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Artificial physical optimizer (APO), as a new heuristic stochastic algorithm, is difficult to balance convergence 
and diversity when dealing with complex multi-objective problems. This paper introduces the advantages of 
R2 indicator and target space decomposition strategy, and constructs the candidate solution of external ar-
chive pruning technology selection based on APO algorithm. A hybrid strategy guided multi-objective artificial 
physical optimizer algorithm (HSGMOAPO) is proposed. Firstly, R2 indicator is used to select the candidate 
solutions that have great influence on the convergence of the whole algorithm. Secondly, the target space de-
composition strategy is used to select the remaining solutions to improve the diversity of the algorithm. Finally, 
the restriction processing method is used to improve the ability to avoid local optimization. In order to verify 
the comprehensive ability of HSGMOAPO algorithm in solving multi-objective problems, five comparison al-
gorithms were evaluated experimentally on standard test problems and practical problems. The results show 
that HSGMOAPO algorithm has good convergence and diversity in solving multi-objective problems, and has 
the potential to solve practical problems.
KEYWORDS: Multi-objective problem, artificial physical optimizer algorithm, R2 indicator, Target space de-
composition strategy, Global optimization.
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1. Introduction
In practical science and engineering applications, 
problems involving multiple conflicting objectives 
that need to be optimized at the same time are often 
referred to as multi-objective optimization problems. 
For example, urban bus route problem [13], shop 
scheduling problem [23], multi-agent system opti-
mization problem [12] and engineering vehicle me-
chanical design [27]. The objective functions in the 
multi-objective optimization problem conflict with 
each other, and almost no single solution can satisfy 
all the objectives at the same time, so it is necessary to 
make trade-offs between different objectives. The set 
of all Pareto non-dominated solutions is called Pareto 
optimal solution set, and the mapping of Pareto op-
timal solution set in the object space is called Pareto 
frontier (PF). When solving multi-objective optimi-
zation problems, solutions obtained from Pareto op-
timal solution set should not only converge as much 
as possible, but also be distributed as evenly as possi-
ble on PF [2]. Therefore, how to achieve the balance 
between convergence and diversity is the key to solve 
the multi-objective optimization problem.
Based on the characteristics of meta-heuristics and 
population, the multi-objective evolutionary algorithm 
shows high efficiency in solving multi-objective prob-
lems. In the past 20 years, scholars at home and abroad 
have carried out a lot of research on the multi-objective 
optimization problem and proposed many multi-ob-
jective optimizer algorithms with good performance. A 
common multi-objective algorithm is an evolutionary 
algorithm based on Pareto advantages, which selects 
candidate solutions through non-dominated sorting. 
However, due to the lack of effective selection pres-
sure, there are two alternative selection strategies 
based on decomposition method and performance 
indicator, respectively [10]. Evolutionary algorithms 
based on decomposition transform multi-objective 
problems into multiple single-objective subproblems 
through decomposition methods, and then optimize 
the subproblems simultaneously under the evolution-
ary framework [18]. Among them, MOEA/D [29] is 
the most typical algorithm of this kind. In MOEA/D, 
the multi-objective problem is decomposed into many 
optimization sub-problems. Different solutions of in-
dividuals are associated with different sub-problems, 

and the “diversity” among these sub-problems will 
naturally lead to the diversity of the population. When 
the decomposition method and weight vector are cho-
sen correctly to make the optimal PF of the composite 
subproblems uniformly distributed, MOEA/D has a 
good chance to search for the uniform distribution of 
the Pareto solution if it can optimize all the subprob-
lems well. Indicator-based evolutionary algorithm can 
simultaneously maintain the convergence and diver-
sity of the population through only one strategy to cal-
culate the indicator value in environmental selection, 
thus improving the performance of the population [11]. 
At present, the most common performance indicator 
is Hypervolume (HV) indicator, which combines con-
vergence and diversity into a single indicator to select 
candidate solutions. However, the computational bur-
den of HV indicator increases exponentially with the 
increase in the number of targets, which seriously pre-
vents a large number of multi-objective optimization 
algorithms from using HV indicator [19]. It is found 
that R2 indicator achieves a comprehensive balance 
between convergence and diversity, and can replace 
HV indicator in solving multi-objective problems [25].
Zitzlerl in [31] defined R2 indicator in 2008 and pro-
vided the calculation formula of standard R2 indi-
cator. Dimo in [3] made a comprehensive analysis of 
the attributes of R2 indicator and proposed a steady-
state multi-objective evolutionary algorithm R2-
EMOA based on R2 indicator. Phan in [15] proposed 
the R2-IBEA algorithm, which adaptively adjusts the 
position of reference points according to the degree 
of contemporary individuals in the target space to 
determine the relationship between the advantages 
and disadvantages of a given two individuals. The re-
sults show that the algorithm achieves excellent per-
formance in terms of the optimality and diversity of 
solutions. Alan in [6] introduced R2 indicator on the 
basis of genetic algorithm and proposed MOGA al-
gorithm. Coello in [7] proposed a multi-objective ant 
colony algorithm based on R2 indicator by integrating 
R2 indicator with ant colony algorithm, and verified 
the feasibility of this strategy.
Methodology for parallelization is an effective way 
to improve optimization algorithms. In [16], the au-
thor presents three propositions to improve the effi-
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ciency of classical methods. They are neighborhood 
search, partition solution space, and domain search 
combined with partition solution space. In [17], the 
author proposed a modification of the classic mech-
anism of federated learning and anew algorithm for 
data augmentation.
APO algorithm has been widely concerned by schol-
ars due to its few parameters and simple operation. It 
has shown excellent competitiveness in single-objec-
tive optimization problems and has been well applied 
in various optimization tasks [26, 22]. However, as 
a random algorithm, APO algorithm faces the prob-
lems of low efficiency of non-dominant solution se-
lection, convergence and diversity imbalance. In or-
der to solve the problem of unbalanced convergence 
and diversity of APO algorithm, a hybrid strategy 
guided multi-objective mimicry physics optimizer 
algorithm, HSGMOAPO, is proposed in this paper. In 
this paper, we construct an external archive pruning 
technique based on R2 indicator selection and tar-
get space decomposition strategy to select candidate 
solutions. The two methods work together to select 
solutions with convergence and diversity equilibri-
um. In addition, in order to avoid the algorithm falling 
into local optimal, a limiting treatment method is pro-
posed to improve the exploration and utilization abili-
ty of the population. Through numerical experiments 
on widely recognized benchmark problems, the good 
performance of the proposed algorithm is verified. 
In the design problems of double-bar truss, the pro-
posed algorithm is proved to have high practical prob-
lem processing ability, and can be used as an effective 
means for multi-objective optimization problems.

2. Constrained Multi-objective 
Optimization Problem
Constrained multi-objective optimization problem 
consists of objective function and constraint con-
ditions. Generally, the mathematical model of con-
strained multi-objective optimization problem is as 
follows:
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where, 1 2( , , , )dx x x x    is a D-dimensional 
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g ( ) 0 ( ) 0j jx h x ， represents inequality 
constraint function and equality constraint 
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The HSGMOAPO algorithm proposed in this 
paper is based on the characteristics of R2 indicator 
and target space decomposition method, and 
adopts an external archive pruning technique to 
screen candidate solutions. In order to balance the 
convergence and diversity of the algorithm, 
HSGMOAPO algorithm is specially designed and 
mainly consists of three parts: (1) R2 indicator 
selection strategy. By calculating the contribution 
value of candidate solution R2 indicator, solutions 
with higher contribution value were selected to 
enter the external archive set. (2) Target space 
decomposition strategy. The solution position of 
the obtained non-dominated solution set in the 
target space is emphasized. (3) On the basis of the 
two candidate solution selection strategies, a 
limiting processing strategy is proposed to prevent 
the algorithm from falling into local optimization. 
Through the above strategies, the convergence and 
diversity of the algorithm are improved to achieve 
population optimization. 

4.1 R2 Indicator Selection Strategy 

R2 indicator is based on utility function to 
distinguish the pros and cons of candidate 
solutions, so as to select the candidate solutions 
with greater utility. It was initially used to evaluate 
the relative quality of two groups of individuals. 
Because R2 indicator can comprehensively 
evaluate the convergence and distribution of the 
population and obtain the uniform distribution 
solution set through fast calculation, it has been 
applied to solve the multi-objective optimization 
problems. 

R2 indicator and R2 contribution values (CR2) 
were used to evaluate the relative quality of the 
two groups of individuals. Assuming that A 
standard weighted Chebyshev utility function has 
a specific reference point *q , this indicator can be 
used to evaluate the quality of a single individual 
set ( A ) against *q : 
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The selection strategy based on R2 indicator 
can be regarded as the mutual preference 
between a set of weight vectors and candidate 
solutions, and the calculation of the R2 
contribution value of each candidate solution 
should consider the utility function value 
between each candidate solution and each 
weight vector. The weighted Chebyshev 
function is selected as the utility function. The 
R2 indicator was used to screen candidate 
solutions with great influence on the 
convergence of the whole algorithm. Firstly, 
the population solution set and the non-
dominated solution in the archive set were 
combined, and the R2 indicator value of each 
candidate solution was calculated. Then, 
solutions with contribution value to R2 were 
found according to the CR2 value, and placed 
in the archive 1A , focusing on improving the 
convergence of the algorithm under the 
premise of maintaining diversity. 

