
Information Technology and Control 2024/1/53146

RWESA-GNNR:
Fusing Random Walk
Embedding and
Sentiment Analysis for
Graph Neural Network
Recommendation

ITC 1/53
Information Technology
and Control
Vol. 53 / No. 1 / 2024
pp.146-159
DOI 10.5755/j01.itc.53.1.33495

RWESA-GNNR: Fusing Random Walk Embedding and Sentiment
Analysis for Graph Neural Network Recommendation

Received 2023/02/26 Accepted after revision 2023/09/04

HOW TO CITE: Gu, J., Xu, Y., Liu, W. (2024). RWESA-GNNR: Fusing Random Walk Embedding
and Sentiment Analysis for Graph Neural Network Recommendation. Information Technology and
Control, 53(1), 146-159. https://doi.org/10.5755/j01.itc.53.1.33495

Corresponding author: junlin82@qq.com

Junlin Gu, Yihan Xu, Weiwei Liu
College of Computer, Jiangsu Vocational College of Electronics and Information, Huai’an 223003, China

A graph neural network-based recommendation system treats the relationship between user items as a graph,
and achieves deep feature mining by modelling the graph nodes. However, the complexity of the features of
graph neural network-based recommendation systems brings poor interpretability and suffers from data spar-
sity problems. To address the above problems, a graph convolutional neural network recommendation model
(RWESA-GNNR) based on random walk embedding combined with sentiment analysis is proposed. Firstly, a
random walk-based matrix factorization is designed as the initial embedding. Secondly, the user and item nodes
are modelled using a convolutional neural network with an injected attention mechanism. Then, sentiment
analysis is performed on the review text, and attention mechanism is introduced to fuse text sentiment features
and semantic features. Finally, node features and text features are aggregated to generate recommendation re-
sults. The experimental results show that our proposed algorithm outperforms traditional recommendation
algorithms and other graph neural network-based recommendation algorithms in terms of recommendation
results, with an improvement of about 2.43%-5.75%.
KEYWORDS: recommendation system, graph neural network, random walk, sentiment analysis, data mining.

147Information Technology and Control 2024/1/53

1. Introduction
With the advancement of productivity levels and the
rapid development of Internet technology, mankind
has crossed over into the information age. However,
the rapid development of the information age has not
only brought a wealth of information to the people,
but also caused an explosion of information. The re-
dundancy of useless information has led to a relative
lack of information that users want to access and the
phenomenon of information overload. Although peo-
ple can filter some of the information and access the
content through search engines, it is becoming in-
creasingly difficult for people to choose their favour-
ite content. As a result, the concept of Recommenda-
tion Systems (RS) has been proposed [3]. RS obtains
hidden information through the user’s historical be-
havior, interest preferences and other features, and
then applies recommendation algorithms to generate
a list of items that may be of interest to the user [6, 25].
In real applications of RS, most of the data inherently
have a graph structure, and this inherent data feature
makes it necessary to consider complex graph data re-
lationships when making recommendations. There-
fore, with the research and development of Graph
Neural Networks (GNNs), more and more research-
ers are using GNNs for RS to extract node information
about the associations between users and items. Ji-
ang et al. [10] used GNNs as a basis to improve recom-
mendation performance by capturing latent features
using an end-to-end approach. Wu et al. [23] modelled
user sequence behavior as graph-structured data and
used GNNs to capture the complex transformational
relationships between items. Song et al. [20] modeled
contextually relevant social influences using graph
attention networks and demonstrated the effective-
ness of the model by testing on real datasets such
as Facebook. A technique closely related to GNNs
is network embedding, which expresses the hidden
connections between items in an aggregated way
to obtain an embedding representation. Commonly
used network embedding methods are deep learning
based graph embedding, random walk based graph
embedding and so on. Ying et al. [26] combined ran-
dom wandering and GNNs to generate node embed-
dings that contain graph structure as well as feature
information of the nodes. Zhou et al. [30] proposed
an algorithm of random walk combined with matrix

decomposition to obtain the embedding vector of so-
cial relations. Liu et al. [12] proposed a random walk
approach to build heterogeneous networks as a way
to generate better recommendations. Canturk et al.
[1] used random walk for location recommendation
on model subgraphs. Zhang et al. [28] effectively cap-
tured the global and local structure of the network by
an improved random walk strategy.
However, traditional GNNs methods often suffer from
limitations in node representation learning, inability
to make full use of user behavior and social network in-
formation, and data sparsity. At the same time, review
text, which contains attribute information of users and
items, can establish more objective evaluation and sen-
timent features for users and items, which can improve
the interpretability of the RS while alleviating data
sparsity. Therefore, how to design a node embedding
method and combine node analysis with text analysis
to further improve the accuracy and efficiency of GNNs
recommendation algorithms is the focus of this paper.
In summary, we propose a GNN recommendation
model for fusing review texts, called RWESA-GNNR,
with the following main contributions:
1 We design an original framework which fuses in-

teraction graph node features with review text fea-
tures to achieve better recommendations.

2 We propose a random wander-based matrix factor-
ization that enables nodes to feature the topology
of a graph through the embedding of self-covari-
ance similarity. At the same time, by combining
with a specific aggregation function, the distribu-
tion of dissimilarity in the graph is captured and
more potential connections between users and
items are mined.

3 We propose to mine useful sentiment information
in review texts by analyzing the sentiment polarity
of the review texts, combining the attention mech-
anism, and combining sentiment weights with the
semantics of the review texts to obtain personal-
ized sentiment features of users and items.

4 We conduct experiments on the model on three
publicly available Amazon datasets. The exper-
imental results demonstrate that the proposed
method is better than existing recommendation
methods, with improved recommendation results.

Information Technology and Control 2024/1/53148

2. Proposed Method
In this section, we describe the proposed RWE-
SA-GNNR, the structure of which is shown in Figure
1. The RWESA-GNNR consists of four modules: (1) a
user-item node feature extraction module for extract-
ing features of nodes in the interaction graph; (2) a
review text feature extraction module for extracting
sentiment polarity features from the review text; (3)
a sentiment feature fusion module for fusing the se-
mantic features of the review text with the sentiment
polarity features; (4) a prediction module, which per-
forms recommendation prediction based on the final
fused features.

Figure 1
The overall framework of the proposed model

2.1. User-item Node Feature Extraction
Module
The module consists of two layers, the first generating
an initial embedding vector from the user-item inter-
action graph using a random walk-based matrix fac-
torization, and the second aggregating the neighbor-
ing nodes of each node using a Graph Convolutional
Neural Network (GCN) to obtain a nodal feature rep-
resentation of the graph.
Considering that interaction graphs are interactions
between users and items, we model the interactions
as weighted undirected graphs G = (V, E), where V
denotes the set of nodes, including a total of n nodes

sentiment feature fusion module for fusing the
semantic features of the review text with the
sentiment polarity features; (4) a prediction
module, which performs recommendation
prediction based on the final fused features.

2.1 User-item Node Feature Extraction
Module

The module consists of two layers, the first
generating an initial embedding vector from the
user-item interaction graph using a random walk-
based matrix factorization, and the second
aggregating the neighboring nodes of each node
using a Graph Convolutional Neural Network

(GCN) to obtain a nodal feature representation of
the graph.

Considering that interaction graphs are
interactions between users and items, we model
the interactions as weighted undirected graphs

(,)G= V E , where V denotes the set of nodes,

including a total of n nodes for users and items,
denoting the number of users as a and the
number of items as b ; E denotes the set of
edges, representing the m interactions between
users and items, representing the interaction
information of the graph through the symmetric

adjacency matrix n nA   .

Figure 1

The overall framework of the proposed model

2.1.1 Node Initial Embedding Layer

This layer generates the initial embedding vector
from the user-item interaction graph using a
random wandering matrix factorization. For large
undirected network graphs such as
recommendation data, the interaction information
is very unevenly distributed and usually follows a
power-law distribution [11]. Random walks
enable the graph to have a topological structure
that can well overcome the power-law
distribution.

We define node u and node v . The edge with

weights connecting the two nodes is uvA . If node

u and node v interact, then 1uvA  , otherwise

0uvA  . The probabilistic covariance matrix of

node pairs based on random wandering is shown
in Figure 2.

Since the random walk process is carried out
randomly, the value of the next node is only
related to the current node and has no relation to
the previous node. We assume that the current
point in time is t and the position is node u .
The next random wandering result to the next
node v is only related to the position of the

149Information Technology and Control 2024/1/53

for users and items, denoting the number of users as
a and the number of items as b; E denotes the set of
edges, representing the m interactions between users
and items, representing the interaction information
of the graph through the symmetric adjacency matrix

n nA ×∈� .

2.1.1. Node Initial Embedding Layer
This layer generates the initial embedding vector from
the user-item interaction graph using a random wan-
dering matrix factorization. For large undirected net-
work graphs such as recommendation data, the inter-
action information is very unevenly distributed and
usually follows a power-law distribution [11]. Random
walks enable the graph to have a topological structure
that can well overcome the power-law distribution.
We define node u and node v. The edge with weights
connecting the two nodes is uvA . If node u and node v
interact, then 1uvA = , otherwise 0uvA = . The probabi-
listic covariance matrix of node pairs based on ran-
dom wandering is shown in Figure 2.

Figure 2
Generating probability co-occurrence matrices based on
random wandering

current node u and not to the state (position)
before time t . Therefore, the random wandering
process is a class of Markov processes [4]. The
sequence of nodes obtained after this process is a
Markov chain over the set V of nodes. For a
Markov chain, a standard random walk on a
connected bipartite graph traverses the entire
graph and has a unique smooth distribution

n   .

Figure 2

Generating probability co-occurrence matrices
based on random wandering

When using standard random wandering in an
undirected weighted graph, the probabilities from
node u and node v are only related to node
u itself, so that the transfer probability obtained
is proportional to the edge weight

uvA , as shown

in Equation (1).

((1) ())
deg()

uvAp x t v x t u
u

    , (1)

where ()x t V is the node wandered to at time
t ; deg() is a function of the degree of node

seeking.

We denote the transfer probabilities between all
pairs of nodes as the transfer matrix n nM  ,
as shown in Equation (2):

1M D A . (2)

For a connected bipartite graph, a random walk
traverses the entire graph and has a unique

smooth distribution n  . For each node u

, the distribution is shown in Equation (3):

deg()
deg()u

v

u
v

 


. (3)

The root of the similarity function based on
random wandering is based on the probability of
a wandering being co-visited for a node. The node
similarity metric is essentially a function that

maps the probability of co-visitation of a node
pair to the concept of topological similarity. Two
nodes are similar to each other if the function has
a large positive value, and they are different if
they have a large negative value. We use self-
covariance as the similarity measure function,
which has been shown to give better embedding
results in recommendation tasks [9].

We define the self-covariance ()uvR  as the

covariance between u and v over time t , as
shown in Equation (4):

() cov((), ())
[(() [()])(() [()])]
uv u v

u u v v

R = X t X t
E X t E X t X t E X t

 
 

 
   

, (4)

where the value of the covariance ()uvR  is a

linear measure of the joint variability of the
probability of a random visit to nodes u and v
at time t , and is a formal expression for the
likelihood of two nodes being visited
simultaneously.

The probability  of iterating and starting is
shown in Equation (5).

() (() ())uv u u vR = p x t v x t u        (5)

where () [, (1)]uv u v u vR        . We

express it in the form of a matrix as shown in
Equation (6):

() TR = M    . (6)

The goal of the embedding algorithm is to
generate a representation that maintains a given
vector of similarity measures, subject to the
conditions of Equation (7):

* 2

,

2

min ()

min

T
u v uv

u v

T

F

U =arg u u R

arg UU R



 


, (7)

where T
u vu u captures the similarity in the

embedding space; R is the similarity matrix;

and
2

F
 is the Fibonacci parametrization.

Because R is a symmetric but extremely sparse

matrix, its complexity will reach 3()o n if

singular value decomposition is used, and it will

drop to 2()o nd mdr if it is decomposed by a

1

10

2

5

7

0

4
8

6

9

0.02 0.03 0.1

 
 
 
 
 
 
  

    

 

 

 

    

Random Surfing

0.05 0 0.7
0.1 0.3 0
0 0.2 0

 
 
 
 
 
 
  

    

 

 

 

    

Calculation of PPMI

Node graph Random wandering
probability matrix

Probability co
occurrence matrix

i
tp

Since the random walk process is carried out random-
ly, the value of the next node is only related to the cur-
rent node and has no relation to the previous node. We
assume that the current point in time is t and the po-
sition is node u. The next random wandering result to
the next node v is only related to the position of the cur-
rent node u and not to the state (position) before time t.
Therefore, the random wandering process is a class of
Markov processes [4]. The sequence of nodes obtained
after this process is a Markov chain over the set V of
nodes. For a Markov chain, a standard random walk on
a connected bipartite graph traverses the entire graph
and has a unique smooth distribution nπ ∈� .

When using standard random wandering in an undi-
rected weighted graph, the probabilities from node u
and node v are only related to node u itself, so that the
transfer probability obtained is proportional to the
edge weight uvA , as shown in Equation (1).

current node u and not to the state (position)
before time t . Therefore, the random wandering
process is a class of Markov processes [4]. The
sequence of nodes obtained after this process is a
Markov chain over the set V of nodes. For a
Markov chain, a standard random walk on a
connected bipartite graph traverses the entire
graph and has a unique smooth distribution

n   .

Figure 2

Generating probability co-occurrence matrices
based on random wandering

When using standard random wandering in an
undirected weighted graph, the probabilities from
node u and node v are only related to node
u itself, so that the transfer probability obtained
is proportional to the edge weight

uvA , as shown

in Equation (1).

((1) ())
deg()

uvAp x t v x t u
u

    , (1)

where ()x t V is the node wandered to at time
t ; deg() is a function of the degree of node

seeking.

We denote the transfer probabilities between all
pairs of nodes as the transfer matrix n nM  ,
as shown in Equation (2):

1M D A . (2)

For a connected bipartite graph, a random walk
traverses the entire graph and has a unique

smooth distribution n  . For each node u

, the distribution is shown in Equation (3):

deg()
deg()u

v

u
v

 


. (3)

The root of the similarity function based on
random wandering is based on the probability of
a wandering being co-visited for a node. The node
similarity metric is essentially a function that

maps the probability of co-visitation of a node
pair to the concept of topological similarity. Two
nodes are similar to each other if the function has
a large positive value, and they are different if
they have a large negative value. We use self-
covariance as the similarity measure function,
which has been shown to give better embedding
results in recommendation tasks [9].

We define the self-covariance ()uvR  as the

covariance between u and v over time t , as
shown in Equation (4):

() cov((), ())
[(() [()])(() [()])]
uv u v

u u v v

R = X t X t
E X t E X t X t E X t

 
 

 
   

, (4)

where the value of the covariance ()uvR  is a

linear measure of the joint variability of the
probability of a random visit to nodes u and v
at time t , and is a formal expression for the
likelihood of two nodes being visited
simultaneously.

The probability  of iterating and starting is
shown in Equation (5).

() (() ())uv u u vR = p x t v x t u        (5)

where () [, (1)]uv u v u vR        . We

express it in the form of a matrix as shown in
Equation (6):

() TR = M    . (6)

The goal of the embedding algorithm is to
generate a representation that maintains a given
vector of similarity measures, subject to the
conditions of Equation (7):

* 2

,

2

min ()

min

T
u v uv

u v

T

F

U =arg u u R

arg UU R



 


, (7)

where T
u vu u captures the similarity in the

embedding space; R is the similarity matrix;

and
2

F
 is the Fibonacci parametrization.

