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Landslides significantly impact economic development and public safety. Aiming at the problem of insufficient 
prediction accuracy of the displacement data series of the traditional grey Verhulst model, this paper proposes 
a fractional Verhulst model optimized using the beetle tentacle search algorithm. First, based on the grey Ver-
hulst model, a fractional order operator is introduced to accurately adjust the magnitude between cumulative 
values, constructing a fractional order-based grey Verhulst model. Expanding the accumulative order range 
improves prediction performance. Second, the fractional operator is optimized. The beetle antennae search 
algorithm finds the optimal fractional order between 0 and 1 in the grey Verhulst model, minimizing average 
relative error. Finally, using Heifangtai landslide group displacement data from Gansu Province, simulation 
experiments verified that the model has higher fitting accuracy and prediction effect than the traditional grey 
Verhulst model, Huang’s improved Verhulst model, GM (1,1) model, cubic exponential smoothing model, and 
DGM (2,1) model. The average relative error is 2.949 %. Results show that the beetle antennae search algorithm 
optimized fractional order grey prediction model significantly improves fitting and prediction effect on data. 
The optimized fractional Verhulst model is more suitable for predicting landslide displacement deformation.
KEYWORDS: Landslide monitoring, Fractional Verhulst model, beetle antennae search algorithm, Heifangtai 
landslide.

1. Introduction
China is a country that has been seriously affected by 
natural geological disasters and suffered heavy losses 
in all aspects. According to statistics, nearly 300,000 
potential geological hazards have been identified 
across China, threatening the safety of some 20 mil-
lion people and their property. In recent years, cata-
strophic geological disaster events have frequently 
occurred in China. According to news reports, 7,840 
geological disasters occurred nationwide in 2020, 
up 26.84 percentage points from 2019. Among them, 
landslides accounted for 4,810, or 61.35% of the total 
geological disasters, ranking first. The severe losses 
caused by landslide disasters are reflected not only 
in threats to the personal and property safety of the 
people but also in the resistance to the development 
of the country’s economy. In particular, in crucial 
transportation, industrial construction areas, and 
population activities, once a landslide occurs, it will 
be a considerable loss, sometimes more devastating, 
to industry, agriculture, and people’s lives and prop-
erties. Therefore, it is of tremendous research signif-
icance to monitor the deformation and displacement 
of landslides and to accurately predict their future 
deformation trends [26].
With the continuous development of landslide moni-
toring technology in China, landslide monitoring and 
early warning work has gradually transitioned from 
manual to intelligent. However, there are still prob-
lems, such as the high cost of monitoring systems, the 

inconvenience of maintenance, and the need for uni-
versality. The technology cannot be promoted nation-
wide, and monitoring systems can only be developed 
according to local geological characteristics. Each 
detection method targets different application envi-
ronments and scenarios, and the results are not guar-
anteed optimal. Only by selecting suitable monitoring 
methods and prediction models can it provide accu-
rate warning and prediction of mountain landslides. 
In the past fifty years, the GPS method of monitoring 
displacement has achieved comprehensive coverage 
in landslide monitoring, which monitors the three-di-
mensional continuous displacement of the landslide 
surface with high accuracy. Therefore, the time series 
of landslide deformation displacement collected by 
GPS provides the basic data for landslide warning, 
establishing landslide prediction models, and even-
tually predicting the time of landslide occurrence [2].
At present, the methods for predicting landslide dis-
placement mainly include machine learning methods 
and traditional mathematical modeling methods. For 
example, Han et al. [4] used variational modal decom-
position and deep confidence neural network model to 
predict the displacement of the Baijiabao landslide in 
the Three Gorges Reservoir area; Jiang et al. [6] used 
an optimized differential evolutionary-support vec-
tor machine model to predict landslide displacement, 
which provided a new idea for non-linear methods; 
Jiang et al. [7] combined LSTM neural network and 
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SVR algorithm to the prediction of the periodic term 
of landslide displacements. To address the uncertain-
ty in the process of landslide displacement prediction. 
Wang et al. [21] used exponential smoothing (DES) 
to predict the linear part of landslide displacement 
change and Bayesian deep neural network (BDNN) to 
predict the non-linear part of residuals, constructing 
a new framework for landslide displacement prob-
ability prediction: DES-BDNN. Although machine 
learning and artificial intelligence methods have 
better non-linear fitting effects, they require more 
data and optimization. Traditional mathematical 
modeling methods, such as the grey Verhulst model, 
the GM (1,1) model, DGM (2,1) model, and other grey 
prediction models [16]. Grey prediction theory deals 
with uncertain systems with partly known and partly 
unknown information. Only need a small sample of 
data to model landslide displacement [30]. It makes 
them more advantageous for areas with little infor-
mation and potential unexplored landslides. Qiu et al. 
[18] used the GM (1,1) model in grey theory to predict 
ancient landslides. The DGM (2,1) grayscale model 
does not need to accumulate generated sequences and 
directly uses the original sequences [1]. The Verhulst 
model harshly selects early warning indicators, re-
quiring many trial calculations to select appropriate 
ones. The grey Verhulst model obtains event change 
laws through analyzing and processing known data, 
adapting well to landslide complexity and monitoring 
limitations. Li et al. [11] first combined the twin sup-
port vector regression and the Hausdorff derivative 
operator, then proposed a new grey prediction model, 
achieving excellent results in predicting the displace-
ment of the Bazimen landslide in China’s Three Gorg-
es Reservoir area. Huang et al. used the reciprocal 
sequence (RS) of the accumulative generation opera-
tion (AGO) to construct identification parameters for 
the grey Verhulst model [5]. This method effectively 
solves problems of initial value optimization and pa-
rameter misplacement replacement in the model.
In practical problems, there is a problem of inequiv-
alence and randomness between the original data. 
Fractional calculus can better explore the object’s es-
sence and flexibly solve complex problems than inte-
ger order. The fractional grey system model combines 
both advantages, revealing the grey system’s develop-
ment law more deeply. With the rapid development 
of artificial intelligence algorithms, optimizing the 

