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The diagnosis of early-stage lung cancer can be challenging due to several factors. Firstly, the asymptomatic na-
ture of the disease means that it may not present any noticeable symptoms until it has progressed to later stages. 
Additionally, the use of computed tomography, which can be expensive and involves repetitive radiation exposure, 
can further complicate the diagnostic process. Even specialists may encounter difficulties when examining lung CT 
imagery to identify pulmonary nodules, particularly in the case of cell lung adenocarcinoma lesions. This paper sug-
gests a unique deep learning-based Deep Convolutional Generative Adversarial Networks (DCGAN) model for lung 
cancer classification. The dataset utilized for the experimental purpose is accessed from the LUNA16 challenge da-
tabase. This comprises 888 CT scans of the lungs. These images are initially segmented using Quick-CapsNet (QCN) 
model and applied with Red Deer Optimization (RDO) algorithm to extract the optimized features. Furthermore, 
the categorization between benign and malignant tumors is carried out using the DC-GAN model. The pulmonary 
nodule detection accuracy of the proposed model is 98.65%, indicating early-stage lung cancer. It is discovered to be 
superior to other existing techniques, such as sophisticated deep learning, straightforward machine learning, and 
hybrid methods applied to lung CT scans for nodule diagnosis. According to experimental findings, the suggested 
way can significantly help radiologists spot early lung cancer and facilitate prompt patient management.
KEYWORDS: Deep Convolutional GAN, Quick-CapsNet, Red deer Optimization, Lung adenocarcinoma.
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1. Introduction
The number of lung cancer patients globally has in-
creased, and the recurrence rate has gone up year 
after year due to the worsening of the environment 
brought on by more severe air pollution and variables 
like tobacco consumption and environmental toxins 
[33].  One of the malignancies with the most excellent 
fatality rates today is lung adenocarcinoma. Concern 
has grown over correctly identifying lung disease and 
stopping its occurrence and progression [18]. Most 
lung nodules are harmless, but some may be early 
signs of cancer. Lung nodules are abnormal growths 
within the lung that can either be either cancerous or 
benign [6]. According to recent studies, only 22% of 
lung cancer patients survive for at least five years. Ear-
ly diagnosis can significantly increase lung cancer sur-
vival rate. Noncancerous and not propagating to other 
body areas are benign lesions [21]. By 2034, the World 
Health Organization (WHO) predicts that 25% of fa-
talities will be attributable to lung adenocarcinoma.
Computed Tomography, the most popular imaging 
method in healthcare, is frequently used to find lung 
malignancies. High-density precision in CT images 
allows for creating contrast pictures even for parts 
with minute density variations, such as mucous mem-
branes in humans. Yet, the volume of medical imaging 
data is expanding quickly due to the ongoing advance-
ment of imaging technology and the corresponding 
rise in clinical needs, particularly the introduction of 
elevated CT equipment. According to statistics [25], 
92% of the information stored in hospitals is in the 
form of medical images, and as clinical technology 
progresses, this percentage is growing by 32% annu-
ally. At the same time, just 8% more qualified imaging 
specialist clinicians have been hired [13]. 
A whole lung CT scan session typically comprises 
around 125 to 275 pictures. Radiologists’ diagnostic 
work has become progressively more difficult, de-
manding their psychological and physiological stami-
na [27]. It demonstrates how reading time for a sin-
gle scan sequence increases while reading accuracy 
decreases. After looking directly at CT pictures for a 
while, human eyes will likely grow tired, resulting in 
muffed observations and erroneous interpretations. 
The research team at Johns Hopkins University in 
the United States conducted similar research. It con-
cluded that there is a 30-40 percent chance that a 