Because R is a symmetric but extremely sparse

matrix, its complexity will reach 3()o n if

singular value decomposition is used, and it will

drop to 2()o nd mdr if it is decomposed by a

1

10

2

5

7

0

4
8

6

9

0.02 0.03 0.1

 
 
 
 
 
 
  

    

 

 

 

    

Random Surfing

0.05 0 0.7
0.1 0.3 0
0 0.2 0

 
 
 
 
 
 
  

    

 

 

 

    

Calculation of PPMI

Node graph Random wandering
probability matrix

Probability co
occurrence matrix

i
tp

(1)

where ()x t V∈ is the node wandered to at time t;
deg()⋅ is a function of the degree of node seeking.
We denote the transfer probabilities between all pairs
of nodes as the transfer matrix n nM ×∈� , as shown in
Equation (2):

current node u and not to the state (position)
before time t . Therefore, the random wandering
process is a class of Markov processes [4]. The
sequence of nodes obtained after this process is a
Markov chain over the set V of nodes. For a
Markov chain, a standard random walk on a
connected bipartite graph traverses the entire
graph and has a unique smooth distribution

n   .

Figure 2

Generating probability co-occurrence matrices
based on random wandering

When using standard random wandering in an
undirected weighted graph, the probabilities from
node u and node v are only related to node
u itself, so that the transfer probability obtained
is proportional to the edge weight

uvA , as shown

in Equation (1).

((1) ())
deg()

uvAp x t v x t u
u

    , (1)

where ()x t V is the node wandered to at time
t ; deg() is a function of the degree of node

seeking.

We denote the transfer probabilities between all
pairs of nodes as the transfer matrix n nM  ,
as shown in Equation (2):

1M D A . (2)

For a connected bipartite graph, a random walk
traverses the entire graph and has a unique

smooth distribution n  . For each node u

, the distribution is shown in Equation (3):

deg()
deg()u

v

u
v

 


. (3)

The root of the similarity function based on
random wandering is based on the probability of
a wandering being co-visited for a node. The node
similarity metric is essentially a function that

maps the probability of co-visitation of a node
pair to the concept of topological similarity. Two
nodes are similar to each other if the function has
a large positive value, and they are different if
they have a large negative value. We use self-
covariance as the similarity measure function,
which has been shown to give better embedding
results in recommendation tasks [9].

We define the self-covariance ()uvR  as the

covariance between u and v over time t , as
shown in Equation (4):

() cov((), ())
[(() [()])(() [()])]
uv u v

u u v v

R = X t X t
E X t E X t X t E X t

 
 

 
   

, (4)

where the value of the covariance ()uvR  is a

linear measure of the joint variability of the
probability of a random visit to nodes u and v
at time t , and is a formal expression for the
likelihood of two nodes being visited
simultaneously.

The probability  of iterating and starting is
shown in Equation (5).

() (() ())uv u u vR = p x t v x t u        (5)

where () [, (1)]uv u v u vR        . We

express it in the form of a matrix as shown in
Equation (6):

() TR = M    . (6)

The goal of the embedding algorithm is to
generate a representation that maintains a given
vector of similarity measures, subject to the
conditions of Equation (7):

* 2

,

2

min ()

min

T
u v uv

u v

T

F

U =arg u u R

arg UU R



 


, (7)

where T
u vu u captures the similarity in the

embedding space; R is the similarity matrix;

and
2

F
 is the Fibonacci parametrization.

Because R is a symmetric but extremely sparse

matrix, its complexity will reach 3()o n if

singular value decomposition is used, and it will

drop to 2()o nd mdr if it is decomposed by a

1

10

2

5

7

0

4
8

6

9

0.02 0.03 0.1

 
 
 
 
 
 
  

    

 

 

 

    

Random Surfing

0.05 0 0.7
0.1 0.3 0
0 0.2 0

 
 
 
 
 
 
  

    

 

 

 

    

Calculation of PPMI

Node graph Random wandering
probability matrix

Probability co
occurrence matrix

i
tp

(2)

For a connected bipartite graph, a random walk tra-
verses the entire graph and has a unique smooth dis-
tribution nπ ∈� . For each node u, the distribution is
shown in Equation (3):

current node u and not to the state (position)
before time t . Therefore, the random wandering
process is a class of Markov processes [4]. The
sequence of nodes obtained after this process is a
Markov chain over the set V of nodes. For a
Markov chain, a standard random walk on a
connected bipartite graph traverses the entire
graph and has a unique smooth distribution

n   .

Figure 2

Generating probability co-occurrence matrices
based on random wandering

When using standard random wandering in an
undirected weighted graph, the probabilities from
node u and node v are only related to node
u itself, so that the transfer probability obtained
is proportional to the edge weight

uvA , as shown

in Equation (1).

((1) ())
deg()

uvAp x t v x t u
u

    , (1)

where ()x t V is the node wandered to at time
t ; deg() is a function of the degree of node

seeking.

We denote the transfer probabilities between all
pairs of nodes as the transfer matrix n nM  ,
as shown in Equation (2):

1M D A . (2)

For a connected bipartite graph, a random walk
traverses the entire graph and has a unique

smooth distribution n  . For each node u

, the distribution is shown in Equation (3):

deg()
deg()u

v

u
v

 


. (3)

The root of the similarity function based on
random wandering is based on the probability of
a wandering being co-visited for a node. The node
similarity metric is essentially a function that

maps the probability of co-visitation of a node
pair to the concept of topological similarity. Two
nodes are similar to each other if the function has
a large positive value, and they are different if
they have a large negative value. We use self-
covariance as the similarity measure function,
which has been shown to give better embedding
results in recommendation tasks [9].

We define the self-covariance ()uvR  as the

covariance between u and v over time t , as
shown in Equation (4):

() cov((), ())
[(() [()])(() [()])]
uv u v

u u v v

R = X t X t
E X t E X t X t E X t

 
 

 
   

, (4)

where the value of the covariance ()uvR  is a

linear measure of the joint variability of the
probability of a random visit to nodes u and v
at time t , and is a formal expression for the
likelihood of two nodes being visited
simultaneously.

The probability  of iterating and starting is
shown in Equation (5).

() (() ())uv u u vR = p x t v x t u        (5)

where () [, (1)]uv u v u vR        . We

express it in the form of a matrix as shown in
Equation (6):

() TR = M    . (6)

The goal of the embedding algorithm is to
generate a representation that maintains a given
vector of similarity measures, subject to the
conditions of Equation (7):

* 2

,

2

min ()

min

T
u v uv

u v

T

F

U =arg u u R

arg UU R



 


, (7)

where T
u vu u captures the similarity in the

embedding space; R is the similarity matrix;

and
2

F
 is the Fibonacci parametrization.

Because R is a symmetric but extremely sparse

matrix, its complexity will reach 3()o n if

singular value decomposition is used, and it will

drop to 2()o nd mdr if it is decomposed by a

1

10

2

5

7

0

4
8

6

9

0.02 0.03 0.1

 
 
 
 
 
 
  

    

 

 

 

    

Random Surfing

0.05 0 0.7
0.1 0.3 0
0 0.2 0

 
 
 
 
 
 
  

    

 

 

 

    

Calculation of PPMI

Node graph Random wandering
probability matrix

Probability co
occurrence matrix

i
tp

(3)

The root of the similarity function based on random
wandering is based on the probability of a wandering
being co-visited for a node. The node similarity met-
ric is essentially a function that maps the probability
of co-visitation of a node pair to the concept of topo-
logical similarity. Two nodes are similar to each other
if the function has a large positive value, and they are
different if they have a large negative value. We use
self-covariance as the similarity measure function,
which has been shown to give better embedding re-
sults in recommendation tasks [9].
We define the self-covariance ()uvR τ as the covari-
ance between u and v over time t, as shown in Equa-
tion (4):

current node u and not to the state (position)
before time t . Therefore, the random wandering
process is a class of Markov processes [4]. The
sequence of nodes obtained after this process is a
Markov chain over the set V of nodes. For a
Markov chain, a standard random walk on a
connected bipartite graph traverses the entire
graph and has a unique smooth distribution

n   .

Figure 2

Generating probability co-occurrence matrices
based on random wandering

When using standard random wandering in an
undirected weighted graph, the probabilities from
node u and node v are only related to node
u itself, so that the transfer probability obtained
is proportional to the edge weight

uvA , as shown

in Equation (1).

((1) ())
deg()

uvAp x t v x t u
u

    , (1)

where ()x t V is the node wandered to at time
t ; deg() is a function of the degree of node

seeking.

We denote the transfer probabilities between all
pairs of nodes as the transfer matrix n nM  ,
as shown in Equation (2):

1M D A . (2)

For a connected bipartite graph, a random walk
traverses the entire graph and has a unique

smooth distribution n  . For each node u

, the distribution is shown in Equation (3):

deg()
deg()u

v

u
v

 


. (3)

The root of the similarity function based on
random wandering is based on the probability of
a wandering being co-visited for a node. The node
similarity metric is essentially a function that

maps the probability of co-visitation of a node
pair to the concept of topological similarity. Two
nodes are similar to each other if the function has
a large positive value, and they are different if
they have a large negative value. We use self-
covariance as the similarity measure function,
which has been shown to give better embedding
results in recommendation tasks [9].

We define the self-covariance ()uvR  as the

covariance between u and v over time t , as
shown in Equation (4):

() cov((), ())
[(() [()])(() [()])]
uv u v

u u v v

R = X t X t
E X t E X t X t E X t

 
 

 
   

, (4)

where the value of the covariance ()uvR  is a

linear measure of the joint variability of the
probability of a random visit to nodes u and v
at time t , and is a formal expression for the
likelihood of two nodes being visited
simultaneously.

The probability  of iterating and starting is
shown in Equation (5).

() (() ())uv u u vR = p x t v x t u        (5)

where () [, (1)]uv u v u vR        . We

express it in the form of a matrix as shown in
Equation (6):

() TR = M    . (6)

The goal of the embedding algorithm is to
generate a representation that maintains a given
vector of similarity measures, subject to the
conditions of Equation (7):

* 2

,

2

min ()

min

T
u v uv

u v

T

F

U =arg u u R

arg UU R



 


, (7)

where T
u vu u captures the similarity in the

embedding space; R is the similarity matrix;

and
2

F
 is the Fibonacci parametrization.

Because R is a symmetric but extremely sparse

matrix, its complexity will reach 3()o n if

singular value decomposition is used, and it will

drop to 2()o nd mdr if it is decomposed by a

1

10

2

5

7

0

4
8

6

9

0.02 0.03 0.1

 
 
 
 
 
 
  

    

 

 

 

    

Random Surfing

0.05 0 0.7
0.1 0.3 0
0 0.2 0

 
 
 
 
 
 
  

    

 

 

 

    

Calculation of PPMI

Node graph Random wandering
probability matrix

Probability co
occurrence matrix

i
tp

(4)

where the value of the covariance ()uvR τ is a linear
measure of the joint variability of the probability of a
random visit to nodes u and v at time t, and is a formal
expression for the likelihood of two nodes being visit-
ed simultaneously.

Information Technology and Control 2024/1/53150

The probability π of iterating and starting is shown
in Equation (5).

current node u and not to the state (position)
before time t . Therefore, the random wandering
process is a class of Markov processes [4]. The
sequence of nodes obtained after this process is a
Markov chain over the set V of nodes. For a
Markov chain, a standard random walk on a
connected bipartite graph traverses the entire
graph and has a unique smooth distribution

n   .

Figure 2

Generating probability co-occurrence matrices
based on random wandering

When using standard random wandering in an
undirected weighted graph, the probabilities from
node u and node v are only related to node
u itself, so that the transfer probability obtained
is proportional to the edge weight

uvA , as shown

in Equation (1).

((1) ())
deg()

uvAp x t v x t u
u

    , (1)

where ()x t V is the node wandered to at time
t ; deg() is a function of the degree of node

seeking.

We denote the transfer probabilities between all
pairs of nodes as the transfer matrix n nM  ,
as shown in Equation (2):

1M D A . (2)

For a connected bipartite graph, a random walk
traverses the entire graph and has a unique

smooth distribution n  . For each node u

, the distribution is shown in Equation (3):

deg()
deg()u

v

u
v

 


. (3)

The root of the similarity function based on
random wandering is based on the probability of
a wandering being co-visited for a node. The node
similarity metric is essentially a function that

maps the probability of co-visitation of a node
pair to the concept of topological similarity. Two
nodes are similar to each other if the function has
a large positive value, and they are different if
they have a large negative value. We use self-
covariance as the similarity measure function,
which has been shown to give better embedding
results in recommendation tasks [9].

We define the self-covariance ()uvR  as the

covariance between u and v over time t , as
shown in Equation (4):

() cov((), ())
[(() [()])(() [()])]
uv u v

u u v v

R = X t X t
E X t E X t X t E X t

 
 

 
   

, (4)

where the value of the covariance ()uvR  is a

linear measure of the joint variability of the
probability of a random visit to nodes u and v
at time t , and is a formal expression for the
likelihood of two nodes being visited
simultaneously.

The probability  of iterating and starting is
shown in Equation (5).

() (() ())uv u u vR = p x t v x t u        (5)

where () [, (1)]uv u v u vR        . We

express it in the form of a matrix as shown in
Equation (6):

() TR = M    . (6)

The goal of the embedding algorithm is to
generate a representation that maintains a given
vector of similarity measures, subject to the
conditions of Equation (7):

* 2

,

2

min ()

min

T
u v uv

u v

T

F

U =arg u u R

arg UU R



 


, (7)

where T
u vu u captures the similarity in the

embedding space; R is the similarity matrix;

and
2

F
 is the Fibonacci parametrization.

Because R is a symmetric but extremely sparse

matrix, its complexity will reach 3()o n if

singular value decomposition is used, and it will

drop to 2()o nd mdr if it is decomposed by a

1

10

2

5

7

0

4
8

6

9

0.02 0.03 0.1

 
 
 
 
 
 
  

    

 

 

 

    

Random Surfing

0.05 0 0.7
0.1 0.3 0
0 0.2 0

 
 
 
 
 
 
  

    

 

 

 

    

Calculation of PPMI

Node graph Random wandering
probability matrix

Probability co
occurrence matrix

i
tp

(5)

where () [, (1)]uv u v u vR τ π π π π∈ − − . We express it in
the form of a matrix as shown in Equation (6):

current node u and not to the state (position)
before time t . Therefore, the random wandering
process is a class of Markov processes [4]. The
sequence of nodes obtained after this process is a
Markov chain over the set V of nodes. For a
Markov chain, a standard random walk on a
connected bipartite graph traverses the entire
graph and has a unique smooth distribution

n   .

Figure 2

Generating probability co-occurrence matrices
based on random wandering

When using standard random wandering in an
undirected weighted graph, the probabilities from
node u and node v are only related to node
u itself, so that the transfer probability obtained
is proportional to the edge weight

uvA , as shown

in Equation (1).

((1) ())
deg()

uvAp x t v x t u
u

    , (1)

where ()x t V is the node wandered to at time
t ; deg() is a function of the degree of node

seeking.

We denote the transfer probabilities between all
pairs of nodes as the transfer matrix n nM  ,
as shown in Equation (2):

1M D A . (2)

For a connected bipartite graph, a random walk
traverses the entire graph and has a unique

smooth distribution n  . For each node u

, the distribution is shown in Equation (3):

deg()
deg()u

v

u
v

 


. (3)

The root of the similarity function based on
random wandering is based on the probability of
a wandering being co-visited for a node. The node
similarity metric is essentially a function that

maps the probability of co-visitation of a node
pair to the concept of topological similarity. Two
nodes are similar to each other if the function has
a large positive value, and they are different if
they have a large negative value. We use self-
covariance as the similarity measure function,
which has been shown to give better embedding
results in recommendation tasks [9].

