2}{ }_{1} \rightarrow G_{2}, H_{2}$: $\{0,1\}^{*} \times G^{2}{ }_{1} \rightarrow G_{2}, H_{3}: G_{T} \times G^{2}{ }_{1} \rightarrow\{0,1\}^{\lambda+l}, H_{4}:\{0,1\}$ ${ }^{\lambda} \rightarrow G_{2}, H_{5}:\{0,1\}^{\lambda+l} \rightarrow Z_{q}{ }^{*}, H_{6}: G_{T} \rightarrow G_{2}$, where l is a fixed length.
Note that the CA will securely store the $S S K$ to maintain its confidentiality, while the $S P P$ will be made publicly available to all users.
- UserKeyGen: The user inputs the system public parameters $S P P$ to gain V and $S P K$. Then, the user
randomly chooses a value $x \in Z_{q}^{*}$ to set her/his user secret key $U S K=x$ and user public key pair $U P K_{\text {pair }}$ $=(U P K A, U P K B)=\left(S P K^{x}, V^{x}\right)=\left(U^{\mathrm{s} x}, V^{x}\right)$. Moreover, the user sends her/his $U P K_{\text {pair }}$ to the CA. Here, the user will securely store the user secret key USK to maintain its confidentiality, while the user public key pair $U P K_{\text {pair }}$ will be made publicly available to all users.
- CertGen: The CA inputs the system public parameters $S P P$, an identity $I D$, system secret key $S S K$ and user public key pair $U P K_{\text {pair }}$ to calculate the user's certificate pair Cert $_{\text {pair }}=(\operatorname{CertA}, \operatorname{CertB})$, where Cert $A=H_{1}(I D, U P K A, U P K B)^{S S K}=H_{1}(I D, U P K A$, $U P K B)^{s}$ and $C e r t B=H_{2}(I D, U P K A, U P K B)^{S S K}=$ $H_{2}(I D, U P K A, U P K B)^{s}$. In addition, the CA sends Cert $_{\text {pair }}$ to the user via a secure channel. Here, the user will securely store Cert $_{\text {pair }}$ to maintain its confidentiality. Next, the user can compute the two equations, namely $e(\operatorname{Cert} A, U)=e\left(H_{1}(I D\right.$, $U P K A, U P K B), S P K)$ and $e(C e r t B, U)=e\left(H_{2}(I D\right.$, $U P K A, U P K B), S P K$), to ascertain the origin of the certificate pair Cert $_{\text {pair }}$. If the two equations hold true, Cert $_{\text {pair }}$ is confirmed to be from the CA; otherwise, it is not.
- Encryption: A sender inputs the system public parameters $S P P$, an identity $I D$, user public key pair $U P K_{\text {pair }}$ and a message $M \in\{0,1\}^{\lambda}$ to generate a ciphertext $C T$ if $e(U P K A, V)=e(S P K, U P K B)$ holds. The specific details of the ciphertext $C T=\left(C T_{1}\right.$, $C T_{2}, C T_{3}, C T_{4}$) are shown as below:
- $C T_{1}=U^{\alpha}$, where $\alpha=H_{5}(M, \kappa)$ and $\kappa \in\{0,1\}^{l}$ is chosen in random.
- $C T_{2}=U^{\beta}$, where $\beta \in Z_{q}^{*}$ is a random value.
- $C T_{3}=H_{3}\left(e\left(U P K A, H_{1}(I D, U P K A, U P K B)^{\beta}\right), C T_{1}\right.$, $\left.C T_{2}\right) \oplus(M \| \kappa)$.
- $C T_{4}=H_{4}(M)^{\alpha} \cdot H_{6}\left(e\left(U P K A, H_{2}(I D, U P K A, U P K B)^{\beta}\right)\right)$.
- Decryption: The receiver inputs the system public parameters $S P P$, the ciphertext $C T$, her/his user secret key USK and Cert ${ }_{\text {pair }}$ to obtain the message M by performing the following steps:
- Compute $C T_{3} \oplus H_{3}\left(e\left(C T_{2}, C e r t A^{x}\right), C T_{1}, C T_{2}\right)$ to gain $M^{\prime} \| \kappa^{\prime}$.
Compute $\alpha^{\prime}=H_{5}\left(M^{\prime}, \kappa^{\prime}\right)$ and return the message M^{\prime} as
M if $C T_{1}=U^{\alpha \prime}$ and $C T_{4}=H_{4}(M)^{\alpha \prime} \cdot H_{6}\left(e\left(C T_{2}, C e r t B^{x}\right)\right)$ both hold.

The process of gaining the message M can be seen in the following.

```
\(C T_{3} \oplus H_{3}\left(e\left(C T_{2}, \operatorname{CertA}^{x}\right), C T_{1}, C T_{2}\right)\)
\(=H_{3}\left(e\left(U P K A, H_{1}(I D, U P K A, U P K B)^{\curvearrowright}\right)\right.\),
    \(\left.C T_{1}, C T_{2}\right) \oplus(M \| \kappa) \oplus H_{3}\left(e\left(C T_{2}\right.\right.\),
    CertA \({ }^{x}\) ), \(\left.C T_{1}, C T_{2}\right)\)
\(=H_{3}\left(e\left(U^{\S x}, H_{1}(I D, U P K A, U P K B)^{f}\right), C T_{1}\right.\),
    \(\left.C T_{2}\right) \oplus(M \| \kappa) \oplus H_{3}\left(e\left(U^{\beta}, \operatorname{CertA}^{x}\right)\right.\),
    \(\left.C T_{1}, C T_{2}\right)\)
\(=H_{3}\left(e\left(U^{\mathrm{s} x}, H_{1}(I D, U P K A, U P K B)^{\beta}\right), C T_{1}\right.\),
    \(\left.C T_{2}\right) \oplus(M \| \kappa) \oplus H_{3}\left(e\left(U^{\beta}, H_{1}(I D\right.\right.\),
    UPKA, UPKB \(\left.\left.{ }^{s x}\right), C T_{1}, C T_{2}\right)\)
\(=H_{3}\left(e\left(U, H_{1}(I D, U P K A, U P K B)^{s x / \beta}\right), C T_{1}\right.\),
    \(\left.C T_{2}\right) \oplus(M \| \kappa) \oplus H_{3}\left(e\left(U, H_{1}(I D\right.\right.\),
    \(\left.\left.U P K A, U P K B)^{s x /}\right), C T_{1}, C T_{2}\right)\)
\(=(M \| \kappa)\).
```

- Trapdoor: The user inputs system public parameters SPP, her/his Cert pair and user secret key $U S K$ to obtain a trapdoor $T D=\operatorname{Cert} B^{U S K}=$ $H_{2}(I D, U P K A, U P K B)^{s x}$. Then, the user sends $T D$ to the CS via a secure channel. Here, the CS will securely store $T D$ to maintain its confidentiality. Next, the CS can compute the equation, namely $e(T D, U)=e\left(H_{2}(I D, U P K A, U P K B), U P K A\right)$, to ascertain the origin of the trapdoor $T D$. If the equation holds true, $T D$ is confirmed to be from the user; otherwise, it is not.
- Test: For any two users U_{i} and U_{j}, the CS inputs the system public parameters $S P P$, two ciphertexts $C T_{i}, C T_{j}$ and two trapdoors $T D_{i}, T D_{j}$, where $C T_{i}=$ $\left(C T_{i 1}, C T_{i 2}, C T_{i 3}, C T_{i 4}\right)$ and $C T_{j}=\left(C T_{j 1}, C T_{j 2}, C T_{j 3}\right.$, $C T_{j 4}$) to return 1 or 0 by performing the following steps.
- Compute T_{i} and T_{j} as below.

$$
\begin{aligned}
& \text { - } \mathrm{T}_{\mathrm{i}}=\frac{C T_{i 4}}{H_{6}\left(e\left(C T_{i 2}, T D_{i}\right)\right)} \\
& =\frac{H_{4}\left(M_{i}\right)^{a i} \cdot H_{6}\left(e\left(\text { UPKA }_{i}, H_{2}\left(I D_{i}, \text { UPKA }_{i}, \text { UPK } B_{i}\right)\right)^{\beta_{i}}\right)}{H_{6}\left(e\left(U^{\beta_{i}}, \operatorname{CertBi}{ }^{\text {USK }}\right)\right)} \\
& =\frac{H_{4}\left(M_{i}\right)^{\alpha i} \cdot H_{6}\left(e\left(S P K^{i i}, H_{2}\left(I D_{i}, \text { UPK } A_{i}, \text { UPK } B_{i}\right)\right)^{\beta_{i}}\right)}{H_{6}\left(e\left(U^{\beta i}, H_{2}\left(I D_{i}, \text { UPKA } A_{i}, \text { UPK } B_{i}\right)^{i x i}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =H_{4}\left(M_{i}\right)^{H_{5}\left(M_{i}, \kappa_{i}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \mathrm{T}_{\mathrm{j}}=\frac{C T_{4}}{H_{6}\left(e\left(C T_{2}, T D_{,}\right)\right)} \\
& =\frac{H_{4}\left(M_{j}\right)^{a} \cdot H_{6}\left(e\left(\text { UPK } A_{j}, H_{2}\left(I D_{j}, U P K A_{j}, \text { UPK } B_{j}\right)\right)^{\beta_{i}}\right)}{H_{6}\left(e\left(U^{\beta_{i}}, \text { CertB }_{j}{ }^{\mu S K}\right)\right)}= \\
& \frac{H_{4}\left(M_{j}\right)^{\alpha_{j}} \cdot H_{6}\left(e\left(S P K^{j}, H_{2}\left(I D_{j}, \text { UPKA } A_{j}, \text { UPK } B_{j}\right)\right)^{\left.\beta^{\beta}\right)}\right.}{H_{6}\left(e\left(U^{\beta j}, H_{2}\left(I D_{j}, \text { UPK } A_{j}, \text { UPK } B_{j}\right)^{s i j}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =H_{4}\left(M_{j}\right)^{H_{5}\left(M_{j}, \kappa_{j}\right)}
\end{aligned}
$$