4.2 Target Space Decomposition Strategy 

Objective space decomposition strategy is an 
effective means to maintain algorithm 
diversity. Firstly, the object space of the 
multi-objective problem is decomposed into a 
group of subregions according to a set of 
direction vectors. Assigning subregions to 
each subproblem, where each subproblem 
evolves in its own subregions, can effectively 
reduce repeated searches for subproblems. 
Then maintain the diversity of solutions by 
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where, W is a group of uniform weight vectors, each 
weight vector ( )1 2= m Wµ µ µ µ ∈，，，  is evenly dis-
tributed in the target space, and 1 / W  represents the 
probability of distribution on W.
The CR2 of the candidate solution is used to evalu-
ate the quality of the solution. The lower the CR2, the 
smaller the selection probability of the newer popula-
tion during evolution. The CR2 of the candidate solu-
tion x A∈  is:
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were used to evaluate the relative quality of the 
two groups of individuals. Assuming that A 
standard weighted Chebyshev utility function has 
a specific reference point *q , this indicator can be 
used to evaluate the quality of a single individual 
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where, W  is a group of uniform weight vectors, 
each weight vector  1 2= m W    ， ， ，  is 

evenly distributed in the target space, and 
1 / W  represents the probability of 
distribution on W . 

The CR2 of the candidate solution is used to 
evaluate the quality of the solution. The lower 
the CR2, the smaller the selection probability 
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In order to better solve complex multi-
objective problems. In this paper, the formula 
of R2 indicator is modified. In the algorithm 
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The selection strategy based on R2 indicator 
can be regarded as the mutual preference 
between a set of weight vectors and candidate 
solutions, and the calculation of the R2 
contribution value of each candidate solution 
should consider the utility function value 
between each candidate solution and each 
weight vector. The weighted Chebyshev 
function is selected as the utility function. The 
R2 indicator was used to screen candidate 
solutions with great influence on the 
convergence of the whole algorithm. Firstly, 
the population solution set and the non-
dominated solution in the archive set were 
combined, and the R2 indicator value of each 
candidate solution was calculated. Then, 
solutions with contribution value to R2 were 
found according to the CR2 value, and placed 
in the archive 1A , focusing on improving the 
convergence of the algorithm under the 
premise of maintaining diversity. 

4.2 Target Space Decomposition Strategy 

Objective space decomposition strategy is an 
effective means to maintain algorithm 
diversity. Firstly, the object space of the 
multi-objective problem is decomposed into a 
group of subregions according to a set of 
direction vectors. Assigning subregions to 
each subproblem, where each subproblem 
evolves in its own subregions, can effectively 
reduce repeated searches for subproblems. 
Then maintain the diversity of solutions by 

(10)

The selection strategy based on R2 indicator can be 
regarded as the mutual preference between a set of 
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weight vectors and candidate solutions, and the calcu-
lation of the R2 contribution value of each candidate 
solution should consider the utility function value be-
tween each candidate solution and each weight vector. 
The weighted Chebyshev function is selected as the 
utility function. The R2 indicator was used to screen 
candidate solutions with great influence on the con-
vergence of the whole algorithm. Firstly, the popula-
tion solution set and the non-dominated solution in the 
archive set were combined, and the R2 indicator value 
of each candidate solution was calculated. Then, solu-
tions with contribution value to R2 were found accord-
ing to the CR2 value, and placed in the archive 1A , fo-
cusing on improving the convergence of the algorithm 
under the premise of maintaining diversity.

4.2. Target Space Decomposition Strategy
Objective space decomposition strategy is an effective 
means to maintain algorithm diversity. Firstly, the 
object space of the multi-objective problem is decom-
posed into a group of subregions according to a set of 
direction vectors. Assigning subregions to each sub-
problem, where each subproblem evolves in its own 
subregions, can effectively reduce repeated searches 
for subproblems. Then maintain the diversity of solu-
tions by maximizing one solution per subarea.
For a given set of direction vectors 1 2, , , nγ γ γ  and a 
population p, where n is the number of direction vec-
tors. The decomposition and classification of the tar-
get space are defined as follows:
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where,  1 2, , , mq q q q   is the reference point; 
( ( ), )iF x  is the cosine of the direction of 
( )F x q and i  ; Population P  is divided into 
, 1, ,iP i n   according to Equation (11), and target 

space M  is divided into n  subspaces 
1 2, , nM M M  according to Equation (12). 

Since individuals are randomly generated, there is 
no guarantee that every subspace will be assigned 
to a suitable solution. Some subregions may have 
multiple individuals or no individuals. In this 
process, if the subspace is an empty set, the largest 
solution in ( ( ), )iF x   is selected as the candidate 
solution. If the candidate solution is unique in the 
subspace, in order to maintain the diversity of the 
solution set, the candidate solution is directly 
reserved. If the candidate solutions in the subspace 
are not unique, that is, when the number of 
candidate solutions is greater than 1, Chebyshev 
method (Tche) is adopted for calculation, and the 
solution with the minimum Tche value is selected 
as the candidate solution to enhance the diversity 
of the population under the condition of ensuring 
convergence. The calculation Formula of Tche is: 
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where, 1 2( , , , )m       is the weight vector, 
* min{ ( ) }, {1,2, , }iz f x x i m    . 

In order to maintain the diversity of the algorithm, 
the objective space decomposition strategy no 
longer considers other candidate solutions of the 
candidate solution subspace in archive 1A , and 

selects candidates from the remaining 
subspace to be liberated into archive 2A . It is 
worth noting that the PFS of all these 
subspaces form the PFS of the multi-objective 
optimization problem. Since the Pareto 
optimal set of each subspace is only a small 
part of the Pareto optimal set of the 
optimization problem, even if the entire 
Pareto optimal set of the optimization 
problem has nonlinear geometry, The Pareto 
optimal set of each subspace can also be 
approximately linear. Therefore, as far as the 
shape of Pareto optimal set is concerned, 
decomposition of object space makes the 
optimization easier. Secondly, this method 
only needs to select a set of direction vectors 
during decomposition, and Tche method is 
used when the number of candidate solutions 
of subspace is greater than 1. To some extent, 
it only needs less calculation. 

4.3 Limiting Processing Policies 

In order to avoid individuals falling into local 
optimality, the unfeasible individual 
HSGMOAPO algorithm uses a limiting 
processing strategy to adjust the position and 
velocity of particles to make them within the 
limit. If the position of an individual in 
dimension k  exceeds the boundary, it is set 
back to the boundary according to equation, 
and the new position is defined as. 
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where, ,max ,mink kx x，  are the upper and lower 
bounds of dimension k , respectively. 

In any case, if only the position is modified, it 
is likely that the particle will leave the 
feasible region again in the next iteration 
based on the current velocity. For an 
individual whose position in dimension k  
exceeds the boundary, its velocity is defined 
as: 

'
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where,   is a uniformly distributed random 
number within [0,1]. HSGMOAPO algorithm 
explores the whole solution space, thus 
improving the ability to avoid local 
optimization. 

4.4 HSGMOAPO Algorithm 

Based on the above strategies, we use the 
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where, 1 2( , , , )m       is the weight vector, 
* min{ ( ) }, {1,2, , }iz f x x i m    . 

In order to maintain the diversity of the algorithm, 
the objective space decomposition strategy no 
longer considers other candidate solutions of the 
candidate solution subspace in archive 1A , and 

selects candidates from the remaining 
subspace to be liberated into archive 2A . It is 
worth noting that the PFS of all these 
subspaces form the PFS of the multi-objective 
optimization problem. Since the Pareto 
optimal set of each subspace is only a small 
part of the Pareto optimal set of the 
optimization problem, even if the entire 
Pareto optimal set of the optimization 
problem has nonlinear geometry, The Pareto 
optimal set of each subspace can also be 
approximately linear. Therefore, as far as the 
shape of Pareto optimal set is concerned, 
decomposition of object space makes the 
optimization easier. Secondly, this method 
only needs to select a set of direction vectors 
during decomposition, and Tche method is 
used when the number of candidate solutions 
of subspace is greater than 1. To some extent, 
it only needs less calculation. 

4.3 Limiting Processing Policies 

In order to avoid individuals falling into local 
optimality, the unfeasible individual 
HSGMOAPO algorithm uses a limiting 
processing strategy to adjust the position and 
velocity of particles to make them within the 
limit. If the position of an individual in 
dimension k  exceeds the boundary, it is set 
back to the boundary according to equation, 
and the new position is defined as. 
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where, ,max ,mink kx x，  are the upper and lower 
bounds of dimension k , respectively. 

