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Traditional detect and count strategy cannot well handle the extremely crowded footage in computer vi-
sion-based counting task. In recent years, deep learning approaches have been widely explored to tackle this 
challenge. By regressing visual features to density map, the total crowd number can be predicted while avoids 
the detection of their actual positions. Efforts of improving performance distribute at various phases of the de-
tecting pipeline, such as optimizing feature extraction and eliminating deviation of regressed density map etc. 
In this article, we conduct a thorough review on the most representative and state-of-the-art techniques. They 
are systematically categorized into three topics: the evolving of front-end network, the handling of unbalanced 
density map prediction, and the selection of loss function. After evaluating most significant techniques, innova-
tions of the state-of-the-art are inspected in detail to analyze specific reasons of achieving high performances. 
As conclusion, possible directions of enhancement are discussed to provide insights of future research.
KEYWORDS: crowd counting, feature extraction, density map, loss functions.

1. Introduction
Crowd counting techniques are essential to ensure 
the public safety, such as preventing stampede in a pa-
rade, or optimizing layout of the site. To estimate the 
number of people within a district, a common strate-

gy is to count the number of mobile phones accessed 
to the base station [1]. This strategy is generally effec-
tive, but it cannot reveal the local crowd density in the 
certain area with high risk, such as crossroad and pla-
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za. To address this issue, image/video captured with 
fixed cameras can be exploited by computer vision 
techniques to count the crowd in the footage.
In early stage, techniques of pedestrian detection are 
utilized for crowd counting. This strategy attempts to 
detect every pedestrian in the scene, and accumulate 
the result to obtain the final count. The Histogram 
of Gradient (HOG) feature with Support Vector Ma-
chine (SVM) is a common approach [54]. In this ap-
proach, a window slides through the entire footage 
to obtain image patches. For each patch, the HOG 
is extracted and feed to SVM to classify if current 
patch contains a pedestrian, as illustrated in Figure 
1(a). Conventional approaches are further improved 
to deep learning-based, such as YOLO, for a higher 
detection accuracy [11]. However, as density of the 
crowd increases, heavy occlusion and insufficient 
information for single pedestrian will significantly 
impact the performance, as illustrated in Figure 1(b). 

Figure 1
(a) Crowd counting with HOG and SVM approach in [9]. 
(b) Crowd with extremely high density which cannot be 
properly handled by the detection-based approaches

Therefore, an alternated strategy is required to han-
dle the crowd counting with extreme high density.
The regression-based approach addresses this is-
sue via learning a mapping relationship between ex-
tracted visual features and estimated count. These 
approaches model density maps from ground-truth 
information as the regression target. In the training 
phase, extracted features are regressed towards the 
ground-truth/pseudo density map. In the detection 
phase, the trained model is exploited to predict the 
count with extracted features. The Figure 2 illus-
trates the methodology of regression-based approach. 
For each image, all pedestrians’ heads are manually 
annotated with crosses as ground truth. A common 
approach to generate ground-truth density map DGT, 
is to calculate the convolution of spatial information 
and a gaussian kernel G, which can be expressed as 
Equation (1).
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1 if the pedestrian exists, otherwise it is set to 
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larger magnitude on the map. 
Simultaneously, feature map is extracted 
with front-end backbone network such as 
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back-end regression head to generate the 
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where δ(x – xi) represents the existence of pedestrian 
at spatial position xi, the value is 1 if the pedestrian ex-
ists, otherwise it is set to 0. It can be observed that spa-
tial position with higher crowd density corresponds 
with larger magnitude on the map. Simultaneously, 
feature map is extracted with front-end backbone net-
work such as VGG16. Extracted features are fed to the 
back-end regression head to generate the regressed 
density map DE. The DE illustrated in Figure 2 is gen-
erally identical to DGT except partial of background is 
unsuccessfully verified as the pedestrian. The predict 
count CP can be simply obtained with a linear relation 
CP = k∙ DE, where ratio k can be learnt from the ground-
truth. The selection of loss is also crucial since it can 
significantly impact the prediction performance. The 
back-propagation process can adapt either Local or 
Global Loss in various techniques. The local loss mea-
sures the difference between the GT and estimated 
density maps. And the global loss measures the differ-
ence between actual and predict counts. Generally, the 
regression-based approach successfully overcomes 
the heavy occlusion issue which cannot be well han-
dled by old school techniques, and makes itself a prop-
er candidate on crowd counting.
However, the above-mentioned architecture is a pri-
mal procedure of regression-based approach, which 

local crowd density in the certain area with 
high risk, such as crossroad and plaza. To 
address this issue, image/video captured 
with fixed cameras can be exploited by 
computer vision techniques to count the 
crowd in the footage. 
In early stage, techniques of pedestrian 
detection are utilized for crowd counting. 
This strategy attempts to detect every 
pedestrian in the scene, and accumulate the 
result to obtain the final count. The 
Histogram of Gradient (HOG) feature with 
Support Vector Machine (SVM) is a common 
approach [54]. In this approach, a window 

slides through the entire footage to obtain 
image patches. For each patch, the HOG is 
extracted and feed to SVM to classify if 
current patch contains a pedestrian, as 
illustrated in Figure 1(a). Conventional 
approaches are further improved to deep 
learning-based, such as YOLO, for a higher 
detection accuracy [11]. However, as density 
of the crowd increases, heavy occlusion and 
insufficient information for single pedestrian 
will significantly impact the performance, as 
illustrated in Figure 1(b). Therefore, an 
alternated strategy is required to handle the 
crowd counting with extreme high density. 

 
Figure 1  

(a) Crowd counting with HOG and SVM approach in [9]. (b) Crowd with extremely high density which 

cannot be properly handled by the detection-based approaches 

 
(a)                               (b)         

where 𝛿𝛿𝛿𝛿(𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) represents the existence of 
pedestrian at spatial position 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖, the value is 
1 if the pedestrian exists, otherwise it is set to 
0. It can be observed that spatial position 
with higher crowd density corresponds with 
larger magnitude on the map. 
Simultaneously, feature map is extracted 
with front-end backbone network such as 
VGG16. Extracted features are fed to the 
back-end regression head to generate the 
regressed density map 𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸  . The 𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸  
illustrated in Figure 2 is generally identical to 

local crowd density in the certain area with 
high risk, such as crossroad and plaza. To 
address this issue, image/video captured 
with fixed cameras can be exploited by 
computer vision techniques to count the 
crowd in the footage. 
In early stage, techniques of pedestrian 
detection are utilized for crowd counting. 
This strategy attempts to detect every 
pedestrian in the scene, and accumulate the 
result to obtain the final count. The 
Histogram of Gradient (HOG) feature with 
Support Vector Machine (SVM) is a common 
approach [54]. In this approach, a window 

slides through the entire footage to obtain 
image patches. For each patch, the HOG is 
extracted and feed to SVM to classify if 
current patch contains a pedestrian, as 
illustrated in Figure 1(a). Conventional 
approaches are further improved to deep 
learning-based, such as YOLO, for a higher 
detection accuracy [11]. However, as density 
of the crowd increases, heavy occlusion and 
insufficient information for single pedestrian 
will significantly impact the performance, as 
illustrated in Figure 1(b). Therefore, an 
alternated strategy is required to handle the 
crowd counting with extreme high density. 

 
Figure 1  

(a) Crowd counting with HOG and SVM approach in [9]. (b) Crowd with extremely high density which 

cannot be properly handled by the detection-based approaches 

 
(a)                               (b)         

where 𝛿𝛿𝛿𝛿(𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) represents the existence of 
pedestrian at spatial position 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖, the value is 
1 if the pedestrian exists, otherwise it is set to 
0. It can be observed that spatial position 
with higher crowd density corresponds with 
larger magnitude on the map. 
Simultaneously, feature map is extracted 
with front-end backbone network such as 
VGG16. Extracted features are fed to the 
back-end regression head to generate the 
regressed density map 𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸  . The 𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸  
illustrated in Figure 2 is generally identical to 

(a)

(b)



695Information Technology and Control 2023/3/52

is coarse and often inaccurate. Since the first work of 
regression-based approach Crowd-CNN [55] is pro-
posed in 2015, researchers attempt to obtain better 
counting performance by improving this procedure 
on various phases. In this paper, we categorize these 
optimizing attempts into 3 general topics:
1 Strengthening the feature extraction network: 

Since the feature map is regressed to DE, whose 
quality will directly impact the calculation of loss 
and counting result. Thus, research have been 
made to optimize the feature extraction process 
with various tactics. (1) The first encountered chal-
lenge is the pedestrians’ heads often have different 
sizes within a footage since the existing of per-
spective. To extract the most appropriate feature 
with CNN-based network, multiple kernels with 
various scales are adapted. In this circumstance, 
approaches [56, 38, 15] attempt to devise novel net-
works to model better feature maps. (2) As a matter 
of fact, the ‘ground-truth’ density map in Figure 2 
is not real ground-truth but generated. Thus, the 
generating process of DGT is optimized in some 
approaches. Furthermore, to entirely bypass the 
impact of inaccurate DGT, some approaches [41, 26, 
46, 18] attempt to regress features into head posi-
tions instead of density map before calculating the 

Figure 2 
The architecture of regression-based crowd counting approach

loss. (3) The regression head requires tremendous 
amount of labelled data for training. However, the 
manual labeling of data for crowd counting is ex-
tremely exhausting. Therefore, the approach [29] 
attempts to achieve a satisfying performance with 
weak-supervised technique and limited labelled 
data. (4) The vision transformer has advantages 
such as global attention mechanism and weak su-
pervised. Some approaches [16, 44, 18] exploit the 
transformer to encode feature map into sequences 
instead of density map, then predict the total count 
directly. (5) Features from sources other than im-
age are expected to strengthen the counting result. 
For example, the approach [20] incorporates ther-
mal information into the CSRNet [15] to improve 
the accuracy. ion into the CSRNet [15] to improve 
the accuracy. 

2 The unbalanced prediction of density map: By an-
alyzing the density map DE predicted by the regres-
sion network, it is not hard to find the crowd area 
with ordinary density often get the most accurate 
prediction. The area with highest density will be 
over-estimated and the area with lowest density 
will be under-estimated. Efforts [53, 14, 42] have 
been made to address this issue. For example, the 
strategy of Learning to Scale (L2S) module [53] 



Information Technology and Control 2023/3/52696

is to segment and rescale the most crowded area. 
The rescaled area will have sparser density level 
and yield more accurate prediction. The Attention 
Scaling Network (ASNet) [14] segments DE accord-
ing to density levels and applies scaling factors on 
each area to adjust the unbalanced prediction with-
in DE. The L2S and ASNet attempt to adjust density 
values in certain areas, which is a coarse approach. 
The Scale-Adaptive Selection Network (SASNet) 
[42] applies the so-called Pyramid Region Aware-
ness Loss, which refines the adjustment to pix-
el-level and yields better prediction.

3 Modeling the loss function: A proper loss function 
can update network parameters more effectively 
in back-propagation process and generate better 
model. (1) The most common way is to adapt L1 or 
L2 norm for either global or local loss. However, due 
to the uneven distribution of the crowd, these or-
dinary losses cannot well-handle the area with the 
highest density. Therefore, some approaches aim 
to implement pyramid strategy on loss calculation 
to improve performance. The ASNet iteratively 
divides DE, and calculates loss on patch with total 
density lower than certain threshold. The SASNet 
applies similar strategy, but upgrades the approach 
to pixel-level. (2) The essential of typical densi-
ty map-based approach is mapping density value 
to certain count. However, the pedestrian’s head 
position can be predicted according to the proba-
bility of each point on DE. Therefore, the Bayesian 
loss is adapted by various approaches [26, 46, 18] 
and achieves sound results. The probability-based 
approach directly predicts head positions, which is 
an advantage the typical approach does not have.

In this article, we will review and analyze the most 
representative approaches with their innovations 
based on the 3 above-mentioned topics. The follow-
ing sections of this paper are organized as follows. 
Section 2 introduces the evolution of CNN-based 
feature extraction networks, the attempts to optimize 
the ground-truth density map, and the implementa-
tion of Transformer instead of CNN-based network. 
Section 3 introduces the attempts to eliminate the 
unbalanced density map prediction. Section 4 intro-
duces the development of loss function, including 
approaches adapting pyramid loss and Bayesian loss. 
Section 5 introduces benchmarking datasets, evalua-
tion metrics, performances of state-of-the-art crowd 

counting techniques, and discusses their innovations. 
Section 6 concludes this article.