- Calculate $e\left(C T_{i 1}, T_{j}\right)$ and $e\left(C T_{j 1}, T_{i}\right)$ as below.

$$
\begin{aligned}
& =\quad e\left(C T_{i 1}, T_{j}\right)=e\left(U^{H_{5}\left(M_{i j} \kappa_{i}\right)}, H_{4}\left(M_{j}\right)^{H_{5}\left(M_{j}, \kappa_{j}\right)}\right) \\
& \quad=e\left(U, H_{4}\left(M_{j}\right)\right)^{H_{5}\left(M_{i,} \kappa_{i}\right) \cdot H_{5}\left(M_{j,} \kappa_{j}\right)} \\
& =\quad e\left(C T_{j i}, T_{i}\right)=e\left(U^{H_{5}\left(M_{j}, \kappa_{j}\right)}, H_{4}\left(M_{i}\right)^{\left.H_{5}\left(M_{i}, \kappa_{i}\right)\right)}\right. \\
& =e\left(U, H_{4}\left(M_{i}\right)\right)^{H_{5}\left(M_{i,} \kappa_{i}\right) \cdot H_{5}\left(M_{j}, \kappa_{j}\right)}
\end{aligned}
$$

- Return 1 if $e\left(C T_{i 1}, T_{j}\right)=e\left(C T_{j 1}, T_{i}\right)$. Otherwise, return 0 .

Figure 4
Visual representation of the CBEET scheme

5. Security Analysis

As mentioned in Section 3, four types of attackers were defined. Meanwhile, two security games G_{C} BEET-IND-CCA and $G_{\text {CBEET-ow-CCA }}$ respectively were used to model indistinguishabilty under chosen ciphertext attacks and one-wayness under chosen ciphertext attacks. As considering these security notions, four theorems are given to demonstrate that the proposed CB-PKEET scheme is secure.

Theorem 1. Assume that six hash functions H_{i}, for $i \in$ [1, 6], are random oracles and \mathcal{A}_{1} is a Type I adversary against the CB-PKEET scheme with advantage ϵ in the security game $G_{\text {CBEET-INd-CCA }}$. Then, there is an algorithms C to solve the BDH problem with advantage
$\epsilon^{\prime} \geq\left(1 / q_{H_{3}}\right)\left[\epsilon / e\left(q_{c e r}+q_{\text {trap }}+1\right)-q_{d} / q-q_{H_{6}} / q\right]$,
where $q_{H_{3}}, q_{H_{6}}, q_{c e r}, q_{\text {trap }}$ and q_{d} respectively are query times to random oracle H_{3}, random oracle H_{6}, certification query, trapdoor query and decryption query.
Proof. An algorithm C is given an instance of the BDH problem: $\left(\mathcal{G}, U, U^{a}, U^{c}, V, V^{a}, V^{b}\right)$ where $\mathcal{G}=\left(q, G_{1}, G_{2}, G_{T}\right.$, $\hat{e})$. Let $D=\hat{e}(U, V)^{a b c} \in G_{T}$ be the solution of the BDH problem. The algorithm C simulates a challenger to find D by interacting with \mathcal{A}_{1} in the following security game $G_{\text {CBEET-IND-CCA }}$.