order of the fractional Verhulst model is essential-
ly an optimization process. Relevant scholars have 
proposed using intelligent algorithms to optimize the 
parameters of the fractional grey forecasting model. 
Wang et al. [22] proposed a particle swarm optimi-
zation (PSO) algorithm to determine the optimal pa-
rameters of the FGRM (1,1) model. Shalaby et al. [19] 
used the GWO algorithm to adjust FOPID parame-
ters. Li et al. [11] improved the standard Salp swarm 
algorithm (SSA) by introducing Levy’s flight (LF) 
strategy and chaotic local search (CLS) strategy and 
then solved the parameters of the new gray prediction 
model. Li et al. [12] used the PSO algorithm to solve 
the parameters of the grey multivariate prediction 
model. Zhu et al. [33] used the Marine predator algo-
rithm to solve the hyperparameters of the CFNGBM 
(r, N) model. Wang et al. [23] designed a new surro-
gate-assisted evolutionary algorithm (RESAPSO) to 
optimize the hyperparameters of the LSTM network 
based on the surrogate model. The Beetle Antennae 
Search (BAS) algorithm is a bionic intelligent algo-
rithm proposed by scholars inspired by the foraging 
of longicorn beetles. The algorithm has two advan-
tages: first, it does not need to know the specific form 
of the objective function and gradient information; 
second, it can reduce the amount of computation and 
shorten optimization time. These two characteristics 
make it very suitable for Verhulst model order recti-
fication. Compared with the PSO algorithm, the BAS 
algorithm has more advantageous in terms of jump-
ing out of the local extremes and convergence speed. 
Compared with the genetic algorithm (GA), the BAS 
algorithm does not require binary encoding, and the 
calculation speed is faster. Compared with the bat 
algorithm (BA) and artificial bee colony (ABC) al-
gorithm, the BAS algorithm has higher efficient and 
less complex. In addition, due to the lower in terms of 
time and space complexity, the efficiency of the BAS 
algorithm is higher than that of most swarm intelli-
gence algorithms. Zhang et al. [31] used the BAS op-
timization algorithm with low computational effort 
and fast computational speed to optimize the param-
eters of the random forest regression (RF) algorithm, 
thereby improving the accuracy of the dam horizon-
tal displacement prediction model. Zhang et al. [32] 
effectively realized the parameter tuning of the PID 
controller and fractional order PID controller by us-
ing the BAS algorithm.
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In summary, this paper takes the Hefangtai landslide 
group in Gansu Province as an example, analyzes its 
displacement variation law, and adds the fractional 
order operator based on the Grey Verhulst model to 
precisely adjust the order of magnitude between the 
cumulative numbers, to construct the Grey Verhulst 
model based on fractional order. The beetle antennae 
search algorithm precisely adjusts the order to opti-
mize model accuracy. Comparative analysis with the 
traditional grey Verhulst model, GM (1,1) model, Cu-
bic Exponential Smoothing algorithm model, DGM 
(2,1) model, and the Huang optimized grey Verhulst 
model [5] shows the optimized model has a high fit-
ting and prediction effects on landslide data. This 
paper provides a reference for early warning and pre-
vention of landslide disasters.

2. Experimental Details
2.1. Landslide Prediction Forecasting Models
The study of landslide hazard warning and prediction 
is a cutting-edge topic worldwide and a problem hu-
mankind has constantly been exploring but has yet 
to solve perfectly. Due to the sudden, random, and 
non-linear nature of landslide formation, landslides 
are highly complex non-linear dynamical systems. 
Despite rapid scientific and technological develop-
ment, landslide prediction remains challenging. Most 
consider early research, the beginning of the work 
on landslide prediction. After decades of research by 
scholars from various countries, landslide prediction 
theory has developed considerably. The main types 
are deterministic forecasting models, non-linear 
forecasting models, statistical forecasting models, 
and macroscopic forecasting models.

2.1.1. Model Selection
Deterministic models have strict mathematical ex-
pressions and deterministic mathematical relation-
ships. Historical monitoring data curves of previous 
landslides are fitted to the models to derive the model 
parameters. The mathematical relationship between 
the historical data and the models determines pre-
diction reliability. Representative models include 
the Saito model and the limit equilibrium method. 
Non-linear models apply non-linear scientific theo-
ries to complex landslide forecasting and prediction 
problems. Representative models include non-lin-

ear dynamics models and neural network models. To 
build prediction models, statistical models use statis-
tical and mathematical theories to analyze the rela-
tionship between landslide deformation parameters 
and time. Typical methods include the grey model and 
the Verhulst model. Macroscopic forecasting models 
blend deterministic and statistical models, and they 
are hybrid models [17].
The traditional Saito method is based on creep theory 
and can, therefore, only be used to predict unobstruct-
ed earth slides on the leading edge, which is limited 
in scope. The non-linear kinetic model is based on 
non-linear kinetic theory and has some physical sig-
nificance. Nevertheless, it also needs the following 
shortcomings: the specific expressions of anonymous 
functions, initial conditions, and process state vari-
ables cannot be specified. The neural network model 
has a powerful non-linear fitting ability and can be 
trained repeatedly by the computer to learn available 
landslide data to make predictions. However, its dis-
advantage is that it requires a large amount of data for 
training. At the same time, the actual situation can 
only collect a little landslide data, with the problem of 
the insufficient sample size of the original data. The 
design goal of this paper is to develop a landslide mon-
itoring system in the direction of low cost, high preci-
sion, and intelligence. While ensuring the prediction 
effect, we should also consider the cost. Unlike the 
large number of computing resources required by ar-
tificial intelligence, the prediction model proposed in 
this paper is a lightweight model design. Therefore, 
this paper selects the grey Verhulst model, a statis-
tical model, to predict landslide displacement. Frac-
tional order theory will apply in the analysis example.

2.1.2. Grey Verhulst Model
Professor Deng Julong first proposed grey systems 
theory in the early 1980s, a discipline created by Chi-
nese scholars to address the uncertainty and com-
plexity of nature. The theory mainly extracts effec-
tive information through the transforming of partial 
known information. It is used to solve the problems 
of “small sample” and “information-poor,” which are 
difficult to solve by some methods. It mainly uses less 
data for modeling [17]. The grey prediction model is 
a part of the grey system theory and has an import-
ant position. The grey Verhulst model is a unique 
form of the GM (1,1) model, which has good predic-
tion accuracy and applicability for problems with an 
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“S” shaped data series [10]. For example, Duan et al. 
[3] used a grey Verhulst model to predict CO2 emis-
sions from coal combustion, which coincides with the 
concept of “carbon neutrality” proposed by China. A 
system with information between explicit and am-
biguous is called a grey system, and a grey system is 
a practical problem that can be solved by knowing the 
least amount of information [9]. grey systems theory 
refers to processes with any set of random variables 
that vary over time as grey processes. Most systems 
are complex with messy data, but correlations exist. 
The original data sequence needs to be processed and 
transformed to discover the relationship within it. 
This process is called grey series generation [29]. Dif-
ferential equation models then predict future change 
patterns. The data series should have been sampled 
at equal intervals when modeling the grey Verhulst 
model. The data series should first be processed for 
first-order accumulative generation operation (1-
AGO), which is to highlight the regularity of the origi-
nal data series, and then modeled into the calculation. 
The simulated values after processing will be reduced 
by first-order accumulative reduction to finally arrive 
at the predicted values [20].
Suppose the original displacement data sequence is