2. Structures of Feature Extraction 
Networks
2.1. End-to-end Training
Despite using the regression-based structure, the 
Crowd-CNN [55] detects the Regions of Interest 
(ROI) within the footage, and extracts image patch-
es in ROI for the training. Obviously, this strategy is 
not sound since it ignores regions with sparser crowd. 
To incorporate all information within the footage for 
training, the end-to-end training strategy is necessary 
and adapted by most CNN-based counting approach-
es. Besides, the Crowd-CNN must estimate the per-
spective of footage to adjust modeled features for re-
gression. The incorrect estimation of perspective will 
lead to significant deviation of the prediction result. 
As the first end-to-end approach proposed in 2016, 
the Multi-Column Convolutional Neural Network 
(MCNN) [56] applies 3 columns of CNN with various 
filter scales on the entire input image to obtain visual 
features at different receptive fields. This multi-col-
umn feature extraction backbone network is expect-
ed to handle the irregular distribution of head’s scale, 
which eliminates the requirement of perspective es-
timation. For the regression head, the fully connected 
layer is replaced with a 1×1 convolution layer [24] to 
avoid deformation of the feature map. A standard L2 
is adapted as Loss. Another milestone of MCNN is it 
proposed the ShanghaiTech dataset, which later be-
comes the benchmarking dataset for the evaluation of 
crowd counting techniques.
The ASNet pointed out different crowd density levels 
often lead to different predicting deviations, which 
is named as the problem of unbalanced density esti-
mation and discussed later in Section 3 of this paper. 
Based on the principle of MCNN, the Context Pyra-
mid CNN (CP-CNN) [38] integrates contextual in-
formation into the estimated density map DE in year 
2017. CP-CNN believes adjusting DE according to 
different density levels will produce more accurate 
prediction. Thus, CP-CNN proposed a single-column 
network (Global Context Estimator) to classify the 
footage into different density levels. Similarly, the 
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Local Context Estimator is devised to classify patch-
es within the footage. The results from Global/Local 
Estimator and MCNN backbone will be merged into 
the estimated density map with a Fusion-CNN. The 
5 columns network structure of CP-CNN solved the 
unbalanced density map estimation problem in cer-
tain extent.

2.2. Single-Column Outperforms  
Multi-Column
The Switch-CNN [2] adapts the hybrid strategy of 
Crowd-CNN and MCNN. By setting a switch clas-
sifier before the multi-column backbone, divided 
image patches are fed to the single selected column 

Figure 3
Structural evolution of front-end feature extraction networks at early stage (a) MCNN (b) CP-CNN (c) CSRNet

according to the decision of the switch. Despite the 
Switch-CNN is not an end-to-end network, it still 
outperforms the MCNN. This observation indicates 
the multi-column structure does not always provide 
more ‘valid’ features than single-column.
Besides, the primary defect of multi-column network 
structure is the low efficiency of training process in 
each column. Moreover, experiment results indicate 
the actual performances of each column are identical, 
which cannot reveal the nature of different density lev-
els as expected. One strategy to address this issue is re-
placing the MCNN’s multi-columns with a single-col-
umn structure, to increase the efficiency of feature 
extraction. The perception process of various density 
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levels can be moved to the regression head. The CSR-
Net adapted the first 10 layers of a pre-trained VGG16. 
And a 4-way dilated convolution is attached ahead of 
the 1×1 regression head to expand the receptive field 
instead of max pooling. The CSRNET successfully re-
duces the MAE of ShanghaiTech-A from hundred level 
to 60 level, which is a tremendous boost on counting 
performance. As the result, the single-column fea-
ture extraction strategy became the main-stream and 
adapted by most CNN-based counting approaches.

2.3. The Inaccurate ‘Ground Truth’ Density 
Map

According to the architecture illustrated in Figure 3, 
the ground truth density map DGT is obtained by con-
volving annotated head positions with kernel G. Since 
the DGT will be used to calculate the Loss, it directly 
impacts the accuracy of the network. Ideally, the DGT 
should objectively describes the actual distribution of 
the crowd. However, when a footage contains pedes-
trians both far and near toward the camera, occupied 
pixels of their heads will vary. If the scale of kernel 
G is fixed, the obtained DGT will barely be optimized. 
Naturally, various scales of G can be applied to gener-
ate density map for different head sizes, which leads 
to the issue to be addressed: the strategy to implement 
kernels with various scales.
A common approach is to select the variance of G for 
pedestrian xi according to the average distance of his/
her m nearest neighbors. Assuming the m nearest dis-
tances to xi is {d1

i, d2
i,…,dm

i}, the average distance can be 
expressed as Equation (2).
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Therefore, the optimized 𝐷𝐷���   can be 
generated from the kernel 𝐺𝐺� with dynamic 
variance 𝜎𝜎 as Equation (3).  
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Ablation experiments indicate using 𝐷𝐷���  
will yield better prediction, and more 
research explored ways to generate 𝐷𝐷���  
with higher quality. The Point to Point 
Network (P2PNet) [41] proposed a novel 
strategy to eliminate the impact of inaccurate 
ground truth density map. Instead of 
regressing features toward 𝐷𝐷��, the P2PNet 
directly regressed the VGG16 extracted 
feature map toward head points 𝛿𝛿�𝑥𝑥�� . A 
parallel classification network branch is then 
applied to provide confidence score of the 
predicted head points. Its Loss comprises 
with both regression and classification 
Losses. This strategy makes P2PNet to 
achieve the highest performance until 2022 to 
our best knowledge. 
2.4 Weak/semi-supervised Solutions 
The training of regression-based approaches 
usually requires large number of annotated 
data. However, the manual annotation of 
ground truth data for crowd counting is 
extremely exhausting - usually thousands of 
people need to be labelled for a single image. 
For example, the benchmarking 
ShanghaiTech A dataset [56] includes 482 

images with average 1000+ pedestrians for 
each image. Therefore, weak/semi-
supervised approaches [10, 29, 30, 59] are 
proposed to address this issue. The strategy 
of weak-supervised solution is adapting 
small-sample approach such as the 
Transformer [10]. The approach using 
transformer will be introduced in Section 2.5, 
and we will introduce semi-supervised 
solution here. 
The Mean Teacher [43] is a semi-supervised 
network based on Temporal Ensembling and 
the ∏ model proposed in 2017. The mean 
teacher is composed with a double-routes 
teacher/student network as typical semi-
supervised approaches. Unlike others, it 
updates the parameters of the teacher 
network with exponential moving average 
(EMA) to enhance performance, instead of 
replicating the student’s parameters. 
For the problem of crowd counting, labeled 
data are fed to student network and 
unlabeled data are fed to teacher network. 
Since the teacher’s parameter is updated 
with the student, once trained, both 
networks can be used to predict the density 
map. Thus, the semi-supervised training is 
achieved. For further optimization, Semi [29] 
adapted the mean teacher as the baseline 
structure with the binary segmentation. The 
observation  indicates that spatial 
information can be utilized to segment the 
crowd and background [57], which will 
improve the counting performance. 
Therefore, Semi exploits the binary 
segmentation to estimate the uncertain 
spatial regions from the regressed density 
map. The uncertainty map is obtained by 
calculating the entropy of density map and 
filtering with a threshold. With the 
uncertainty map, the density value in 
background area will be removed. 
2.5 Replacing CNN with Transformer 
The mechanism of CNN-based approaches 
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extremely exhausting - usually thousands of 
people need to be labelled for a single image. 
For example, the benchmarking 
ShanghaiTech A dataset [56] includes 482 

images with average 1000+ pedestrians for 
each image. Therefore, weak/semi-
supervised approaches [10, 29, 30, 59] are 
proposed to address this issue. The strategy 
of weak-supervised solution is adapting 
small-sample approach such as the 
Transformer [10]. The approach using 
transformer will be introduced in Section 2.5, 
and we will introduce semi-supervised 
solution here. 
The Mean Teacher [43] is a semi-supervised 
network based on Temporal Ensembling and 
the ∏ model proposed in 2017. The mean 
teacher is composed with a double-routes 
teacher/student network as typical semi-
supervised approaches. Unlike others, it 
updates the parameters of the teacher 
network with exponential moving average 
(EMA) to enhance performance, instead of 
replicating the student’s parameters. 
For the problem of crowd counting, labeled 
data are fed to student network and 
unlabeled data are fed to teacher network. 
Since the teacher’s parameter is updated 
with the student, once trained, both 
networks can be used to predict the density 
map. Thus, the semi-supervised training is 
achieved. For further optimization, Semi [29] 
adapted the mean teacher as the baseline 
structure with the binary segmentation. The 
observation  indicates that spatial 
information can be utilized to segment the 
crowd and background [57], which will 
improve the counting performance. 
Therefore, Semi exploits the binary 
segmentation to estimate the uncertain 
spatial regions from the regressed density 
map. The uncertainty map is obtained by 
calculating the entropy of density map and 
filtering with a threshold. With the 
uncertainty map, the density value in 
background area will be removed. 
2.5 Replacing CNN with Transformer 
The mechanism of CNN-based approaches 

(3)

Ablation experiments indicate using D'GT will yield 
better prediction, and more research explored ways 
to generate D'GT with higher quality. The Point to Point 
Network (P2PNet) [41] proposed a novel strategy to 
eliminate the impact of inaccurate ground truth densi-
ty map. Instead of regressing features toward DGT, the 

P2PNet directly regressed the VGG16 extracted feature 
map toward head points δ(xi). A parallel classification 
network branch is then applied to provide confidence 
score of the predicted head points. Its Loss comprises 
with both regression and classification Losses. This 
strategy makes P2PNet to achieve the highest perfor-
mance until 2022 to our best knowledge.
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The training of regression-based approaches usually 
requires large number of annotated data. However, 
the manual annotation of ground truth data for crowd 
counting is extremely exhausting - usually thousands 
of people need to be labelled for a single image. For 
example, the benchmarking ShanghaiTech A data-
set [56] includes 482 images with average 1000+ pe-
destrians for each image. Therefore, weak/semi-su-
pervised approaches [10, 29, 30, 59] are proposed to 
address this issue. The strategy of weak-supervised 
solution is adapting small-sample approach such as 
the Transformer [10]. The approach using transform-
er will be introduced in Section 2.5, and we will intro-
duce semi-supervised solution here.
The Mean Teacher [43] is a semi-supervised network 
based on Temporal Ensembling and the ∏ model pro-
posed in 2017. The mean teacher is composed with 
a double-routes teacher/student network as typical 
semi-supervised approaches. Unlike others, it updates 
the parameters of the teacher network with exponen-
tial moving average (EMA) to enhance performance, 
instead of replicating the student’s parameters.
For the problem of crowd counting, labeled data are 
fed to student network and unlabeled data are fed 
to teacher network. Since the teacher’s parameter 
is updated with the student, once trained, both net-
works can be used to predict the density map. Thus, 
the semi-supervised training is achieved. For further 
optimization, Semi [29] adapted the mean teacher as 
the baseline structure with the binary segmentation. 
The observation  indicates that spatial information 
can be utilized to segment the crowd and background 
[57], which will improve the counting performance. 
Therefore, Semi exploits the binary segmentation to 
estimate the uncertain spatial regions from the re-
gressed density map. The uncertainty map is obtained 
by calculating the entropy of density map and filtering 
with a threshold. With the uncertainty map, the den-
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2.5. Replacing CNN with Transformer
The mechanism of CNN-based approaches for crowd 
counting determines its receptive filed is often local, 
since limited scales of the convolution. Despite initial-
ly utilized for natural language processing like LSTM, 
the Transformer [45] devised by Google is adapted 
by various computer vision tasks [7, 4, 58]. Due to its 
attention mechanism, the Transformer possess the 
global receptive field which can directly estimate the 
total crowd number, instead of accumulating the local 
predictions. To be specify, it is firstly adapted by De-
tection Transformer (DETR) [4], which utilizes CNN 
for feature extraction and Transformer for classifica-
tion. The Vision Transformer [7] is the first to purely 
exploit the Transformer to address the task of image 
classification, by sequencing patches with the encod-
er instead of extracting features. The transformer is 
also used to generate the pre-trained image model in 
the Segmentation Transformers (SETR) [58]. The de-
tailed introduction of exploiting the Transformer on 
image processing can be found at sources [10, 31, 19].
Another feature of transformer, as well as other lan-
guage processing network such as RNN, is they can 
also be weak-supervised. Transformer can conduct 