We define the self-covariance ()uvR  as the

covariance between u and v over time t , as
shown in Equation (4):

() cov((), ())
[(() [()])(() [()])]
uv u v

u u v v

R = X t X t
E X t E X t X t E X t

 
 

 
   

, (4)

where the value of the covariance ()uvR  is a

linear measure of the joint variability of the
probability of a random visit to nodes u and v
at time t , and is a formal expression for the
likelihood of two nodes being visited
simultaneously.

The probability  of iterating and starting is
shown in Equation (5).

() (() ())uv u u vR = p x t v x t u        (5)

where () [, (1)]uv u v u vR        . We

express it in the form of a matrix as shown in
Equation (6):

() TR = M    . (6)

The goal of the embedding algorithm is to
generate a representation that maintains a given
vector of similarity measures, subject to the
conditions of Equation (7):

* 2

,

2

min ()

min

T
u v uv

u v

T

F

U =arg u u R

arg UU R



 


, (7)

where T
u vu u captures the similarity in the

embedding space; R is the similarity matrix;

and
2

F
 is the Fibonacci parametrization.

Because R is a symmetric but extremely sparse

matrix, its complexity will reach 3()o n if

singular value decomposition is used, and it will

drop to 2()o nd mdr if it is decomposed by a

1

10

2

5

7

0

4
8

6

9

0.02 0.03 0.1

 
 
 
 
 
 
  

    

 

 

 

    

Random Surfing

0.05 0 0.7
0.1 0.3 0
0 0.2 0

 
 
 
 
 
 
  

    

 

 

 

    

Calculation of PPMI

Node graph Random wandering
probability matrix

Probability co
occurrence matrix

i
tp

(6)

The goal of the embedding algorithm is to generate a
representation that maintains a given vector of simi-
larity measures, subject to the conditions of Equation
(7):

current node u and not to the state (position)
before time t . Therefore, the random wandering
process is a class of Markov processes [4]. The
sequence of nodes obtained after this process is a
Markov chain over the set V of nodes. For a
Markov chain, a standard random walk on a
connected bipartite graph traverses the entire
graph and has a unique smooth distribution

n   .

Figure 2

Generating probability co-occurrence matrices
based on random wandering

When using standard random wandering in an
undirected weighted graph, the probabilities from
node u and node v are only related to node
u itself, so that the transfer probability obtained
is proportional to the edge weight

uvA , as shown

in Equation (1).

((1) ())
deg()

uvAp x t v x t u
u

    , (1)

where ()x t V is the node wandered to at time
t ; deg() is a function of the degree of node

seeking.

We denote the transfer probabilities between all
pairs of nodes as the transfer matrix n nM  ,
as shown in Equation (2):

1M D A . (2)

For a connected bipartite graph, a random walk
traverses the entire graph and has a unique

smooth distribution n  . For each node u

, the distribution is shown in Equation (3):

deg()
deg()u

v

u
v

 


. (3)

The root of the similarity function based on
random wandering is based on the probability of
a wandering being co-visited for a node. The node
similarity metric is essentially a function that

maps the probability of co-visitation of a node
pair to the concept of topological similarity. Two
nodes are similar to each other if the function has
a large positive value, and they are different if
they have a large negative value. We use self-
covariance as the similarity measure function,
which has been shown to give better embedding
results in recommendation tasks [9].

We define the self-covariance ()uvR  as the

covariance between u and v over time t , as
shown in Equation (4):

() cov((), ())
[(() [()])(() [()])]
uv u v

u u v v

R = X t X t
E X t E X t X t E X t

 
 

 
   

, (4)

where the value of the covariance ()uvR  is a

linear measure of the joint variability of the
probability of a random visit to nodes u and v
at time t , and is a formal expression for the
likelihood of two nodes being visited
simultaneously.

The probability  of iterating and starting is
shown in Equation (5).

() (() ())uv u u vR = p x t v x t u        (5)

where () [, (1)]uv u v u vR        . We

express it in the form of a matrix as shown in
Equation (6):

() TR = M    . (6)

The goal of the embedding algorithm is to
generate a representation that maintains a given
vector of similarity measures, subject to the
conditions of Equation (7):

* 2

,

2

min ()

min

T
u v uv

u v

T

F

U =arg u u R

arg UU R



 


, (7)

where T
u vu u captures the similarity in the

embedding space; R is the similarity matrix;

and
2

F
 is the Fibonacci parametrization.

Because R is a symmetric but extremely sparse

matrix, its complexity will reach 3()o n if

singular value decomposition is used, and it will

drop to 2()o nd mdr if it is decomposed by a

1

10

2

5

7

0

4
8

6

9

0.02 0.03 0.1

 
 
 
 
 
 
  

    

 

 

 

    

Random Surfing

0.05 0 0.7
0.1 0.3 0
0 0.2 0

 
 
 
 
 
 
  

    

 

 

 

    

Calculation of PPMI

Node graph Random wandering
probability matrix

Probability co
occurrence matrix

i
tp

(7)

where T
u vu u captures the similarity in the embedding

space; R is the similarity matrix; and
2

F
⋅ is the Fibo-

nacci parametrization.
Because R is a symmetric but extremely sparse
matrix, its complexity will reach 3()o n if singu-
lar value decomposition is used, and it will drop to

2()o nd mdr+ if it is decomposed by a scalable factor-
ize method. Therefore, we use the ARPACK method
[19] to capture the global information by deriving the
eigenvalues and eigenvectors for the probability ma-
trix to obtain the initial embedding (0) de ∈� for the
final input GCN.

2.1.2. Node Feature Extraction Layer
This layer uses a GCN to extract features on the in-
teracting nodes to obtain a node representation of the
user and the item.
Firstly, we couple the initial embedding A obtained
by random wandering with the dot product, which
will have better performance in capturing the full
graph heterogeneity distribution. The aggregation
function is used to update the content of this node
by aggregating information from neighboring nodes,
using a non-linear activation function to model more
non-linear relationships in the data. To better capture
node features, we use the Bi-Interaction aggregator
[22] to fully capture the feature information embed-
ded in the initial vector of the transfer. In summary,
we express the whole process as Equation (8):

scalable factorize method. Therefore, we use the
ARPACK method [19] to capture the global
information by deriving the eigenvalues and
eigenvectors for the probability matrix to obtain
the initial embedding (0) de  for the final
input GCN.

2.1.2 Node Feature Extraction Layer

This layer uses a GCN to extract features on the
interacting nodes to obtain a node representation
of the user and the item.

Firstly, we couple the initial embedding A
obtained by random wandering with the dot
product, which will have better performance in
capturing the full graph heterogeneity
distribution. The aggregation function is used to
update the content of this node by aggregating
information from neighboring nodes, using a non-
linear activation function to model more non-
linear relationships in the data. To better capture
node features, we use the Bi-Interaction
aggregator [22] to fully capture the feature
information embedded in the initial vector of the
transfer. In summary, we express the whole
process as Equation (8):

()

()

()

()

1 1
0

1 1
1

1 1
0

1 1
1

(())

(())

(())

(())

u

u

i

i

l l l
u u N

l l
u N

l l l
i i N

l l
i N

e LeakyReLU W e e

LeakyReLU W e e

e LeakyReLU W e e

LeakyReLU W e e

 

 

 

 

 



 







, (8)

where
0W and

1W are trainable weight

matrices; l is the number of layers of the GCN;

ue is the embedding vector of user u and ie

is the embedding vector of item i ; ()N u is the
set of neighboring nodes of user u and ()N i is
the set of neighboring nodes of item i ;  is the
dot product operation; and ()LeakyReLU  is the

activation function we use.

Secondly, considering that different layers of
information have different weights of influence
on the content of nodes, we introduce a self-
attention mechanism to model the importance of
each layer of embedding, and each layer of
embedding is calculated as shown in Equation
(9):

*
2 0 1tanh()T k

k a jW W e b b    , (9)

where k
je is the layer k embedding of node

j .
aW ,

2W , 0b and 1b are learnable

parameters, and *
k is the scoring function for

layer k .

Third, we normalized the attention ratings to
obtain the attention weights for each layer of the
embedding, as shown in Equation (10):

*
*

*

exp()()
()

k
k k

k

softmax  


 


. (10)

Finally, we combine the embedding expressions
of each layer weighted according to the weights
to obtain a final representation of the association

between nodes d
ue  and d

ie  , as

shown in Equation (11):

0

0

l
k

u k u
k
l

k
i k i

k

e e

e e
















. (11)

2.2 Review Text Feature Extraction Module

The module consists of two layers, the first for
word embedding of the review text using the
encoder and the second for sentiment polarity
analysis of the review text.

2.2.1 Word Embedding Layer

This layer changes the review text from non-
machine-recognizable words to an actionable set
of embedding vectors via an encoder, facilitating
machine learning for feature extraction.

Firstly, we use Bidirectional Encoder
Representations from Transformers (BERT) for
encoding, this is due to the fact that BERT is
composed of multiple Transformer overlays,
which can solve the problem of multiple
meanings of words; at the same time, BERT can
selectively use information from all levels, so that
the multi-layered features of words can be
exploited [24]. BERT is to input the whole review
together, and then perform sentence division and
padding, sentences that are less than the length
will be filled, while sentences that are too long
will be truncated. Specifically, we connect the
results of the token, segment and position layers
in BERT by element to obtain a representation of

(8)

where W0 and W1 are trainable weight matrices; l is
the number of layers of the GCN; eu is the embedding
vector of user u and ei is the embedding vector of item
i; N(U) is the set of neighboring nodes of user u and
N(i) is the set of neighboring nodes of item i; � is the
dot product operation; and ()LeakyReLU ⋅ is the acti-
vation function we use.
Secondly, considering that different layers of infor-
mation have different weights of influence on the
content of nodes, we introduce a self-attention mech-
anism to model the importance of each layer of em-
bedding, and each layer of embedding is calculated as
shown in Equation (9):

scalable factorize method. Therefore, we use the
ARPACK method [19] to capture the global
information by deriving the eigenvalues and
eigenvectors for the probability matrix to obtain
the initial embedding (0) de  for the final
input GCN.

2.1.2 Node Feature Extraction Layer

This layer uses a GCN to extract features on the
interacting nodes to obtain a node representation
of the user and the item.

Firstly, we couple the initial embedding A
obtained by random wandering with the dot
product, which will have better performance in
capturing the full graph heterogeneity
distribution. The aggregation function is used to
update the content of this node by aggregating
information from neighboring nodes, using a non-
linear activation function to model more non-
linear relationships in the data. To better capture
node features, we use the Bi-Interaction
aggregator [22] to fully capture the feature
information embedded in the initial vector of the
transfer. In summary, we express the whole
process as Equation (8):

()

()

()

()

1 1
0

1 1
1

1 1
0

1 1
1

(())

(())

(())

(())

u

u

i

i

l l l
u u N

l l
u N

l l l
i i N

l l
i N

e LeakyReLU W e e

LeakyReLU W e e

e LeakyReLU W e e

LeakyReLU W e e

 

 

 

 

 



 







, (8)

where
0W and

1W are trainable weight

matrices; l is the number of layers of the GCN;

ue is the embedding vector of user u and ie

is the embedding vector of item i ; ()N u is the
set of neighboring nodes of user u and ()N i is
the set of neighboring nodes of item i ;  is the
dot product operation; and ()LeakyReLU  is the

activation function we use.

Secondly, considering that different layers of
information have different weights of influence
on the content of nodes, we introduce a self-
attention mechanism to model the importance of
each layer of embedding, and each layer of
embedding is calculated as shown in Equation
(9):

*
2 0 1tanh()T k

k a jW W e b b    , (9)

where k
je is the layer k embedding of node

j .
aW ,

2W , 0b and 1b are learnable

parameters, and *
k is the scoring function for

layer k .

Third, we normalized the attention ratings to
obtain the attention weights for each layer of the
embedding, as shown in Equation (10):

*
*

*

exp()()
()

k
k k

k

softmax  


 


. (10)

Finally, we combine the embedding expressions
of each layer weighted according to the weights
to obtain a final representation of the association

between nodes d
ue  and d

ie  , as

shown in Equation (11):

0

0

l
k

u k u
k
l

k
i k i

k

e e

e e
















. (11)

2.2 Review Text Feature Extraction Module

The module consists of two layers, the first for
word embedding of the review text using the
encoder and the second for sentiment polarity
analysis of the review text.

2.2.1 Word Embedding Layer

This layer changes the review text from non-
machine-recognizable words to an actionable set
of embedding vectors via an encoder, facilitating
machine learning for feature extraction.

Firstly, we use Bidirectional Encoder
Representations from Transformers (BERT) for
encoding, this is due to the fact that BERT is
composed of multiple Transformer overlays,
which can solve the problem of multiple
meanings of words; at the same time, BERT can
selectively use information from all levels, so that
the multi-layered features of words can be
exploited [24]. BERT is to input the whole review
together, and then perform sentence division and
padding, sentences that are less than the length
will be filled, while sentences that are too long
will be truncated. Specifically, we connect the
results of the token, segment and position layers
in BERT by element to obtain a representation of

(9)

where k
je is the layer k embedding of node j. Wa, W2, b0

and b1 are learnable parameters, and *
kα is the scoring

function for layer k.
Third, we normalized the attention ratings to obtain
the attention weights for each layer of the embedding,
as shown in Equation (10):

scalable factorize method. Therefore, we use the
ARPACK method [19] to capture the global
information by deriving the eigenvalues and
eigenvectors for the probability matrix to obtain
the initial embedding (0) de  for the final
input GCN.

2.1.2 Node Feature Extraction Layer

This layer uses a GCN to extract features on the
interacting nodes to obtain a node representation
of the user and the item.

Firstly, we couple the initial embedding A
obtained by random wandering with the dot
product, which will have better performance in
capturing the full graph heterogeneity
distribution. The aggregation function is used to
update the content of this node by aggregating
information from neighboring nodes, using a non-
linear activation function to model more non-
linear relationships in the data. To better capture
node features, we use the Bi-Interaction
aggregator [22] to fully capture the feature
information embedded in the initial vector of the
transfer. In summary, we express the whole
process as Equation (8):

()

()

()

()

1 1
0

1 1
1

1 1
0

1 1
1

(())

(())

(())

(())

u

u

i

i

l l l
u u N

l l
u N

l l l
i i N

l l
i N

e LeakyReLU W e e

LeakyReLU W e e

e LeakyReLU W e e

LeakyReLU W e e

 

 

 

 

 



 







, (8)

where
0W and

1W are trainable weight

matrices; l is the number of layers of the GCN;

ue is the embedding vector of user u and ie

is the embedding vector of item i ; ()N u is the
set of neighboring nodes of user u and ()N i is
the set of neighboring nodes of item i ;  is the
dot product operation; and ()LeakyReLU  is the

activation function we use.

Secondly, considering that different layers of
information have different weights of influence
on the content of nodes, we introduce a self-
attention mechanism to model the importance of
each layer of embedding, and each layer of
embedding is calculated as shown in Equation
(9):

*
2 0 1tanh()T k

k a jW W e b b    , (9)

where k
je is the layer k embedding of node

j .
aW ,

2W , 0b and 1b are learnable

parameters, and *
k is the scoring function for

layer k .

