
665Information Technology and Control 2023/3/52

Kinodynamic RRT* Based
UAV Optimal State Motion
Planning with Collision Risk
Awareness

ITC 3/52
Information Technology
and Control
Vol. 52 / No. 3 / 2023
pp. 665-678
DOI 10.5755/j01.itc.52.3.33583

Kinodynamic RRT* Based UAV Optimal State Motion Planning
with Collision Risk Awareness

Received 2023/03/08 Accepted after revision 2023/05/08

HOW TO CITE: Yin, H., Li, B., Zhu, H., Shi, L. (2023). Kinodynamic RRT* Based UAV Optimal State
Motion Planning with Collision Risk Awareness. Information Technology and Control, 52(3), 665-
678. https://doi.org/10.5755/j01.itc.52.3.33583

Corresponding author: libq@tiangong.edu.cn

Haolin Yin, Baoquan Li, Hai Zhu, Lintao Shi
Key Laboratory of Intelligent Control of Electrical Equipment, School of Control Science and Engineering,
Tiangong University, Tianjin 300387, China

In this paper, an autonomous navigation strategy is proposed for unmanned aerial vehicles (UAVs) based on
consideration of dynamic sampling and field of view (FOV). Compare to search-based motion planning, sam-
pling-based kinodynamic planning schemes can often find feasible trajectories in complex environments.
Specifically, a global trajectory is first generated with physical information, and an expansion algorithm is
constructed regarding to kinodynamic rapidly-exploring random tree* (KRRT*). Then, a KRRT* expansion
strategy is designed to find local collision-free trajectories. In trajectory optimization, bending radius, collision
risk function, and yaw angle penalty term are defined by taking into account onboard sensor FOV and poten-
tial risk. Then, smooth and dynamic feasible terms are penalized based on initial trajectory generation. Trajec-
tories are refined by time reallocation, and weights are solved by optimization. Effectiveness of the proposed
strategy is demonstrated by both simulation and experiment.
KEYWORDS: UAVs, motion planning, collision risk function, bending radius, yaw angle penalty.

1. Introduction
With development of onboard sensor and onboard
computer, UAVs gain capability for complex tasks and
have been used broadly in various fields. For motion
planning of UAVs, movement constraints such as kine-
matics and dynamics are taken into account to obtain

optimal trajectories, which bene-fit for efficient and
safe flight [9, 27]. RGB-D cameras are widely utilized as
onboard sensors due to traits of informative, high pre-
cision, and low cost, but their confined sensing range
brings constraints for UAV motion planning [23].

Information Technology and Control 2023/3/52666

When flight in unknown environments, local maps are
established due to perception-limited onboard sen-
sors and real-time processing requirement [31]. Local
maps are continuously updated during navigation to
accomplish autonomous flight [21], and the pattern is
usually adopted in UAV motion planning. Some meth-
ods based on greedy search are designed for UAV mo-
tion planning, where a trajectory is searched with sat-
isfying constraints and then optimized. For example,
a classic robust framework is proposed in [37], whose
front-end focuses on applying search-based kinody-
namic A* to obtain a feasible trajectory, and then an
optimization problem is constructed by considering
constraints to calculate a resultant trajectory.
As an alternative to search-based motion planning,
sampling-based approaches can obtain initial trajecto-
ries faster and with a higher success rate for complex
environments. On this basis, the proposed method is
developed containing two aspects of fast collision-free
trajectory generation and trajectory optimization in
unknown environments. In this paper, a KRRT* expan-
sion strategy is first designed to generate a robust ini-
tial trajectory for UAVs by taking into account dynamic
feasibility and collision. By combining polynomial mo-
tion planning, a collision-free trajectory is generated
for complex environments, where perception range of
depth cameras is taken into account.
For optimization, variation of the UAV yaw angle is
confined by limited sensor perception range and ef-
fectiveness of planned trajectories is weakened [22].
To deal with the problem, new penalty functions are
constructed for different cases in the paper, where the
local A* algorithm is improved. Bending radius and
collision risk function are introduced for consider-
ing obstacle influence, and a collision penalty func-
tion is defined. Trajectory velocities are optimized
into a trapezoid-like variation to avoid large fluctu-
ation. The UAV yaw angle is penalized for collision
avoidance, and a fitting penalty function is defined by
hyperbolas in the trajectory replanning stage. In ad-
dition, cost weights are tuned by quadratic program-
ming (QP) to enhance planning efficiency. The main
contribution of the paper is that KRRT* expansion
strategy is proposed to guide local trajectory genera-
tion with satisfying motion constraints, and collision
and yaw replanning penalty functions are designed
for trajectory optimization by considering potential
risk during UAV flight.

2. Related Work
Path planning results are utilized as initial solutions
for motion planning, and trajectory optimization
and replanning can be conducted to make resultant
trajectories satisfy constraints of energy optimal,
time optimal, and so on [20]. The efficient local tra-
jectory planner in [37] divides trajectory generation
into two processes: combination of front-end kine-
matic and dynamical search, and back-end B-spline
op-timization. Gao et al. propose a local sensing and
replanning approach, which utilizes spatio-tempo-
ral optimization to obtain energy-efficient repetitive
trajectories, and combines online sensing and replan-
ning to ensure safety against environment variation
[10]. Tordesillas et al. plan two paths with jump point
search and employ Gurobi to solve the mixed integer
QP problem so that robot trajectories are within poly-
hedrons [30].
Regarding to sampling-based trajectory planning,
Karaman et al. demonstrate that online planning
convergence during execution can be improved with
RRT* [15]. In [18], Lai et al. propose the fast explor-
atory random discrete tree (RRdT*) method, which
inherits probabilistic completeness and as-ymptotic
optimality of RRT*. Gammell et al. propose the batch
processing information tree (BIT*) method, which
searches for minimum costs on the basis of heuristic
schemes, and converges asymptotically to global op-
timum by processing multiple batches of samples [7].
Jaillet et al. combine elements of RG-RRT and RC-
RRT into the new environment guided RRT frame-
work to improve sampling efficiency [14]. Seventh-or-
der Bezier is utilized by Neto et al. to connect vertices
of generating trees on the basis of the RRT* algorithm
[25]. To process high-dimensional problems with dis-
crepancy constraints, the hierarchical rejection sam-
pling method is proposed in [17] to improve efficiency
of sampling-based planners. Sampling efficiency is
guaranteed by above works when reducing sampling
frequency.
Moreover, sampling time can also be shortened to im-
prove sampling efficiency, with utilizing lazy check
and greedy exploration. Salzman et al. propose the effi-
cient lower bound tree RRT method, which combines
solutions from fast but sub-optimal RRT algorithm
and asymptotically optimal RRG algorithm [29]. Ko
et al. propose the vector field RRT method by using

667Information Technology and Control 2023/3/52

upstream standard integers to construct RRT in state
space, and generated random nodes have a prespeci-
fied bias to the direction indicated by the vector field
[16]. Jaillet et al. design the continuous transition
RRT method, which combines RRT exploratory traits
with stochastic optimization [13]. Informed RRT* is
constructed in [8] by utilizing directly informed sam-
pling techniques to obtain linear convergent perfor-
mance. Hauser et al. propose sampling-based motion
planners of Lazy-PRM* and Lazy-RRG*, which use a
lazy strategy to eliminate most collision checks [16].
However, above methods do not take into account
UAV kinematic and dynamical models, and are not
applicable for high speed flight. To solve the problem,
Ye et al. propose an efficient KRRT* framework on the
basis of topological sampling [36].
In terms of trajectory optimization, the process is cou-
pled with UAV internal and workspace constraints.
Leobardo et al. fuse sampling-based methods and QP-
based optimization, so that dynamic constraints of a
robot are fully considered for generating time varying
trajectories [2]. A practical path planning method is
designed in [3] on the basis of Bezier curves, so as to
operate autonomous vehicles under waypoint and
corridor constraints. UAV surrounding environments
are decomposed into convex regions by Watterson et
al. to form motion constrains, and a feasible trajectory
is then generated in these regions with avoiding ob-
stacles [33].
To improve safety of trajectory optimization, re-
searchers propose flight corridor based methods.
Preiss et al. find dynamically feasible trajectories in
a series of connected convex polyhedra that repre-
sent free spaces of environments, showing optimized
trajectories have more accurate naviga-tion perfor-
mance [28]. Dhullipalla et al. select trajectories to
satisfy given initial and final states, and then treat
trajectory generation as an optimal control problem
[5]. A streaming safe corridor approach is proposed
in [32] to compute optimize trajectories, which is
through a constrained optimization problem. Based
on constraints of flight corridors, adequate safety of
trajectories can be guaranteed in conventional envi-
ronments.
Speed and time constraints also should be considered
in trajectory optimization. Escamilla et al. generate a
temporally parameterized smooth trajectory by splic-
ing multiple Bezier curves to form an optimal 4D tra-

jectory [6]. A sixth-order Bezier curve is introduced
in [35] to reduce curvature, where output of the path
planner is smoothed by adjusting rotation. Special
spline planning can also be designed for generating
smooth paths, as shown in [11]. Beul et al. design a
specific control input pattern in optimal control, so as
to determine a minimum time trajectory of two state
transition [1]. Nieuwenhuisen et al. design a local
optimization method for mesh-based path planning,
making a collision-free path and ensuring smooth-
ness of continuous curvature transition [26]. Delin-
gette et al. design a continuous curvature trajectory
generation strategy, which is based on trajectory de-
formation by energy minimization and solves general
geometric constraints [4]. As a consequence, efficient
optimization guarantees quality of trajectories by
considering various constraints.

3. Sampling-based Kinodynamic
Trajectory Generation
According to property of differential flatness, the UAV
state space model is shown as follows [24]:

optimization [13]. Informed RRT* is constructed in
[8] by utilizing directly informed sampling
techniques to obtain linear convergent
performance. Hauser et al. propose sampling-
based motion planners of Lazy-PRM* and Lazy-
RRG*, which use a lazy strategy to eliminate most
collision checks [16]. However, above methods do
not take into account UAV kinematic and
dynamical models, and are not applicable for high
speed flight. To solve the problem, Ye et al.
propose an efficient KRRT* framework on the
basis of topological sampling [36].

In terms of trajectory optimization, the process is
coupled with UAV internal and workspace
constraints. Leobardo et al. fuse sampling-based
methods and QP-based optimization, so that
dynamic constraints of a robot are fully considered
for generating time varying trajectories [2]. A
practical path planning method is designed in [3]
on the basis of Bezier curves, so as to operate
autonomous vehicles under waypoint and
corridor constraints. UAV surrounding
environments are decomposed into convex
regions by Watterson et al. to form motion
constrains, and a feasible trajectory is then
generated in these regions with avoiding obstacles
[33].

To improve safety of trajectory optimization,
researchers propose flight corridor based methods.
Preiss et al. find dynamically feasible trajectories
in a series of connected convex polyhedra that
represent free spaces of environments, showing
optimized trajectories have more accurate naviga-
tion performance [28]. Dhullipalla et al. select
trajectories to satisfy given initial and final states,
and then treat trajectory generation as an optimal
control problem [5]. A streaming safe corridor
approach is proposed in [32] to compute optimize
trajectories, which is through a constrained
optimization problem. Based on constraints of
flight corridors, adequate safety of trajectories can
be guaranteed in conventional environments.

Speed and time constraints also should be
considered in trajectory optimization. Escamilla et
al. generate a temporally parameterized smooth
trajectory by splicing multiple Bezier curves to
form an optimal 4D trajectory [6]. A sixth-order
Bezier curve is introduced in [35] to reduce
curvature, where output of the path planner is
smoothed by adjusting rotation. Special spline
planning can also be designed for generating
smooth paths, as shown in [11]. Beul et al. design a
specific control input pattern in optimal control, so
as to determine a minimum time trajectory of two
state transition [1]. Nieuwenhuisen et al. design a

local optimization method for mesh-based
path planning, making a collision-free path
and ensuring smoothness of continuous
curvature transition [26]. Delingette et al.
design a continuous curvature trajectory
generation strategy, which is based on
trajectory deformation by energy
minimization and solves general geometric
constraints [4]. As a consequence, efficient
optimization guarantees quality of
trajectories by considering various
constraints.

3. Sampling-based
Kinodynamic Trajectory
Generation

According to property of differential flatness,
the UAV state space model is shown as
follows [24]:

 () () (),t t t X AX BU (1)

3 3 3 3 3

3 3 3 3 3

() ()t p t 

 

   
        
      

， ，
0 I 0

U
0 0 I

A B ,

where ()tp represents the 3D position of the
UAV, ()tX denote the UAV state vector that
contains 3D position and velocity:

() [(), ()]Tt t t X p p (2)

and ()tU denotes the control input vector
relates to translational accelerations:

 () [(), (), ()] .T
x y z

t u t u t u tU (3)

The linear system model (1) brings much
convenience for considering constraints of
nonlinear terms and subsequent optimization
calculation.

3.1 KRRT* Trajectories

For UAVs flying in complex environments,
kinodynamic motion planning is introduced
to obtain initial trajectories with collision-free
and smoothness. Kinodynamic motion
planning is mainly divided into two patterns
of search-based and sampling-based, and the
sampling-based pattern is adopted by
considering distribution of obstacles in dense
environ-ments.

As shown in [36], calculating an optimal
trajectory between two nodes is equivalent to
solving the two point boundary value
problem (TPBVP) in optimal control by

(1)

where

optimization [13]. Informed RRT* is constructed in
[8] by utilizing directly informed sampling
techniques to obtain linear convergent
performance. Hauser et al. propose sampling-
based motion planners of Lazy-PRM* and Lazy-
RRG*, which use a lazy strategy to eliminate most
collision checks [16]. However, above methods do
not take into account UAV kinematic and
dynamical models, and are not applicable for high
speed flight. To solve the problem, Ye et al.
propose an efficient KRRT* framework on the
basis of topological sampling [36].

In terms of trajectory optimization, the process is
coupled with UAV internal and workspace
constraints. Leobardo et al. fuse sampling-based
methods and QP-based optimization, so that
dynamic constraints of a robot are fully considered
for generating time varying trajectories [2]. A
practical path planning method is designed in [3]
on the basis of Bezier curves, so as to operate
autonomous vehicles under waypoint and
corridor constraints. UAV surrounding
environments are decomposed into convex
regions by Watterson et al. to form motion
constrains, and a feasible trajectory is then
generated in these regions with avoiding obstacles
[33].

To improve safety of trajectory optimization,
researchers propose flight corridor based methods.
Preiss et al. find dynamically feasible trajectories
in a series of connected convex polyhedra that
represent free spaces of environments, showing
optimized trajectories have more accurate naviga-
tion performance [28]. Dhullipalla et al. select
trajectories to satisfy given initial and final states,
and then treat trajectory generation as an optimal
control problem [5]. A streaming safe corridor
approach is proposed in [32] to compute optimize
trajectories, which is through a constrained
optimization problem. Based on constraints of
flight corridors, adequate safety of trajectories can
be guaranteed in conventional environments.

Speed and time constraints also should be
considered in trajectory optimization. Escamilla et
al. generate a temporally parameterized smooth
trajectory by splicing multiple Bezier curves to
form an optimal 4D trajectory [6]. A sixth-order
Bezier curve is introduced in [35] to reduce
curvature, where output of the path planner is
smoothed by adjusting rotation. Special spline
planning can also be designed for generating
smooth paths, as shown in [11]. Beul et al. design a
specific control input pattern in optimal control, so
as to determine a minimum time trajectory of two
state transition [1]. Nieuwenhuisen et al. design a

local optimization method for mesh-based
path planning, making a collision-free path
and ensuring smoothness of continuous
curvature transition [26]. Delingette et al.
design a continuous curvature trajectory
generation strategy, which is based on
trajectory deformation by energy
minimization and solves general geometric
constraints [4]. As a consequence, efficient
optimization guarantees quality of
trajectories by considering various
constraints.