a pre-training on the non-supervised large dataset, 
and then complete the training with an annotated 
small-sample dataset. Therefore, this weak-super-
vised feature makes transformer another possible 
candidate to handle the crowd counting task with lim-
ited annotated data.
The TransCrowd [16] adapted the pure Transformer 
to achieve the crowd counting. As illustrated in Figure 
4, its general strategy is encoding the divided patches 
into the vector sequences as the input, and feeding 
them to the encoder. Then, the encoded sequences 
processed with either regression token or global aver-
age pooling, will be used to predict the count with an 
ordinary regression head, instead of a decoder.
Specifically, the image patches are firstly flattened to 
N sequence, represented as {xi |i = 1, …, N}. Next, xi is 
mapped with a learnable matrix E into a latent  D-di-
mensional embedding feature. Furthermore, the spa-
tial information {pi |i = 1, …, N} is integrated as well to 
generate the input Z_0 for the encoding process.
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The encoder comprises with multiple layers 
of Multi-head Self-Attention (MSA) and 
Multilayer Perceptron (MLP). The output 𝑍𝑍� 
of the 𝑙𝑙 − 𝑡𝑡𝑡  layer can be expressed as 
Equation (5), where 𝐿𝐿𝑁𝑁 represents the layer 
normalization process. 
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where the 𝑀𝑀𝑀𝑀𝑀𝑀 calculates 𝑚𝑚 Self Attention 
models 𝑀𝑀𝑀𝑀� with a reprojection matrix 𝑊𝑊�, 
expressed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍�� =
[𝑀𝑀𝑀𝑀��𝑍𝑍��; 𝑀𝑀𝑀𝑀��𝑍𝑍��; … ; 𝑀𝑀𝑀𝑀��𝑍𝑍��]𝑊𝑊� . The 𝑀𝑀𝑀𝑀� 
can be obtained with the typical Query(𝑄𝑄 ) 
/Key( 𝐾𝐾 )/ Value( 𝑉𝑉 ) paradigm of classic 
transformer. The 𝑀𝑀𝐿𝐿𝑀𝑀  uses 2 linear layers 
with the GELU [6] activation function to 
expand and shrink the embedding 
dimension of the feature. 

𝑀𝑀𝑀𝑀�𝑍𝑍�� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊
���𝐾𝐾𝑊𝑊���
√𝐷𝐷 �𝑉𝑉𝑊𝑊��6� 

The obtained 𝑍𝑍�  is further processed with 
either Regression Token or Global Average 
Pooling before sent to the regression head. 
The regression token procedure attaches an 
additional token 𝑍𝑍��   to 𝑍𝑍� . After the 𝑀𝑀𝑀𝑀𝑀𝑀 
and 𝑀𝑀𝐿𝐿𝑀𝑀 , the 𝑍𝑍��  contains the global 
semantic crowd information. This strategy is 
adapted by Bert [5] as well. Applying the 
global average pooling to 𝑍𝑍� will generated 
the pooled visual tokens 𝑍𝑍�� . Since the 𝑍𝑍�� 
has more discriminative semantic patterns, it 
obtained better performance than using 𝑍𝑍�� . 
Similarly, CCTrans [44] also adapted 
transformer as the feature extraction 
backbone. Unlike TransCrowd, patches 𝑥𝑥� 
of the input image are flattened into a single 
sequence, then a learnable projection is 
applied to obtain the input sequence 𝑍𝑍��� 

for the l-th layer. For the encoding backbone, 
the Twins network [18] is adapted. The 
Twins can perceive both local and global 
receptive fields via alternated local and 
global attentions, namely Spatially Separable 
Self-Attention (SSSA) module. Specifically, 
for the local attention, the Locally-grouped 
Self-Attention (LSA) and MLP are applied to 
𝐿𝐿𝑁𝑁�𝑍𝑍���� . For the global attention, Global 
Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
𝑍𝑍��� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍�� �7.2� 

            𝑍𝑍���� = �𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.3� 
              𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍������ + 𝑍𝑍���� �7.4� 

The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
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Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
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Figure 4
Structures of transformer-based approaches (a) TransCrowd (b) CCTrans (c) MAN
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The encoder comprises with multiple layers of Multi-
head Self-Attention (MSA) and Multilayer Percep-
tron (MLP). The output Zl of the l-th layer can be 
expressed as Equation (5), where LN represents the 
layer normalization process.
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Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
𝑍𝑍��� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍�� �7.2� 
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The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
regional attentions can be expressed as. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� �� • 𝑅𝑅�

√𝐷𝐷 �𝑉𝑉𝑊𝑊��8� 

Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
𝑀𝑀��� are sharing the same value vectors 𝑊𝑊�. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� ��

√𝐷𝐷 �𝑉𝑉𝑊𝑊� �9� 

The final attention A can be obtained as： 𝑀𝑀 = 𝑀𝑀��� + 𝑀𝑀��� �10� 

(5.1)

1, … ,𝑁𝑁} is integrated as well to generate the input 𝑍𝑍� for the encoding process. 
𝑍𝑍� = �𝑍𝑍��;𝑍𝑍��; … ;𝑍𝑍��� = �𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; … ; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝��. �4� 

The encoder comprises with multiple layers 
of Multi-head Self-Attention (MSA) and 
Multilayer Perceptron (MLP). The output 𝑍𝑍� 
of the 𝑙𝑙 − 𝑡𝑡𝑡  layer can be expressed as 
Equation (5), where 𝐿𝐿𝑁𝑁 represents the layer 
normalization process. 

                  𝑍𝑍�� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �5.1� 
𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍��, �5.2� 

where the 𝑀𝑀𝑀𝑀𝑀𝑀 calculates 𝑚𝑚 Self Attention 
models 𝑀𝑀𝑀𝑀� with a reprojection matrix 𝑊𝑊�, 
expressed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍�� =
[𝑀𝑀𝑀𝑀��𝑍𝑍��; 𝑀𝑀𝑀𝑀��𝑍𝑍��; … ; 𝑀𝑀𝑀𝑀��𝑍𝑍��]𝑊𝑊� . The 𝑀𝑀𝑀𝑀� 
can be obtained with the typical Query(𝑄𝑄 ) 
/Key( 𝐾𝐾 )/ Value( 𝑉𝑉 ) paradigm of classic 
transformer. The 𝑀𝑀𝐿𝐿𝑀𝑀  uses 2 linear layers 
with the GELU [6] activation function to 
expand and shrink the embedding 
dimension of the feature. 

𝑀𝑀𝑀𝑀�𝑍𝑍�� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊
���𝐾𝐾𝑊𝑊���
√𝐷𝐷 �𝑉𝑉𝑊𝑊��6� 

The obtained 𝑍𝑍�  is further processed with 
either Regression Token or Global Average 
Pooling before sent to the regression head. 
The regression token procedure attaches an 
additional token 𝑍𝑍��   to 𝑍𝑍� . After the 𝑀𝑀𝑀𝑀𝑀𝑀 
and 𝑀𝑀𝐿𝐿𝑀𝑀 , the 𝑍𝑍��  contains the global 
semantic crowd information. This strategy is 
adapted by Bert [5] as well. Applying the 
global average pooling to 𝑍𝑍� will generated 
the pooled visual tokens 𝑍𝑍�� . Since the 𝑍𝑍�� 
has more discriminative semantic patterns, it 
obtained better performance than using 𝑍𝑍�� . 
Similarly, CCTrans [44] also adapted 
transformer as the feature extraction 
backbone. Unlike TransCrowd, patches 𝑥𝑥� 
of the input image are flattened into a single 
sequence, then a learnable projection is 
applied to obtain the input sequence 𝑍𝑍��� 

for the l-th layer. For the encoding backbone, 
the Twins network [18] is adapted. The 
Twins can perceive both local and global 
receptive fields via alternated local and 
global attentions, namely Spatially Separable 
Self-Attention (SSSA) module. Specifically, 
for the local attention, the Locally-grouped 
Self-Attention (LSA) and MLP are applied to 
𝐿𝐿𝑁𝑁�𝑍𝑍���� . For the global attention, Global 
Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
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              𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍������ + 𝑍𝑍���� �7.4� 

The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
regional attentions can be expressed as. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� �� • 𝑅𝑅�

√𝐷𝐷 �𝑉𝑉𝑊𝑊��8� 

Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
𝑀𝑀��� are sharing the same value vectors 𝑊𝑊�. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� ��

√𝐷𝐷 �𝑉𝑉𝑊𝑊� �9� 

The final attention A can be obtained as： 𝑀𝑀 = 𝑀𝑀��� + 𝑀𝑀��� �10� 

, (5.2)

where the MSA calculates m Self Attention models SAm 
with a reprojection matrix Wo, expressed as MSA(Zl) = 
[SA1(Zl); SA1(Zl); …; SA1(Zl)]Wo. The SAm can be obtained 
with the typical Query(Q) /Key(K)/ Value(V) paradigm 
of classic transformer. The MLP uses 2 linear layers 
with the GELU [6] activation function to expand and 
shrink the embedding dimension of the feature.

1, … ,𝑁𝑁} is integrated as well to generate the input 𝑍𝑍� for the encoding process. 
𝑍𝑍� = �𝑍𝑍��;𝑍𝑍��; … ;𝑍𝑍��� = �𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; … ; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝��. �4� 

The encoder comprises with multiple layers 
of Multi-head Self-Attention (MSA) and 
Multilayer Perceptron (MLP). The output 𝑍𝑍� 
of the 𝑙𝑙 − 𝑡𝑡𝑡  layer can be expressed as 
Equation (5), where 𝐿𝐿𝑁𝑁 represents the layer 
normalization process. 

                  𝑍𝑍�� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �5.1� 
𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍��, �5.2� 

where the 𝑀𝑀𝑀𝑀𝑀𝑀 calculates 𝑚𝑚 Self Attention 
models 𝑀𝑀𝑀𝑀� with a reprojection matrix 𝑊𝑊�, 
expressed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍�� =
[𝑀𝑀𝑀𝑀��𝑍𝑍��; 𝑀𝑀𝑀𝑀��𝑍𝑍��; … ; 𝑀𝑀𝑀𝑀��𝑍𝑍��]𝑊𝑊� . The 𝑀𝑀𝑀𝑀� 
can be obtained with the typical Query(𝑄𝑄 ) 
/Key( 𝐾𝐾 )/ Value( 𝑉𝑉 ) paradigm of classic 
transformer. The 𝑀𝑀𝐿𝐿𝑀𝑀  uses 2 linear layers 
with the GELU [6] activation function to 
expand and shrink the embedding 
dimension of the feature. 

𝑀𝑀𝑀𝑀�𝑍𝑍�� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊
���𝐾𝐾𝑊𝑊���
√𝐷𝐷 �𝑉𝑉𝑊𝑊��6� 

The obtained 𝑍𝑍�  is further processed with 
either Regression Token or Global Average 
Pooling before sent to the regression head. 
The regression token procedure attaches an 
additional token 𝑍𝑍��   to 𝑍𝑍� . After the 𝑀𝑀𝑀𝑀𝑀𝑀 
and 𝑀𝑀𝐿𝐿𝑀𝑀 , the 𝑍𝑍��  contains the global 
semantic crowd information. This strategy is 
adapted by Bert [5] as well. Applying the 
global average pooling to 𝑍𝑍� will generated 
the pooled visual tokens 𝑍𝑍�� . Since the 𝑍𝑍�� 
has more discriminative semantic patterns, it 
obtained better performance than using 𝑍𝑍�� . 
Similarly, CCTrans [44] also adapted 
transformer as the feature extraction 
backbone. Unlike TransCrowd, patches 𝑥𝑥� 
of the input image are flattened into a single 
sequence, then a learnable projection is 
applied to obtain the input sequence 𝑍𝑍��� 

for the l-th layer. For the encoding backbone, 
the Twins network [18] is adapted. The 
Twins can perceive both local and global 
receptive fields via alternated local and 
global attentions, namely Spatially Separable 
Self-Attention (SSSA) module. Specifically, 
for the local attention, the Locally-grouped 
Self-Attention (LSA) and MLP are applied to 
𝐿𝐿𝑁𝑁�𝑍𝑍���� . For the global attention, Global 
Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
𝑍𝑍��� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍�� �7.2� 
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              𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍������ + 𝑍𝑍���� �7.4� 

The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
regional attentions can be expressed as. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� �� • 𝑅𝑅�

√𝐷𝐷 �𝑉𝑉𝑊𝑊��8� 

Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
𝑀𝑀��� are sharing the same value vectors 𝑊𝑊�. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� ��

√𝐷𝐷 �𝑉𝑉𝑊𝑊� �9� 

The final attention A can be obtained as： 𝑀𝑀 = 𝑀𝑀��� + 𝑀𝑀��� �10� 

(6)

The obtained Zl is further processed with either Re-
gression Token or Global Average Pooling before sent 
to the regression head. The regression token proce-
dure attaches an additional token Z to to Z0. After the 
MSA and MLP, the Z tl contains the global semantic 
crowd information. This strategy is adapted by Bert 
[5] as well. Applying the global average pooling to Z0 
will generated the pooled visual tokens Z pl. Since the 
Z pl has more discriminative semantic patterns, it ob-
tained better performance than using Z to.
Similarly, CCTrans [44] also adapted transformer as 
the feature extraction backbone. Unlike TransCrowd, 
patches xi of the input image are flattened into a sin-
gle sequence, then a learnable projection is applied 
to obtain the input sequence Zl – 1 for the l-th layer. 
For the encoding backbone, the Twins network [18] 
is adapted. The Twins can perceive both local and 
global receptive fields via alternated local and global 
attentions, namely Spatially Separable Self-Atten-
tion (SSSA) module. Specifically, for the local atten-
tion, the Locally-grouped Self-Attention (LSA) and 
MLP are applied to LN(Zl – 1). For the global attention, 
Global Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature sequence Zl for 
regression head. Comparing with the TransCrowd, 
integrated local attention of the SSSA provides ad-
ditional perceptions on local features. The CCTrans 

ranked first on the online dataset NWPU-Crowd in 
year 2021.