In any case, if only the position is modified, it 
is likely that the particle will leave the 
feasible region again in the next iteration 
based on the current velocity. For an 
individual whose position in dimension k  
exceeds the boundary, its velocity is defined 
as: 
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where,   is a uniformly distributed random 
number within [0,1]. HSGMOAPO algorithm 
explores the whole solution space, thus 
improving the ability to avoid local 
optimization. 

4.4 HSGMOAPO Algorithm 

Based on the above strategies, we use the 
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where, ( )1 2, , , mq q q q=   is the reference point; 
( ( ), )iF x γ∆  is the cosine of the direction of ( )F x q−

and iγ ; Population P  is divided into , 1, ,iP i n=   ac-
cording to Equation (11), and target space M  is di-
vided into n subspaces 1 2, , nM M M  according to 
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no guarantee that every subspace will be assigned to 
a suitable solution. Some subregions may have mul-

tiple individuals or no individuals. In this process, if 
the subspace is an empty set, the largest solution in 

( ( ), )iF x γ∆  is selected as the candidate solution. If the 
candidate solution is unique in the subspace, in order 
to maintain the diversity of the solution set, the candi-
date solution is directly reserved. If the candidate solu-
tions in the subspace are not unique, that is, when the 
number of candidate solutions is greater than 1, Che-
byshev method (Tche) is adopted for calculation, and 
the solution with the minimum Tche value is selected 
as the candidate solution to enhance the diversity of 
the population under the condition of ensuring conver-
gence. The calculation Formula of Tche is:

 

 

maximizing one solution per subarea. 

For a given set of direction vectors 1 2, , , n    
and a population p, where n is the number of 
direction vectors. The decomposition and 
classification of the target space are defined as 
follows: 

  
 
 

1
,  ( ( ), ) max ( ( ), )

( )
( ( ), ) , 1,2, ,

( )

i i j

j N

i
i

i

P x x P F x F x

F x q
F x i N

F x q

 






 



    

 
  

 


, 

(11) 

  1
( ) , ( ( ), ) max ( ( ), )m i j

i j N
M F x R F x F x 

 
     , 

(12) 

where,  1 2, , , mq q q q   is the reference point; 
( ( ), )iF x  is the cosine of the direction of 
( )F x q and i  ; Population P  is divided into 
, 1, ,iP i n   according to Equation (11), and target 

space M  is divided into n  subspaces 
1 2, , nM M M  according to Equation (12). 

Since individuals are randomly generated, there is 
no guarantee that every subspace will be assigned 
to a suitable solution. Some subregions may have 
multiple individuals or no individuals. In this 
process, if the subspace is an empty set, the largest 
solution in ( ( ), )iF x   is selected as the candidate 
solution. If the candidate solution is unique in the 
subspace, in order to maintain the diversity of the 
solution set, the candidate solution is directly 
reserved. If the candidate solutions in the subspace 
are not unique, that is, when the number of 
candidate solutions is greater than 1, Chebyshev 
method (Tche) is adopted for calculation, and the 
solution with the minimum Tche value is selected 
as the candidate solution to enhance the diversity 
of the population under the condition of ensuring 
convergence. The calculation Formula of Tche is: 

 * *

1

1

min ( , ) max ( ) ,   

1, 0, 1, ,

Tche i i ii m
m

i i
i

g x z f x z

i m

 

 

 



 

   
, 

(13) 

where, 1 2( , , , )m       is the weight vector, 
* min{ ( ) }, {1,2, , }iz f x x i m    . 

In order to maintain the diversity of the algorithm, 
the objective space decomposition strategy no 
longer considers other candidate solutions of the 
candidate solution subspace in archive 1A , and 

selects candidates from the remaining 
subspace to be liberated into archive 2A . It is 
worth noting that the PFS of all these 
subspaces form the PFS of the multi-objective 
optimization problem. Since the Pareto 
optimal set of each subspace is only a small 
part of the Pareto optimal set of the 
optimization problem, even if the entire 
Pareto optimal set of the optimization 
problem has nonlinear geometry, The Pareto 
optimal set of each subspace can also be 
approximately linear. Therefore, as far as the 
shape of Pareto optimal set is concerned, 
decomposition of object space makes the 
optimization easier. Secondly, this method 
only needs to select a set of direction vectors 
during decomposition, and Tche method is 
used when the number of candidate solutions 
of subspace is greater than 1. To some extent, 
it only needs less calculation. 

4.3 Limiting Processing Policies 

In order to avoid individuals falling into local 
optimality, the unfeasible individual 
HSGMOAPO algorithm uses a limiting 
processing strategy to adjust the position and 
velocity of particles to make them within the 
limit. If the position of an individual in 
dimension k  exceeds the boundary, it is set 
back to the boundary according to equation, 
and the new position is defined as. 
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where, ,max ,mink kx x，  are the upper and lower 
bounds of dimension k , respectively. 

In any case, if only the position is modified, it 
is likely that the particle will leave the 
feasible region again in the next iteration 
based on the current velocity. For an 
individual whose position in dimension k  
exceeds the boundary, its velocity is defined 
as: 
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number within [0,1]. HSGMOAPO algorithm 
explores the whole solution space, thus 
improving the ability to avoid local 
optimization. 
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where, 1 2( , , , )mλ λ λ λ Τ=   is the weight vector, 
* min{ ( ) }, {1,2, , }iz f x x i m= ∈Ω ∈  .

In order to maintain the diversity of the algorithm, 
the objective space decomposition strategy no longer 
considers other candidate solutions of the candidate 
solution subspace in archive 1A , and selects candi-
dates from the remaining subspace to be liberated 
into archive 2A . It is worth noting that the PFS of all 
these subspaces form the PFS of the multi-objective 
optimization problem. Since the Pareto optimal set of 
each subspace is only a small part of the Pareto opti-
mal set of the optimization problem, even if the entire 
Pareto optimal set of the optimization problem has 
nonlinear geometry, The Pareto optimal set of each 
subspace can also be approximately linear. Therefore, 
as far as the shape of Pareto optimal set is concerned, 
decomposition of object space makes the optimiza-
tion easier. Secondly, this method only needs to select 
a set of direction vectors during decomposition, and 
Tche method is used when the number of candidate 
solutions of subspace is greater than 1. To some ex-
tent, it only needs less calculation.

4.3. Limiting Processing Policies
In order to avoid individuals falling into local opti-
mality, the unfeasible individual HSGMOAPO algo-
rithm uses a limiting processing strategy to adjust 
the position and velocity of particles to make them 
within the limit. If the position of an individual in 
dimension k  exceeds the boundary, it is set back to 
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the boundary according to equation, and the new po-
sition is defined as.
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4.3 Limiting Processing Policies 

In order to avoid individuals falling into local 
optimality, the unfeasible individual 
HSGMOAPO algorithm uses a limiting 
processing strategy to adjust the position and 
velocity of particles to make them within the 
limit. If the position of an individual in 
dimension k  exceeds the boundary, it is set 
back to the boundary according to equation, 
and the new position is defined as. 
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where, ,max ,mink kx x，  are the upper and lower 
bounds of dimension k , respectively. 

In any case, if only the position is modified, it 
is likely that the particle will leave the 
feasible region again in the next iteration 
based on the current velocity. For an 
individual whose position in dimension k  
exceeds the boundary, its velocity is defined 
as: 
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where,   is a uniformly distributed random 
number within [0,1]. HSGMOAPO algorithm 
explores the whole solution space, thus 
improving the ability to avoid local 
optimization. 

4.4 HSGMOAPO Algorithm 

Based on the above strategies, we use the 
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where, 1 2( , , , )m       is the weight vector, 
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where, λ  is a uniformly distributed random num-
ber within [0,1]. HSGMOAPO algorithm explores the 
whole solution space, thus improving the ability to 
avoid local optimization.