Third, we normalized the attention ratings to
obtain the attention weights for each layer of the
embedding, as shown in Equation (10):

*
*

*

exp()()
()

k
k k

k

softmax  


 


. (10)

Finally, we combine the embedding expressions
of each layer weighted according to the weights
to obtain a final representation of the association

between nodes d
ue  and d

ie  , as

shown in Equation (11):

0

0

l
k

u k u
k
l

k
i k i

k

e e

e e
















. (11)

2.2 Review Text Feature Extraction Module

The module consists of two layers, the first for
word embedding of the review text using the
encoder and the second for sentiment polarity
analysis of the review text.

2.2.1 Word Embedding Layer

This layer changes the review text from non-
machine-recognizable words to an actionable set
of embedding vectors via an encoder, facilitating
machine learning for feature extraction.

Firstly, we use Bidirectional Encoder
Representations from Transformers (BERT) for
encoding, this is due to the fact that BERT is
composed of multiple Transformer overlays,
which can solve the problem of multiple
meanings of words; at the same time, BERT can
selectively use information from all levels, so that
the multi-layered features of words can be
exploited [24]. BERT is to input the whole review
together, and then perform sentence division and
padding, sentences that are less than the length
will be filled, while sentences that are too long
will be truncated. Specifically, we connect the
results of the token, segment and position layers
in BERT by element to obtain a representation of

(10)

Finally, we combine the embedding expressions of
each layer weighted according to the weights to obtain
a final representation of the association between nodes

d
ue ∈� and d

ie ∈� , as shown in Equation (11):

scalable factorize method. Therefore, we use the
ARPACK method [19] to capture the global
information by deriving the eigenvalues and
eigenvectors for the probability matrix to obtain
the initial embedding (0) de  for the final
input GCN.

2.1.2 Node Feature Extraction Layer

This layer uses a GCN to extract features on the
interacting nodes to obtain a node representation
of the user and the item.

Firstly, we couple the initial embedding A
obtained by random wandering with the dot
product, which will have better performance in
capturing the full graph heterogeneity
distribution. The aggregation function is used to
update the content of this node by aggregating
information from neighboring nodes, using a non-
linear activation function to model more non-
linear relationships in the data. To better capture
node features, we use the Bi-Interaction
aggregator [22] to fully capture the feature
information embedded in the initial vector of the
transfer. In summary, we express the whole
process as Equation (8):

()

()

()

()

1 1
0

1 1
1

1 1
0

1 1
1

(())

(())

(())

(())

u

u

i

i

l l l
u u N

l l
u N

l l l
i i N

l l
i N

e LeakyReLU W e e

LeakyReLU W e e

e LeakyReLU W e e

LeakyReLU W e e

 

 

 

 

 



 







, (8)

where
0W and

1W are trainable weight

matrices; l is the number of layers of the GCN;

ue is the embedding vector of user u and ie

is the embedding vector of item i ; ()N u is the
set of neighboring nodes of user u and ()N i is
the set of neighboring nodes of item i ;  is the
dot product operation; and ()LeakyReLU  is the

activation function we use.

Secondly, considering that different layers of
information have different weights of influence
on the content of nodes, we introduce a self-
attention mechanism to model the importance of
each layer of embedding, and each layer of
embedding is calculated as shown in Equation
(9):

*
2 0 1tanh()T k

k a jW W e b b    , (9)

where k
je is the layer k embedding of node

j .
aW ,

2W , 0b and 1b are learnable

parameters, and *
k is the scoring function for

layer k .

Third, we normalized the attention ratings to
obtain the attention weights for each layer of the
embedding, as shown in Equation (10):

*
*

*

exp()()
()

k
k k

k

softmax  


 


. (10)

Finally, we combine the embedding expressions
of each layer weighted according to the weights
to obtain a final representation of the association

between nodes d
ue  and d

ie  , as

shown in Equation (11):

0

0

l
k

u k u
k
l

k
i k i

k

e e

e e
















. (11)

2.2 Review Text Feature Extraction Module

The module consists of two layers, the first for
word embedding of the review text using the
encoder and the second for sentiment polarity
analysis of the review text.

2.2.1 Word Embedding Layer

This layer changes the review text from non-
machine-recognizable words to an actionable set
of embedding vectors via an encoder, facilitating
machine learning for feature extraction.

Firstly, we use Bidirectional Encoder
Representations from Transformers (BERT) for
encoding, this is due to the fact that BERT is
composed of multiple Transformer overlays,
which can solve the problem of multiple
meanings of words; at the same time, BERT can
selectively use information from all levels, so that
the multi-layered features of words can be
exploited [24]. BERT is to input the whole review
together, and then perform sentence division and
padding, sentences that are less than the length
will be filled, while sentences that are too long
will be truncated. Specifically, we connect the
results of the token, segment and position layers
in BERT by element to obtain a representation of

(11)

2.2. Review Text Feature Extraction Module
The module consists of two layers, the first for word
embedding of the review text using the encoder and

151Information Technology and Control 2024/1/53

the second for sentiment polarity analysis of the re-
view text.

2.2.1. Word Embedding Layer
This layer changes the review text from non-ma-
chine-recognizable words to an actionable set of em-
bedding vectors via an encoder, facilitating machine
learning for feature extraction.
Firstly, we use Bidirectional Encoder Representa-
tions from Transformers (BERT) for encoding, this
is due to the fact that BERT is composed of multiple
Transformer overlays, which can solve the problem of
multiple meanings of words; at the same time, BERT
can selectively use information from all levels, so that
the multi-layered features of words can be exploited
[24]. BERT is to input the whole review together, and
then perform sentence division and padding, sen-
tences that are less than the length will be filled, while
sentences that are too long will be truncated. Specifi-
cally, we connect the results of the token, segment and
position layers in BERT by element to obtain a repre-
sentation of all embedding vectors about the input re-
view text, as shown in Equation (12):
all embedding vectors about the input review text,
as shown in Equation (12):

1 2
(, ,...,)

n

i i i i
token segment position

i i i

x x x x

E x x x

  


, (12)

where ix is the vector of the i th review text

embedding representation, where 1x is the

initial label vector in BERT; and E is the initial
embedding vector of the review text generated
after the entire input of the i th review text.

It is worth mentioning that, unlike the often used
text processing models such as one-hot encoding
[17], word2vec [5] and ELMo [14], BERT uses a
multi-headed attention mechanism to assist in
capturing sequential information in the input
content, and the Transformer model allows BERT
to capture contextual features more
comprehensively, regardless of the length of the
input text. BERT uses a Word Piece [21]
approach for word embedding, where a word is
split into several parts according to the structure
of the root affix, allowing different forms of the
same word to be recognized. This is sufficient for
BERT’s own word list of over 30000 words.

Then, we input the initial representation vector A
of the review text into the multilayer Transformer
to extract the contextual relevance and enrich the
feature vector representation of the review text.
The final result of the text embedding process is
thus obtained, as shown in Equation (13):

1 2 1 1(), (),..., ()l lT Trm E T Trm T T Trm T    , (13)

where ()Trm  is a Transformer encoding

calculation; lT is the output of the Transformer

encoding block at layer l , and sometimes the
embedded representation of all tokens for the next
Transformer encoding module; [1,]l L , where

L is the layer of Transformer encoders in
BERT; and E is the final output representation
of the BERT model, a sequence of token
representations.

2.2.2 Sentiment Polarity Analysis Layer

The layer performs sentiment analysis on the
review text features embedded by BERT through
an activation function.

Since the BERT model is already a deep neural

network with a stack of multi-layer Transformer
encoder blocks, it already captures sufficient
semantic information for the extraction of
semantic information in sentences. Therefore,
after training with multiple layers of stacked
Transformer encoders, we can already obtain a
certain degree of semantic information about the
entire comment text. We input the embedding
representation E of each review text into the
activation function for sentiment polarity
analysis, and predict the sentence-level sentiment
polarity probability in the whole review, as shown
in Equation (14):

3 2() ()p E softmax W E b  , (14)

where ()p E is the probability of semantic

sentiment polarity analysis for the whole review
text;

3W and
2b are the trainable weight

matrices; and D is the activation function we use.

2.3 Sentiment Feature Fusion Module

The module uses an attention mechanism to
merge semantic features of review text with
sentiment polarity features.

We dot product the node feature vectors of users
and items and use them as queries in the attention
mechanism, define the initial token in the text

jE of review j as jc , and concatenate jc

with the sentiment polarity feature jp of that

review as the KEY-VALUE pair in the attention
mechanism. We calculate a rating for each review
based on the attention mechanism, as shown in
Equation (15):

*

3 4

(()

())

T
j b k j j

q u i

W Relu W c p

W e e b b

  

  
, (15)

where bW , kW , qW , 3W and 4W are

learnable parameters; *
j is the attention rating

function for each review, and the attention value
for a weighted combination of all reviews for the
same user or item is calculated as shown in
Equation (16):

*
*

*

exp()
()

exp()
j

j j
j

Softmax


 


 


. (16)

(12)

where ix is the vector of the i th review text embed-
ding representation, where 1x is the initial label vec-
tor in BERT; and E is the initial embedding vector of
the review text generated after the entire input of the
i th review text.
It is worth mentioning that, unlike the often used
text processing models such as one-hot encod-
ing [17], word2vec [5] and ELMo [14], BERT uses a
multi-headed attention mechanism to assist in cap-
turing sequential information in the input content,
and the Transformer model allows BERT to capture
contextual features more comprehensively, regard-
less of the length of the input text. BERT uses a Word
Piece [21] approach for word embedding, where a
word is split into several parts according to the struc-
ture of the root affix, allowing different forms of the
same word to be recognized. This is sufficient for
BERT’s own word list of over 30000 words.
Then, we input the initial representation vector A of
the review text into the multilayer Transformer to ex-
tract the contextual relevance and enrich the feature

vector representation of the review text. The final re-
sult of the text embedding process is thus obtained, as
shown in Equation (13):

all embedding vectors about the input review text,
as shown in Equation (12):

1 2
(, ,...,)

n

i i i i
token segment position

i i i

x x x x

E x x x

  


, (12)

where ix is the vector of the i th review text

embedding representation, where 1x is the

initial label vector in BERT; and E is the initial
embedding vector of the review text generated
after the entire input of the i th review text.

It is worth mentioning that, unlike the often used
text processing models such as one-hot encoding
[17], word2vec [5] and ELMo [14], BERT uses a
multi-headed attention mechanism to assist in
capturing sequential information in the input
content, and the Transformer model allows BERT
to capture contextual features more
comprehensively, regardless of the length of the
input text. BERT uses a Word Piece [21]
approach for word embedding, where a word is
split into several parts according to the structure
of the root affix, allowing different forms of the
same word to be recognized. This is sufficient for
BERT’s own word list of over 30000 words.

Then, we input the initial representation vector A
of the review text into the multilayer Transformer
to extract the contextual relevance and enrich the
feature vector representation of the review text.
The final result of the text embedding process is
thus obtained, as shown in Equation (13):

1 2 1 1(), (),..., ()l lT Trm E T Trm T T Trm T    , (13)

where ()Trm  is a Transformer encoding

calculation; lT is the output of the Transformer

encoding block at layer l , and sometimes the
embedded representation of all tokens for the next
Transformer encoding module; [1,]l L , where

L is the layer of Transformer encoders in
BERT; and E is the final output representation
of the BERT model, a sequence of token
representations.

2.2.2 Sentiment Polarity Analysis Layer

The layer performs sentiment analysis on the
review text features embedded by BERT through
an activation function.

Since the BERT model is already a deep neural

network with a stack of multi-layer Transformer
encoder blocks, it already captures sufficient
semantic information for the extraction of
semantic information in sentences. Therefore,
after training with multiple layers of stacked
Transformer encoders, we can already obtain a
certain degree of semantic information about the
entire comment text. We input the embedding
representation E of each review text into the
activation function for sentiment polarity
analysis, and predict the sentence-level sentiment
polarity probability in the whole review, as shown
in Equation (14):

3 2() ()p E softmax W E b  , (14)

where ()p E is the probability of semantic

sentiment polarity analysis for the whole review
text;

3W and
2b are the trainable weight

matrices; and D is the activation function we use.

2.3 Sentiment Feature Fusion Module

The module uses an attention mechanism to
merge semantic features of review text with
sentiment polarity features.

We dot product the node feature vectors of users
and items and use them as queries in the attention
mechanism, define the initial token in the text

jE of review j as jc , and concatenate jc

with the sentiment polarity feature jp of that

review as the KEY-VALUE pair in the attention
mechanism. We calculate a rating for each review
based on the attention mechanism, as shown in
Equation (15):

*

3 4

(()

())

T
j b k j j

q u i

W Relu W c p

W e e b b

  

  
, (15)

where bW , kW , qW , 3W and 4W are

learnable parameters; *
j is the attention rating

function for each review, and the attention value
for a weighted combination of all reviews for the
same user or item is calculated as shown in
Equation (16):

*
*

*

exp()
()

exp()
j

j j
j

Softmax


 


 


. (16)

(13)

where ()Trm ⋅ is a Transformer encoding calculation;
lT is the output of the Transformer encoding block

at layer l, and sometimes the embedded representa-
tion of all tokens for the next Transformer encoding
module; [1,]l L∈ , where L is the layer of Transformer
encoders in BERT; and E is the final output represen-
tation of the BERT model, a sequence of token repre-
sentations.

2.2.2 Sentiment Polarity Analysis Layer
The layer performs sentiment analysis on the review
text features embedded by BERT through an activa-
tion function.
Since the BERT model is already a deep neural net-
work with a stack of multi-layer Transformer encoder
blocks, it already captures sufficient semantic infor-
mation for the extraction of semantic information in
sentences. Therefore, after training with multiple lay-
ers of stacked Transformer encoders, we can already
obtain a certain degree of semantic information about
the entire comment text. We input the embedding
representation E of each review text into the activa-
tion function for sentiment polarity analysis, and pre-
dict the sentence-level sentiment polarity probability
in the whole review, as shown in Equation (14):

all embedding vectors about the input review text,
as shown in Equation (12):

1 2
(, ,...,)

n

i i i i
token segment position

i i i

x x x x

E x x x

  


, (12)

where ix is the vector of the i th review text

embedding representation, where 1x is the

initial label vector in BERT; and E is the initial
embedding vector of the review text generated
after the entire input of the i th review text.

It is worth mentioning that, unlike the often used
text processing models such as one-hot encoding
[17], word2vec [5] and ELMo [14], BERT uses a
multi-headed attention mechanism to assist in
capturing sequential information in the input
content, and the Transformer model allows BERT
to capture contextual features more
comprehensively, regardless of the length of the
input text. BERT uses a Word Piece [21]
approach for word embedding, where a word is
split into several parts according to the structure
of the root affix, allowing different forms of the
same word to be recognized. This is sufficient for
BERT’s own word list of over 30000 words.

Then, we input the initial representation vector A
of the review text into the multilayer Transformer
to extract the contextual relevance and enrich the
feature vector representation of the review text.
The final result of the text embedding process is
thus obtained, as shown in Equation (13):

1 2 1 1(), (),..., ()l lT Trm E T Trm T T Trm T    , (13)

where ()Trm  is a Transformer encoding

calculation; lT is the output of the Transformer

encoding block at layer l , and sometimes the
embedded representation of all tokens for the next
Transformer encoding module; [1,]l L , where

L is the layer of Transformer encoders in
BERT; and E is the final output representation
of the BERT model, a sequence of token
representations.

2.2.2 Sentiment Polarity Analysis Layer

The layer performs sentiment analysis on the
review text features embedded by BERT through
an activation function.