1, … ,𝑁𝑁} is integrated as well to generate the input 𝑍𝑍� for the encoding process. 
𝑍𝑍� = �𝑍𝑍��;𝑍𝑍��; … ;𝑍𝑍��� = �𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; … ; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝��. �4� 

The encoder comprises with multiple layers 
of Multi-head Self-Attention (MSA) and 
Multilayer Perceptron (MLP). The output 𝑍𝑍� 
of the 𝑙𝑙 − 𝑡𝑡𝑡  layer can be expressed as 
Equation (5), where 𝐿𝐿𝑁𝑁 represents the layer 
normalization process. 

                  𝑍𝑍�� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �5.1� 
𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍��, �5.2� 

where the 𝑀𝑀𝑀𝑀𝑀𝑀 calculates 𝑚𝑚 Self Attention 
models 𝑀𝑀𝑀𝑀� with a reprojection matrix 𝑊𝑊�, 
expressed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍�� =
[𝑀𝑀𝑀𝑀��𝑍𝑍��; 𝑀𝑀𝑀𝑀��𝑍𝑍��; … ; 𝑀𝑀𝑀𝑀��𝑍𝑍��]𝑊𝑊� . The 𝑀𝑀𝑀𝑀� 
can be obtained with the typical Query(𝑄𝑄 ) 
/Key( 𝐾𝐾 )/ Value( 𝑉𝑉 ) paradigm of classic 
transformer. The 𝑀𝑀𝐿𝐿𝑀𝑀  uses 2 linear layers 
with the GELU [6] activation function to 
expand and shrink the embedding 
dimension of the feature. 

𝑀𝑀𝑀𝑀�𝑍𝑍�� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊
���𝐾𝐾𝑊𝑊���
√𝐷𝐷 �𝑉𝑉𝑊𝑊��6� 

The obtained 𝑍𝑍�  is further processed with 
either Regression Token or Global Average 
Pooling before sent to the regression head. 
The regression token procedure attaches an 
additional token 𝑍𝑍��   to 𝑍𝑍� . After the 𝑀𝑀𝑀𝑀𝑀𝑀 
and 𝑀𝑀𝐿𝐿𝑀𝑀 , the 𝑍𝑍��  contains the global 
semantic crowd information. This strategy is 
adapted by Bert [5] as well. Applying the 
global average pooling to 𝑍𝑍� will generated 
the pooled visual tokens 𝑍𝑍�� . Since the 𝑍𝑍�� 
has more discriminative semantic patterns, it 
obtained better performance than using 𝑍𝑍�� . 
Similarly, CCTrans [44] also adapted 
transformer as the feature extraction 
backbone. Unlike TransCrowd, patches 𝑥𝑥� 
of the input image are flattened into a single 
sequence, then a learnable projection is 
applied to obtain the input sequence 𝑍𝑍��� 

for the l-th layer. For the encoding backbone, 
the Twins network [18] is adapted. The 
Twins can perceive both local and global 
receptive fields via alternated local and 
global attentions, namely Spatially Separable 
Self-Attention (SSSA) module. Specifically, 
for the local attention, the Locally-grouped 
Self-Attention (LSA) and MLP are applied to 
𝐿𝐿𝑁𝑁�𝑍𝑍���� . For the global attention, Global 
Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
𝑍𝑍��� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍�� �7.2� 

            𝑍𝑍���� = �𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.3� 
              𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍������ + 𝑍𝑍���� �7.4� 

The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
regional attentions can be expressed as. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� �� • 𝑅𝑅�

√𝐷𝐷 �𝑉𝑉𝑊𝑊��8� 

Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
𝑀𝑀��� are sharing the same value vectors 𝑊𝑊�. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� ��

√𝐷𝐷 �𝑉𝑉𝑊𝑊� �9� 

The final attention A can be obtained as： 𝑀𝑀 = 𝑀𝑀��� + 𝑀𝑀��� �10� 

(7.1)

1, … ,𝑁𝑁} is integrated as well to generate the input 𝑍𝑍� for the encoding process. 
𝑍𝑍� = �𝑍𝑍��;𝑍𝑍��; … ;𝑍𝑍��� = �𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; … ; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝��. �4� 

The encoder comprises with multiple layers 
of Multi-head Self-Attention (MSA) and 
Multilayer Perceptron (MLP). The output 𝑍𝑍� 
of the 𝑙𝑙 − 𝑡𝑡𝑡  layer can be expressed as 
Equation (5), where 𝐿𝐿𝑁𝑁 represents the layer 
normalization process. 

                  𝑍𝑍�� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �5.1� 
𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍��, �5.2� 

where the 𝑀𝑀𝑀𝑀𝑀𝑀 calculates 𝑚𝑚 Self Attention 
models 𝑀𝑀𝑀𝑀� with a reprojection matrix 𝑊𝑊�, 
expressed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍�� =
[𝑀𝑀𝑀𝑀��𝑍𝑍��; 𝑀𝑀𝑀𝑀��𝑍𝑍��; … ; 𝑀𝑀𝑀𝑀��𝑍𝑍��]𝑊𝑊� . The 𝑀𝑀𝑀𝑀� 
can be obtained with the typical Query(𝑄𝑄 ) 
/Key( 𝐾𝐾 )/ Value( 𝑉𝑉 ) paradigm of classic 
transformer. The 𝑀𝑀𝐿𝐿𝑀𝑀  uses 2 linear layers 
with the GELU [6] activation function to 
expand and shrink the embedding 
dimension of the feature. 

𝑀𝑀𝑀𝑀�𝑍𝑍�� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊
���𝐾𝐾𝑊𝑊���
√𝐷𝐷 �𝑉𝑉𝑊𝑊��6� 

The obtained 𝑍𝑍�  is further processed with 
either Regression Token or Global Average 
Pooling before sent to the regression head. 
The regression token procedure attaches an 
additional token 𝑍𝑍��   to 𝑍𝑍� . After the 𝑀𝑀𝑀𝑀𝑀𝑀 
and 𝑀𝑀𝐿𝐿𝑀𝑀 , the 𝑍𝑍��  contains the global 
semantic crowd information. This strategy is 
adapted by Bert [5] as well. Applying the 
global average pooling to 𝑍𝑍� will generated 
the pooled visual tokens 𝑍𝑍�� . Since the 𝑍𝑍�� 
has more discriminative semantic patterns, it 
obtained better performance than using 𝑍𝑍�� . 
Similarly, CCTrans [44] also adapted 
transformer as the feature extraction 
backbone. Unlike TransCrowd, patches 𝑥𝑥� 
of the input image are flattened into a single 
sequence, then a learnable projection is 
applied to obtain the input sequence 𝑍𝑍��� 

for the l-th layer. For the encoding backbone, 
the Twins network [18] is adapted. The 
Twins can perceive both local and global 
receptive fields via alternated local and 
global attentions, namely Spatially Separable 
Self-Attention (SSSA) module. Specifically, 
for the local attention, the Locally-grouped 
Self-Attention (LSA) and MLP are applied to 
𝐿𝐿𝑁𝑁�𝑍𝑍���� . For the global attention, Global 
Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
𝑍𝑍��� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍�� �7.2� 

            𝑍𝑍���� = �𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.3� 
              𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍������ + 𝑍𝑍���� �7.4� 

The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
regional attentions can be expressed as. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� �� • 𝑅𝑅�

√𝐷𝐷 �𝑉𝑉𝑊𝑊��8� 

Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
𝑀𝑀��� are sharing the same value vectors 𝑊𝑊�. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� ��

√𝐷𝐷 �𝑉𝑉𝑊𝑊� �9� 

The final attention A can be obtained as： 𝑀𝑀 = 𝑀𝑀��� + 𝑀𝑀��� �10� 

(7.2)

1, … ,𝑁𝑁} is integrated as well to generate the input 𝑍𝑍� for the encoding process. 
𝑍𝑍� = �𝑍𝑍��;𝑍𝑍��; … ;𝑍𝑍��� = �𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; … ; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝��. �4� 

The encoder comprises with multiple layers 
of Multi-head Self-Attention (MSA) and 
Multilayer Perceptron (MLP). The output 𝑍𝑍� 
of the 𝑙𝑙 − 𝑡𝑡𝑡  layer can be expressed as 
Equation (5), where 𝐿𝐿𝑁𝑁 represents the layer 
normalization process. 

                  𝑍𝑍�� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �5.1� 
𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍��, �5.2� 

where the 𝑀𝑀𝑀𝑀𝑀𝑀 calculates 𝑚𝑚 Self Attention 
models 𝑀𝑀𝑀𝑀� with a reprojection matrix 𝑊𝑊�, 
expressed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍�� =
[𝑀𝑀𝑀𝑀��𝑍𝑍��; 𝑀𝑀𝑀𝑀��𝑍𝑍��; … ; 𝑀𝑀𝑀𝑀��𝑍𝑍��]𝑊𝑊� . The 𝑀𝑀𝑀𝑀� 
can be obtained with the typical Query(𝑄𝑄 ) 
/Key( 𝐾𝐾 )/ Value( 𝑉𝑉 ) paradigm of classic 
transformer. The 𝑀𝑀𝐿𝐿𝑀𝑀  uses 2 linear layers 
with the GELU [6] activation function to 
expand and shrink the embedding 
dimension of the feature. 

𝑀𝑀𝑀𝑀�𝑍𝑍�� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊
���𝐾𝐾𝑊𝑊���
√𝐷𝐷 �𝑉𝑉𝑊𝑊��6� 

The obtained 𝑍𝑍�  is further processed with 
either Regression Token or Global Average 
Pooling before sent to the regression head. 
The regression token procedure attaches an 
additional token 𝑍𝑍��   to 𝑍𝑍� . After the 𝑀𝑀𝑀𝑀𝑀𝑀 
and 𝑀𝑀𝐿𝐿𝑀𝑀 , the 𝑍𝑍��  contains the global 
semantic crowd information. This strategy is 
adapted by Bert [5] as well. Applying the 
global average pooling to 𝑍𝑍� will generated 
the pooled visual tokens 𝑍𝑍�� . Since the 𝑍𝑍�� 
has more discriminative semantic patterns, it 
obtained better performance than using 𝑍𝑍�� . 
Similarly, CCTrans [44] also adapted 
transformer as the feature extraction 
backbone. Unlike TransCrowd, patches 𝑥𝑥� 
of the input image are flattened into a single 
sequence, then a learnable projection is 
applied to obtain the input sequence 𝑍𝑍��� 

for the l-th layer. For the encoding backbone, 
the Twins network [18] is adapted. The 
Twins can perceive both local and global 
receptive fields via alternated local and 
global attentions, namely Spatially Separable 
Self-Attention (SSSA) module. Specifically, 
for the local attention, the Locally-grouped 
Self-Attention (LSA) and MLP are applied to 
𝐿𝐿𝑁𝑁�𝑍𝑍���� . For the global attention, Global 
Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
𝑍𝑍��� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍�� �7.2� 

            𝑍𝑍���� = �𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.3� 
              𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍������ + 𝑍𝑍���� �7.4� 

The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
regional attentions can be expressed as. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� �� • 𝑅𝑅�

√𝐷𝐷 �𝑉𝑉𝑊𝑊��8� 

Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
𝑀𝑀��� are sharing the same value vectors 𝑊𝑊�. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� ��

√𝐷𝐷 �𝑉𝑉𝑊𝑊� �9� 

The final attention A can be obtained as： 𝑀𝑀 = 𝑀𝑀��� + 𝑀𝑀��� �10� 

(7.3)

1, … ,𝑁𝑁} is integrated as well to generate the input 𝑍𝑍� for the encoding process. 
𝑍𝑍� = �𝑍𝑍��;𝑍𝑍��; … ;𝑍𝑍��� = �𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; … ; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝��. �4� 

The encoder comprises with multiple layers 
of Multi-head Self-Attention (MSA) and 
Multilayer Perceptron (MLP). The output 𝑍𝑍� 
of the 𝑙𝑙 − 𝑡𝑡𝑡  layer can be expressed as 
Equation (5), where 𝐿𝐿𝑁𝑁 represents the layer 
normalization process. 