4.4. HSGMOAPO Algorithm
Based on the above strategies, we use the HSGMOAPO 
algorithm to solve constrained multi-objective optimi-
zation problem. Figure 1 shows the design idea of the 
algorithm. The main process is described as follows:
We use the HSGMOAPO algorithm to solve MOPS. 
The following algorithm is described in pseudocode 
form.
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Input: population size N, External archiving A, Weight 
vector W, reference point *q
Output: A
1: Initialize the population velocity and position, and the 
reference point *q
2: Archives were generated following the R2 indicator 
strategy A1

3: Generthe archive according to the target space 
decomposition strategy A2 

4:  1 2A A A= 

5: When t less than the maximum number of iterations
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We use the HSGMOAPO algorithm to solve 
MOPS. The following algorithm is described 
in pseudocode form. 
算算法法   HSGMOAPO算算法法 
Input: population size N ,External archiving A , 
Weight vectorW , reference point *q  
Output: A  
1: Initialize the population velocity and position, 
and the reference point *q  
2: Archives were generated following the R2 
indicator strategy 1A  
3: Generthe archive according to the target space 
decomposition strategy 2A  
4:  1 2A A A   
5: When t  less than the maximum number of 
iterations 
6: for i A  
7: Calculate individual quality 
8: Calculate the individual virtual force 
9: Calculate the individual to suffer the resultant 
force 
10: Updates the individual speed and location 
11: Determine whether the individual i  is in the 
feasible area 
12: if i  belongs to a feasible area 
13: Updates A  
14: else restriction processing 

15: End if 
16: end for 
17: 1t t   
18: t greater than the maximum number of 
iterations 
19: return A  

     5. Simulation Verification and 
Result Analysis 

In order to test the comprehensive 
performance of HSGMOAPO algorithm in 
dealing with multi-objective problems, 
numerical experiments are carried out with 
five advanced multi-objective algorithms on 
benchmark problems. 

5.1 Test Problems 

MW series problems are standard constrained 
multiobjective testing problems, which are 
often used to evaluate the performance of 
constrained multiobjective optimization 
algorithms [28]. The MW series consists of 14 
problems, covering different features 
extracted from constrained multi-objective 
problems in real situations, such as small 
feasible ratio, many constraints, and nonlinear 
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6: for i A∈
7: Calculate individual quality
8: Calculate the individual virtual force
9: Calculate the individual to suffer the resultant force
10: Updates the individual speed and location
11: Determine whether the individual i is in the feasible area
12: if  i  belongs to a feasible area
13: Updates A
14: else restriction processing
15: End if
16: end for
17: t = t + 1
18:  t greater than the maximum number of iterations
19: return A

5. Simulation Verification and Result 
Analysis
In order to test the comprehensive performance of 
HSGMOAPO algorithm in dealing with multi-objec-
tive problems, numerical experiments are carried 
out with five advanced multi-objective algorithms on 
benchmark problems.

5.1. Test Problems
MW series problems are standard constrained mul-
tiobjective testing problems, which are often used to 
evaluate the performance of constrained multiob-
jective optimization algorithms [28]. The MW series 
consists of 14 problems, covering different features 
extracted from constrained multi-objective prob-
lems in real situations, such as small feasible ratio, 
many constraints, and nonlinear constraints. In the 
experiment, the number of targets for MW4, MW8 
and MW14 is set to 3, the number of targets for other 
problems is set to 2, the number of decision variables 
D is set to 15, and the maximum number of evaluation 
is 100,000. To ensure the fairness of the comparison 
algorithm, all experiments were conducted under the 
above unified parameter Settings.

5.2. Performance Specifications
Inverted Generation Distance (IGD) and Hypervol-
ume (HV) are two indicators widely used to simul-
taneously measure the convergence and diversity of 
algorithms [9]. In this paper, these two indicators are 
used to evaluate the performance of the algorithm.

The IGD indicator represents the average distance 
from each reference point sampled on the real PF to 
the nearest solution.
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where, P  is the set of uniformly sampled 
points on real PF, and Q is the set of 
approximate solutions obtained by the 
algorithm. ( , )d x Q represents the minimum 
Euclidean distance between individual xand 
population Q . A small IGD indicates that the 
resulting population is close to the true PF 
and has a good distribution. 

The HV indicator measures the volume of the 
region in the target space surrounded by the 
solution set obtained by the algorithm and the 
predefined reference points. 
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where, Q  is the set of approximate solutions 
obtained by the algorithm;   represents the 
Lebesgue measure, which measures volume. 
S  represents the number of non-dominant 

solution sets, and iv  represents the 
supervolume formed by the reference point 
and the ith solution in the solution set. The 
larger the HV value, the better the 
performance of the algorithm. 

5.3 Experimental Results and Analysis 

In this paper, platemo platform was used to 
conduct a series of simulation experiments, 
and five advanced multi-objective 
optimization algorithms (MOEADDAE [30], 
IDBEA [1], NSGA-III [5], CMOAPO [24] and 
R2-ICRMOAPO [20]) were selected for 
comparison. To study the performance of 
HSGMOAPO algorithm. The parameters of 
the comparison algorithm are consistent with 
those of the original paper. Tables 1-2 show 
the standard deviation and average value of 
IGD indicator and HV indicator obtained by 
30 independent runs of six algorithms for MW 
test problem. The best results for each test 
question are highlighted in bold black, and it 
is worth noting that the best value for the IGD 
measure is the minimum, while the best value 
for the HV measure is the maximum. In 
addition, Wilcoxon rank sum test was 
performed at the significance level of 0.05 to 
show the significant difference between test 
results [4]. The symbols "+", "-" and "≈", 
respectively indicate that the results of other 
algorithms are stronger, weaker or 
approximate to R2-ICRMOAPO algorithm. 
Statistical results were recorded in the last 
two rows of the table. 

Table 1  

IGD values of six algorithms run 30 times in test problem MW 
Problem MOEADDAE IDBEA NSGA-III CMOAPO R2-ICRMOAPO HSGMOAPO 

MW1 6.8024e-2(2.74e-2)- 3.2790e-1(1.16e-1)- 9.6776e-2(3.99e-2)- 2.5230e-1(1.55e-1)- 8.3417e-2(9.07e-2)- 4.8247e-2(1.19e-2) 
MW2 8.9060e-2(3.45e-2)- 7.0846e-2(2.89e-2)- 5.4202e-2(1.47e-2)- 3.2250e-2(1.98e-2)- 2.4098e-2(9.94e-3)- 1.8840e-2(8.06e-3) 
MW3 1.4960e-2(2.36e-3)- 9.3728e-2(1.69e-1)- 2.5194e-2(2.17e-3)- 9.9782e-2(1.74e-1)- 2.7758e-2(3.55e-2)- 1.0226e-2(1.77e-3) 
MW4 1.0585e-1(1.04e-2)- 1.0308e-1(7.92e-2)- 9.5269e-2(1.11e-2)- 1.4538e-1(9.71e-2)- 5.6394e-2(5.61e-3)+ 6.1618e-2(6.50e-3) 
MW5 8.8398e-2(1.98e-2)- 1.3503e-1(1.70e-1)- 1.4253e-1(2.16e-2)- 2.2655e-1(2.84e-1)- 6.5572e-2(5.39e-2)- 2.7673e-2(2.35e-2) 
MW6 4.9513e-1(1.92e-2)- 2.9726e-1(1.77e-1)- 2.4284e-2(5.82e-3)- 3.6232e-1(1.97e-1)- 2.1986e-1(2.17e-1)- 1.9568e-2(1.22e-2) 
MW7 1.2131e-2(3.21e-3)+ 2.1290e-2(3.25e-3)- 2.5448e-2(4.75e-3)- 5.5025e-2(1.11e-1)- 2.2866e-2(1.91e-2)= 1.3115e-2(3.28e-3) 
MW8 1.2693e-1(3.08e-2)- 8.8035e-2(5.07e-2)- 6.3147e-2(4.63e-3)- 1.1749e-1(8.76e-2)- 6.5042e-2(3.36e-2)= 4.9027e-2(4.71e-3) 
MW9 1.1994e-1(2.49e-1)- 2.2457e-1(2.77e-1)- 1.0918e-1(1.83e-1)= 6.0503e-1(2.54e-1)- 2.1337e-1(2.58e-1)- 7.4851e-2(1.30e-1) 
MW10 5.0746e-1(1.36e-1)- 1.3595e-1(1.46e-1)- 4.5379e-2(6.15e-2)= 2.5263e-1(2.36e-1)- 8.5004e-2(1.15e-1)- 4.3930e-2(4.24e-2) 
MW11 1.8932e-2(3.40e-3)+ 6.8682e-1(9.66e-2)- 3.1836e-2(7.46e-3)- 7.6464e-1(5.82e-2)- 6.9412e-2(1.04e-2)= 2.9221e-2(9.74e-3) 
MW12 7.0731e-2(7.14e-2)= 2.4188e-1(1.35e-1)- 1.6901e-1(3.16e-1)- 5.5162e-1(2.23e-1)- 3.3525e-1(3.23e-1)- 6.1267e-2(1.38e-1) 
MW13 2.6698e-1(7.52e-2)- 3.8603e-1(2.21e-1)- 1.2580e-1(1.67e-2)- 8.1962e-1(4.41e-1)- 6.9690e-1(4.03e-1)- 7.6077e-2(3.26e-2) 

(16)

where, P is the set of uniformly sampled points on real 
PF, and Q is the set of approximate solutions obtained 
by the algorithm. ( , )d x Q represents the minimum Eu-
clidean distance between individual x and population 
Q. A small IGD indicates that the resulting population 
is close to the true PF and has a good distribution.
The HV indicator measures the volume of the region 
in the target space surrounded by the solution set ob-
tained by the algorithm and the predefined reference 
points.
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which measures volume. S  represents the number 
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supervolume formed by the reference point and the 
ith solution in the solution set. The larger the HV val-
ue, the better the performance of the algorithm.