3. Sampling-based
Kinodynamic Trajectory
Generation

According to property of differential flatness,
the UAV state space model is shown as
follows [24]:

 () () (),t t t X AX BU (1)

3 3 3 3 3

3 3 3 3 3

() ()t p t 

 

   
        
      

， ，
0 I 0

U
0 0 I

A B ,

where ()tp represents the 3D position of the
UAV, ()tX denote the UAV state vector that
contains 3D position and velocity:

() [(), ()]Tt t t X p p (2)

and ()tU denotes the control input vector
relates to translational accelerations:

 () [(), (), ()] .T
x y z

t u t u t u tU (3)

The linear system model (1) brings much
convenience for considering constraints of
nonlinear terms and subsequent optimization
calculation.

3.1 KRRT* Trajectories

For UAVs flying in complex environments,
kinodynamic motion planning is introduced
to obtain initial trajectories with collision-free
and smoothness. Kinodynamic motion
planning is mainly divided into two patterns
of search-based and sampling-based, and the
sampling-based pattern is adopted by
considering distribution of obstacles in dense
environ-ments.

As shown in [36], calculating an optimal
trajectory between two nodes is equivalent to
solving the two point boundary value
problem (TPBVP) in optimal control by

 represents the 3D position of the UAV,

optimization [13]. Informed RRT* is constructed in
[8] by utilizing directly informed sampling
techniques to obtain linear convergent
performance. Hauser et al. propose sampling-
based motion planners of Lazy-PRM* and Lazy-
RRG*, which use a lazy strategy to eliminate most
collision checks [16]. However, above methods do
not take into account UAV kinematic and
dynamical models, and are not applicable for high
speed flight. To solve the problem, Ye et al.
propose an efficient KRRT* framework on the
basis of topological sampling [36].

In terms of trajectory optimization, the process is
coupled with UAV internal and workspace
constraints. Leobardo et al. fuse sampling-based
methods and QP-based optimization, so that
dynamic constraints of a robot are fully considered
for generating time varying trajectories [2]. A
practical path planning method is designed in [3]
on the basis of Bezier curves, so as to operate
autonomous vehicles under waypoint and
corridor constraints. UAV surrounding
environments are decomposed into convex
regions by Watterson et al. to form motion
constrains, and a feasible trajectory is then
generated in these regions with avoiding obstacles
[33].

To improve safety of trajectory optimization,
researchers propose flight corridor based methods.
Preiss et al. find dynamically feasible trajectories
in a series of connected convex polyhedra that
represent free spaces of environments, showing
optimized trajectories have more accurate naviga-
tion performance [28]. Dhullipalla et al. select
trajectories to satisfy given initial and final states,
and then treat trajectory generation as an optimal
control problem [5]. A streaming safe corridor
approach is proposed in [32] to compute optimize
trajectories, which is through a constrained
optimization problem. Based on constraints of
flight corridors, adequate safety of trajectories can
be guaranteed in conventional environments.

Speed and time constraints also should be
considered in trajectory optimization. Escamilla et
al. generate a temporally parameterized smooth
trajectory by splicing multiple Bezier curves to
form an optimal 4D trajectory [6]. A sixth-order
Bezier curve is introduced in [35] to reduce
curvature, where output of the path planner is
smoothed by adjusting rotation. Special spline
planning can also be designed for generating
smooth paths, as shown in [11]. Beul et al. design a
specific control input pattern in optimal control, so
as to determine a minimum time trajectory of two
state transition [1]. Nieuwenhuisen et al. design a

local optimization method for mesh-based
path planning, making a collision-free path
and ensuring smoothness of continuous
curvature transition [26]. Delingette et al.
design a continuous curvature trajectory
generation strategy, which is based on
trajectory deformation by energy
minimization and solves general geometric
constraints [4]. As a consequence, efficient
optimization guarantees quality of
trajectories by considering various
constraints.

3. Sampling-based
Kinodynamic Trajectory
Generation

According to property of differential flatness,
the UAV state space model is shown as
follows [24]:

 () () (),t t t X AX BU (1)

3 3 3 3 3

3 3 3 3 3

() ()t p t 

 

   
        
      

， ，
0 I 0

U
0 0 I

A B ,

where ()tp represents the 3D position of the
UAV, ()tX denote the UAV state vector that
contains 3D position and velocity:

() [(), ()]Tt t t X p p (2)

and ()tU denotes the control input vector
relates to translational accelerations:

 () [(), (), ()] .T
x y z

t u t u t u tU (3)

The linear system model (1) brings much
convenience for considering constraints of
nonlinear terms and subsequent optimization
calculation.

3.1 KRRT* Trajectories

For UAVs flying in complex environments,
kinodynamic motion planning is introduced
to obtain initial trajectories with collision-free
and smoothness. Kinodynamic motion
planning is mainly divided into two patterns
of search-based and sampling-based, and the
sampling-based pattern is adopted by
considering distribution of obstacles in dense
environ-ments.

As shown in [36], calculating an optimal
trajectory between two nodes is equivalent to
solving the two point boundary value
problem (TPBVP) in optimal control by

 denote the UAV state vector that contains 3D
position and velocity:

optimization [13]. Informed RRT* is constructed in
[8] by utilizing directly informed sampling
techniques to obtain linear convergent
performance. Hauser et al. propose sampling-
based motion planners of Lazy-PRM* and Lazy-
RRG*, which use a lazy strategy to eliminate most
collision checks [16]. However, above methods do
not take into account UAV kinematic and
dynamical models, and are not applicable for high
speed flight. To solve the problem, Ye et al.
propose an efficient KRRT* framework on the
basis of topological sampling [36].

In terms of trajectory optimization, the process is
coupled with UAV internal and workspace
constraints. Leobardo et al. fuse sampling-based
methods and QP-based optimization, so that
dynamic constraints of a robot are fully considered
for generating time varying trajectories [2]. A
practical path planning method is designed in [3]
on the basis of Bezier curves, so as to operate
autonomous vehicles under waypoint and
corridor constraints. UAV surrounding
environments are decomposed into convex
regions by Watterson et al. to form motion
constrains, and a feasible trajectory is then
generated in these regions with avoiding obstacles
[33].

To improve safety of trajectory optimization,
researchers propose flight corridor based methods.
Preiss et al. find dynamically feasible trajectories
in a series of connected convex polyhedra that
represent free spaces of environments, showing
optimized trajectories have more accurate naviga-
tion performance [28]. Dhullipalla et al. select
trajectories to satisfy given initial and final states,
and then treat trajectory generation as an optimal
control problem [5]. A streaming safe corridor
approach is proposed in [32] to compute optimize
trajectories, which is through a constrained
optimization problem. Based on constraints of
flight corridors, adequate safety of trajectories can
be guaranteed in conventional environments.

Speed and time constraints also should be
considered in trajectory optimization. Escamilla et
al. generate a temporally parameterized smooth
trajectory by splicing multiple Bezier curves to
form an optimal 4D trajectory [6]. A sixth-order
Bezier curve is introduced in [35] to reduce
curvature, where output of the path planner is
smoothed by adjusting rotation. Special spline
planning can also be designed for generating
smooth paths, as shown in [11]. Beul et al. design a
specific control input pattern in optimal control, so
as to determine a minimum time trajectory of two
state transition [1]. Nieuwenhuisen et al. design a

local optimization method for mesh-based
path planning, making a collision-free path
and ensuring smoothness of continuous
curvature transition [26]. Delingette et al.
design a continuous curvature trajectory
generation strategy, which is based on
trajectory deformation by energy
minimization and solves general geometric
constraints [4]. As a consequence, efficient
optimization guarantees quality of
trajectories by considering various
constraints.

3. Sampling-based
Kinodynamic Trajectory
Generation

According to property of differential flatness,
the UAV state space model is shown as
follows [24]:

 () () (),t t t X AX BU (1)

3 3 3 3 3

3 3 3 3 3

() ()t p t 

 

   
        
      

， ，
0 I 0

U
0 0 I

A B ,

where ()tp represents the 3D position of the
UAV, ()tX denote the UAV state vector that
contains 3D position and velocity:

() [(), ()]Tt t t X p p (2)

and ()tU denotes the control input vector
relates to translational accelerations:

 () [(), (), ()] .T
x y z

t u t u t u tU (3)

The linear system model (1) brings much
convenience for considering constraints of
nonlinear terms and subsequent optimization
calculation.

3.1 KRRT* Trajectories

For UAVs flying in complex environments,
kinodynamic motion planning is introduced
to obtain initial trajectories with collision-free
and smoothness. Kinodynamic motion
planning is mainly divided into two patterns
of search-based and sampling-based, and the
sampling-based pattern is adopted by
considering distribution of obstacles in dense
environ-ments.

As shown in [36], calculating an optimal
trajectory between two nodes is equivalent to
solving the two point boundary value
problem (TPBVP) in optimal control by

(2)

and

optimization [13]. Informed RRT* is constructed in
[8] by utilizing directly informed sampling
techniques to obtain linear convergent
performance. Hauser et al. propose sampling-
based motion planners of Lazy-PRM* and Lazy-
RRG*, which use a lazy strategy to eliminate most
collision checks [16]. However, above methods do
not take into account UAV kinematic and
dynamical models, and are not applicable for high
speed flight. To solve the problem, Ye et al.
propose an efficient KRRT* framework on the
basis of topological sampling [36].

In terms of trajectory optimization, the process is
coupled with UAV internal and workspace
constraints. Leobardo et al. fuse sampling-based
methods and QP-based optimization, so that
dynamic constraints of a robot are fully considered
for generating time varying trajectories [2]. A
practical path planning method is designed in [3]
on the basis of Bezier curves, so as to operate
autonomous vehicles under waypoint and
corridor constraints. UAV surrounding
environments are decomposed into convex
regions by Watterson et al. to form motion
constrains, and a feasible trajectory is then
generated in these regions with avoiding obstacles
[33].

To improve safety of trajectory optimization,
researchers propose flight corridor based methods.
Preiss et al. find dynamically feasible trajectories
in a series of connected convex polyhedra that
represent free spaces of environments, showing
optimized trajectories have more accurate naviga-
tion performance [28]. Dhullipalla et al. select
trajectories to satisfy given initial and final states,
and then treat trajectory generation as an optimal
control problem [5]. A streaming safe corridor
approach is proposed in [32] to compute optimize
trajectories, which is through a constrained
optimization problem. Based on constraints of
flight corridors, adequate safety of trajectories can
be guaranteed in conventional environments.

Speed and time constraints also should be
considered in trajectory optimization. Escamilla et
al. generate a temporally parameterized smooth
trajectory by splicing multiple Bezier curves to
form an optimal 4D trajectory [6]. A sixth-order
Bezier curve is introduced in [35] to reduce
curvature, where output of the path planner is
smoothed by adjusting rotation. Special spline
planning can also be designed for generating
smooth paths, as shown in [11]. Beul et al. design a
specific control input pattern in optimal control, so
as to determine a minimum time trajectory of two
state transition [1]. Nieuwenhuisen et al. design a

local optimization method for mesh-based
path planning, making a collision-free path
and ensuring smoothness of continuous
curvature transition [26]. Delingette et al.
design a continuous curvature trajectory
generation strategy, which is based on
trajectory deformation by energy
minimization and solves general geometric
constraints [4]. As a consequence, efficient
optimization guarantees quality of
trajectories by considering various
constraints.

3. Sampling-based
Kinodynamic Trajectory
Generation

According to property of differential flatness,
the UAV state space model is shown as
follows [24]:

 () () (),t t t X AX BU (1)

3 3 3 3 3

3 3 3 3 3

() ()t p t 

 

   
        
      

， ，
0 I 0

U
0 0 I

A B ,

where ()tp represents the 3D position of the
UAV, ()tX denote the UAV state vector that
contains 3D position and velocity:

() [(), ()]Tt t t X p p (2)

and ()tU denotes the control input vector
relates to translational accelerations:

 () [(), (), ()] .T
x y z

t u t u t u tU (3)

The linear system model (1) brings much
convenience for considering constraints of
nonlinear terms and subsequent optimization
calculation.

3.1 KRRT* Trajectories

For UAVs flying in complex environments,
kinodynamic motion planning is introduced
to obtain initial trajectories with collision-free
and smoothness. Kinodynamic motion
planning is mainly divided into two patterns
of search-based and sampling-based, and the
sampling-based pattern is adopted by
considering distribution of obstacles in dense
environ-ments.

As shown in [36], calculating an optimal
trajectory between two nodes is equivalent to
solving the two point boundary value
problem (TPBVP) in optimal control by

 denotes the control input vector relates to
translational accelerations:

optimization [13]. Informed RRT* is constructed in
[8] by utilizing directly informed sampling
techniques to obtain linear convergent
performance. Hauser et al. propose sampling-
based motion planners of Lazy-PRM* and Lazy-
RRG*, which use a lazy strategy to eliminate most
collision checks [16]. However, above methods do
not take into account UAV kinematic and
dynamical models, and are not applicable for high
speed flight. To solve the problem, Ye et al.
propose an efficient KRRT* framework on the
basis of topological sampling [36].

In terms of trajectory optimization, the process is
coupled with UAV internal and workspace
constraints. Leobardo et al. fuse sampling-based
methods and QP-based optimization, so that
dynamic constraints of a robot are fully considered
for generating time varying trajectories [2]. A
practical path planning method is designed in [3]
on the basis of Bezier curves, so as to operate
autonomous vehicles under waypoint and
corridor constraints. UAV surrounding
environments are decomposed into convex
regions by Watterson et al. to form motion
constrains, and a feasible trajectory is then
generated in these regions with avoiding obstacles
[33].

To improve safety of trajectory optimization,
researchers propose flight corridor based methods.
Preiss et al. find dynamically feasible trajectories
in a series of connected convex polyhedra that
represent free spaces of environments, showing
optimized trajectories have more accurate naviga-
tion performance [28]. Dhullipalla et al. select
trajectories to satisfy given initial and final states,
and then treat trajectory generation as an optimal
control problem [5]. A streaming safe corridor
approach is proposed in [32] to compute optimize
trajectories, which is through a constrained
optimization problem. Based on constraints of
flight corridors, adequate safety of trajectories can
be guaranteed in conventional environments.

Speed and time constraints also should be
considered in trajectory optimization. Escamilla et
al. generate a temporally parameterized smooth
trajectory by splicing multiple Bezier curves to
form an optimal 4D trajectory [6]. A sixth-order
Bezier curve is introduced in [35] to reduce
curvature, where output of the path planner is
smoothed by adjusting rotation. Special spline
planning can also be designed for generating
smooth paths, as shown in [11]. Beul et al. design a
specific control input pattern in optimal control, so
as to determine a minimum time trajectory of two
state transition [1]. Nieuwenhuisen et al. design a

local optimization method for mesh-based
path planning, making a collision-free path
and ensuring smoothness of continuous
curvature transition [26]. Delingette et al.
design a continuous curvature trajectory
generation strategy, which is based on
trajectory deformation by energy
minimization and solves general geometric
constraints [4]. As a consequence, efficient
optimization guarantees quality of
trajectories by considering various
constraints.

3. Sampling-based
Kinodynamic Trajectory
Generation

According to property of differential flatness,
the UAV state space model is shown as
follows [24]:

 () () (),t t t X AX BU (1)

3 3 3 3 3

3 3 3 3 3

() ()t p t 

 

   
        
      

， ，
0 I 0

U
0 0 I

A B ,

where ()tp represents the 3D position of the
UAV, ()tX denote the UAV state vector that
contains 3D position and velocity:

() [(), ()]Tt t t X p p (2)

and ()tU denotes the control input vector
relates to translational accelerations:

 () [(), (), ()] .T
x y z

t u t u t u tU (3)

The linear system model (1) brings much
convenience for considering constraints of
nonlinear terms and subsequent optimization
calculation.

3.1 KRRT* Trajectories

For UAVs flying in complex environments,
kinodynamic motion planning is introduced
to obtain initial trajectories with collision-free
and smoothness. Kinodynamic motion
planning is mainly divided into two patterns
of search-based and sampling-based, and the
sampling-based pattern is adopted by
considering distribution of obstacles in dense
environ-ments.

As shown in [36], calculating an optimal
trajectory between two nodes is equivalent to
solving the two point boundary value
problem (TPBVP) in optimal control by

(3)

The linear system model brings much convenience
for considering constraints of nonlinear terms and
subsequent optimization calculation.

