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A graph neural network-based recommendation system treats the relationship between user items as a graph, 
and achieves deep feature mining by modelling the graph nodes. However, the complexity of the features of 
graph neural network-based recommendation systems brings poor interpretability and suffers from data spar-
sity problems. To address the above problems, a graph convolutional neural network recommendation model 
(RWESA-GNNR) based on random walk embedding combined with sentiment analysis is proposed. Firstly, a 
random walk-based matrix factorization is designed as the initial embedding. Secondly, the user and item nodes 
are modelled using a convolutional neural network with an injected attention mechanism. Then, sentiment 
analysis is performed on the review text, and attention mechanism is introduced to fuse text sentiment features 
and semantic features. Finally, node features and text features are aggregated to generate recommendation re-
sults. The experimental results show that our proposed algorithm outperforms traditional recommendation 
algorithms and other graph neural network-based recommendation algorithms in terms of recommendation 
results, with an improvement of about 2.43%-5.75%.
KEYWORDS: recommendation system, graph neural network, random walk, sentiment analysis, data mining. 



147Information Technology and Control 2024/1/53

1. Introduction
With the advancement of productivity levels and the 
rapid development of Internet technology, mankind 
has crossed over into the information age. However, 
the rapid development of the information age has not 
only brought a wealth of information to the people, 
but also caused an explosion of information. The re-
dundancy of useless information has led to a relative 
lack of information that users want to access and the 
phenomenon of information overload. Although peo-
ple can filter some of the information and access the 
content through search engines, it is becoming in-
creasingly difficult for people to choose their favour-
ite content. As a result, the concept of Recommenda-
tion Systems (RS) has been proposed [3]. RS obtains 
hidden information through the user’s historical be-
havior, interest preferences and other features, and 
then applies recommendation algorithms to generate 
a list of items that may be of interest to the user [6, 25].
In real applications of RS, most of the data inherently 
have a graph structure, and this inherent data feature 
makes it necessary to consider complex graph data re-
lationships when making recommendations. There-
fore, with the research and development of Graph 
Neural Networks (GNNs), more and more research-
ers are using GNNs for RS to extract node information 
about the associations between users and items. Ji-
ang et al. [10] used GNNs as a basis to improve recom-
mendation performance by capturing latent features 
using an end-to-end approach. Wu et al. [23] modelled 
user sequence behavior as graph-structured data and 
used GNNs to capture the complex transformational 
relationships between items. Song et al. [20] modeled 
contextually relevant social influences using graph 
attention networks and demonstrated the effective-
ness of the model by testing on real datasets such 
as Facebook. A technique closely related to GNNs 
is network embedding, which expresses the hidden 
connections between items in an aggregated way 
to obtain an embedding representation. Commonly 
used network embedding methods are deep learning 
based graph embedding, random walk based graph 
embedding and so on. Ying et al. [26] combined ran-
dom wandering and GNNs to generate node embed-
dings that contain graph structure as well as feature 
information of the nodes. Zhou et al. [30] proposed 
an algorithm of random walk combined with matrix 

decomposition to obtain the embedding vector of so-
cial relations. Liu et al. [12] proposed a random walk 
approach to build heterogeneous networks as a way 
to generate better recommendations. Canturk et al. 
[1] used random walk for location recommendation 
on model subgraphs. Zhang et al. [28] effectively cap-
tured the global and local structure of the network by 
an improved random walk strategy.
However, traditional GNNs methods often suffer from 
limitations in node representation learning, inability 
to make full use of user behavior and social network in-
formation, and data sparsity. At the same time, review 
text, which contains attribute information of users and 
items, can establish more objective evaluation and sen-
timent features for users and items, which can improve 
the interpretability of the RS while alleviating data 
sparsity. Therefore, how to design a node embedding 
method and combine node analysis with text analysis 
to further improve the accuracy and efficiency of GNNs 
recommendation algorithms is the focus of this paper.
In summary, we propose a GNN recommendation 
model for fusing review texts, called RWESA-GNNR, 
with the following main contributions:
1 We design an original framework which fuses in-

teraction graph node features with review text fea-
tures to achieve better recommendations.

2 We propose a random wander-based matrix factor-
ization that enables nodes to feature the topology 
of a graph through the embedding of self-covari-
ance similarity. At the same time, by combining 
with a specific aggregation function, the distribu-
tion of dissimilarity in the graph is captured and 
more potential connections between users and 
items are mined.

3 We propose to mine useful sentiment information 
in review texts by analyzing the sentiment polarity 
of the review texts, combining the attention mech-
anism, and combining sentiment weights with the 
semantics of the review texts to obtain personal-
ized sentiment features of users and items.

4 We conduct experiments on the model on three 
publicly available Amazon datasets. The exper-
imental results demonstrate that the proposed 
method is better than existing recommendation 
methods, with improved recommendation results.
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2. Proposed Method
In this section, we describe the proposed RWE-
SA-GNNR, the structure of which is shown in Figure 
1. The RWESA-GNNR consists of four modules: (1) a 
user-item node feature extraction module for extract-
ing features of nodes in the interaction graph; (2) a 
review text feature extraction module for extracting 
sentiment polarity features from the review text; (3) 
a sentiment feature fusion module for fusing the se-
mantic features of the review text with the sentiment 
polarity features; (4) a prediction module, which per-
forms recommendation prediction based on the final 
fused features.

Figure 1
The overall framework of the proposed model

2.1. User-item Node Feature Extraction 
Module
The module consists of two layers, the first generating 
an initial embedding vector from the user-item inter-
action graph using a random walk-based matrix fac-
torization, and the second aggregating the neighbor-
ing nodes of each node using a Graph Convolutional 
Neural Network (GCN) to obtain a nodal feature rep-
resentation of the graph.
Considering that interaction graphs are interactions 
between users and items, we model the interactions 
as weighted undirected graphs G = (V, E), where V 
denotes the set of nodes, including a total of n nodes 

sentiment feature fusion module for fusing the 
semantic features of the review text with the 
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module, which performs recommendation 
prediction based on the final fused features. 

2.1 User-item Node Feature Extraction 
Module 

The module consists of two layers, the first 
generating an initial embedding vector from the 
user-item interaction graph using a random walk-
based matrix factorization, and the second 
aggregating the neighboring nodes of each node 
using a Graph Convolutional Neural Network 

(GCN) to obtain a nodal feature representation of 
the graph. 

Considering that interaction graphs are 
interactions between users and items, we model 
the interactions as weighted undirected graphs  

( , )G= V E  , where V  denotes the set of nodes, 

including a total of n  nodes for users and items, 
denoting the number of users as a  and the 
number of items as b ; E denotes the set of 
edges, representing the m  interactions between 
users and items, representing the interaction 
information of the graph through the symmetric 

adjacency matrix n nA   . 
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2.1.1 Node Initial Embedding Layer 

This layer generates the initial embedding vector 
from the user-item interaction graph using a 
random wandering matrix factorization. For large 
undirected network graphs such as 
recommendation data, the interaction information 
is very unevenly distributed and usually follows a 
power-law distribution [11]. Random walks 
enable the graph to have a topological structure 
that can well overcome the power-law 
distribution. 