5.3. Experimental Results and Analysis
In this paper, platemo platform was used to conduct 
a series of simulation experiments, and five advanced 
multi-objective optimization algorithms (MOEADD-
AE [30], IDBEA [1], NSGA-III [5], CMOAPO [24] and 
R2-ICRMOAPO [20]) were selected for comparison. 
To study the performance of HSGMOAPO algorithm. 
The parameters of the comparison algorithm are con-
sistent with those of the original paper. Tables 1-2 
show the standard deviation and average value of IGD 
indicator and HV indicator obtained by 30 indepen-
dent runs of six algorithms for MW test problem. The 
best results for each test question are highlighted in 
bold black, and it is worth noting that the best value 
for the IGD measure is the minimum, while the best 
value for the HV measure is the maximum. In addi-
tion, Wilcoxon rank sum test was performed at the 
significance level of 0.05 to show the significant dif-
ference between test results [4]. The symbols “+”, “-” 
and “≈”, respectively indicate that the results of oth-
er algorithms are stronger, weaker or approximate to 
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Table 1 
IGD values of six algorithms run 30 times in test problem MW

Problem MOEADDAE IDBEA NSGA-III CMOAPO R2-ICRMOAPO HSGMOAPO

MW1 6.8024e-2(2.74e-2)- 3.2790e-1(1.16e-1)- 9.6776e-2(3.99e-2)- 2.5230e-1(1.55e-1)- 8.3417e-2(9.07e-2)- 4.8247e-2(1.19e-2)

MW2 8.9060e-2(3.45e-2)- 7.0846e-2(2.89e-2)- 5.4202e-2(1.47e-2)- 3.2250e-2(1.98e-2)- 2.4098e-2(9.94e-3)- 1.8840e-2(8.06e-3)

MW3 1.4960e-2(2.36e-3)- 9.3728e-2(1.69e-1)- 2.5194e-2(2.17e-3)- 9.9782e-2(1.74e-1)- 2.7758e-2(3.55e-2)- 1.0226e-2(1.77e-3)

MW4 1.0585e-1(1.04e-2)- 1.0308e-1(7.92e-2)- 9.5269e-2(1.11e-2)- 1.4538e-1(9.71e-2)- 5.6394e-2(5.61e-3)+ 6.1618e-2(6.50e-3)

MW5 8.8398e-2(1.98e-2)- 1.3503e-1(1.70e-1)- 1.4253e-1(2.16e-2)- 2.2655e-1(2.84e-1)- 6.5572e-2(5.39e-2)- 2.7673e-2(2.35e-2)

MW6 4.9513e-1(1.92e-2)- 2.9726e-1(1.77e-1)- 2.4284e-2(5.82e-3)- 3.6232e-1(1.97e-1)- 2.1986e-1(2.17e-1)- 1.9568e-2(1.22e-2)

MW7 1.2131e-2(3.21e-3)+ 2.1290e-2(3.25e-3)- 2.5448e-2(4.75e-3)- 5.5025e-2(1.11e-1)- 2.2866e-2(1.91e-2)= 1.3115e-2(3.28e-3)

MW8 1.2693e-1(3.08e-2)- 8.8035e-2(5.07e-2)- 6.3147e-2(4.63e-3)- 1.1749e-1(8.76e-2)- 6.5042e-2(3.36e-2)= 4.9027e-2(4.71e-3)

MW9 1.1994e-1(2.49e-1)- 2.2457e-1(2.77e-1)- 1.0918e-1(1.83e-1)= 6.0503e-1(2.54e-1)- 2.1337e-1(2.58e-1)- 7.4851e-2(1.30e-1)

MW10 5.0746e-1(1.36e-1)- 1.3595e-1(1.46e-1)- 4.5379e-2(6.15e-2)= 2.5263e-1(2.36e-1)- 8.5004e-2(1.15e-1)- 4.3930e-2(4.24e-2)

MW11 1.8932e-2(3.40e-3)+ 6.8682e-1(9.66e-2)- 3.1836e-2(7.46e-3)- 7.6464e-1(5.82e-2)- 6.9412e-2(1.04e-2)= 2.9221e-2(9.74e-3)

MW12 7.0731e-2(7.14e-2)= 2.4188e-1(1.35e-1)- 1.6901e-1(3.16e-1)- 5.5162e-1(2.23e-1)- 3.3525e-1(3.23e-1)- 6.1267e-2(1.38e-1)

MW13 2.6698e-1(7.52e-2)- 3.8603e-1(2.21e-1)- 1.2580e-1(1.67e-2)- 8.1962e-1(4.41e-1)- 6.9690e-1(4.03e-1)- 7.6077e-2(3.26e-2)

MW14 1.4356e+0(1.36e-1)- 9.1440e-1(1.48e-1)- 5.2352e-1(1.30e-1)- 9.7152e-1(1.22e-1)- 4.7773e-1(1.43e-1)= 2.3744e-1(1.11e-1)

+/-/= 2/11/1 0/14/0 0/12/2 0/14/0 1/9/4

Table 2 
HV values of six algorithms run 30 times in test problem MW

Problem MOEADDAE IDBEA NSGA-III CMOAPO R2-ICRMOAPO HSGMOAPO

MW1 3.8835e-1(3.44e-2)- 1.7760e-1(8.46e-2)- 3.5812e-1(3.72e-2)- 2.5328e-1(1.32e-1)- 4.0510e-1(7.28e-2)- 4.3630e-1(9.84e-2)

MW2 4.5120e-1(4.61e-2)- 4.8285e-1(3.32e-2)- 4.9944e-1(2.14e-2)- 5.3807e-1(2.46e-2)- 5.4821e-1(1.44e-2)- 5.5662e-1(1.33e-2)

MW3 5.2733e-1(4.43e-3)- 4.5533e-1(1.08e-1)- 5.1385e-1(4.29e-3)- 4.6119e-1(1.07e-1)- 5.2242e-1(2.57e-2)= 5.3611e-1(3.22e-3)

MW4 7.3703e-1(1.73e-2)- 7.2389e-1(8.99e-2)- 7.5812e-1(2.11e-2)- 6.8488e-1(1.08e-1)- 8.1491e-1(7.52e-3)= 8.1055e-1(8.07e-3)

MW5 2.1332e-1(2.74e-2)- 2.1814e-1(4.37e-2)- 1.5216e-1(2.47e-2)- 2.2655e-1(8.39e-2)- 2.8390e-1(2.37e-2)- 3.0141e-1(1.97e-2)

MW6 1.2834e-1(1.82e-2)- 2.3578e-1(3.65e-2)- 3.0028e-1(9.09e-3)= 2.1010e-1(6.00e-2)- 2.4855e-1(5.76e-2)- 3.0322e-1(1.53e-2)

MW7 3.9458e-1(2.43e-3)- 4.0052e-1(4.96e-3)- 3.7866e-1(6.62e-3)- 3.8593e-1(4.20e-2)- 4.0192e-1(4.84e-3)- 4.0603e-1(1.68e-3)

MW8 3.6730e-1(5.28e-2)- 4.8950e-1(5.23e-2)- 5.0712e-1(9.89e-3)- 4.6242e-1(6.61e-2)- 5.1477e-1(3.22e-2)= 5.2376e-1(1.42e-2)

MW9 2.4717e-1(1.24e-1)- 3.2691e-1(6.23e-2)= 3.0336e-1(8.99e-2)- 6.1171e-2(1.21e-1)- 2.5307e-1(1.31e-1)- 3.2022e-1(7.37e-2)

MW10 1.8453e-1(5.57e-2)- 3.5644e-1(7.22e-2)- 4.0808e-1(3.61e-2)- 3.0046e-1(1.15e-1)- 3.8736e-1(5.97e-2)- 4.1465e-1(3.00e-2)

MW11 4.4066e-1(1.33e-3)+ 2.7308e-1(1.49e-2)- 4.3569e-1(2.91e-3)= 2.6199e-1(7.23e-3)- 4.1887e-1(4.26e-2)= 4.3415e-1(7.17e-3)

MW12 5.2167e-1(7.13e-2)- 3.7797e-1(1.00e-1)- 5.4452e-1(1.04e-1)+ 1.7439e-1(1.67e-1)- 3.4256e-1(2.43e-1)- 4.7549e-1(2.42e-1)

MW13 3.2358e-1(4.11e-2)- 3.4747e-1(3.69e-2)- 4.1845e-1(1.14e-2)- 2.7113e-1(8.93e-2)- 2.6227e-1(1.01e-1)- 4.4441e-1(1.62e-2)

MW14 4.6554e-2(1.51e-2)- 1.1799e-1(3.20e-2)- 2.9912e-1(6.61e-2)- 9.7813e-2(2.88e-2)- 3.1676e-1(6.61e-2)- 4.0181e-1(1.84e-2)