3.1. KRRT* Trajectories
For UAVs flying in complex environments, kinody-
namic motion planning is introduced to obtain ini-

Information Technology and Control 2023/3/52668

tial trajectories with collision-free and smoothness.
Kinodynamic motion planning is mainly divided into
two patterns of search-based and sampling-based, and
the sampling-based pattern is adopted by considering
distribution of obstacles in dense environ-ments.

Algorithm 1. KRRT* Expansion

1: Notation: Environment E, State X, Tree

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

, Time t
2: Initialize:

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

3: if KRRT* (

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,new gX X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

) then
4: whlie

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

 do
5:

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

TopologyGraph (

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

)
6:

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

 Sample (

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

)

7:

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Nearest (

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

)
8: if

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

 Parent (

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

) then
9: if GoalConnect (

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

) then
10: ReachGoal ()
11: end if
12: end if
13:

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Time ()
14: end while
15:

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

16: else
17: Repeat (N)
18: end if
19:

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Extend (

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

)
20: Repeat (1)
21:

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

PathExtract (

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

)
22: if Judge (T) then
23:

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Quintic polynomial (

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

)
24: end if
25: return

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

As shown in [36], calculating an optimal trajectory
between two nodes is equivalent to solving the two
point boundary value problem (TPBVP) in optimal
control by minimizing the objective function:

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

, (4)

where

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

 represents the process cost function,

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

 denotes the total process cost.
Constraints for are

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

(5)

where

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

 is the differential constraint, and

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

 and

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

 relate to collision free states.
Let the Hamiltonian function be

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

(6)

and it can be obtained from (6) that [36]

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

(7)

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

, (8)

where

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

 is the position obtained by solving the op-
timal control problem,

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

 is resultant inputs, and
ck, x represents coefficients.

3.2. Polynomial Trajectories

For polynomial trajectories, low-order ones are with
smoothness but may lead to discontinuous accelera-
tion. To obtain a continuous acceleration trajectory
while considering initial and terminal conditions,
quintic polynomial trajectories are combined for
UAV motion planning, as used for the pre-optimized
trajectories in [37]. The trajectory in the x direction
can be expressed as

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

(9)

and trajectories in y and z directions are represented
similarly to (9).

669Information Technology and Control 2023/3/52

With (4)-(8), initial-final state and dynamics con-
straints are considered, and topological sampling is
utilized to guide generation of the trajectory tree for
reasonable path topology.

3.3. KRRT* Expansion
Based on [36], a KRRT* trajectory expansion algo-
rithm is designed to find local trajectory. For complex
environments, KRRT* is utilized to provide high qual-
ity trajectories with satisfying UAV kinematic and
dynamical constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic polynomi-
al planning is used to complete collision-free trajecto-
ries, and it is also used for sparse environments. A tra-
jectory tree can grow by a topology-guided sampling
strategy, as described in [36].
Figure 1 shows UAV flight processes by the designed
KRRT* expansion algorithm, which is described in
Algorithm 1. Running time t and a trajectory tree

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

Algorithm 1 KRRT* Expansion
1: Notation: Environment  , State X , Tree

 , Time t
2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

Figure 1
The diagram for UAV flight processes by the designed
KRRT* expansion algorithm.

Sample Region Graph EdgeGraph Vertex Optimal Path

KRRT* Trajectory Quintic Polynomial Trajectory

expanding from the initial state Xs are initialized, and
terminal condition is set as t exceeds preset time tmax (Lines 2-4). A topology guided graph is constructed
based on environment E that starts at Xs and ends at
the goal state Xg(Lines 5-6). Then, new state point
Xnew is sampled according to structure of the topolo-
gy guided graph. Moreover, a set of nearest neighbor
nodes

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

 is searched with radius r from Xnew, and Xp is chosen from

minimizing the objective function:

0

(()) (, (), (), ()) ()C t M t t t t d t  X X U


X , (4)

where ()M  represents the process cost function,
(())C X t denotes the total process cost.

Constraints for (4) are

0 1

(, ,) () 0,

(0) , () ,

() , ()
free free

f t t

t t

       

X U X
X X X X
X U

 (5)

where (, ,)f t X U is the differential constraint, and
free

 and
free

 relate to collision free states.

Let the Hamiltonian function be

 (, , ,) ()TH t M  X f U (6)

and it can be obtained from (6) that [36]

 * 3 2
,3 ,2 ,1 ,0

1 1
() ,

6 2k k k k k
p t c t c t c t c    (7)

 *
,3 ,2

() , { , , }
k k k

u t c t c k x y z   , (8)

where *()
k

p t is the position obtained by
solving the optimal control problem, *()

k
u t is

resultant inputs, and
,k

c  represents
coefficients.

3.2 Polynomial Trajectories

For polynomial trajectories, low-order ones
are with smoothness but may lead to
discontinuous acceleration. To obtain a
continuous acceleration trajectory while
considering initial and terminal conditions,
quintic polynomial trajectories are combined
for UAV motion planning, as used for the
pre-optimized trajectories in [37]. The
trajectory in the x direction can be expressed
as

5 4 3 2

5 4 3 2 1 0
5 4 3 2

5 4 3 2 1 0

()

[1][]T
x t a t a t a t a t a t a

t t t t t a a a a a a

     


 (9)

and trajectories in y and z directions are
represented similarly to (9).

With (4)-(8), initial-final state and dynamics
constraints are considered, and topological
sampling is utilized to guide generation of
the trajectory tree for reasonable path
topology.

3.3 KRRT* Expansion

Based on [36], a KRRT* trajectory expansion
algorithm is designed to find local trajectory.
For complex environments, KRRT* is utilized
to provide high quality trajectories with
satisfying UAV kinematic and dynamical
constraints, and KRRT* is also chosen for
global guidance. On the other hand, quintic
polynomial planning is used to complete
collision-free trajectories, and it is also used
for sparse environments. A trajectory tree can
grow by a topology-guided sampling
strategy, as described in [36].

Figure 1 shows UAV flight processes by the
designed KRRT* expansion algorithm, which
is described in Algorithm 1. Running time t


s

X are initialized, and terminal
condition is set as t

max
t

E that starts at
s

X and ends at the goal
state

g
X

new
X is sampled according to structure

of the topology guided graph. Moreover, a

1: Notation: Environment  , State X , Tree
 , Time t

2: Initialize: 0, { }t    sX
3: if KRRT* (,

s cg
X X) then

4: whlie
max

t t do
5:  TopologyGraph (, ,

s cg
X X)

6:
new

X Sample ()
7:

near
 Nearest (, ,

new
r X)

8: if
p
X Parent (, ,

new near
X ) then

9: if GoalConnect (,
new g

X X) then
10: ReachGoal ()
11: end if
12: end if
13: t  Time ()
14: end while
15: Plan  True
16: else
17: Repeat (N)
18: end if
19:

max
t Extend (

max
t)

20: Repeat (1)
21: path  PathExtract (

f
X)

22: if Judge (T) then
23: path  Quintic polynomial (,

f t
P P)

24: end if
25: return path

 as the parent node of Xnew (Lines
7-8). When Xnew is less than a certain distance from
Xg, a collision-free trajectory from Xs to final node Xf

is obtained by solving TPBVP to satisfy state con-
straints (Lines 9-10).
Moreover, if above process fails, it is repeated by N
times, and then the trajectory is generated if it suc-
ceeds (Line 17). If the trajectory still cannot be ob-
tained, flight time is extended twice to repeat the
process again (Lines 19-21). Since distance exists
between final position Pf

of the KRRT* trajectory and
desired position Pg

of Xg, a quintic polynomial trajec-
tory is generated to bring UAV to Pg (Lines 22-24).

3.4. Optimization Framework with KRRT*
The designed optimization framework is described in
Algorithm 2, and Figure 2 shows corresponding tra-
jectory adjustment. KRRT* is first used to calculate a
global guided trajectory Γ from starting position Ps to
the global target position G*, and initial state informa-
tion ξ0 of the trajectory is extracted (Lines 2-3). Then,

Algorithm 2. State Optimization with KRRT*

1: Notation: Global Goal G*, Local Goal G, Control
Points Q,Time t0, t1, t2
2: Initialize: Γ ← FindGlobalTrajectory (Ps, G*)
3: ξ0 ← StateExtract (t0, Γ)
4: Q ← FindLocalIntial (Ps, G)
5: while Collitioncheck (ε, Q) do
6: Q ← TopologyOptimization (ε, Q)

7: end while
8: if CheckFeasible (Q)
9: Δt ← AllocateTime (Q)
10: Q ← Reoptimization (Q)
11: end if
12: ξ1 ←Update (t1, Q)
13: Q ← YawAngleOptimization (Q)
14: ξ2 ←Update (t2, Q)
15: return Q

Figure 2
The diagram for flight trajectory adjustment before and
after Algorithm 2

near
 is searched with

radius r from
new

X , and p
X is chosen from

near
 as

the parent node of
new

X (Lines 7-8). When
new

X is
less than a certain distance from

g
X , a collision-

free trajectory from
s

X to final node f
X is obtained

by solving TPBVP to satisfy state constraints
(Lines 9-10).

Moreover, if above process fails, it is repeated
by N times, and then the trajectory is generated if
it succeeds (Line 17). If the trajectory still cannot
be obtained, flight time is extended twice to repeat
the process again (Lines 19-21). Since distance
exists between final position

f
P of the KRRT*

trajectory and desired position g
P of g

X , a quintic
polynomial trajectory is generated to bring UAV
to

g
P (Lines 22-24).

3.4 Optimization Framework with KRRT*

The designed optimization framework is
described in Algorithm 2, and Figure 2 shows
corresponding trajectory adjustment. KRRT* is
first used to calculate a global guided
trajectory from starting position

s
P to the global

target position *G , and initial state
information

0
 of the trajectory is extracted (Lines

2-3). Then, Algorithm 1 is used to generate a local
trajectory from

s
P to local target positionG , and

initial control points Q are calculated. The
trajectory planning method [40] is used to

optimize two topological trajectories in
different threads separately to select low cost
trajectory (Lines 4-7). If control
points Q satisfy feasibility constraints, they
are time reallocated and reoptimized, and
state information

1
 of the trajectory is

obtained (Lines 8-12). Yaw angle
optimization is utilized for Q , and latest
state information

2
 of the trajectory is

obtained (Lines 13-14).

Although Algorithm 2 takes more time to
generate an initial trajectory compared with
EGO [39] and considers less for optimality of
generated trajectories, it takes less time for
optimization. Moreover, and initial trajectory
by Algorithm 2 is close to the optimal one,
thus the optimizer in the paper is faster to
find best results, as shown in Section 6.1.

4. Trajectory Optimization
In the section, an initial trajectory is
parameterized as a uniform B-spline
trajectory. Then, an unconstrained trajectory
optimization problem is developed, and a
final execution trajectory is thus solved.
4.1 Objective functions for B-spline
A B-spline trajectory is determined by order
k , 1n  control points

0 1 2
{ , , ,... }

n
Q Q Q Q , and

a knot vector
0 1

[, ,...,]
M

t t t , where 3
i
 Q ,

m
t   , and 1M n k   . The knot span of
a uniform B-spline trajectory is denoted as

1m m m

t t t    . (10)

Control points of velocity, acceleration, and
jerk can be expressed as

 1 1 1 .i i i i i i
i i it t t

    
  

  
, ,

Q Q V V A A
V A J (11)

An objective function for trajectory

Occupied Area Goal

FOV

Risk Area

2t

2t

1t

 Algorithm 2 State Optimization with KRRT*

1: Notation: Global Goal *G , Local GoalG ,
Control Points Q ,Time

0 1 2
, ,t t t

2: Initialize:  FindGlobalTrajectory (*,
s
GP)

3:
0
 StateExtract (

0
,t )

4: Q FindLocalIntial (,
s
GP)

5: while Collitioncheck (Q) do
6: Q TopologyOptimization (,Q)
7: end while
8: if CheckFeasible (Q)
9:  t AllocateTime (Q)

10: Q Reoptimization (Q)
11: end if
12:

1
 Update (

1
,t Q)

13: Q YawAngleOptimization (Q)
14:

2
 Update (

2
,t Q)

15: return Q

Figure 3
The diagram of trajectory adjustment with a local
A* algorithm.

Start

Goal

Optimal Tajectory
A* Path

B-spline
2i−Q

1i−Q

iQ

+1iQ

2 2i i− −p 

i ip 

1 1i i− −p 

1 1i i p 

Algorithm 1 is used to generate a local trajectory from
Ps to local target position G, and initial control points
Q are calculated. The trajectory planning method [40]
is used to optimize two topological trajectories in dif-
ferent threads separately to select low cost trajectory
(Lines 4-7). If control points Q satisfy feasibility con-
straints, they are time reallocated and reoptimized,
and state information ξ1 of the trajectory is obtained
(Lines 8-12). Yaw angle optimization is utilized for Q,
and latest state information ξ2of the trajectory is ob-
tained (Lines 13-14).

Information Technology and Control 2023/3/52670

Figure 3
The diagram of trajectory adjustment with a local A*
algorithm

Although Algorithm 2 takes more time to generate an
initial trajectory compared with EGO [39] and con-
siders less for optimality of generated trajectories, it
takes less time for optimization. Moreover, and initial
trajectory by Algorithm 2 is close to the optimal one,
thus the optimizer in the paper is faster to find best
results, as shown in Section 6.1.

4. Trajectory Optimization
In the section, an initial trajectory is parameterized
as a uniform B-spline trajectory. Then, an uncon-
strained trajectory optimization problem is devel-
oped, and a final execution trajectory is thus solved.

4.1. Objective Functions for B-spline
A B-spline trajectory is determined by order k, n +1
control points {Q0, Q1, Q2, ..., Qn), and a knot vector [t0,
t1, ... tM, where

near
 is searched with

radius r from
new

X , and p
X is chosen from

near
 as

the parent node of
new

X (Lines 7-8). When
new

X is
less than a certain distance from

g
X , a collision-

free trajectory from
s

X to final node f
X is obtained

by solving TPBVP to satisfy state constraints
(Lines 9-10).

Moreover, if above process fails, it is repeated
by N times, and then the trajectory is generated if
it succeeds (Line 17). If the trajectory still cannot
be obtained, flight time is extended twice to repeat
the process again (Lines 19-21). Since distance
exists between final position

f
P of the KRRT*

trajectory and desired position g
P of g

X , a quintic
polynomial trajectory is generated to bring UAV
to

g
P (Lines 22-24).

3.4 Optimization Framework with KRRT*

The designed optimization framework is
described in Algorithm 2, and Figure 2 shows
corresponding trajectory adjustment. KRRT* is
first used to calculate a global guided
trajectory from starting position

s
P to the global

target position *G , and initial state
information

0
 of the trajectory is extracted (Lines

2-3). Then, Algorithm 1 is used to generate a local
trajectory from

s
P to local target positionG , and

initial control points Q are calculated. The
trajectory planning method [40] is used to

optimize two topological trajectories in
different threads separately to select low cost
trajectory (Lines 4-7). If control
points Q satisfy feasibility constraints, they
are time reallocated and reoptimized, and
state information

1
 of the trajectory is

obtained (Lines 8-12). Yaw angle
optimization is utilized for Q , and latest
state information

2
 of the trajectory is

obtained (Lines 13-14).

Although Algorithm 2 takes more time to
generate an initial trajectory compared with
EGO [39] and considers less for optimality of
generated trajectories, it takes less time for
optimization. Moreover, and initial trajectory
by Algorithm 2 is close to the optimal one,
thus the optimizer in the paper is faster to
find best results, as shown in Section 6.1.

