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In this paper, an autonomous navigation strategy is proposed for unmanned aerial vehicles (UAVs) based on 
consideration of dynamic sampling and field of view (FOV). Compare to search-based motion planning, sam-
pling-based kinodynamic planning schemes can often find feasible trajectories in complex environments. 
Specifically, a global trajectory is first generated with physical information, and an expansion algorithm is 
constructed regarding to kinodynamic rapidly-exploring random tree* (KRRT*). Then, a KRRT* expansion 
strategy is designed to find local collision-free trajectories. In trajectory optimization, bending radius, collision 
risk function, and yaw angle penalty term are defined by taking into account onboard sensor FOV and poten-
tial risk. Then, smooth and dynamic feasible terms are penalized based on initial trajectory generation. Trajec-
tories are refined by time reallocation, and weights are solved by optimization. Effectiveness of the proposed 
strategy is demonstrated by both simulation and experiment.
KEYWORDS: UAVs, motion planning, collision risk function, bending radius, yaw angle penalty.

1. Introduction
With development of onboard sensor and onboard 
computer, UAVs gain capability for complex tasks and 
have been used broadly in various fields. For motion 
planning of UAVs, movement constraints such as kine-
matics and dynamics are taken into account to obtain 

optimal trajectories, which bene-fit for efficient and 
safe flight [9, 27]. RGB-D cameras are widely utilized as 
onboard sensors due to traits of informative, high pre-
cision, and low cost, but their confined sensing range 
brings constraints for UAV motion planning [23]. 
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When flight in unknown environments, local maps are 
established due to perception-limited onboard sen-
sors and real-time processing requirement [31]. Local 
maps are continuously updated during navigation to 
accomplish autonomous flight [21], and the pattern is 
usually adopted in UAV motion planning. Some meth-
ods based on greedy search are designed for UAV mo-
tion planning, where a trajectory is searched with sat-
isfying constraints and then optimized. For example, 
a classic robust framework is proposed in [37], whose 
front-end focuses on applying search-based kinody-
namic A* to obtain a feasible trajectory, and then an 
optimization problem is constructed by considering 
constraints to calculate a resultant trajectory.
As an alternative to search-based motion planning, 
sampling-based approaches can obtain initial trajecto-
ries faster and with a higher success rate for complex 
environments. On this basis, the proposed method is 
developed containing two aspects of fast collision-free 
trajectory generation and trajectory optimization in 
unknown environments. In this paper, a KRRT* expan-
sion strategy is first designed to generate a robust ini-
tial trajectory for UAVs by taking into account dynamic 
feasibility and collision. By combining polynomial mo-
tion planning, a collision-free trajectory is generated 
for complex environments, where perception range of 
depth cameras is taken into account.
For optimization, variation of the UAV yaw angle is 
confined by limited sensor perception range and ef-
fectiveness of planned trajectories is weakened [22]. 
To deal with the problem, new penalty functions are 
constructed for different cases in the paper, where the 
local A* algorithm is improved. Bending radius and 
collision risk function are introduced for consider-
ing obstacle influence, and a collision penalty func-
tion is defined. Trajectory velocities are optimized 
into a trapezoid-like variation to avoid large fluctu-
ation. The UAV yaw angle is penalized for collision 
avoidance, and a fitting penalty function is defined by 
hyperbolas in the trajectory replanning stage. In ad-
dition, cost weights are tuned by quadratic program-
ming (QP) to enhance planning efficiency. The main 
contribution of the paper is that KRRT* expansion 
strategy is proposed to guide local trajectory genera-
tion with satisfying motion constraints, and collision 
and yaw replanning penalty functions are designed 
for trajectory optimization by considering potential 
risk during UAV flight.

2. Related Work
Path planning results are utilized as initial solutions 
for motion planning, and trajectory optimization 
and replanning can be conducted to make resultant 
trajectories satisfy constraints of energy optimal, 
time optimal, and so on [20]. The efficient local tra-
jectory planner in [37] divides trajectory generation 
into two processes: combination of front-end kine-
matic and dynamical search, and back-end B-spline 
op-timization. Gao et al. propose a local sensing and 
replanning approach, which utilizes spatio-tempo-
ral optimization to obtain energy-efficient repetitive 
trajectories, and combines online sensing and replan-
ning to ensure safety against environment variation 
[10]. Tordesillas et al. plan two paths with jump point 
search and employ Gurobi to solve the mixed integer 
QP problem so that robot trajectories are within poly-
hedrons [30].
Regarding to sampling-based trajectory planning, 
Karaman et al. demonstrate that online planning 
convergence during execution can be improved with 
RRT* [15]. In [18], Lai et al. propose the fast explor-
atory random discrete tree (RRdT*) method, which 
inherits probabilistic completeness and as-ymptotic 
optimality of RRT*. Gammell et al. propose the batch 
processing information tree (BIT*) method, which 
searches for minimum costs on the basis of heuristic 
schemes, and converges asymptotically to global op-
timum by processing multiple batches of samples [7]. 
Jaillet et al. combine elements of RG-RRT and RC-
RRT into the new environment guided RRT frame-
work to improve sampling efficiency [14]. Seventh-or-
der Bezier is utilized by Neto et al. to connect vertices 
of generating trees on the basis of the RRT* algorithm 
[25]. To process high-dimensional problems with dis-
crepancy constraints, the hierarchical rejection sam-
pling method is proposed in [17] to improve efficiency 
of sampling-based planners. Sampling efficiency is 
guaranteed by above works when reducing sampling 
frequency.
Moreover, sampling time can also be shortened to im-
prove sampling efficiency, with utilizing lazy check 
and greedy exploration. Salzman et al. propose the effi-
cient lower bound tree RRT method, which combines 
solutions from fast but sub-optimal RRT algorithm 
and asymptotically optimal RRG algorithm [29]. Ko 
et al. propose the vector field RRT method by using 
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upstream standard integers to construct RRT in state 
space, and generated random nodes have a prespeci-
fied bias to the direction indicated by the vector field 
[16]. Jaillet et al. design the continuous transition 
RRT method, which combines RRT exploratory traits 
with stochastic optimization [13]. Informed RRT* is 
constructed in [8] by utilizing directly informed sam-
pling techniques to obtain linear convergent perfor-
mance. Hauser et al. propose sampling-based motion 
planners of Lazy-PRM* and Lazy-RRG*, which use a 
lazy strategy to eliminate most collision checks [16]. 
However, above methods do not take into account 
UAV kinematic and dynamical models, and are not 
applicable for high speed flight. To solve the problem, 
Ye et al. propose an efficient KRRT* framework on the 
basis of topological sampling [36].
In terms of trajectory optimization, the process is cou-
pled with UAV internal and workspace constraints. 
Leobardo et al. fuse sampling-based methods and QP-
based optimization, so that dynamic constraints of a 
robot are fully considered for generating time varying 
trajectories [2]. A practical path planning method is 
designed in [3] on the basis of Bezier curves, so as to 
operate autonomous vehicles under waypoint and 
corridor constraints. UAV surrounding environments 
are decomposed into convex regions by Watterson et 
al. to form motion constrains, and a feasible trajectory 
is then generated in these regions with avoiding ob-
stacles [33].
To improve safety of trajectory optimization, re-
searchers propose flight corridor based methods. 
Preiss et al. find dynamically feasible trajectories in 
a series of connected convex polyhedra that repre-
sent free spaces of environments, showing optimized 
trajectories have more accurate naviga-tion perfor-
mance [28]. Dhullipalla et al. select trajectories to 
satisfy given initial and final states, and then treat 
trajectory generation as an optimal control problem 
[5]. A streaming safe corridor approach is proposed 
in [32] to compute optimize trajectories, which is 
through a constrained optimization problem. Based 
on constraints of flight corridors, adequate safety of 
trajectories can be guaranteed in conventional envi-
ronments.
Speed and time constraints also should be considered 
in trajectory optimization. Escamilla et al. generate a 
temporally parameterized smooth trajectory by splic-
ing multiple Bezier curves to form an optimal 4D tra-

jectory [6]. A sixth-order Bezier curve is introduced 
in [35] to reduce curvature, where output of the path 
planner is smoothed by adjusting rotation. Special 
spline planning can also be designed for generating 
smooth paths, as shown in [11]. Beul et al. design a 
specific control input pattern in optimal control, so as 
to determine a minimum time trajectory of two state 
transition [1]. Nieuwenhuisen et al. design a local 
optimization method for mesh-based path planning, 
making a collision-free path and ensuring smooth-
ness of continuous curvature transition [26]. Delin-
gette et al. design a continuous curvature trajectory 
generation strategy, which is based on trajectory de-
formation by energy minimization and solves general 
geometric constraints [4]. As a consequence, efficient 
optimization guarantees quality of trajectories by 
considering various constraints.