single imaging specialist will overlook the dark spot 
of clinically relevant lung nodules while diagnosing 
a chest CT [9]. Thus, doctors must use computers to 
aid in reading and diagnosis, enhancing the speed and 
precision of the latter.
Computer-aided diagnostic (CAD) technology has 
made significant strides recently due to the rapid 
growth of computer infrastructure and programming 
technologies. It has also gradually proven its thera-
peutic relevance in prognosis. Professional clinical 
diagnosis specialists use CAD software more fre-
quently to aid in evaluation. The hospital’s workflow 
eventually incorporates CAD software as a “serial de-
vice” [4]. Through the use of radiographic images, im-
agery analysis methods, and computerized analysis 
capabilities, physicians’ assessment of individuals is 
enhanced to be more effective and precise.
Deep learning has tremendous potential for classi-
fying cancerous and non-malignant cancer nodules 
since it may minimize the number of scans necessary 
to determine whether a nodule is benign or malignant 
[12]. Detecting harmless and cancerous modules us-
ing deep learning approaches has shown encouraging 
results. The most advanced CAD system uses deep 
learning models to characterize lung nodules and 
determine whether they are problematic [28]. These 
systems also identify a nodule’s kind, determining 
whether it is harmful or innocuous.
Even though CAD systems show noticeably more ex-
cellent performance in lesion diagnosis, few studies 
take a regular physicians’ workflow into account [23]. 
Clinically, physicians locate the suspicious prospects 
for additional evaluation by evaluating the Maximal 
Prediction Strength (MPS) images [30]. MPS enables 
higher spectral 3-D volumetric translation to the di-
rection of extrapolation, improving tumor identifica-
tion. Deep learning techniques can detect pulmonary 
nodules spontaneously since MPS images retain sen-
sitivity data and are not boundary reliant [16]. Thus, 
this study proposes a deep learning-based approach 
incorporating segmentation and optimization tech-
niques for lung cancer detection.
The main contributions of this work are,
1	 To propose an innovative deep learning model 

such as Deep Convolutional Generative Adversar-
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ial Networks to classify benign and malignant lung 
adenocarcinoma more precisely and reliably.

2	 To efficiently segment the lung CT images using 
the Quick-CapsNet model and extract the most 
optimal features from the segmented images using 
the Red Deer Optimization algorithm. 

3	 To effectively demonstrate the suggested model’s 
performance excellence against existing literature 
on lung cancer identification and categorization.

The remainder of this paper is organized as follows. 
Section 2 elaborates on the recent works in lung can-
cer research using deep learning approaches. Section 
3 describes the proposed methodology to efficiently 
detect lung cancer from CT images using segmenta-
tion, optimization, and classification techniques. Sec-
tion 4 presents the results of applying the proposed 
optimized deep learning model to the LUNA16 data-
set. Section 5 discusses the challenges and research 
directions in this arena exclusively. Section 6 con-
cludes the present research.

2. Related Works
This section discusses the various state-of-the-art 
methods in lung adenocarcinoma detection employ-
ing deep learning techniques. Authors in [5] intro-
duced the three-dimensional convolutional neural 
networks-based unsupervised learning approach for 
lung cancer diagnosis. This statistical classification 
approach enhances pulmonary nodule transparency 
using the steepest descent non-linear activation [7]. 
The proposed detection technique is evaluated and 
contrasted with an existing two-dimensional convolu-
tional neural network learning model using the LUNA 
dataset. As only 10% of the training database was used 
for testing, the suggested model is unsuccessful [31]. 
Researchers in [24] developed a supervised predic-
tion algorithm to identify early adenocarcinoma in 
lung cancer patients. The suggested model was veri-
fied using real-time non-cancerous patient data col-
lected from impacted individuals in the initial phases. 
The database contains 315 data phases that have 
been recorded [19]. The created model, a VGG net-
work-based training classifier, has an unsatisfactory 
prediction rate of 74 percent Area under the curve. 
The VGG CNN model’s flaw is that it needs to be pre-
processed for CT semantic segmentation and image 