                  𝑍𝑍�� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �5.1� 
𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍��, �5.2� 

where the 𝑀𝑀𝑀𝑀𝑀𝑀 calculates 𝑚𝑚 Self Attention 
models 𝑀𝑀𝑀𝑀� with a reprojection matrix 𝑊𝑊�, 
expressed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍�� =
[𝑀𝑀𝑀𝑀��𝑍𝑍��; 𝑀𝑀𝑀𝑀��𝑍𝑍��; … ; 𝑀𝑀𝑀𝑀��𝑍𝑍��]𝑊𝑊� . The 𝑀𝑀𝑀𝑀� 
can be obtained with the typical Query(𝑄𝑄 ) 
/Key( 𝐾𝐾 )/ Value( 𝑉𝑉 ) paradigm of classic 
transformer. The 𝑀𝑀𝐿𝐿𝑀𝑀  uses 2 linear layers 
with the GELU [6] activation function to 
expand and shrink the embedding 
dimension of the feature. 

𝑀𝑀𝑀𝑀�𝑍𝑍�� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊
���𝐾𝐾𝑊𝑊���
√𝐷𝐷 �𝑉𝑉𝑊𝑊��6� 

The obtained 𝑍𝑍�  is further processed with 
either Regression Token or Global Average 
Pooling before sent to the regression head. 
The regression token procedure attaches an 
additional token 𝑍𝑍��   to 𝑍𝑍� . After the 𝑀𝑀𝑀𝑀𝑀𝑀 
and 𝑀𝑀𝐿𝐿𝑀𝑀 , the 𝑍𝑍��  contains the global 
semantic crowd information. This strategy is 
adapted by Bert [5] as well. Applying the 
global average pooling to 𝑍𝑍� will generated 
the pooled visual tokens 𝑍𝑍�� . Since the 𝑍𝑍�� 
has more discriminative semantic patterns, it 
obtained better performance than using 𝑍𝑍�� . 
Similarly, CCTrans [44] also adapted 
transformer as the feature extraction 
backbone. Unlike TransCrowd, patches 𝑥𝑥� 
of the input image are flattened into a single 
sequence, then a learnable projection is 
applied to obtain the input sequence 𝑍𝑍��� 

for the l-th layer. For the encoding backbone, 
the Twins network [18] is adapted. The 
Twins can perceive both local and global 
receptive fields via alternated local and 
global attentions, namely Spatially Separable 
Self-Attention (SSSA) module. Specifically, 
for the local attention, the Locally-grouped 
Self-Attention (LSA) and MLP are applied to 
𝐿𝐿𝑁𝑁�𝑍𝑍���� . For the global attention, Global 
Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
𝑍𝑍��� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍�� �7.2� 

            𝑍𝑍���� = �𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.3� 
              𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍������ + 𝑍𝑍���� �7.4� 

The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
regional attentions can be expressed as. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� �� • 𝑅𝑅�

√𝐷𝐷 �𝑉𝑉𝑊𝑊��8� 

Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
𝑀𝑀��� are sharing the same value vectors 𝑊𝑊�. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� ��

√𝐷𝐷 �𝑉𝑉𝑊𝑊� �9� 

The final attention A can be obtained as： 𝑀𝑀 = 𝑀𝑀��� + 𝑀𝑀��� �10� 

(7.4)

The Multifaceted Attention Network (MAN) [18] also 
attempts to incorporate local attention into the trans-
form. Unlike the TransCrowd and CCTrans, the MAN 
firstly used VGG19 to obtain the feature map. During 
the encoding phase, the MAN proposed a Learnable 
Region Attention (LRA) mechanism to optimize the 
local value within the final attention. After the region 
mask R ̃ is obtained with the LRA, the regional atten-
tions can be expressed as.

1, … ,𝑁𝑁} is integrated as well to generate the input 𝑍𝑍� for the encoding process. 
𝑍𝑍� = �𝑍𝑍��;𝑍𝑍��; … ;𝑍𝑍��� = �𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; … ; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝��. �4� 

The encoder comprises with multiple layers 
of Multi-head Self-Attention (MSA) and 
Multilayer Perceptron (MLP). The output 𝑍𝑍� 
of the 𝑙𝑙 − 𝑡𝑡𝑡  layer can be expressed as 
Equation (5), where 𝐿𝐿𝑁𝑁 represents the layer 
normalization process. 

                  𝑍𝑍�� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �5.1� 
𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍��, �5.2� 

where the 𝑀𝑀𝑀𝑀𝑀𝑀 calculates 𝑚𝑚 Self Attention 
models 𝑀𝑀𝑀𝑀� with a reprojection matrix 𝑊𝑊�, 
expressed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍�� =
[𝑀𝑀𝑀𝑀��𝑍𝑍��; 𝑀𝑀𝑀𝑀��𝑍𝑍��; … ; 𝑀𝑀𝑀𝑀��𝑍𝑍��]𝑊𝑊� . The 𝑀𝑀𝑀𝑀� 
can be obtained with the typical Query(𝑄𝑄 ) 
/Key( 𝐾𝐾 )/ Value( 𝑉𝑉 ) paradigm of classic 
transformer. The 𝑀𝑀𝐿𝐿𝑀𝑀  uses 2 linear layers 
with the GELU [6] activation function to 
expand and shrink the embedding 
dimension of the feature. 

𝑀𝑀𝑀𝑀�𝑍𝑍�� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊
���𝐾𝐾𝑊𝑊���
√𝐷𝐷 �𝑉𝑉𝑊𝑊��6� 

The obtained 𝑍𝑍�  is further processed with 
either Regression Token or Global Average 
Pooling before sent to the regression head. 
The regression token procedure attaches an 
additional token 𝑍𝑍��   to 𝑍𝑍� . After the 𝑀𝑀𝑀𝑀𝑀𝑀 
and 𝑀𝑀𝐿𝐿𝑀𝑀 , the 𝑍𝑍��  contains the global 
semantic crowd information. This strategy is 
adapted by Bert [5] as well. Applying the 
global average pooling to 𝑍𝑍� will generated 
the pooled visual tokens 𝑍𝑍�� . Since the 𝑍𝑍�� 
has more discriminative semantic patterns, it 
obtained better performance than using 𝑍𝑍�� . 
Similarly, CCTrans [44] also adapted 
transformer as the feature extraction 
backbone. Unlike TransCrowd, patches 𝑥𝑥� 
of the input image are flattened into a single 
sequence, then a learnable projection is 
applied to obtain the input sequence 𝑍𝑍��� 

for the l-th layer. For the encoding backbone, 
the Twins network [18] is adapted. The 
Twins can perceive both local and global 
receptive fields via alternated local and 
global attentions, namely Spatially Separable 
Self-Attention (SSSA) module. Specifically, 
for the local attention, the Locally-grouped 
Self-Attention (LSA) and MLP are applied to 
𝐿𝐿𝑁𝑁�𝑍𝑍���� . For the global attention, Global 
Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
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              𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍������ + 𝑍𝑍���� �7.4� 

The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
regional attentions can be expressed as. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� �� • 𝑅𝑅�

√𝐷𝐷 �𝑉𝑉𝑊𝑊��8� 

Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
𝑀𝑀��� are sharing the same value vectors 𝑊𝑊�. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� ��

√𝐷𝐷 �𝑉𝑉𝑊𝑊� �9� 

The final attention A can be obtained as： 𝑀𝑀 = 𝑀𝑀��� + 𝑀𝑀��� �10� 

(8)

where • is the Hadamard product. And the global at-
tention Aglb can be expressed in an ordinary transform 
way. Note the Alra and Aglb are sharing the same value 
vectors WV.

1, … ,𝑁𝑁} is integrated as well to generate the input 𝑍𝑍� for the encoding process. 
𝑍𝑍� = �𝑍𝑍��;𝑍𝑍��; … ;𝑍𝑍��� = �𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝�; … ; 𝑥𝑥�𝐸𝐸 + 𝑝𝑝��. �4� 

The encoder comprises with multiple layers 
of Multi-head Self-Attention (MSA) and 
Multilayer Perceptron (MLP). The output 𝑍𝑍� 
of the 𝑙𝑙 − 𝑡𝑡𝑡  layer can be expressed as 
Equation (5), where 𝐿𝐿𝑁𝑁 represents the layer 
normalization process. 

                  𝑍𝑍�� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �5.1� 
𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍��, �5.2� 

where the 𝑀𝑀𝑀𝑀𝑀𝑀 calculates 𝑚𝑚 Self Attention 
models 𝑀𝑀𝑀𝑀� with a reprojection matrix 𝑊𝑊�, 
expressed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍�� =
[𝑀𝑀𝑀𝑀��𝑍𝑍��; 𝑀𝑀𝑀𝑀��𝑍𝑍��; … ; 𝑀𝑀𝑀𝑀��𝑍𝑍��]𝑊𝑊� . The 𝑀𝑀𝑀𝑀� 
can be obtained with the typical Query(𝑄𝑄 ) 
/Key( 𝐾𝐾 )/ Value( 𝑉𝑉 ) paradigm of classic 
transformer. The 𝑀𝑀𝐿𝐿𝑀𝑀  uses 2 linear layers 
with the GELU [6] activation function to 
expand and shrink the embedding 
dimension of the feature. 

𝑀𝑀𝑀𝑀�𝑍𝑍�� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊
���𝐾𝐾𝑊𝑊���
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The obtained 𝑍𝑍�  is further processed with 
either Regression Token or Global Average 
Pooling before sent to the regression head. 
The regression token procedure attaches an 
additional token 𝑍𝑍��   to 𝑍𝑍� . After the 𝑀𝑀𝑀𝑀𝑀𝑀 
and 𝑀𝑀𝐿𝐿𝑀𝑀 , the 𝑍𝑍��  contains the global 
semantic crowd information. This strategy is 
adapted by Bert [5] as well. Applying the 
global average pooling to 𝑍𝑍� will generated 
the pooled visual tokens 𝑍𝑍�� . Since the 𝑍𝑍�� 
has more discriminative semantic patterns, it 
obtained better performance than using 𝑍𝑍�� . 
Similarly, CCTrans [44] also adapted 
transformer as the feature extraction 
backbone. Unlike TransCrowd, patches 𝑥𝑥� 
of the input image are flattened into a single 
sequence, then a learnable projection is 
applied to obtain the input sequence 𝑍𝑍��� 

for the l-th layer. For the encoding backbone, 
the Twins network [18] is adapted. The 
Twins can perceive both local and global 
receptive fields via alternated local and 
global attentions, namely Spatially Separable 
Self-Attention (SSSA) module. Specifically, 
for the local attention, the Locally-grouped 
Self-Attention (LSA) and MLP are applied to 
𝐿𝐿𝑁𝑁�𝑍𝑍���� . For the global attention, Global 
Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
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The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
regional attentions can be expressed as. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� �� • 𝑅𝑅�

√𝐷𝐷 �𝑉𝑉𝑊𝑊��8� 

Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
𝑀𝑀��� are sharing the same value vectors 𝑊𝑊�. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
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The final attention A can be obtained as： 𝑀𝑀 = 𝑀𝑀��� + 𝑀𝑀��� �10� 

(9)

The final attention A can be obtained as:
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The encoder comprises with multiple layers 
of Multi-head Self-Attention (MSA) and 
Multilayer Perceptron (MLP). The output 𝑍𝑍� 
of the 𝑙𝑙 − 𝑡𝑡𝑡  layer can be expressed as 
Equation (5), where 𝐿𝐿𝑁𝑁 represents the layer 
normalization process. 