We define node u  and node v . The edge with 

weights connecting the two nodes is uvA . If node 

u  and node v  interact, then 1uvA  , otherwise

0uvA  . The probabilistic covariance matrix of 

node pairs based on random wandering is shown 
in Figure 2. 

Since the random walk process is carried out 
randomly, the value of the next node is only 
related to the current node and has no relation to 
the previous node. We assume that the current 
point in time is t  and the position is node u . 
The next random wandering result to the next 
node v  is only related to the position of the 



149Information Technology and Control 2024/1/53

for users and items, denoting the number of users as 
a and the number of items as b; E denotes the set of 
edges, representing the m  interactions between users 
and items, representing the interaction information 
of the graph through the symmetric adjacency matrix 

n nA ×∈� .

2.1.1. Node Initial Embedding Layer
This layer generates the initial embedding vector from 
the user-item interaction graph using a random wan-
dering matrix factorization. For large undirected net-
work graphs such as recommendation data, the inter-
action information is very unevenly distributed and 
usually follows a power-law distribution [11]. Random 
walks enable the graph to have a topological structure 
that can well overcome the power-law distribution.
We define node u  and node v. The edge with weights 
connecting the two nodes is uvA . If node u and node v 
interact, then 1uvA = , otherwise 0uvA = . The probabi-
listic covariance matrix of node pairs based on ran-
dom wandering is shown in Figure 2.

Figure 2
Generating probability co-occurrence matrices based on 
random wandering

current node u  and not to the state (position) 
before time t . Therefore, the random wandering 
process is a class of Markov processes [4]. The 
sequence of nodes obtained after this process is a 
Markov chain over the set V  of nodes. For a 
Markov chain, a standard random walk on a 
connected bipartite graph traverses the entire 
graph and has a unique smooth distribution 

n   . 
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When using standard random wandering in an 
undirected weighted graph, the probabilities from 
node u  and node v  are only related to node 
u  itself, so that the transfer probability obtained 
is proportional to the edge weight 

uvA , as shown 

in Equation (1). 

( ( 1) ( ) )
deg( )
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u

    ,     (1) 

where ( )x t V  is the node wandered to at time 
t ; deg( )  is a function of the degree of node 

seeking. 

We denote the transfer probabilities between all 
pairs of nodes as the transfer matrix n nM  , 
as shown in Equation (2): 

1M D A .                         (2) 

For a connected bipartite graph, a random walk 
traverses the entire graph and has a unique 

smooth distribution n  . For each node u

, the distribution is shown in Equation (3): 
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.                     (3) 

The root of the similarity function based on 
random wandering is based on the probability of 
a wandering being co-visited for a node. The node 
similarity metric is essentially a function that 

maps the probability of co-visitation of a node 
pair to the concept of topological similarity. Two 
nodes are similar to each other if the function has 
a large positive value, and they are different if 
they have a large negative value. We use self-
covariance as the similarity measure function, 
which has been shown to give better embedding 
results in recommendation tasks [9]. 

We define the self-covariance ( )uvR   as the 

covariance between u  and v  over time t , as 
shown in Equation (4): 
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where the value of the covariance ( )uvR   is a 

linear measure of the joint variability of the 
probability of a random visit to nodes u  and v  
at time t , and is a formal expression for the 
likelihood of two nodes being visited 
simultaneously. 

The probability   of iterating and starting is 
shown in Equation (5). 

( ) ( ( ) ( ) )uv u u vR = p x t v x t u        (5) 

where ( ) [ , (1 )]uv u v u vR        . We 

express it in the form of a matrix as shown in 
Equation (6): 

( ) TR = M    .                  (6) 

The goal of the embedding algorithm is to 
generate a representation that maintains a given 
vector of similarity measures, subject to the 
conditions of Equation (7): 
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where T
u vu u  captures the similarity in the 

embedding space; R  is the similarity matrix; 

and 
2

F
  is the Fibonacci parametrization. 

Because R  is a symmetric but extremely sparse 

matrix, its complexity will reach 3( )o n  if 

singular value decomposition is used, and it will 

drop to 2( )o nd mdr  if it is decomposed by a 
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Since the random walk process is carried out random-
ly, the value of the next node is only related to the cur-
rent node and has no relation to the previous node. We 
assume that the current point in time is t and the po-
sition is node u. The next random wandering result to 
the next node v is only related to the position of the cur-
rent node u and not to the state (position) before time t. 
Therefore, the random wandering process is a class of 
Markov processes [4]. The sequence of nodes obtained 
after this process is a Markov chain over the set V of 
nodes. For a Markov chain, a standard random walk on 
a connected bipartite graph traverses the entire graph 
and has a unique smooth distribution nπ ∈� .

When using standard random wandering in an undi-
rected weighted graph, the probabilities from node u  
and node v are only related to node u itself, so that the 
transfer probability obtained is proportional to the 
edge weight uvA , as shown in Equation (1).
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graph and has a unique smooth distribution 
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where ( )x t V∈  is the node wandered to at time t; 
deg( )⋅  is a function of the degree of node seeking.
We denote the transfer probabilities between all pairs 
of nodes as the transfer matrix n nM ×∈� , as shown in 
Equation (2):
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connected bipartite graph traverses the entire 
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For a connected bipartite graph, a random walk tra-
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tribution nπ ∈� . For each node u, the distribution is 
shown in Equation (3):
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covariance as the similarity measure function, 
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The root of the similarity function based on random 
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ric is essentially a function that maps the probability 
of co-visitation of a node pair to the concept of topo-
logical similarity. Two nodes are similar to each other 
if the function has a large positive value, and they are 
different if they have a large negative value. We use 
self-covariance as the similarity measure function, 
which has been shown to give better embedding re-
sults in recommendation tasks [9].
We define the self-covariance ( )uvR τ  as the covari-
ance between u and v over time t, as shown in Equa-
tion (4):
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where the value of the covariance ( )uvR τ  is a linear 
measure of the joint variability of the probability of a 
random visit to nodes u and v at time  t, and is a formal 
expression for the likelihood of two nodes being visit-
ed simultaneously.
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The probability π  of iterating and starting is shown 
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connected bipartite graph traverses the entire 
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where T
u vu u  captures the similarity in the embedding 

space; R is the similarity matrix; and 
2

F
⋅  is the Fibo-

nacci parametrization.
Because R is a symmetric but extremely sparse 
matrix, its complexity will reach 3( )o n  if singu-
lar value decomposition is used, and it will drop to 

2( )o nd mdr+  if it is decomposed by a scalable factor-
ize method. Therefore, we use the ARPACK method 
[19] to capture the global information by deriving the 
eigenvalues and eigenvectors for the probability ma-
trix to obtain the initial embedding (0) de ∈�  for the 
final input GCN.