- Setup. The challenger C generates the system public parameter $S P P=\left(\mathcal{G}, U, V, S P K, H_{1}, H_{2}, H_{3}\right.$, H_{4}, H_{5}, H_{6}) by setting $S P K=U^{a}$. Then, the system public parameter $S P P$ is sent to \mathcal{A}_{1}. Here, H_{1}, H_{2}, \ldots, H_{6} are hash functions as random oracles. Because C's responses to queries to these random oracles issued from \mathcal{A}_{1} must be consistent, C must maintain the several lists, namely $L_{H 1}, L_{H 2}, \ldots, L_{H 6}, L_{\text {Key }}$ which are defined in phase 1 below.
- Phase 1. The adversary \mathcal{A}_{1} may issue the following queries.
- H_{1} query. When receiving this query with an identity $I D$ and the user public key pair $U P K_{\text {pair }}$ $=(U P K A, U P K B)$, the challenger C uses them to search the list $L_{H 1}$ of the form [ID, UPKA, UPKB, $\sigma, c n]$.
- If (ID, UPKA, UPKB) appears on the list $L_{H 1}, C$ uses the corresponding σ and $c n$ to return V^{σ} if $c n=0$ or $V^{b \sigma}$ if $c n=1$.
- Otherwise, C uses the identity $I D$ to perform user public key query to gain σ and $c n$, and C records them into the list $L_{H 1}$.
- H_{2} query. When receiving this query with an identity $I D$ and the user public key pair $U P K_{\text {pair }}$ $=(U P K A, U P K B)$, the challenger C uses them to search the list $L_{H 2}$ of the form [ID, UPKA, UPKB, $\tau, c n]$.
- If (ID, UPKA, UPKB) appears on the list $L_{H 2}, C$ uses the corresponding τ and $c n$ to return V^{τ} if $c n=0$ or $V^{b \tau}$ if $c n=1$.
- Otherwise, C uses the identity ID to perform user public key query to gain τ and $c n$, and C records them into the list $L_{H 2}$.
- H_{3} query. When receiving this query with a value $\mu \in G_{T}$ and two points $C T_{1}, C T_{2} \in G_{1}$, the challenger C uses them to search the list $L_{H 3}$ of the form $\left[\mu, C T_{1}, C T_{2}, \varphi\right]$.
- If $\left(\mu, C T_{1}, C T_{2}\right)$ appears on the list $L_{H 3}, C$ returns the corresponding φ.
- Otherwise, Crandomly chooses a value $\varphi \in\{0$, 1\} ${ }^{\lambda+l}$ as answer to \mathcal{A}_{1}, and records $\left[\mu, C T_{1}, C T_{2}\right.$, φ] into the list $L_{H 3}$.
- H_{4} query. When receiving this query with a value $M \in\{0,1\}^{\lambda}$, the challenger C uses it to search the list $L_{H 4}$ of the form [$\left.M, \gamma\right]$.
- If M appears on the list $L_{H 4}, C$ returns the corresponding γ.
- Otherwise, C randomly chooses a point $\gamma \in G_{2}$ as answer to \mathcal{A}_{1}, and records $[M, \gamma]$ into the list $L_{H 4}$.
- H_{5} query. When receiving this query with two values $M\{0,1\}^{\lambda}, \kappa \in\{0,1\}^{l}$, the challenger C uses them to search the list $L_{H 5}$ of the form [$\left.M, \kappa, \theta\right]$.
- If (M, κ) appears on the list $L_{H 5}, C$ returns the corresponding θ.
- Otherwise, C randomly chooses a value $\theta \in Z_{q}^{*}$ as answer to \mathcal{A}_{1}, and records $[M, \gamma]$ into the list $L_{H 5}$.
- H_{6} query. When receiving this query with a value $\zeta \in G_{T}$, the challenger C uses it to search the list $L_{H 6}$ of the form [$\left.\zeta, \eta\right]$.
- If ζ appears on the list $L_{H 6}, C$ returns the corresponding η.
- Otherwise, C randomly chooses a point $\eta \in G_{2}$ as answer to \mathcal{A}_{1}, and records $[\zeta, \eta]$ into the list $L_{H 6}$.
- User public key query. When receiving this query with an identity $I D$, the challenger C randomly chooses two values $\sigma \in Z_{q}^{*}, \tau \in Z_{q}^{*}$ and a coin $c n \in\{0,1\}$. Then C respectively records two tuples [ID, UPKA, UPKB, $\sigma, c n$] and [ID, UPKA, $U P K B, \tau, c n]$ into the lists $L_{H 1}$ and $L_{H 2}$ by doing the following setting.
- If $c n=0$ with the probability $\operatorname{Pr}[c n=0]=v$, C runs the UserKeyGen algorithm to obtain the user secret key $U S K=x$. Then, C uses it
to calculate user public key $U P K_{\text {pair }}=(U P K A$, $U P K B)=\left(S P K^{x}, V^{x}\right)$. Further, the certificate pair $\operatorname{Cert}_{\text {pair }}=(\operatorname{CertA}, \operatorname{CertB})=\left(V^{a \sigma}, V^{a \tau}\right)$ can be obtained by performing the CertGen algorithm. Finally, Crecords [ID, USK, UPKA, UPKB, CertA, CertB, 0] into the list $L_{\text {Key }}$, and returns $U P K_{\text {pair }}=(U P K A, U P K B)$ to \mathcal{A}_{1}.
- Otherwise, C runs the UserKeyGen algorithm to obtain the user secret key $U S K=x$. Then, C uses it to calculate user public key $U P K_{\text {pair }}$ $=(U P K A, U P K B)=\left(S P K^{x}, V^{x}\right)$. Finally, C records [ID, USK, UPKA, UPKB, -, -, 1] into the list $L_{\text {key }}$, and returns $U P K_{\text {pair }}=(U P K A$, $U P K B)$ to \mathcal{A}_{1}.
- User secret key query. When receiving this query with an identity $I D$, the challenger C uses it to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, cn].
- If ID appears on the list $L_{k e y}, C$ returns the corresponding USK.
- Otherwise, C uses the identity $I D$ to perform user public key query to gain $U S K$, and C returns it.
- User Public key replace query. When receiving this query with an identity $I D$ and a new user public key pair $U P K_{\text {pair }}{ }^{\prime}=\left(U P K A^{\prime}, U P K B B^{\prime}\right)$, the challenger C checks whether $\hat{e}\left(U P K A^{\prime}, V\right)=$ $\hat{e}(S P K, U P K B)$ or not.
- If $\hat{e}\left(U P K A^{\prime}, V\right)=\hat{e}(S P K, U P K B)$ holds, the original user public key $U P K_{\text {pair }}=(U P K A$, $U P K B$) related to the identity $I D$ will be replaced with $U P K_{\text {pair }}$ '.
- Otherwise, Creturns \perp to \mathcal{A}_{1}.
- Certification query. When receiving this query with an identity $I D$ and user public key $U P K_{\text {pair }}$ $=(U P K A, U P K B)$, the challenger C uses them to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, cn].
- If (ID, UPKA, UPKB) appears on the list $L_{\text {key }}$, C returns the corresponding certificate pair Cert $_{\text {pair }}=(\operatorname{Cert} A, \operatorname{CertB})$ if $\mathrm{cn}=0$ or aborts this game if $c n=1$.
- Otherwise, C performs user public key query to record the corresponding information. Then, C runs the query again to return Cert $_{\text {pair }}$ $=(\operatorname{Cert} A, \operatorname{Cert} B)$ or abort this game .
- Decryption query. When receiving this query with an identity $I D$ and ciphertext $C T=\left(C T_{1}\right.$, $C T_{2}, C T_{3}, C T_{4}$), the challenger C uses them to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, cn].
- If ID appears on the list $L_{\text {key }}$ and $c n=0, C$ uses the corresponding $U S K, C e r t A$ and $C e r t B$ to perform the Decryption algorithm. Then, C returns the output.
- Otherwise, Cuses ($C T_{1}, C T_{2}$) to search the list $L_{H 3}$ of the form $\left[\mu, C T_{1}, C T_{2}, \varphi\right]$. If $\left(C T_{1}, C T_{2}\right)$ can be found, C calculates $M^{\prime} \| \kappa^{\prime}=C T_{3} \oplus \varphi$ by using the corresponding φ. Then, $M^{\prime} \| \kappa^{\prime}$ is used to search the list $L_{H 4}$ of the form $[M, \gamma]$ and the list $L_{H 5}$ of the form $[M, \kappa, \theta]$. If η can be found on the list $L_{H 6}$ of the form [$[, \eta$] such that $C T_{4}=\gamma \eta$ holds, C calculates $C T_{1}{ }^{\prime}=U^{\vartheta}$. If $C T_{1}{ }^{\prime}=C T_{1}, C$ returns M^{\prime} to \mathcal{A}_{1}. Otherwise, returns \perp to \mathcal{A}_{1}.
- Trapdoor query. When receiving this query with an identity $I D$, the challenger C uses it to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, cn].
- If ID appears on the list $L_{\text {key }}, C$ returns the corresponding trapdoor $T D=\operatorname{Cert} B^{U S K}$ if $c n=$ 0 or aborts this game if $\mathrm{cn}=1$.
- Otherwise, C performs user public key query to record the corresponding information. Then, C runs the query again to return $T D$ or abort this game.
- Challenge. The adversary \mathcal{A}_{1} sends a message pair (M_{0}^{*}, M_{1}^{*}) and a target identity $I D^{*}$ to C. Then, C uses $I D^{*}$ to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, cn]. If $c n=0, C$ aborts this game. Otherwise, C pick a random value $r v \in$ $\{0,1\}$, and uses $M_{r v}{ }^{*}$ and κ to issue H_{5} query to gain θ, where the value $\kappa \in\{0,1\}^{l}$ is chosen in random. Further, C sets $C T_{1}{ }^{*}=U^{\theta}, C T_{2}{ }^{*}=U^{c}, C T_{3}{ }^{*} \in\{0,1\}^{2+1}$ and $C T_{4}{ }^{*} \in G_{2}$. Here, $C T_{3}{ }^{*}$ and $C T_{4}{ }_{4}$ respectively are a random value in $\{0,1\}^{+l l}$ and a random point in G_{2}. Finally, C runs the target ciphertext $C T^{* *}=\left(C T_{1}^{*}\right.$, $\left.C T_{2}{ }^{*}, C T_{3}{ }^{*}, C T_{4}{ }^{*}\right)$.
- Phase 2. The adversary \mathcal{A}_{1} can continue to issue the same queries as in phase 1 .
- Guess. The adversary \mathcal{A}_{1} sends a value $r v^{\prime} \in\{0,1\}$ as the answer to guess. \mathcal{A}_{1} wins this game if $r v^{\prime}=r v . C$ randomly selects a tuple $\left[\mu^{*}, C T_{1}^{*}, C T_{2}^{*}, \varphi^{*}\right]$ from the
list $L_{H 3}$ of the form $\left[\mu, C T_{1}, C T_{2}, \varphi\right]$ to gain μ^{*}. Then, $D=\left(\mu^{*}\right)^{\left(x^{* *} \sigma^{*}\right)-1}$ is outputted as the solution of the BDH problem.

Analysis. We first discuss the simulations of hash functions, namely $H_{1}, H_{2}, \ldots, H_{6}$. Obviously, we can say that the hash functions H_{1}, H_{2}, H_{4}, and H_{5} as the random oracles are perfect simulations since the inputs and outputs of the random oracles are independent of the solution of the BDH problem. Assume that Event $H_{3}{ }^{*}$ and Event $H_{6}{ }^{*}$ are two events of issuing the H_{3} query with ($e(U, V)^{\text {abcx*** }}, C T_{1}^{* *}, C T_{2}^{*}$) and H_{6} query with $\left(e(U, V)^{a b x^{* *} t}\right)$, respectively. Here, we say that the hash functions H_{3} and H_{6} as the random oracles are perfect simulations if both two events Event H_{3}^{*} and Event $H_{6}{ }^{*}$ did not occur. We then discuss the simulations of the decryption query. We denote EventDecFail as the event that the ciphertext is valid, and the challenger C is unable to decrypt it. The probability of this event is $\operatorname{Pr}[$ EventDecFail $] \leq q_{d} / q$.
Moreover, we denote Event $=\left(\right.$ Event $_{3}{ }^{*}$ V Event $H_{6}{ }^{*}$ \vee EventDecFail $\mid \neg$ EventAbor as the event that this game will not be aborted, where EventAbort is the event that the challenger C aborts this game. We can obtain probability $\operatorname{Pr}\left[r v=r v^{\prime} \mid \neg\right.$ Event $] \leq 1 / 2$ if the event Event does not occur. Further, we get

$$
\begin{aligned}
\operatorname{Pr}\left[r v=r v^{\prime}\right] & =\operatorname{Pr}\left[r v=r v^{\prime} \mid \text { Event }\right] \operatorname{Pr}[\text { Event }] \\
& +\operatorname{Pr}\left[r v=r v^{\prime} \mid \neg \text { Event }\right] \operatorname{Pr}[\neg \text { Event }] \\
& \leq \operatorname{Pr}[\text { Event }]+(1 / 2) \cdot \operatorname{Pr}[\neg \text { Event }] \\
& =\operatorname{Pr}[\text { Event }]+(1 / 2) \cdot(1-\operatorname{Pr}[\text { Event }]) \\
& =(1 / 2) \cdot \operatorname{Pr}[\text { Event }]+1 / 2 .
\end{aligned}
$$

According to the sense of ϵ, we have $\epsilon=\operatorname{Pr}[r v=r v]$ $1 / 2$. Hence, we obtain $\epsilon=\operatorname{Pr}[r v=r v]-1 / 2 \leq \operatorname{Pr}[$ Event $]$ $\leq\left(\operatorname{Pr}\left[\right.\right.$ Event $\left.H_{3}{ }^{*}\right]+\operatorname{Pr}\left[\right.$ Event $\left.H_{6}{ }^{\prime}\right]+\operatorname{Pr}[$ EventDecFail]) / $\operatorname{Pr}[\neg$ EventAbor $]$. By this inequality, we have $\operatorname{Pr}\left[\right.$ Event $\left.H_{3}{ }^{*}\right] \geq \epsilon \cdot \operatorname{Pr}[\neg$ EventAbor $]-\operatorname{Pr}[$ EventDecFai $]$ $-\operatorname{Pr}\left[\right.$ Event $\left.H_{6}^{\prime}\right]$. Since $\operatorname{Pr}[\neg$ EventAbor $]=v^{g_{\text {gor }}}+q_{m u v}(1-v)$, we can gain $\operatorname{Pr}[\neg$ EventAbor $] \geq 1 / e\left(q_{c e r}+q_{\text {trap }}+1\right)$ when $v=1-1 /\left(q_{\text {cer }}+q_{\text {trap }}+1\right)$. We then have $\operatorname{Pr}\left[\right.$ Event $\left._{3}{ }^{\prime}\right] \geq$ $\epsilon / e\left(q_{c e r}+q_{\text {trap }}+1\right)-q_{d} / q-q_{H_{6}} / q$.
If the event Event H_{3}^{*} occurs, the adversary A_{1} can know the the the target ciphertext $C T^{*}$ is invalid. $H_{3}\left(e(P, Q)^{a b c x^{* * * *}}, C T_{1}^{*}, C T_{2}{ }^{*}\right)$ has been recorded in the list $L_{H 3}$. We can say that the challenger C wins this game if the correct element was chosen in the list $L_{H 3}$. Therefore, the challenger C can solve the BDH problem with advantage

$$
\begin{aligned}
\epsilon^{\prime} & \geq\left(1 / q_{H_{八}}\right) \operatorname{Pr}\left[\text { Event } H_{3}^{*}\right] \\
& \geq\left(1 / q_{H_{3}}\right) \cdot\left[\epsilon / e\left(q_{\text {cer }}+q_{\text {trap }}+1\right)-q_{d} / q-q_{H_{6}} / q\right] .
\end{aligned}
$$