3. Sampling-based Kinodynamic 
Trajectory Generation
According to property of differential flatness, the UAV 
state space model is shown as follows [24]:
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where ( )tp  represents the 3D position of the 
UAV, ( )tX  denote the UAV state vector that 
contains 3D position and velocity:  
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The linear system model (1) brings much 
convenience for considering constraints of 
nonlinear terms and subsequent optimization 
calculation. 

 
3.1 KRRT* Trajectories 

For UAVs flying in complex environments, 
kinodynamic motion planning is introduced 
to obtain initial trajectories with collision-free 
and smoothness. Kinodynamic motion 
planning is mainly divided into two patterns 
of search-based and sampling-based, and the 
sampling-based pattern is adopted by 
considering distribution of obstacles in dense 
environ-ments. 

As shown in [36], calculating an optimal 
trajectory between two nodes is equivalent to 
solving the two point boundary value 
problem (TPBVP) in optimal control by 

(1)

where 

 
 

 

optimization [13]. Informed RRT* is constructed in 
[8] by utilizing directly informed sampling 
techniques to obtain linear convergent 
performance. Hauser et al. propose sampling-
based motion planners of Lazy-PRM* and Lazy-
RRG*, which use a lazy strategy to eliminate most 
collision checks [16]. However, above methods do 
not take into account UAV kinematic and 
dynamical models, and are not applicable for high 
speed flight. To solve the problem, Ye et al. 
propose an efficient KRRT* framework on the 
basis of topological sampling [36]. 

In terms of trajectory optimization, the process is 
coupled with UAV internal and workspace 
constraints. Leobardo et al. fuse sampling-based 
methods and QP-based optimization, so that 
dynamic constraints of a robot are fully considered 
for generating time varying trajectories [2]. A 
practical path planning method is designed in [3] 
on the basis of Bezier curves, so as to operate 
autonomous vehicles under waypoint and 
corridor constraints. UAV surrounding 
environments are decomposed into convex 
regions by Watterson et al. to form motion 
constrains, and a feasible trajectory is then 
generated in these regions with avoiding obstacles 
[33]. 

To improve safety of trajectory optimization, 
researchers propose flight corridor based methods. 
Preiss et al. find dynamically feasible trajectories 
in a series of connected convex polyhedra that 
represent free spaces of environments, showing 
optimized trajectories have more accurate naviga-
tion performance [28]. Dhullipalla et al. select 
trajectories to satisfy given initial and final states, 
and then treat trajectory generation as an optimal 
control problem [5]. A streaming safe corridor 
approach is proposed in [32] to compute optimize 
trajectories, which is through a constrained 
optimization problem. Based on constraints of 
flight corridors, adequate safety of trajectories can 
be guaranteed in conventional environments. 

Speed and time constraints also should be 
considered in trajectory optimization. Escamilla et 
al. generate a temporally parameterized smooth 
trajectory by splicing multiple Bezier curves to 
form an optimal 4D trajectory [6]. A sixth-order 
Bezier curve is introduced in [35] to reduce 
curvature, where output of the path planner is 
smoothed by adjusting rotation. Special spline 
planning can also be designed for generating 
smooth paths, as shown in [11]. Beul et al. design a 
specific control input pattern in optimal control, so 
as to determine a minimum time trajectory of two 
state transition [1]. Nieuwenhuisen et al. design a 

local optimization method for mesh-based 
path planning, making a collision-free path 
and ensuring smoothness of continuous 
curvature transition [26]. Delingette et al. 
design a continuous curvature trajectory 
generation strategy, which is based on 
trajectory deformation by energy 
minimization and solves general geometric 
constraints [4]. As a consequence, efficient 
optimization guarantees quality of 
trajectories by considering various 
constraints. 

3. Sampling-based 
Kinodynamic Trajectory 
Generation 

According to property of differential flatness, 
the UAV state space model is shown as 
follows [24]: 

 ( ) ( ) ( ),t t t X AX BU  (1) 

3 3 3 3 3

3 3 3 3 3

( ) ( )t p t 

 

   
        
      

， ，
0 I 0

U
0 0 I

A B , 

where ( )tp  represents the 3D position of the 
UAV, ( )tX  denote the UAV state vector that 
contains 3D position and velocity:  

( ) [ ( ), ( )]Tt t t X p p                     (2) 

and ( )tU  denotes the control input vector 
relates to translational accelerations: 

 ( ) [ ( ), ( ), ( )] .T
x y z

t u t u t u tU  (3) 

The linear system model (1) brings much 
convenience for considering constraints of 
nonlinear terms and subsequent optimization 
calculation. 

 
3.1 KRRT* Trajectories 

For UAVs flying in complex environments, 
kinodynamic motion planning is introduced 
to obtain initial trajectories with collision-free 
and smoothness. Kinodynamic motion 
planning is mainly divided into two patterns 
of search-based and sampling-based, and the 
sampling-based pattern is adopted by 
considering distribution of obstacles in dense 
environ-ments. 

As shown in [36], calculating an optimal 
trajectory between two nodes is equivalent to 
solving the two point boundary value 
problem (TPBVP) in optimal control by 

 represents the 3D position of the UAV, 

 
 

 

optimization [13]. Informed RRT* is constructed in 
[8] by utilizing directly informed sampling 
techniques to obtain linear convergent 
performance. Hauser et al. propose sampling-
based motion planners of Lazy-PRM* and Lazy-
RRG*, which use a lazy strategy to eliminate most 
collision checks [16]. However, above methods do 
not take into account UAV kinematic and 
dynamical models, and are not applicable for high 
speed flight. To solve the problem, Ye et al. 
propose an efficient KRRT* framework on the 
basis of topological sampling [36]. 

In terms of trajectory optimization, the process is 
coupled with UAV internal and workspace 
constraints. Leobardo et al. fuse sampling-based 
methods and QP-based optimization, so that 
dynamic constraints of a robot are fully considered 
for generating time varying trajectories [2]. A 
practical path planning method is designed in [3] 
on the basis of Bezier curves, so as to operate 
autonomous vehicles under waypoint and 
corridor constraints. UAV surrounding 
environments are decomposed into convex 
regions by Watterson et al. to form motion 
constrains, and a feasible trajectory is then 
generated in these regions with avoiding obstacles 
[33]. 

To improve safety of trajectory optimization, 
researchers propose flight corridor based methods. 
Preiss et al. find dynamically feasible trajectories 
in a series of connected convex polyhedra that 
represent free spaces of environments, showing 
optimized trajectories have more accurate naviga-
tion performance [28]. Dhullipalla et al. select 
trajectories to satisfy given initial and final states, 
and then treat trajectory generation as an optimal 
control problem [5]. A streaming safe corridor 
approach is proposed in [32] to compute optimize 
trajectories, which is through a constrained 
optimization problem. Based on constraints of 
flight corridors, adequate safety of trajectories can 
be guaranteed in conventional environments. 

Speed and time constraints also should be 
considered in trajectory optimization. Escamilla et 
al. generate a temporally parameterized smooth 
trajectory by splicing multiple Bezier curves to 
form an optimal 4D trajectory [6]. A sixth-order 
Bezier curve is introduced in [35] to reduce 
curvature, where output of the path planner is 
smoothed by adjusting rotation. Special spline 
planning can also be designed for generating 
smooth paths, as shown in [11]. Beul et al. design a 
specific control input pattern in optimal control, so 
as to determine a minimum time trajectory of two 
state transition [1]. Nieuwenhuisen et al. design a 

local optimization method for mesh-based 
path planning, making a collision-free path 
and ensuring smoothness of continuous 
curvature transition [26]. Delingette et al. 
design a continuous curvature trajectory 
generation strategy, which is based on 
trajectory deformation by energy 
minimization and solves general geometric 
constraints [4]. As a consequence, efficient 
optimization guarantees quality of 
trajectories by considering various 
constraints. 

3. Sampling-based 
Kinodynamic Trajectory 
Generation 

According to property of differential flatness, 
the UAV state space model is shown as 
follows [24]: 

 ( ) ( ) ( ),t t t X AX BU  (1) 

3 3 3 3 3

3 3 3 3 3

( ) ( )t p t 

 

   
        
      

， ，
0 I 0

U
0 0 I

A B , 

where ( )tp  represents the 3D position of the 
UAV, ( )tX  denote the UAV state vector that 
contains 3D position and velocity:  

( ) [ ( ), ( )]Tt t t X p p                     (2) 

and ( )tU  denotes the control input vector 
relates to translational accelerations: 

 ( ) [ ( ), ( ), ( )] .T
x y z

t u t u t u tU  (3) 

The linear system model (1) brings much 
convenience for considering constraints of 
nonlinear terms and subsequent optimization 
calculation. 