4. Trajectory Optimization
In the section, an initial trajectory is
parameterized as a uniform B-spline
trajectory. Then, an unconstrained trajectory
optimization problem is developed, and a
final execution trajectory is thus solved.
4.1 Objective functions for B-spline
A B-spline trajectory is determined by order
k , 1n  control points

0 1 2
a knot vector

0 1
[, ,...,]

M
t t t , where 3

i
 Q ,

m
t   , and 1M n k   . The knot span of
a uniform B-spline trajectory is denoted as

1m m m

t t t    . (10)

Control points of velocity, acceleration, and
jerk can be expressed as

 1 1 1 .i i i i i i
i i it t t

    
  

  
, ,

Q Q V V A A
V A J (11)

An objective function for trajectory

Occupied Area Goal

FOV

Risk Area

2t

2t

1t

 Algorithm 2 State Optimization with KRRT*

1: Notation: Global Goal *G , Local GoalG ,
Control Points Q ,Time

0 1 2
, ,t t t

2: Initialize:  FindGlobalTrajectory (*,
s
GP)

3:
0
 StateExtract (

0
,t )

4: Q FindLocalIntial (,
s
GP)

5: while Collitioncheck (Q) do
6: Q TopologyOptimization (,Q)
7: end while
8: if CheckFeasible (Q)
9:  t AllocateTime (Q)

10: Q Reoptimization (Q)
11: end if
12:

1
 Update (

1
,t Q)

13: Q YawAngleOptimization (Q)
14:

2
 Update (

2
,t Q)

15: return Q

Figure 3
The diagram of trajectory adjustment with a local
A* algorithm.

Start

Goal

Optimal Tajectory
A* Path

B-spline
2i−Q

1i−Q

iQ

+1iQ

2 2i i− −p 

i ip 

1 1i i− −p 

1 1i i p 

,

near
 is searched with

radius r from
new

X , and p
X is chosen from

near
 as

the parent node of
new

X (Lines 7-8). When
new

X is
less than a certain distance from

g
X , a collision-

free trajectory from
s

X to final node f
X is obtained

by solving TPBVP to satisfy state constraints
(Lines 9-10).

Moreover, if above process fails, it is repeated
by N times, and then the trajectory is generated if
it succeeds (Line 17). If the trajectory still cannot
be obtained, flight time is extended twice to repeat
the process again (Lines 19-21). Since distance
exists between final position

f
P of the KRRT*

trajectory and desired position g
P of g

X , a quintic
polynomial trajectory is generated to bring UAV
to

g
P (Lines 22-24).

3.4 Optimization Framework with KRRT*

The designed optimization framework is
described in Algorithm 2, and Figure 2 shows
corresponding trajectory adjustment. KRRT* is
first used to calculate a global guided
trajectory from starting position

s
P to the global

target position *G , and initial state
information

0
 of the trajectory is extracted (Lines

2-3). Then, Algorithm 1 is used to generate a local
trajectory from

s
P to local target positionG , and

initial control points Q are calculated. The
trajectory planning method [40] is used to

optimize two topological trajectories in
different threads separately to select low cost
trajectory (Lines 4-7). If control
points Q satisfy feasibility constraints, they
are time reallocated and reoptimized, and
state information

1
 of the trajectory is

obtained (Lines 8-12). Yaw angle
optimization is utilized for Q , and latest
state information

2
 of the trajectory is

obtained (Lines 13-14).

Although Algorithm 2 takes more time to
generate an initial trajectory compared with
EGO [39] and considers less for optimality of
generated trajectories, it takes less time for
optimization. Moreover, and initial trajectory
by Algorithm 2 is close to the optimal one,
thus the optimizer in the paper is faster to
find best results, as shown in Section 6.1.

4. Trajectory Optimization
In the section, an initial trajectory is
parameterized as a uniform B-spline
trajectory. Then, an unconstrained trajectory
optimization problem is developed, and a
final execution trajectory is thus solved.
4.1 Objective functions for B-spline
A B-spline trajectory is determined by order
k , 1n  control points

0 1 2
a knot vector

0 1
[, ,...,]

M
t t t , where 3

i
 Q ,

m
t   , and 1M n k   . The knot span of
a uniform B-spline trajectory is denoted as

1m m m

t t t    . (10)

Control points of velocity, acceleration, and
jerk can be expressed as

 1 1 1 .i i i i i i
i i it t t

    
  

  
, ,

Q Q V V A A
V A J (11)

An objective function for trajectory

Occupied Area Goal

FOV

Risk Area

2t

2t

1t

 Algorithm 2 State Optimization with KRRT*

1: Notation: Global Goal *G , Local GoalG ,
Control Points Q ,Time

0 1 2
, ,t t t

2: Initialize:  FindGlobalTrajectory (*,
s
GP)

3:
0
 StateExtract (

0
,t )

4: Q FindLocalIntial (,
s
GP)

5: while Collitioncheck (Q) do
6: Q TopologyOptimization (,Q)
7: end while
8: if CheckFeasible (Q)
9:  t AllocateTime (Q)

10: Q Reoptimization (Q)
11: end if
12:

1
 Update (

1
,t Q)

13: Q YawAngleOptimization (Q)
14:

2
 Update (

2
,t Q)

15: return Q

Figure 3
The diagram of trajectory adjustment with a local
A* algorithm.

Start

Goal

Optimal Tajectory
A* Path

B-spline
2i−Q

1i−Q

iQ

+1iQ

2 2i i− −p 

i ip 

1 1i i− −p 

1 1i i p 

, and M = n + k + 1. The
knot span of a uniform B-spline trajectory is denoted
as

near
 is searched with

radius r from
new

X , and p
X is chosen from

near
 as

the parent node of
new

X (Lines 7-8). When
new

X is
less than a certain distance from

g
X , a collision-

free trajectory from
s

X to final node f
X is obtained

by solving TPBVP to satisfy state constraints
(Lines 9-10).

Moreover, if above process fails, it is repeated
by N times, and then the trajectory is generated if
it succeeds (Line 17). If the trajectory still cannot
be obtained, flight time is extended twice to repeat
the process again (Lines 19-21). Since distance
exists between final position

f
P of the KRRT*

trajectory and desired position g
P of g

X , a quintic
polynomial trajectory is generated to bring UAV
to

g
P (Lines 22-24).

3.4 Optimization Framework with KRRT*

The designed optimization framework is
described in Algorithm 2, and Figure 2 shows
corresponding trajectory adjustment. KRRT* is
first used to calculate a global guided
trajectory from starting position

s
P to the global

target position *G , and initial state
information

0
 of the trajectory is extracted (Lines

2-3). Then, Algorithm 1 is used to generate a local
trajectory from

s
P to local target positionG , and

initial control points Q are calculated. The
trajectory planning method [40] is used to

optimize two topological trajectories in
different threads separately to select low cost
trajectory (Lines 4-7). If control
points Q satisfy feasibility constraints, they
are time reallocated and reoptimized, and
state information

1
 of the trajectory is

obtained (Lines 8-12). Yaw angle
optimization is utilized for Q , and latest
state information

2
 of the trajectory is

obtained (Lines 13-14).

Although Algorithm 2 takes more time to
generate an initial trajectory compared with
EGO [39] and considers less for optimality of
generated trajectories, it takes less time for
optimization. Moreover, and initial trajectory
by Algorithm 2 is close to the optimal one,
thus the optimizer in the paper is faster to
find best results, as shown in Section 6.1.

4. Trajectory Optimization
In the section, an initial trajectory is
parameterized as a uniform B-spline
trajectory. Then, an unconstrained trajectory
optimization problem is developed, and a
final execution trajectory is thus solved.
4.1 Objective functions for B-spline
A B-spline trajectory is determined by order
k , 1n  control points

0 1 2
a knot vector

0 1
[, ,...,]

M
t t t , where 3

i
 Q ,

m
t   , and 1M n k   . The knot span of
a uniform B-spline trajectory is denoted as

1m m m

t t t    . (10)

Control points of velocity, acceleration, and
jerk can be expressed as

 1 1 1 .i i i i i i
i i it t t

    
  

  
, ,

Q Q V V A A
V A J (11)

An objective function for trajectory

Occupied Area Goal

FOV

Risk Area

2t

2t

1t

 Algorithm 2 State Optimization with KRRT*

1: Notation: Global Goal *G , Local GoalG ,
Control Points Q ,Time

0 1 2
, ,t t t

2: Initialize:  FindGlobalTrajectory (*,
s
GP)

3:
0
 StateExtract (

0
,t )

4: Q FindLocalIntial (,
s
GP)

5: while Collitioncheck (Q) do
6: Q TopologyOptimization (,Q)
7: end while
8: if CheckFeasible (Q)
9:  t AllocateTime (Q)

10: Q Reoptimization (Q)
11: end if
12:

1
 Update (

1
,t Q)

13: Q YawAngleOptimization (Q)
14:

2
 Update (

2
,t Q)

15: return Q

Figure 3
The diagram of trajectory adjustment with a local
A* algorithm.

Start

Goal

Optimal Tajectory
A* Path

B-spline
2i−Q

1i−Q

iQ

+1iQ

2 2i i− −p 

i ip 

1 1i i− −p 

1 1i i p 

(10)

Control points of velocity, acceleration, and jerk can
be expressed as

near
 is searched with

radius r from
new

X , and p
X is chosen from

near
 as

the parent node of
new

X (Lines 7-8). When
new

X is
less than a certain distance from

g
X , a collision-

free trajectory from
s

X to final node f
X is obtained

by solving TPBVP to satisfy state constraints
(Lines 9-10).

Moreover, if above process fails, it is repeated
by N times, and then the trajectory is generated if
it succeeds (Line 17). If the trajectory still cannot
be obtained, flight time is extended twice to repeat
the process again (Lines 19-21). Since distance
exists between final position

f
P of the KRRT*

trajectory and desired position g
P of g

X , a quintic
polynomial trajectory is generated to bring UAV
to

g
P (Lines 22-24).

3.4 Optimization Framework with KRRT*

The designed optimization framework is
described in Algorithm 2, and Figure 2 shows
corresponding trajectory adjustment. KRRT* is
first used to calculate a global guided
trajectory from starting position

s
P to the global

target position *G , and initial state
information

0
 of the trajectory is extracted (Lines

2-3). Then, Algorithm 1 is used to generate a local
trajectory from

s
P to local target positionG , and

initial control points Q are calculated. The
trajectory planning method [40] is used to

optimize two topological trajectories in
different threads separately to select low cost
trajectory (Lines 4-7). If control
points Q satisfy feasibility constraints, they
are time reallocated and reoptimized, and
state information

1
 of the trajectory is

obtained (Lines 8-12). Yaw angle
optimization is utilized for Q , and latest
state information

2
 of the trajectory is

obtained (Lines 13-14).

Although Algorithm 2 takes more time to
generate an initial trajectory compared with
EGO [39] and considers less for optimality of
generated trajectories, it takes less time for
optimization. Moreover, and initial trajectory
by Algorithm 2 is close to the optimal one,
thus the optimizer in the paper is faster to
find best results, as shown in Section 6.1.

4. Trajectory Optimization
In the section, an initial trajectory is
parameterized as a uniform B-spline
trajectory. Then, an unconstrained trajectory
optimization problem is developed, and a
final execution trajectory is thus solved.
4.1 Objective functions for B-spline
A B-spline trajectory is determined by order
k , 1n  control points

0 1 2
a knot vector

0 1
[, ,...,]

M
t t t , where 3

i
 Q ,

m
t   , and 1M n k   . The knot span of
a uniform B-spline trajectory is denoted as

1m m m

t t t    . (10)

Control points of velocity, acceleration, and
jerk can be expressed as

 1 1 1 .i i i i i i
i i it t t

    
  

  
, ,

Q Q V V A A
V A J (11)

An objective function for trajectory

Occupied Area Goal

FOV

Risk Area

2t

2t

1t

 Algorithm 2 State Optimization with KRRT*

1: Notation: Global Goal *G , Local GoalG ,
Control Points Q ,Time

0 1 2
, ,t t t

2: Initialize:  FindGlobalTrajectory (*,
s
GP)

3:
0
 StateExtract (

0
,t )

4: Q FindLocalIntial (,
s
GP)

5: while Collitioncheck (Q) do
6: Q TopologyOptimization (,Q)
7: end while
8: if CheckFeasible (Q)
9:  t AllocateTime (Q)

10: Q Reoptimization (Q)
11: end if
12:

1
 Update (

1
,t Q)

13: Q YawAngleOptimization (Q)
14:

2
 Update (

2
,t Q)

15: return Q

Figure 3
The diagram of trajectory adjustment with a local
A* algorithm.

Start

Goal

Optimal Tajectory
A* Path

B-spline
2i−Q

1i−Q

iQ

+1iQ

2 2i i− −p 

i ip 

1 1i i− −p 

1 1i i p 

(11)

An objective function for trajectory optimization is
denoted as

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

, (12)

where Ec, Es, and Edare penalty functions for collision,
smoothness, and feasibility, respectively, and λc, λs,
and λd are weights.

4.2. Improvement of Local A*
Inspired by [39], a local A* algorithm is used to provide
distance information for trajectory cost functions,
and thus control points of the trajectory are adjusted
by optimization. Cost function of an A* node position
pn(xn, yn, zn) can be expressed as

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

(13)

Height variation of A* path is minimized by redesign-
ing actual cost function ng :

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

(14)

where d(pn, pn–1) represents the distance between
neighbor nodes, and kn is

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

(15)

where

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

(16)

where ρ is a height factor, and h is maximum height
variation of A* nodes.
Figure 3 illustrates control point adjustment by lo-
cal A*, where blue areas are obstacles and gray areas
are occupied areas after obstacle expanding. Purple
points are initial control points corresponding to a
B-spline trajectory, and blue points are collision free
path points on obstacle surfaces searched by A*. The
red curve is an optimal trajectory after following op-
timization.

near
 is searched with

radius r from
new

X , and p
X is chosen from

near
 as

the parent node of
new

X (Lines 7-8). When
new

X is
less than a certain distance from

g
X , a collision-

free trajectory from
s

X to final node f
X is obtained

by solving TPBVP to satisfy state constraints
(Lines 9-10).

Moreover, if above process fails, it is repeated
by N times, and then the trajectory is generated if
it succeeds (Line 17). If the trajectory still cannot
be obtained, flight time is extended twice to repeat
the process again (Lines 19-21). Since distance
exists between final position

f
P of the KRRT*

trajectory and desired position g
P of g

X , a quintic
polynomial trajectory is generated to bring UAV
to

g
P (Lines 22-24).

3.4 Optimization Framework with KRRT*

The designed optimization framework is
described in Algorithm 2, and Figure 2 shows
corresponding trajectory adjustment. KRRT* is
first used to calculate a global guided
trajectory from starting position

s
P to the global

target position *G , and initial state
information

0
 of the trajectory is extracted (Lines

2-3). Then, Algorithm 1 is used to generate a local
trajectory from

s
P to local target positionG , and

initial control points Q are calculated. The
trajectory planning method [40] is used to

optimize two topological trajectories in
different threads separately to select low cost
trajectory (Lines 4-7). If control
points Q satisfy feasibility constraints, they
are time reallocated and reoptimized, and
state information

1
 of the trajectory is

obtained (Lines 8-12). Yaw angle
optimization is utilized for Q , and latest
state information

2
 of the trajectory is

obtained (Lines 13-14).

Although Algorithm 2 takes more time to
generate an initial trajectory compared with
EGO [39] and considers less for optimality of
generated trajectories, it takes less time for
optimization. Moreover, and initial trajectory
by Algorithm 2 is close to the optimal one,
thus the optimizer in the paper is faster to
find best results, as shown in Section 6.1.