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 01 , 2 , ,X x x x n= ⋅⋅⋅ , calculate the 1-AGO 
sequence to obtain ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 11 , 2 ,X x x x n= ，  
where

( ) ( ) ( ) ( )
1 0

1
, 1, 2,

k

i
x k x i k n

=

= =∑  (1)

Calculate the sequence of the generated mean 
value of consecutive neighbors to obtain

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 11 , 2 , ,Z z z z n=   where

( ) ( ) ( ) ( ) ( ) ( )( )1 1 10.5 1 , 2,3,z k x k x k k n= + − =  (2)

The basic grey Verhulst model is:

( ) ( ) ( ) ( ) ( ) ( )( )20 1 1 1, 2, ,x k az k b z k k n+ = = ， (3)

From the above equation, it is obtained that

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

20 1 1

21 1 1 11 .

x k az k b z k

x k x k az k b z k

= − + ⇒

− − = − +
(4)

According to the Newton-Leibniz formula, there are:

( ) ( ) ( ) ( )
( ) ( )1

1 1

1
1 .

k

k

dx t
x k x k dt

dt−
− − = ∫ (5)

According to the geometric meaning of a definite in-
tegral, there are:

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1

1

1
.

2
k

k

x k x k
z k x t dt

−

+ −
= ≈ ∫ (6)

The geometric meaning of the two definite integrals is 
shown in Figure 1.

Figure 1 
Geometric curve of definite integrals
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Get matrix B and Y . [ ]ˆ , Ta bα = as parameter 
estimators, Then obtain estimated parameter 
estimators through the least squares 
estimation method: 

 ( ) 1
ˆ .T TB B B Yα

−
=  (8) 

From Equations (4), (5), and (6) obtain the 
shadow equation of the Verhulst model: 

 
( )

( ) ( )( )
1 21 1d .

d
x ax b x
t
+ =  (9) 

Solve the shadow equation and discretize it 
to obtain the time response sequence: 
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1

1

1 1

1
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1
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where ( ) ( ) ( ) ( ) ( )1 0ˆ ˆ1 1 0x x x= =   

Find the sequence ( )1X̂ according to 
( ) ( )1ˆ 1x k= + . Then use the first-order inverse 

accumulating generation operation(1-
IAGO) to restore the predicted sequence

( )0X̂ . The 1-IAGO is: 

 ( ) ( ) ( ) ( ) ( ) ( )0 1 1ˆ ˆ ˆ1 1 , 1,2, , .x k x k x k k n+ = + − = 

(12) 

Finally, conduct an error test, where the 
residuals are: 

 ( ) ( ) ( ) ( )0 0ˆ , 2,3, , .k x k x k nε = − =   (13) 

The relative error or Absolute Percentage 
Error (APE) is:  

 
( )

( ) ( )0
, 2,3, , .k

k
k n

x k

ε
∆ = =   (14) 

The grey Verhulst model effectively 
describes and predicts saturated (S-shaped) 
state processes under minor sample 
conditions. It is commonly used to predict 
populations, biological reproduction, and 
product longevity. In actual problems, since 
much data tends to be close to the "S" shape, 
the grey Verhulst model can model it 
directly [13]. 

2.2 Fractional Verhulst Model 

As humans continue exploring and studying 
the objective world, it is found that most 
dynamic systems are not of integer order. 
Therefore, using the theory of fractional 
calculus theory to model objects in the 
objective world is more accurate than using 
integer order. The calculation of fractional 
theory is more complicated to understand, 
so most research remains theoretical without 
breakthroughs. In recent years, with the 
progress of science and technology in 
various countries, fractional order has also 
moved from theory to practical engineering 
applications. Therefore, fractional theory 
modeling has unique advantages and great 
significance [34]. 

2.2.1 Fractional Accumulation Operator 
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tends to be close to the “S” shape, the grey Verhulst 
model can model it directly [13].

2.2. Fractional Verhulst Model
As humans continue exploring and studying the ob-
jective world, it is found that most dynamic systems 
are not of integer order. Therefore, using the theory 
of fractional calculus theory to model objects in the 
objective world is more accurate than using integer 

order. The calculation of fractional theory is more 
complicated to understand, so most research remains 
theoretical without breakthroughs. In recent years, 
with the progress of science and technology in vari-
ous countries, fractional order has also moved from 
theory to practical engineering applications. There-
fore, fractional theory modeling has unique advantag-
es and great significance [34].

2.2.1. Fractional Accumulation Operator
Definition  1. Suppose ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 01 , 2 , ,X x x x n=  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 01 , 2 , ,X x x x n=   is the original data sequence, Y  is the sequence 
operator, then ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 01 , 2 , ,X Y x y x y x n y=   
is the first-order cumulative generating sequence, 
where

( ) ( ) ( ) ( )0 0

1
, 1, 2, , .

k

i
x k y x i k n

=

= =∑  (15)

Then call Y the first-order accumulative generating 
operator of X(0), denoted as 1– AGO.
Theorem 1. Suppose ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 01 , 2 , ,X x x x n=   
is the original data sequence, ∈ R, then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 1 , 2 , ,r r r rrX X Y x x x n= =  is the cu-
mulative generating sequence of order r, where

( ) ( ) ( ) ( )1

1
, 1, 2, , .

k
r r

i
x k x i k n−

=

= =∑  (16)

Then call rY  the accumulative generating operator of 
order r of ( )0X , denoted as r – AGO. 
1 When r is a positive integer, 

( ) ( ) ( )( ) ( )
( )

( ) ( )0

1

1 2 1
.

1 !
1,2, ,

k
r

i

k i k i k i r
x k x i

r
k n

=

− + − + − + −
=

−

=

∑




(17)

Integer order cumulative generating operator 
called ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 1 , 2 , ,r r r rrX X Y x x x n= =    
as ( )0X , r Z +∈ .
2 When r is a positive real number, according to the 

infinite integral definition of the Gamma function,

( ) 1

0
.t zz e t dt

∞ − −Γ = ∫ (18)

Through the subsection integral method, there are
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( )

( )

1
00 0

1 1

1 1

z t t z t zz t de e t e t dt
z z

z
z

∞ ∞− − − ∞ −Γ = − = +

= Γ +

∫ ∫
(19)

Therefore, the factorial formula is:

( ) ( ) ( ) ( )1 1 1 !z z z z z z zΓ + = Γ = − Γ − = (20)

The Gamma function generalizes the factorial to 
non-integer z. Extending the accumulation operator 
Equation (17) to a positive real order, Equation (17) 
becomes: 

( ) ( ) ( )
( ) ( )

( ) ( )0

1
, 1, 2, , .