2.1.2. Node Feature Extraction Layer
This layer uses a GCN to extract features on the in-
teracting nodes to obtain a node representation of the 
user and the item.
Firstly, we couple the initial embedding A obtained 
by random wandering with the dot product, which 
will have better performance in capturing the full 
graph heterogeneity distribution. The aggregation 
function is used to update the content of this node 
by aggregating information from neighboring nodes, 
using a non-linear activation function to model more 
non-linear relationships in the data. To better capture 
node features, we use the Bi-Interaction aggregator 
[22] to fully capture the feature information embed-
ded in the initial vector of the transfer. In summary, 
we express the whole process as Equation (8):

scalable factorize method. Therefore, we use the 
ARPACK method [19] to capture the global 
information by deriving the eigenvalues and 
eigenvectors for the probability matrix to obtain 
the initial embedding (0) de   for the final 
input GCN. 

2.1.2 Node Feature Extraction Layer 

This layer uses a GCN to extract features on the 
interacting nodes to obtain a node representation 
of the user and the item. 

Firstly, we couple the initial embedding A 
obtained by random wandering with the dot 
product, which will have better performance in 
capturing the full graph heterogeneity 
distribution. The aggregation function is used to 
update the content of this node by aggregating 
information from neighboring nodes, using a non-
linear activation function to model more non-
linear relationships in the data. To better capture 
node features, we use the Bi-Interaction 
aggregator [22] to fully capture the feature 
information embedded in the initial vector of the 
transfer. In summary, we express the whole 
process as Equation (8): 
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where 
0W  and 

1W  are trainable weight 

matrices; l  is the number of layers of the GCN; 

ue  is the embedding vector of user u  and ie  

is the embedding vector of item i ; ( )N u  is the 
set of neighboring nodes of user u  and ( )N i  is 
the set of neighboring nodes of item i ;  is the 
dot product operation; and ( )LeakyReLU   is the 

activation function we use. 

Secondly, considering that different layers of 
information have different weights of influence 
on the content of nodes, we introduce a self-
attention mechanism to model the importance of 
each layer of embedding, and each layer of 
embedding is calculated as shown in Equation 
(9): 

*
2 0 1tanh( )T k

k a jW W e b b    ,         (9) 

where k
je  is the layer k  embedding of node 

j . 
aW , 

2W , 0b  and 1b  are learnable 

parameters, and *
k  is the scoring function for 

layer k . 

Third, we normalized the attention ratings to 
obtain the attention weights for each layer of the 
embedding, as shown in Equation (10): 

*
*

*

exp( )( )
( )

k
k k

k

softmax  


 


.       (10) 

Finally, we combine the embedding expressions 
of each layer weighted according to the weights 
to obtain a final representation of the association 

between nodes d
ue   and d
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shown in Equation (11): 
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2.2 Review Text Feature Extraction Module 

The module consists of two layers, the first for 
word embedding of the review text using the 
encoder and the second for sentiment polarity 
analysis of the review text. 

2.2.1 Word Embedding Layer 

This layer changes the review text from non-
machine-recognizable words to an actionable set 
of embedding vectors via an encoder, facilitating 
machine learning for feature extraction. 

Firstly, we use Bidirectional Encoder 
Representations from Transformers (BERT) for 
encoding, this is due to the fact that BERT is 
composed of multiple Transformer overlays, 
which can solve the problem of multiple 
meanings of words; at the same time, BERT can 
selectively use information from all levels, so that 
the multi-layered features of words can be 
exploited [24]. BERT is to input the whole review 
together, and then perform sentence division and 
padding, sentences that are less than the length 
will be filled, while sentences that are too long 
will be truncated. Specifically, we connect the 
results of the token, segment and position layers 
in BERT by element to obtain a representation of 
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information from neighboring nodes, using a non-
linear activation function to model more non-
linear relationships in the data. To better capture 
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where 
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Secondly, considering that different layers of 
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each layer of embedding, and each layer of 
embedding is calculated as shown in Equation 
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Finally, we combine the embedding expressions 
of each layer weighted according to the weights 
to obtain a final representation of the association 

between nodes d
ue   and d

ie  , as 

shown in Equation (11): 

0

0

l
k

u k u
k
l

k
i k i

k

e e

e e
















.                       (11) 

2.2 Review Text Feature Extraction Module 

The module consists of two layers, the first for 
word embedding of the review text using the 
encoder and the second for sentiment polarity 
analysis of the review text. 

2.2.1 Word Embedding Layer 

This layer changes the review text from non-
machine-recognizable words to an actionable set 
of embedding vectors via an encoder, facilitating 
machine learning for feature extraction. 

Firstly, we use Bidirectional Encoder 
Representations from Transformers (BERT) for 
encoding, this is due to the fact that BERT is 
composed of multiple Transformer overlays, 
which can solve the problem of multiple 
meanings of words; at the same time, BERT can 
selectively use information from all levels, so that 
the multi-layered features of words can be 
exploited [24]. BERT is to input the whole review 
together, and then perform sentence division and 
padding, sentences that are less than the length 
will be filled, while sentences that are too long 
will be truncated. Specifically, we connect the 
results of the token, segment and position layers 
in BERT by element to obtain a representation of 
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interacting nodes to obtain a node representation 
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obtained by random wandering with the dot 
product, which will have better performance in 
capturing the full graph heterogeneity 
distribution. The aggregation function is used to 
update the content of this node by aggregating 
information from neighboring nodes, using a non-
linear activation function to model more non-
linear relationships in the data. To better capture 
node features, we use the Bi-Interaction 
aggregator [22] to fully capture the feature 
information embedded in the initial vector of the 
transfer. In summary, we express the whole 
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where 
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matrices; l  is the number of layers of the GCN; 
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is the embedding vector of item i ; ( )N u  is the 
set of neighboring nodes of user u  and ( )N i  is 
the set of neighboring nodes of item i ;  is the 
dot product operation; and ( )LeakyReLU   is the 

activation function we use. 

Secondly, considering that different layers of 
information have different weights of influence 
on the content of nodes, we introduce a self-
attention mechanism to model the importance of 
each layer of embedding, and each layer of 
embedding is calculated as shown in Equation 
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Finally, we combine the embedding expressions 
of each layer weighted according to the weights 
to obtain a final representation of the association 
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2.2 Review Text Feature Extraction Module 

The module consists of two layers, the first for 
word embedding of the review text using the 
encoder and the second for sentiment polarity 
analysis of the review text. 

2.2.1 Word Embedding Layer 

This layer changes the review text from non-
machine-recognizable words to an actionable set 
of embedding vectors via an encoder, facilitating 
machine learning for feature extraction. 