Theorem 2. Assume that six hash functions H_{i}, for $i \in$ [1, 6], are random oracles and \mathcal{A}_{2} is a Type II adversary against the CB-PKEET scheme with advantage ϵ in the security game $G_{\text {CBEET-IND-CCA }}$. Then, there is an algorithms C to solve the BDH problem with advantage
$\epsilon^{\prime} \geq\left(1 / q_{H_{3}}\right)\left[\epsilon / e\left(q_{\text {trap }}+1\right)-q_{d} / q-q_{H_{6}} / q\right]$,
where $q_{H_{3}}, q_{H_{6}}, q_{\text {trap }}$ and q_{d} respectively are query times to random oracle H_{3}, random oracle H_{6}, trapdoor queries and decryption queries.
Proof. An algorithm C is given an instance of the BDH problem: $\left(\mathcal{G}, U, U^{a}, U^{c}, V, V^{a}, V^{b}\right)$ where $\mathcal{G}=\left(q, G_{1}, G_{2}, G_{T}\right.$, $\hat{e})$. Let $D=\hat{e}(U, V)^{a b c} \in G_{T}$ be the solution of the BDH problem. The algorithm C simulates a challenger to find D by interacting with \mathcal{A}_{2} in the following security game $G_{\text {CBEET-IND-CCA }}$.

- Setup. The challenger C generates the system public parameter $S P P=\left(\mathcal{G}, U, V, S P K, H_{1}, H_{2}, H_{3}, H_{4}\right.$, H_{5}, H_{6}) by setting $S P K=U^{s}$, where $s \in Z_{q}^{*}$ is random value as the system secret key $S S K$. Then, the system public parameter $S P P$ is sent to \mathcal{A}_{2}. Here, $H_{1}, H_{2}, \ldots, H_{6}$ are hash functions as random oracles. Because C's responses to queries to these random oracles issued from \mathcal{A}_{2} must be consistent, C must maintain the several lists, namely $L_{H 1}, L_{H 2}, \ldots, L_{H 6}$, $L_{\text {Key }}$ which are defined in phase 1 below.
- Phase 1. The adversary \mathcal{A}_{2} may issue the following queries.
- $H_{1}-H_{6}$ queries. The response is similar to the proof of Theorem 1.
- User public key query. When receiving this query with an identity $I D$, the challenger C randomly chooses two values $\sigma \in Z_{q}^{*}, \tau \in Z_{q}^{*}$ and a coin $c n \in\{0,1\}$. Then C respectively records two tuples [ID, UPKA, UPKB, $\sigma, c n$] and [ID, UPKA, $U P K B, \tau, c n]$ into the lists $L_{H 1}$ and $L_{H 2}$ by doing the following setting.
- If $c n=0$ with the probability $\operatorname{Pr}[c n=0]=v$, C runs the UserKeyGen algorithm to obtain the user secret key $U S K=x$. Then, C uses it to calculate user public key $U P K_{\text {pair }}=(U P K A$, $U P K B)=\left(S P K^{x}, V^{x}\right)$. Further, the certificate pair $\operatorname{Cert}_{\text {pair }}=(\operatorname{Cert} A, \operatorname{Cert} B)=\left(V^{\beta \sigma}, V^{\delta \tau}\right)$ can be obtained by performing the CertGen algorithm. Finally, Crecords [ID, USK, UPKA,
$U P K B, \operatorname{CertA}, \operatorname{CertB}, 0]$ into the list $L_{\text {Key }}$, and returns $U P K_{\text {pair }}=(U P K A, U P K B)$ to \mathcal{A}_{2}.
- Otherwise, C randomly select a value $x^{\prime} \in Z_{q}^{*}$ as the user secret key $U S K^{\prime}$. Then, C uses it to calculate user public key $U P K_{\text {pair }}=(U P K A$, $U P K B)=\left(S P K^{a x}, V^{a x}\right)$. Further, the certificate pair $\operatorname{Cert}_{\text {pair }}=(\operatorname{CertA}, \operatorname{Cert} B)=\left(V^{\rho b \sigma}, V^{s b \tau}\right)$ canbe obtained by owning system secret key $S S K=s$. Finally, C records [ID, USK', UPKA, UPKB, $\operatorname{CertA}, \operatorname{CertB}, 1]$ into the list $L_{\text {key }}$, and returns $U P K_{\text {pair }}=(U P K A, U P K B)$ to \mathcal{A}_{2}. Note that the user secret key $U S K=x$ is treated as $a x^{\prime}$.
- User secret key query. The response is similar to the proof of Theorem 1.
- Decryption query. The response is similar to the proof of Theorem 1.
- Trapdoor query. The response is similar to the proof of Theorem 1.
- Challenge. The adversary \mathcal{A}_{2} sends a message pair $\left(M_{0}^{*}, M_{1}^{*}\right)$ and a target identity $I D^{*}$ to C. Then, C uses $I D^{*}$ to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, cn]. If $c n=0, C$ aborts this game. Otherwise, C pick a random value $r v \in$ $\{0,1\}$, and uses $M_{r v}{ }^{*}$ and κ to issue H_{5} query to gain θ, where the value $\kappa \in\{0,1\}^{l}$ is chosen in random. Further, C sets $C T_{1}{ }^{*}=U^{\theta}, C T_{2}{ }^{*}=U^{c}, C T_{3}{ }^{*} \in\{0,1\}^{\lambda+l}$ and $C T_{4}{ }^{*} \in G_{2}$. Here, $C T_{3}{ }^{*}$ and $C T_{4}{ }^{*}$ respectively are a random value in $\{0,1\}^{\lambda+l}$ and a random point in G_{2}. Finally, C runs the target ciphertext $C T^{*}=\left(C T_{1}^{*}\right.$, $C T_{2}{ }^{*}, C T_{3}{ }^{*}, C T_{4}{ }^{*}$).
- Phase 2. The adversary \mathcal{A}_{2} can continue to issue the same queries as in phase 1.

Guess. The adversary \mathcal{A}_{2} sends a value $r v^{\prime} \in\{0,1\}$ as the answer to guess. \mathcal{A}_{2} wins this game if $r v^{\prime}=r v . C$ randomly selects a tuple $\left[\mu^{*}, C T_{1}{ }^{*}, C T_{2}{ }^{*}, \varphi^{*}\right]$ from the list $L_{r m}$ of the form $\left[\mu, C T_{1}, C T_{2}, \varphi\right]$ to gain μ^{*}. Then, $D=$ $\mu^{*} / \hat{e}(U, V)^{s^{2} x^{*} \sigma^{*}}$ is outputted as the solution of the BDH problem.
Analysis. We first discuss the simulations of hash functions, namely $H_{1}, H_{2}, \ldots, H_{6}$. Obviously, we can say that the hash functions H_{1}, H_{2}, H_{4}, and H_{5} as the random oracles are perfect simulations since the inputs and outputs of the random oracles are independent of the solution of the BDH problem. Assume that Event $H_{3}{ }^{*}$ and Event $H_{6}{ }^{*}$ are two events of issuing the H_{3} query with $\left(\hat{e}(U, V)^{a b c s^{2} x^{*} \sigma^{*}}, C T_{1}{ }^{*}, C T_{2}{ }^{*}\right)$ and H_{6} query
with $\left(\hat{e}(U, V)^{a b c s^{2} x^{*} \tau^{*}}\right)$, respectively. Here, we say that the hash functions H_{3} and H_{6} as the random oracles are perfect simulations if both two events Event $H_{3}{ }^{*}$ and Event $H_{6}{ }^{*}$ did not occur. We then discuss the simulations of the decryption query. We denote EventDecFail as the event that the ciphertext is valid, and the challenger C is unable to decrypt it. The probability of this event is $\operatorname{Pr}[$ EventDecFail $] \leq q_{d} / q$.
Moreover, we denote Event $=\left(\right.$ Event $H_{3}{ }^{*} \vee$ Event $H_{6}{ }^{*}$ v EventDecFail) $\mid \neg$ EventAbor as the event that this game will not be aborted, where EventAbort is the event that the challenger C aborts this game. We can obtain probability $\operatorname{Pr}\left[r v=r v^{\prime} \mid \neg\right.$ Event $] \leq 1 / 2$ if the event Event does not occur. Further, we get

$$
\begin{aligned}
\operatorname{Pr}\left[r v=r v^{\prime}\right] & =\operatorname{Pr}\left[r v=r v^{\prime} \mid \text { Event }\right] \operatorname{Pr}[\text { Event }] \\
& +\operatorname{Pr}\left[r v=r v^{\prime} \mid \neg \text { Event }\right] \operatorname{Pr}[\neg \text { Event }] \\
& \leq \operatorname{Pr}[\text { Event }]+(1 / 2) \cdot \operatorname{Pr}[\neg \text { Event }] \\
& =\operatorname{Pr}[\text { Event }]+(1 / 2) \cdot(1-\operatorname{Pr}[\text { Event }]) \\
& =(1 / 2) \cdot \operatorname{Pr}[\text { Event }]+1 / 2 .
\end{aligned}
$$