1

k
r

i

r k i
x k x i k n

k i r=

Γ + −
= =

Γ − + Γ∑  (21)

This extends the integer order to the fractional order, 
called the fractional order accumulative generating 
operator [28], r R+∈ . Source coefficient of ( ) ( )0x i  
with ( ) ( )0 1x i −  in Equation (21) to verify the weight 
ratio of the new and old information. Among them
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a When ( )0,1r∈ ,
1

1, 1 1i

i

a ri k
a r i k−

−
≤ = + >

− +
, the 

weight ratio of new and old information is greater 
than 1, indicating that new information is more im-
portant.

b When
1

11, 1 1i

i

a rr
a r i k−

−
> = + <

− +
, the weight ratio of 

new and old information is less than 1, indicating 
that the old information is more important. 

c When 1, , 1i
i i

i

a
r a a

a−
−

= = = he weight ratio of new 

and old information equals 1, indicating that new 
and old information is equally important.

Therefore, when ( )0,1r∈ , This article adopts the the-
orem that new information takes precedence to find 
the optimal order from 0 to 1.

2.2.2. Establishment of the Fractional Verhulst 
Model
The grey Verhulst model mainly performs first-order 
accumulation processing on the data to obtain the 
accumulated data sequence. According to the model 
equation’s solution, the simulated value is first-order 
accumulated and reduced, and finally obtain predict-
ed data values. In real life, there is no “perfect” data 
sequence. It is necessary to adjust the change accu-
racy of the cumulative series through the fractional 
order operator and select the operator for the data se-
quence of different scenarios, which can optimize the 
data fitting and prediction accuracy.
Definition  2. Suppose ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 01 , 2 , ,X x x x n= ⋅⋅⋅  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 01 , 2 , ,X x x x n= ⋅⋅⋅  is the original data sequence, r R+∈ , the 
order r cumulative generating sequence of ( )0X  is

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 , 2 , ,r r r rX x x x n= ⋅⋅⋅ , the sequence of 
generating the mean value immediately adjacent to 

( )rX is called ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 , 3 , ,r r r rZ z z z n= ⋅⋅⋅  then 
it is called

( ) ( ) ( ) ( ) ( ) ( )( )21r r rx k az k b z k− + = (22)

the fractional Verhulst model, where
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( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

1

1
0 0

1 1

1

1
1

r r r

k k

i i

x k x k x k

r k i r k i
x i x i

k i r k i r

−

−

= =

= − −

Γ + − Γ + − −
= −

Γ − + Γ Γ − Γ∑ ∑

( ) ( )
( ) ( ) ( ) ( )1

, 2,3, ,
2

r r
r x k x k

z k k n
+ −

= = ⋅⋅⋅

(23)
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Using the least square method, estimate the model 
parameter column [ ]ˆ , Ta bα = .
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where ( ) ( ) , 2,3, ,rz k k n=   is the sequence 
of immediately adjacent mean genera-
tion; a and b are the parameters to be sought; 
( ) ( ) ( ) ( ) ( ) ( )1 1 , 2,3, ,r r rx k x k x k k n− = − − =   Then the 

least square estimation of the parameter col-
umn [ ]ˆ , Ta bα =  of the fractional Verhulst model is 

( ) 1
ˆ T TB B B Yα

−
= .

Definition 3. Define

( ) ( ) ( ) ( ) ( ) ( )
2d

d

r
r rx t

ax t b x t
t

 + =   (24)

As the whitening equation of the fractional Verhulst 
model.
Theorem 2.
1 The time sequence of the model obtained by solv-

ing the whitening equation is
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1 1
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2 Then, the prediction sequence of the original se-
quence is obtained by the fractional reduction op-
erator:
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2.3. Order Optimization Based on the Beetle 
Antennae Search Algorithm

When the fractional Verhulst model is used for pre-
diction, it is necessary to optimize the order r. The 
optimal order r is selected to minimize the average 
relative error. This paper uses the Beetle Antennae 
Search (BAS) algorithm for parameter optimization. 
BAS algorithm is an intelligent optimization algo-
rithm proposed by Jiang et al. in 2017, a meta-heu-
ristic algorithm [8]. As an effective tool for solving 
complex optimization problems, heuristic algorithms 
have been widely used in many research fields and 
engineering applications. For example, In machine 
learning and data mining, it is used for feature selec-

tion, parameter optimization and hyperparameter 
optimization. In the fields of UAV path planning and 
robot motion control, it is used to find feasible solu-
tions quickly. In image processing and pattern recog-
nition, it is used for clustering center optimization, 
sensor array layout optimization, etc. In the fields 
of power system planning and control, supply chain 
management, and engineering design optimization, it 
is used to solve complex optimization problems with 
high dimensionality. Compared with intelligent opti-
mization algorithms such as the PSO algorithm, the 
perceptual ability of antennae can effectively reduce 
the probability of purposeless search and improve the 
convergence rate. Moreover, the BAS algorithm only 
needs a single individual to avoid the process of group 
optimization and significantly reduce the calculation. 
The algorithm’s main idea is that its tentacles have a 
perception function during foraging. Its tentacles can 
judge the next step direction based on odor strength 
when seeking a mate or food and effectively find the 
food position. The algorithm has simple steps, fewer 
setting parameters, and less computation than other 
optimization algorithms [24]. The BAS algorithm has 
significant low-dimensional target optimization ad-
vantages [14]. In this paper, the range of order is the 
real number between 0 and 1, which belongs to the 
one-dimensional optimization problem. Therefore, 
the BAS algorithm effectively solves the optimal solu-
tion of order. The optimization flow chart of the BAS 
algorithm is shown in Figure 2.
The pseudo-code for the fractional order based on 
BAS optimization is as follows:

Algorithm 1. Beetle Antennae Search optimizes frac-
tional order algorithm

Input: Objective function ( )( )rf X , where variable
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 , 2 , ,r r r rX x x x n= ⋅⋅⋅ , the maximum 

number of iterations Nmax 
Output: ( ),pBest f pBest
1. Initialize algorithm-related parameters: landslide 

original data sequence X(0), step length s, step co-
efficient η, tentacle length d;

2. i = 1;
3. r = 0;
4. while ( maxi N< ) do
5. Generation of the random search direction 

vector b


 according to Equation (29);
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Figure 2
BAS algorithm optimization flowchart

 

solves the optimal solution of order. The 
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The pseudo-code for the fractional order based on BAS optimization is as follows: 