filtering, which lowers the prediction rate [32].
The most recent methods for classifying and detect-
ing lung cancer were evaluated in [8]. The most re-
cent tumor segmentation identification, placement, 
and classifications are associated with algorithmic 
approaches to supervised learning like Support Vec-
tor Machine, K-nearest neighbors, and Convolutional 
neural networks and standard datasets like LIDC-ID-
RI, LUNA 16 as well as Super Bowl Dataset 2016 con-
sidered to be the most common and typical baseline 
CT data for illness diagnosis [17]. To identify patients 
with aggressive or innocuous lung cancer, authors in 
[1, 14] presented the DenseNet model, a categorical 
predictor built on a dense CNN model. The research-
ers used a dataset of 204 lung scans [10], with 75% of 
the images used for training and 25% for validation 
and prediction. Test results showed that the suggest-
ed procedure had an accuracy of 91.65% [20].
After examining hyperspectral imagery, five different 
types of pulmonary and colorectal cells were identi-
fied using a grading system created by the scientists 
[2]. According to the results, the suggested model can 
successfully identify diseased tissue up to 93.33 per-
cent of the time. According to [3], computer-assisted 
examinations can be used to collect, evaluate, and in-
tegrate multitype intertwined features to determine 
the status of a Missense mutation. This study uses a 
new hybrid network model based on the CNN model 
combined with Recurrent Neural Networks. Using 
CNN, image statistical features are collected, and 
connections between different feature set types are 
simulated.
Their results demonstrated that multitype reliance 
feature representations outperform single-type im-
age features compared to the traditionally extracted 
characteristics. Researchers in [26] created a method 
using computer-aided diagnosis assistance systems 
for lung nodule diagnosis based on three-dimensional 
deep CNN to assist physicians. In this study, a com-
puter-aided diagnosis (CAD) system was trained and 
validated using the LUNA16 and ANODE09 datasets. 
In [29, 15, 22], authors presented a novel customized 
deep learning technique that utilizes binary genet-
ic algorithms with decision trees and convolutional 
neural networks to classify various types of cancer 
based on malignant RNA sequences of genomic infor-
mation. Table 1 summarizes the existing methods for 
lung cancer diagnosis using deep learning techniques. 
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Table 1 
Comparison of Existing approaches for Melanoma Diagnosis

Reference Deep Learning technique Dataset used Inference Accuracy 
obtained

[24] Three-dimensional Deep 
CNN LIDC-IDRI

The restrictions of the datasets used to train the 
models, such as the absence of significant nodule 
annotations, continue to constrain performance.

83%

[32] Mask R-CNN LUNA-16 There are certainly tiny, low-contrast nodules 
that go undetected. 85.5%

[8] Optimal Deep Neural 
Network LIDC-IDRI Memory, as well as computational constraints, 

are high. 91%

[17] Inception V3 LUNA-16 It can be utilized for early-stage cancer 
prediction 89.85%

[24] DenseBTNet LIDC-IDRI It uses an optimized structure with relatively 
straightforward operations 93%

[11] Deep Residual CNN Cancer Imaging 
Archive (CIA) Training time is low 90.75%

Thus, it is observed from the literature review that 
though deep learning is applied to detect lung can-
cer in various research, there still is a lot of scopes to 
perform the classification with more accuracy and 
resilience. Therefore, the proposed study also applies 
a deep learning model for classifying lung CT images 
using segmentation and optimization techniques. 

3. Proposed Methodology
This section discusses the proposed methodology for 
lung adenocarcinoma detection using Quick-Caps-
Net, Red deer Optimization algorithm, and Deep 
Convolutional GAN model. A detailed description of 
these models concerning the suggested approach is 
presented. The workflow of the proposed system is 
depicted in Figure 1.
Today medical arena depends on artificial intelli-
gence for predicting the highly dangerous diseases in 
the human life. This research use deep learning and 
heuristic method to predict the lung adenocarcinoma 
detection. First, the dataset is collected and segment-
ed using Quick-CapsNet algorithm. Segmented imag-
es are used for extracting the features using red deer 
optimization algorithm. Finally, extracted features 

Figure 1 
Proposed Architecture

are tested with classification called as deep convolu-
tional generative adversial network. Figure 1 shows 
the architecture of proposed research work.  

3.1. Quick-CapsNet (QCN) 
In this work, QCN is employed to perform the seg-
mentation process, an extension of the Capsule Net-
works. The architecture of QCN is elaborated on in 
this section. In conventional Capsule Networks, two 
convolutional layers that extract the input image’s ba-
sic features are the network’s first layers. 8D vectors 
are created by reshaping the second convolutional 
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Figure 2 
QCN Architecture