According to the sense of ϵ, we have $\epsilon=\operatorname{Pr}[r v=$ $\left.r v^{\prime}\right]-1 / 2$. Hence, we obtain $\epsilon=\operatorname{Pr}\left[r v=r v^{\prime}\right]-1 / 2 \leq$ $\operatorname{Pr}[$ Event $] \leq\left(\operatorname{Pr}\left[\right.\right.$ Event $\left.H_{3}{ }^{*}\right]+\operatorname{Pr}\left[\right.$ Event $\left.H_{6}{ }^{*}\right]+\operatorname{Pr}[$ Event DecFail]) / $\operatorname{Pr}[\neg$ EventAbor $]$. By this inequality, we have $\operatorname{Pr}\left[\right.$ Event $\left.H_{3}{ }^{*}\right] \geq \epsilon \cdot \operatorname{Pr}[\neg$ EventAbor $]-\operatorname{Pr}[$ Event DecFail $]-\operatorname{Pr}\left[\right.$ Event $\left.H_{6}{ }^{*}\right]$. Since $\operatorname{Pr}[\neg$ EventAbor $]=$ $v^{q_{\text {tap }}}(1-v)$, we can gain $\operatorname{Pr}[\neg$ EventAbor $] \geq 1 / e\left(q_{\text {trap }}+1\right)$ when $v=1-1 /\left(q_{\text {trap }}+1\right)$. We then have $\operatorname{Pr}\left[\right.$ Event $\left.H_{3}{ }^{*}\right] \geq$ $\epsilon / e\left(q_{\text {trap }}+1\right)-q_{d} / q-q_{H_{6}} / q$.
If the event Event H_{3}^{*} occurs, the adversary A_{2} can know the the the target ciphertext $C T^{*}$ is invalid. $H_{3}\left(\hat{e}(U, V)^{a b c s^{2} x^{*} \sigma^{*}}, C T_{1}^{*}, C T_{2}^{*}\right)$ has been recorded in the list $L_{H 3}$. We can say that the challenger C wins this game if the correct element was chosen in the list $L_{H 3}$. Therefore, the challenger C can solve the BDH problem with advantage

$$
\begin{aligned}
\epsilon^{\prime} & \geq\left(1 / q_{H_{八}}\right) \operatorname{Pr}\left[\text { Event }_{3}^{*}\right] \\
& \geq\left(1 / q_{H_{3}}\right) \cdot\left[\epsilon / e\left(q_{\text {trap }}+1\right)-q_{d} / q-q_{H_{6}} / q\right] .
\end{aligned}
$$

Theorem 3. Assume that six hash functions H_{i}, for i $\in[1,6]$, are random oracles and \mathcal{A}_{3} is a Type III adversary against the CB-PKEET scheme with advantage ϵ in the security game $G_{\text {CBEET-ow-CCA }}$. Then, there is an algorithms C to solve the BDH problem with advantage
$\epsilon^{\prime} \geq\left(1 / q_{H_{3}}\right)\left[\left(\epsilon-1 / 2^{\lambda}\right) / e\left(q_{c e r}+1\right)-q_{d} / q\right]$,
where $q_{H_{3}}, q_{c e r}$ and q_{d} respectively are query times to random oracle H_{3}, certification queries and decryption queries.

Proof. An algorithm C is given an instance of the BDH problem: $\left(\mathcal{G}, U, U^{a}, U^{c}, V, V^{a}, V^{b}\right)$ where $\mathcal{G}=\left(q, G_{1}, G_{2}, G_{T}\right.$, $\hat{e})$. Let $D=\hat{e}(U, V)^{a b c} \in G_{T}$ be the solution of the BDH problem. The algorithm C simulates a challenger to find D by interacting with \mathcal{A}_{3} in the following security game $G_{\text {CBEET-ow-CCA }}$.

- Setup. The challenger C generates the system public parameter $S P P=\left(\mathcal{G}, U, V, S P K, H_{1}, H_{2}, H_{3}\right.$, H_{4}, H_{5}, H_{6}) by setting $S P K=U^{a}$. Then, the system public parameter $S P P$ is sent to \mathcal{A}_{3}. Here, H_{1}, H_{2}, \ldots, H_{6} are hash functions as random oracles. Because C s responses to queries to these random oracles issued from \mathcal{A}_{3} must be consistent, C must maintain the several lists, namely $L_{H 1}, L_{H 2}, \ldots, L_{H 6}, L_{\text {Key }}$ which are defined in phase 1 below.
- Phase 1. The adversary \mathcal{A}_{3} may issue the following queries.
- H_{1} query. The response is similar to the proof of Theorem 1.
- H_{2} query. When receiving this query with an identity $I D$ and the user public key pair $U P K_{\text {pair }}$ $=(U P K A, U P K B)$, the challenger C uses them to search the list $L_{H 2}$ of the form [ID, UPKA, UPKB, $\tau, c n]$.
- If (ID, UPKA, UPKB) appears on the list $L_{H 2}, C$ uses the corresponding τ to return V^{τ}.
- Otherwise, C uses the identity $I D$ to perform user public key query to gain τ, and C records it into the list $L_{H 2}$.
- $H_{3}-H_{6}$ queries. The response is similar to the proof of Theorem 1.
- User public key query. The response is similar to the proof of Theorem 1.
- User secret key query. The response is similar to the proof of Theorem 1.
- Certification query. The response is similar to the proof of Theorem 1.
- Decryption query. When receiving this query with an identity $I D$ and ciphertext $C T=\left(C T_{1}\right.$, $C T_{2}, C T_{3}, C T_{4}$), the challenger C uses them to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, cn].
- If $I D$ appears on the list $L_{\text {key }}$ and $c n=0, C$ uses the corresponding $U S K, \operatorname{Cert} A$ and CertB to perform the Decryption algorithm. Then, C returns the output.
- Otherwise, C uses $\left(C T_{1}, C T_{2}\right)$ to search the list $L_{H 3}$ of the form $\left[\mu, C T_{1}, C T_{2}, \varphi\right]$. If $\left(C T_{1}, C T_{2}\right)$ can be found, C calculates $M^{\prime} \| \kappa^{\prime}=C T_{3} \oplus \varphi$ by using the corresponding φ. Then, $M^{\prime} \|$ κ^{\prime} is used to search the list $L_{H 4}$ of the form $[M, \gamma]$ and the list $L_{H 5}$ of the form $[M, \kappa, \theta]$. In addition, C uses $I D$ to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, $c n$] to calculate $C e r t B^{U S K}=V^{a t x}$. If η can be found on the list $L_{H 6}$ of the form [$e\left(C T_{2}\right.$, $\left.\left.\operatorname{Cert} B^{\text {USK }}\right), \eta\right]$ such that $C T_{4}=\gamma \cdot \eta$ holds, C calculates $C T_{1}{ }^{\prime}=U^{\theta}$. If $C T_{1}{ }^{\prime}=C T_{1}$, Creturns M^{\prime} to \mathcal{A}_{3}. Otherwise, returns \perp to \mathcal{A}_{3}.
- Trapdoor query. When receiving this query with an identity $I D$, the challenger C uses it to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, cn].
- If ID appears on the list $L_{\text {key }}$, C returns the corresponding trapdoor $T D=\operatorname{Cert}^{U S K}$.
- Otherwise, C performs user public key query to record the corresponding information. Then, C runs the query again to return $T D$.