Since the BERT model is already a deep neural

network with a stack of multi-layer Transformer
encoder blocks, it already captures sufficient
semantic information for the extraction of
semantic information in sentences. Therefore,
after training with multiple layers of stacked
Transformer encoders, we can already obtain a
certain degree of semantic information about the
entire comment text. We input the embedding
representation E of each review text into the
activation function for sentiment polarity
analysis, and predict the sentence-level sentiment
polarity probability in the whole review, as shown
in Equation (14):

3 2() ()p E softmax W E b  , (14)

where ()p E is the probability of semantic

sentiment polarity analysis for the whole review
text;

3W and
2b are the trainable weight

matrices; and D is the activation function we use.

2.3 Sentiment Feature Fusion Module

The module uses an attention mechanism to
merge semantic features of review text with
sentiment polarity features.

We dot product the node feature vectors of users
and items and use them as queries in the attention
mechanism, define the initial token in the text

jE of review j as jc , and concatenate jc

with the sentiment polarity feature jp of that

review as the KEY-VALUE pair in the attention
mechanism. We calculate a rating for each review
based on the attention mechanism, as shown in
Equation (15):

*

3 4

(()

())

T
j b k j j

q u i

W Relu W c p

W e e b b

  

  
, (15)

where bW , kW , qW , 3W and 4W are

learnable parameters; *
j is the attention rating

function for each review, and the attention value
for a weighted combination of all reviews for the
same user or item is calculated as shown in
Equation (16):

*
*

*

exp()
()

exp()
j

j j
j

Softmax


 


 


. (16)

(14)

where p(E) is the probability of semantic sentiment
polarity analysis for the whole review text; W3 and b2 are the trainable weight matrices; and D is the activa-
tion function we use.

2.3. Sentiment Feature Fusion Module
The module uses an attention mechanism to merge
semantic features of review text with sentiment po-
larity features.
We dot product the node feature vectors of users and
items and use them as queries in the attention mech-
anism, define the initial token in the text Ej of review
j as cj, and concatenate cj with the sentiment polarity
feature pj of that review as the KEY-VALUE pair in the
attention mechanism. We calculate a rating for each

Information Technology and Control 2024/1/53152

review based on the attention mechanism, as shown
in Equation (15):

all embedding vectors about the input review text,
as shown in Equation (12):

1 2
(, ,...,)

n

i i i i
token segment position

i i i

x x x x

E x x x

  


, (12)

where ix is the vector of the i th review text

embedding representation, where 1x is the

initial label vector in BERT; and E is the initial
embedding vector of the review text generated
after the entire input of the i th review text.

It is worth mentioning that, unlike the often used
text processing models such as one-hot encoding
[17], word2vec [5] and ELMo [14], BERT uses a
multi-headed attention mechanism to assist in
capturing sequential information in the input
content, and the Transformer model allows BERT
to capture contextual features more
comprehensively, regardless of the length of the
input text. BERT uses a Word Piece [21]
approach for word embedding, where a word is
split into several parts according to the structure
of the root affix, allowing different forms of the
same word to be recognized. This is sufficient for
BERT’s own word list of over 30000 words.

Then, we input the initial representation vector A
of the review text into the multilayer Transformer
to extract the contextual relevance and enrich the
feature vector representation of the review text.
The final result of the text embedding process is
thus obtained, as shown in Equation (13):

1 2 1 1(), (),..., ()l lT Trm E T Trm T T Trm T    , (13)

where ()Trm  is a Transformer encoding

calculation; lT is the output of the Transformer

encoding block at layer l , and sometimes the
embedded representation of all tokens for the next
Transformer encoding module; [1,]l L , where

L is the layer of Transformer encoders in
BERT; and E is the final output representation
of the BERT model, a sequence of token
representations.

2.2.2 Sentiment Polarity Analysis Layer

The layer performs sentiment analysis on the
review text features embedded by BERT through
an activation function.

Since the BERT model is already a deep neural

network with a stack of multi-layer Transformer
encoder blocks, it already captures sufficient
semantic information for the extraction of
semantic information in sentences. Therefore,
after training with multiple layers of stacked
Transformer encoders, we can already obtain a
certain degree of semantic information about the
entire comment text. We input the embedding
representation E of each review text into the
activation function for sentiment polarity
analysis, and predict the sentence-level sentiment
polarity probability in the whole review, as shown
in Equation (14):

3 2() ()p E softmax W E b  , (14)

where ()p E is the probability of semantic

sentiment polarity analysis for the whole review
text;

3W and
2b are the trainable weight

matrices; and D is the activation function we use.

2.3 Sentiment Feature Fusion Module

The module uses an attention mechanism to
merge semantic features of review text with
sentiment polarity features.

We dot product the node feature vectors of users
and items and use them as queries in the attention
mechanism, define the initial token in the text

jE of review j as jc , and concatenate jc

with the sentiment polarity feature jp of that

review as the KEY-VALUE pair in the attention
mechanism. We calculate a rating for each review
based on the attention mechanism, as shown in
Equation (15):

*

3 4

(()

())

T
j b k j j

q u i

W Relu W c p

W e e b b

  

  
, (15)

where bW , kW , qW , 3W and 4W are

learnable parameters; *
j is the attention rating

function for each review, and the attention value
for a weighted combination of all reviews for the
same user or item is calculated as shown in
Equation (16):

*
*

*

exp()
()

exp()
j

j j
j

Softmax


 


 


. (16)

(15)

where bW , kW , qW , 3W and 4W are learnable param-
eters; *

jβ is the attention rating function for each
review, and the attention value for a weighted com-
bination of all reviews for the same user or item is cal-
culated as shown in Equation (16):

all embedding vectors about the input review text,
as shown in Equation (12):

1 2
(, ,...,)

n

i i i i
token segment position

i i i

x x x x

E x x x

  


, (12)

where ix is the vector of the i th review text

embedding representation, where 1x is the

initial label vector in BERT; and E is the initial
embedding vector of the review text generated
after the entire input of the i th review text.

It is worth mentioning that, unlike the often used
text processing models such as one-hot encoding
[17], word2vec [5] and ELMo [14], BERT uses a
multi-headed attention mechanism to assist in
capturing sequential information in the input
content, and the Transformer model allows BERT
to capture contextual features more
comprehensively, regardless of the length of the
input text. BERT uses a Word Piece [21]
approach for word embedding, where a word is
split into several parts according to the structure
of the root affix, allowing different forms of the
same word to be recognized. This is sufficient for
BERT’s own word list of over 30000 words.

Then, we input the initial representation vector A
of the review text into the multilayer Transformer
to extract the contextual relevance and enrich the
feature vector representation of the review text.
The final result of the text embedding process is
thus obtained, as shown in Equation (13):

1 2 1 1(), (),..., ()l lT Trm E T Trm T T Trm T    , (13)

where ()Trm  is a Transformer encoding

calculation; lT is the output of the Transformer

encoding block at layer l , and sometimes the
embedded representation of all tokens for the next
Transformer encoding module; [1,]l L , where

L is the layer of Transformer encoders in
BERT; and E is the final output representation
of the BERT model, a sequence of token
representations.

2.2.2 Sentiment Polarity Analysis Layer

The layer performs sentiment analysis on the
review text features embedded by BERT through
an activation function.

Since the BERT model is already a deep neural

network with a stack of multi-layer Transformer
encoder blocks, it already captures sufficient
semantic information for the extraction of
semantic information in sentences. Therefore,
after training with multiple layers of stacked
Transformer encoders, we can already obtain a
certain degree of semantic information about the
entire comment text. We input the embedding
representation E of each review text into the
activation function for sentiment polarity
analysis, and predict the sentence-level sentiment
polarity probability in the whole review, as shown
in Equation (14):

3 2() ()p E softmax W E b  , (14)

where ()p E is the probability of semantic

sentiment polarity analysis for the whole review
text;

3W and
2b are the trainable weight

matrices; and D is the activation function we use.

2.3 Sentiment Feature Fusion Module

The module uses an attention mechanism to
merge semantic features of review text with
sentiment polarity features.

We dot product the node feature vectors of users
and items and use them as queries in the attention
mechanism, define the initial token in the text

jE of review j as jc , and concatenate jc

with the sentiment polarity feature jp of that

review as the KEY-VALUE pair in the attention
mechanism. We calculate a rating for each review
based on the attention mechanism, as shown in
Equation (15):

*

3 4

(()

())

T
j b k j j

q u i

W Relu W c p

W e e b b

  

  
, (15)

where bW , kW , qW , 3W and 4W are

learnable parameters; *
j is the attention rating

function for each review, and the attention value
for a weighted combination of all reviews for the
same user or item is calculated as shown in
Equation (16):

*
*

*

exp()
()

exp()
j

j j
j

Softmax


 


 


. (16) (16)

Finally, the sentiment feature embedding of the user
or item is calculated based on the obtained attention
coefficient, as shown in Equation (17):

Finally, the sentiment feature embedding of the
user or item is calculated based on the obtained
attention coefficient, as shown in Equation (17):

()j j jv c p  . (17)

2.4 Prediction Module

The module uses connects interaction node
features of user items with sentiment features for
a final predicted match rating.

We connect the final interaction node features
obtained from Equation (11) with the final
sentiment features obtained from Equation (17) to
obtain the final representation U of the user
and the final representation I of the item, as
shown in Equation (18):

u u

i i

U e v
I e v
 

 
. (18)

Finally, we predict the matching ratings of users
and items by calculating the inner product of their
final representations, as shown in Equation (19):

ˆ T
uiy U I  . (19)

2.4 Model Objective Function

To predict the interactions between users and
items, we chose to train and optimize the model
with the BPR loss function, a pairwise
optimization method that assumes that observed
interactions better reflect user preferences and
therefore yield higher predictive values than
unobserved interactions [7]. This objective
function is defined as shown in Equation (20):

2

2
(, ,)

ˆ ˆln ()ui uj
u i j

Loss y y


  


    ,

(20)

where {(, ,) (,) , (,) }u i j u i R u j R     is the

pairwise training data, R is the observed
interactions, and R is the unobserved

interactions; ()  is the activation function, we

choose the sigmoid function;

0 1 2 3 0 1 2 3 4={ , , , , , , , , , , }q kW W W W W W b b b b b is the

set of all trainable parameters of the model; and
 controls the L2 regularization strength to

prevent overfitting.

3. Experimentation and Analysis

In this section, we conduct experiments on the
Amazon public dataset, which consist of
parameter optimization experiments,
performance analysis experiments and ablation
experiments to confirm the effectiveness of
RWESA-GNNR in a variety of ways.

3.1 Datasets

The Amazon dataset is one of the most widely
used datasets in RS, with massive data support for
our experiments [13]. Therefore, we selected
three datasets with review texts from the Amazon
dataset as our experimental datasets, namely
Musical Instruments (MI), Beauty, and Amazon-
CDs (CDs), whose number of users, items,
interactions, and sparsity are shown in Table 1.
To ensure feasibility and fairness, we randomly
divided each dataset into training, testing, and
validation sets in a 7:2:1 ratio. In the training set,
we treated each user-item interaction as a positive
example and then used a negative sampling
strategy to match it with a negative item that the
user had not previously interacted with. Next, we
tuned the optimal parameter values on the
validation set. Finally, we evaluated the model’s
performance on the testing set.

As can be seen from Table 1, although the data
for each sample differed considerably, these
datasets were sufficient to train and validate the
proposed model due to the large enough data
volume. In addition, the sparsity of each dataset
is above 99%, which illustrates the significance
of introducing item text features to alleviate
sparsity. As our model is based on the idea of
using fused review text data as an additional
source of features to alleviate the data sparsity
problem in recommender systems, the length of
the review text was counted to illustrate the
information contained in the review text. The
review lengths and their distribution for each
dataset are shown in Figure 3.

Figure 3

(17)

2.4. Prediction Module
The module uses connects interaction node features
of user items with sentiment features for a final pre-
dicted match rating.
We connect the final interaction node features ob-
tained from Equation (11) with the final sentiment
features obtained from Equation (17) to obtain the
final representation U of the user and the final repre-
sentation I of the item, as shown in Equation (18):

Finally, the sentiment feature embedding of the
user or item is calculated based on the obtained
attention coefficient, as shown in Equation (17):

()j j jv c p  . (17)

2.4 Prediction Module

The module uses connects interaction node
features of user items with sentiment features for
a final predicted match rating.

We connect the final interaction node features
obtained from Equation (11) with the final
sentiment features obtained from Equation (17) to
obtain the final representation U of the user
and the final representation I of the item, as
shown in Equation (18):

u u

i i

U e v
I e v
 

 
. (18)

Finally, we predict the matching ratings of users
and items by calculating the inner product of their
final representations, as shown in Equation (19):

ˆ T
uiy U I  . (19)

2.4 Model Objective Function

To predict the interactions between users and
items, we chose to train and optimize the model
with the BPR loss function, a pairwise
optimization method that assumes that observed
interactions better reflect user preferences and
therefore yield higher predictive values than
unobserved interactions [7]. This objective
function is defined as shown in Equation (20):

2

2
(, ,)

ˆ ˆln ()ui uj
u i j

Loss y y


  


    ,

(20)

where {(, ,) (,) , (,) }u i j u i R u j R     is the

pairwise training data, R is the observed
interactions, and R is the unobserved

interactions; ()  is the activation function, we

choose the sigmoid function;

0 1 2 3 0 1 2 3 4={ , , , , , , , , , , }q kW W W W W W b b b b b is the

set of all trainable parameters of the model; and
 controls the L2 regularization strength to

prevent overfitting.

3. Experimentation and Analysis

In this section, we conduct experiments on the
Amazon public dataset, which consist of
parameter optimization experiments,
performance analysis experiments and ablation
experiments to confirm the effectiveness of
RWESA-GNNR in a variety of ways.

3.1 Datasets

The Amazon dataset is one of the most widely
used datasets in RS, with massive data support for
our experiments [13]. Therefore, we selected
three datasets with review texts from the Amazon
dataset as our experimental datasets, namely
Musical Instruments (MI), Beauty, and Amazon-
CDs (CDs), whose number of users, items,
interactions, and sparsity are shown in Table 1.
To ensure feasibility and fairness, we randomly
divided each dataset into training, testing, and
validation sets in a 7:2:1 ratio. In the training set,
we treated each user-item interaction as a positive
example and then used a negative sampling
strategy to match it with a negative item that the
user had not previously interacted with. Next, we
tuned the optimal parameter values on the
validation set. Finally, we evaluated the model’s
performance on the testing set.

As can be seen from Table 1, although the data
for each sample differed considerably, these
datasets were sufficient to train and validate the
proposed model due to the large enough data
volume. In addition, the sparsity of each dataset
is above 99%, which illustrates the significance
of introducing item text features to alleviate
sparsity. As our model is based on the idea of
using fused review text data as an additional
source of features to alleviate the data sparsity
problem in recommender systems, the length of
the review text was counted to illustrate the
information contained in the review text. The
review lengths and their distribution for each
dataset are shown in Figure 3.

Figure 3

(18)

Finally, we predict the matching ratings of users and
items by calculating the inner product of their final
representations, as shown in Equation (19):

Finally, the sentiment feature embedding of the
user or item is calculated based on the obtained
attention coefficient, as shown in Equation (17):

()j j jv c p  . (17)

2.4 Prediction Module

The module uses connects interaction node
features of user items with sentiment features for
a final predicted match rating.