4. Trajectory Optimization
In the section, an initial trajectory is
parameterized as a uniform B-spline
trajectory. Then, an unconstrained trajectory
optimization problem is developed, and a
final execution trajectory is thus solved.
4.1 Objective functions for B-spline
A B-spline trajectory is determined by order
k , 1n  control points

0 1 2
{ , , ,... }

n
Q Q Q Q , and

a knot vector
0 1

[, ,...,]
M

t t t , where 3
i
 Q ,

m
t   , and 1M n k   . The knot span of
a uniform B-spline trajectory is denoted as

1m m m

t t t    . (10)

Control points of velocity, acceleration, and
jerk can be expressed as

 1 1 1 .i i i i i i
i i it t t

    
  

  
, ,

Q Q V V A A
V A J (11)

An objective function for trajectory

Occupied Area Goal

FOV

Risk Area

2t

2t

1t

 Algorithm 2 State Optimization with KRRT*

1: Notation: Global Goal *G , Local GoalG ,
Control Points Q ,Time

0 1 2
, ,t t t

2: Initialize:  FindGlobalTrajectory (*,
s
GP)

3:
0
 StateExtract (

0
,t )

4: Q FindLocalIntial (,
s
GP)

5: while Collitioncheck (Q) do
6: Q TopologyOptimization (,Q)
7: end while
8: if CheckFeasible (Q)
9:  t AllocateTime (Q)

10: Q Reoptimization (Q)
11: end if
12:

1
 Update (

1
,t Q)

13: Q YawAngleOptimization (Q)
14:

2
 Update (

2
,t Q)

15: return Q

Start

Goal

Optimal Tajectory
A* Path

B-spline
2i−Q

1i−Q

iQ

+1iQ

2 2i i− −p 

i ip 

1 1i i− −p 

1 1i i p 

671Information Technology and Control 2023/3/52

4.3. Bending Radius
A UAV needs to stay within a certain distance from
obstacles to ensure safety, and distance (Qi - pi)

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

is
defined between a B-spline control point Qi and a col-
lision-free A* path point pi as

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

, (17)

where Lmin and Lmax are minimum and maximum val-
ues of allowed distance between UAV and obstacle
surface, respectively, and

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

 is a unit vector from Qi to
pi that points to obstacle surface.
As shown in Figure 4, bending radius r is introduced
to make a UAV consider potential oversteer risk for
safe turning. Bending radius is closely related to speed
and acceleration of a UAV, and following equation can
be derived:

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

. (18)

Moreover, a time constraint is introduced to suffi-
ciently ensure UAV safety:

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

(19)

Thus, the bending radius r is obtained:

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

(20)

which contains time term, velocity term, and realtime
distance for better collision avoidance.

4.4. Collision Penalty
To switch among collision penalty functions, a colli-
sion risk function Φ is defined by neglecting perpen-
dicular velocity component vz as

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

(21)

Figure 4
Schematic diagram considering potential unknown obstacles

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

Figure 5
Diagram for time reallocation and refinement

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

Then, by considering normal flight and turning, a pen-
alty function for single control point is designed as

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

(22)

where L: = (Qi - pi)

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

. Thus, total cost of collision is
obtained as

optimization is denoted as

 min
c c s s d dQ

E E E E     , (12)

where
c

E ,
s

E , and
d

E are penalty functions for
collision, smoothness, and feasibility, respectively,
and

c
 ,

s
 , and

d
 are weights.

4.2 Improvement of Local A*

Inspired by [39], a local A* algorithm is used to
provide distance information for trajectory cost
functions, and thus control points of the trajectory
are adjusted by optimization. Cost function of an
A* node position (, ,)

n n n n
x y zp can be expressed as

 = + .
n n n
f g h (13)

Height variation of A* path is minimized by
redesigning actual cost function

n
g :

 = + (,)+
n n-1 n n-1 n

g g d p p k (14)

where (,)
n n

d p p represents the distance between
neighbor nodes, and

n
k is

(), 0,

0, 0.
n

n

k n n
k

n


    

 (15)

where

 1

1

| |
() ()

| |
n n

n n

z zh
n

z z h
  




 


, (16)

where  is a height factor, and h is maximum
height variation of A* nodes.

Figure 3 illustrates control point adjustment by
local A*, where blue areas are obstacles and gray
areas are occupied areas after obstacle expanding.
Purple points are initial control points
corresponding to a B-spline trajectory, and blue
points are collision free path points on obstacle
surfaces searched by A*. The red curve is an
optimal trajectory after following optimization.
4.3 Bending Radius

A UAV needs to stay within a certain distance
from obstacles to ensure safety, and
distance ()

i i i
Q p  is defined between a B-spline

control point
i

Q and a collision-free A* path
point

i
p as

min max

()
i i i

L L  Q p  , (17)

where
min

L and
max

L are minimum and maximum
values of allowed distance between UAV and
obstacle surface, respectively, and

i
 is a unit

vector from
i

Q to
i

p that points to obstacle surface.

As shown in Figure 4, bending radius r is
introduced to make a UAV consider potential
oversteer risk for safe turning. Bending radius is
closely related to speed and acceleration of a UAV,
and following equation can be derived:

2

max 2
m

m

v
r

a
 (18)

Moreover, a time constraint is introduced to
sufficiently ensure UAV safety:

max

2()|| ||
.

|| || || ||cos(/4)

T
i i it




 

Q pv
a a

 (19)

Thus, the bending radius r is obtained:

max

2()1
|| ||().

2 || ||cos(/4)

T
i i ir t




 

Q p
v

a
 (20)

which contains time term, velocity term, and
realtime distance for better collision
avoidance.

4.4 Collision Penalty

To switch among collision penalty functions,
a collision risk function  is defined by
neglecting perpendicular velocity component

z
v as

max

.
(/)

x y

r

r r v v
 


 (21)

Then, by considering normal flight and
turning, a penalty function for single control
point is designed as

3
max max

3
max max

3 3
1 2 max max max

1 1
() , 0 ,
2 4

1 3
, ,

4 4
1 3

() ,
2 4

v

ci

v

v t L

e L

w L w v t L

                 
 (22)

where : ()
i i i

L   Q p . Thus, total cost of
collision is obtained as

1 1 1

()c c pN N N

c c i cii i j
E e e

  
   Q . (23)

Figure 4
Schematic diagram considering potential
unknown obstacles.

x

y

x
y

r

v

ip

(23)

where Np
is the pair number of each Qi matching with-

pi, and Nc is the number of control points for the local
trajectory.

Information Technology and Control 2023/3/52672

4.5. Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for both
initial trajectory and yaw angle optimization are de-
signed in this part to optimize trajectories progres-
sively. Firstly, there are jerk control points corre-
sponding to the initial trajectory from Algorithm 1,
which are minimized by

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

(24)

Then, when optimizing the yaw angle, both accelera-
tion control points and jerk control points are mini-
mized, guaranteeing smoothness of the trajectory:

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

(25)

Moreover, for feasibility objective, velocity and accel-
eration of a trajectory should be less than maximum
values, and feasibility penalty functions of two se-
quential stages are constructed. For optimizing initial
kinodynamic trajectory, as in Algorithm 1, a feasibili-
ty penalty function is first designed from both veloci-
ty and acceleration as

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

(26)

where F(·) is a continuous derivable function similar
to that in [39]. Then, for optimizing yaw angle, the
constraint on the velocity aspect is needed to prevent
UAV from danger due to large velocities:

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

(27)

4.6. Yaw Angle Penalty

Inspired by [38], the yaw angle ϕ(t) is optimized to be
smooth and dynamic feasible, which is parameter-
ized as a uniform B-spline curve with control points
Φ := {ϕ1, ϕ2, ϕ3, ..., ϕM} and knot span Δtϕ. To flight with
maximum bending radius, the cost function can be
designed as

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

(28)

The cost function for the i th control point ϕi can be
written as

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

, (29)

where Np
is the pair number of each ϕi matching with

pi. Thus, total cost for the yaw angle is

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

, (30)

where M is the number of control points for the local
trajectory.

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

, (31)

where

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

,

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

, and

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

 are weights, and it is noted that
Eθs and Eθd are smoothness and feasibility functions,
respectively, which are derived the same with Es and
Ed in Section 4.4.

5. Trajectory Refinement with Weight
Solving
5.1. Time Reallocation and Trajectory
Refinement
As shown in [39], exceeding ratio σ of trajectory veloc-
ity regarding to maximum permissible values needs
to be calculated. It is expanded in the proposed meth-
od for time reallocation to make the trajectory safer.
From the trajectory velocity Vi,r, the speed restriction
value vrestric is set as

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

, (32)

where {1,..., 1}
q

i N  ,

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

. Safety distance

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

 is designed as

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

, (33)

where dsafe is a safe distance from an obstacle, and
then exceeding ratio σ is calculated as

where
p

N is the pair number of each
i

Q matching
with

i
p , and

c
N is the number of control points for

the local trajectory.
4.5 Smoothness and Feasibility Penalty

Based on [39], smoothness penalty functions for
both initial trajectory and yaw angle optimization
are designed in this part to optimize trajectories
progressively. Firstly, there are jerk control points
corresponding to the initial trajectory from
Algorithm 1, which are minimized by

2

2

1

|| || .
N

s i
i

E




  J (24)

Then, when optimizing the yaw angle, both
acceleration control points and jerk control points
are minimized, guaranteeing smoothness of the
trajectory:

1 2

2 2

1 1

|| || || || .
N N

s i i
i i

E
 

 

  A J (25)

Moreover, for feasibility objective, velocity and
acceleration of a trajectory should be less than
maximum values, and feasibility penalty functions
of two sequential stages are constructed. For
optimizing initial kinodynamic trajectory, as in
Algorithm 1, a feasibility penalty function is first
designed from both velocity and acceleration as

1

1 1

() ()
N N

d v i A i
i i

E w F w F


 

  V A (26)

where ()F  is a continuous derivable function
similar to that in [39]. Then, for optimizing yaw
angle, the constraint on the velocity aspect is
needed to prevent UAV from danger due to large
velocities:

1

().
N

d i
i

E F


  V (27)

4.6 Yaw angle penalty

Inspired by [38], the yaw angle ()t is
optimized to be smooth and dynamic
feasible, which is parameterized as a uniform
B-spline curve with control points

1 2 3
: { }

M
        and knot span t . To
flight with maximum bending radius, the
cost function can be designed as

 3
max

() .
c

e r r  (28)

The cost function for the i th control
point

i
 can be written as

1

() pN

c i cij
e e 

  , (29)

where p
N is the pair number of each

i


matching with
i

p . Thus, total cost for the
yaw angle is

1

()
M

c c ii
E e 

   , (30)

where M is the number of control points for
the local trajectory.

 min +
c c s s d dQ

E E E E          , (31)

where
c ,

s , and
d are weights, and it is

noted that
s

E
and

d
E

are smoothness and
feasibility functions, respectively, which are
derived the same with

s
E and

d
E in Section

4.4.

5. Trajectory Refinement
with Weight Solving

5.1 Time Reallocation and Trajectory
Refinement

As shown in [39], exceeding ratio  of
trajectory velocity regarding to maximum
permissible values needs to be calculated. It
is expanded in the proposed method for time
reallocation to make the trajectory safer.
From the trajectory velocity

,i r
V , the speed

restriction value
restrict

v is set as

 max ,

,
max

()
sa

i

fe i r

i rrestr ct

r v
v

r


 

V
V , (32)

where {1,..., 1}
q

i N  , { , , }r x y z . Safety
distance safe

r is designed as

2 max

21
|| || ()

2 || ||cos(/4)
safe

safe

d
r t


 v

a
, (33)

where safe
d is a safe distance from an

obstacle, and then exceeding ratio  is
calculated as

 ,

max max

max{ , }.
a

restric j rt
v

v
 

A
 (34)

Figure 5
Diagram for time reallocation and refinement.

X
Y

0P

*
0P

*
1P

1P

*
2P

2P

3P

*
3P

new∆T new∆T new∆T

old∆T old∆T old∆T

old
new

(34)

673Information Technology and Control 2023/3/52

Thus, the knot span of the new trajectory ζnew can be
written as

Thus, the knot span of the new trajectory new can
be written as

 .
new old

T T   (35)

After adjusting knot span, the initial trajectory is
obtained by solving the least squares problem in
closed form.

Then, to refine the trajectory, a penalty function is
introduced to describe difference between two
curves:

2 21

2 20
() ,

h

X Y
E d

a b
   (36)

where X and Y represents horizontal and
vertical displacement of points on two
curves, respectively. Thus, objective function
of the trajectory after time reallocation is

 min ,
new s s h h d dQ

E E E E     (37)

where
h

 is a weight for
h

E . Geometric

Table 1
Comparison of this method with ego's trajectory generation, trajectory optimization, and total time.

init

T (ms) opt
T

(ms) all
T (ms)

 Density(obs./m2) Avg S.D. Avg S.D. Avg S.D.
 0.4 1.8 0.772 0.659 0.216 2.46 0.887

Proposed 0.32` 1.656 0.42 0.861 0.534 2.517 0.908
 0.24 1.707 0.702 0.913 0.495 2.458 1.138
 0.4 0.416 0.245 7.336 6.505 7.71 6.478

EGO 0.32 0.224 0.063 2.766 2.275 2.999 2.321
 0.24 0.265 0.135 5.297 2.964 5.554 2.964

Figure 7
Distribution of yaw angles in the two density
environments (left: in sparse obstacles, right: in dense
obstacles).

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Figure 8
UAV position and velocity in dense obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 9
UAV position and velocity in sparse obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6 7
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6 7
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 6
Visualized pictures for simulation comparison
between Ego [39] (left) and the proposed method
(right) in different density environments.

(35)

After adjusting knot span, the initial trajectory is ob-
tained by solving the least squares problem in closed
form.
Then, to refine the trajectory, a penalty function is in-
troduced to describe difference between two curves:

Thus, the knot span of the new trajectory new can
be written as

 .
new old

T T   (35)

After adjusting knot span, the initial trajectory is
obtained by solving the least squares problem in
closed form.

Then, to refine the trajectory, a penalty function is
introduced to describe difference between two
curves:

2 21

2 20
() ,

h

X Y
E d

a b
   (36)

where X and Y represents horizontal and
vertical displacement of points on two
curves, respectively. Thus, objective function
of the trajectory after time reallocation is

 min ,
new s s h h d dQ

E E E E     (37)

where
h

 is a weight for
h

E . Geometric

Table 1
Comparison of this method with ego's trajectory generation, trajectory optimization, and total time.

init

T (ms) opt
T

(ms) all
T (ms)

 Density(obs./m2) Avg S.D. Avg S.D. Avg S.D.
 0.4 1.8 0.772 0.659 0.216 2.46 0.887

Proposed 0.32` 1.656 0.42 0.861 0.534 2.517 0.908
 0.24 1.707 0.702 0.913 0.495 2.458 1.138
 0.4 0.416 0.245 7.336 6.505 7.71 6.478

EGO 0.32 0.224 0.063 2.766 2.275 2.999 2.321
 0.24 0.265 0.135 5.297 2.964 5.554 2.964

Figure 7
Distribution of yaw angles in the two density
environments (left: in sparse obstacles, right: in dense
obstacles).

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Figure 8
UAV position and velocity in dense obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 9
UAV position and velocity in sparse obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6 7
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6 7
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 6
Visualized pictures for simulation comparison
between Ego [39] (left) and the proposed method
(right) in different density environments.

 
, (36)

where X and Y represents horizontal and vertical dis-
placement of points on two curves, respectively. Thus,
objective function of the trajectory after time reallo-
cation is

Thus, the knot span of the new trajectory new can
be written as

 .
new old

T T   (35)

After adjusting knot span, the initial trajectory is
obtained by solving the least squares problem in
closed form.

Then, to refine the trajectory, a penalty function is
introduced to describe difference between two
curves:

2 21

2 20
() ,

h

X Y
E d

a b
   (36)

where X and Y represents horizontal and
vertical displacement of points on two
curves, respectively. Thus, objective function
of the trajectory after time reallocation is

 min ,
new s s h h d dQ

E E E E     (37)

where
h

 is a weight for
h

E . Geometric

Table 1
Comparison of this method with ego's trajectory generation, trajectory optimization, and total time.

init

T (ms) opt
T

(ms) all
T (ms)

 Density(obs./m2) Avg S.D. Avg S.D. Avg S.D.
 0.4 1.8 0.772 0.659 0.216 2.46 0.887

Proposed 0.32` 1.656 0.42 0.861 0.534 2.517 0.908
 0.24 1.707 0.702 0.913 0.495 2.458 1.138
 0.4 0.416 0.245 7.336 6.505 7.71 6.478

EGO 0.32 0.224 0.063 2.766 2.275 2.999 2.321
 0.24 0.265 0.135 5.297 2.964 5.554 2.964

Figure 7
Distribution of yaw angles in the two density
environments (left: in sparse obstacles, right: in dense
obstacles).

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Figure 8
UAV position and velocity in dense obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 9
UAV position and velocity in sparse obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6 7
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6 7
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 6
Visualized pictures for simulation comparison
between Ego [39] (left) and the proposed method
(right) in different density environments.

, (37)

where

Thus, the knot span of the new trajectory new can
be written as

 .
new old

T T   (35)

After adjusting knot span, the initial trajectory is
obtained by solving the least squares problem in
closed form.