 
3.1 KRRT* Trajectories 

For UAVs flying in complex environments, 
kinodynamic motion planning is introduced 
to obtain initial trajectories with collision-free 
and smoothness. Kinodynamic motion 
planning is mainly divided into two patterns 
of search-based and sampling-based, and the 
sampling-based pattern is adopted by 
considering distribution of obstacles in dense 
environ-ments. 

As shown in [36], calculating an optimal 
trajectory between two nodes is equivalent to 
solving the two point boundary value 
problem (TPBVP) in optimal control by 

 denote the UAV state vector that contains 3D 
position and velocity: 

 
 

 

optimization [13]. Informed RRT* is constructed in 
[8] by utilizing directly informed sampling 
techniques to obtain linear convergent 
performance. Hauser et al. propose sampling-
based motion planners of Lazy-PRM* and Lazy-
RRG*, which use a lazy strategy to eliminate most 
collision checks [16]. However, above methods do 
not take into account UAV kinematic and 
dynamical models, and are not applicable for high 
speed flight. To solve the problem, Ye et al. 
propose an efficient KRRT* framework on the 
basis of topological sampling [36]. 

In terms of trajectory optimization, the process is 
coupled with UAV internal and workspace 
constraints. Leobardo et al. fuse sampling-based 
methods and QP-based optimization, so that 
dynamic constraints of a robot are fully considered 
for generating time varying trajectories [2]. A 
practical path planning method is designed in [3] 
on the basis of Bezier curves, so as to operate 
autonomous vehicles under waypoint and 
corridor constraints. UAV surrounding 
environments are decomposed into convex 
regions by Watterson et al. to form motion 
constrains, and a feasible trajectory is then 
generated in these regions with avoiding obstacles 
[33]. 

To improve safety of trajectory optimization, 
researchers propose flight corridor based methods. 
Preiss et al. find dynamically feasible trajectories 
in a series of connected convex polyhedra that 
represent free spaces of environments, showing 
optimized trajectories have more accurate naviga-
tion performance [28]. Dhullipalla et al. select 
trajectories to satisfy given initial and final states, 
and then treat trajectory generation as an optimal 
control problem [5]. A streaming safe corridor 
approach is proposed in [32] to compute optimize 
trajectories, which is through a constrained 
optimization problem. Based on constraints of 
flight corridors, adequate safety of trajectories can 
be guaranteed in conventional environments. 

Speed and time constraints also should be 
considered in trajectory optimization. Escamilla et 
al. generate a temporally parameterized smooth 
trajectory by splicing multiple Bezier curves to 
form an optimal 4D trajectory [6]. A sixth-order 
Bezier curve is introduced in [35] to reduce 
curvature, where output of the path planner is 
smoothed by adjusting rotation. Special spline 
planning can also be designed for generating 
smooth paths, as shown in [11]. Beul et al. design a 
specific control input pattern in optimal control, so 
as to determine a minimum time trajectory of two 
state transition [1]. Nieuwenhuisen et al. design a 

local optimization method for mesh-based 
path planning, making a collision-free path 
and ensuring smoothness of continuous 
curvature transition [26]. Delingette et al. 
design a continuous curvature trajectory 
generation strategy, which is based on 
trajectory deformation by energy 
minimization and solves general geometric 
constraints [4]. As a consequence, efficient 
optimization guarantees quality of 
trajectories by considering various 
constraints. 

3. Sampling-based 
Kinodynamic Trajectory 
Generation 

According to property of differential flatness, 
the UAV state space model is shown as 
follows [24]: 

 ( ) ( ) ( ),t t t X AX BU  (1) 

3 3 3 3 3

3 3 3 3 3

( ) ( )t p t 

 

   
        
      

， ，
0 I 0

U
0 0 I

A B , 

where ( )tp  represents the 3D position of the 
UAV, ( )tX  denote the UAV state vector that 
contains 3D position and velocity:  

( ) [ ( ), ( )]Tt t t X p p                     (2) 

and ( )tU  denotes the control input vector 
relates to translational accelerations: 

 ( ) [ ( ), ( ), ( )] .T
x y z

t u t u t u tU  (3) 

The linear system model (1) brings much 
convenience for considering constraints of 
nonlinear terms and subsequent optimization 
calculation. 

 
3.1 KRRT* Trajectories 

For UAVs flying in complex environments, 
kinodynamic motion planning is introduced 
to obtain initial trajectories with collision-free 
and smoothness. Kinodynamic motion 
planning is mainly divided into two patterns 
of search-based and sampling-based, and the 
sampling-based pattern is adopted by 
considering distribution of obstacles in dense 
environ-ments. 

As shown in [36], calculating an optimal 
trajectory between two nodes is equivalent to 
solving the two point boundary value 
problem (TPBVP) in optimal control by 

(2)

and 

 
 

 

optimization [13]. Informed RRT* is constructed in 
[8] by utilizing directly informed sampling 
techniques to obtain linear convergent 
performance. Hauser et al. propose sampling-
based motion planners of Lazy-PRM* and Lazy-
RRG*, which use a lazy strategy to eliminate most 
collision checks [16]. However, above methods do 
not take into account UAV kinematic and 
dynamical models, and are not applicable for high 
speed flight. To solve the problem, Ye et al. 
propose an efficient KRRT* framework on the 
basis of topological sampling [36]. 

In terms of trajectory optimization, the process is 
coupled with UAV internal and workspace 
constraints. Leobardo et al. fuse sampling-based 
methods and QP-based optimization, so that 
dynamic constraints of a robot are fully considered 
for generating time varying trajectories [2]. A 
practical path planning method is designed in [3] 
on the basis of Bezier curves, so as to operate 
autonomous vehicles under waypoint and 
corridor constraints. UAV surrounding 
environments are decomposed into convex 
regions by Watterson et al. to form motion 
constrains, and a feasible trajectory is then 
generated in these regions with avoiding obstacles 
[33]. 

To improve safety of trajectory optimization, 
researchers propose flight corridor based methods. 
Preiss et al. find dynamically feasible trajectories 
in a series of connected convex polyhedra that 
represent free spaces of environments, showing 
optimized trajectories have more accurate naviga-
tion performance [28]. Dhullipalla et al. select 
trajectories to satisfy given initial and final states, 
and then treat trajectory generation as an optimal 
control problem [5]. A streaming safe corridor 
approach is proposed in [32] to compute optimize 
trajectories, which is through a constrained 
optimization problem. Based on constraints of 
flight corridors, adequate safety of trajectories can 
be guaranteed in conventional environments. 

Speed and time constraints also should be 
considered in trajectory optimization. Escamilla et 
al. generate a temporally parameterized smooth 
trajectory by splicing multiple Bezier curves to 
form an optimal 4D trajectory [6]. A sixth-order 
Bezier curve is introduced in [35] to reduce 
curvature, where output of the path planner is 
smoothed by adjusting rotation. Special spline 
planning can also be designed for generating 
smooth paths, as shown in [11]. Beul et al. design a 
specific control input pattern in optimal control, so 
as to determine a minimum time trajectory of two 
state transition [1]. Nieuwenhuisen et al. design a 

local optimization method for mesh-based 
path planning, making a collision-free path 
and ensuring smoothness of continuous 
curvature transition [26]. Delingette et al. 
design a continuous curvature trajectory 
generation strategy, which is based on 
trajectory deformation by energy 
minimization and solves general geometric 
constraints [4]. As a consequence, efficient 
optimization guarantees quality of 
trajectories by considering various 
constraints. 

3. Sampling-based 
Kinodynamic Trajectory 
Generation 

According to property of differential flatness, 
the UAV state space model is shown as 
follows [24]: 
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tial trajectories with collision-free and smoothness. 
Kinodynamic motion planning is mainly divided into 
two patterns of search-based and sampling-based, and 
the sampling-based pattern is adopted by considering 
distribution of obstacles in dense environ-ments.

Algorithm 1.  KRRT* Expansion

1: Notation: Environment E, State X, Tree 

  

minimizing the objective function: 

 
0

( ( )) ( , ( ), ( ), ( )) ( )C t M t t t t d t  X X U


X , (4) 

where ()M   represents the process cost function, 
( ( ))C X t denotes the total process cost.  

Constraints for (4) are  

 
0 1

( , , ) ( ) 0,

(0) , ( ) ,

( ) , ( )
free free

f t t

t t

       

X U X
X X X X
X U

  (5) 

where ( , , )f t X U  is the differential constraint, and 
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Let the Hamiltonian function be 
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p t  is the position obtained by 
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resultant inputs, and 
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c   represents 
coefficients. 

 
3.2 Polynomial Trajectories 

For polynomial trajectories, low-order ones 
are with smoothness but may lead to 
discontinuous acceleration. To obtain a 
continuous acceleration trajectory while 
considering initial and terminal conditions, 
quintic polynomial trajectories are combined 
for UAV motion planning, as used for the 
pre-optimized trajectories in [37]. The 
trajectory in the x  direction can be expressed 
as 
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and trajectories in y  and z  directions are 
represented similarly to (9). 