Algorithm 1: Beetle Antennae Search optimizes fractional order algorithm 

Input：Objective function ( )( )rf X , where variable ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 , 2 , ,r r r rX x x x n= ⋅⋅⋅ ,the maximum number 
of iterations Nmax  

Output： ( ),pBest f pBest  

1. Initialize algorithm-related parameters: landslide original data sequence𝑋𝑋𝑋𝑋(0), step length 𝑠𝑠𝑠𝑠, step 
coefficient ɳ, tentacle length d; 

2. 𝑖𝑖𝑖𝑖 = 1; 
3. 𝑟𝑟𝑟𝑟 = 0; 
4. while ( maxi N< ) do 
5.    Generation of the random search direction vector b



 according to Equation (29); 
6.    Search the left and right beetles of the beetle in the variable space according to Equation (30); 
7.    Updating the beetle state variable gx  using Equation (30); 

8.    Calculate the r-order accumulation of the original data sequence ( )0X  according to Equation 
(16), to generate the sequence ( )rX ; 

9.    Do the generated mean value of consecutive neighbors according to Equation (23) to get ( )rZ ; 
10.    According to Equation (16), do first-order accumulation processing to get the 1-AGO operator; 
11.    Solve parameter column [ ]ˆ , Ta bα = ; 

12.    Solve the time response equation ( ) ( )ˆ rx k  according to Equation (24); 

13.    Calculate the simulated value of ( )rX ; 
14.    Reduce to obtain the simulated value of ( )0X̂ ; 
15.    Calculate the average relative errors ( )f r  and ( )f gBest ; 
16.    if ( ) ( )f r f gBest<  then do 
17.        Update the optimal solution and its fitness value ( ),x pBest f f pBest= = ; 
18.        Update the beetle search step ( )s g using Equation (31);  
19.    end if  
20.    1;i i= +  
21. end while 
22. return ( ),pBest f pBest   

 

Solving the optimal order 𝑟𝑟𝑟𝑟 of the fractional 
Verhulst model is equivalent to solving the 
problem of minimum average relative error: 

( )
( ) ( ) ( ) ( )

( ) ( )

00

0
2

ˆ1min ,
1

n

k

x k x k
f r r R

n x k
+

=

−
= ∈

− ∑ (27) 

6. Search the left and right beetles of the beetle in 
the variable space according to Equation (30);

7. Updating the beetle state variable gx  using 
Equation (30);

8. Calculate the r-order accumulation of the orig-
inal data sequence ( )0X  according to Equation 
(16), to generate the sequence ( )rX ;

9. Do the generated mean value of consecutive 
neighbors according to Equation (23) to get ( )rZ ;

10. According to Equation (16), do first-order accu-
mulation processing to get the 1-AGO operator;

11.  Solve parameter column [ ]ˆ , Ta bα = ;
12. Solve the time response equation ( ) ( )ˆ rx k  ac-

cording to Equation (24);
13. Calculate the simulated value of ( )rX ;
14. Reduce to obtain the simulated value of ( )0X̂ ;
15. Calculate the average relative errors ( )f r  and

( )f gBest ;
16. if ( ) ( )f r f gBest<  then do
17. Update the optimal solution and its fitness val-

ue ( ),x pBest f f pBest= = ;
18. Update the beetle search step ( )s g using Equa-

tion (31); 
19. end if 
20. 1;i i= +
21. end while
22. return ( ),pBest f pBest

Solving the optimal order r of the fractional Verhulst 
model is equivalent to solving the problem of mini-
mum average relative error:

( )
( ) ( ) ( ) ( )

( ) ( )

00

0
2

ˆ1min ,
1

n

k

x k x k
f r r R

n x k
+

=

−
= ∈

− ∑ (27)

Set ( )min f r  as objective function and apply the 
BAS algorithm to determine the optimal value 0r  of 
r, ( )0,1r∈ . 
In this paper, the initial parameters of the BAS algorithm 
are set as follows: initial the step size of searching s(1) = 
1, step length coefficient 0.95η = , The fixed constant c = 
5 represents the ratio between the step length s and the 
distance d between the two antennae of a longhorn bee-
tle, the target space dimension is k = 1, the number of it-
erations is 50. The calculation steps of the optimal order 
based on the BAS algorithm are as follows:
1 Randomly initialize the position of the beetle pop-

ulation and the orientation of the beetle antennae, 
and then normalize them:

( ),1gBest rand k= (28)

( )
( )

,1
,1

rand k
b

rand k

→

= , (29)

where gBest  is the initial optimal position, ()rand
represents the random number of randomly generat-
ed 0-1, k  represents the size of the spatial dimension.
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2 Create a spatial coordinate position equation 
based on the left and right tentacles of the longhorn 
beetle:

lg 2

2

g

rg g

bx x d

bx x d

→

→


 = +




= −


, (30)

where, lgx  represents the spatial position of the left 
antennae of the longhorn beetle at the g  iteration. rgx
represents the spatial position of the left antennae of 

the longhorn beetle at the g  iteration. gx represents 
the spatial position of the mass center of the beetle in 
the g  iteration. d  represents the induction length 
between the beetle antenna.
3 According to the objective function, calculate the 

function values of the left and right antenna of the 
beetle, and move to the direction of the antenna 
with the smaller function value.

4 The equation for updating the spatial position of 
the longicorn is:

( ) ( )1 lg( )g g rgx x s g b sign f x f x
→

+
 = − −  (31)

( ) ( )1s g s gη+ = (32)

( )1gpBest f x += , (33)

where ( )s g represents the step length of the g itera-
tion, ( )lgf x  and ( )rgf x represent the function values 
corresponding to the left and right antenna of longi-
corn at the g iteration, ( )sign  represents the sign 
function, η  is the step coefficient, pBest  is the cur-
rent location.
5 The average relative error of the fractional Ver-

hulst model is calculated when r pBest= .
a Calculate the r  order cumulative generating 

sequence ( )rX  of the original data sequence ( )0X .
b Make adjacent mean generation processing ob-

tains ( )rZ .
c After the first-order cumulative reduction, 

( )1rX − is obtained.
d Solving parameter column [ ]ˆ , Ta bα = .

e After solving, get the time response equation 
( ) ( )ˆ rx k .

f Calculate the simulated value of ( )rX .
g Restore the simulated value ( )0X̂ .
h Whether the average relative error ( )f pBest

is less than ( )f gBest  is calculated, if satisfied, 
( ),x pBest f f pBest= = Otherwise, the first 

step is returned for normalization.

6 Iteration completed, output ( )f pBest  and pBest. 
That is when the order r pBest=  is the optimal or-
der, the average relative error of the fractional Ver-
hulst model is the smallest.