+/-/= 1/12/1 0/13/1 1/11/2 0/14/0 0/10/4
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R2-ICRMOAPO algorithm. Statistical results were 
recorded in the last two rows of the table.
Tables 1-2 show the detailed HV and IGD compari-
son results obtained by HSGMOAPO algorithm and 
five other comparison algorithms for MW problems. 
It can be seen from Table 1 that HSGMOAPO algo-
rithm is optimized in 11 problems except MW4, MW7 
and MW11. R2-ICRMOAPO is the best for MW4, 
and MOEADDAE is better than HSGMOAPO algo-
rithm for MW7 and MW11. It can be seen from Ta-
ble 2 that the HSGMOAPO algorithm is optimal for 
10 problems except MW4, MW9, MW11 and MW12. 
R2-ICRMOAPO has the best effect on MW4, and 
MOEADDAE is superior to HSGMOAPO algorithm 
on MW11. For MW9 and MW12, IDBEA and NS-
GA-III get better results.
In addition, from the results in the last row of Tables 
1-2, the HSGMOAPO algorithm achieves the best re-
sults in more than two-thirds of MW problems, ver-
ifying the good performance. Next came MOEADD-
AE, which performed best on three test questions. 
In order to show the optimizer results intuitively, we 
draw the approximate PF of HSGMOAPO algorithm 
for MW5, MW14 problem in Figures 2-3. In order to 
obtain better comparison effect, we also give the cor-
responding optimal solutions of other algorithms.

Figure 2 
PF scatter plots obtained by six algorithms on MW5 problem

Figure 2 shows the comparison between the six algo-
rithms and the real frontiers for MW5 problem. The 
constrained PF in the MW5 problem is part of the un-
constrained PF because the constraints make part of 
the unconstrained PF impossible. It can be clearly seen 
from the figure that the PF obtained by HSGMOAPO 
algorithm achieves the best performance in terms of 
convergence and diversity. MOEADDAE and R2-ICR-
MOAPO obtain a well-distributed PF, but do not con-
verge to a true PF. IDBEA and CMOAPO are not widely 
distributed enough to cover the entire PF because they 
converge on some parts of the true PF, but not all of it. 
The Pareto frontiers of each algorithm on MW14 prob-
lem are shown in Figure 3. The problem has a discon-
nected geometry caused by Pareto dominance, and its 
true PF is 4 disconnecting regions. It can be seen that 
MOEADDAE cannot cover the upper region complete-
ly, while other algorithms can find all the regions. Some 
of the Pareto solutions obtained by CMOAPO do not 
converge well to true PF. When IDBEA, NSGA-III, Rt-
wo-Icrmoapo and HSGMOAPO algorithms consider 
convergence and diversity at the same time, they show 
competitive performance. It can be intuitively seen 
that the distribution of HSGMOAPO is more regular.
In terms of algorithm convergence speed, the HV 
rising trend curve of each algorithm under some test 
problems is plotted in Figure 4, and the average ex-

  

MW14 1.4356e+0(1.36e-1)- 9.1440e-1(1.48e-1)- 5.2352e-1(1.30e-1)- 9.7152e-1(1.22e-1)- 4.7773e-1(1.43e-1)= 2.3744e-1(1.11e-1) 
+/-/= 2/11/1 0/14/0 0/12/2 0/14/0 1/9/4  
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Tables 1-2 show the detailed HV and IGD 
comparison results obtained by HSGMOAPO 
algorithm and five other comparison 
algorithms for MW problems. It can be seen 
from Table 1 that HSGMOAPO algorithm is 
optimized in 11 problems except MW4, MW7 
and MW11. R2-ICRMOAPO is the best for 
MW4, and MOEADDAE is better than 
HSGMOAPO algorithm for MW7 and MW11. 
It can be seen from Table 2 that the 
HSGMOAPO algorithm is optimal for 10 
problems except MW4, MW9, MW11 and 
MW12. R2-ICRMOAPO has the best effect on 
MW4, and MOEADDAE is superior to 
HSGMOAPO algorithm on MW11. For MW9 
and MW12, IDBEA and NSGA-III get better 

results. 

In addition, from the results in the last row of 
Tables 1-2, the HSGMOAPO algorithm 
achieves the best results in more than two-
thirds of MW problems, verifying the good 
performance. Next came MOEADDAE, which 
performed best on three test questions. In 
order to show the optimizer results 
intuitively, we draw the approximate PF of 
HSGMOAPO algorithm for MW5, MW14 
problem in Figures 2-3. In order to obtain 
better comparison effect, we also give the 
corresponding optimal solutions of other 
algorithms. 

Figure 2  

PF scatter plots obtained by six algorithms on MW5 problem 
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Figure 3 
PF scatter plots obtained by six algorithms on MW14 problem

 

 

Figure 3  

PF scatter plots obtained by six algorithms on MW14 problem 

 
Figure 2 shows the comparison between the 
six algorithms and the real frontiers for MW5 
problem. The constrained PF in the MW5 
problem is part of the unconstrained PF 
because the constraints make part of the 
unconstrained PF impossible. It can be clearly 
seen from the figure that the PF obtained by 
HSGMOAPO algorithm achieves the best 
performance in terms of convergence and 
diversity. MOEADDAE and R2-ICRMOAPO 
obtain a well-distributed PF, but do not 
converge to a true PF. IDBEA and CMOAPO 
are not widely distributed enough to cover 
the entire PF because they converge on some 
parts of the true PF, but not all of it. The 
Pareto frontiers of each algorithm on MW14 
problem are shown in Figure 3. The problem 
has a disconnected geometry caused by Pareto 
dominance, and its true PF is 4 disconnecting 
regions. It can be seen that MOEADDAE 
cannot cover the upper region completely, 
while other algorithms can find all the 
regions. Some of the Pareto solutions obtained 
by CMOAPO do not converge well to true PF. 
When IDBEA, NSGA-III, Rtwo-Icrmoapo and 
HSGMOAPO algorithms consider 

convergence and diversity at the same time, 
they show competitive performance. It can be 
intuitively seen that the distribution of 
HSGMOAPO is more regular. 

In terms of algorithm convergence speed, the 
HV rising trend curve of each algorithm 
under some test problems is plotted in Figure 
4, and the average experimental data of 30 
runs are recorded, respectively. The X-axis is 
the maximum number of evaluations per run, 
and the Y-axis is the HV indicator value for 
easy observation. As can be seen from Figure 
3, HSGMOAPO algorithm converges fastest 
on MW3, MW4, MW5, MW7, MW9 and 
MW14, and is also in a sub-optimal position 
when dealing with other problems. In 
addition, it can be seen that HSGMOAPO 
algorithm has the best convergence 
performance for MW1, MW3, MW5, MW7, 
MW9, and MW14 problems, which is 
consistent with the results obtained in Table 2. 
In summary, HSGMOAPO algorithm has 
good convergence and diversity on more than 
two thirds of test questions.

Figure 4 

Convergence curve of HV indicator value. 

Figure 4
Convergence curve of HV indicator value
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The boxplot can directly reflect the degree of 
data dispersion and overall distribution. 
Figure 5 shows a boxplot of HV values for 
MW test functions, where the horizontal 
labels 1, 2, 3, 4, 5 and 6 correspond to 
MOEADDAE, IDBEA, NSGA-III, CMOAPO, 
R2-ICRMOAPO and HSGMOAPO, 
respectively. As shown in Figure 5, the 
HSGMOAPO algorithm has an advantage 
over other comparison algorithms in HV 
statistics on test functions MW1, MW2, MW5, 
MW7, MW8, MW10, MW13, and MW14, it 
also shows that the improved algorithm has 
good convergence and distribution. At the 
same time, the effectiveness of the improved 

strategy is further illustrated by comparing 
the HV statistics of CMOAPO and R2-
ICRMOAPO algorithms, the fusion of R2 
indicator selection strategy, target spatial 
decomposition strategy and restriction 
processing strategy can significantly improve 
the performance of the improved APO 
algorithm. From the statistical results of HV  
indicator, there are some outliers in 
comparison algorithm. The outliers in 
HSGMOAPO algorithm are obviously 
reduced, but they still exist, which shows that 
the robustness of the improved algorithm 
needs to be further improved. 