With (4)-(8), initial-final state and dynamics 
constraints are considered, and topological 
sampling is utilized to guide generation of 
the trajectory tree for reasonable path 
topology. 

 
3.3 KRRT* Expansion 

Based on [36], a KRRT* trajectory expansion 
algorithm is designed to find local trajectory. 
For complex environments, KRRT* is utilized 
to provide high quality trajectories with 
satisfying UAV kinematic and dynamical 
constraints, and KRRT* is also chosen for 
global guidance. On the other hand, quintic 
polynomial planning is used to complete 
collision-free trajectories, and it is also used 
for sparse environments. A trajectory tree can 
grow by a topology-guided sampling 
strategy, as described in [36]. 

Figure 1 shows UAV flight processes by the 
designed KRRT* expansion algorithm, which 
is described in Algorithm 1. Running time t


s

X are initialized, and terminal 
condition is set as t

max
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E  that starts at
s

X and ends at the goal 
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g
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X is sampled according to structure 

of the topology guided graph. Moreover, a 
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1: Notation: Environment  , State X , Tree 
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p
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10:                  ReachGoal () 
11:              end if 
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14:     end while 
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17:     Repeat (N ) 
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Let the Hamiltonian function be 

 ( , , , ) ()TH t M  X f U  (6) 

and it can be obtained from (6) that [36] 
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For polynomial trajectories, low-order ones 
are with smoothness but may lead to 
discontinuous acceleration. To obtain a 
continuous acceleration trajectory while 
considering initial and terminal conditions, 
quintic polynomial trajectories are combined 
for UAV motion planning, as used for the 
pre-optimized trajectories in [37]. The 
trajectory in the x  direction can be expressed 
as 
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and trajectories in y  and z  directions are 
represented similarly to (9). 

With (4)-(8), initial-final state and dynamics 
constraints are considered, and topological 
sampling is utilized to guide generation of 
the trajectory tree for reasonable path 
topology. 

 
3.3 KRRT* Expansion 

Based on [36], a KRRT* trajectory expansion 
algorithm is designed to find local trajectory. 
For complex environments, KRRT* is utilized 
to provide high quality trajectories with 
satisfying UAV kinematic and dynamical 
constraints, and KRRT* is also chosen for 
global guidance. On the other hand, quintic 
polynomial planning is used to complete 
collision-free trajectories, and it is also used 
for sparse environments. A trajectory tree can 
grow by a topology-guided sampling 
strategy, as described in [36]. 

Figure 1 shows UAV flight processes by the 
designed KRRT* expansion algorithm, which 
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Let the Hamiltonian function be 
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and it can be obtained from (6) that [36] 
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coefficients. 

 
3.2 Polynomial Trajectories 

For polynomial trajectories, low-order ones 
are with smoothness but may lead to 
discontinuous acceleration. To obtain a 
continuous acceleration trajectory while 
considering initial and terminal conditions, 
quintic polynomial trajectories are combined 
for UAV motion planning, as used for the 
pre-optimized trajectories in [37]. The 
trajectory in the x  direction can be expressed 
as 
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and trajectories in y  and z  directions are 
represented similarly to (9). 

With (4)-(8), initial-final state and dynamics 
constraints are considered, and topological 
sampling is utilized to guide generation of 
the trajectory tree for reasonable path 
topology. 

 
3.3 KRRT* Expansion 

Based on [36], a KRRT* trajectory expansion 
algorithm is designed to find local trajectory. 
For complex environments, KRRT* is utilized 
to provide high quality trajectories with 
satisfying UAV kinematic and dynamical 
constraints, and KRRT* is also chosen for 
global guidance. On the other hand, quintic 
polynomial planning is used to complete 
collision-free trajectories, and it is also used 
for sparse environments. A trajectory tree can 
grow by a topology-guided sampling 
strategy, as described in [36]. 

Figure 1 shows UAV flight processes by the 
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where ( , , )f t X U  is the differential constraint, and 
free

  and 
free
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Let the Hamiltonian function be 
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and it can be obtained from (6) that [36] 
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For polynomial trajectories, low-order ones 
are with smoothness but may lead to 
discontinuous acceleration. To obtain a 
continuous acceleration trajectory while 
considering initial and terminal conditions, 
quintic polynomial trajectories are combined 
for UAV motion planning, as used for the 
pre-optimized trajectories in [37]. The 
trajectory in the x  direction can be expressed 
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and trajectories in y  and z  directions are 
represented similarly to (9). 

With (4)-(8), initial-final state and dynamics 
constraints are considered, and topological 
sampling is utilized to guide generation of 
the trajectory tree for reasonable path 
topology. 

 
3.3 KRRT* Expansion 

Based on [36], a KRRT* trajectory expansion 
algorithm is designed to find local trajectory. 
For complex environments, KRRT* is utilized 
to provide high quality trajectories with 
satisfying UAV kinematic and dynamical 
constraints, and KRRT* is also chosen for 
global guidance. On the other hand, quintic 
polynomial planning is used to complete 
collision-free trajectories, and it is also used 
for sparse environments. A trajectory tree can 
grow by a topology-guided sampling 
strategy, as described in [36]. 

Figure 1 shows UAV flight processes by the 
designed KRRT* expansion algorithm, which 
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Let the Hamiltonian function be 
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For polynomial trajectories, low-order ones 
are with smoothness but may lead to 
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continuous acceleration trajectory while 
considering initial and terminal conditions, 
quintic polynomial trajectories are combined 
for UAV motion planning, as used for the 
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and trajectories in y  and z  directions are 
represented similarly to (9). 

With (4)-(8), initial-final state and dynamics 
constraints are considered, and topological 
sampling is utilized to guide generation of 
the trajectory tree for reasonable path 
topology. 

 
3.3 KRRT* Expansion 

Based on [36], a KRRT* trajectory expansion 
algorithm is designed to find local trajectory. 
For complex environments, KRRT* is utilized 
to provide high quality trajectories with 
satisfying UAV kinematic and dynamical 
constraints, and KRRT* is also chosen for 
global guidance. On the other hand, quintic 
polynomial planning is used to complete 
collision-free trajectories, and it is also used 
for sparse environments. A trajectory tree can 
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strategy, as described in [36]. 
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Let the Hamiltonian function be 
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and it can be obtained from (6) that [36] 
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For polynomial trajectories, low-order ones 
are with smoothness but may lead to 
discontinuous acceleration. To obtain a 
continuous acceleration trajectory while 
considering initial and terminal conditions, 
quintic polynomial trajectories are combined 
for UAV motion planning, as used for the 
pre-optimized trajectories in [37]. The 
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and trajectories in y  and z  directions are 
represented similarly to (9). 

With (4)-(8), initial-final state and dynamics 
constraints are considered, and topological 
sampling is utilized to guide generation of 
the trajectory tree for reasonable path 
topology. 
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Based on [36], a KRRT* trajectory expansion 
algorithm is designed to find local trajectory. 
For complex environments, KRRT* is utilized 
to provide high quality trajectories with 
satisfying UAV kinematic and dynamical 
constraints, and KRRT* is also chosen for 
global guidance. On the other hand, quintic 
polynomial planning is used to complete 
collision-free trajectories, and it is also used 
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and trajectories in y  and z  directions are 
represented similarly to (9). 

With (4)-(8), initial-final state and dynamics 
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sampling is utilized to guide generation of 
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topology. 
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and trajectories in y  and z  directions are 
represented similarly to (9). 

With (4)-(8), initial-final state and dynamics 
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sampling is utilized to guide generation of 
the trajectory tree for reasonable path 
topology. 
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 as the parent node of Xnew (Lines 
7-8). When Xnew is less than a certain distance from 
Xg, a collision-free trajectory from Xs to final node Xf 

is obtained by solving TPBVP to satisfy state con-
straints (Lines 9-10). 
Moreover, if above process fails, it is repeated by N 
times, and then the trajectory is generated if it suc-
ceeds (Line 17). If the trajectory still cannot be ob-
tained, flight time is extended twice to repeat the 
process again (Lines 19-21). Since distance exists 
between final position Pf 

of the KRRT* trajectory and 
desired position Pg 

of Xg, a quintic polynomial trajec-
tory is generated to bring UAV to Pg (Lines 22-24).