Challenge. The adversary \mathcal{A}_{3} sends a target identity $I D^{*}$ to C. Then, C uses $I D^{*}$ to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, cn]. If cn $=0, C$ aborts this game. Otherwise, C picks a random message $M^{*} \in\{0,1\}^{\lambda}$ and a value $\kappa \in\{0,1\}^{l}$, and then uses M^{*} and κ to issue H_{5} query to gain θ. In addition, C uses M^{*} and $\hat{e}\left(U^{c}, V^{u t^{*} x^{*}}\right)$ to issue H_{4} query and H_{6} query to gain γ and η. Further, C sets $C T_{1}{ }^{*}=U^{\theta}, C T_{2}{ }^{*}=U^{c}, C T_{3}{ }^{*}$ $\in\{0,1\}^{\lambda+l}$ and $C T_{4}{ }^{*}=\gamma^{\theta} \cdot \eta$. Here, $C T_{3}{ }^{*}$ is a random value in $\{0,1\}^{\lambda+l}$. Finally, C runs the target ciphertext $C T^{*}=$ $\left(C T_{1}{ }^{*}, C T_{2}{ }^{*}, C T_{3}{ }^{*}, C T_{4}{ }^{*}\right.$).
Phase 2. The adversary \mathcal{A}_{3} can continue to issue the same queries as in phase 1.
Guess. The adversary \mathcal{A}_{3} sends a message $M^{\prime} \in\{0,1\}^{\lambda}$ as the answer to guess. \mathcal{A}_{3} wins this game if $M^{\prime}=M^{*} . C$ randomly selects a tuple $\left[\mu^{*}, C T_{1}^{*}, C T_{2}^{*}, \varphi^{*}\right]$ from the list $L_{H 3}$ of the form $\left[\mu, C T_{1}, C T_{2}, \varphi\right]$ to gain μ^{*}. Then, $D=\left(\mu^{*}\right)$ $\left(x^{*} \sigma^{*}\right)^{n}-1$ is outputted as the solution of the BDH problem.
Analysis. We first discuss the simulations of hash functions, namely $H_{1}, H_{2}, \ldots, H_{6}$. Obviously, we can say that the hash functions $H_{1}, H_{2}, H_{4}, H_{5}$ and H_{6} as the random oracles are perfect simulations since the inputs and outputs of the random oracles are independent of the solution of the BDH problem. Assume that Event $H_{3}{ }^{*}$ is a events of issuing the H_{3} query with ($\hat{e}(U$,
$\left.V)^{a b c x^{*} \sigma^{*}}, C T_{1}{ }^{*}, C T_{2}^{*}\right)$. Here, we say that the hash functions H_{3} as the random oracles is perfect simulations if events Event $H_{3}{ }^{*}$ did not occur. We then discuss the simulations of the decryption query. We denote EventDecFail as the event that the ciphertext is valid, and the challenger C is unable to decrypt it. The probability of this event is $\operatorname{Pr}[$ EventDecFail $] \leq q_{d} / q$.
Moreover, we denote Event $=\left(\right.$ Event $H_{3}^{*} \vee$ EventDecFail) $\mid \neg$ EventAbor as the event that this game will not be aborted, where EventAbort is the event that the challenger C aborts this game. We can obtain probability $\operatorname{Pr}\left[M^{\prime}=M^{*} \mid \neg\right.$ Event $] \leq 1 / 2^{\lambda}$ if the event Event does not occur. Further, we get

$$
\begin{aligned}
\operatorname{Pr}\left[r v=r v^{\prime}\right] & =\operatorname{Pr}\left[M^{\prime}=M^{\prime} \mid \text { Event }\right] \operatorname{Pr}[\text { Event }] \\
& +\operatorname{Pr}\left[r v=r v^{\prime} \mid \neg \text { Event }\right] \operatorname{Pr}[\neg \text { Event }] \\
& \leq \operatorname{Pr}[\text { Event }]+\left(1 / 2^{\lambda}\right) \cdot \operatorname{Pr}[\neg \text { Event }] \\
& =\operatorname{Pr}[\text { Event }]+\left(1 / 2^{\lambda}\right) \cdot(1-\operatorname{Pr}[\text { Event }]) \\
& =\left(1 / 2^{\lambda}\right) \cdot \operatorname{Pr}[\text { Event }]+1 / 2^{\lambda} .
\end{aligned}
$$

According to the sense of ϵ, we have $\epsilon=\operatorname{Pr}\left[M^{\prime}=M^{*}\right]-$ $1 / 2^{\lambda}$. Hence, we obtain $\epsilon=\operatorname{Pr}\left[M^{\prime}=M^{\prime \prime}\right]-1 / 2^{\lambda} \leq \operatorname{Pr}[$ Event $]$ $\leq\left(\operatorname{Pr}\left[\right.\right.$ Event $\left.H_{3}{ }^{*}\right]+\operatorname{Pr}[$ EventDecFail $\left.]\right) / \operatorname{Pr}[\neg$ Event Abor $]$. By this inequality, we have $\operatorname{Pr}\left[\right.$ Event $\left.H_{3}{ }^{*}\right] \geq$ $\left(\epsilon-1 / 2^{\lambda}\right) \cdot \operatorname{Pr}[\neg$ EventAbor $]-\operatorname{Pr}[$ EventDecFail $]$. Since $\operatorname{Pr}[\neg$ EventAbor $]=v^{q c e}(1-v)$, we can gain $\operatorname{Pr}[\neg$ Event Abor $] \geq 1 / e\left(q_{c e r}+1\right)$ when $v=1-1 /\left(q_{c e r}+1\right)$. We then have $\operatorname{Pr}\left[\right.$ Event $\left._{3}{ }^{*}\right] \geq\left(\epsilon-1 / 2^{\lambda}\right) / e\left(q_{\text {cer }}+1\right)-q_{d} / q$.
If the event Event $H_{3}{ }^{*}$ occurs, the adversary A_{3} can know the the the target ciphertext $C T^{*}$ is invalid. $H_{3}\left(e(U, V)^{a b x^{*} \sigma^{*}}, C T_{1}^{*}, C T_{2}^{*}\right)$ has been recorded in the list $L_{H 3}$. We can say that the challenger C wins this game if the correct element was chosen in the list $L_{H 3}$. Therefore, the challenger C can solve the BDH problem with advantage

$$
\begin{aligned}
\epsilon^{\prime} & \geq\left(1 / q_{H_{八}}\right) \operatorname{Pr}\left[\text { Event } H_{3}^{*}\right] \\
& \geq\left(1 / q_{H_{3}}\right) \cdot\left[\left(\epsilon-1 / 2^{\prime}\right) / e\left(q_{c e r}+1\right)-q_{d} / q\right] .
\end{aligned}
$$

Theorem 4. Assume that six hash functions H_{i}, for i $\in[1,6]$, are random oracles and \mathcal{A}_{4} is a Type IV adversary against the CB-PKEET scheme with advantage ϵ in the security game $G_{\text {CBEET-ow-CCA }}$. Then, there is an algorithms C to solve the BDH problem with advantage
$\epsilon^{\prime} \geq\left(1 / q_{H_{3}}\right)\left[4\left(\epsilon-1 / 2^{\lambda}\right)-q_{d} / q\right]$,
where $q_{H_{3}}$ and q_{d} respectively are query times to random oracle H_{3} and decryption queries.
Proof. An algorithm C is given an instance of the BDH problem: $\left(\mathcal{G}, U, U^{a}, U^{c}, V, V^{a}, V^{b}\right)$ where $\mathcal{G}=\left(q, G_{1}, G_{2}, G_{T}\right.$,
$\hat{e})$. Let $D=\hat{e}(U, V)^{a b c} \in G_{T}$ be the solution of the BDH problem. The algorithm C simulates a challenger to find D by interacting with \mathcal{A}_{4} in the following security game $G_{\text {CBEET-ow-CCA }}$.

- Setup. The challenger C generates the system public parameter $S P P=\left(\mathcal{G}, U, V, S P K, H_{1}, H_{2}, H_{3}, H_{4}\right.$, H_{5}, H_{6}) by setting $S P K=U^{3}$, where $s \in Z_{q}^{*}$ is random value as the system secret key SSK. Then, the system public parameter $S P P$ is sent to \mathcal{A}_{4}. Here, $H_{1}, H_{2}, \ldots, H_{6}$ are hash functions as random oracles. Because C's responses to queries to these random oracles issued from \mathcal{A}_{4} must be consistent, C must maintain the several lists, namely $L_{H 1}, L_{H 2}, \ldots, L_{H 6}$, $L_{\text {Key }}$ which are defined in phase 1 below.
- Phase 1. The adversary \mathcal{A}_{4} may issue the following queries.
- H_{1} query. it is similar to the proof of Theorem 1.
- H_{2} query. it is similar to the proof of Theorem 3.
- $H_{3}-H_{6}$ queries. it is similar to the proof of Theorem 1.
- User public key query. it is similar to the proof of Theorem 2.
- Decryption query. it is similar to the proof of Theorem 3.
- Trapdoor query. it is similar to the proof of Theorem 3.

Challenge. The adversary \mathcal{A}_{4} sends a target identity $I D^{*}$ to C. Then, C uses $I D^{*}$ to search the list $L_{\text {key }}$ of the form [ID, USK, UPKA, UPKB, CertA, CertB, cn]. If $c n=$ $0, C$ aborts this game. Otherwise, C picks a random message $M^{*} \in\{0,1\}^{\lambda}$ and a value $\kappa \in\{0,1\}^{l}$, and then uses M^{*} and κ to issue H_{5} query to gain θ. In addition, C uses $M^{* *}$ and $\hat{e}\left(U^{c}, V^{u u^{*} x^{*}}\right)$ to issue $H_{4} q u e r y$ and $H_{6} q u e-$ $r y$ to gain γ and η. Further, C sets $C T_{1}{ }^{*}=U^{\theta}, C T_{2}{ }^{*}=U^{c}$, $C T_{3}{ }^{*} \in\{0,1\}^{\alpha+l}$ and $C T_{4}{ }^{*}=\gamma^{\theta \cdot \eta}$. Here, $C T_{3}{ }^{*}$ is a random value in $\{0,1\}^{\lambda+l}$. Finally, C runs the target ciphertext $C T^{*}=\left(C T_{1}^{*}, C T_{2}{ }^{*}, C T_{3}{ }^{*}, C T_{4}{ }^{*}\right)$.
Phase 2. The adversary \mathcal{A}_{4} can continue to issue the same queries as in phase 1.
Guess. The adversary \mathcal{A}_{4} sends a message $M^{\prime} \in\{0,1\}^{\lambda}$ as the answer to guess. \mathcal{A}_{4} wins this game if $M^{\prime}=r v$. C randomly selects a tuple $\left[\mu^{*}, C T_{1}{ }^{*}, C T_{2}{ }^{*}, \varphi^{*}\right]$ from the list $L_{H 3}$ of the form $\left[\mu, C T_{1}, C T_{2}, \varphi\right]$ to gain μ^{*}. Then, $D=$ $D=\left(\mu^{*}\right)^{\left(s^{2} 2 x^{*} \sigma^{*}\right)^{-1}}$ is outputted as the solution of the BDH problem.