layer’s output. The term “Principal Capsules” refers 
to these 8D vectors. Once the initial layer of capsules 
is produced, there may be several further layers.
In the convolutional layer of Quick-CapsNet, the ker-
nel size of 9 refers to the size of the filter or window 
that moves over the input image to perform convolu-
tion. Specifically, a 9x9 kernel is used to extract fea-
tures from the input image, which are then used as in-
put to subsequent layers in the network. The choice of 
kernel size can affect the performance of the network, 
as it determines the amount of spatial information 
that is captured from the input image. A larger kernel 
size can capture more global features, while a smaller 
kernel size can capture more local features.
In the QCN architecture shown in Figure 2, a Ful-
ly-Connected (FC) layer replaces the second convolu-
tion layer in the capsule network. This equates roughly 
to incorporating the participation of each neuron in 
the convolutional layer’s output feature map. The FC 
layer describes all the neurons in the preceding lay-
er. An FC layer is supplied with the output of the first 
convolutional layer. The Principal Capsules, which are 
the input for the route optimization algorithm, are con-
structed from the FC layer’s output by reconfiguring it. 
The result of the segmentation is shown in Figure 3.

3.2. Red Deer Optimization Algorithm 
(RDOA)
RDOA is used in the proposed work to select the op-
timized features before implementing the classifica-
tion technique. The RDOA starts with a preliminary 
population of individuals opposite Red deers, just like 
other meta-heuristics. The population is divided into 
hinds and male red deers, with a chosen few of the 
top Red deers. The male red deer needs to roar first. 
They are split into two groups according to the inten-
sity of a screaming phase, namely masters and stags. 
Then, each harem’s masters and stags engage in joint 
combat to claim their respective harems. Moreover, 
masters create harems. The ability of the masters to 
scream and the battle is directly correlated with the 
number of hinds in harems. As a result, in harems, 
masters mate with various hinds. Figure 4 presents 
the steps in the Red deer Optimization Algorithm.
The initial population of individuals in the RDOA al-
gorithm is defined as represented in (1),
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[ ]1, 2, 3, .....popRD RD RD RD RDN= .              (1) 
 
The above equation can be expressed as a value of 
the function as given in (2), 

( ) ( )1, 2, 3, .....G RD G RD RD RD RDNpop = . (2) 

 

1 2 3, ,r r andr  

( )( )1 2maleRD maleRD r U L r Lpos BD BD BD= + × − ∗ +

.                                                                      (3) 
 
The above equation is applicable when the value 
of 3r   𝑟𝑟𝑟𝑟3  is greater than or equal to 0.5. For the 
vice-versa case, the equation is updated as shown 
in (4), 
 

. (1)

The above equation can be expressed as a value of the 
function as given in (2),
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The red deers are categorized into two groups namely 
the masters and the stags. The count of the masters 
among the male red deers is computed based on (5), 
 

{ }.mastersRD maleRDTotal round Totalδ= ,             (5) 
 
where 𝛿𝛿𝛿𝛿 can be considered to be any value between 0 
and 1.  
The count of the stags in the male red deer group is 
determined using (6), 
 

stageRD maleRD masterRDTotal Total Total= − .           (6) 
 
With respect to the quarreling process between the 
masters and stags, it is possible to obtain two different 
solutions as denoted in (7) and (8) among which the 
optimal one is chosen. 
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where 𝑠𝑠𝑠𝑠1  and 𝑠𝑠𝑠𝑠2  are the random values between zero 
and one. 
The harems in the group are generated by splitting the 
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The count of the hinds for the corresponding 
harems is computed as shown in (11), 
 

{ }. inharem round masterRD Totalnormhind h d=

.                                                             (11) 
 
The coupling process between the masters and 
hinds is determined using equation (12), 
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where s1 and s2 are the random values between zero 
and one.

The harems in the group are generated by splitting the 
hinds in the red deers group equally as in (9),
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To calculate the count of the hinds available in the 
harems group which couples with the masters, (13) is 
utilized.
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Algorithm 1  
Red Deer Optimization Algorithm 
 
Input: Initial population of individuals in red deers 
Output: most optimal solution, *RD  
Step 1: Compute maleRD  and hindTotal  