We connect the final interaction node features
obtained from Equation (11) with the final
sentiment features obtained from Equation (17) to
obtain the final representation U of the user
and the final representation I of the item, as
shown in Equation (18):

u u

i i

U e v
I e v
 

 
. (18)

Finally, we predict the matching ratings of users
and items by calculating the inner product of their
final representations, as shown in Equation (19):

ˆ T
uiy U I  . (19)

2.4 Model Objective Function

To predict the interactions between users and
items, we chose to train and optimize the model
with the BPR loss function, a pairwise
optimization method that assumes that observed
interactions better reflect user preferences and
therefore yield higher predictive values than
unobserved interactions [7]. This objective
function is defined as shown in Equation (20):

2

2
(, ,)

ˆ ˆln ()ui uj
u i j

Loss y y


  


    ,

(20)

where {(, ,) (,) , (,) }u i j u i R u j R     is the

pairwise training data, R is the observed
interactions, and R is the unobserved

interactions; ()  is the activation function, we

choose the sigmoid function;

0 1 2 3 0 1 2 3 4={ , , , , , , , , , , }q kW W W W W W b b b b b is the

set of all trainable parameters of the model; and
 controls the L2 regularization strength to

prevent overfitting.

3. Experimentation and Analysis

In this section, we conduct experiments on the
Amazon public dataset, which consist of
parameter optimization experiments,
performance analysis experiments and ablation
experiments to confirm the effectiveness of
RWESA-GNNR in a variety of ways.

3.1 Datasets

The Amazon dataset is one of the most widely
used datasets in RS, with massive data support for
our experiments [13]. Therefore, we selected
three datasets with review texts from the Amazon
dataset as our experimental datasets, namely
Musical Instruments (MI), Beauty, and Amazon-
CDs (CDs), whose number of users, items,
interactions, and sparsity are shown in Table 1.
To ensure feasibility and fairness, we randomly
divided each dataset into training, testing, and
validation sets in a 7:2:1 ratio. In the training set,
we treated each user-item interaction as a positive
example and then used a negative sampling
strategy to match it with a negative item that the
user had not previously interacted with. Next, we
tuned the optimal parameter values on the
validation set. Finally, we evaluated the model’s
performance on the testing set.

As can be seen from Table 1, although the data
for each sample differed considerably, these
datasets were sufficient to train and validate the
proposed model due to the large enough data
volume. In addition, the sparsity of each dataset
is above 99%, which illustrates the significance
of introducing item text features to alleviate
sparsity. As our model is based on the idea of
using fused review text data as an additional
source of features to alleviate the data sparsity
problem in recommender systems, the length of
the review text was counted to illustrate the
information contained in the review text. The
review lengths and their distribution for each
dataset are shown in Figure 3.

Figure 3

(19)

2.4. Model Objective Function
To predict the interactions between users and items,
we chose to train and optimize the model with the
BPR loss function, a pairwise optimization method
that assumes that observed interactions better reflect
user preferences and therefore yield higher predic-
tive values than unobserved interactions [7]. This ob-

jective function is defined as shown in Equation (20):

Finally, the sentiment feature embedding of the
user or item is calculated based on the obtained
attention coefficient, as shown in Equation (17):

()j j jv c p  . (17)

2.4 Prediction Module

The module uses connects interaction node
features of user items with sentiment features for
a final predicted match rating.

We connect the final interaction node features
obtained from Equation (11) with the final
sentiment features obtained from Equation (17) to
obtain the final representation U of the user
and the final representation I of the item, as
shown in Equation (18):

u u

i i

U e v
I e v
 

 
. (18)

Finally, we predict the matching ratings of users
and items by calculating the inner product of their
final representations, as shown in Equation (19):

ˆ T
uiy U I  . (19)

2.4 Model Objective Function

To predict the interactions between users and
items, we chose to train and optimize the model
with the BPR loss function, a pairwise
optimization method that assumes that observed
interactions better reflect user preferences and
therefore yield higher predictive values than
unobserved interactions [7]. This objective
function is defined as shown in Equation (20):

2

2
(, ,)

ˆ ˆln ()ui uj
u i j

Loss y y


  


    ,

(20)

where {(, ,) (,) , (,) }u i j u i R u j R     is the

pairwise training data, R is the observed
interactions, and R is the unobserved

interactions; ()  is the activation function, we

choose the sigmoid function;

0 1 2 3 0 1 2 3 4={ , , , , , , , , , , }q kW W W W W W b b b b b is the

set of all trainable parameters of the model; and
 controls the L2 regularization strength to

prevent overfitting.

3. Experimentation and Analysis

In this section, we conduct experiments on the
Amazon public dataset, which consist of
parameter optimization experiments,
performance analysis experiments and ablation
experiments to confirm the effectiveness of
RWESA-GNNR in a variety of ways.

3.1 Datasets

The Amazon dataset is one of the most widely
used datasets in RS, with massive data support for
our experiments [13]. Therefore, we selected
three datasets with review texts from the Amazon
dataset as our experimental datasets, namely
Musical Instruments (MI), Beauty, and Amazon-
CDs (CDs), whose number of users, items,
interactions, and sparsity are shown in Table 1.
To ensure feasibility and fairness, we randomly
divided each dataset into training, testing, and
validation sets in a 7:2:1 ratio. In the training set,
we treated each user-item interaction as a positive
example and then used a negative sampling
strategy to match it with a negative item that the
user had not previously interacted with. Next, we
tuned the optimal parameter values on the
validation set. Finally, we evaluated the model’s
performance on the testing set.

As can be seen from Table 1, although the data
for each sample differed considerably, these
datasets were sufficient to train and validate the
proposed model due to the large enough data
volume. In addition, the sparsity of each dataset
is above 99%, which illustrates the significance
of introducing item text features to alleviate
sparsity. As our model is based on the idea of
using fused review text data as an additional
source of features to alleviate the data sparsity
problem in recommender systems, the length of
the review text was counted to illustrate the
information contained in the review text. The
review lengths and their distribution for each
dataset are shown in Figure 3.

Figure 3

(20)

where {(, ,) (,) , (,) }u i j u i R u j Rο + −= ∈ ∈ is the pair-
wise training data, R+ is the observed interactions,
and R− is the unobserved interactions; ()σ ⋅ is the
activation function, we choose the sigmoid function;

0 1 2 3 0 1 2 3 4={ , , , , , , , , , , }q kW W W W W W b b b b bθ is the set of all
trainable parameters of the model; and λ controls the
L2 regularization strength to prevent overfitting.

3. Experimentation and Analysis
In this section, we conduct experiments on the Am-
azon public dataset, which consist of parameter op-
timization experiments, performance analysis ex-
periments and ablation experiments to confirm the
effectiveness of RWESA-GNNR in a variety of ways.

3.1. Datasets
The Amazon dataset is one of the most widely used
datasets in RS, with massive data support for our ex-
periments [13]. Therefore, we selected three datasets
with review texts from the Amazon dataset as our ex-
perimental datasets, namely Musical Instruments
(MI), Beauty, and Amazon-CDs (CDs), whose number
of users, items, interactions, and sparsity are shown in
Table 1. To ensure feasibility and fairness, we random-
ly divided each dataset into training, testing, and vali-
dation sets in a 7:2:1 ratio. In the training set, we treat-
ed each user-item interaction as a positive example
and then used a negative sampling strategy to match
it with a negative item that the user had not previously
interacted with. Next, we tuned the optimal parameter
values on the validation set. Finally, we evaluated the
model’s performance on the testing set.
As can be seen from Table 1, although the data for each
sample differed considerably, these datasets were suf-
ficient to train and validate the proposed model due
to the large enough data volume. In addition, the spar-
sity of each dataset is above 99%, which illustrates
the significance of introducing item text features to
alleviate sparsity. As our model is based on the idea of
using fused review text data as an additional source of
features to alleviate the data sparsity problem in rec-

153Information Technology and Control 2024/1/53

ommender systems, the length of the review text was
counted to illustrate the information contained in the
review text. The review lengths and their distribution
for each dataset are shown in Figure 3.

Figure 3
Review length distribution

Review length distribution

Table 1

Datasets details
Dataset Number of users Number of items Number of interactions Data sparsity

MI 1429 900 10261 99.21%
Beauty 22335 12100 198502 99.93%

CDs 13573 8645 222042 99.81%

3.2 Experimental Setup

3.2.1 Evaluation Metrics

The evaluation strategies commonly used in RS
to assess the effectiveness of recommendations
include Accuracy, Recall, Precision and F1
values. In order to reflect the most realistic
evaluation of effectiveness in RS, Recall is
chosen in this paper to evaluate recommendation
results. Recall is measured by calculating the
number of correctly predicted positive cases as a
proportion of all actual positive cases, which
highlights the ability of the algorithmic model to
detect interactions between users and unknown
items [15]. At the same time, the prediction of
recommendations is essentially a regression
problem [27], and in order to better assess the
effectiveness of the model implementation, we
use Root Mean Square Error (RMSE) for
evaluation. In order to evaluate the TOP-K effect
of the recommendations in the experiments, we
set the evaluation metric as Recall@K, RMSE
and set K=20, i.e. to evaluate among the top 20
recommendation results, calculated as shown in
Equations (21)-(22):

TPRecall=
TP FN

 (21)

2

,

1 ˆ()ui ui
u Z i Z

RMSE y y
Z  

  . (22)

Recall can be interpreted as the likelihood of the
answer distribution in the confusion matrix,
which is shown in Table 2, where TP is the
number of predicted positive cases that are
actually positive, FN is the number of predicted
negative cases that are actually positive, FP is
the number of predicted positive cases that are
actually negative, TN is the number of
predicted positive cases that are actually positive,
and Recall value increases with the model's
precision. Z is the number of instances in the
dataset, ˆuiy is the predicted rating of user u

for item i , and uiy is the actual rating of user

u for item i . The smaller the RMSE value, the
lower the prediction error of the model, and the
higher the prediction accuracy.

Table 2

Confusion matrix
Predicted

results

True results
Total

Yes (P) No(N)

Yes TP FN P(Actual is yes)

No FP TN P(Actual is No)

3.2.2 Baselines

Table 1
Datasets details

Dataset Number of
users

Number of
items

Number of
interactions

Data
sparsity

MI 1429 900 10261 99.21%

Beauty 22335 12100 198502 99.93%

CDs 13573 8645 222042 99.81%

3.2. Experimental Setup
3.2.1. Evaluation Metrics
The evaluation strategies commonly used in RS to as-
sess the effectiveness of recommendations include
Accuracy, Recall, Precision and F1 values. In order to
reflect the most realistic evaluation of effectiveness in
RS, Recall is chosen in this paper to evaluate recom-
mendation results. Recall is measured by calculating
the number of correctly predicted positive cases as
a proportion of all actual positive cases, which high-
lights the ability of the algorithmic model to detect in-
teractions between users and unknown items [15]. At
the same time, the prediction of recommendations is
essentially a regression problem [27], and in order to
better assess the effectiveness of the model implemen-

tation, we use Root Mean Square Error (RMSE) for
evaluation. In order to evaluate the TOP-K effect of the
recommendations in the experiments, we set the eval-
uation metric as Recall@K, RMSE and set K=20, i.e. to
evaluate among the top 20 recommendation results,
calculated as shown in Equations (21)-(22):

Review length distribution

Table 1

Datasets details
Dataset Number of users Number of items Number of interactions Data sparsity

MI 1429 900 10261 99.21%
Beauty 22335 12100 198502 99.93%

CDs 13573 8645 222042 99.81%

3.2 Experimental Setup

3.2.1 Evaluation Metrics

The evaluation strategies commonly used in RS
to assess the effectiveness of recommendations
include Accuracy, Recall, Precision and F1
values. In order to reflect the most realistic
evaluation of effectiveness in RS, Recall is
chosen in this paper to evaluate recommendation
results. Recall is measured by calculating the
number of correctly predicted positive cases as a
proportion of all actual positive cases, which
highlights the ability of the algorithmic model to
detect interactions between users and unknown
items [15]. At the same time, the prediction of
recommendations is essentially a regression
problem [27], and in order to better assess the
effectiveness of the model implementation, we
use Root Mean Square Error (RMSE) for
evaluation. In order to evaluate the TOP-K effect
of the recommendations in the experiments, we
set the evaluation metric as Recall@K, RMSE
and set K=20, i.e. to evaluate among the top 20
recommendation results, calculated as shown in
Equations (21)-(22):

TPRecall=
TP FN

 (21)

2

,

1 ˆ()ui ui
u Z i Z

RMSE y y
Z  

  . (22)

Recall can be interpreted as the likelihood of the
answer distribution in the confusion matrix,
which is shown in Table 2, where TP is the
number of predicted positive cases that are
actually positive, FN is the number of predicted
negative cases that are actually positive, FP is
the number of predicted positive cases that are
actually negative, TN is the number of
predicted positive cases that are actually positive,
and Recall value increases with the model's
precision. Z is the number of instances in the
dataset, ˆuiy is the predicted rating of user u

for item i , and uiy is the actual rating of user

u for item i . The smaller the RMSE value, the
lower the prediction error of the model, and the
higher the prediction accuracy.

Table 2

Confusion matrix
Predicted

results

True results
Total

Yes (P) No(N)

Yes TP FN P(Actual is yes)

No FP TN P(Actual is No)

3.2.2 Baselines

(21)

Review length distribution

Table 1

Datasets details
Dataset Number of users Number of items Number of interactions Data sparsity

MI 1429 900 10261 99.21%
Beauty 22335 12100 198502 99.93%

CDs 13573 8645 222042 99.81%

3.2 Experimental Setup

3.2.1 Evaluation Metrics

The evaluation strategies commonly used in RS
to assess the effectiveness of recommendations
include Accuracy, Recall, Precision and F1
values. In order to reflect the most realistic
evaluation of effectiveness in RS, Recall is
chosen in this paper to evaluate recommendation
results. Recall is measured by calculating the
number of correctly predicted positive cases as a
proportion of all actual positive cases, which
highlights the ability of the algorithmic model to
detect interactions between users and unknown
items [15]. At the same time, the prediction of
recommendations is essentially a regression
problem [27], and in order to better assess the
effectiveness of the model implementation, we
use Root Mean Square Error (RMSE) for
evaluation. In order to evaluate the TOP-K effect
of the recommendations in the experiments, we
set the evaluation metric as Recall@K, RMSE
and set K=20, i.e. to evaluate among the top 20
recommendation results, calculated as shown in
Equations (21)-(22):

TPRecall=
TP FN

 (21)

2

,

1 ˆ()ui ui
u Z i Z

RMSE y y
Z  

  . (22)

Recall can be interpreted as the likelihood of the
answer distribution in the confusion matrix,
which is shown in Table 2, where TP is the
number of predicted positive cases that are
actually positive, FN is the number of predicted
negative cases that are actually positive, FP is
the number of predicted positive cases that are
actually negative, TN is the number of
predicted positive cases that are actually positive,
and Recall value increases with the model's
precision. Z is the number of instances in the
dataset, ˆuiy is the predicted rating of user u

for item i , and uiy is the actual rating of user

u for item i . The smaller the RMSE value, the
lower the prediction error of the model, and the
higher the prediction accuracy.

Table 2

Confusion matrix
Predicted

results

True results
Total

Yes (P) No(N)

Yes TP FN P(Actual is yes)

No FP TN P(Actual is No)

3.2.2 Baselines

(22)

Recall can be interpreted as the likelihood of the an-
swer distribution in the confusion matrix, which is
shown in Table 2, where TP is the number of predict-
ed positive cases that are actually positive, FN is the
number of predicted negative cases that are actually
positive, FP is the number of predicted positive cases
that are actually negative, TN is the number of pre-
dicted positive cases that are actually positive, and
Recall value increases with the model’s precision. Z is
the number of instances in the dataset, ˆuiy is the pre-
dicted rating of user u for item i, and uiy is the actu-
al rating of user u for item i. The smaller the RMSE
value, the lower the prediction error of the model, and
the higher the prediction accuracy.