2.4. Evaluation Criteria

To intuitively measure and evaluate the model’s pre-
diction performance, this paper uses the following:
Root Mean Squared Error (RMSE) to evaluate mod-
el interpretability. Mean Absolute Error (MAE) and 
Mean Absolute Percentage Error (MAPE) to evaluate 
model prediction accuracy. The coefficient of deter-
mination (R-squared, R2) to evaluate model goodness 
of fit. The smaller the MAE, RMSE, and MAPE, the 
better the model performance and accuracy. The clos-
er R2 is to 1, the better the model fit.
The calculation formula is as follows:
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where ( ) ( ) ( ) ( )0 0

1

1 , 1, 2, ,
n

k
x k x k k n

n =

= =∑  . 
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3. Results
There are many types of geological disasters in Chi-
na, among which landslide disasters occupy the first 
place. In 2018, Lu Hao, Minister of the Ministry of 
Natural Resources, emphasized that current protec-
tion against geological disasters is mainly divided into 
two issues: “Where is the hidden danger?” and “What 
time may happen?” [25]. Therefore, in order to pro-
tect the safety of the people, it is urgent to accurately 
monitor the deformation of landslides, excavate and 
analyze existing data, and scientifically predict when 
the landslide may occur, it is imperative.
Professor Yan [27] believed that the evolution of land-
slides had a process of breeding, development, occur-
rence, and extinction. The Verhulst model predicted 
organisms’ reproduction, growth, and death. The two 
had a high similarity. Therefore, the Verhulst model 
was applied to predict landslide displacement time, 
laying the foundation for landslide disaster predic-
tion. This paper introduces the fractional operator 
into the grey Verhulst model, and the beetle antennae 
search algorithm optimizes the order to minimize the 
average relative error.

3.1. Performance Analysis of the BAS 
Algorithm in Benchmark Test Function

In order to verify the effectiveness and superiority 
of the performance of the BAS algorithm, a variety of 

benchmark functions from the CEC2013 benchmark 
suite [15] (see Table 1) were used to test the BAS al-
gorithm, the PSO algorithm, the GOA algorithm, the 
WOA algorithm and the GA algorithm. The popula-
tion size of each algorithm was set to 100, the maxi-
mum number of iterations was 1000, the upper and 
lower bounds were set to [-100,100], the search times 
were 100 times; the Inertia factor w = 0.6; the learn-
ing factors c1, c2, c3 are 2. To avoid uncertainty in the 
operation of the algorithms, the five algorithms were 
tested independently 100 times. The average and 
standard deviation of the results are shown in Table 2.
Table 2 shows that the average value (AVG) and stan-
dard (STD) deviation of the BAS algorithm are sig-
nificantly better than those of the GA, WOA, PSO, and 
GOA optimization algorithms. Other algorithms such 
as GOA and WOA have more stable results, but the 
optimal values are not optimal. The performance of 
PSO algorithm is more balanced. The GA performed 
relatively poorly. For the Rosenbrock function, the 
BAS algorithm converged to the global optimal solu-
tion, while the GOA algorithm fell into a local optimal 
solution. For the multimodal benchmark functions 
of Rastrigin’s function, Ackley’s function, and Gri-
ewank’s function, the BAS algorithm was able to find 
the global optimal region by jumping out of most lo-
cal optima, although it was more difficult. Overall, the 
BAS algorithm has a stronger global search capability 
than other algorithms. Therefore, the BAS algorithm 

Table 1 
Description of benchmark functions

Function name Expression Peak type

Sphere ( ) 2
1

1

n

i
i

f x x
=

= ∑
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2 1
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i i i
i

f x x x x
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cos 2 10
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i i
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=
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n n
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i i
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∑ ∏
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Table 2 
Test Benchmark function optimization results

Fun
GA PSO WOA GOA BAS

AVG STD AVG STD AVG STD AVG STD AVG STD

f1 2.62E+03 1.67E+02 2.77E+03 6.02E+03 -5.78E+02 4.10E+02 -1.40E+03 2.32E-04 3.11E-02 1.60E-03

f2 1.34E+02 5.48E+04 2.38E+04 1.37E+03 2.22E+02 2.32E+02 1.54E+01 1.31E+01 5.59E-02 1.41E+01

f3 1.72E+06 1.09E+06 4.68E+05 4.20E+05 1.70E+04 7.94+03 1.53E+07 3.58E+07 1.24E+02 4.60E+01

f4 2.29E+03 3.91E+01 2.35E+03 2.15E+00 2.31E+03 8.64E+01 2.36E+03 4.54E+01 4.38E-01 8.61E-01

f5 2.76E+03 2.86E+01 2.64E+03 1.63E+00 2.63E+03 6.72E+00 2.68E+00 1.56E+01 1.00E+00 8.02E-04

is chosen to optimize the fractional order operator in 
this paper. 

The BAS algorithm solves the optimal fractional 
Verhulst model. Figure 3 is the process of an itera-
tive algorithm to obtain the optimal solution, and 
the number of iterations is 50. The graph shows 
that when the number of iterations is about 30, the 
algorithm has basically converged, and the algo-
rithm converges faster. Finally, the optimal order

0.064672r = , parameter 0.2206a = − , 0.0005b = − . 
The time response is:

Figure 3 
BAS algorithm iterative process
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The BAS algorithm solves the optimal 
fractional Verhulst model. Figure 3 is the 
process of an iterative algorithm to obtain the 

optimal solution, and the number of iterations 
is 50. The graph shows that when the number 
of iterations is about 30, the algorithm has 
basically converged, and the algorithm 
converges faster. Finally, the optimal order

0.064672r = , parameter 0.2206a = − ,
0.0005b = − . The time response is： 
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3.2 Fitting Results of Each Model 

In order to verify the prediction effect of the 
optimization model, this paper establishes the 
model according to the cumulative 
displacement data of the Gansu Heifangtai 
landslide group from January to December 
2016, monitored by GPS. The optimization 
model of this paper is compared with the 
Huang-optimized grey Verhulst model, grey 
Verhulst model, GM (1,1) model, cubic 
exponential smoothing model, and DGM (2,1) 
model. The residual and relative errors of the 
six models are compared by analyzing the 
original and predicted values of the six models. 
MATLAB2018b software is used to program 
the six models, respectively, and the accuracy 
of each model is shown in Table 3. 

In order to express the fitting of each model 
more intuitively, the fitting curves and error 
bar graphs of each model are plotted with the 
origin software according to Table 3, as shown 
in Figure 4. It was evident from the figure that 
the fractional order operator Verhulst model 
proposed in this paper has a minor error value 
compared with the other five models and can 
eliminate the extreme effect to a certain extent. 
The fitting curve also fits better with the 
original curve. The fitting curve and error bar 
chart is presented as the best, showing that the 
prediction model proposed in this paper has 
high accuracy and reliability. 