Firstly, we use Bidirectional Encoder 
Representations from Transformers (BERT) for 
encoding, this is due to the fact that BERT is 
composed of multiple Transformer overlays, 
which can solve the problem of multiple 
meanings of words; at the same time, BERT can 
selectively use information from all levels, so that 
the multi-layered features of words can be 
exploited [24]. BERT is to input the whole review 
together, and then perform sentence division and 
padding, sentences that are less than the length 
will be filled, while sentences that are too long 
will be truncated. Specifically, we connect the 
results of the token, segment and position layers 
in BERT by element to obtain a representation of 
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capturing the full graph heterogeneity 
distribution. The aggregation function is used to 
update the content of this node by aggregating 
information from neighboring nodes, using a non-
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where 
0W  and 

1W  are trainable weight 

matrices; l  is the number of layers of the GCN; 

ue  is the embedding vector of user u  and ie  

is the embedding vector of item i ; ( )N u  is the 
set of neighboring nodes of user u  and ( )N i  is 
the set of neighboring nodes of item i ;  is the 
dot product operation; and ( )LeakyReLU   is the 

activation function we use. 

Secondly, considering that different layers of 
information have different weights of influence 
on the content of nodes, we introduce a self-
attention mechanism to model the importance of 
each layer of embedding, and each layer of 
embedding is calculated as shown in Equation 
(9): 
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Finally, we combine the embedding expressions 
of each layer weighted according to the weights 
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shown in Equation (11): 

0

0

l
k

u k u
k
l

k
i k i

k

e e

e e
















.                       (11) 

2.2 Review Text Feature Extraction Module 

The module consists of two layers, the first for 
word embedding of the review text using the 
encoder and the second for sentiment polarity 
analysis of the review text. 

2.2.1 Word Embedding Layer 

This layer changes the review text from non-
machine-recognizable words to an actionable set 
of embedding vectors via an encoder, facilitating 
machine learning for feature extraction. 

Firstly, we use Bidirectional Encoder 
Representations from Transformers (BERT) for 
encoding, this is due to the fact that BERT is 
composed of multiple Transformer overlays, 
which can solve the problem of multiple 
meanings of words; at the same time, BERT can 
selectively use information from all levels, so that 
the multi-layered features of words can be 
exploited [24]. BERT is to input the whole review 
together, and then perform sentence division and 
padding, sentences that are less than the length 
will be filled, while sentences that are too long 
will be truncated. Specifically, we connect the 
results of the token, segment and position layers 
in BERT by element to obtain a representation of 
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2.2. Review Text Feature Extraction Module
The module consists of two layers, the first for word 
embedding of the review text using the encoder and 
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the second for sentiment polarity analysis of the re-
view text.

2.2.1. Word Embedding Layer
This layer changes the review text from non-ma-
chine-recognizable words to an actionable set of em-
bedding vectors via an encoder, facilitating machine 
learning for feature extraction.
Firstly, we use Bidirectional Encoder Representa-
tions from Transformers (BERT) for encoding, this 
is due to the fact that BERT is composed of multiple 
Transformer overlays, which can solve the problem of 
multiple meanings of words; at the same time, BERT 
can selectively use information from all levels, so that 
the multi-layered features of words can be exploited 
[24]. BERT is to input the whole review together, and 
then perform sentence division and padding, sen-
tences that are less than the length will be filled, while 
sentences that are too long will be truncated. Specifi-
cally, we connect the results of the token, segment and 
position layers in BERT by element to obtain a repre-
sentation of all embedding vectors about the input re-
view text, as shown in Equation (12):
all embedding vectors about the input review text, 
as shown in Equation (12): 
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where ix  is the vector of the i th review text 

embedding representation, where 1x  is the 

initial label vector in BERT; and E  is the initial 
embedding vector of the review text generated 
after the entire input of the i th review text. 

It is worth mentioning that, unlike the often used 
text processing models such as one-hot encoding 
[17], word2vec [5] and ELMo [14], BERT uses a 
multi-headed attention mechanism to assist in 
capturing sequential information in the input 
content, and the Transformer model allows BERT 
to capture contextual features more 
comprehensively, regardless of the length of the 
input text. BERT uses a Word Piece [21] 
approach for word embedding, where a word is 
split into several parts according to the structure 
of the root affix, allowing different forms of the 
same word to be recognized. This is sufficient for 
BERT’s own word list of over 30000 words. 

Then, we input the initial representation vector A 
of the review text into the multilayer Transformer 
to extract the contextual relevance and enrich the 
feature vector representation of the review text. 
The final result of the text embedding process is 
thus obtained, as shown in Equation (13): 

1 2 1 1( ), ( ),..., ( )l lT Trm E T Trm T T Trm T    , (13) 

where ( )Trm   is a Transformer encoding 

calculation; lT  is the output of the Transformer 

encoding block at layer l , and sometimes the 
embedded representation of all tokens for the next 
Transformer encoding module; [1, ]l L , where 

L  is the layer of Transformer encoders in 
BERT; and E  is the final output representation 
of the BERT model, a sequence of token 
representations. 

2.2.2 Sentiment Polarity Analysis Layer 

The layer performs sentiment analysis on the 
review text features embedded by BERT through 
an activation function. 

Since the BERT model is already a deep neural 

network with a stack of multi-layer Transformer 
encoder blocks, it already captures sufficient 
semantic information for the extraction of 
semantic information in sentences. Therefore, 
after training with multiple layers of stacked 
Transformer encoders, we can already obtain a 
certain degree of semantic information about the 
entire comment text. We input the embedding 
representation E  of each review text into the 
activation function for sentiment polarity 
analysis, and predict the sentence-level sentiment 
polarity probability in the whole review, as shown 
in Equation (14): 

3 2( ) ( )p E softmax W E b  ,         (14) 

where ( )p E  is the probability of semantic 

sentiment polarity analysis for the whole review 
text; 

3W  and 
2b  are the trainable weight 

matrices; and D is the activation function we use. 

2.3 Sentiment Feature Fusion Module 

The module uses an attention mechanism to 
merge semantic features of review text with 
sentiment polarity features. 

We dot product the node feature vectors of users 
and items and use them as queries in the attention 
mechanism, define the initial token in the text 

jE  of review j  as jc , and concatenate jc  

with the sentiment polarity feature jp  of that 

review as the KEY-VALUE pair in the attention 
mechanism. We calculate a rating for each review 
based on the attention mechanism, as shown in 
Equation (15): 
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where bW , kW , qW , 3W  and 4W  are 

learnable parameters; *
j  is the attention rating 

function for each review, and the attention value 
for a weighted combination of all reviews for the 
same user or item is calculated as shown in 
Equation (16): 
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where ix  is the vector of the i th review text embed-
ding representation, where 1x  is the initial label vec-
tor in BERT; and E is the initial embedding vector of 
the review text generated after the entire input of the 
i th review text.
It is worth mentioning that, unlike the often used 
text processing models such as one-hot encod-
ing [17], word2vec [5] and ELMo [14], BERT uses a 
multi-headed attention mechanism to assist in cap-
turing sequential information in the input content, 
and the Transformer model allows BERT to capture 
contextual features more comprehensively, regard-
less of the length of the input text. BERT uses a Word 
Piece [21] approach for word embedding, where a 
word is split into several parts according to the struc-
ture of the root affix, allowing different forms of the 
same word to be recognized. This is sufficient for 
BERT’s own word list of over 30000 words.
Then, we input the initial representation vector A of 
the review text into the multilayer Transformer to ex-
tract the contextual relevance and enrich the feature 

vector representation of the review text. The final re-
sult of the text embedding process is thus obtained, as 
shown in Equation (13):
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embedding vector of the review text generated 
after the entire input of the i th review text. 