3.4. Optimization Framework with KRRT*
The designed optimization framework is described in 
Algorithm 2, and Figure 2 shows corresponding tra-
jectory adjustment. KRRT* is first used to calculate a 
global guided trajectory Γ from starting position Ps to 
the global target position G*, and initial state informa-
tion ξ0 of the trajectory is extracted (Lines 2-3). Then, 

Algorithm 2. State Optimization with KRRT*

1: Notation: Global Goal G*, Local Goal G, Control 
Points Q,Time t0, t1, t2 
2: Initialize: Γ ← FindGlobalTrajectory (Ps, G*)
3: ξ0 ←  StateExtract (t0, Γ )
4: Q  ← FindLocalIntial (Ps, G)
5: while Collitioncheck (ε, Q) do
6:        Q  ← TopologyOptimization (ε, Q )

7: end while
8: if CheckFeasible (Q)
9:        Δt ← AllocateTime (Q )
10:       Q  ← Reoptimization (Q )
11: end if
12: ξ1 ←Update (t1, Q)
13: Q  ← YawAngleOptimization (Q)
14: ξ2 ←Update (t2, Q)
15: return Q

Figure 2 
The diagram for flight trajectory adjustment before and 
after Algorithm 2
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Algorithm 1 is used to generate a local trajectory from 
Ps to local target position G, and initial control points 
Q are calculated. The trajectory planning method [40] 
is used to optimize two topological trajectories in dif-
ferent threads separately to select low cost trajectory 
(Lines 4-7). If control points Q satisfy feasibility con-
straints, they are time reallocated and reoptimized, 
and state information ξ1 of the trajectory is obtained 
(Lines 8-12). Yaw angle optimization is utilized for Q, 
and latest state information ξ2of the trajectory is ob-
tained (Lines 13-14). 
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Figure 3
The diagram of trajectory adjustment with a local A* 
algorithm
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it succeeds (Line 17). If the trajectory still cannot 
be obtained, flight time is extended twice to repeat 
the process again (Lines 19-21). Since distance 
exists between final position

f
P of the KRRT* 

trajectory and desired position g
P of g

X , a quintic 
polynomial trajectory is generated to bring UAV 
to

g
P (Lines 22-24). 

 
3.4 Optimization Framework with KRRT* 

The designed optimization framework is 
described in Algorithm 2, and Figure 2 shows 
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first used to calculate a global guided 
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information
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Although Algorithm 2 takes more time to 
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EGO [39] and considers less for optimality of 
generated trajectories, it takes less time for 
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by Algorithm 2 is close to the optimal one, 
thus the optimizer in the paper is faster to 
find best results, as shown in Section 6.1.   
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In the section, an initial trajectory is 
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An objective function for trajectory optimization is 
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4.2 Improvement of Local A* 
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
4.3 Bending Radius  

A UAV needs to stay within a certain distance 
from obstacles to ensure safety, and 
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Q p  is defined between a B-spline 
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Q and a collision-free A* path 
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p that points to obstacle surface. 

As shown in Figure 4, bending radius r is 
introduced to make a UAV consider potential 
oversteer risk for safe turning. Bending radius is 
closely related to speed and acceleration of a UAV, 
and following equation can be derived: 
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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Figure 4  
Schematic diagram considering potential 
unknown obstacles. 
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where Ec, Es, and Edare penalty functions for collision, 
smoothness, and feasibility, respectively, and λc, λs, 
and λd are weights.
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which contains time term, velocity term, and 
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Height variation of A* path is minimized by redesign-
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
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surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
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where d(pn, pn–1) represents the distance between 
neighbor nodes, and kn  is
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oversteer risk for safe turning. Bending radius is 
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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Schematic diagram considering potential 
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where ρ is a height factor, and h is maximum height 
variation of A* nodes. 
Figure 3 illustrates control point adjustment by lo-
cal A*, where blue areas are obstacles and gray areas 
are occupied areas after obstacle expanding. Purple 
points are initial control points corresponding to a 
B-spline trajectory, and blue points are collision free 
path points on obstacle surfaces searched by A*. The 
red curve is an optimal trajectory after following op-
timization.
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4.3. Bending Radius 
A UAV needs to stay within a certain distance from 
obstacles to ensure safety, and distance (Qi - pi)
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Inspired by [39], a local A* algorithm is used to 
provide distance information for trajectory cost 
functions, and thus control points of the trajectory 
are adjusted by optimization. Cost function of an 
A* node position ( , , )

n n n n
x y zp  can be expressed as 

 = + .
n n n
f g h  (13) 

Height variation of A* path is minimized by 
redesigning actual cost function

n
g : 

 = + ( , )+
n n-1 n n-1 n

g g d p p k  (14) 

where ( , )
n n

d p p represents the distance between 
neighbor nodes, and

n
k is 

 
( ), 0,

0, 0.
n

n

k n n
k

n


    

 (15) 

where 

 1

1

| |
( ) ( )

| |
n n

n n

z zh
n

z z h
  




 


, (16) 

where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
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As shown in Figure 4, bending radius r is 
introduced to make a UAV consider potential 
oversteer risk for safe turning. Bending radius is 
closely related to speed and acceleration of a UAV, 
and following equation can be derived: 
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Thus, the bending radius r is obtained:  
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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Then, by considering normal flight and 
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Figure 4  
Schematic diagram considering potential 
unknown obstacles. 
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defined between a B-spline control point Qi  and a col-
lision-free A* path point pi as
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
4.3 Bending Radius  

A UAV needs to stay within a certain distance 
from obstacles to ensure safety, and 
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Q p  is defined between a B-spline 
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Q and a collision-free A* path 
point

i
p as 

 
min max

( )
i i i

L L  Q p  , (17) 

where
min

L and
max
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values of allowed distance between UAV and 
obstacle surface, respectively, and 
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p that points to obstacle surface. 

As shown in Figure 4, bending radius r is 
introduced to make a UAV consider potential 
oversteer risk for safe turning. Bending radius is 
closely related to speed and acceleration of a UAV, 
and following equation can be derived: 
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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a collision risk function  is defined by 
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Figure 4  
Schematic diagram considering potential 
unknown obstacles. 
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where Lmin and Lmax  are minimum and maximum val-
ues of allowed distance between UAV and obstacle 
surface, respectively, and 
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
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introduced to make a UAV consider potential 
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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 is a unit vector from Qi to 
pi that points to obstacle surface.
As shown in Figure 4, bending radius r is introduced 
to make a UAV consider potential oversteer risk for 
safe turning. Bending radius is closely related to speed 
and acceleration of a UAV, and following equation can 
be derived:
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and 
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4.2 Improvement of Local A* 

Inspired by [39], a local A* algorithm is used to 
provide distance information for trajectory cost 
functions, and thus control points of the trajectory 
are adjusted by optimization. Cost function of an 
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
4.3 Bending Radius  

A UAV needs to stay within a certain distance 
from obstacles to ensure safety, and 
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As shown in Figure 4, bending radius r is 
introduced to make a UAV consider potential 
oversteer risk for safe turning. Bending radius is 
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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a collision risk function  is defined by 
neglecting perpendicular velocity component 
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Moreover, a time constraint is introduced to suffi-
ciently ensure UAV safety:
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
4.3 Bending Radius  
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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Thus, the bending radius r is obtained: 
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collision, smoothness, and feasibility, respectively, 
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4.2 Improvement of Local A* 

Inspired by [39], a local A* algorithm is used to 
provide distance information for trajectory cost 
functions, and thus control points of the trajectory 
are adjusted by optimization. Cost function of an 
A* node position ( , , )
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x y zp  can be expressed as 

 = + .
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Height variation of A* path is minimized by 
redesigning actual cost function
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
4.3 Bending Radius  

A UAV needs to stay within a certain distance 
from obstacles to ensure safety, and 
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Q p  is defined between a B-spline 

control point
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Q and a collision-free A* path 
point
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where
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values of allowed distance between UAV and 
obstacle surface, respectively, and 
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  is a unit 
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Q to
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p that points to obstacle surface. 

As shown in Figure 4, bending radius r is 
introduced to make a UAV consider potential 
oversteer risk for safe turning. Bending radius is 
closely related to speed and acceleration of a UAV, 
and following equation can be derived: 
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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To switch among collision penalty functions, 
a collision risk function  is defined by 
neglecting perpendicular velocity component 
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which contains time term, velocity term, and realtime 
distance for better collision avoidance. 

4.4. Collision Penalty
To switch among collision penalty functions, a colli-
sion risk function Φ is defined by neglecting perpen-
dicular velocity component vz as
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4.2 Improvement of Local A* 

Inspired by [39], a local A* algorithm is used to 
provide distance information for trajectory cost 
functions, and thus control points of the trajectory 
are adjusted by optimization. Cost function of an 
A* node position ( , , )
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x y zp  can be expressed as 
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
4.3 Bending Radius  

A UAV needs to stay within a certain distance 
from obstacles to ensure safety, and 
distance ( )
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Q p  is defined between a B-spline 
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Q and a collision-free A* path 
point
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where
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L are minimum and maximum 
values of allowed distance between UAV and 
obstacle surface, respectively, and 
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  is a unit 

vector from
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Q to
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p that points to obstacle surface. 