Analysis. We first discuss the simulations of hash functions, namely $H_{1}, H_{2}, \ldots, H_{6}$. Obviously, we can say that the hash functions $H_{1}, H_{2}, H_{4}, H_{5}$ and H_{6} as the random oracles are perfect simulations since the inputs and outputs of the random oracles are independent of the solution of the BDH problem. Assume that Event H_{3}^{*} is a events of issuing the H_{3} query with ($\left.\hat{e}(U, V)^{a b c c^{2} x^{*} \sigma^{*}}, C T_{1}{ }^{*}, C T_{2}{ }^{*}\right)$. Here, we say that the hash functions H_{3} as the random oracles is perfect simulations if events Event $H_{3}{ }^{*}$ did not occur. We then discuss the simulations of the decryption query. We denote EventDecFail as the event that the ciphertext is valid, and the challenger C is unable to decrypt it. The probability of this event is $\operatorname{Pr}[$ Event DecFail] $\leq q_{d} / q$.
Moreover, we denote Event $=\left(\right.$ Event $H_{3}{ }^{*} \vee$ EventDecFail) $\mid \neg$ EventAbor as the event that this game will not be aborted, where EventAbort is the event that the challenger C aborts this game. We can obtain probability $\operatorname{Pr}\left[r v=r v^{\prime} \mid \neg\right.$ Event $] \leq 1 / 2^{\lambda}$ if the event Event does not occur. Further, we get

$$
\begin{aligned}
\operatorname{Pr}\left[r v=r v^{\prime}\right] & =\operatorname{Pr}\left[r v=r v^{\prime} \mid \text { Event }\right] \operatorname{Pr}[\text { Event }] \\
& +\operatorname{Pr}\left[r v=r v^{\prime} \mid \neg \text { Event }\right] \operatorname{Pr}[\neg \text { Event }] \\
& \leq \operatorname{Pr}[\text { Event }]+\left(1 / 2^{\lambda}\right) \cdot \operatorname{Pr}[\neg \text { Event }] \\
& =\operatorname{Pr}[\text { Event }]+\left(1 / 2^{\lambda}\right) \cdot(1-\operatorname{Pr}[\text { Event }]) \\
& =\left(1 / 2^{\lambda}\right) \cdot \operatorname{Pr}[\text { Event }]+1 / 2^{\lambda} .
\end{aligned}
$$

Accordingto the sense of ϵ, we have $\epsilon=\operatorname{Pr}\left[r v=r v^{\prime}\right]-1 / 2^{\lambda}$. Hence, we obtain $\epsilon=\operatorname{Pr}\left[r v=r v^{\prime}\right]-1 / 2^{\lambda} \leq \operatorname{Pr}[$ Event $] \leq$ $\left(\operatorname{Pr}\left[\right.\right.$ Event $\left.H_{3}{ }^{*}\right]+\operatorname{Pr}[$ EventDecFail $\left.]\right) / \operatorname{Pr}[\neg$ Event Abor $]$. By this inequality, we have $\operatorname{Pr}\left[\right.$ Event $\left.H_{3}^{*}\right] \geq$ $\left(\epsilon-1 / 2^{\lambda}\right) \cdot \operatorname{Pr}[\neg$ EventAbor $]-\operatorname{Pr}[$ EventDecFail $]$. Since $\operatorname{Pr}[\neg$ EventAbor $]=v(1-v)$, we can gain $\operatorname{Pr}[\neg$ Event Abor $] \geq 1 / 4$ when $v=1-1 /(1+1)$. We then have $\operatorname{Pr}\left[\right.$ Event $\left.H_{3}{ }^{*}\right] \geq 4\left(\epsilon-1 / 2^{\lambda}\right)-q_{d} / q$.
If the event Event $H_{3}{ }^{*}$ occurs, the adversary A_{4} can know the the the target ciphertext $C T^{*}$ is invalid. $H_{3}\left(\hat{e}(U, V)^{a b c s^{2} x^{*} \sigma^{*}}, C T_{1}^{*}, C T_{2}{ }^{*}\right)$ has been recorded in the list $L_{H 3}$. We can say that the challenger C wins this game if the correct element was chosen in the list $L_{H 3}$. Therefore, the challenger C can solve the BDH problem with advantage

$$
\begin{aligned}
\epsilon^{\prime} & \geq\left(1 / q_{H_{3}}\right) \operatorname{Pr}\left[\text { Event } H_{3}^{*}\right] \\
& \geq\left(1 / q_{H_{3}}\right) \cdot\left[4\left(\epsilon-1 / 2^{\lambda}\right)-q_{d} / q\right] .
\end{aligned}
$$

6. Comparison

In this section, we give a comparison of our proposed CBEET scheme with the IBEET scheme [15] and the CBE scheme [19]. We employ two notations to analyze the computational cost of encryption, decryption and equality test. The two notations are defined as below.

- Cost $_{\text {paii }}$: the cost of performing a bilinear pairing operation $e: G_{1} \times G_{2} \rightarrow G_{T}$.
- Cost $_{\text {exp }}$: the cost of performing an exponentiation operation in G_{1}, G_{2} or G_{T}.
We utilize the relevant simulation results [27] to obtain Cost $t_{\text {pair }} \approx 20 \mathrm{~ms}$ and Cost $_{\text {exp }} \approx 7 \mathrm{~ms}$. The relevant simulations are executed in a PC environment where the hardware specification is Intel Core i7 CPU 1.80 Ghz processor. The inputs of relevant simulations are a finite field F_{q}, G_{1}, G_{2} and G_{T}, where q is a 512 -bit prime number, and q is the order for three groups G_{1}, G_{2} and G_{T}. We also obtain Cost $_{\text {pair }} \approx 96 \mathrm{~ms}$ and Cost $_{\text {exp }} \approx$ 31 ms in a mobile device environment where the hardware specification is Intel 624-MHz PXA270 CPU.
Table 3 presents the comparisons of our proposed CBEET scheme with the IBEET scheme [15] and the CBE scheme [19] in terms of computational cost, key escrow problem and equality test property. For the computational cost in the procedure of encryption, the CBE scheme [19] is the best, but it does not have the property of providing equality test. On the other hand, the computational cost for decryption and equality test of our CBEET scheme is almost the same as that of the IBEET scheme [15]. However, there exists the key escrow problem in the IBEET scheme.

The KGC keeps the private key for each user and may use the private key without the user's knowledge. Conversely, our CBEET scheme not only avoids the key escrow problem, but also retains the performance of encryption, decryption and equality test.

7. Conclusions and Future Work

We introduced a new syntax of CBEET, which incorporates the equality test into CBE. Additionally, novel security notions were proposed. Building upon the syntax of CBEET, we presented the first CBEET scheme. Based on the BDH problem, our scheme has been rigorously proven secure against four distinct adversaries in the $\mathrm{G}_{\text {CBEET-IND-CCA }}$ and $\mathrm{G}_{\text {CBEET-ow-CCA }}$ security games. This proposed scheme ensures data confidentiality, even when the data is stored on the cloud. The cloud servers are unable to access the content of the data, but still being able to perform tasks of equality test. As compared with the existing IBEET scheme and CBE scheme, our CBEET scheme not only avoids the key escrow problem, but also retains the performance of encryption, decryption and equality test.
When considering future research, it is important to focus on enhancing the proposed scheme's security properties, such as anonymity, mutual authentication, freshness, and resistance to replay attacks. Hence, for future research, it is crucial to address these shortcomings and develop a scheme that ensures mutual authentication, freshness, anonymity, and resistance

Table 3
Comparisons of our CBEET with existing IBEET and CBE

	Ma's IBEET scheme [15]	Shao's CBE scheme [19]	Our CBEET scheme
Computational cost for encryption on a mobile device	2 Cost $_{\text {pair }}+6$ Cost $_{\text {exp }}$ $(\approx 378 \mathrm{~ms})$	Cost $_{\text {pair }}+2$ Cost $_{\text {exp }}$ $(\approx 158 \mathrm{~ms})$	2 Cost $_{\text {pair }}+5$ Cost $_{\text {exp }}$ $(\approx 347 \mathrm{~ms})$
Computational cost for decryption on a mobile device	2 Cost $_{\text {pair }}+2$ Cost $_{\text {exp }}$ $(\approx 254 \mathrm{~ms})$	2 Cost $_{\text {pair }}+2$ Cost $_{\text {exp }}$ $(\approx 254 \mathrm{~ms})$	2 Cost $_{\text {pair }}+4$ Cost $_{\text {exp }}$ $(\approx 316 \mathrm{~ms})$
Computational cost for equality test on a PC	4 Cost $_{\text {pair }}$ $(\approx 80 \mathrm{~ms})$	-	4 Cost $_{\text {pair }}$
Avoiding key escrow problem	No	Yes	Yes

to replay attacks. This can involve exploring techniques to safeguard user identities, prevent unauthorized access to secret data stored in devices, and implement measures to detect and prevent message tampering during transmission. By addressing these concerns, the proposed scheme can be significantly improved in terms of its overall security properties. Additionally, we should also consider the adversary's capability to steal the user's device and access data