Table 2
Confusion matrix

Predicted
results

True results
Total

Yes (P) No(N)

Yes TP FN P(Actual is yes)

No FP TN P(Actual is No)

3.2.2. Baselines
We have divided the baselines into three categories:
recommendation methods that use only user-item
interaction information (BPRMF and PinSage), rec-
ommendation methods that incorporate review text
(DeepCoNN and NARRE) and recommendation
methods based on GNNs (LightGCN and HA-GN-
NN).
1 BPRMF [16]: A method based on optimizing matrix

factorization using BPR, which only uses user-item
interaction data as recommendation information.

Information Technology and Control 2024/1/53154

2 PinSage [26]: A method that uses a sampling
strategy based on random walks to perform graph
convolution operations on local subgraph nodes,
improving the problem of losing distant nodes in
graph convolution recommendation.

3 DeepCoNN [29]: A method that uses two parallel
CNNs to extract text features from reviews, and fi-
nally uses FM to predict ratings.

4 NARRE [2]: Similar to DeepCoNN, this method
also uses two parallel CNN to extract text features
from reviews. Additionally, it introduces an atten-
tion mechanism to distinguish the influence of dif-
ferent comments.

5 LightGCN [8]: A method that uses GCN to model
the high-order connectivity between users and
items, and simplifies the redundant parts of bipar-
tite GCN.

6 HA-GNNN [18]: This method uses self-attention
graph neural networks to capture the dependency
relationships between items, and uses soft atten-
tion mechanisms to learn high-order relationships
in the graph. Finally, it uses fully connected layers
to update item embeddings.

3.2.3. Parameter Settings
For all the baselines, we followed the hyperparame-
ter settings described in their respective papers. For
BPRMF, we varied the number of latent factors in the
range of {50,100,200,300}. For PinSage, we selected
the number of random walks to be {1,2,3} since longer
random walks may not be beneficial. For DeepCoNN,
we set the number of convolutional filters to be 100
and the number of convolutional layers to be 3. For the
remaining models, we referred to the authors’ descrip-
tions and settings for further details.
For the matrix factorization part of the initial node
embeddings in RWESA-GNNR, we followed previous
work that has shown that the length of Markov random
walks does not affect the final node embedding quality
[9]. Thus, we set the Markov length to be 3 for each walk.
For the network part of RWESA-GNNR, we used the
Adam optimization algorithm to update model parame-
ters with a learning rate of 0.002. To avoid overfitting, we
applied L2 regularization with a parameter value of 1e-6.
For the BERT part of RWESA-GNNR, we used the
official BERTbase version for text processing. A
BERTbase model contains 110 million learnable pa-

rameters, which is sufficient for our experimental
requirements. For the text length issue in the review
text, we padded the text with zeros for texts that are
shorter than the required length and truncated texts
that exceed the required length. For sentiment anal-
ysis tasks based on BERT embeddings, we used the
parameters shown in Table 3.

Table 3
BERT Parameter Setting

Parameter Setting

Max sequence length 128

Initial learning rate 2e-5

Attention dropout rate 0.1

Activation function Gelu

Hidden layer dropout rate 0.1

Embedding output dimension 768

Layer normalization parameter 1e-12

Max text length 512

Optimization algorithm Adam W

Max sequence length 128

3.3. Experimental Results and Comparisons
3.3.1. Overall Result Comparison
We conducted experiments under the optimal pa-
rameters and compared the Recall@20 and RMSE
metrics of each model under the optimal parameters
by setting the optimal parameters of each model ac-
cording to the corresponding reference. The results
are shown in Table 3. The bold data is the best perfor-
mance in the same group comparison experiment, and
the laicized data is the second best performance in the
same group comparison experiment. The Improved
value represents the growth rate of the best perfor-
mance compared to the second best performance.
As shown in Table 4, the RWESA-GNNR model pro-
posed in this paper performed the best overall, which
is consistent with our expectations.
To provide a more intuitive analysis of the effective-
ness of each model, we show histograms of each mod-
el on the three datasets in Figure 4.

155Information Technology and Control 2024/1/53

Table 4
Overall Performance Comparison of Compared Models

MI Beauty CDs

Recall@20 RMSE Recall@20 RMSE Recall@20 RMSE

BPRMF 0.063 0.956 0.062 1.101 0.119 0.924

PinSage 0.072 0.939 0.070 1.096 0.130 0.916

DeepCoNN 0.080 0.939 0.075 1.085 0.132 0.904

NARRE 0.073 0.935 0.071 1.078 0.128 0.899

LightGCN 0.079 0.923 0.069 1.083 0.135 0.902

HA-GNNN 0.082 0.919 0.074 1.079 0.139 0.898

RWESA-GNNR 0.084 0.883 0.078 1.016 0.143 0.872

Improved 2.439% 3.917% 4% 5.751% 2.89% 2.895%

(a) Recall@20

(b) RMSE

reference. The results are shown in Table 3. The
bold data is the best performance in the same
group comparison experiment, and the laicized
data is the second best performance in the same
group comparison experiment. The Improved
value represents the growth rate of the best

performance compared to the second best
performance. As shown in Table 4, the RWESA-
GNNR model proposed in this paper performed
the best overall, which is consistent with our
expectations.

Table 4

Overall Performance Comparison of Compared Models

MI Beauty CDs

Recall@20 RMSE Recall@20 RMSE Recall@20 RMSE

BPRMF 0.063 0.956 0.062 1.101 0.119 0.924

PinSage 0.072 0.939 0.070 1.096 0.130 0.916

DeepCoNN 0.080 0.939 0.075 1.085 0.132 0.904

NARRE 0.073 0.935 0.071 1.078 0.128 0.899

LightGCN 0.079 0.923 0.069 1.083 0.135 0.902

HA-GNNN 0.082 0.919 0.074 1.079 0.139 0.898

RWESA-GNNR 0.084 0.883 0.078 1.016 0.143 0.872

Improved 2.439% 3.917% 4% 5.751% 2.89% 2.895%

Figure 4

Comparison histogram of performance

(a) Recall@20

(b) RMSE

To provide a more intuitive analysis of the
effectiveness of each model, we show histograms
of each model on the three datasets in Figure 4.

Firstly, the two evaluation metrics of the
recommendation methods (BPRMF and PinSage)
that only use user-item interaction information

are the worst. BPRMF only utilizes the user-item
interaction information and completes the
information by matrix factorization. However,
the user interaction data provided by RS is
extremely sparse, and the matrix completion
method based solely on interaction information
only partially completes the data information,
resulting in limited impact on the final
recommendation effect. PinSage also shows that
matrix factorization based solely on interaction
information can only linearly represent the
interaction features between users and items, and
its capturing effect on the complex nonlinear
relationship between users and items is not
obvious.

Secondly, the two evaluation metrics of the
recommendation methods (DeepCoNN and
NARRE) that combine review text are both better
than those of BPRMF and PinSage, which
confirms that the utilization of review text can
effectively alleviate the data sparsity problem in
RS and also proves the significance of our
proposed model. However, there are still some
drawbacks of this type of method. DeepCoNN
only extracts textual information from review
without considering the sentiment information
expressed by users in reviews. NARRE

reference. The results are shown in Table 3. The
bold data is the best performance in the same
group comparison experiment, and the laicized
data is the second best performance in the same
group comparison experiment. The Improved
value represents the growth rate of the best

performance compared to the second best
performance. As shown in Table 4, the RWESA-
GNNR model proposed in this paper performed
the best overall, which is consistent with our
expectations.

Table 4

Overall Performance Comparison of Compared Models

MI Beauty CDs

Recall@20 RMSE Recall@20 RMSE Recall@20 RMSE

BPRMF 0.063 0.956 0.062 1.101 0.119 0.924

PinSage 0.072 0.939 0.070 1.096 0.130 0.916

DeepCoNN 0.080 0.939 0.075 1.085 0.132 0.904

NARRE 0.073 0.935 0.071 1.078 0.128 0.899

LightGCN 0.079 0.923 0.069 1.083 0.135 0.902

HA-GNNN 0.082 0.919 0.074 1.079 0.139 0.898

RWESA-GNNR 0.084 0.883 0.078 1.016 0.143 0.872

Improved 2.439% 3.917% 4% 5.751% 2.89% 2.895%

Figure 4

Comparison histogram of performance

(a) Recall@20

(b) RMSE

To provide a more intuitive analysis of the
effectiveness of each model, we show histograms
of each model on the three datasets in Figure 4.

Firstly, the two evaluation metrics of the
recommendation methods (BPRMF and PinSage)
that only use user-item interaction information

are the worst. BPRMF only utilizes the user-item
interaction information and completes the
information by matrix factorization. However,
the user interaction data provided by RS is
extremely sparse, and the matrix completion
method based solely on interaction information
only partially completes the data information,
resulting in limited impact on the final
recommendation effect. PinSage also shows that
matrix factorization based solely on interaction
information can only linearly represent the
interaction features between users and items, and
its capturing effect on the complex nonlinear
relationship between users and items is not
obvious.

Secondly, the two evaluation metrics of the
recommendation methods (DeepCoNN and
NARRE) that combine review text are both better
than those of BPRMF and PinSage, which
confirms that the utilization of review text can
effectively alleviate the data sparsity problem in
RS and also proves the significance of our
proposed model. However, there are still some
drawbacks of this type of method. DeepCoNN
only extracts textual information from review
without considering the sentiment information
expressed by users in reviews. NARRE

Figure 4
Comparison histogram of performance

Firstly, the two evaluation metrics of the recommenda-
tion methods (BPRMF and PinSage) that only use us-
er-item interaction information are the worst. BPRMF
only utilizes the user-item interaction information and
completes the information by matrix factorization.
However, the user interaction data provided by RS is
extremely sparse, and the matrix completion method
based solely on interaction information only partially
completes the data information, resulting in limited
impact on the final recommendation effect. PinSage
also shows that matrix factorization based solely on
interaction information can only linearly represent the
interaction features between users and items, and its
capturing effect on the complex nonlinear relationship
between users and items is not obvious.
Secondly, the two evaluation metrics of the recom-
mendation methods (DeepCoNN and NARRE) that
combine review text are both better than those of
BPRMF and PinSage, which confirms that the utili-
zation of review text can effectively alleviate the data
sparsity problem in RS and also proves the signifi-
cance of our proposed model. However, there are still
some drawbacks of this type of method. DeepCoNN
only extracts textual information from review with-
out considering the sentiment information expressed
by users in reviews. NARRE transforms the correla-
tion between users and items into attention distri-
bution rather than simple weights, which makes it
difficult to understand why certain items are recom-
mended to a certain user.

Information Technology and Control 2024/1/53156

Then, the recommendation methods based on GNNs
(LightGCN and HA-GNNN) have achieved the re-
sults of the first two types of methods, which proves
the outstanding performance of GNNs in capturing
high-order relationships. Specifically, LightGCN
simplifies the embedding process by removing the
nonlinear activation and feature transformation but
does not consider the importance of the embedding
of each node, which may lead to information limita-
tions. HA-GNNN uses the attention mechanism to
learn hidden features and uses fully connected layers
to learn the representation of multimodal features,
which has achieved good results in extracting node
features by using graph neural networks alone.
Finally, our proposed RWESA-GNNR performs bet-
ter than other baselines on each dataset. This is be-
cause we use the matrix factorization method based
on random walk for initial embedding, which enables
the nodes to have better topological structure fea-
tures. By combining with specific aggregation func-
tions, we can capture the heterogeneity distribution
in the graph and explore deeper potential features.
Meanwhile, we not only consider the semantic fea-
tures of comment text but also the sentiment infor-
mation, which provides weight reference for the ex-
traction of features from comment text by users or
items, and adds interpretability to the recommenda-
tion system’s results.

3.3.2. Ablation Result Comparison
To further validate the effectiveness of RWESA-GN-
NR, we did RMSE ablation experiments for the key
parts of the model - matrix factorization part, senti-
ment feature part, text feature part and GCN atten-
tion mechanism part, and the results are shown in Ta-
ble 5. Where, Case_MF denotes the model that ablates
random wandering in favor of unique thermal coding
as the initial embedding, Case_SF denotes the model
that ablates sentiment features, Case_TF denotes the
model that ablates sentiment features, and Case_GA
denotes the model that ablates the attention mecha-
nism in the GCN.
First, the model that eliminates the random walk form
has the most significant reduction in effectiveness,
due to the fact that most GCN-based recommenda-
tion algorithms aggregate surrounding neighboring
nodes through multi-layer convolution, which does
not provide a comprehensive grasp of global informa-

Table 5
Results of RMSE ablation experiments with RWESA-GNNR

MI Beauty CDs

Case_MF 0.933 1.121 0.975

Case_SF 0.921 1.096 0.976

Case_TF 0.923 1.083 0.923

Case_GA 0.920 1.099 0.924

RWESA-GNNR 0.883 1.016 0.872

tion. Our proposed random walk-based graph embed-
ding method is a node vector representation based on
the topological similarity of the graph, which brings
exactly the global information to the node features.
Therefore, our proposed random-walking-based em-
bedding method is the most effective.
Secondly, the sentiment feature module includes
semantic and sentiment information of the review
text, which has some impact on the model after elim-
ination, which not only illustrates that adding review
text as an additional feature can somewhat alleviate
data sparsity, but also the importance of sentiment
features.
Finally, the inclusion of an attention mechanism in
the extraction of graph node features, which enables
nodes with different edge weights to be modelled at
different computational scales, also has the effect of
bringing better recommendation results to the model.
In summary, each key part of our proposed RWE-
SA-GNNR achieves good results.

3.4. Hyperparametric Analysis
To better improve the recommendation of the model,
we used grid search to debug the important hyperpa-
rameters of the model and visualized the results with
the evaluation metric Recall@20.
We chose the appropriate GNN embedding dimen-
sion in the range of {16,32,64} and the results are
shown in Figure 5. The best results were achieved
when the GNN embedding dimension was 32, but the
model performance deteriorated when the embed-
ding dimension was larger, which might be due to the
overfitting of the model caused by too large embed-
ding dimension. Therefore, we set the GNN embed-
ding dimension to 32.

157Information Technology and Control 2024/1/53

We chose the appropriate number of layers of the GNN
in the range of {1,2,3,4}, and the results are shown
in Figure 5. The best results were achieved with the
number of layers of the GNN at layer 2, while deeper
layers of the GNN did not improve the performance
of the model much, probably because the representa-
tion between nodes was too similar after multi-layer
neighbor aggregation, leading to smoothing problems
in the model. Therefore, we set the number of layers
of the GNN to 2.
We selected appropriate word embedding dimensions
for the item text in the range of {50,100,200,300} and

Figure 5
The effect of the GNN embedding dimension

Recall@20.

We chose the appropriate GNN embedding
dimension in the range of {16,32,64} and the
results are shown in Figure 5. The best results
were achieved when the GNN embedding
dimension was 32, but the model performance
deteriorated when the embedding dimension was
larger, which might be due to the overfitting of
the model caused by too large embedding
dimension. Therefore, we set the GNN
embedding dimension to 32.

Figure 5

The effect of the GNN embedding dimension

We chose the appropriate number of layers of the
GNN in the range of {1,2,3,4}, and the results are
shown in Figure 5. The best results were achieved
with the number of layers of the GNN at layer 2,
while deeper layers of the GNN did not improve
the performance of the model much, probably
because the representation between nodes was too
similar after multi-layer neighbor aggregation,
leading to smoothing problems in the model.
Therefore, we set the number of layers of the
GNN to 2.