Step 2: Assign *RD optimalsolution=  

Step 3: for each maleRD  
Step 4: Compute location of maleRD  using (3) and (4) 
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Algorithm 1. Red Deer Optimization Algorithm
Input: Initial population of individuals in red deers
Output: most optimal solution, RD*
Step 1: Compute maleRD and Totalhind 
Step 2: Assign RD' = optimalsolution 
Step 3: for each maleRD
Step 4: Compute location of  maleRD  using (3) and (4)
Step 5: Modify location of  maleRD for optimal solu-
tions
Step 6: end for
Step 7: Calculate TotalmasterRD and TotalstageRD using (5) 
and (6)

Step 8: for each masterRD 
Step 9: Create quarrel between masterRD and stag-
eRD using (7) and (8)
Step 10: Modify the location of masterRD and stageRD
Step 11: end for
Step 12: Create  haremhind using (9), (10) and (11)
Step 13: for each masterRD
Step 14: Execute coupling process between masterRD 
and haremhind using (12)
Step 15: Compute  harem couple  

hind  using (13)
Step 16: end for
Step 17: for each stageRD
Step 18: Determine the distance between stagsRD and  
haremhind  using (14)
Step 19: Execute coupling process between stageRD  
and haremhind using (12)
Step 20: end for
Step 21: Repeat the same for another generation of in-
dividuals and find most optimal RD*
Step 22: return RD*

Heuristics are problem-solving strategies that use 
rules of thumb, experience, and intuition to find solu-
tions in complex situations. Heuristics can be applied 
in a variety of fields, from artificial intelligence to 
psychology, to help solve problems that are difficult 
to solve using traditional methods. Neuro-heuristics 
can be used to develop a system for pallet detection 
that uses neural networks to process sensory data and 
heuristic rules to guide the decision-making process.

Figure 4 
DCGAN Architecture
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3.3. Deep Convolutional GAN (DCGAN)
A Differentiator(D) and a Producer(P) are parts of 
GAN’s primary structure. Real samples are generated 
using the producer, and real samples and fraudulent 
samples are distinguished by the differentiator. In or-
der to produce a created false sample, the generator 
translates an additive noise field (Z) to a new multi-
dimensional data structure. To perform classification 
and determine the likelihood that the testing sample 
(S) is a genuine sample, the differentiator is used. 
To create a false sample during training, the produc-
er attempts to learn the data distribution of the real 
sample, while the differentiator aims to separate the 
resulting false sample from the real sample. 
The deconvolution layer creatively replaced the ful-
ly connected layer of the producer in the basic GAN 
network, strengthening the neural network structure 
in the GAN model and attaining good performance in 
image creation tasks. As seen in Figure 4, the DCGAN 
uses CNN’s strong feature extraction capabilities to 
enhance the generative network’s capacity for learn-
ing. The layer’s producer can learn steadily with the 
help of Regularization, allowing the model to under-
stand better the distribution of the data sampled and 
more steadily provide elevated examples.

4. Results 
In this section, the setup employed for conducting the 
experiments is briefly discussed, along with the de-
tails of the dataset used and metrics utilized to evalu-
ate the performance of the proposed models. Further, 
the results obtained by applying the proposed model 
to the dataset are analyzed.

4.1. Experimental Setup
All experimental trials were executed with a singu-
lar Nvidia GeForce GTX 2080 Ti GPU. Deep learning 
models were developed using Keras and TensorFlow 
frameworks. Python was used as the programming 
language for code development purposes. Version 
2.4.3 of Keras and 2.2.2 of TensorFlow were utilized 
in the proposed research. 

4.2. Dataset Description
The divergent scans in the LUNA16 dataset, which is 
a subcategory of the LIDC-IDRI dataset, are screened 

using several parameters. A substantial fraction 
should be used because pulmonary nodules might be 
minuscule. Scan results with a layer depth of more 
than 2.5 mm were thus disregarded. Moreover, im-
ages that had uneven layer separation or incomplete 
layers were dismissed. This resulted in 888 CT scans 
and 36,378 radiologists’ observations. For lung cancer 
screening techniques, only the observations in this 
dataset labeled as nodules under 3 mm are considered 
significant [2]. Nodules discovered by various readers 
that were closer together than the product of their 
radii were combined. In this instance, the integrated 
annotations’ locations and dimensions were normal-
ized. As a result, a collection of 777, 2290, 1186, and 
1602 nodules have, respectively, been evaluated by 
four radiologists. The dataset used in the experimen-
tation can be accessed via the given link.
https://www.kaggle.com/datasets/avc0706/luna16