As shown in Figure 4, bending radius r is 
introduced to make a UAV consider potential 
oversteer risk for safe turning. Bending radius is 
closely related to speed and acceleration of a UAV, 
and following equation can be derived: 
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Thus, the bending radius r is obtained:  
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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Figure 4 
Schematic diagram considering potential unknown obstacles
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4.2 Improvement of Local A* 
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provide distance information for trajectory cost 
functions, and thus control points of the trajectory 
are adjusted by optimization. Cost function of an 
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
4.3 Bending Radius  

A UAV needs to stay within a certain distance 
from obstacles to ensure safety, and 
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As shown in Figure 4, bending radius r is 
introduced to make a UAV consider potential 
oversteer risk for safe turning. Bending radius is 
closely related to speed and acceleration of a UAV, 
and following equation can be derived: 
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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Figure 5
Diagram for time reallocation and refinement 
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N is the pair number of each 
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Q  matching 
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p , and
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N is the number of control points for 

the local trajectory. 
4.5 Smoothness and Feasibility Penalty 

Based on [39], smoothness penalty functions for 
both initial trajectory and yaw angle optimization 
are designed in this part to optimize trajectories 
progressively. Firstly, there are jerk control points 
corresponding to the initial trajectory from 
Algorithm 1, which are minimized by 
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Then, when optimizing the yaw angle, both 
acceleration control points and jerk control points 
are minimized, guaranteeing smoothness of the 
trajectory: 
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Moreover, for feasibility objective, velocity and 
acceleration of a trajectory should be less than 
maximum values, and feasibility penalty functions 
of two sequential stages are constructed. For 
optimizing initial kinodynamic trajectory, as in 
Algorithm 1, a feasibility penalty function is first 
designed from both velocity and acceleration as 
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where ()F  is a continuous derivable function 
similar to that in [39]. Then, for optimizing yaw 
angle, the constraint on the velocity aspect is 
needed to prevent UAV from danger due to large 
velocities: 

 
1

( ).
N

d i
i

E F


  V  (27) 

4.6 Yaw angle penalty 

Inspired by [38], the yaw angle ( )t  is 
optimized to be smooth and dynamic 
feasible, which is parameterized as a uniform 
B-spline curve with control points 
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        and knot span t . To 
flight with maximum bending radius, the 
cost function can be designed as 
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where M  is the number of control points for 
the local trajectory. 
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feasibility functions, respectively, which are 
derived the same with 
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4.4. 

5. Trajectory Refinement 
with Weight Solving 

5.1 Time Reallocation and Trajectory 
Refinement 

As shown in [39], exceeding ratio  of 
trajectory velocity regarding to maximum 
permissible values needs to be calculated. It 
is expanded in the proposed method for time 
reallocation to make the trajectory safer.  
From the trajectory velocity 

,i r
V , the speed 
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Then, by considering normal flight and turning, a pen-
alty function for single control point is designed as

  

optimization is denoted as 
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E , and
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E are penalty functions for 
collision, smoothness, and feasibility, respectively, 
and 

c
 ,

s
 , and

d
 are weights. 

4.2 Improvement of Local A* 

Inspired by [39], a local A* algorithm is used to 
provide distance information for trajectory cost 
functions, and thus control points of the trajectory 
are adjusted by optimization. Cost function of an 
A* node position ( , , )

n n n n
x y zp  can be expressed as 
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redesigning actual cost function
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
4.3 Bending Radius  

A UAV needs to stay within a certain distance 
from obstacles to ensure safety, and 
distance ( )

i i i
Q p  is defined between a B-spline 

control point
i

Q and a collision-free A* path 
point

i
p as 
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where
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L and
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L are minimum and maximum 
values of allowed distance between UAV and 
obstacle surface, respectively, and 

i
  is a unit 

vector from
i

Q to
i

p that points to obstacle surface. 

As shown in Figure 4, bending radius r is 
introduced to make a UAV consider potential 
oversteer risk for safe turning. Bending radius is 
closely related to speed and acceleration of a UAV, 
and following equation can be derived: 
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Moreover, a time constraint is introduced to 
sufficiently ensure UAV safety: 

 
max

2( )|| ||
.

|| || || ||cos( /4)

T
i i it




 

Q pv
a a

 (19) 

Thus, the bending radius r is obtained:  

 
max

2( )1
|| ||( ).

2 || ||cos( /4)

T
i i ir t




 

Q p
v

a
 (20) 

which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  

 
4.4 Collision Penalty 

To switch among collision penalty functions, 
a collision risk function  is defined by 
neglecting perpendicular velocity component 
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Then, by considering normal flight and 
turning, a penalty function for single control 
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collision is obtained as  

 
1 1 1

( )c c pN N N

c c i cii i j
E e e

  
   Q . (23) 

Figure 4  
Schematic diagram considering potential 
unknown obstacles. 
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where L: = (Qi - pi)
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4.2 Improvement of Local A* 

Inspired by [39], a local A* algorithm is used to 
provide distance information for trajectory cost 
functions, and thus control points of the trajectory 
are adjusted by optimization. Cost function of an 
A* node position ( , , )

n n n n
x y zp  can be expressed as 
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Height variation of A* path is minimized by 
redesigning actual cost function
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
4.3 Bending Radius  

A UAV needs to stay within a certain distance 
from obstacles to ensure safety, and 
distance ( )

i i i
Q p  is defined between a B-spline 

control point
i

Q and a collision-free A* path 
point

i
p as 

 
min max

( )
i i i

L L  Q p  , (17) 

where
min

L and
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L are minimum and maximum 
values of allowed distance between UAV and 
obstacle surface, respectively, and 

i
  is a unit 

vector from
i

Q to
i

p that points to obstacle surface. 

As shown in Figure 4, bending radius r is 
introduced to make a UAV consider potential 
oversteer risk for safe turning. Bending radius is 
closely related to speed and acceleration of a UAV, 
and following equation can be derived: 
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Thus, the bending radius r is obtained:  
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  

 
4.4 Collision Penalty 

To switch among collision penalty functions, 
a collision risk function  is defined by 
neglecting perpendicular velocity component 
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Figure 4  
Schematic diagram considering potential 
unknown obstacles. 
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. Thus, total cost of collision is 
obtained as 

  

optimization is denoted as 

 min
c c s s d dQ

E E E E     , (12) 

where
c

E ,
s

E , and
d

E are penalty functions for 
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4.2 Improvement of Local A* 

Inspired by [39], a local A* algorithm is used to 
provide distance information for trajectory cost 
functions, and thus control points of the trajectory 
are adjusted by optimization. Cost function of an 
A* node position ( , , )
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x y zp  can be expressed as 
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where  is a height factor, and h is maximum 
height variation of A* nodes.  

Figure 3 illustrates control point adjustment by 
local A*, where blue areas are obstacles and gray 
areas are occupied areas after obstacle expanding. 
Purple points are initial control points 
corresponding to a B-spline trajectory, and blue 
points are collision free path points on obstacle 
surfaces searched by A*. The red curve is an 
optimal trajectory after following optimization. 
4.3 Bending Radius  

A UAV needs to stay within a certain distance 
from obstacles to ensure safety, and 
distance ( )

i i i
Q p  is defined between a B-spline 

control point
i

Q and a collision-free A* path 
point
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p as 
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where
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values of allowed distance between UAV and 
obstacle surface, respectively, and 
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  is a unit 

vector from
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Q to
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p that points to obstacle surface. 

As shown in Figure 4, bending radius r is 
introduced to make a UAV consider potential 
oversteer risk for safe turning. Bending radius is 
closely related to speed and acceleration of a UAV, 
and following equation can be derived: 
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Thus, the bending radius r is obtained:  
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which contains time term, velocity term, and 
realtime distance for better collision 
avoidance.  
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To switch among collision penalty functions, 
a collision risk function  is defined by 
neglecting perpendicular velocity component 
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(23)

where Np 
is the pair number of each Qi matching with-

pi, and Nc is the number of control points for the local 
trajectory.
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4.5. Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for both 
initial trajectory and yaw angle optimization are de-
signed in this part to optimize trajectories progres-
sively. Firstly, there are jerk control points corre-
sponding to the initial trajectory from Algorithm 1, 
which are minimized by
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the local trajectory. 
4.5 Smoothness and Feasibility Penalty 

Based on [39], smoothness penalty functions for 
both initial trajectory and yaw angle optimization 
are designed in this part to optimize trajectories 
progressively. Firstly, there are jerk control points 
corresponding to the initial trajectory from 
Algorithm 1, which are minimized by 
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Then, when optimizing the yaw angle, both 
acceleration control points and jerk control points 
are minimized, guaranteeing smoothness of the 
trajectory: 
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Moreover, for feasibility objective, velocity and 
acceleration of a trajectory should be less than 
maximum values, and feasibility penalty functions 
of two sequential stages are constructed. For 
optimizing initial kinodynamic trajectory, as in 
Algorithm 1, a feasibility penalty function is first 
designed from both velocity and acceleration as 
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where ()F  is a continuous derivable function 
similar to that in [39]. Then, for optimizing yaw 
angle, the constraint on the velocity aspect is 
needed to prevent UAV from danger due to large 
velocities: 
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4.6 Yaw angle penalty 