We selected appropriate word embedding
dimensions for the item text in the range of
{50,100,200,300} and pre-trained the model
using glove, and the results are shown in Figure
7. The model performance did not improve
significantly as the word embedding dimension
increased, probably because the smaller word
embedding dimension was sufficient to capture
the implicit information contained in the item
text. Therefore, to speed up the training of the
model, we set the word embedding dimension to
50.

Figure 6

The effect of the number of GNN layer

Figure 7

The effect of the word embedding dimension

4. Conclusion

In this paper, we propose a GNN
recommendation algorithm based on random
wandering embedding combined with sentiment
analysis, called RWESA-GNNR. The model first
uses random wandering-based matrix
factorization to obtain embedding vectors of
nodes, then uses GCN combined with attention to
learn node representations of users and items, and
then incorporates attentional mechanisms
sentiment analysis to add sentiment attributes to
nodes. RWESA-GNNR achieved better
performance than the baselines on three publicly
available datasets from Amazon.

In future research work, we will extend our work
in two directions: first, the complexity of the
model leads to less fast recommendations,
especially for machines with less than high
arithmetic power, so we intend to simplify the
structure of the model to speed up the
recommendations without compromising the
results. Secondly, we only considered the effect
of the sentiment attribute of the node on the
recommendation algorithm, and future research
could consider the effect of other node attributes

Figure 6
The effect of the number of GNN layer

Figure 7
The effect of the word embedding dimension

Recall@20.

We chose the appropriate GNN embedding
dimension in the range of {16,32,64} and the
results are shown in Figure 5. The best results
were achieved when the GNN embedding
dimension was 32, but the model performance
deteriorated when the embedding dimension was
larger, which might be due to the overfitting of
the model caused by too large embedding
dimension. Therefore, we set the GNN
embedding dimension to 32.

Figure 5

The effect of the GNN embedding dimension

We chose the appropriate number of layers of the
GNN in the range of {1,2,3,4}, and the results are
shown in Figure 5. The best results were achieved
with the number of layers of the GNN at layer 2,
while deeper layers of the GNN did not improve
the performance of the model much, probably
because the representation between nodes was too
similar after multi-layer neighbor aggregation,
leading to smoothing problems in the model.
Therefore, we set the number of layers of the
GNN to 2.

We selected appropriate word embedding
dimensions for the item text in the range of
{50,100,200,300} and pre-trained the model
using glove, and the results are shown in Figure
7. The model performance did not improve
significantly as the word embedding dimension
increased, probably because the smaller word
embedding dimension was sufficient to capture
the implicit information contained in the item
text. Therefore, to speed up the training of the
model, we set the word embedding dimension to
50.

Figure 6

The effect of the number of GNN layer

Figure 7

The effect of the word embedding dimension

4. Conclusion

In this paper, we propose a GNN
recommendation algorithm based on random
wandering embedding combined with sentiment
analysis, called RWESA-GNNR. The model first
uses random wandering-based matrix
factorization to obtain embedding vectors of
nodes, then uses GCN combined with attention to
learn node representations of users and items, and
then incorporates attentional mechanisms
sentiment analysis to add sentiment attributes to
nodes. RWESA-GNNR achieved better
performance than the baselines on three publicly
available datasets from Amazon.

In future research work, we will extend our work
in two directions: first, the complexity of the
model leads to less fast recommendations,
especially for machines with less than high
arithmetic power, so we intend to simplify the
structure of the model to speed up the
recommendations without compromising the
results. Secondly, we only considered the effect
of the sentiment attribute of the node on the
recommendation algorithm, and future research
could consider the effect of other node attributes

Recall@20.

We chose the appropriate GNN embedding
dimension in the range of {16,32,64} and the
results are shown in Figure 5. The best results
were achieved when the GNN embedding
dimension was 32, but the model performance
deteriorated when the embedding dimension was
larger, which might be due to the overfitting of
the model caused by too large embedding
dimension. Therefore, we set the GNN
embedding dimension to 32.

Figure 5

The effect of the GNN embedding dimension

We chose the appropriate number of layers of the
GNN in the range of {1,2,3,4}, and the results are
shown in Figure 5. The best results were achieved
with the number of layers of the GNN at layer 2,
while deeper layers of the GNN did not improve
the performance of the model much, probably
because the representation between nodes was too
similar after multi-layer neighbor aggregation,
leading to smoothing problems in the model.
Therefore, we set the number of layers of the
GNN to 2.

We selected appropriate word embedding
dimensions for the item text in the range of
{50,100,200,300} and pre-trained the model
using glove, and the results are shown in Figure
7. The model performance did not improve
significantly as the word embedding dimension
increased, probably because the smaller word
embedding dimension was sufficient to capture
the implicit information contained in the item
text. Therefore, to speed up the training of the
model, we set the word embedding dimension to
50.

Figure 6

The effect of the number of GNN layer

Figure 7

The effect of the word embedding dimension

4. Conclusion

In this paper, we propose a GNN
recommendation algorithm based on random
wandering embedding combined with sentiment
analysis, called RWESA-GNNR. The model first
uses random wandering-based matrix
factorization to obtain embedding vectors of
nodes, then uses GCN combined with attention to
learn node representations of users and items, and
then incorporates attentional mechanisms
sentiment analysis to add sentiment attributes to
nodes. RWESA-GNNR achieved better
performance than the baselines on three publicly
available datasets from Amazon.

In future research work, we will extend our work
in two directions: first, the complexity of the
model leads to less fast recommendations,
especially for machines with less than high
arithmetic power, so we intend to simplify the
structure of the model to speed up the
recommendations without compromising the
results. Secondly, we only considered the effect
of the sentiment attribute of the node on the
recommendation algorithm, and future research
could consider the effect of other node attributes

pre-trained the model using glove, and the results are
shown in Figure 7. The model performance did not im-
prove significantly as the word embedding dimension
increased, probably because the smaller word embed-
ding dimension was sufficient to capture the implicit
information contained in the item text. Therefore, to
speed up the training of the model, we set the word
embedding dimension to 50.

4. Conclusion
In this paper, we propose a GNN recommendation
algorithm based on random wandering embedding
combined with sentiment analysis, called RWE-
SA-GNNR. The model first uses random wander-
ing-based matrix factorization to obtain embedding
vectors of nodes, then uses GCN combined with at-
tention to learn node representations of users and
items, and then incorporates attentional mechanisms
sentiment analysis to add sentiment attributes to
nodes. RWESA-GNNR achieved better performance
than the baselines on three publicly available datasets
from Amazon.
In future research work, we will extend our work
in two directions: first, the complexity of the mod-
el leads to less fast recommendations, especially for
machines with less than high arithmetic power, so we
intend to simplify the structure of the model to speed
up the recommendations without compromising the

Information Technology and Control 2024/1/53158

results. Secondly, we only considered the effect of the
sentiment attribute of the node on the recommenda-
tion algorithm, and future research could consider
the effect of other node attributes on the recommen-
dation algorithm.

Acknowledgement
This work was supported in part by the Jiangsu Provin-
cial Department of Industry and Information Technol-

ogy Key Technology Innovation Project Guidance Plan
(Grant no. 141-62-65), in part by the Digital public ser-
vice platform project of Jiangsu Provincial Department
of Science and Technology (Grant no. 93208000931),
in part by the Industry-university-research project of
Jiangsu Provincial Department of Science and Tech-
nology (Grant no. 20221343), in part by the Jiangsu
Province Vocational Education Big Data Technology
“Double Teacher” Famous Teacher Studio Project.

References
1. Canturk, D., Karagoz, P., Kim, S., Toroslu, l. Trust-Aware

Location Recommendation in Location-Based So-
cial Networks: A Graph-Based Approach, Expert Sys-
tems with Applications, 2023, 213: 119048. https://doi.
org/10.1016/j.eswa.2022.119048

2. Chen, C., Zhang, M., Liu, Y., Ma S. Neural Attention-
al Rating Regression with Review-Level Explana-
tions. In WWW ‘18, 2018: 1583-1592. https://doi.
org/10.1145/3178876.3186070

3. Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He,
X. Bias and Debias in Recommender System: A Sur-
vey and Future Directions. ACM Transactions on
Information Systems, 2023, 41(3): 1-39. https://doi.
org/10.1145/3564284

4. Chen, Z., You, Z., Guo, Z., Yi, H. Luo, G. Wang, Y. Predic-
tion of Drug-Target Interactions from Multi-Molecular
Network Based on Deep Walk Embedding Model. Fron-
tiers in Bioengineering and Biotechnology, 2020, 8: 338.
https://doi.org/10.3389/fbioe.2020.00338

5. Church, K. Word2Vec. Natural Language Engineer-
ing, 2017, 23(1): 155-162. https://doi.org/10.1017/
S1351324916000334

6. Fan, W., Ma, Y., Li, Q., He, Y. Zhao, E. Tang, J. Yin,
D. Graph Neural Networks for Social Recommen-
dation. In: WWW ‘19, 2019: 417-426. https://doi.
org/10.1145/3308558.3313488

7. Guo, S., Chen, C., Wang, J., Liu, Y., Xu, K., Yu, Z., Zhang,
D., Chiu, D. Rod-Revenue: Seeking Strategies Analysis
and Revenue Prediction in Ride-on-Demand Service
Using Multi-Source Urban Data. IEEE Transactions on
Mobile Computing, 2019, 19(9): 2202-2220. https://doi.
org/10.1109/TMC.2019.2921959

8. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.
LightGCN: Simplifying and Powering Graph Convolu-

tion Network for Recommendation. In SIGIR ‘20, 2020:
639-648. https://doi.org/10.1145/3397271.3401063

9. Huang, Z., Silva, A., Singh, A. A Broader Picture of Ran-
dom-Walk Based Graph Embedding. In KDD ‘21, 2021:
685-695. https://doi.org/10.1145/3447548.3467300

10. Jiang, H., Cao, P., Xu, M. Yang, J. Zaiane, O. Hi-GCN: A
Hierarchical Graph Convolution Network for Graph
Embedding Learning of Brain Network and Brain Dis-
orders Prediction. Computers in Biology and Medicine,
2020, 127: 104096. https://doi.org/10.1016/j.comp-
biomed.2020.104096

11. Lee, M., Kim, J., Goh, K., Lee, S. Son, S. Lee, D. Degree
Distributions under General Node Removal: Pow-
er-Law or Poisson?. Physical Review E, 2022, 106(6),
064309. https://doi.org/10.1103/PhysRevE.106.064309

12. Liu, X., Wu, K., Liu, B., Qian, R. HNERec: Scientific Col-
laborator Recommendation Model Based on Heteroge-
neous Network Embedding, 2020, 8: 338. https://doi.
org/10.1016/j.ipm.2022.103253

13. Noia, T., Ostuni, V., Tomeo, P., Sciascio, E. Sprank: Se-
mantic Path-Based Ranking for Top-N Recommenda-
tions Using Linked Open Data. ACM Transactions on
Intelligent Systems and Technology, 2016, 8(1): 1-34.
https://doi.org/10.1145/2899005

14. Peng, Y., Yan, S., Lu, Z. Transfer Learning in Biomedical
Natural Language Processing: An Evaluation of BERT
and ELMo on Ten Benchmarking Datasets. arXiv pre-
print arXiv:1906.05474, 2019. https://doi.org/10.18653/
v1/W19-5006

15. Reece, A., Danforth, C. Instagram Photos Reveal Predic-
tive Markers of Depression. EPJ Data Science, 2017, 6(1),
15. https://doi.org/10.1140/epjds/s13688-017-0110-z

16. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-
Thieme, L. BPR: Bayesian Personalized Ranking from

159Information Technology and Control 2024/1/53

Implicit Feedback. arXiv preprint arXiv:1205.2618,
2012.

17. Rodríguez, P., Bautista, M., Gonzalez, J., Escalera, S.
Beyond One-Hot Encoding: Lower Dimensional Target
Embedding. Image and Vision Computing, 2018, 75: 21-
31. https://doi.org/10.1016/j.imavis.2018.04.004

18. Sang, S., Liu, N., Li, W., Zhang, Z, Qin, Q, Yuan, W.
High-Order Attentive Graph Neural Network for Ses-
sion-Based Recommendation. Applied Intelligence,
2022: 1-15. https://doi.org/10.1007/s10489-022-03170-7

19. Sgherzi, F., Parravicini, A., Santambrogio, M. A
Mixed Precision, Multi-GPU Design for Large-
Scale Top-K Sparse Eigenproblems. In ISCAS’22,
IEEE, 2022: 1259-1263. https://doi.org/10.1109/IS-
CAS48785.2022.9937893

20. Song, W., Xiao, Z., Wang, Y., Charlin, L. Zhang, M. Tang,
J. Session-Based Social Recommendation Via Dynamic
Graph Attention Networks. In WSDM ‘19, 2019: 555-
563. https://doi.org/10.1145/3289600.3290989

21. Song, X., Salcianu, A., Song, Y., Dopson, D., Zhou, D.
Fast Wordpiece Tokenization. arXiv preprint arX-
iv:2012.15524, 2020. https://doi.org/10.18653/v1/2021.
emnlp-main.160

22. Wang, X., He, X., Cao, Y., Liu, M. Chua, T. Kgat:
Knowledge Graph Attention Network for Recom-
mendation. In KDD ‘19, 2019: 950-958. https://doi.
org/10.1145/3292500.3330989

23. Wu, S., Tang, Y., Zhu, Y. Wang, L. Xie, X. Tan, T. Ses-
sion-Based Recommendation with Graph Neural Net-
works. In AAAI ‘19, 2019, 33(01): 346-353. https://doi.
org/10.1609/aaai.v33i01.3301346

24. Xiao, B., Xie, X., Yang, C., Wang. Y. RTN-GNNR: Fusing
Review Text Features and Node Features for Graph
Neural Network Recommendation. IEEE Access,
2022, 10: 114165-114177. https://doi.org/10.1109/AC-
CESS.2022.3218882

25. Yin, R., Li, K., Zhang, G. Lu, J. A Deeper Graph Neural
Network for Recommender Systems. Knowledge-Based
Systems, 2019, 185: 105020. https://doi.org/10.1016/j.
knosys.2019.105020

26. Ying, R., He, R., Chen, K. Eksombatchai, P., Hamilton, W.
Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In KDD ‘18, 2018: 974-983.
https://doi.org/10.1145/3219819.3219890

27. Zhang, R., Bai, X., Pan, L., Dong, Z,. Song, R. Zero-Small
Sample Classification Method with Model Structure
Self-Optimization and Its Application in Capability
Evaluation. Applied Intelligence, 2022, 52(5): 5696-
5717. https://doi.org/10.1007/s10489-021-02686-8

28. Zhang, Y., Shen, J., Zhang, R., Zhao, Z. Network Repre-
sentation Learning via Improved Random Walk with
Restart, Knowledge-Based Systems, 2023: 110255.
https://doi.org/10.1016/j.knosys.2023.110255

29. Zheng, L., Noroozi, V., Yu, P. Joint Deep Modeling
of Users and Items Using Reviews for Recommen-
dation. In WSDM ‘17, 2017: 425-434. https://doi.
org/10.1145/3018661.3018665

30. Zhou, Y., Zhou, Y., Yu, D., Sun, J. Adaptive Social Rec-
ommendation Based on Negative Similarity, Jour-
nal of Computer Applications, 2023: 1. https://doi.
org/10.11772/j.issn.1001-9081.2022071003.

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