4.3. Performance Metrics
The various performance metrics such as Accuracy, 
Precision, Recall and F1 Score used to assess the per-
formance of the proposed model are described below. 
Here represent the True positive, False Positive, True 
Negative and False Negative values respectively. 
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4.4 Experimental Results 
1000 initial samples were used in the proposed 
lung adenocarcinoma detection experiment. The 
data set was then extended using data 
augmentation to yield 10,000 samples, split into 
the training (80%) and the test set (20%). Two data 
augmentation techniques were applied to the 
dataset to enlarge it for trial purposes. First, the 
attempt to alter the axis of the images was executed 
by flipping it. Secondly, image rotation was 
incorporated by generating an angle between 0 and 
180 in an arbitrary fashion. The model parameters 
are set as per the details in Table 2. 
 
Table 2  
Model Parameter Settings 
 

Model Parameters Corresponding Values 

Optimizer Stochastic Gradient 
Descent Optimizer 

Learning rate  0.1 

Momentum 0.9 

Weight decay 1e-4 

Batch size 8 

Epochs  100 

Learning rate - Epoch 0 
to 50 

0.01 

(14)
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4.4 Experimental Results 
1000 initial samples were used in the proposed 
lung adenocarcinoma detection experiment. The 
data set was then extended using data 
augmentation to yield 10,000 samples, split into 
the training (80%) and the test set (20%). Two data 
augmentation techniques were applied to the 
dataset to enlarge it for trial purposes. First, the 
attempt to alter the axis of the images was executed 
by flipping it. Secondly, image rotation was 
incorporated by generating an angle between 0 and 
180 in an arbitrary fashion. The model parameters 
are set as per the details in Table 2. 
 
Table 2  
Model Parameter Settings 
 

Model Parameters Corresponding Values 

Optimizer Stochastic Gradient 
Descent Optimizer 

Learning rate  0.1 

Momentum 0.9 

Weight decay 1e-4 

Batch size 8 

Epochs  100 

Learning rate - Epoch 0 
to 50 

0.01 

(17)

4.4. Experimental Results
1000 initial samples were used in the proposed lung 
adenocarcinoma detection experiment. The data set 
was then extended using data augmentation to yield 
10,000 samples, split into the training (80%) and the 
test set (20%). Two data augmentation techniques 
were applied to the dataset to enlarge it for trial pur-
poses. First, the attempt to alter the axis of the images 
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was executed by flipping it. Secondly, image rotation 
was incorporated by generating an angle between 0 
and 180 in an arbitrary fashion. The model parame-
ters are set as per the details in Table 2.

Table 2 
Model Parameter Settings

Model Parameters Corresponding Values

Optimizer Stochastic Gradient 
Descent Optimizer

Learning rate 0.1

Momentum 0.9

Weight decay 1e-4

Batch size 8

Epochs 100

Learning rate - Epoch 0 to 50 0.01

Learning rate - Epoch 51 to 70 0.001

Learning rate - Epoch 71 to 100 0.0001

Frame recognition is trained using the layer learning 
method since direct resizing of the image sequence 
would surely destroy a great deal of specific informa-
tion and the problem of distorted boundaries. Frame 
retraining, the approach used, is comparable to the 
sliding window during feature extraction. The issue 

of surpassing the upper limit of the visual memory in 
the initial step of feature extraction can be avoided 
by partitioning the image information into 32 blocks, 
each of size 128. This increases the training data and 
prevents the input of the whole image.
The execution of the proposed model comprising the 
Deep Convolutional GAN with Red deer Optimization 
on the LUNA-16 dataset has achieved an accuracy of 
98.65%. The precision, recall, and F1 score values are 
97.56%, 96.85% and 98.25%. The obtained results are 
presented in graphical form in Figure 5. Further, the 
performance of the proposed model is compared with 
the conventional deep learning models and few of the 
existing works in the literature to prove the perfor-
mance superiority of the suggested model for the di-
agnosis of lung adenocarcinoma
Deep learning models such as Deep Neural Networks 
(DNN), Convolutional Neural Networks (CNN), Re-
current Neural Networks (RNN), and Generative 
Adversarial Networks (GAN) are considered for the 
performance comparison with the proposed model 
initially. It is observed that DNN produced an accu-
racy of 83.56% for the lung cancer detection problem 
when applied to the LUNA-16 dataset. Precision, Re-
call, and F1 score values produced by this model are 
82.45%, 81.75%, and 83.26%, respectively. The next 
model, CNN, made a better accuracy of 87.48% than 
DNN. The other performance metric values were also 
improved for the CNN model compared to the DNN 