Table 5  

Boxplot of the statistical results of HV 
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perimental data of 30 runs are recorded, respectively. 
The X-axis is the maximum number of evaluations 
per run, and the Y-axis is the HV indicator value for 
easy observation. As can be seen from Figure 3, HSG-

MOAPO algorithm converges fastest on MW3, MW4, 
MW5, MW7, MW9 and MW14, and is also in a sub-op-
timal position when dealing with other problems. In 
addition, it can be seen that HSGMOAPO algorithm 
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has the best convergence performance for MW1, 
MW3, MW5, MW7, MW9, and MW14 problems, 
which is consistent with the results obtained in Table 
2. In summary, HSGMOAPO algorithm has good con-
vergence and diversity on more than two thirds of test 
questions.
The boxplot can directly reflect the degree of data 
dispersion and overall distribution. Figure 5 shows a 
boxplot of HV values for MW test functions, where 
the horizontal labels 1, 2, 3, 4, 5 and 6 correspond to 
MOEADDAE, IDBEA, NSGA-III, CMOAPO, R2-
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also shows that the improved algorithm has 
good convergence and distribution. At the 
same time, the effectiveness of the improved 

strategy is further illustrated by comparing 
the HV statistics of CMOAPO and R2-
ICRMOAPO algorithms, the fusion of R2 
indicator selection strategy, target spatial 
decomposition strategy and restriction 
processing strategy can significantly improve 
the performance of the improved APO 
algorithm. From the statistical results of HV  
indicator, there are some outliers in 
comparison algorithm. The outliers in 
HSGMOAPO algorithm are obviously 
reduced, but they still exist, which shows that 
the robustness of the improved algorithm 
needs to be further improved. 

Table 5  

Boxplot of the statistical results of HV 

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6
MW1

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6
MW3

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9
MW4

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6
MW5

1 2 3 4 5 6
0.05

0.1

0.15

0.2

0.25

0.3

0.35
MW6

1 2 3 4 5 6
0.36

0.37

0.38

0.39

0.4

0.41

0.42
MW7

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6
MW8

MW2

1 2 3 4 5 6
0.3

0.4

0.5

0.6

0.7

 

 

1 MOEADDAE

2 IDBEA 

3 NSGA-III

4 CMOAPO

5 R2-ICRMOAPO

6 HSGMOAPO

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6
MW10

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6
MW11

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8
MW12MW9

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

MW12

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
MW14

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

 
5.4 Calculation Efficiency Analysis   

In order to verify the computational 
efficiency, the running time of all algorithms 
is recorded. All experiments were run on a 
computer with an Intel(R) Core(TM) i5-
1035G1 CPU and 8 gigabytes of memory. 
Table 3 shows the average time of 30 runs of 
the six algorithms on the MW test problem. 
As can be seen from Table 3, the running time 
of the proposed HSGMOAPO is significantly 
reduced compared with MOEADDAE and 
IDBEA, and the running time is lower than 
that of CMOAPO and R2-icrmoapo 
algorithms, indicating that selecting candidate 

solutions using R2 indicator and target space 
decomposition strategy requires less 
computation than relying only on R2 
indicator. Higher computational efficiency. 
However, in some test problems, the running 
time of NSGA-III is less than that of 
HSGMOAPO. However, according to the 
above experimental results, HSGMOAPO has 
the best balance performance in terms of 
convergence and diversity. Therefore, 
compared with the performance 
improvement, the above calculated cost is 
acceptable
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MW14 47.95s 33.06s 4.52s 23.78s 13.01s 4.50s 

 
6. HSGMOAPO for Engineering 

Design Problems 
In this section, we examine two real-world 
engineering application optimization 
problems with multiple objectives to show the 

efficiency and performance of the 
HSGMOAPO algorithm in finding non-
dominated solutions with acceptable 
distribution and diffusion. 

6.1 Welded Beam Design 

The design goal of the welded beam design 
problem is to minimize the manufacturing 

Figure 5 
Boxplot of the statistical results of HV

ICRMOAPO and HSGMOAPO, respectively. As 
shown in Figure 5, the HSGMOAPO algorithm has an 
advantage over other comparison algorithms in HV 
statistics on test functions MW1, MW2, MW5, MW7, 
MW8, MW10, MW13, and MW14, it also shows that 
the improved algorithm has good convergence and 
distribution. At the same time, the effectiveness of the 
improved strategy is further illustrated by comparing 
the HV statistics of CMOAPO and R2-ICRMOAPO 
algorithms, the fusion of R2 indicator selection strat-
egy, target spatial decomposition strategy and restric-
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tion processing strategy can significantly improve the 
performance of the improved APO algorithm. From 
the statistical results of HV  indicator, there are some 
outliers in comparison algorithm. The outliers in HS-
GMOAPO algorithm are obviously reduced, but they 
still exist, which shows that the robustness of the im-
proved algorithm needs to be further improved.

5.4. Calculation Efficiency Analysis  
In order to verify the computational efficiency, the 
running time of all algorithms is recorded. All ex-
periments were run on a computer with an Intel(R) 
Core(TM) i5-1035G1 CPU and 8 gigabytes of memo-
ry. Table 3 shows the average time of 30 runs of the 
six algorithms on the MW test problem. As can be 
seen from Table 3, the running time of the proposed 
HSGMOAPO is significantly reduced compared with 
MOEADDAE and IDBEA, and the running time is 
lower than that of CMOAPO and R2-icrmoapo algo-
rithms, indicating that selecting candidate solutions 
using R2 indicator and target space decomposition 
strategy requires less computation than relying only 
on R2 indicator. Higher computational efficiency. 
However, in some test problems, the running time of 

NSGA-III is less than that of HSGMOAPO. Howev-
er, according to the above experimental results, HS-
GMOAPO has the best balance performance in terms 
of convergence and diversity. Therefore, compared 
with the performance improvement, the above calcu-
lated cost is acceptable.

6. HSGMOAPO for Engineering 
Design Problems
In this section, we examine two real-world engineer-
ing application optimization problems with multiple 
objectives to show the efficiency and performance of 
the HSGMOAPO algorithm in finding non-dominated 
solutions with acceptable distribution and diffusion.

6.1. Welded Beam Design
The design goal of the welded beam design problem 
is to minimize the manufacturing cost and vertical 
shrinkage of the welded beam end. The schematic 
diagram of the problem is shown in Figure 6. This 
problem includes four optimization variables: weld 
thickness (h), clamping rod length (l), steel bar height 
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(t), steel bar thickness (b). The constraint conditions 
include: shear stress (τ) and bending stress (θ) in the 
beam; The buckling load on the rod (Pc); The end of 
the beam is flat (δ) [8].

Figure 6
Schematic view of welded beam problem
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Considering that the exact constraint PF of 
this engineering problem is unknown, this 
paper approximates the non-dominant 
feasible solutions found by six optimization 
algorithms, and then calculates the HV values 
of each algorithm on this engineering problem 
to evaluate the performance of each algorithm 
on this problem. Table 4 shows a comparison 
of the different algorithms for the best 
solution obtained. The results show that the 
performance of HSGMOAPO algorithm is 
better than other existing algorithms. For a 
more intuitive assessment, Figure 7 shows the 
Pareto frontier plots obtained by six 
comparison algorithms. 
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SD 1.15e-2 1.39e-2 1.74e-2 2.23e-2 2.03e-2 1.20e-2 
+/-/= - - - - -  
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algorithms, and then calculates the HV values of each algorithm on this engineering problem 
to evaluate the performance of each algorithm 
on this problem. Table 4 shows a comparison 
of the different algorithms for the best 
solution obtained. The results show that the 
performance of HSGMOAPO algorithm is 
better than other existing algorithms. For a 
more intuitive assessment, Figure 7 shows the 
Pareto frontier plots obtained by six 
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algorithms, and then calculates the HV values of each algorithm on this engineering problem 
to evaluate the performance of each algorithm 
on this problem. Table 4 shows a comparison 
of the different algorithms for the best 
solution obtained. The results show that the 
performance of HSGMOAPO algorithm is 
better than other existing algorithms. For a 
more intuitive assessment, Figure 7 shows the 
Pareto frontier plots obtained by six 
comparison algorithms. 
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Considering that the exact constraint PF of this en-
gineering problem is unknown, this paper approxi-
mates the non-dominant feasible solutions found 
by six optimization algorithms, and then calculates 
the HV values of each algorithm on this engineering 
problem to evaluate the performance of each algo-
rithm on this problem. Table 4 shows a comparison 
of the different algorithms for the best solution ob-
tained. The results show that the performance of 
HSGMOAPO algorithm is better than other existing 
algorithms. For a more intuitive assessment, Figure 
7 shows the Pareto frontier plots obtained by six 
comparison algorithms.
As shown in Figure 6, HSGMOAPO achieves the best 
performance in terms of convergence and distribution 
compared with other similar algorithms. CMOAPO 
and IDBEA do not converge well to the front edge, and 
the individual distribution of MOEADDAE is sparse 
in the front edge. R2-ICRMOAPO and NSGA-III have 
better competition.
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Figure 7
Best Pareto optimal front obtained on welded beam design problem
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Considering that the exact constraint PF of 
this engineering problem is unknown, this 
paper approximates the non-dominant 
feasible solutions found by six optimization 
algorithms, and then calculates the HV values 
of each algorithm on this engineering problem 
to evaluate the performance of each algorithm 
on this problem. Table 4 shows a comparison 
of the different algorithms for the best 
solution obtained. The results show that the 
performance of HSGMOAPO algorithm is 
better than other existing algorithms. For a 
more intuitive assessment, Figure 7 shows the 
Pareto frontier plots obtained by six 
comparison algorithms. 
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SD 1.15e-2 1.39e-2 1.74e-2 2.23e-2 2.03e-2 1.20e-2 
+/-/= - - - - -  
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cost and vertical shrinkage of the welded 
beam end. The schematic diagram of the 
problem is shown in Figure 6. This problem 
includes four optimization variables: weld 
thickness (h), clamping rod length (l), steel bar 
height (t), steel bar thickness (b). The 
constraint conditions include: shear stress (τ) 
and bending stress (θ) in the beam; The 
buckling load on the rod (Pc); The end of the 
beam is flat (δ) [8]. 
Figure 6 
Schematic view of welded beam problem 
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Considering that the exact constraint PF of 
this engineering problem is unknown, this 
paper approximates the non-dominant 
feasible solutions found by six optimization 
algorithms, and then calculates the HV values 
of each algorithm on this engineering problem 
to evaluate the performance of each algorithm 
on this problem. Table 4 shows a comparison 
of the different algorithms for the best 
solution obtained. The results show that the 
performance of HSGMOAPO algorithm is 
better than other existing algorithms. For a 
more intuitive assessment, Figure 7 shows the 
Pareto frontier plots obtained by six 
comparison algorithms. 
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6.2. Speed Reducer Design Problem
Speed reducer design problem is a classic test problem, 
this problem takes reducer weight and reducer stress 
minimization as the objective function, and estab-
lishes a multi-objective optimization problem. There 
are 7 design variables (x1-x7) included in this problem, 