Inspired by [38], the yaw angle ( )t  is 
optimized to be smooth and dynamic 
feasible, which is parameterized as a uniform 
B-spline curve with control points 
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where M  is the number of control points for 
the local trajectory. 
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5. Trajectory Refinement 
with Weight Solving 

5.1 Time Reallocation and Trajectory 
Refinement 

As shown in [39], exceeding ratio  of 
trajectory velocity regarding to maximum 
permissible values needs to be calculated. It 
is expanded in the proposed method for time 
reallocation to make the trajectory safer.  
From the trajectory velocity 
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d  is a safe distance from an 

obstacle, and then exceeding ratio  is 
calculated as 
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Then, when optimizing the yaw angle, both accelera-
tion control points and jerk control points are mini-
mized, guaranteeing smoothness of the trajectory:
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the local trajectory. 
4.5 Smoothness and Feasibility Penalty 

Based on [39], smoothness penalty functions for 
both initial trajectory and yaw angle optimization 
are designed in this part to optimize trajectories 
progressively. Firstly, there are jerk control points 
corresponding to the initial trajectory from 
Algorithm 1, which are minimized by 
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Moreover, for feasibility objective, velocity and 
acceleration of a trajectory should be less than 
maximum values, and feasibility penalty functions 
of two sequential stages are constructed. For 
optimizing initial kinodynamic trajectory, as in 
Algorithm 1, a feasibility penalty function is first 
designed from both velocity and acceleration as 
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where ()F  is a continuous derivable function 
similar to that in [39]. Then, for optimizing yaw 
angle, the constraint on the velocity aspect is 
needed to prevent UAV from danger due to large 
velocities: 
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4.6 Yaw angle penalty 

Inspired by [38], the yaw angle ( )t  is 
optimized to be smooth and dynamic 
feasible, which is parameterized as a uniform 
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5.1 Time Reallocation and Trajectory 
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As shown in [39], exceeding ratio  of 
trajectory velocity regarding to maximum 
permissible values needs to be calculated. It 
is expanded in the proposed method for time 
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Moreover, for feasibility objective, velocity and accel-
eration of a trajectory should be less than maximum 
values, and feasibility penalty functions of two se-
quential stages are constructed. For optimizing initial 
kinodynamic trajectory, as in Algorithm 1, a feasibili-
ty penalty function is first designed from both veloci-
ty and acceleration as

 
 

 

where
p

N is the pair number of each 
i

Q  matching 
with

i
p , and

c
N is the number of control points for 

the local trajectory. 
4.5 Smoothness and Feasibility Penalty 

Based on [39], smoothness penalty functions for 
both initial trajectory and yaw angle optimization 
are designed in this part to optimize trajectories 
progressively. Firstly, there are jerk control points 
corresponding to the initial trajectory from 
Algorithm 1, which are minimized by 

 
2

2

1

|| || .
N

s i
i

E




  J  (24) 

Then, when optimizing the yaw angle, both 
acceleration control points and jerk control points 
are minimized, guaranteeing smoothness of the 
trajectory: 
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where ()F  is a continuous derivable function 
similar to that in [39]. Then, for optimizing yaw 
angle, the constraint on the velocity aspect is 
needed to prevent UAV from danger due to large 
velocities: 
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where F(·) is a continuous derivable function similar 
to that in [39]. Then, for optimizing yaw angle, the 
constraint on the velocity aspect is needed to prevent 
UAV from danger due to large velocities:
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Then, when optimizing the yaw angle, both 
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Moreover, for feasibility objective, velocity and 
acceleration of a trajectory should be less than 
maximum values, and feasibility penalty functions 
of two sequential stages are constructed. For 
optimizing initial kinodynamic trajectory, as in 
Algorithm 1, a feasibility penalty function is first 
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4.6. Yaw Angle Penalty

Inspired by [38], the yaw angle ϕ(t) is optimized to be 
smooth and dynamic feasible, which is parameter-
ized as a uniform B-spline curve with control points 
Φ := {ϕ1, ϕ2, ϕ3, ..., ϕM} and knot span Δtϕ. To flight with 
maximum bending radius, the cost function can be 
designed as
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Then, when optimizing the yaw angle, both 
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are minimized, guaranteeing smoothness of the 
trajectory: 
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Moreover, for feasibility objective, velocity and 
acceleration of a trajectory should be less than 
maximum values, and feasibility penalty functions 
of two sequential stages are constructed. For 
optimizing initial kinodynamic trajectory, as in 
Algorithm 1, a feasibility penalty function is first 
designed from both velocity and acceleration as 
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where ()F  is a continuous derivable function 
similar to that in [39]. Then, for optimizing yaw 
angle, the constraint on the velocity aspect is 
needed to prevent UAV from danger due to large 
velocities: 
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The cost function for the i th control point ϕi can be 
written as
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Then, when optimizing the yaw angle, both 
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are minimized, guaranteeing smoothness of the 
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Moreover, for feasibility objective, velocity and 
acceleration of a trajectory should be less than 
maximum values, and feasibility penalty functions 
of two sequential stages are constructed. For 
optimizing initial kinodynamic trajectory, as in 
Algorithm 1, a feasibility penalty function is first 
designed from both velocity and acceleration as 

 
1

1 1

( ) ( )
N N

d v i A i
i i

E w F w F


 

  V A  (26) 

where ()F  is a continuous derivable function 
similar to that in [39]. Then, for optimizing yaw 
angle, the constraint on the velocity aspect is 
needed to prevent UAV from danger due to large 
velocities: 
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where Np 
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Then, when optimizing the yaw angle, both 
acceleration control points and jerk control points 
are minimized, guaranteeing smoothness of the 
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Moreover, for feasibility objective, velocity and 
acceleration of a trajectory should be less than 
maximum values, and feasibility penalty functions 
of two sequential stages are constructed. For 
optimizing initial kinodynamic trajectory, as in 
Algorithm 1, a feasibility penalty function is first 
designed from both velocity and acceleration as 

 
1

1 1

( ) ( )
N N

d v i A i
i i

E w F w F


 

  V A  (26) 

where ()F  is a continuous derivable function 
similar to that in [39]. Then, for optimizing yaw 
angle, the constraint on the velocity aspect is 
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permissible values needs to be calculated. It 
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Moreover, for feasibility objective, velocity and 
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where ()F  is a continuous derivable function 
similar to that in [39]. Then, for optimizing yaw 
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needed to prevent UAV from danger due to large 
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Moreover, for feasibility objective, velocity and 
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optimizing initial kinodynamic trajectory, as in 
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Moreover, for feasibility objective, velocity and 
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optimizing initial kinodynamic trajectory, as in 
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Thus, the knot span of the new trajectory ζnew can be 
written as
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introduced to describe difference between two 
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curves, respectively. Thus, objective function 
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Table 1 
Comparison of this method with ego's trajectory generation, trajectory optimization, and total time. 
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T (ms) 

 Density(obs./m2) Avg S.D. Avg S.D. Avg S.D. 
 0.4 1.8 0.772 0.659 0.216 2.46 0.887 

Proposed 0.32` 1.656 0.42 0.861 0.534 2.517 0.908 
 0.24 1.707 0.702 0.913 0.495 2.458 1.138 
 0.4 0.416 0.245 7.336 6.505 7.71 6.478 

EGO 0.32 0.224 0.063 2.766 2.275 2.999 2.321 
 0.24 0.265 0.135 5.297 2.964 5.554 2.964 

 

Figure 7 
Distribution of yaw angles in the two density 
environments (left: in sparse obstacles, right: in dense 
obstacles). 
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Figure 8 
UAV position and velocity in dense obstacle 
environment, the (dashed lines: Ego, solid lines: 
the proposed method). 
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Figure 9 
UAV position and velocity in sparse obstacle 
environment, the (dashed lines: Ego, solid lines: 
the proposed method). 
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Figure 6 
Visualized pictures for simulation comparison 
between Ego [39] (left) and the proposed method 
(right) in different density environments.     
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trajectories, which are used to calculate expectation 
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which is used to minimize variance of the total 
cost of a trajectory. Then, a QP model specially for 
solving weights can be written as 

, , , ,
min cov( , )

. . , , , 0,

min( , , )

i s d c j s d c i j i j

s d c s d c

s s d d c c s d c

DE E E

s t A

HE HE HE E E E


     
  

  
   

  

 
         (40) 

where A  is a constant of maximum weight sum 
with relatively high quality trajectories. The lingo 
optimization software is used to solve optimal 
weights. 