References

1. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D. Key-privacy in Public Key Encryption. In: ASIACRYPT'01, 2001, LNCS 2248, 566-582. https://doi. org/10.1007/3-540-45682-1_33
2. Bellare, M., Waters, B., Yilek, S. Identity-based Encryption Secure Against Selective Opening Attack. In: TCC'11, 2011, LNCS 6597, 235-252. https://doi. org/10.1007/978-3-642-19571-6_15
3. Boneh, D., Crescenzo, G. D., Ostrovsky, R., Persiano, G. Public Key Encryption with Keyword Search. In: EUROCRYPT'04, 2004, LNCS 3027, 506-522. https://doi. org/10.1007/9r8-3-540-24676-3_30
4. Boneh, D., Franklin, M. Identity-based Encryption from the Weil Pairing. In: CRYPTO’01, 2001, LNCS 2139, 213-229. https://doi.org/10.1007/3-540-44647-8_13
5. Duong, D. H., Fukushima, K., Kiyomoto, S., Roy, P. S., Susilo, W. A Lattice-based Public Key Encryption with Equality Test in Standard Model. In: ACISP'19, 2019, LNSC 11547, 138-155. https://doi.org/10.1007/978-3-030-21548-4_8
6. Duong, D. H., Roy, P.S., Susilo, W., Fukushima, K., Kiyomoto, S., Sipasseuth, A. Chosen-ciphertext Lat-tice-based Public Key Encryption with Equality Test in Standard Model. Theoretical Computer Science, 2022, 905, 31-53. https://doi.org/10.1016/j.tcs.2021.12.013
7. Galindo, D., Morillo, P., Ràfols, C. Improved Certifi-cate-based Encryption in the Standard Model. Journal of systems and software, 2008, 81(7), 1218-1226. https://doi.org/10.1016/j.jss.2007.09.009
8. Gentry, C. Certificate-based Encryption and the Certificate Revocation Problem. In: EUROCRYPT’03, 2003, LNCS 2656, 272-293. https://doi.org/10.1007/3-540-39200-9_17
9. Guo, Y., Li, J., Lu, Y., Zhang, Y., Zhang, F. Provably Secure Certificate-based Encryption with Leakage Resilience.
from its memory, and even potentially acquire keys for decryption purposes. These security features are worth investigating as part of our research agenda.

Acknowledgement

This research was partially supported by Ministry of Science and Technology, Taiwan, under contract no. MOST 110-2222-E-019-001-MY2 and MOST 110-2221-E-019-041-MY3.

Theoretical Computer Science, 2018, 711, 1-10. https:// doi.org/10.1016/j.tcs.2017.10.020
10. Guo, L., Lu, Y., Miao, Q., Zu, G., Wang, Z. An Efficient Certificate-Based Encryption Scheme Without Random Oracles. In: International Conference on Artificial Intelligence and Security'22, 2022, LNCS 13340, 97107. https://doi.org/10.1007/978-3-031-06791-4_8
11. Huang, K., Tso, R., Chen, Y. C. Somewhat Semantic Secure Public Key Encryption with Filtered-equality-test in the Standard Model and Its Extension to Searchable Encryption. Journal of Computer and System Sciences, 2017, 89, 400-409. https://doi.org/10.1016/j.jcss.2017.06.001
12. Lee, H. T., Ling, S., Seo, J. H., Wang, H., Youn, T. Public Key Encryption with Equality Test in the Standard Model. Information Sciences, 2020, 516, 89-108. https://doi.org/10.1016/j.ins.2019.12.023
13. Li, H., Huang, Q., Ma, S., Shen, J., Susilo, W. Authorized Equality Test on Identity-based Ciphertexts for Secret Data Sharing via Cloud Storage. IEEE Access, 2019, 7, 25409-25421. https://doi.org/10.1109/ACCESS.2019.2899680
14. Liao, Y., Chen, H., Huang, W., Mohammed, R., Pan, H., Zhou, S. Insecurity of an IBEET Scheme and an ABEET Scheme. IEEE Access, 2019, 7, 25087-25094. https:// doi.org/10.1109/ACCESS.2019.2900752
15. Ma, S. Identity-based Encryption with Outsourced Equality Test in Cloud Computing. Information Sciences, 2016, 328, 389-402. https://doi.org/10.1016/j.ins.2015.08.053
16. Ma, S., Zhang, M., Huang, Q., Yang, B. Public Key Encryption with Delegated Equality Test in a Multi-user Setting. The Computer Journal, 2015, 58(4), 986-1002. https://doi.org/10.1093/comjnl/bxu026
17. Sahai, A., Waters, B. Fuzzy Identity-based Encryption. In: EUROCRYPT'03, 2003, LNCS 3494, 457-473. https://doi.org/10.1007/11426639_27
18. Shamir, A. Identity-based Cryptosystems and Signature Schemes. In: CRYPTO’84, 1984, LNCS 196, 47-53. https://doi.org/10.1007/3-540-39568-7_5
19. Shao, Z. Enhanced Certificate-based Encryption from Pairings. Computers and Electrical Engineering, 2011, 37(2), 136-146. https://doi.org/10.1016/j.compeleceng.2011.01.007
20. Shareef, O. S. F., Sagheer, A. M. Improved Certifi-cate-based Encryption Scheme in the Big Data: Combining AES and (ECDSA-ECDH). Ibn AL- Haitham Journal for Pure and Applied Sciences, 2021, 2021, 8295. https://doi.org/10.30526/2021.IHICPAS. 2655
21. Tang, Q. Public Key Encryption Schemes Supporting Equality Test with Authorisation of Different Granularity. International Journal of Applied Cryptography, 2012, 2(4), 304-321. https://doi.org/10.1504/ IJACT.2012.048079
22. Tsai, T. T., Tseng, Y. M., Wu, T. Y. Efficient Revocable Multi-receiver ID-based Encryption. Information Technology and Control, 2013, 42(2), 159-169. https:// doi.org/10.5755/j01.itc.42.2.2244
23. Tseng, Y. M., Tsai, T. T., Huang, S. S., Huang, C. P. Iden-tity-based Encryption with Cloud Revocation Authority and Its Applications. IEEE Transactions on Cloud Computing, 2018, 6(4), 1041-1053. https://doi. org/10.1109/TCC.2016.2541138
24. Uyyala, P. Secure Channel Free Certificate-Based Searchable Encryption Withstanding Outside and Inside Keyword Guessing Attacks. The International Journal of Analytical and Experimental Modal Analysis, 2021, 13, 2467-2474.
25. Wu, J. D., Tseng, Y. M., Huang, S. S., Tsai, T. T. Leak-age-resilient Certificate-based Key Encapsulation Scheme Resistant to Continual Leakage. IEEE Open Journal of the Computer Society, 2020, 1, 131-144. https://doi.org/10.1109/OJCS.2020.3008961
26. Wu, L., Zhang, Y., Choo, K. K. R., He, D. Efficient and Secure Identity-based Encryption Scheme with Equality

Test in Cloud Computing. Future Generation Computer Systems, 2017, 73, 22-31. https://doi.org/10.1016/j. future.2017.03.007
27. Xiong, H., Qin, Z. Revocable and Scalable Certificateless Remote Authentication Protocol with Anonymity for Wireless Body Area Networks. IEEE Transactions on Information Forensics and Security, 2015, 10(7), 14421455. https://doi.org/10.1109/TIFS.2015.2414399
28. Yang, G., Tan, C. H., Huang, Q., Wong, D. S. Probabilistic Public Key Encryption with Equality Test. In: CT-RSA'10, 2010, LNCS 5985, 119-131. https://doi. org/10.1007/978-3-642-11925-5_9
29. Yao, J., Li J., Zhang, Y. Certificate-based Encryption Scheme without Pairing. KSII Transactions on Internet and Information Systems, 2013, 7(6), 1480-1491. https://doi.org/10.3837/tiis.2013.06.008
30. Yu, Q., Li, J., Zhang, Y. Leakage-resilient Certifi-cate-based Encryption. Security and Communication Networks, 2015, 8, 3346-3355. https://doi.org/10.1002/ sec. 1258
31. Yu, Z., Gao, C. Z., Jing, Z., Gupta, B. B., Cai, Q. A Practical Public Key Encryption Scheme Based on Learning Parity with Noise. IEEE Access, 2018, 6, 31918-31923. https://doi.org/10.1109/ACCESS.2018.2840119
32. Zeng, M., Chen, J., Zhang, K., Qian, H. Public Key Encryption with Equality Test via Hash Proof System. Theoretical Computer Science, 2019, 795, 20-35. https://doi.org/10.1016/j.tcs.2019.05.033
33. Zhang, X., Xu, C. Trapdoor Security Lattice-based Pub-lic-key Searchable Encryption with a Designated Cloud Server. Wireless Personal Communications, 2018, 100(3), 907-921. https://doi.org/10.1007//s11277-018-5357-6
34. Zhou, Y., Xu, Y., Qiao, Z., Yang, B., Zhang, M. Continuous Leakage-resilient Certificate-based Signcryption Scheme and Application in Cloud Computing. Theoretical Computer Science, 2021, 860, 1-22. https://doi. org/10.1016/j.tcs.2021.01.024