Figure 8
Schematic view of speed reducer problem
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As shown in Figure 6, HSGMOAPO achieves 
the best performance in terms of convergence 
and distribution compared with other similar 
algorithms. CMOAPO and IDBEA do not 
converge well to the front edge, and the 
individual distribution of MOEADDAE is 
sparse in the front edge. R2-ICRMOAPO and 
NSGA-III have better competition. 

6.2 Speed Reducer Design Problem 

Speed reducer design problem is a classic test 
problem, this problem takes reducer weight 
and reducer stress minimization as the 
objective function, and establishes a multi-
objective optimization problem. There are 7 
design variables (x1-x7) included in this 
problem, which are denoted as:：face width 
(b); module of teeth (m); number of teeth in 
the pinion (z); length of the first shaft between 
bearings (l1); length of the second shaft 
between bearings (l2), diameter of first (d1) 
shafts; the diameter of second shafts (d2). 
Figure 8 is a schematic diagram of the design 
problem of the speed reducer [8]. 
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Table 5 shows the comparison between the 
five optimization algorithms and the 
proposed HSGMOAPO in HV indicator 
values. It is clear from Table 5 that the best 
solution produced by HSGMOAPO is a 
considerable improvement over the other 
algorithms. The HSGMOAPO algorithm can 
simultaneously find the design with the least 
weight and the least stress.

Table 5 

Comparison of HV indicator results of six algorithms in Speed reducer design problem 
HV MOEADDAE IDBEA NSGA-III CMOAPO R2-ICRMOAPO HSGMOAPO 
Mean 8.7768e-1 7.8411e-1 7.1925e-1 6.9804e-1 7.9412e-1 9.4316e-1 
SD 1.85e-2 2.02e-2 1.78e-2 2.00e-2 1.81e-2 1.74e-2 
+/-/= - - - - -  

which are denoted as: face width (b); module of teeth 
(m); number of teeth in the pinion (z); length of the first 
shaft between bearings (l1); length of the second shaft 
between bearings (l2), diameter of first (d1) shafts; the 
diameter of second shafts (d2). Figure 8 is a schematic 
diagram of the design problem of the speed reducer [8].
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The mathematical model of reducer optimization design problem is:
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Table 5 shows the comparison between the 
five optimization algorithms and the 
proposed HSGMOAPO in HV indicator 
values. It is clear from Table 5 that the best 
solution produced by HSGMOAPO is a 
considerable improvement over the other 
algorithms. The HSGMOAPO algorithm can 
simultaneously find the design with the least 
weight and the least stress.
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Best Pareto optimal front obtained on speed reducer problem

  

The best Pareto optimal solution obtained by 
six algorithms is shown in Figure 9. 
HSGMOAPO obtained the Pareto optimal 

solution of the reducer problem in the 
iterative process.

Figure 9 
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7. Conclusions and Future 

Studies 
To solve the problem of unbalanced 
convergence and diversity of basic APO 
algorithm in complex multi-objective 
problems, a hybrid strategy-guided multi-
objective mimicry physics optimizer 
algorithm, HSGMOAPO, is proposed in this 
paper. According to the characteristic of 
comprehensive evaluation solution set of R2 
indicator, this paper takes it as an important 
strategy to improve the convergence. In the 
first selection, R2 indicator is used to select 
the candidate solutions that have a great 
influence on the convergence of the whole 
algorithm. Secondly, the diversity of 
population in decision space and target space 
is improved by the target space 
decomposition strategy. The selection based 
on R2 indicator and the target space 
decomposition strategy can complement each 
other in the process of evolution, thus 
improving the overall performance of the 
algorithm. Finally, considering the global 
convergence of the algorithm, a constraint 
processing method is proposed to adjust the 
position and velocity of the particles for the 
infeasible individuals, so as to improve the 
ability to avoid local optimization. Compared 
with the five advanced algorithms, 
HSGMOAPO algorithm is superior to other 
algorithms in the comprehensive performance 
of convergence, diversity, convergence speed 

and computational efficiency, so as to obtain 
better competitiveness. The algorithm is 
applied to two practical engineering 
problems, and the results show that the 
performance of HSGMOAPO algorithm is 
better than the other five algorithms in the 
design of double truss, and it has practical 
application potential. The improved strategy 
has achieved good results in the APO 
algorithm, but its idea is universal and can be 
flexibly introduced into other multi-objective 
optimization algorithms. Based on the 
characteristics of different strategies, the 
multi-strategy fusion method provides a 
choice for the improvement of the algorithm. 

In the future, the HSGMOAPO algorithm will 
be used to solve a wider range of problems 
and update the strategy with the complexity 
of specific practical problems to enable the 
algorithm to deal with practical problems 
related to constraints. In addition, extending 
HSGMOAPO to higher-dimensional domains 
is the direction of further research. 
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Table 5 shows the comparison between the five opti-
mization algorithms and the proposed HSGMOAPO 
in HV indicator values. It is clear from Table 5 that 
the best solution produced by HSGMOAPO is a con-
siderable improvement over the other algorithms. 
The HSGMOAPO algorithm can simultaneously find 
the design with the least weight and the least stress.
The best Pareto optimal solution obtained by six al-
gorithms is shown in Figure 9. HSGMOAPO obtained 
the Pareto optimal solution of the reducer problem in 
the iterative process.

7. Conclusions and Future Studies
To solve the problem of unbalanced convergence 
and diversity of basic APO algorithm in complex 
multi-objective problems, a hybrid strategy-guided 
multi-objective mimicry physics optimizer algo-
rithm, HSGMOAPO, is proposed in this paper. Ac-
cording to the characteristic of comprehensive eval-
uation solution set of R2 indicator, this paper takes it 
as an important strategy to improve the convergence. 
In the first selection, R2 indicator is used to select the 
candidate solutions that have a great influence on the 
convergence of the whole algorithm. Secondly, the 
diversity of population in decision space and target 
space is improved by the target space decomposition 
strategy. The selection based on R2 indicator and the 
target space decomposition strategy can complement 
each other in the process of evolution, thus improv-
ing the overall performance of the algorithm. Finally, 
considering the global convergence of the algorithm, 

a constraint processing method is proposed to adjust 
the position and velocity of the particles for the infea-
sible individuals, so as to improve the ability to avoid 
local optimization. Compared with the five advanced 
algorithms, HSGMOAPO algorithm is superior to 
other algorithms in the comprehensive performance 
of convergence, diversity, convergence speed and 
computational efficiency, so as to obtain better com-
petitiveness. The algorithm is applied to two practical 
engineering problems, and the results show that the 
performance of HSGMOAPO algorithm is better than 
the other five algorithms in the design of double truss, 
and it has practical application potential. The im-
proved strategy has achieved good results in the APO 
algorithm, but its idea is universal and can be flexibly 
introduced into other multi-objective optimization 
algorithms. Based on the characteristics of different 
strategies, the multi-strategy fusion method provides 
a choice for the improvement of the algorithm.
In the future, the HSGMOAPO algorithm will be 
used to solve a wider range of problems and update 
the strategy with the complexity of specific practical 
problems to enable the algorithm to deal with prac-
tical problems related to constraints. In addition, ex-
tending HSGMOAPO to higher-dimensional domains 
is the direction of further research.
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