It is worth mentioning that, unlike the often used 
text processing models such as one-hot encoding 
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capturing sequential information in the input 
content, and the Transformer model allows BERT 
to capture contextual features more 
comprehensively, regardless of the length of the 
input text. BERT uses a Word Piece [21] 
approach for word embedding, where a word is 
split into several parts according to the structure 
of the root affix, allowing different forms of the 
same word to be recognized. This is sufficient for 
BERT’s own word list of over 30000 words. 

Then, we input the initial representation vector A 
of the review text into the multilayer Transformer 
to extract the contextual relevance and enrich the 
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an activation function. 
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network with a stack of multi-layer Transformer 
encoder blocks, it already captures sufficient 
semantic information for the extraction of 
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Transformer encoders, we can already obtain a 
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where ( )Trm ⋅  is a Transformer encoding calculation; 
lT  is the output of the Transformer encoding block 

at layer l, and sometimes the embedded representa-
tion of all tokens for the next Transformer encoding 
module; [1, ]l L∈ , where L  is the layer of Transformer 
encoders in BERT; and E is the final output represen-
tation of the BERT model, a sequence of token repre-
sentations.

2.2.2 Sentiment Polarity Analysis Layer
The layer performs sentiment analysis on the review 
text features embedded by BERT through an activa-
tion function.
Since the BERT model is already a deep neural net-
work with a stack of multi-layer Transformer encoder 
blocks, it already captures sufficient semantic infor-
mation for the extraction of semantic information in 
sentences. Therefore, after training with multiple lay-
ers of stacked Transformer encoders, we can already 
obtain a certain degree of semantic information about 
the entire comment text. We input the embedding 
representation E of each review text into the activa-
tion function for sentiment polarity analysis, and pre-
dict the sentence-level sentiment polarity probability 
in the whole review, as shown in Equation (14):
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where ix  is the vector of the i th review text 

embedding representation, where 1x  is the 

initial label vector in BERT; and E  is the initial 
embedding vector of the review text generated 
after the entire input of the i th review text. 

It is worth mentioning that, unlike the often used 
text processing models such as one-hot encoding 
[17], word2vec [5] and ELMo [14], BERT uses a 
multi-headed attention mechanism to assist in 
capturing sequential information in the input 
content, and the Transformer model allows BERT 
to capture contextual features more 
comprehensively, regardless of the length of the 
input text. BERT uses a Word Piece [21] 
approach for word embedding, where a word is 
split into several parts according to the structure 
of the root affix, allowing different forms of the 
same word to be recognized. This is sufficient for 
BERT’s own word list of over 30000 words. 

Then, we input the initial representation vector A 
of the review text into the multilayer Transformer 
to extract the contextual relevance and enrich the 
feature vector representation of the review text. 
The final result of the text embedding process is 
thus obtained, as shown in Equation (13): 
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where p(E) is the probability of semantic sentiment 
polarity analysis for the whole review text; W3 and b2 are the trainable weight matrices; and D is the activa-
tion function we use.

2.3. Sentiment Feature Fusion Module
The module uses an attention mechanism to merge 
semantic features of review text with sentiment po-
larity features.
We dot product the node feature vectors of users and 
items and use them as queries in the attention mech-
anism, define the initial token in the text Ej of review 
j as cj, and concatenate cj with the sentiment polarity 
feature pj of that review as the KEY-VALUE pair in the 
attention mechanism. We calculate a rating for each 
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review based on the attention mechanism, as shown 
in Equation (15):
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where bW , kW , qW , 3W  and 4W  are learnable param-
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review, and the attention value for a weighted com-
bination of all reviews for the same user or item is cal-
culated as shown in Equation (16):
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Finally, the sentiment feature embedding of the user 
or item is calculated based on the obtained attention 
coefficient, as shown in Equation (17):

Finally, the sentiment feature embedding of the 
user or item is calculated based on the obtained 
attention coefficient, as shown in Equation (17): 
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2.4 Prediction Module 

The module uses connects interaction node 
features of user items with sentiment features for 
a final predicted match rating. 

We connect the final interaction node features 
obtained from Equation (11) with the final 
sentiment features obtained from Equation (17) to 
obtain the final representation U  of the user 
and the final representation I  of the item, as 
shown in Equation (18): 
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Finally, we predict the matching ratings of users 
and items by calculating the inner product of their 
final representations, as shown in Equation (19): 

ˆ T
uiy U I  .                        (19) 

2.4 Model Objective Function 

To predict the interactions between users and 
items, we chose to train and optimize the model 
with the BPR loss function, a pairwise 
optimization method that assumes that observed 
interactions better reflect user preferences and 
therefore yield higher predictive values than 
unobserved interactions [7]. This objective 
function is defined as shown in Equation (20): 
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where {( , , ) ( , ) , ( , ) }u i j u i R u j R      is the 

pairwise training data, R  is the observed 
interactions, and R  is the unobserved 

interactions; ( )   is the activation function, we 

choose the sigmoid function; 

0 1 2 3 0 1 2 3 4={ , , , , , , , , , , }q kW W W W W W b b b b b  is the 

set of all trainable parameters of the model; and 
  controls the L2 regularization strength to 

prevent overfitting. 

3. Experimentation and Analysis 

In this section, we conduct experiments on the 
Amazon public dataset, which consist of 
parameter optimization experiments, 
performance analysis experiments and ablation 
experiments to confirm the effectiveness of 
RWESA-GNNR in a variety of ways. 

3.1 Datasets 

The Amazon dataset is one of the most widely 
used datasets in RS, with massive data support for 
our experiments [13]. Therefore, we selected 
three datasets with review texts from the Amazon 
dataset as our experimental datasets, namely 
Musical Instruments (MI), Beauty, and Amazon-
CDs (CDs), whose number of users, items, 
interactions, and sparsity are shown in Table 1. 
To ensure feasibility and fairness, we randomly 
divided each dataset into training, testing, and 
validation sets in a 7:2:1 ratio. In the training set, 
we treated each user-item interaction as a positive 
example and then used a negative sampling 
strategy to match it with a negative item that the 
user had not previously interacted with. Next, we 
tuned the optimal parameter values on the 
validation set. Finally, we evaluated the model’s 
performance on the testing set. 