                  𝑍𝑍�� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �5.1� 
𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍��, �5.2� 

where the 𝑀𝑀𝑀𝑀𝑀𝑀 calculates 𝑚𝑚 Self Attention 
models 𝑀𝑀𝑀𝑀� with a reprojection matrix 𝑊𝑊�, 
expressed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑍𝑍�� =
[𝑀𝑀𝑀𝑀��𝑍𝑍��; 𝑀𝑀𝑀𝑀��𝑍𝑍��; … ; 𝑀𝑀𝑀𝑀��𝑍𝑍��]𝑊𝑊� . The 𝑀𝑀𝑀𝑀� 
can be obtained with the typical Query(𝑄𝑄 ) 
/Key( 𝐾𝐾 )/ Value( 𝑉𝑉 ) paradigm of classic 
transformer. The 𝑀𝑀𝐿𝐿𝑀𝑀  uses 2 linear layers 
with the GELU [6] activation function to 
expand and shrink the embedding 
dimension of the feature. 

𝑀𝑀𝑀𝑀�𝑍𝑍�� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊
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The obtained 𝑍𝑍�  is further processed with 
either Regression Token or Global Average 
Pooling before sent to the regression head. 
The regression token procedure attaches an 
additional token 𝑍𝑍��   to 𝑍𝑍� . After the 𝑀𝑀𝑀𝑀𝑀𝑀 
and 𝑀𝑀𝐿𝐿𝑀𝑀 , the 𝑍𝑍��  contains the global 
semantic crowd information. This strategy is 
adapted by Bert [5] as well. Applying the 
global average pooling to 𝑍𝑍� will generated 
the pooled visual tokens 𝑍𝑍�� . Since the 𝑍𝑍�� 
has more discriminative semantic patterns, it 
obtained better performance than using 𝑍𝑍�� . 
Similarly, CCTrans [44] also adapted 
transformer as the feature extraction 
backbone. Unlike TransCrowd, patches 𝑥𝑥� 
of the input image are flattened into a single 
sequence, then a learnable projection is 
applied to obtain the input sequence 𝑍𝑍��� 

for the l-th layer. For the encoding backbone, 
the Twins network [18] is adapted. The 
Twins can perceive both local and global 
receptive fields via alternated local and 
global attentions, namely Spatially Separable 
Self-Attention (SSSA) module. Specifically, 
for the local attention, the Locally-grouped 
Self-Attention (LSA) and MLP are applied to 
𝐿𝐿𝑁𝑁�𝑍𝑍���� . For the global attention, Global 
Sub-sampled Attention (GSA) and MLP are 
further applied to obtain the feature 
sequence 𝑍𝑍�  for regression head. 
Comparing with the TransCrowd, integrated 
local attention of the SSSA provides 
additional perceptions on local features. The 
CCTrans ranked first on the online dataset 
NWPU-Crowd in year 2021. 

               𝑍𝑍�� = 𝐿𝐿𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.1� 
𝑍𝑍��� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍���� + 𝑍𝑍�� �7.2� 

            𝑍𝑍���� = �𝑀𝑀𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍����� + 𝑍𝑍��� �7.3� 
              𝑍𝑍� = 𝑀𝑀𝐿𝐿𝑀𝑀�𝐿𝐿𝑁𝑁�𝑍𝑍������ + 𝑍𝑍���� �7.4� 

The Multifaceted Attention Network (MAN) 
[18] also attempts to incorporate local 
attention into the transform. Unlike the 
TransCrowd and CCTrans, the MAN firstly 
used VGG19 to obtain the feature map. 
During the encoding phase, the MAN 
proposed a Learnable Region Attention (LRA) 
mechanism to optimize the local value 
within the final attention. After the region 
mask 𝑅𝑅�  is obtained with the LRA, the 
regional attentions can be expressed as. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� �� • 𝑅𝑅�

√𝐷𝐷 �𝑉𝑉𝑊𝑊��8� 

Where • is the Hadamard product. And the 
global attention 𝑀𝑀��� can be expressed in an 
ordinary transform way. Note the 𝑀𝑀��� and 
𝑀𝑀��� are sharing the same value vectors 𝑊𝑊�. 

𝑀𝑀��� = ���𝑡𝑡𝑚𝑚�𝑥𝑥 ��𝑄𝑄𝑊𝑊���
� ��𝐾𝐾𝑊𝑊���� ��

√𝐷𝐷 �𝑉𝑉𝑊𝑊� �9� 

The final attention A can be obtained as： 𝑀𝑀 = 𝑀𝑀��� + 𝑀𝑀��� �10� . (10)

In summary, the core strategy of TransCrowd, 
CCTrans and MAN, is to strengthen the global at-
tention via involving local attention during the en-
coding phase. The TransCrowd divides image into 
patches, and models self-attention SA for each patch 
as local attention. Then, the sequence of local atten-
tions is fed to the regression head. The CCTrans en-
codes the image into a single sequence and perceives 
local attention before global attention. The MAN 
obtains the regional and global attentions separate-
ly, then integrates them into the final attention. De-
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spite adapting different encoding procedures, all ap-
proaches receive sound results in the experiments. 

2.6. Features from Other Sources
All above-mentioned approaches only exploit visual 
features extracted from images or video frames. Re-
search [20, 23, 52] attempts to improve the counting 
performance via utilizing features from other source. 
The multi-model techniques include multi-model 
representation, translation, alignment, multi-model 
fusion and co-learning. The multi-model fusion in-
tegrates various types of information and gives pre-
diction. A typical application of multi-model fusion 
in image processing is the visual-audio recognition, 
which extract visual and audio features to perform 
personal identification.
The Information Aggregation Distribution Mod-
ule (IADM) [20] devised a multi-model approach, 
which incorporates thermal information with visual 
features. In the Information Aggregation Transfer 
phase, 3 branches of CSRNet are used to extract vi-
sual, thermal, and modality-shared features. The mo-
dality-shared feature describes the complementary 
information between visual and thermal features. In 
the information distribution transfer phase, the con-
textual information obtained from modality-shared 
feature is used to refine the thermal and visual fea-
tures for the regression of density map.

3. The Problem of Unbalanced 
Density Estimation
The ASNet [14] observed a phenomenon that the sparse 
area in the regressed density map DE often yield smaller 
predict count than ground truth, and dense area in DE  
often yield larger count. Therefore, the performance of 
existing regression-based approaches is significantly 
impacted on datasets with wide density range, such as 
UCF-QNRF [13] and UCF_CCF_50 [12]. The strategy 
to address this issue is rescaling the regions within the 
image to same density level before/after the prediction. 
Two approaches are proposed to handle this issue.

3.1. Rescaling Regions of the Image into 
Identical Density Level Before Prediction
The L2S [53] attempts to locate regions with high 
density, and rescale these regions until the density 
is identical to the sparser region. The partially res-
caled image has more evenly distributed density, and 
the prediction is expected to be more accurate. As il-
lustrated in Figure 5, an initial density map is firstly 
predicted with the regression-based network. Next, 
the dense region is selected by a threshold, and the 
L2S module is exploited to generate a Scale factor. 
The dense region is then rescaled with the factor, and 
fed to the network again to obtain the optimized local 

Figure 5 
Density map re-scale process proposed in L2S [53]
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prediction. This approach achieved the best perfor-
mance in 2019 crowd counting game CV101.

3.2. Predicting the Density Map and Applying 
Factors to Regions with Different Density 
Level for the Magnitude Adjustment
The ASNet [14] devised a post-processing mecha-
nism to optimize D_E. As illustrated in Figure 6, im-
age is segmented into multiple density regions with 
the Density Attention Network (DANet) to generate 
the attention masks [M1, M2, …, Mn]. Once DE is gener-
ated with the feature extraction network, the Atten-
tion Scaling Network (ASNet) will map regions with 
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multiple datasets with learnt rescaling factors. In 
this approach, the Scale Distribution Network (SD-
Net) is devised to estimate the scale distribution of 
each image. Next, images are divided into patches 
for the alignment by re-scaling them with the op-
timal translation factor. The factor for each patch 
is calculated with its actual distribution and Was-
serstein barycenter of the estimated scale distribu-
tion. With this process, the scale distributions for 
4 benchmarking datasets are aligned to the same 
level. The ablation experiment shows the aligned 
database outperforms the original on main-stream 
approaches such as CSRNet  and BL [26]. 

4. The Selection of Loss Function
4.1. Basic Loss
The loss function evaluates the difference between the 
predicted and ground-truth count, which is exploited 
to adjust the weight of network in the back-propaga-
tion process. Therefore, the appropriate selection of 
Loss function can directly boost the accuracy of pre-
diction. The straight-forward way is calculating the 
L1 norm between the estimated density map DE and 
GT density map DGT, which can be expressed as ||DE – 
DGT ||1 or the following equation, where M is the total 
amount of images for training.
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Figure 7 
Adaptive Pyramid Loss
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Similarly, SASNet devised the Pyramid Region 
Awareness Loss (PRAL) to handle the over-estimat-
ed value of density map. This approach divides the 
predicted density map into 4 subregions, and locates 
the most over-estimated subregion. Next, the located 
subregion will be iteratively divided to pixel-level. All 
selected pixels will be collected as a hard pixel set H. 
Then the PRAL LPRAL can be modelled as the following 
Equation (16), where γ is a weight term.
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(BL) [26] exploits the probability of every 
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annotation, to calculate the Bayesian Loss 
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Where 𝑁𝑁𝑁𝑁 is the total head annotation count 
within the image, 𝐸𝐸𝐸𝐸[•] is the expectation, 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛 
denotes the count that pixels 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  belongs to 
the 𝑛𝑛𝑛𝑛 − 𝑠𝑠𝑠𝑠ℎ  annotation. Since the head 
location is annotated with single pixel, the 
𝐸𝐸𝐸𝐸[•] of ground-truth count will be 1. 
Considering background pixels can be far 
away from any pedestrian’s head, they 
should not be mapped to any annotation. 
Therefore, BL improved the Bayesian Loss 
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4.3. Bayesian Loss

The ground-truth density map is generated from the 
head annotations with fixed/dynamic Guassian ker-
nel. In either way, the density map is not real ‘ground-
truth’. In Section 2.3, approaches attempt to model 
the most accurate ground-truth density map. On the 
other hand, some approaches aim to tackle this issue 
by skipping the density map. The Bayesian Loss (BL) 
[26] exploits the probability of every spatial loca-
tion belongs to the head annotation, to calculate the 
Bayesian Loss LBayes of the entire image. In this case, 
each pixel on the feature map will be mapped to all 
head annotations with probabilities. LBayes can be ex-
pressed as Equation (17). 

𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖1,…,𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛−1
𝑘𝑘𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧��𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖1,…,𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛−1

𝐸𝐸𝐸𝐸 − 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖1,…,𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛−1
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ��

2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚 �𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖1,…,𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛−1
𝑘𝑘𝑘𝑘 � + 𝜎𝜎𝜎𝜎

,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚 �𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖1,…,𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛−1
𝑘𝑘𝑘𝑘 � < 𝑇𝑇𝑇𝑇 

� 𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖1,…,𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘

4

𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛=1
,      𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒

(15)

 

Figure 7  

Adaptive Pyramid Loss 

Similarly, SASNet  devised the Pyramid 
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denotes the count that pixels 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  belongs to 
the 𝑛𝑛𝑛𝑛 − 𝑠𝑠𝑠𝑠ℎ  annotation. Since the head 
location is annotated with single pixel, the 
𝐸𝐸𝐸𝐸[•] of ground-truth count will be 1. 
Considering background pixels can be far 
away from any pedestrian’s head, they 
should not be mapped to any annotation. 
Therefore, BL improved the Bayesian Loss 
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Where N is the total head annotation count within the 
image, E[•] is the expectation, cn denotes the count 
that pixels xi belongs to the n–th annotation. Since the 
head location is annotated with single pixel, the E[•] 
of ground-truth count will be 1.
Considering background pixels can be far away from 
any pedestrian’s head, they should not be mapped to 
any annotation. Therefore, BL improved the Bayesian 
Loss into LBayes+ by adapting the expectation of back-
ground count E[c0].
background count 𝐸𝐸𝐸𝐸[𝑐𝑐𝑐𝑐0]. 

𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵+ = � ‖1 − 𝐸𝐸𝐸𝐸[𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛]‖1
𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
+ ‖0 − 𝐸𝐸𝐸𝐸[𝑐𝑐𝑐𝑐0]‖1(18) 

The BL did not consider the cost of mapping 
pixels to annotations, which is referred as the 
Transport Cost in Generalized Loss (GL) [46]. 
For example, for the crowd far from the 
camera, heads are more compact. The 
transport cost should be higher to produce 
higher Loss value. The GL introduced a 
generalized Loss based on the hybrid of 
multi-Loss functions and the transport cost. 
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here 𝐶𝐶𝐶𝐶 is the transport cost, by minimizing 
the 〈𝐶𝐶𝐶𝐶, 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛〉 , the predicted density is pushed 
toward the annotation. The entropic 
regularization term 𝐻𝐻𝐻𝐻(•)  can make the 
distribution of density sparser. GL later 
proved the 𝐿𝐿𝐿𝐿1  and 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  are special and 
suboptimal cases of 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶 . 
The MAN  attempts to address the over-
estimated issue as [14, 42] using Bayesian 
Loss. To suppress the false positive 
prediction, MAN proposed Instance 
Attention Loss 𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴 by adapting the instance 
attention mask to prune the 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  value 
larger than threshold 𝛿𝛿𝛿𝛿 . The 𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴  can be 
expressed as. 
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where the instance attention mask 𝑚𝑚𝑚𝑚 can be 
expressed as follows. This means if 𝛿𝛿𝛿𝛿  is 
larger than the calculated Bayesian loss of 80% 
annotated points, 20% of points will be 
pruned in back-propagation process. 
Therefore, the issue of over-estimated 
prediction can be handled when the 𝛿𝛿𝛿𝛿  is 
properly set. 
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5. Experiments and 

Discussions 
5.1 Benchmarking Datasets 
Standard datasets are used to measure the 
performance between different approaches. 
The following section gives introductions to 
mainstream datasets.  
The Shanghai Tech (SHT) dataset [56] is 
proposed with the MCNN. It soon became 
the first benchmarking dataset and is 
adapted by most of the regression-based 
approaches. The SHT comprises with subsets 
A and B, pedestrians are manually annotated 
in all image samples. The subset A contains 
300 training samples and 182 testing samples 
collected from the Internet. The subset B 
contains 400 training samples and 316 testing 
samples collected from cameras installed at 
streets. The crowd density in subset A is 
significantly higher than subset B. Therefore, 
some approaches did not choose subset B 
while using SHT.  
The UCF-QNRF [13] is a challenging dataset 
to evaluate adaptiveness of the approach, 
since it has a wide range of crowd number. 
The minimum count is 49, and the maximum 
count is 12,865. The scale of UCF-QNRF is 
also very large, it contains 1,535 image 
samples and 1.25 million annotations, where 
1,201 samples belong to training set and 334 
samples belong to testing set. The large 
dataset NWPU-Crowd [50] has 5,109 images 
and 2.13 million annotations. Similarly, it has 
a wide count ranges from 0 to 20,033. 
The UCF_CCF_50 [12] is a small but 
frequently referenced dataset with 50 gray-
scale images. Like the UCF-QNRF, its range 
of count varies from 94 to 4,543, and the 
average count for each image is 1,280. The 
total number of annotations is 63,974. Note 
that the UCF_CCF_50 is not divided as 
training and testing data. Usually, researcher 
defines 50% of the set as the training data [26]. 
The JHU-Crowd++ [40] is another large-scale 

(18)

The BL did not consider the cost of mapping pixels to 
annotations, which is referred as the Transport Cost 
in Generalized Loss (GL) [46]. For example, for the 
crowd far from the camera, heads are more compact. 

The transport cost should be higher to produce high-
er Loss value. The GL introduced a generalized Loss 
based on the hybrid of multi-Loss functions and the 
transport cost.
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where the instance attention mask 𝑚𝑚𝑚𝑚 can be 
expressed as follows. This means if 𝛿𝛿𝛿𝛿  is 
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The following section gives introductions to 
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The Shanghai Tech (SHT) dataset [56] is 
proposed with the MCNN. It soon became 
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adapted by most of the regression-based 
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A and B, pedestrians are manually annotated 
in all image samples. The subset A contains 
300 training samples and 182 testing samples 
collected from the Internet. The subset B 
contains 400 training samples and 316 testing 
samples collected from cameras installed at 
streets. The crowd density in subset A is 
significantly higher than subset B. Therefore, 
some approaches did not choose subset B 
while using SHT.  
The UCF-QNRF [13] is a challenging dataset 
to evaluate adaptiveness of the approach, 
since it has a wide range of crowd number. 
The minimum count is 49, and the maximum 
count is 12,865. The scale of UCF-QNRF is 
also very large, it contains 1,535 image 
samples and 1.25 million annotations, where 
1,201 samples belong to training set and 334 
samples belong to testing set. The large 
dataset NWPU-Crowd [50] has 5,109 images 
and 2.13 million annotations. Similarly, it has 
a wide count ranges from 0 to 20,033. 
The UCF_CCF_50 [12] is a small but 
frequently referenced dataset with 50 gray-
scale images. Like the UCF-QNRF, its range 
of count varies from 94 to 4,543, and the 
average count for each image is 1,280. The 
total number of annotations is 63,974. Note 
that the UCF_CCF_50 is not divided as 
training and testing data. Usually, researcher 
defines 50% of the set as the training data [26]. 
The JHU-Crowd++ [40] is another large-scale 
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The BL did not consider the cost of mapping 
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Transport Cost in Generalized Loss (GL) [46]. 
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where the instance attention mask 𝑚𝑚𝑚𝑚 can be 
expressed as follows. This means if 𝛿𝛿𝛿𝛿  is 
larger than the calculated Bayesian loss of 80% 
annotated points, 20% of points will be 
pruned in back-propagation process. 
Therefore, the issue of over-estimated 
prediction can be handled when the 𝛿𝛿𝛿𝛿  is 
properly set. 
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5. Experiments and Discussions
5.1. Benchmarking Datasets
Standard datasets are used to measure the perfor-
mance between different approaches. The following 
section gives introductions to mainstream datasets. 
The Shanghai Tech (SHT) dataset [56] is proposed 
with the MCNN. It soon became the first bench-
marking dataset and is adapted by most of the re-
gression-based approaches. The SHT comprises with 
subsets A and B, pedestrians are manually annotated 
in all image samples. The subset A contains 300 train-
ing samples and 182 testing samples collected from 
the Internet. The subset B contains 400 training sam-
ples and 316 testing samples collected from cameras 
installed at streets. The crowd density in subset A is 
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significantly higher than subset B. Therefore, some 
approaches did not choose subset B while using SHT. 
The UCF-QNRF [13] is a challenging dataset to eval-
uate adaptiveness of the approach, since it has a wide 
range of crowd number. The minimum count is 49, and 
the maximum count is 12,865. The scale of UCF-QN-
RF is also very large, it contains 1,535 image samples 
and 1.25 million annotations, where 1,201 samples be-
long to training set and 334 samples belong to testing 
set. The large dataset NWPU-Crowd [50] has 5,109 
images and 2.13 million annotations. Similarly, it has 
a wide count ranges from 0 to 20,033.
The UCF_CCF_50 [12] is a small but frequently ref-
erenced dataset with 50 gray-scale images. Like 
the UCF-QNRF, its range of count varies from 94 to 
4,543, and the average count for each image is 1,280. 
The total number of annotations is 63,974. Note that 
the UCF_CCF_50 is not divided as training and test-
ing data. Usually, researcher defines 50% of the set as 
the training data [26].
The JHU-Crowd++ [40] is another large-scale data-
set, which contains 4,372 images and 1.51 million an-
notations. This dataset is divided into 2,772 training 
and 1,600 testing images. Images of JHU-Crowd++ 
are carefully collected according to adverse weather 
conditions.
The WorldExpo’10 [55] is a video dataset, where par-
tial frames are annotated with 199,923 pedestrians. 
Its training set contains 3380 frames from 103 scenes, 
and its testing set contains 600 frames from 5 scenes.
The following table 1 lists the scales and annotation 
statistics of above-mentioned datasets to provide a 
straight-forward comparison.
Aiming to achieve crowd counting with multi-modal 
approach, datasets with information from additional 
sources are also proposed. The RGBT-CC [20] data-
set contains 2030 RGB images with their correspond-
ing thermal versions collected from optical-thermal 
camera. It has total 138,389 annotations. One unique 
feature of RGBT-CC is that partial thermal/RGB im-

Dataset SHT A UCF-QNRF UCF_CCF_50 NWPU JHU++ WorldExpo’10

Images 482 1535 50 5109 4372 3980

Annotations 244167 1.25million 63974 2.13million 1.51million 199923

Table 1
Patterns of mainstream datasets for crowd counting

ages are captured in darkness, which makes it a fine 
choice to evaluate performance under limited bright-
ness circumstance.

5.2. Evaluation Metrics
The evaluation of the performance of the approach is 
straight-forward: if the predicted count matches the 
actual crowd number. Without considering the com-
putational complexity, Mean Absolute Error(MAE) 
/L1 Loss and Mean Squared Error (MSE)/L2 Loss 
are often adapted as evaluation metrics by regres-
sion-based approaches.
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Where 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖  is the predicted count, 𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖  is the 
ground-truth, 𝑀𝑀𝑀𝑀  is the total number of 
images in the dataset. Furthermore, the mean 
Normalized Absolute Error (NAE) is a 
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Some metrics are devised to provide a more 
general presentation of basic metrics. For 
example, MAE and GAME can be special 
cases of Patch Mean Absolute Error (PMAE), 
and MSE is a special case of Patch Mean 
Squared Error (PMSE). Moreover, 
conventional metrics for signal processing 
are also adapted in some cases, such as Peak 
Signal to Noise Ratio (PSNR) and Structural 
Similarity Index (SSIM). However, MAE and 
MSE are still at dominate position and 
adapted by nearly all approaches.  
5.3 Performances and Discussions 
Performances of the frequently cited 
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dataset, which contains 4,372 images and 
1.51 million annotations. This dataset is 
divided into 2,772 training and 1,600 testing 
images. Images of JHU-Crowd++ are 
carefully collected according to adverse 
weather conditions. 
The WorldExpo’10 [55] is a video dataset, 
where partial frames are annotated with 

199,923 pedestrians. Its training set contains 
3380 frames from 103 scenes, and its testing 
set contains 600 frames from 5 scenes. 
The following table 1 lists the scales and 
annotation statistics of above-mentioned 
datasets to provide a straight-forward 
comparison. 
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Some metrics are devised to provide a more 
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example, MAE and GAME can be special 
cases of Patch Mean Absolute Error (PMAE), 
and MSE is a special case of Patch Mean 
Squared Error (PMSE). Moreover, 
conventional metrics for signal processing 
are also adapted in some cases, such as Peak 
Signal to Noise Ratio (PSNR) and Structural 
Similarity Index (SSIM). However, MAE and 
MSE are still at dominate position and 
adapted by nearly all approaches.  
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dataset, which contains 4,372 images and 
1.51 million annotations. This dataset is 
divided into 2,772 training and 1,600 testing 
images. Images of JHU-Crowd++ are 
carefully collected according to adverse 
weather conditions. 
The WorldExpo’10 [55] is a video dataset, 
where partial frames are annotated with 

199,923 pedestrians. Its training set contains 
3380 frames from 103 scenes, and its testing 
set contains 600 frames from 5 scenes. 
The following table 1 lists the scales and 
annotation statistics of above-mentioned 
datasets to provide a straight-forward 
comparison. 
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Some metrics are devised to provide a more 
general presentation of basic metrics. For 
example, MAE and GAME can be special 
cases of Patch Mean Absolute Error (PMAE), 
and MSE is a special case of Patch Mean 
Squared Error (PMSE). Moreover, 
conventional metrics for signal processing 
are also adapted in some cases, such as Peak 
Signal to Noise Ratio (PSNR) and Structural 
Similarity Index (SSIM). However, MAE and 
MSE are still at dominate position and 
adapted by nearly all approaches.  
5.3 Performances and Discussions 
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Where C iP is the predicted count, C iGT is the ground-
truth, M is the total number of images in the dataset. 
Furthermore, the mean Normalized Absolute Error 
(NAE) is a recently proposed metric, which is adapted 
by some research [49]. Additionally, the Grid Average 
Mean Absolute Error (GAME) [8] is proposed to mea-
sure the MAE within different regions. For any level l, 
the image is divided into 4l non-overlapping regions. 
Then the GAME at level i can be expressed as Equa-
tion (23).
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Some metrics are devised to provide a more 
general presentation of basic metrics. For 
example, MAE and GAME can be special 
cases of Patch Mean Absolute Error (PMAE), 
and MSE is a special case of Patch Mean 
Squared Error (PMSE). Moreover, 
conventional metrics for signal processing 
are also adapted in some cases, such as Peak 
Signal to Noise Ratio (PSNR) and Structural 
Similarity Index (SSIM). However, MAE and 
MSE are still at dominate position and 
adapted by nearly all approaches.  
5.3 Performances and Discussions 
Performances of the frequently cited 
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Some metrics are devised to provide a more general 
presentation of basic metrics. For example, MAE and 
GAME can be special cases of Patch Mean Absolute 
Error (PMAE), and MSE is a special case of Patch 
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Mean Squared Error (PMSE). Moreover, conven-
tional metrics for signal processing are also adapt-
ed in some cases, such as Peak Signal to Noise Ratio 
(PSNR) and Structural Similarity Index (SSIM). 
However, MAE and MSE are still at dominate posi-
tion and adapted by nearly all approaches. 