Then, to refine the trajectory, a penalty function is
introduced to describe difference between two
curves:

2 21

2 20
() ,

h

X Y
E d

a b
   (36)

where X and Y represents horizontal and
vertical displacement of points on two
curves, respectively. Thus, objective function
of the trajectory after time reallocation is

 min ,
new s s h h d dQ

E E E E     (37)

where
h

 is a weight for
h

E . Geometric

Table 1
Comparison of this method with ego's trajectory generation, trajectory optimization, and total time.

init

T (ms) opt
T

(ms) all
T (ms)

 Density(obs./m2) Avg S.D. Avg S.D. Avg S.D.
 0.4 1.8 0.772 0.659 0.216 2.46 0.887

Proposed 0.32` 1.656 0.42 0.861 0.534 2.517 0.908
 0.24 1.707 0.702 0.913 0.495 2.458 1.138
 0.4 0.416 0.245 7.336 6.505 7.71 6.478

EGO 0.32 0.224 0.063 2.766 2.275 2.999 2.321
 0.24 0.265 0.135 5.297 2.964 5.554 2.964

Figure 7
Distribution of yaw angles in the two density
environments (left: in sparse obstacles, right: in dense
obstacles).

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Figure 8
UAV position and velocity in dense obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 9
UAV position and velocity in sparse obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6 7
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6 7
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 6
Visualized pictures for simulation comparison
between Ego [39] (left) and the proposed method
(right) in different density environments.

 is a weight for Eh. Geometric effectiveness of
new cost function and objective function is shown in
Figure 5, where the blue trajectory ζold is before refine-
ment and the red one ζnew is after adjusting knot span.

5.2. Weights Solving by Optimization
To solve the problem that weights in unconstrained
optimization are usually determined empirically in
previous methods, they are calculated based on the
QP model in the paper to obtain high quality trajec-
tories.

To slightly tune weights first, values of cost functions
Es, Ec, Ed are selected corresponding to high quality
trajectories, which are used to calculate expectation
HEs, HEd, HEc of the cost function. Then, a covariance
matrix for building the QP model can be derived as

effectiveness of new cost function (36) and
objective function (37) is shown in Figure 5, where
the blue trajectory

old
 is before refinement and the

red one
new
 is after adjusting knot span.

5.2 Weights Solving by Optimization

To solve the problem that weights in
unconstrained optimization are usually
determined empirically in previous methods, they
are calculated based on the QP model in the paper
to obtain high quality trajectories.

To slightly tune weights first, values of cost
functions ,

s
E ,

c
E

d
E are selected corresponding to

high quality trajectories, which are used to
calculate expectation , ,

s d c
HE HE HE of the cost

function. Then, a covariance matrix for building
the QP model can be derived as

cov(,) cov(,) cov(,)

cov(,) cov(,) cov(,)

cov(,) cov(,) cov(,)

s s s d s c

d s d d d c

c s c d c c

E E E E E E

COV E E E E E E

E E E E E E

          

 (38)

Regarding to the unknown
weights , ,

s d c
   of ,

s
E ,

c
E

d
E , an objective function

is established as

, , , ,

()

= () () ()+2cov(,)

2 cov(,) 2 cov(,)

cov(,)

s s d d c c

s s d d c c s s d d

s s c c d d c c

i s d c j s d c i j i j

DE D E E E

D E D E D E E E

E E E E

E E

  
    

   




 

  
 

 
 

 (39)

which is used to minimize variance of the total
cost of a trajectory. Then, a QP model specially for
solving weights can be written as

, , , ,
min cov(,)

. . , , , 0,

min(, ,)

i s d c j s d c i j i j

s d c s d c

s s d d c c s d c

DE E E

s t A

HE HE HE E E E


     
  

  
   

  

 
 (40)

where A is a constant of maximum weight sum
with relatively high quality trajectories. The lingo
optimization software is used to solve optimal
weights.

6. Simulation and Experiment
Results

6.1 Simulation Tests

The proposed method is tested by both simulation
and realworld experiments. In simulation,
comparison with the method [39] is carried out in

different obstacle density environments, with
fixed start and end points. Simulations run
on a computer with an Intel i7-7700HQ CPU
and a GeForce GTX 1050 GPU. The L-BFGS
method [19] is used to solve the trajectory
optimization problem, and the method is
implemented on [39] under occupancy grid
maps. Maximum velocity and acceleration
are set as 2m/s and 2m/s2, respectively.

Left pictures of Figure 6 show trajectories by
Ego [39] and right ones show trajectories by
the proposed method. It is seen that the
proposed method plans smoother trajectories
then Ego, where green lines form the
topology guided graph. Figure 7 shows
distribution of yaw angles in the two density
environments, and it is seen that variation of
the yaw angle by the proposed method is
small than that of Ego. Figures 8-9 show
UAV position and velocity in the different
density environments, where it is known
velocities by the proposed method
approximate to trapezoidal variation in the
forward direction and varies steadily in the
other two directions.

Time cost is cost is shown in Table 1, for
initial trajectory generation, since the
proposed method considers kinodynamic
constraints, it spends more time than Ego.
Time taken by the method increases slightly
as obstacle density increases to 0.4obs./m2.
For back-end trajectory optimization, the
proposed method takes much less time than
Ego.

6.2 Experiments

As shown in Figure 10, the UAV is equipped
with and Intel RealSense D435i depth camera
and an onboard computer NVIDIA Xavier
NX. Required trajectories are iterated faster
by GPU acceleration. Figure 11 shows
software architecture of the UAV system, and
the local map setup, trajectory planning,
localization, and control run on the onboard
computer, while visualization runs on the
ground station. An occupancy grid map is
applied for map setting up, which converts
depth information observed by D435i, and
VINS-FUSION is employed for UAV
localization.

(38)

Regarding to the unknown weights , ,
s d c

  
 of Es, Ec,

Ed an objective function is established as

effectiveness of new cost function (36) and
objective function (37) is shown in Figure 5, where
the blue trajectory

old
 is before refinement and the

red one
new
 is after adjusting knot span.

5.2 Weights Solving by Optimization

To solve the problem that weights in
unconstrained optimization are usually
determined empirically in previous methods, they
are calculated based on the QP model in the paper
to obtain high quality trajectories.

To slightly tune weights first, values of cost
functions ,

s
E ,

c
E

d
E are selected corresponding to

high quality trajectories, which are used to
calculate expectation , ,

s d c
HE HE HE of the cost

function. Then, a covariance matrix for building
the QP model can be derived as

cov(,) cov(,) cov(,)

cov(,) cov(,) cov(,)

cov(,) cov(,) cov(,)

s s s d s c

d s d d d c

c s c d c c

E E E E E E

COV E E E E E E

E E E E E E

          

 (38)

Regarding to the unknown
weights , ,

s d c
   of ,

s
E ,

c
E

d
E , an objective function

is established as

, , , ,

()

= () () ()+2cov(,)

2 cov(,) 2 cov(,)

cov(,)

s s d d c c

s s d d c c s s d d

s s c c d d c c

i s d c j s d c i j i j

DE D E E E

D E D E D E E E

E E E E

E E

  
    

   




 

  
 

 
 

 (39)

which is used to minimize variance of the total
cost of a trajectory. Then, a QP model specially for
solving weights can be written as

, , , ,
min cov(,)

. . , , , 0,

min(, ,)

i s d c j s d c i j i j

s d c s d c

s s d d c c s d c

DE E E

s t A

HE HE HE E E E


     
  

  
   

  

 
 (40)

where A is a constant of maximum weight sum
with relatively high quality trajectories. The lingo
optimization software is used to solve optimal
weights.

6. Simulation and Experiment
Results

6.1 Simulation Tests

The proposed method is tested by both simulation
and realworld experiments. In simulation,
comparison with the method [39] is carried out in

different obstacle density environments, with
fixed start and end points. Simulations run
on a computer with an Intel i7-7700HQ CPU
and a GeForce GTX 1050 GPU. The L-BFGS
method [19] is used to solve the trajectory
optimization problem, and the method is
implemented on [39] under occupancy grid
maps. Maximum velocity and acceleration
are set as 2m/s and 2m/s2, respectively.

Left pictures of Figure 6 show trajectories by
Ego [39] and right ones show trajectories by
the proposed method. It is seen that the
proposed method plans smoother trajectories
then Ego, where green lines form the
topology guided graph. Figure 7 shows
distribution of yaw angles in the two density
environments, and it is seen that variation of
the yaw angle by the proposed method is
small than that of Ego. Figures 8-9 show
UAV position and velocity in the different
density environments, where it is known
velocities by the proposed method
approximate to trapezoidal variation in the
forward direction and varies steadily in the
other two directions.

Time cost is cost is shown in Table 1, for
initial trajectory generation, since the
proposed method considers kinodynamic
constraints, it spends more time than Ego.
Time taken by the method increases slightly
as obstacle density increases to 0.4obs./m2.
For back-end trajectory optimization, the
proposed method takes much less time than
Ego.

6.2 Experiments

As shown in Figure 10, the UAV is equipped
with and Intel RealSense D435i depth camera
and an onboard computer NVIDIA Xavier
NX. Required trajectories are iterated faster
by GPU acceleration. Figure 11 shows
software architecture of the UAV system, and
the local map setup, trajectory planning,
localization, and control run on the onboard
computer, while visualization runs on the
ground station. An occupancy grid map is
applied for map setting up, which converts
depth information observed by D435i, and
VINS-FUSION is employed for UAV
localization.

(39)

which is used to minimize variance of the total cost
of a trajectory. Then, a QP model specially for solving
weights can be written as

effectiveness of new cost function (36) and
objective function (37) is shown in Figure 5, where
the blue trajectory

old
 is before refinement and the

red one
new
 is after adjusting knot span.

5.2 Weights Solving by Optimization

To solve the problem that weights in
unconstrained optimization are usually
determined empirically in previous methods, they
are calculated based on the QP model in the paper
to obtain high quality trajectories.

To slightly tune weights first, values of cost
functions ,

s
E ,

c
E

d
E are selected corresponding to

high quality trajectories, which are used to
calculate expectation , ,

s d c
HE HE HE of the cost

function. Then, a covariance matrix for building
the QP model can be derived as

cov(,) cov(,) cov(,)

cov(,) cov(,) cov(,)

cov(,) cov(,) cov(,)

s s s d s c

d s d d d c

c s c d c c

E E E E E E

COV E E E E E E

E E E E E E

          

 (38)

Regarding to the unknown
weights , ,

s d c
   of ,

s
E ,

c
E

d
E , an objective function

is established as

, , , ,

()

= () () ()+2cov(,)

2 cov(,) 2 cov(,)

cov(,)

s s d d c c

s s d d c c s s d d

s s c c d d c c

i s d c j s d c i j i j

DE D E E E

D E D E D E E E

E E E E

E E

  
    

   




 

  
 

 
 

 (39)

which is used to minimize variance of the total
cost of a trajectory. Then, a QP model specially for
solving weights can be written as

, , , ,
min cov(,)

. . , , , 0,

min(, ,)

i s d c j s d c i j i j

s d c s d c

s s d d c c s d c

DE E E

s t A

HE HE HE E E E


     
  

  
   

  

 
 (40)

where A is a constant of maximum weight sum
with relatively high quality trajectories. The lingo
optimization software is used to solve optimal
weights.

6. Simulation and Experiment
Results

6.1 Simulation Tests

The proposed method is tested by both simulation
and realworld experiments. In simulation,
comparison with the method [39] is carried out in

different obstacle density environments, with
fixed start and end points. Simulations run
on a computer with an Intel i7-7700HQ CPU
and a GeForce GTX 1050 GPU. The L-BFGS
method [19] is used to solve the trajectory
optimization problem, and the method is
implemented on [39] under occupancy grid
maps. Maximum velocity and acceleration
are set as 2m/s and 2m/s2, respectively.

Left pictures of Figure 6 show trajectories by
Ego [39] and right ones show trajectories by
the proposed method. It is seen that the
proposed method plans smoother trajectories
then Ego, where green lines form the
topology guided graph. Figure 7 shows
distribution of yaw angles in the two density
environments, and it is seen that variation of
the yaw angle by the proposed method is
small than that of Ego. Figures 8-9 show
UAV position and velocity in the different
density environments, where it is known
velocities by the proposed method
approximate to trapezoidal variation in the
forward direction and varies steadily in the
other two directions.

Time cost is cost is shown in Table 1, for
initial trajectory generation, since the
proposed method considers kinodynamic
constraints, it spends more time than Ego.
Time taken by the method increases slightly
as obstacle density increases to 0.4obs./m2.
For back-end trajectory optimization, the
proposed method takes much less time than
Ego.

6.2 Experiments

As shown in Figure 10, the UAV is equipped
with and Intel RealSense D435i depth camera
and an onboard computer NVIDIA Xavier
NX. Required trajectories are iterated faster
by GPU acceleration. Figure 11 shows
software architecture of the UAV system, and
the local map setup, trajectory planning,
localization, and control run on the onboard
computer, while visualization runs on the
ground station. An occupancy grid map is
applied for map setting up, which converts
depth information observed by D435i, and
VINS-FUSION is employed for UAV
localization.

(40)

where A is a constant of maximum weight sum with
relatively high quality trajectories. The lingo optimi-
zation software is used to solve optimal weights.

Table 1
Comparison of this method with ego’s trajectory generation, trajectory optimization, and total time

Density(obs./m2)
Tinit (ms) Topt (ms) Tall (ms)

Avg S.D. Avg S.D. Avg S.D.

Proposed

0.4 1.8 0.772 0.659 0.216 2.46 0.887

0.32` 1.656 0.42 0.861 0.534 2.517 0.908

0.24 1.707 0.702 0.913 0.495 2.458 1.138

EGO

0.4 0.416 0.245 7.336 6.505 7.71 6.478

0.32 0.224 0.063 2.766 2.275 2.999 2.321

0.24 0.265 0.135 5.297 2.964 5.554 2.964

Information Technology and Control 2023/3/52674

6. Simulation and Experiment
Results
6.1. Simulation Tests
The proposed method is tested by both simulation
and realworld experiments. In simulation, compari-
son with the method [39] is carried out in different ob-
stacle density environments, with fixed start and end
points. Simulations run on a computer with an Intel
i7-7700HQ CPU and a GeForce GTX 1050 GPU. The
L-BFGS method [19] is used to solve the trajectory
optimization problem, and the method is implement-
ed on [39] under occupancy grid maps. Maximum
velocity and acceleration are set as 2m/s and 2m/s2,
respectively.
Left pictures of Figure 6 show trajectories by Ego [39]
and right ones show trajectories by the proposed meth-
od. It is seen that the proposed method plans smoother
trajectories then Ego, where green lines form the topol-
ogy guided graph. Figure 7 shows distribution of yaw
angles in the two density environments, and it is seen
that variation of the yaw angle by the proposed method
is small than that of Ego. Figures 8-9 show UAV posi-

Figure 6
Visualized pictures for simulation comparison between
Ego [39] (left) and the proposed method (right) in different
density environments

Thus, the knot span of the new trajectory new can
be written as

 .
new old

T T   (35)

After adjusting knot span, the initial trajectory is
obtained by solving the least squares problem in
closed form.

Then, to refine the trajectory, a penalty function is
introduced to describe difference between two
curves:

2 21

2 20
() ,

h

X Y
E d

a b
   (36)

where X and Y represents horizontal and
vertical displacement of points on two
curves, respectively. Thus, objective function
of the trajectory after time reallocation is

 min ,
new s s h h d dQ

E E E E     (37)

where
h

 is a weight for
h

E . Geometric

Table 1
Comparison of this method with ego's trajectory generation, trajectory optimization, and total time.

init

T (ms) opt
T

(ms) all
T (ms)

 Density(obs./m2) Avg S.D. Avg S.D. Avg S.D.
 0.4 1.8 0.772 0.659 0.216 2.46 0.887

Proposed 0.32` 1.656 0.42 0.861 0.534 2.517 0.908
 0.24 1.707 0.702 0.913 0.495 2.458 1.138
 0.4 0.416 0.245 7.336 6.505 7.71 6.478

EGO 0.32 0.224 0.063 2.766 2.275 2.999 2.321
 0.24 0.265 0.135 5.297 2.964 5.554 2.964

Figure 7
Distribution of yaw angles in the two density
environments (left: in sparse obstacles, right: in dense
obstacles).