As can be seen from Table 1, although the data 
for each sample differed considerably, these 
datasets were sufficient to train and validate the 
proposed model due to the large enough data 
volume. In addition, the sparsity of each dataset 
is above 99%, which illustrates the significance 
of introducing item text features to alleviate 
sparsity. As our model is based on the idea of 
using fused review text data as an additional 
source of features to alleviate the data sparsity 
problem in recommender systems, the length of 
the review text was counted to illustrate the 
information contained in the review text. The 
review lengths and their distribution for each 
dataset are shown in Figure 3. 
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Finally, we predict the matching ratings of users and 
items by calculating the inner product of their final 
representations, as shown in Equation (19):
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attention coefficient, as shown in Equation (17): 
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2.4. Model Objective Function
To predict the interactions between users and items, 
we chose to train and optimize the model with the 
BPR loss function, a pairwise optimization method 
that assumes that observed interactions better reflect 
user preferences and therefore yield higher predic-
tive values than unobserved interactions [7]. This ob-

jective function is defined as shown in Equation (20):

Finally, the sentiment feature embedding of the 
user or item is calculated based on the obtained 
attention coefficient, as shown in Equation (17): 
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The module uses connects interaction node 
features of user items with sentiment features for 
a final predicted match rating. 

We connect the final interaction node features 
obtained from Equation (11) with the final 
sentiment features obtained from Equation (17) to 
obtain the final representation U  of the user 
and the final representation I  of the item, as 
shown in Equation (18): 
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Finally, we predict the matching ratings of users 
and items by calculating the inner product of their 
final representations, as shown in Equation (19): 

ˆ T
uiy U I  .                        (19) 

2.4 Model Objective Function 
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interactions better reflect user preferences and 
therefore yield higher predictive values than 
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function is defined as shown in Equation (20): 
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pairwise training data, R  is the observed 
interactions, and R  is the unobserved 

interactions; ( )   is the activation function, we 

choose the sigmoid function; 
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prevent overfitting. 

3. Experimentation and Analysis 

In this section, we conduct experiments on the 
Amazon public dataset, which consist of 
parameter optimization experiments, 
performance analysis experiments and ablation 
experiments to confirm the effectiveness of 
RWESA-GNNR in a variety of ways. 

3.1 Datasets 

The Amazon dataset is one of the most widely 
used datasets in RS, with massive data support for 
our experiments [13]. Therefore, we selected 
three datasets with review texts from the Amazon 
dataset as our experimental datasets, namely 
Musical Instruments (MI), Beauty, and Amazon-
CDs (CDs), whose number of users, items, 
interactions, and sparsity are shown in Table 1. 
To ensure feasibility and fairness, we randomly 
divided each dataset into training, testing, and 
validation sets in a 7:2:1 ratio. In the training set, 
we treated each user-item interaction as a positive 
example and then used a negative sampling 
strategy to match it with a negative item that the 
user had not previously interacted with. Next, we 
tuned the optimal parameter values on the 
validation set. Finally, we evaluated the model’s 
performance on the testing set. 

As can be seen from Table 1, although the data 
for each sample differed considerably, these 
datasets were sufficient to train and validate the 
proposed model due to the large enough data 
volume. In addition, the sparsity of each dataset 
is above 99%, which illustrates the significance 
of introducing item text features to alleviate 
sparsity. As our model is based on the idea of 
using fused review text data as an additional 
source of features to alleviate the data sparsity 
problem in recommender systems, the length of 
the review text was counted to illustrate the 
information contained in the review text. The 
review lengths and their distribution for each 
dataset are shown in Figure 3. 

 

 

 

Figure 3 

(20)

where {( , , ) ( , ) , ( , ) }u i j u i R u j Rο + −= ∈ ∈  is the pair-
wise training data, R+  is the observed interactions, 
and R−  is the unobserved interactions; ( )σ ⋅  is the 
activation function, we choose the sigmoid function; 

0 1 2 3 0 1 2 3 4={ , , , , , , , , , , }q kW W W W W W b b b b bθ  is the set of all 
trainable parameters of the model; and λ  controls the 
L2 regularization strength to prevent overfitting.

3. Experimentation and Analysis
In this section, we conduct experiments on the Am-
azon public dataset, which consist of parameter op-
timization experiments, performance analysis ex-
periments and ablation experiments to confirm the 
effectiveness of RWESA-GNNR in a variety of ways.

3.1. Datasets
The Amazon dataset is one of the most widely used 
datasets in RS, with massive data support for our ex-
periments [13]. Therefore, we selected three datasets 
with review texts from the Amazon dataset as our ex-
perimental datasets, namely Musical Instruments 
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to the large enough data volume. In addition, the spar-
sity of each dataset is above 99%, which illustrates 
the significance of introducing item text features to 
alleviate sparsity. As our model is based on the idea of 
using fused review text data as an additional source of 
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ommender systems, the length of the review text was 
counted to illustrate the information contained in the 
review text. The review lengths and their distribution 
for each dataset are shown in Figure 3.

Figure 3
Review length distribution
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Table 1 

Datasets details 
Dataset Number of users Number of items Number of interactions Data sparsity 

MI 1429 900 10261 99.21% 
Beauty 22335 12100 198502 99.93% 

CDs 13573 8645 222042 99.81% 

3.2 Experimental Setup 

3.2.1 Evaluation Metrics 

The evaluation strategies commonly used in RS 
to assess the effectiveness of recommendations 
include Accuracy, Recall, Precision and F1 
values. In order to reflect the most realistic 
evaluation of effectiveness in RS, Recall is 
chosen in this paper to evaluate recommendation 
results. Recall is measured by calculating the 
number of correctly predicted positive cases as a 
proportion of all actual positive cases, which 
highlights the ability of the algorithmic model to 
detect interactions between users and unknown 
items [15]. At the same time, the prediction of 
recommendations is essentially a regression 
problem [27], and in order to better assess the 
effectiveness of the model implementation, we 
use Root Mean Square Error (RMSE) for 
evaluation. In order to evaluate the TOP-K effect 
of the recommendations in the experiments, we 
set the evaluation metric as Recall@K, RMSE 
and set K=20, i.e. to evaluate among the top 20 
recommendation results, calculated as shown in 
Equations (21)-(22): 
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Recall can be interpreted as the likelihood of the 
answer distribution in the confusion matrix, 
which is shown in Table 2, where TP  is the 
number of predicted positive cases that are 
actually positive, FN  is the number of predicted 
negative cases that are actually positive, FP  is 
the number of predicted positive cases that are 
actually negative, TN  is the number of 
predicted positive cases that are actually positive, 
and Recall value increases with the model's 
precision. Z  is the number of instances in the 
dataset, ˆuiy  is the predicted rating of user u  

for item i , and uiy  is the actual rating of user 

u  for item i . The smaller the RMSE value, the 
lower the prediction error of the model, and the 
higher the prediction accuracy. 
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ed positive cases that are actually positive, FN is the 
number of predicted negative cases that are actually 
positive, FP is the number of predicted positive cases 
that are actually negative, TN is the number of pre-
dicted positive cases that are actually positive, and 
Recall value increases with the model’s precision. Z is 
the number of instances in the dataset, ˆuiy  is the pre-
dicted rating of user u for item i, and uiy  is the actu-
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Table 2
Confusion matrix

Predicted 
results

True results
Total

Yes (P) No(N)

Yes TP FN P(Actual is yes)

No FP TN P(Actual is No)

3.2.2. Baselines
We have divided the baselines into three categories: 
recommendation methods that use only user-item 
interaction information (BPRMF and PinSage), rec-
ommendation methods that incorporate review text 
(DeepCoNN and NARRE) and recommendation 
methods based on GNNs (LightGCN and HA-GN-
NN).
1 BPRMF [16]: A method based on optimizing matrix 

factorization using BPR, which only uses user-item 
interaction data as recommendation information.
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2 PinSage [26]: A method that uses a sampling 
strategy based on random walks to perform graph 
convolution operations on local subgraph nodes, 
improving the problem of losing distant nodes in 
graph convolution recommendation.