Table 3  

Accuracy checklist of six models of the Heifangtai landslide group in Gansu. 
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3.2. Fitting Results of Each Model
In order to verify the prediction effect of the optimi-
zation model, this paper establishes the model ac-
cording to the cumulative displacement data of the 
Gansu Heifangtai landslide group from January to 
December 2016, monitored by GPS. The optimization 
model of this paper is compared with the Huang-op-
timized grey Verhulst model, grey Verhulst model, 
GM (1,1) model, cubic exponential smoothing mod-
el, and DGM (2,1) model. The residual and relative 
errors of the six models are compared by analyzing 
the original and predicted values of the six models. 
MATLAB2018b software is used to program the six 
models, respectively, and the accuracy of each model 
is shown in Table 3.
In order to express the fitting of each model more 
intuitively, the fitting curves and error bar graphs 
of each model are plotted with the origin software 
according to Table 3, as shown in Figure 4. It was 
evident from the figure that the fractional order op-
erator Verhulst model proposed in this paper has a 
minor error value compared with the other five mod-
els and can eliminate the extreme effect to a certain 
extent. The fitting curve also fits better with the 
original curve. The fitting curve and error bar chart 
is presented as the best, showing that the prediction 
model proposed in this paper has high accuracy and 
reliability.
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Table 3 
Accuracy checklist of six models of the Heifangtai landslide group in Gansu

No. x(0)

/mm

Grey Verhulst 
model

Cubic 
Exponential 

Smoothing model
DGM(2,1) model GM(1,1) model Huang optimized 

Verhulst model

Fractional 
operator Verhulst 

model

x�(0)

/mm
Δk

%
x�(0)

/mm
Δk

(%)
x�(0)

/mm
Δk

(%)
x�(0)

/mm
Δk

(%)
x�(0)

/mm
Δk 

(%)
x�(0)

/mm
Δk

(%)

1 48.721 48.721 0 48.721 0 48.721 0 48.721 0 48.721 0 48.721 0

2 55.093 17.151 68.869 49.365 10.397 53.510 2.873 62.657 13.730 58.235 5.703 55.949 1.554

3 70.554 22.989 67.417 51.886 26.459 63.600 9.856 71.423 1.232 69.228 1.880 65.982 6.480

4 80.436 30.653 61.892 67.833 15.668 74.520 7.355 81.415 1.217 81.783 1.674 78.042 2.976

5 92.059 40.587 55.912 83.574 9.217 86.340 6.212 92.805 0.811 95.931 4.206 91.980 0.086

6 95.561 53.248 44.279 99.783 4.418 99.120 3.724 105.789 10.703 111.637 16.822 107.686 12.688

7 122.434 69.017 43.629 107.702 12.033 112.940 7.754 120.589 1.507 128.782 5.185 124.983 2.082

8 146.305 88.066 39.806 133.360 8.848 127.900 12.580 137.459 6.046 147.163 0.587 143.597 1.851

9 160.634 110.156 31.424 163.000 1.473 144.070 10.312 156.690 2.456 166.487 3.644 163.147 1.565

10 186.816 134.402 28.057 184.064 1.473 161.570 13.514 178.611 4.392 186.391 0.228 183.169 1.952

11 201.363 159.095 20.991 211.528 5.048 180.510 10.356 203.598 1.110 206.463 2.533 203.144 0.885

12 221.841 181.716 18.088 230.112 3.728 200.993 9.398 232.082 4.616 226.280 2.001 222.553 0.321

Note: No. represents the Serial number, x(0) represents Original value, Δk represents Residual error.

3.3. Comparison of Prediction Accuracies
The visual comparison analysis of the fitting accu-
racy of each model is shown in Figures 5-7. The APE 
histogram of Figure 5 shows that the APE of the pro-
posed model is significantly lower than that of other 
predictive models. The prediction error is significant-
ly lower. Figure 6 shows that the fitting curve is more 
consistent with the original curve. Figure 7 shows 
that the residual curve fluctuates less. The fraction-
al grey Verhulst model can complement each other’s 
advantages and improve the efficiency and prediction 
accuracy of the traditional grey Verhulst model. The 
fractional grey Verhulst model complements the tra-
ditional model’s advantages, improving efficiency and 
prediction accuracy.
The accuracy comparison results of the fitted values 
and the actual values of the six models are shown in 
Table 4. In the fitting stage, the traditional Verhulst 

model has the largest MAPE (43.669%), MAE (47.820 
mm), and RMSE (48.202 mm). Its most minor R2 
(0.557) indicates that the model’s accuracy is low. The 
model proposed in this paper has the smallest RMSE 
(4.385 mm), the lowest MAE (3.085 mm) and MAPE 
(2.949%), and the largest R2 (0.993). Its evaluation 
standard is lower than other models, with the best 
fitting effect. Optimizing the order dramatically re-
duces the grey Verhulst model’s average relative error 
from 43.669% to 2.94%, indicating that the optimized 
model has higher accuracy and better suits landslide 
displacement and deformation prediction. Huang’s 
improved Verhulst model has a better fitting effect. 
In contrast, the fractional Verhulst model reduces 
the average relative error by 1.093 percentage points 
greater. The residual value fluctuation is slightly 
smaller and generally more stable with higher predic-
tion accuracy.
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Figure 4 
Fitting plots and error bars of predicted data for each model. Letters (a-f ) represent each model’s fitting plot; Numbers (1-
6) represent each model’s error bars of simulated and actual values
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Figure 5 
Histogram of APE of residual values of each model
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4. Discussion 
Landslides significantly impact economic 
development and public safety. With artificial 
intelligence and IoT advancing monitoring 
systems, landslide monitoring has gradually 
become intelligent. The manual monitoring of 
landslide monitoring systems is complex, 
traditional prediction methods are high, and it 
is not easy to reason for the complex situation. 
In order to predict and warn of the occurrence 
of landslides in advance and ensure the safety 
of people and property, it is of tremendous 
research significance to monitor the 
deformation and displacement of landslides 
and accurately predict the future deformation 
trend. 