6. Simulation and Experiment 
Results 

6.1 Simulation Tests 

The proposed method is tested by both simulation 
and realworld experiments. In simulation, 
comparison with the method [39] is carried out in 

different obstacle density environments, with 
fixed start and end points. Simulations run 
on a computer with an Intel i7-7700HQ CPU 
and a GeForce GTX 1050 GPU. The L-BFGS 
method [19] is used to solve the trajectory 
optimization problem, and the method is 
implemented on [39] under occupancy grid 
maps. Maximum velocity and acceleration 
are set as 2m/s and 2m/s2, respectively. 

Left pictures of Figure 6 show trajectories by 
Ego [39] and right ones show trajectories by 
the proposed method. It is seen that the 
proposed method plans smoother trajectories 
then Ego, where green lines form the 
topology guided graph. Figure 7 shows 
distribution of yaw angles in the two density 
environments, and it is seen that variation of 
the yaw angle by the proposed method is 
small than that of Ego. Figures 8-9 show 
UAV position and velocity in the different 
density environments, where it is known 
velocities by the proposed method 
approximate to trapezoidal variation in the 
forward direction and varies steadily in the 
other two directions. 

Time cost is cost is shown in Table 1, for 
initial trajectory generation, since the 
proposed method considers kinodynamic 
constraints, it spends more time than Ego. 
Time taken by the method increases slightly 
as obstacle density increases to 0.4obs./m2. 
For back-end trajectory optimization, the 
proposed method takes much less time than 
Ego. 

 
6.2 Experiments 

As shown in Figure 10, the UAV is equipped 
with and Intel RealSense D435i depth camera 
and an onboard computer NVIDIA Xavier 
NX. Required trajectories are iterated faster 
by GPU acceleration. Figure 11 shows 
software architecture of the UAV system, and 
the local map setup, trajectory planning, 
localization, and control run on the onboard 
computer, while visualization runs on the 
ground station. An occupancy grid map is 
applied for map setting up, which converts 
depth information observed by D435i, and 
VINS-FUSION is employed for UAV 
localization.  
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where A  is a constant of maximum weight sum with 
relatively high quality trajectories. The lingo optimi-
zation software is used to solve optimal weights.

Table 1
Comparison of this method with ego’s trajectory generation, trajectory optimization, and total time

Density(obs./m2)
Tinit (ms) Topt (ms) Tall (ms)

Avg S.D. Avg S.D. Avg S.D.

Proposed

0.4 1.8 0.772 0.659 0.216 2.46 0.887

0.32` 1.656 0.42 0.861 0.534 2.517 0.908

0.24 1.707 0.702 0.913 0.495 2.458 1.138

EGO

0.4 0.416 0.245 7.336 6.505 7.71 6.478

0.32 0.224 0.063 2.766 2.275 2.999 2.321

0.24 0.265 0.135 5.297 2.964 5.554 2.964
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Results
6.1. Simulation Tests
The proposed method is tested by both simulation 
and realworld experiments. In simulation, compari-
son with the method [39] is carried out in different ob-
stacle density environments, with fixed start and end 
points. Simulations run on a computer with an Intel 
i7-7700HQ CPU and a GeForce GTX 1050 GPU. The 
L-BFGS method [19] is used to solve the trajectory 
optimization problem, and the method is implement-
ed on [39] under occupancy grid maps. Maximum 
velocity and acceleration are set as 2m/s and 2m/s2, 
respectively.
Left pictures of Figure 6 show trajectories by Ego [39] 
and right ones show trajectories by the proposed meth-
od. It is seen that the proposed method plans smoother 
trajectories then Ego, where green lines form the topol-
ogy guided graph. Figure 7 shows distribution of yaw 
angles in the two density environments, and it is seen 
that variation of the yaw angle by the proposed method 
is small than that of Ego. Figures 8-9 show UAV posi-

Figure 6
Visualized pictures for simulation comparison between 
Ego [39] (left) and the proposed method (right) in different 
density environments 
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Visualized pictures for simulation comparison 
between Ego [39] (left) and the proposed method 
(right) in different density environments.     
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tion and velocity in the different density environments, 
where it is known velocities by the proposed method 
approximate to trapezoidal variation in the forward di-
rection and varies steadily in the other two directions.
Time cost is cost is shown in Table 1, for initial trajec-
tory generation, since the proposed method considers 
kinodynamic constraints, it spends more time than 
Ego. Time taken by the method increases slightly as 
obstacle density increases to 0.4obs./m2. For back-
end trajectory optimization, the proposed method 
takes much less time than Ego.

6.2. Experiments
As shown in Figure 10, the UAV is equipped with and 
Intel RealSense D435i depth camera and an onboard 
computer NVIDIA Xavier NX. Required trajectories 
are iterated faster by GPU acceleration. Figure 11 
shows software architecture of the UAV system, and 
the local map setup, trajectory planning, localization, 
and control run on the onboard computer, while visu-
alization runs on the ground station. An occupancy 
grid map is applied for map setting up, which converts 
depth information observed by D435i, and VINS-FU-
SION is employed for UAV localization. 
Moreover, experiments are carried out in a 

  

37.6 4.9 2.8m  field, where obstacles are 
deployed arbitrarily. Maximum speed and 
acceleration are set as 1m/s and 1.5m/s2, 
respectively. The proposed method and Ego are 
run under the same environment with fixed 
starting and ending points. Comparative results 
are shown in Figure 12, where the left graph is 
trajectories by Ego and the middle graph is by the 
proposed method. It can be seen that the UAV 
flies directly to the target endpoint by the 
proposed method, while flies to high place then to 
the target endpoint by Ego. Position and velocity 
by the two methods are provided in the right 
graph of Figure 12, where the proposed method 
makes the UAV reach the endpoint in about 90s, 
and the speed is with approximately trapezoidal 
variation for the forward direction. 

Moreover, two experiments are conducted to let 
the UAV pass a square hole and pass dense 
obstacles by foam boxes and iron rods, 
respectively. Figure 13 shows map and trajectory 
in the two processes, where green lines in the left 
plot are the topology guided graph formed by the 
environment, and flight photos are provided in 
Figure 14. In the passing hole experiment, front-
end trajectory planning algorithm in the proposed 
method is tested, and it is seen that this method 
helps the UAV plan the optimal trajectory and 
makes the UAV fly out from the hole center. In the 
passing dense obstacle experiment, size and 
location of obstacles are randomly configured, 
with foam boxes simulating enormous obstacles 
and iron rods simulating small size obstacles. In 
this challenging scenario for real-time planning, 
based on the topology guided graph results, the 
proposed planner samples and generates the 
initial trajectory and then optimizes the trajectory 
in relative smoothness. 

 

7. Conclusion 
An autonomous UAV navigation strategy is 
proposed in the paper based on kinodynamic 
planning to solve feasible trajectories in complex 
environments under finite field of view. A global 

trajectory is generated first by using 
environment topology information, and a 
KRRT* expansion algorithm is designed. 
Then, a KRRT* expansion strategy is 
designed to find local collision-free 
trajectories. In trajectory optimization, 
bending radius and collision risk function are 
defined as well as a cost function related to 
yaw angle optimization by considering 
sensor field of view and potential risk. 
Finally, effectiveness of the proposed method 
is verified through comparative simulation 
and experiment by considering planning and 
perceiving ranges. 
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flies to high place then to the target endpoint by Ego. 
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variation for the forward direction.
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guided graph formed by the environment, and flight 
photos are provided in Figure 14. In the passing hole 
experiment, front-end trajectory planning algorithm 
in the proposed method is tested, and it is seen that 
this method helps the UAV plan the optimal trajecto-
ry and makes the UAV fly out from the hole center. In 
the passing dense obstacle experiment, size and loca-
tion of obstacles are randomly configured, with foam 
boxes simulating enormous obstacles and iron rods 
simulating small size obstacles. In this challenging 
scenario for real-time planning, based on the topology 
guided graph results, the proposed planner samples 
and generates the initial trajectory and then optimiz-
es the trajectory in relative smoothness.
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7. Conclusion
An autonomous UAV navigation strategy is proposed 
in the paper based on kinodynamic planning to solve 
feasible trajectories in complex environments under 
finite field of view. A global trajectory is generated 
first by using environment topology information, and 
a KRRT* expansion algorithm is designed. Then, a 
KRRT* expansion strategy is designed to find local 
collision-free trajectories. In trajectory optimization, 
bending radius and collision risk function are defined 
as well as a cost function related to yaw angle optimi-

zation by considering sensor field of view and poten-
tial risk. Finally, effectiveness of the proposed method 
is verified through comparative simulation and exper-
iment by considering planning and perceiving ranges.
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