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Figure 8
UAV position and velocity in dense obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 9
UAV position and velocity in sparse obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6 7
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6 7
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 6
Visualized pictures for simulation comparison
between Ego [39] (left) and the proposed method
(right) in different density environments.

Figure 7
Distribution of yaw angles in the two density environments
(left: in sparse obstacles, right: in dense obstacles)

Thus, the knot span of the new trajectory new can
be written as

 .
new old

T T   (35)

After adjusting knot span, the initial trajectory is
obtained by solving the least squares problem in
closed form.

Then, to refine the trajectory, a penalty function is
introduced to describe difference between two
curves:

2 21

2 20
() ,

h

X Y
E d

a b
   (36)

where X and Y represents horizontal and
vertical displacement of points on two
curves, respectively. Thus, objective function
of the trajectory after time reallocation is

 min ,
new s s h h d dQ

E E E E     (37)

where
h

 is a weight for
h

E . Geometric

Table 1
Comparison of this method with ego's trajectory generation, trajectory optimization, and total time.

init

T (ms) opt
T

(ms) all
T (ms)

 Density(obs./m2) Avg S.D. Avg S.D. Avg S.D.
 0.4 1.8 0.772 0.659 0.216 2.46 0.887

Proposed 0.32` 1.656 0.42 0.861 0.534 2.517 0.908
 0.24 1.707 0.702 0.913 0.495 2.458 1.138
 0.4 0.416 0.245 7.336 6.505 7.71 6.478

EGO 0.32 0.224 0.063 2.766 2.275 2.999 2.321
 0.24 0.265 0.135 5.297 2.964 5.554 2.964

Figure 7
Distribution of yaw angles in the two density
environments (left: in sparse obstacles, right: in dense
obstacles).

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Figure 8
UAV position and velocity in dense obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 9
UAV position and velocity in sparse obstacle
environment, the (dashed lines: Ego, solid lines:
the proposed method).

0 1 2 3 4 5 6 7
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6 7
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 6
Visualized pictures for simulation comparison
between Ego [39] (left) and the proposed method
(right) in different density environments.

Figure 8
UAV position and velocity in dense obstacle environment,
the (dashed lines: Ego, solid lines: the proposed method)

Thus, the knot span of the new trajectory new can
be written as

 .
new old

T T   (35)

After adjusting knot span, the initial trajectory is
obtained by solving the least squares problem in
closed form.

Then, to refine the trajectory, a penalty function is
introduced to describe difference between two
curves:

2 21

2 20
() ,

h

X Y
E d

a b
   (36)

where X and Y represents horizontal and
vertical displacement of points on two
curves, respectively. Thus, objective function
of the trajectory after time reallocation is

 min ,
new s s h h d dQ

E E E E     (37)

where
h

 is a weight for
h

E . Geometric

Table 1
Comparison of this method with ego's trajectory generation, trajectory optimization, and total time.

init

T (ms) opt
T

(ms) all
T (ms)

 Density(obs./m2) Avg S.D. Avg S.D. Avg S.D.
 0.4 1.8 0.772 0.659 0.216 2.46 0.887

Proposed 0.32` 1.656 0.42 0.861 0.534 2.517 0.908
 0.24 1.707 0.702 0.913 0.495 2.458 1.138
 0.4 0.416 0.245 7.336 6.505 7.71 6.478

EGO 0.32 0.224 0.063 2.766 2.275 2.999 2.321
 0.24 0.265 0.135 5.297 2.964 5.554 2.964

Figure 7
Distribution of yaw angles in the two density
environments (left: in sparse obstacles, right: in dense
obstacles).

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Figure 8

0 1 2 3 4 5 6
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 9

0 1 2 3 4 5 6 7
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6 7
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 6
Visualized pictures for simulation comparison
between Ego [39] (left) and the proposed method
(right) in different density environments.

Figure 9
UAV position and velocity in sparse obstacle environment,
the (dashed lines: Ego, solid lines: the proposed method)

Thus, the knot span of the new trajectory new can
be written as

 .
new old

T T   (35)

After adjusting knot span, the initial trajectory is
obtained by solving the least squares problem in
closed form.

Then, to refine the trajectory, a penalty function is
introduced to describe difference between two
curves:

2 21

2 20
() ,

h

X Y
E d

a b
   (36)

where X and Y represents horizontal and
vertical displacement of points on two
curves, respectively. Thus, objective function
of the trajectory after time reallocation is

 min ,
new s s h h d dQ

E E E E     (37)

where
h

 is a weight for
h

E . Geometric

Table 1
Comparison of this method with ego's trajectory generation, trajectory optimization, and total time.

init

T (ms) opt
T

(ms) all
T (ms)

 Density(obs./m2) Avg S.D. Avg S.D. Avg S.D.
 0.4 1.8 0.772 0.659 0.216 2.46 0.887

Proposed 0.32` 1.656 0.42 0.861 0.534 2.517 0.908
 0.24 1.707 0.702 0.913 0.495 2.458 1.138
 0.4 0.416 0.245 7.336 6.505 7.71 6.478

EGO 0.32 0.224 0.063 2.766 2.275 2.999 2.321
 0.24 0.265 0.135 5.297 2.964 5.554 2.964

Figure 7
Distribution of yaw angles in the two density
environments (left: in sparse obstacles, right: in dense
obstacles).

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Ego proposed
-0.4

-0.2

0

0.2

0.4

0.6

ra
d

Figure 8

0 1 2 3 4 5 6
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 9

0 1 2 3 4 5 6 7
t (sec)

-10

-5

0

p
(m

)

proposed Ego

0 1 2 3 4 5 6 7
t (sec)

-0.5

0

0.5

1

1.5

2

v
(m

/s
)

proposed Ego

Figure 6
Visualized pictures for simulation comparison
between Ego [39] (left) and the proposed method
(right) in different density environments.

675Information Technology and Control 2023/3/52

tion and velocity in the different density environments,
where it is known velocities by the proposed method
approximate to trapezoidal variation in the forward di-
rection and varies steadily in the other two directions.
Time cost is cost is shown in Table 1, for initial trajec-
tory generation, since the proposed method considers
kinodynamic constraints, it spends more time than
Ego. Time taken by the method increases slightly as
obstacle density increases to 0.4obs./m2. For back-
end trajectory optimization, the proposed method
takes much less time than Ego.

6.2. Experiments
As shown in Figure 10, the UAV is equipped with and
Intel RealSense D435i depth camera and an onboard
computer NVIDIA Xavier NX. Required trajectories
are iterated faster by GPU acceleration. Figure 11
shows software architecture of the UAV system, and
the local map setup, trajectory planning, localization,
and control run on the onboard computer, while visu-
alization runs on the ground station. An occupancy
grid map is applied for map setting up, which converts
depth information observed by D435i, and VINS-FU-
SION is employed for UAV localization.
Moreover, experiments are carried out in a

37.6 4.9 2.8m  field, where obstacles are
deployed arbitrarily. Maximum speed and
acceleration are set as 1m/s and 1.5m/s2,
respectively. The proposed method and Ego are
run under the same environment with fixed
starting and ending points. Comparative results
are shown in Figure 12, where the left graph is
trajectories by Ego and the middle graph is by the
proposed method. It can be seen that the UAV
flies directly to the target endpoint by the
proposed method, while flies to high place then to
the target endpoint by Ego. Position and velocity
by the two methods are provided in the right
graph of Figure 12, where the proposed method
makes the UAV reach the endpoint in about 90s,
and the speed is with approximately trapezoidal
variation for the forward direction.

Moreover, two experiments are conducted to let
the UAV pass a square hole and pass dense
obstacles by foam boxes and iron rods,
respectively. Figure 13 shows map and trajectory
in the two processes, where green lines in the left
plot are the topology guided graph formed by the
environment, and flight photos are provided in
Figure 14. In the passing hole experiment, front-
end trajectory planning algorithm in the proposed
method is tested, and it is seen that this method
helps the UAV plan the optimal trajectory and
makes the UAV fly out from the hole center. In the
passing dense obstacle experiment, size and
location of obstacles are randomly configured,
with foam boxes simulating enormous obstacles
and iron rods simulating small size obstacles. In
this challenging scenario for real-time planning,
based on the topology guided graph results, the
proposed planner samples and generates the
initial trajectory and then optimizes the trajectory
in relative smoothness.

7. Conclusion
An autonomous UAV navigation strategy is
proposed in the paper based on kinodynamic
planning to solve feasible trajectories in complex
environments under finite field of view. A global

trajectory is generated first by using
environment topology information, and a
KRRT* expansion algorithm is designed.
Then, a KRRT* expansion strategy is
designed to find local collision-free
trajectories. In trajectory optimization,
bending radius and collision risk function are
defined as well as a cost function related to
yaw angle optimization by considering
sensor field of view and potential risk.
Finally, effectiveness of the proposed method
is verified through comparative simulation
and experiment by considering planning and
perceiving ranges.

Acknowledgement
This work was supported in part by the
National Natural Science Foundation of
China under grant 61973234, and in part by
the Tianjin Natural Science Foundation
under grant 20JCYBJC00180.

References

1. Beul, M., Behnke, S. Fast Time-Optimal Avoidance
of Moving Obstacles for High-Speed MAV Flight.
In: Proceedings of the 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems,
(IROS 2019), Macau, China, November 4-8, 2019,
7240-7247.
https://doi.org/10.1109/IROS40897.2019.8968103.

2. Campos-Macías, L., Gómez-Gutiérrez, D., Aldana-
López, R., de la Guardia, R., Parra-Vilchis, J.I. A
Hybrid Method for Online Trajectory Planning of
Mobile Robots in Cluttered Environments. IEEE
Robotics and Automation Letters, 2017, 4, 935-942.
https://doi.org/10.1109/LRA.2017.2655145.

3. Choi, J., Curry, R.E., Elkaim, G.H. Curvature-
Continuous Trajectory Generation with Corridor
Constraint for Autonomous Ground Vehicles. In:

Figure 10
The UAV platform for experiment flight.

Figure 11
Software architecture of the UAV system.

 field, where obstacles are deployed
arbitrarily. Maximum speed and acceleration are set
as 1m/s and 1.5m/s2, respectively. The proposed meth-
od and Ego are run under the same environment with
fixed starting and ending points. Comparative results
are shown in Figure 12, where the left graph is trajec-

Figure 10
The UAV platform for experiment flight

Figure 11
Software architecture of the UAV system

Moreover, experiments are carried out in a
37.6 4.9 2.8m  field, where obstacles are

deployed arbitrarily. Maximum speed and
acceleration are set as 1m/s and 1.5m/s2,
respectively. The proposed method and Ego are
run under the same environment with fixed
starting and ending points. Comparative results
are shown in Figure 12, where the left graph is
trajectories by Ego and the middle graph is by the
proposed method. It can be seen that the UAV
flies directly to the target endpoint by the
proposed method, while flies to high place then to
the target endpoint by Ego. Position and velocity
by the two methods are provided in the right
graph of Figure 12, where the proposed method
makes the UAV reach the endpoint in about 90s,
and the speed is with approximately trapezoidal
variation for the forward direction.

Moreover, two experiments are conducted to let
the UAV pass a square hole and pass dense
obstacles by foam boxes and iron rods,
respectively. Figure 13 shows map and trajectory
in the two processes, where green lines in the left
plot are the topology guided graph formed by the
environment, and flight photos are provided in
Figure 14. In the passing hole experiment, front-
end trajectory planning algorithm in the proposed
method is tested, and it is seen that this method
helps the UAV plan the optimal trajectory and
makes the UAV fly out from the hole center. In the
passing dense obstacle experiment, size and
location of obstacles are randomly configured,
with foam boxes simulating enormous obstacles
and iron rods simulating small size obstacles. In
this challenging scenario for real-time planning,
based on the topology guided graph results, the
proposed planner samples and generates the
initial trajectory and then optimizes the trajectory
in relative smoothness.

7. Conclusion
An autonomous UAV navigation strategy is
proposed in the paper based on kinodynamic
planning to solve feasible trajectories in complex
environments under finite field of view. A global

trajectory is generated first by using
environment topology information, and a
KRRT* expansion algorithm is designed.
Then, a KRRT* expansion strategy is
designed to find local collision-free
trajectories. In trajectory optimization,
bending radius and collision risk function are
defined as well as a cost function related to
yaw angle optimization by considering
sensor field of view and potential risk.
Finally, effectiveness of the proposed method
is verified through comparative simulation
and experiment by considering planning and
perceiving ranges.

Acknowledgement
This work was supported in part by the
National Natural Science Foundation of
China under grant 61973234, and in part by
the Tianjin Natural Science Foundation
under grant 20JCYBJC00180.

References

1. Beul, M., Behnke, S. Fast Time-Optimal Avoidance
of Moving Obstacles for High-Speed MAV Flight.
In: Proceedings of the 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems,
(IROS 2019), Macau, China, November 4-8, 2019,
7240-7247.
https://doi.org/10.1109/IROS40897.2019.8968103.

2. Campos-Macías, L., Gómez-Gutiérrez, D., Aldana-
López, R., de la Guardia, R., Parra-Vilchis, J.I. A
Hybrid Method for Online Trajectory Planning of
Mobile Robots in Cluttered Environments. IEEE
Robotics and Automation Letters, 2017, 4, 935-942.
https://doi.org/10.1109/LRA.2017.2655145.

3. Choi, J., Curry, R.E., Elkaim, G.H. Curvature-
Continuous Trajectory Generation with Corridor
Constraint for Autonomous Ground Vehicles. In:

Figure 10
The UAV platform for experiment flight.

Figure 11
Software architecture of the UAV system.

Figure 12
Map and trajectory by Ego [39] (left) and the proposed method (middle) in the same environment (red trajectories:
planned, blue trajectories: executed, right graph: position and velocity by the two methods)

Figure 12
Map and trajectory by Ego [39] (left) and the proposed method (middle) in the same environment (red trajectories:

planned, blue trajectories: executed, right graph: position and velocity by the two methods).

Figure 13
Map and trajectory in the UAV passing a square hole (left) and passing dense obstacles by foam boxes and iron rods

(right) by the proposed method (red trajectories: planned, blue trajectories: executed).

Figure 14
Photos for the UAV passing a square hole (top) and passing dense obstacles by foam boxes and iron rods (bottom)

by the proposed method.

Information Technology and Control 2023/3/52676

tories by Ego and the middle graph is by the proposed
method. It can be seen that the UAV flies directly to
the target endpoint by the proposed method, while
flies to high place then to the target endpoint by Ego.
Position and velocity by the two methods are provid-
ed in the right graph of Figure 12, where the proposed
method makes the UAV reach the endpoint in about
90s, and the speed is with approximately trapezoidal
variation for the forward direction.
Moreover, two experiments are conducted to let the
UAV pass a square hole and pass dense obstacles
by foam boxes and iron rods, respectively. Figure
13 shows map and trajectory in the two processes,
where green lines in the left plot are the topology

Figure 12
Map and trajectory by Ego [39] (left) and the proposed method (middle) in the same environment (red trajectories:

planned, blue trajectories: executed, right graph: position and velocity by the two methods).

Figure 13
Map and trajectory in the UAV passing a square hole (left) and passing dense obstacles by foam boxes and iron rods

(right) by the proposed method (red trajectories: planned, blue trajectories: executed).

Figure 14
Photos for the UAV passing a square hole (top) and passing dense obstacles by foam boxes and iron rods (bottom)

by the proposed method.

Figure 13
Map and trajectory in the UAV passing a square hole (left) and passing dense obstacles by foam boxes and iron rods (right)
by the proposed method (red trajectories: planned, blue trajectories: executed)

Figure 14
Photos for the UAV passing a square hole (top) and passing dense obstacles by foam boxes and iron rods (bottom) by the
proposed method

Figure 12
Map and trajectory by Ego [39] (left) and the proposed method (middle) in the same environment (red trajectories:

planned, blue trajectories: executed, right graph: position and velocity by the two methods).