In general, the displacement information of 
landslides is partly known, so the landslide 
system is usually regarded as uncertain. The 
original data obtained in the study of its 
displacement characteristics are usually white, 
but the distribution type is grey, called grey 
data. The characteristic of grey prediction 
theory is to deal with uncertain systems with 
partly known and partly unknown 
information. The basic theory is to convert the 
original non-negative grey data into the 
sequence transformation of approximate 
exponential law generated by accumulation 
and then to establish the internal rules of the 
grey model mining system. At the same time, 
the dynamic fitting modeling of landslide 
deformation displacement is more accurate. 
This paper introduces fractional calculus 
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Landslides significantly impact economic 
development and public safety. With artificial 
intelligence and IoT advancing monitoring 
systems, landslide monitoring has gradually 
become intelligent. The manual monitoring of 
landslide monitoring systems is complex, 
traditional prediction methods are high, and it 
is not easy to reason for the complex situation. 
In order to predict and warn of the occurrence 
of landslides in advance and ensure the safety 
of people and property, it is of tremendous 
research significance to monitor the 
deformation and displacement of landslides 
and accurately predict the future deformation 
trend. 

In general, the displacement information of 
landslides is partly known, so the landslide 
system is usually regarded as uncertain. The 
original data obtained in the study of its 
displacement characteristics are usually white, 
but the distribution type is grey, called grey 
data. The characteristic of grey prediction 
theory is to deal with uncertain systems with 
partly known and partly unknown 
information. The basic theory is to convert the 
original non-negative grey data into the 
sequence transformation of approximate 
exponential law generated by accumulation 
and then to establish the internal rules of the 
grey model mining system. At the same time, 
the dynamic fitting modeling of landslide 
deformation displacement is more accurate. 
This paper introduces fractional calculus 

Models MAPE 
%

MSE
/mm

RMSE
/mm

MAE
/mm R2

Grey Verhulst 
model 43.669 2323.386 48.202 47.820 0.557

Cubic Exponen-
tial Smoothing 
model

8.978 109.042 10.442 9.176 0.971

DGM(2,1) 
model 8.540 212.848 14.589 12.286 0.908

GM(1,1) model 4.347 39.865 6.314 5.064 0.986

Huang opti-
mized Verhulst 
model

4.042 37.095 6.091 4.435 0.987

Fractional 
operator Ver-
hulst model 

2.949 19.228 4.385 3.085 0.993

Table 4 
Comparison of the accuracy of six of the Heifangtai 
landslide group in Gansu

4. Discussion
Landslides significantly impact economic develop-
ment and public safety. With artificial intelligence 
and IoT advancing monitoring systems, landslide 
monitoring has gradually become intelligent. The 

manual monitoring of landslide monitoring systems 
is complex, traditional prediction methods are high, 
and it is not easy to reason for the complex situation. 
In order to predict and warn of the occurrence of 
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landslides in advance and ensure the safety of peo-
ple and property, it is of tremendous research signif-
icance to monitor the deformation and displacement 
of landslides and accurately predict the future defor-
mation trend.
In general, the displacement information of land-
slides is partly known, so the landslide system is 
usually regarded as uncertain. The original data 
obtained in the study of its displacement charac-
teristics are usually white, but the distribution type 
is grey, called grey data. The characteristic of grey 
prediction theory is to deal with uncertain systems 
with partly known and partly unknown information. 
The basic theory is to convert the original non-neg-
ative grey data into the sequence transformation of 
approximate exponential law generated by accumu-
lation and then to establish the internal rules of the 
grey model mining system. At the same time, the 
dynamic fitting modeling of landslide deformation 
displacement is more accurate. This paper intro-
duces fractional calculus theory into the modeling 
process. The fractional operator adjusts the grey 
Verhulst model cumulative series variation accura-
cy, selecting operators based on different scene data 
sequences to optimize fitting and prediction accu-
racy.
Aiming at the problem that the traditional grey Ver-
hulst model has insufficient fitting accuracy in pre-
dicting displacement data series, this paper proposes 
a fractional Verhulst model optimized based on the 
beetle antennae search algorithm. It uses the BAS al-
gorithm to find the optimal fractional order between 
0 and 1 in the grey Verhulst model, minimizing aver-
age relative error. This paper improves landslide dis-
placement prediction.
The fractional Verhulst model specifically applies 
to landslide disaster prediction, enabling intelligent 
landslide warning. Results show that the proposed 
method provides ideas and guidance for intelligent 
landslide warning, which has a certain guiding sig-
nificance. The main idea is to establish a fraction-
al Verhulst model by adding a fractional operator 
to the grey Verhulst model. Optimizing the order 
via search algorithms and accurately adjusting the 
order optimizes model accuracy. This prediction 
method provides a specific basis for landslide disas-
ter prediction.

5. Conclusion
In this paper, taking the Heifangtai landslide group in 
Gansu Province as an example, a prediction method 
based on the fractional Verhulst model is proposed for 
its displacement time series. The fractional operator 
accumulates the original sequence, and the beetle an-
tennae search algorithm is selected to obtain the origi-
nal optimal order between 0 and 1. The order of magni-
tude between the accumulation operators is accurately 
adjusted, and the average relative fitting error is re-
duced to a minimum to improve the model’s accuracy. 
The proposed optimization model is compared with 
the traditional grey Verhulst model, and the Huang 
optimized grey Verhulst model, GM (1,1) model, cubic 
exponential smoothing model, and DGM (2,1) model 
on the displacement value of mountain landslide. The 
accuracy of the traditional grey Verhulst model is low, 
and the accuracy of the Huang-optimized grey Ver-
hulst model is slightly lower than that of this model. 
The average relative error of the fractional Verhulst 
model proposed in this paper can reach 2.949%, and 
the accuracy is the highest among the six models. The 
results show that compared with the traditional grey 
prediction model, this model has a better fitting effect 
and prediction accuracy and can effectively summarize 
the displacement variation law of mountain landslides, 
which has a certain application value for the prediction 
of mountain landslide disasters.
This paper uses the beetle antennae search algorithm 
that optimizes the fractional order Verhulst model, an 
improved swarm intelligent optimization algorithm 
prediction model for landslide displacement time 
series. For the fractional-order Verhulst landslide 
prediction problem, the landslide formation mecha-
nism and the time-period trend term are analyzed and 
combined with the system dynamics to form a com-
bined prediction model, which makes the prediction 
accuracy further improved. However, the natural fac-
tors affecting the instability of landslide movement 
are more complex. Future research should consider 
different landslide evolution mechanisms and factor 
impacts, establishing a reasonable regularization pa-
rameter determination method. Exploring landslide 
formation mechanisms and evolution processes from 
monitoring data is needed. With intelligent optimi-
zation/machine learning algorithms, remote sensing 
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satellites, surface monitoring equipment, drone field 
data, AI data centers, and landslide prediction/ early 
warning databases, developing landslide geological, 
geophysical, and hydrological survey data is enrich-
ing. Combining landslide system dynamics, high-pre-
cision landslide displacement observation, compre-
hensive impact factors, and considering landslide 
physical properties to construct a comprehensive 
prediction model will be essential.
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