3 DeepCoNN [29]: A method that uses two parallel 
CNNs to extract text features from reviews, and fi-
nally uses FM to predict ratings.

4 NARRE [2]: Similar to DeepCoNN, this method 
also uses two parallel CNN to extract text features 
from reviews. Additionally, it introduces an atten-
tion mechanism to distinguish the influence of dif-
ferent comments.

5 LightGCN [8]: A method that uses GCN to model 
the high-order connectivity between users and 
items, and simplifies the redundant parts of bipar-
tite GCN.

6 HA-GNNN [18]: This method uses self-attention 
graph neural networks to capture the dependency 
relationships between items, and uses soft atten-
tion mechanisms to learn high-order relationships 
in the graph. Finally, it uses fully connected layers 
to update item embeddings.

3.2.3. Parameter Settings
For all the baselines, we followed the hyperparame-
ter settings described in their respective papers. For 
BPRMF, we varied the number of latent factors in the 
range of {50,100,200,300}. For PinSage, we selected 
the number of random walks to be {1,2,3} since longer 
random walks may not be beneficial. For DeepCoNN, 
we set the number of convolutional filters to be 100 
and the number of convolutional layers to be 3. For the 
remaining models, we referred to the authors’ descrip-
tions and settings for further details.
For the matrix factorization part of the initial node 
embeddings in RWESA-GNNR, we followed previous 
work that has shown that the length of Markov random 
walks does not affect the final node embedding quality 
[9]. Thus, we set the Markov length to be 3 for each walk.
For the network part of RWESA-GNNR, we used the 
Adam optimization algorithm to update model parame-
ters with a learning rate of 0.002. To avoid overfitting, we 
applied L2 regularization with a parameter value of 1e-6.
For the BERT part of RWESA-GNNR, we used the 
official BERTbase version for text processing. A 
BERTbase model contains 110 million learnable pa-

rameters, which is sufficient for our experimental 
requirements. For the text length issue in the review 
text, we padded the text with zeros for texts that are 
shorter than the required length and truncated texts 
that exceed the required length. For sentiment anal-
ysis tasks based on BERT embeddings, we used the 
parameters shown in Table 3.

Table 3
BERT Parameter Setting

Parameter Setting

Max sequence length 128

Initial learning rate 2e-5

Attention dropout rate 0.1

Activation function Gelu

Hidden layer dropout rate 0.1

Embedding output dimension 768

Layer normalization parameter 1e-12

Max text length 512

Optimization algorithm Adam W

Max sequence length 128

3.3. Experimental Results and Comparisons
3.3.1. Overall Result Comparison
We conducted experiments under the optimal pa-
rameters and compared the Recall@20 and RMSE 
metrics of each model under the optimal parameters 
by setting the optimal parameters of each model ac-
cording to the corresponding reference. The results 
are shown in Table 3. The bold data is the best perfor-
mance in the same group comparison experiment, and 
the laicized data is the second best performance in the 
same group comparison experiment. The Improved 
value represents the growth rate of the best perfor-
mance compared to the second best performance. 
As shown in Table 4, the RWESA-GNNR model pro-
posed in this paper performed the best overall, which 
is consistent with our expectations.
To provide a more intuitive analysis of the effective-
ness of each model, we show histograms of each mod-
el on the three datasets in Figure 4.
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Table 4
Overall Performance Comparison of Compared Models

MI Beauty CDs

Recall@20 RMSE Recall@20 RMSE Recall@20 RMSE

BPRMF 0.063 0.956 0.062 1.101 0.119 0.924

PinSage 0.072 0.939 0.070 1.096 0.130 0.916

DeepCoNN 0.080 0.939 0.075 1.085 0.132 0.904

NARRE 0.073 0.935 0.071 1.078 0.128 0.899

LightGCN 0.079 0.923 0.069 1.083 0.135 0.902

HA-GNNN 0.082 0.919 0.074 1.079 0.139 0.898

RWESA-GNNR 0.084 0.883 0.078 1.016 0.143 0.872

Improved 2.439% 3.917% 4% 5.751% 2.89% 2.895%
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(b) RMSE

reference. The results are shown in Table 3. The 
bold data is the best performance in the same 
group comparison experiment, and the laicized 
data is the second best performance in the same 
group comparison experiment. The Improved 
value represents the growth rate of the best 

performance compared to the second best 
performance. As shown in Table 4, the RWESA-
GNNR model proposed in this paper performed 
the best overall, which is consistent with our 
expectations. 

Table 4 

Overall Performance Comparison of Compared Models 

 
MI Beauty CDs 

Recall@20 RMSE Recall@20 RMSE Recall@20 RMSE 

BPRMF 0.063 0.956 0.062 1.101 0.119 0.924 

PinSage 0.072 0.939 0.070 1.096 0.130 0.916 

DeepCoNN 0.080 0.939 0.075 1.085 0.132 0.904 

NARRE 0.073 0.935 0.071 1.078 0.128 0.899 

LightGCN 0.079 0.923 0.069 1.083 0.135 0.902 

HA-GNNN 0.082 0.919 0.074 1.079 0.139 0.898 

RWESA-GNNR 0.084 0.883 0.078 1.016 0.143 0.872 

Improved 2.439% 3.917% 4% 5.751% 2.89% 2.895% 

Figure 4 

Comparison histogram of performance 

 

(a) Recall@20 

 

(b) RMSE 

To provide a more intuitive analysis of the 
effectiveness of each model, we show histograms 
of each model on the three datasets in Figure 4. 

Firstly, the two evaluation metrics of the 
recommendation methods (BPRMF and PinSage) 
that only use user-item interaction information 

are the worst. BPRMF only utilizes the user-item 
interaction information and completes the 
information by matrix factorization. However, 
the user interaction data provided by RS is 
extremely sparse, and the matrix completion 
method based solely on interaction information 
only partially completes the data information, 
resulting in limited impact on the final 
recommendation effect. PinSage also shows that 
matrix factorization based solely on interaction 
information can only linearly represent the 
interaction features between users and items, and 
its capturing effect on the complex nonlinear 
relationship between users and items is not 
obvious. 