Figure 5 
Performance of Proposed Model
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Table 3 
Conventional Deep learning models Vs Proposed model

model. Further, RNN produced an accuracy of 90.65%, 
a precision of 89.56%, a recall of 88.75%, and F1 score 
of 90.15%, correspondingly. The performance of the 
traditional GAN model for lung cancer classification 
is also analyzed to compare its performance against 

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

DNN 83.56 82.45 81.75 83.26

CNN 87.48 86.89 85.78 87.15

RNN 90.65 89.56 88.75 90.15

GAN 92.5 91.6 90.75 92.25

DCGAN 98.65 97.56 96.85 98.25

Table 4 
Existing models Vs Proposed model

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

R-CNN + PSO 89.25 88.45 87.98 88.95

LSTM + ACO 91.56 90.45 89.75 91.16

GAN + GWO 93.45 92.85 91.89 92.95

RNN + SLO 95.24 94.56 93.78 94.89

DCGAN+RDO 98.65 97.56 96.85 98.25

Figure 6 
Performance Comparison Existing Vs Proposed

the proposed model. GAN produced an accuracy level 
of 92.5% higher than the other Deep learning models 
applied to the lung cancer dataset. However, it is low-
er than the accuracy of cancer detection exhibited by 
the proposed DCGAN model, which is 98.65%.
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5. Discussion
Deep learning approaches such as Quick-CapsNet 
and DCGAN have shown successful segmentation as 
well as classification results respectively. Unfortu-
nately, there are still a lot of issues with lung cancer 
detection using deep learning algorithms. Secondly, 
because there are not any established processes for 
acquiring medical images, clinicians have not com-
pletely embraced deep learning techniques for rou-
tine clinical practice. It might be reduced by combin-
ing the procurement processes. Second, deep learning 
approaches often need many well-labeled medical 
images to finish training objectives. Even when done 
by professional physicians, collecting a sizable la-
beled image dataset is expensive and time-consum-
ing. The lack of labeled data can be overcome using a 
variety of techniques. For instance, transfer learning 
may address the training issue with limited samples. 
Computerized imagery fabrication, such as creating 
interaction networks, is another viable approach. In-
sufficient data will inevitably impact prediction accu-
racy and consistency. Consequently, one of the direc-
tions for future study is to increase the accuracy rate 
utilizing minimal supervision, transfer learning, and 
inter-learning with minimal labeled data.

6. Conclusion
In this research, a novel deep-learning model for 
lung adenocarcinoma detection and categorization 

has been proposed. The proposed methodology pri-
marily involved image segmentation, feature selec-
tion, and classification. The Quick-CapsNet model is 
incorporated to segment the images and feed them 
further for the feature selection process. Its ability to 
segment images quickly and accurately compared to 
other segmentation techniques. This is achieved by 
reducing the number of computations required for 
the segmentation process, making it computation-
ally efficient. The red deer Optimization algorithm 
extracts optimized features from the segmented 
images before forwarding them to the classification 
phase. The segmented image can be represented as a 
matrix of pixels, where each pixel has a certain value 
that corresponds to its intensity or color. RDO can 
then be used to select the most relevant features 
from this matrix by optimizing an objective func-
tion. The third stage of lung cancer categorization 
is performed using the Deep Convolutional GAN 
model, which successfully classifies benign and 
malignant lesions with an accuracy of 98.65%. The 
proposed model performance is contrasted against 
several traditional deep learning models and exist-
ing optimization-classification model combinations 
in the literature to prove the performance prece-
dence of the suggested work. One of the downsides 
of the present research is that it has been applied to 
a smaller dataset. In future research, artificial intel-
ligence solutions can be leveraged for lung cancer 
prognosis to relatively larger datasets comprising 
CT images.
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