Figure 13
Map and trajectory in the UAV passing a square hole (left) and passing dense obstacles by foam boxes and iron rods

(right) by the proposed method (red trajectories: planned, blue trajectories: executed).

Figure 14
Photos for the UAV passing a square hole (top) and passing dense obstacles by foam boxes and iron rods (bottom)

by the proposed method.

guided graph formed by the environment, and flight
photos are provided in Figure 14. In the passing hole
experiment, front-end trajectory planning algorithm
in the proposed method is tested, and it is seen that
this method helps the UAV plan the optimal trajecto-
ry and makes the UAV fly out from the hole center. In
the passing dense obstacle experiment, size and loca-
tion of obstacles are randomly configured, with foam
boxes simulating enormous obstacles and iron rods
simulating small size obstacles. In this challenging
scenario for real-time planning, based on the topology
guided graph results, the proposed planner samples
and generates the initial trajectory and then optimiz-
es the trajectory in relative smoothness.

677Information Technology and Control 2023/3/52

7. Conclusion
An autonomous UAV navigation strategy is proposed
in the paper based on kinodynamic planning to solve
feasible trajectories in complex environments under
finite field of view. A global trajectory is generated
first by using environment topology information, and
a KRRT* expansion algorithm is designed. Then, a
KRRT* expansion strategy is designed to find local
collision-free trajectories. In trajectory optimization,
bending radius and collision risk function are defined
as well as a cost function related to yaw angle optimi-

zation by considering sensor field of view and poten-
tial risk. Finally, effectiveness of the proposed method
is verified through comparative simulation and exper-
iment by considering planning and perceiving ranges.

Acknowledgement
This work was supported in part by the National
Natural Science Foundation of China under grant
61973234, and in part by the Tianjin Natural Science
Foundation under grant 20JCYBJC00180.

References
1. Beul, M., Behnke, S. Fast Time-Optimal Avoidance of

Moving Obstacles for High-Speed MAV Flight. In: Pro-
ceedings of the 2019 IEEE/RSJ International Confe-
rence on Intelligent Robots and Systems, (IROS 2019),
Macau, China, November 4-8, 2019, 7240-7247.https://
doi.org/10.1109/IROS40897.2019.8968103

2. Campos-Macías, L., Gómez-Gutiérrez, D., Alda-
na-López, R., de la Guardia, R., Parra-Vilchis, J.I. A
Hybrid Method for Online Trajectory Planning of Mo-
bile Robots in Cluttered Environments. IEEE Robotics
and Automation Letters, 2017, 4, 935-942. https://doi.
org/10.1109/LRA.2017.2655145

3. Choi, J., Curry, R.E., Elkaim, G.H. Curvature-Continuo-
us Trajectory Generation with Corridor Constraint for
Autonomous Ground Vehicles. In: Proceedings of the
49th IEEE Conference on Decision and Control, (CDC
2010), Atlanta, GA, USA, December 15-17, 2010, 7166-
7171. https://doi.org/10.1109/CDC.2010.5718154

4. Delingette, H., Hebert, M., Ikeuchi. K. Trajectory Ge-
neration with Curvature Constraint Based on Energy
Minimization. In: Proceedings of the IEEE/RSJ Inter-
national Workshop on Intelligent Robots and Systems
‚91, (IROS 1991), Osaka, Japan, 1991, 206-211. https://
doi.org/10.1109/IROS.1991.174451

5. Dhullipalla, M.H., Hamrah, R., Sanyal, A.K. Trajectory
Generation on SE(3) with Applications to a Class of
Underactuated Vehicles. In: Proceedings of the 2017
IEEE 56th Annual Conference on Decision and Con-
trol , (CDC 2017), Melbourne, VIC, Australia, Octo-
ber 12-15, 2017, 2557-2562. https://doi.org/10.1109/
CDC.2017.8264029

6. Escamilla, H., Mora-Camino, F. Generation of Curva-
ture Continuous Trajectories for Transport Aircraft

Using Bezier Curves. In: Proceedings of the 19th Inter-
national Conference on New Trends in Civil Aviation,
(NTCA 2017), Prague, Czech Republic, December 7-8,
2017, 7. https://doi.org/10.1201/9781351238649

7. Gammell, J. D., Srinivasa, S. S., Barfoot, T. D. Batch In-
formed Trees (BIT): Sampling-Based Optimal Planning
via the Heuristically Guided Search of Implicit Random
Geometric Graphs. In: Proceedings of the 2015 IEEE
International Conference on Robotics and Automation,
(ICRA 2015), Seattle, WA, USA, May 26-30, 2015, 3067-
3074. https://doi.org/10.1109/ICRA.2015.7139620

8. Gammell, J.D., Barfoot, T.D., Srinivasa, S. S. Informed
Sampling for Asymptotically Optimal Path Planning.
IEEE Transactions on Robotics, 2018, 34, 966-984.
https://doi.org/10.1109/TRO.2018.2830331

9. Gao, F., Lin, Y., Shen, S. Gradient-Based Online Safe Trajec-
tory Generation for Quadrotor Flight in Complex Environ-
ments. In: Proceedings of the 2017 IEEE/RSJ Internatio-
nal Conference on Intelligent Robots and Systems, (IROS
2017), Vancouver, BC, Canada, September 24-28, 2017,
3681-3688. https://doi.org/10.1109/IROS.2017.8206214

10. Gao, F., Wang, L., Zhou, B., Zhou, X., Pan, J., Shen, S. Te-
ach-Repeat-Replan: A Complete and Robust System
for Aggressive Flight in Complex Environments. IEEE
Transactions on Robotics, 2020, 36, 1526-1545. https://
doi.org/10.1109/TRO.2020.2993215

11. Guarino, C., Bianco, L., Gerelli, O. Generation of Paths
with Minimum Curvature Derivative with η3-Splines.
IEEE Transactions on Automation Science and En-
gineering, 2010, 7, 249-256. https://doi.org/10.1109/
TASE.2009.2023206

12. Hauser, K. Lazy Collision Checking in Asymptotical-
ly-Optimal Motion Planning. In: Proceedings of the 2015

Information Technology and Control 2023/3/52678

IEEE International Conference on Robotics and Auto-
mation, (ICRA 2015), Seattle, WA, USA, May 26-30, 2015,
2951-2957. https://doi.org/10.1109/ICRA.2015.7139603

13. Jaillet L., Cortes, J., Simeon, T. Transition-Based RRT
for Path Planning in Continuous Cost Spaces. In: Pro-
ceedings of the 2008 IEEE/RSJ International Confe-
rence on Intelligent Robots and Systems, Nice, Fran-
ce, September 22-26, 2008, 2145-2150. https://doi.
org/10.1109/IROS.2008.4650993

14. Jaillet, L., Hoffman, J., van den Berg, J., Abbeel, P., Por-
ta, J. M., Goldberg, K. EG-RRT: Environment-Guided
Random Trees for Kinodynamic Motion Planning with
Uncertainty and Obstacles. In: Proceedings of the 2011
IEEE/RSJ International Conference on Intelligent
Robots and Systems, San Francisco, CA, USA, Septem-
ber 25-30, 2011, 2646-2652. https://doi.org/10.1109/
IROS.2011.6094802

15. Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., Teller,
S. Anytime Motion Planning Using the RRT*. In: Pro-
ceedings of the 2011 IEEE International Conference on
Robotics and Automation, (ICRA 2011), Shanghai, Chi-
na, May 9-13, 2011, 1478-1483. https://doi.org/10.1109/
ICRA.2011.5980479

16. Ko, I., Kim, B., Park, F. Randomized Path Plan-
ning on Vector Fields. International Journal of Ro-
botics Research, 2014, 33, 1664-1682. https://doi.
org/10.1177/0278364914545812

17. Kunz, T., Thomaz, A., Christensen, H. Hierarchical
Rejection Sampling for Informed Kinodynamic Plan-
ning in High-Dimensional Spaces. In: Proceedings of
the 2016 IEEE International Conference on Roboti-
cs and Automation, (ICRA 2016), Stockholm, Swe-
den, May 16-21, 2016, 89-96. https://doi.org/10.1109/
ICRA.2016.7487120

18. Lai, T., Ramos, F., Francis, G. Balancing Global Explo-
ration and Local-Connectivity Exploitation with Ra-
pidly-Exploring Random Disjointed-Trees. In: Procee-
dings of the 2019 International Conference on Robotics
and Automation (ICRA 2019), Montreal, QC, Canada,
20-24 May 2019, 5537-5543. https://doi.org/10.1109/
ICRA.2019.8793618

19. Lewis, A.S., Overton, M.L. Nonsmooth Optimization via
Quasi-Newton Methods. Mathematical Programming,
2013, 141, 135-163. https://doi.org/10.1007/s10107-012-
0514-2

20. Liu S., Atanasov N., Mohta K., Kumar V. Search-Based
Motion Planning for Quadrotors Using Linear Quadra-
tic Minimum Time Control. In: Proceedings of the 2017
IEEE/RSJ International Conference on Intelligent

Robots and Systems, (IROS 2017), Vancouver, BC, Ca-
nada, September 24-28, 2017, 2872-2879. https://doi.
org/10.1109/IROS.2017.8206119

21. Liu, S., Watterson, M., Mohta, K., Sun, K., Bhattacharya,
S., Taylor, C. J., Kumar, V. Planning Dynamically Feasi-
ble Trajectories for Quadrotors Using Safe Flight Cor-
ridors in 3-D Complex Environments. IEEE Robotics
and Automation Letters, 2017, 2, 1688-1695. https://doi.
org/10.1109/LRA.2017.2663526

22. Lopez, B. T., How J. P. Aggressive Collision Avoidance
with Limited Field-of-View Sensing. In: Proceedings
of the 2017 IEEE/RSJ International Conference on In-
telligent Robots and Systems, (IROS 2017), Vancouver,
BC, Canada, September 24-28, 2017, 1358-1365. https://
doi.org/10.1109/IROS.2017.8202314

23. Lopez, B. T., How, J. P. Aggressive 3-D Collision Avoidan-
ce for High-Speed Navigation. In: Proceedings of the 2017
IEEE International Conference on Robotics and Auto-
mation, (ICRA 2017), Singapore, May 29 - June 3, 2017,
5759-5765. https://doi.org/10.1109/ICRA.2017.7989677

24. Mellinger, D., Kumar, V. Minimum Snap Trajectory Ge-
neration and Control for Quadrotors. In: Proceedings
of the 2011 IEEE International Conference on Robo-
tics and Automation, (ICRA 2011), Shanghai, China,
May 9-10, 2011, 2520-2525. https://doi.org/10.1109/
ICRA.2011.5980409

25. Neto, A. A., Macharet, D. G., Campos, M. F. M. Feasible
RRT-Based Path Planning Using Seventh Order Bézier
Curves. In: Proceedings of the 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
Taipei, Taiwan, China, October 18-22, 2010, 1445-1450.
https://doi.org/10.1109/IROS.2010.5649145

26. Nieuwenhuisen, M., Behnke, S. Local Multiresolution
Trajectory Optimization for Micro Aerial Vehicles Em-
ploying Continuous Curvature Transitions. In: Procee-
dings of the 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems, (IROS 2016), Dae-
jeon, Korea, October 9-14, 2016, 3219-3224. https://doi.
org/10.1109/IROS.2016.7759497

27. Oleynikova, H., Burri, M., Taylor, Z., Nieto, J., Siegwart,
R., Galceran, E. Continuous-Time Trajectory Optimi-
zation for Online UAV Replanning. In: Proceedings
of the 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems, (IROS 2016), Daeje-
on, Korea, October 9-14, 2016, 5332-5339. https://doi.
org/10.1109/IROS.2016.7759784

28. Preiss, J., Hausman, K., Sukhatme, G., Weiss, S. Trajec-
tory Optimization for Self-Calibration and Navigation.
In: Proceedings of the Robotics: Science and Systems,

679Information Technology and Control 2023/3/52

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

(RSS 2017), Cambridge, MA, USA, July 12-16, 2017.
https://doi.org/10.15607/RSS.2017.XIII.054

29. Salzman, O., Halperin, D. Asymptotically Near-Opti-
mal RRT for Fast, High-Quality Motion Planning. IEEE
Transactions on Robotics, 2016, 32, 473-483. https://
doi.org/10.1109/TRO.2016.2539377

30. Tordesillas, J., Lopez, B. T., Everett, M., How, J. P.
FASTER: Fast and Safe Trajectory Planner for Naviga-
tion in Unknown Environments. IEEE Transactions on
Robotics, 2022, 38, 922-938. https://doi.org/10.1109/
TRO.2021.3100142

31. Wang, K., Gao, F., Shen S. Real-Time Scalable Dense
Surfel Mapping. In: Proceedings of the 2019 Internati-
onal Conference on Robotics and Automation, (ICRA
2019), Montreal, QC, Canada, May 20-24, 2019, 6919-
6925. https://doi.org/10.1109/ICRA.2019.8794101

32. Watterson, M., Liu, S., Sun, K., Smith, T., Kumar, V. Tra-
jectory Optimization on Manifolds with Applications
to SO(3) and R3×S2. In: Proceedings of the Robotics:
Science and Systems, (RSS 2018), Pittsburgh, Pennsyl-
vania, USA, June 26-30, 2018. https://doi.org/10.15607/
RSS.2018.XIV.023

33. Watterson, M., Smith, T., Kumar, V. Smooth Trajecto-
ry Generation on SE(3) for a Free Flying Space Robot.
In: Proceedings of the 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems, (IROS
2016), Daejeon, Korea, October 9-14, 2016, 5459-5466.
https://doi.org/10.1109/IROS.2016.7759803

34. Webb, D.J., van den Berg, J. Kinodynamic RRT*: Asymp-
totically Optimal Motion Planning for Robots with Line-
ar Dynamics. In: Proceedings of the 2013 IEEE Interna-
tional Conference on Robotics and Automation, (ICRA
2013), Karlsruhe, Germany, May 6-10, 2013, 5054-5061.
https://doi.org/10.1109/ICRA.2013.6631299

35. Yang, L., Song, D., Xiao, J., Han, J., Yang, L., Cao, Y. Ge-
neration of Dynamically Feasible and Collision-Free
Trajectory by Applying Six-Order Bezier Curve and
Local Optimal Reshaping. In: Proceedings of the 2015
IEEE/RSJ International Conference on Intelligent
Robots and Systems, (IROS 2015), Hamburg, Germany,
September 28 - October 02, 2015, 643-648. https://doi.
org/10.1109/IROS.2015.7353440

36. Ye, H., Zhou, X., Wang, Z., Xu, C., Chu, J., Gao, F.
TGK-Planner: An Efficient Topology Guided Kinodyna-
mic Planner for Autonomous Quadrotors. IEEE Robo-
tics and Automation Letters, 2021, 6, 494-501. https://
doi.org/10.1109/LRA.2020.3047798

37. Zhou, B., Gao, F., Wang, L., Liu, C., Shen, S. Robust and
Efficient Quadrotor Trajectory Generation for Fast
Autonomous Flight. IEEE Robotics and Automation
Letters, 2019, 4, 3529-3536. https://doi.org/10.1109/
LRA.2019.2927938

38. Zhou, B., Pan, J., Gao, F., Shen, S. RAPTOR: Robust and
Perception-Aware Trajectory Replanning for Quadro-
tor Fast Flight. IEEE Transactions on Robotics, 2021, 37,
1992-2009. https://doi.org/10.1109/TRO.2021.3071527

39. Zhou, X., Wang, Z., Ye, H., Xu, C., Gao, F. Ego-Planner:
An ESDF Free Gradient-Based Local Planner for Qua-
drotors. IEEE Robotics and Automation Letters, 2021,
6, 478-485. https://doi.org/10.1109/LRA.2020.3047728

40. Zhou, X., Zhu, J., Zhou, H., Xu, C., Gao, F. EGO-Swarm:
A Fully Autonomous and Decentralized Quadrotor
Swarm System in Cluttered Environments. In: Procee-
dings of the 2021 IEEE International Conference on Ro-
botics and Automation, (ICRA 2021), Xi‘an, China, May
30 - June 5, 2021, 4101-4107. https://doi.org/10.1109/
ICRA48506.2021.9561902