Secondly, the two evaluation metrics of the 
recommendation methods (DeepCoNN and 
NARRE) that combine review text are both better 
than those of BPRMF and PinSage, which 
confirms that the utilization of review text can 
effectively alleviate the data sparsity problem in 
RS and also proves the significance of our 
proposed model. However, there are still some 
drawbacks of this type of method. DeepCoNN 
only extracts textual information from review 
without considering the sentiment information 
expressed by users in reviews. NARRE 
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Firstly, the two evaluation metrics of the recommenda-
tion methods (BPRMF and PinSage) that only use us-
er-item interaction information are the worst. BPRMF 
only utilizes the user-item interaction information and 
completes the information by matrix factorization. 
However, the user interaction data provided by RS is 
extremely sparse, and the matrix completion method 
based solely on interaction information only partially 
completes the data information, resulting in limited 
impact on the final recommendation effect. PinSage 
also shows that matrix factorization based solely on 
interaction information can only linearly represent the 
interaction features between users and items, and its 
capturing effect on the complex nonlinear relationship 
between users and items is not obvious.
Secondly, the two evaluation metrics of the recom-
mendation methods (DeepCoNN and NARRE) that 
combine review text are both better than those of 
BPRMF and PinSage, which confirms that the utili-
zation of review text can effectively alleviate the data 
sparsity problem in RS and also proves the signifi-
cance of our proposed model. However, there are still 
some drawbacks of this type of method. DeepCoNN 
only extracts textual information from review with-
out considering the sentiment information expressed 
by users in reviews. NARRE transforms the correla-
tion between users and items into attention distri-
bution rather than simple weights, which makes it 
difficult to understand why certain items are recom-
mended to a certain user.
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Then, the recommendation methods based on GNNs 
(LightGCN and HA-GNNN) have achieved the re-
sults of the first two types of methods, which proves 
the outstanding performance of GNNs in capturing 
high-order relationships. Specifically, LightGCN 
simplifies the embedding process by removing the 
nonlinear activation and feature transformation but 
does not consider the importance of the embedding 
of each node, which may lead to information limita-
tions. HA-GNNN uses the attention mechanism to 
learn hidden features and uses fully connected layers 
to learn the representation of multimodal features, 
which has achieved good results in extracting node 
features by using graph neural networks alone.
Finally, our proposed RWESA-GNNR performs bet-
ter than other baselines on each dataset. This is be-
cause we use the matrix factorization method based 
on random walk for initial embedding, which enables 
the nodes to have better topological structure fea-
tures. By combining with specific aggregation func-
tions, we can capture the heterogeneity distribution 
in the graph and explore deeper potential features. 
Meanwhile, we not only consider the semantic fea-
tures of comment text but also the sentiment infor-
mation, which provides weight reference for the ex-
traction of features from comment text by users or 
items, and adds interpretability to the recommenda-
tion system’s results.

3.3.2. Ablation Result Comparison
To further validate the effectiveness of RWESA-GN-
NR, we did RMSE ablation experiments for the key 
parts of the model - matrix factorization part, senti-
ment feature part, text feature part and GCN atten-
tion mechanism part, and the results are shown in Ta-
ble 5. Where, Case_MF denotes the model that ablates 
random wandering in favor of unique thermal coding 
as the initial embedding, Case_SF denotes the model 
that ablates sentiment features, Case_TF denotes the 
model that ablates sentiment features, and Case_GA 
denotes the model that ablates the attention mecha-
nism in the GCN.
First, the model that eliminates the random walk form 
has the most significant reduction in effectiveness, 
due to the fact that most GCN-based recommenda-
tion algorithms aggregate surrounding neighboring 
nodes through multi-layer convolution, which does 
not provide a comprehensive grasp of global informa-

Table 5
Results of RMSE ablation experiments with RWESA-GNNR

MI Beauty CDs

Case_MF 0.933 1.121 0.975

Case_SF 0.921 1.096 0.976

Case_TF 0.923 1.083 0.923

Case_GA 0.920 1.099 0.924

RWESA-GNNR 0.883 1.016 0.872

tion. Our proposed random walk-based graph embed-
ding method is a node vector representation based on 
the topological similarity of the graph, which brings 
exactly the global information to the node features. 
Therefore, our proposed random-walking-based em-
bedding method is the most effective.
Secondly, the sentiment feature module includes 
semantic and sentiment information of the review 
text, which has some impact on the model after elim-
ination, which not only illustrates that adding review 
text as an additional feature can somewhat alleviate 
data sparsity, but also the importance of sentiment 
features.
Finally, the inclusion of an attention mechanism in 
the extraction of graph node features, which enables 
nodes with different edge weights to be modelled at 
different computational scales, also has the effect of 
bringing better recommendation results to the model.
In summary, each key part of our proposed RWE-
SA-GNNR achieves good results.

3.4. Hyperparametric Analysis
To better improve the recommendation of the model, 
we used grid search to debug the important hyperpa-
rameters of the model and visualized the results with 
the evaluation metric Recall@20.
We chose the appropriate GNN embedding dimen-
sion in the range of {16,32,64} and the results are 
shown in Figure 5. The best results were achieved 
when the GNN embedding dimension was 32, but the 
model performance deteriorated when the embed-
ding dimension was larger, which might be due to the 
overfitting of the model caused by too large embed-
ding dimension. Therefore, we set the GNN embed-
ding dimension to 32.
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We chose the appropriate number of layers of the GNN 
in the range of {1,2,3,4}, and the results are shown 
in Figure 5. The best results were achieved with the 
number of layers of the GNN at layer 2, while deeper 
layers of the GNN did not improve the performance 
of the model much, probably because the representa-
tion between nodes was too similar after multi-layer 
neighbor aggregation, leading to smoothing problems 
in the model. Therefore, we set the number of layers 
of the GNN to 2.
We selected appropriate word embedding dimensions 
for the item text in the range of {50,100,200,300} and 
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pre-trained the model using glove, and the results are 
shown in Figure 7. The model performance did not im-
prove significantly as the word embedding dimension 
increased, probably because the smaller word embed-
ding dimension was sufficient to capture the implicit 
information contained in the item text. Therefore, to 
speed up the training of the model, we set the word 
embedding dimension to 50.

4. Conclusion
In this paper, we propose a GNN recommendation 
algorithm based on random wandering embedding 
combined with sentiment analysis, called RWE-
SA-GNNR. The model first uses random wander-
ing-based matrix factorization to obtain embedding 
vectors of nodes, then uses GCN combined with at-
tention to learn node representations of users and 
items, and then incorporates attentional mechanisms 
sentiment analysis to add sentiment attributes to 
nodes. RWESA-GNNR achieved better performance 
than the baselines on three publicly available datasets 
from Amazon.
In future research work, we will extend our work 
in two directions: first, the complexity of the mod-
el leads to less fast recommendations, especially for 
machines with less than high arithmetic power, so we 
intend to simplify the structure of the model to speed 
up the recommendations without compromising the 
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results. Secondly, we only considered the effect of the 
sentiment attribute of the node on the recommenda-
tion algorithm, and future research could consider 
the effect of other node attributes on the recommen-
dation algorithm.
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