5.3. Performances and Discussions
Performances of the frequently cited approaches on 
5 benchmarking datasets are collected and listed in 
the following Table 2. All listed approaches are imple-
mented on SHT-A, and performances on other main-

Table 2
Performance list on benchmarking datasets

Dataset SHT A SHT B UCF-QNRF JHU+ NWPU UCF_CC_50

Approach Year MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Crowd-CNN [55] 2015 181.8 277.7 32 49.8 181.8 277.7 / / / / 467 498.5
MCNN [56] 2016 110.2 173.2 26.4 41.3 227 426 188.9 483.4 232.5 714.6 377.6 509.1
CP-CNN [38] 2017 73.6 106.4 20.1 30.1 / / / / / / 295.8 320.9
CMTL2017 [37] 2017 101.3 152.4 20 31.1 252 514 / / / / 322.8 341.4
Switch-CNN [2] 2017 90.4 135 21.6 33.4 228 445 / / / / 318.1 439.2
CSRNet [15] 2018 68.2 115 10.6 16 120.3 208.5 85.9 309.2 121.3 387.8 266.1 397.5
SANet [3] 2018 67 104.5 8.4 13.6 / / 91.1 320.4 190.6 491.4 258.4 334.9
ACSCP [34] 2018 75.7 102.7 17.2 27.4 / / / / / / 291 404.6
D-CONVNET 
[35] 2018 73.5 112.3 18.7 26 / / / / / / 288.4 404.7

IG-CNN [33] 2018 72.5 118.2 13.6 21.1 / / / / / / 291.4 349.4
IC-CNN [32] 2018 68.5 116.2 10.7 16 / / / / / / 260.9 365.5
CA-Net [21] 2019 61.3 100 / / 107 183 100.1 314 / / / /
CAN [21] 2019 62.3 100 7.8 12.2 107 183 100.1 314 106.3 386.5 212.2 243.7
HA-CNN [39] 2019 62.9 94.9 / / 118.1 180.4 / / / / 256.2 348.4
SFCN [22] 2019 64.8 107.5 7.4 11.8 102 171.4 77.5 297.6 105.7 424.1 214.2 318.2
BL [26] 2019 62.8 101.8 7.7 12.7 88.7 154.8 75 299.9 105.4 454.2 229.3 308.2
CG-DRCN-CC 
[40] 2020 60.2 94 / / 95.5 164.3 71 278.6 / / / /

DPN-IPSM [27] 2020 58.1 91.7 / / 84.7 147.2 / / / / / /
DM-Count [47] 2020 59.7 95.7 7.4 11.8 85.6 148.3 68.4 283.3 88.4 388.6 211 291.5
ASNet [14] 2020 57.78 90.13 / / 91.59 159.71 / / / / 174.84 251.63
UOT [28] 2021 58.1 95.9 6.5 10.2 83.3 142.3 60.5 252.7 87.8 387.5 / /
L2S [53] 2022 65.8 112.1 8.6 13.9 104.4 174.2 85.6 356.1 97.3 571.2 / /
S3 [17] 2021 57 96 6.3 10.6 80.6 139.8 59.4 244 83.5 346.9 / /
Semi [29] 2021 68.5 121.9 14.1 20.6 130.3 226.3 80.7 290.8 111.7 443.2 / /
P2Pnet [41] 2021 52.7 85.1 6.3 9.9 85.3 154.5 / / 77.4 362 172.7 256.2
GL [46] 2021 61.3 95.4 7.3 11.7 84.3 147.5 59.9 259.5 79.3 346.1 211 291.5
CCTrans [44] 2021 64.4 95.4 7 11.5 92.1 158.9 / / / / 245 343.6
SASNet [42] 2021 53.59 88.38 6.35 9.9 85.2 147.3 / / / / 161.4 234.46
MAN [18] 2022 56.8 90.3 / / 77.3 131.5 53.4 209.9 76.5 323 / /
ChfL [36] 2022 57.5 94.3 6.9 11 80.3 137.6 57 235.7 76.8 343 / /
TransCrowd [16] 2022 66.1 105.1 9.3 16.1 97.2 168.5 56.8 193.6 88.4 400.5 272.2 395.3
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Figure 8
Performance trend on selected approach
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stream datasets are partially missed. Thus, MAE and 
MSE of different approaches on SHT-A will be re-
ferred as primary factor for analysis. Furthermore, 
Figure 8 gives a perceptual illustration to exhibit the 
trending of performance development.
For most approaches proposed in recent years, values 
of MAE and MSE on SHT-A are limited under 60 and 
100. The state-of-the-art approaches are the P2Pnet 
and SASNet  proposed in 2021. The Characteristic 
function Loss (ChfL) [36] proposed in 2022 has the 
best performance among Bayesian loss related ap-
proaches, which regresses features into points in-
stead of density map. Generally, approaches proposed 
at 2021 outperform those proposed at 2022. The rea-
son is newest approaches focused more on the explo-
ration of novel network structure, such as adapting 
transformer and Bayesian loss. Despite current per-
formance is lower, they have exhibited significant 
advantages and potential which could outperform the 
main-stream density map-based approaches in the 
future.
Since the P2Pnet and SASNet achieved the highest 
performance so far, it is necessary to take a closer in-
spection of their innovations..
P2Pnet: The strategy of P2Pnet is a pseudo version 
of point-regression approaches. Instead of calculat-
ing the confidence score of every pixel from the fea-
ture map as pedestrian’s head, the P2Pnet divides the 
extracted feature map with a grid of the stride length 
s. Each cell of the grid is assigned as a potential head 
candidate/proposal with the confidence score, and 
this strategy is referred as “one to one match”.
The network of P2PNet has an ordinary front/back-
end structure. Its front-end part is a VGG16 for fea-
ture extraction. The extracted feature map will be 
divided by s to generate proposals who will be fed to 
the back-end. The back-end network is comprised 
with a regression head and a classification head. The 
regression head calculates the confidence score of 
each proposal. The classification head determines if 
proposal belongs to pedestrian’s head or background 
according to the confidence score. Finally, the Loss 
will be calculated with predicted pedestrians and the 
ground truth. 
The P2PNet mentions the “one to one match” can ef-
fectively address the unbalance estimation problem 
who hampers the prediction accuracy. However, the 

adaptiveness of P2Pnet is limited in practice since 
the s must be manually set. The inaccurate selection 
of s will generate direct impact on the prediction of 
the densest crowd within the footage. Thus, it seems 
the reason of P2Pnet achieved such outstanding per-
formance in experimental environment, is heavily 
related to the selection of hyperparameter s. If the se-
lection of s is made self-adaptive, the performance of 
P2Pnet could be more persuasive.  
SASNet: As the approach with the second-best MAE/
MSE in the Table 2, the SASNet  also has a standard 
front/back-end network structure. The VGG16 is 
adapted as the front-end network, whose features 
from strides with {1,2,4,8,16} are selected as feature 
maps in 5 scales. Like P2Pnet, the back-end network 
of SASNet is also dual-heads. The map from each scale 
level is fed to confidence head and regression head 
respectively. The regression head of SASNet pre-
dicts the density map. The confidence head generates 
confidence map, which indicates if the current scale 
level can most properly describe the actual density. 
The confidence and density maps in each scale can be 
further modeled into the final density map. Further-
more, the Pyramid Region Awareness Loss (PRAL) is 
devised to handle the unbalance density prediction, 
which is explained in previous Loss section. The final 
Loss is obtained with the summation of the density 
Loss, confidence Loss and PRAL. Overall, the SASNet 
applies a conventional density map regression-based 
strategy with a composite loss.
The ablation experiment reveals 2 crucial factors 
for SASNet to achieve such high performance. (1) 
As introduced in the paragraph above, the front-end 
network extracts feature maps in 5 scales. If only the 
average feature map is adapted for regression, the 
MAE on SHT-A is 57.48. This MAE is at same level as 
S3 [17] (57) and MAN  (56.8). If the feature map with 
highest confidence score is adapted, the MAE will be 
improved to 55.71. By applying weight average on all 
5 maps with confidence scores, the final feature map 
is generated and adapted for regression. The result 
shows the MAE is boosted to 54.75. This experiment 
proves optimizing the scale selection of feature map 
is still a feasible path to further improve the perfor-
mance, and this optimizing path can be backtracked 
to the MCNN in 2017. Besides, by selecting pixels 
from different feature levels with minimum error, 
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and aggregating into a “ground truth” feature map, 
the ideal MAE can be reduced to 46.19, which can be 
considered as a short-term goal for the optimization 
of scale selection. (2) The SASNet adapts the Pyramid 
Region Awareness Loss (PRAL) to handle the unbal-
anced prediction by pruning the most over/under-es-
timated pixels out, and integrating their Euclidean 
Distance Loss into the final Loss. This process lifts 
the precision of Loss calculation for the pooled fea-
ture map to pixel level. As the ablation experiment 
shows, by involving PRAL into the SASNet, the MAE 
is further boosted from 54.75 to 53.59. Comparing to 
the PRAL, the unbalance density handling approach-
es of L2S  and ASNet  are coarser since they are not at 
pixel level. 

6. Conclusion
This paper reviews most representative regres-
sion-based crowd counting techniques and inspects 
their innovations in network architecture, the han-
dling of unbalanced prediction and the devising of 
loss function. As conclusion, some observations and 
possible future trends is proposed.
Regression to points instead of density map. 
Point-regression approaches can provide position 
information which conventional density map based 
techniques cannot. This strategy is continually ex-
plored by Bayesian loss related approaches since 
2019. Despite still lessor than the state-of-the-art 
[41, 42], the performance of Point-regression ap-
proaches such as BL, GL and Chfl  is steadily in-
creasing. Considering the high performance of the 
state-of-the-art heavily relies on the installation 
of super parameters in feature extraction process, 
their practical feasibility still needs to be further 
evaluated. But point-regression approaches min-
imize this impact by focusing on the optimization 
of regression-head. Together with the capability of 
providing position information, point-regression 
approaches can be promising candidates for practi-
cal application.
Replacing CNN with transformer: As a former nat-
ural language processing network, transformer 
shows magnificent capability in computer vision. 
In recent years, multiple transformer-related ap-

proaches such as MAN and TransCrowd are pro-
posed and achieved sound performance. By inte-
grating global attention, the transformer-based 
approaches achieve generally high performance. 
However, it still cannot match the state-of-the-art. 
Another defect is the deep ViT network for encod-
ing, which makes the transformer more difficult to 
handle the real-time task. However, the semi-super-
vised version of transformer, such as Semiformer 
[51], can help the approach to maintain acceptable 
accuracy with the limited training data.
Enhancements of CNN-based approach: As con-
ventional approaches, CNN-based techniques still 
have performance advantage on others. To sustain 
the leading position, some possible optimizations 
are worth to be further investigated. Despite typi-
cal CNN-based approaches do not regress to points, 
the success of P2Pnet proved higher performance 
can be achieved by involving point regression strat-
egy. Secondly, as a primitive problem, the selection 
of feature in proper scale can be further explored 
to address the perspective in footage. The SASNet 
exploits the weight-averaged feature map to lift the 
performance. Theoretically, the scale selection of 
feature map can be modelled at pixel-level to obtain 
the best result. Finally, as the issue of unbalanced 
prediction is handled at pixel-level in the most re-
cent work, techniques can be continuously probed to 
further improve accuracy. 
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