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Question routing (QR) aims to route newly submitted questions to the potential experts most likely to pro-
vide answers. Many previous works formalize the question routing task as a text matching and ranking prob-
lem between questions and user profiles, focusing on text representation and semantic similarity computa-
tion. However, these works often fail to extract matching features efficiently and lack deep contextual textual 
understanding. Moreover, we argue that in addition to the semantic similarity between terms, the interactive 
relationship between question sequences and user profile sequences also plays an important role in match-
ing. In this paper, we proposed two BERT-based models called QR-BERTrep and QR-tBERTint to address these 
issues from different perspectives. QR-BERTrep is a representation-based feature ensemble model in which we 
integrated a weighted sum of BERT layer outputs as an extra feature into a Siamese deep matching network, 
aiming to address the non-context-aware word embedding and limited semantic understanding. QR-tBERTint 

is an interaction-based model that explores the interactive relationships between sequences as well as the se-
mantic similarity of terms through a topic-enhanced BERT model. Specifically, it fuses a short-text-friendly 
topic model to capture corpus-level semantic information. Experimental results on real-world data demon-
strate that QR-BERTrep significantly outperforms other traditional representation-based models. Meanwhile, 
QR-tBERTint exceeds QR-BERTrep and QR-BERTint with a maximum increase of 17.26% and 11.52% in MAP, 
respectively, showing that combining global topic information and exploring interactive relationships between 
sequences is quite effective for question routing tasks.
KEYWORDS: Community question answering, BERT, Question routing, Contextual language embedding, 
Topic model.

1. Introduction
Community Question Answering (CQA) is an on-
line service that enables users to post questions and 
obtain answers from other users, which has proven 
to be a very effective way of sharing knowledge and 
experience. Recently, with the increasing number of 
questions that cannot be answered in time, much con-
cern has arisen over the efficiency and answer quali-
ty of CQA services [28]. Therefore, routing the newly 
posted question to the right user for quick and accu-
rate answer is an important strategy to maintain user 
engagement and the vibrancy of the CQA platform. 
Modeling the similarities and relevance between 
users’ profiles and questions is critical in the textu-
al content-based question routing approaches. User 
modeling is generally based on the user’s historical 
answer record, and all the answers provided by the 
user in the past are collected to form the user’s pro-
file. When we treat users’ profiles as documents and 
questions as queries, the question routing task can be 
viewed as a classic text matching and ranking prob-
lem [24]. Finding and sorting documents that match 
the query is equivalent to finding the best expert who 
can answer the question.
Text understanding plays a vital role in matching 
and ranking. Traditional methods mainly include 

language models and topic models, which heavily 
rely on lexical overlap or word co-occurrence [4, 38]. 
However, these methods have very limited text un-
derstanding ability and are usually unable to capture 
deep and complex semantics efficiently, leading to 
unsatisfactory results. Recently, along with the rap-
id development of distributed word embedding and 
deep learning, neural ranking networks have been ap-
plied to question routing tasks [25, 36, 1, 31, 15]. Most 
of these neural models are representation-based that 
first turn the question and user profile into vectors 
using word embedding (Word2Vec [21], GloVe [24]), 
and then use a typical neural network (e.g., CNNs or 
RNNs) to extract patterns and construct dense mean-
ingful feature vectors separately. Finally, the seman-
tic similarity is calculated for further ranking. 
Although existing deep neural representation-based 
methods have achieved promising performance, they 
have several shortcomings: First, traditional word em-
bedding is static, which means it fails to distinguish the 
term’s meaning in different scenarios [9]. Second, fea-
ture extractors are mainly based on CNNs or LSTMs, 
however, CNN-based methods [36, 37] usually have a 
limited receptive field to capture long-distance depen-
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dencies, and LSTM-based methods [7] are difficult to 
parallelize. Third, they mainly focus on matching the 
semantic similarity level while ignoring sequence in-
teractions. In fact, text matching is very complicated 
in CQA, the relationships between the two sequences 
are also important factors in matching. For the spe-
cific task of question routing, matching questions and 
users can be seen as matching questions and answers 
since the user’s profile is composed of answers. In gen-
eral, questions and answers not only share terms and 
topics, but are often logically connected, and exploring 
the semantic similarity of terms alone is not enough to 
achieve good matching performance.
Recently, the pre-trained bidirectional contextual 
language model BERT [8] has brought unprecedented 
performance gains in text understanding tasks, and 
we expect to adopt it to improve the performance of 
question routing in community Q&A as well. Howev-
er, there are some special challenges that need to be 
addressed. First, the low average participation rate of 
users and the relatively short length of questions in 
Q&A communities lead to severe data sparsity prob-
lems, which result in insufficient textual content for 
user modeling and question modeling. According to 
studies [18, 20], most answers come from very few 
users, in Quora, a well-known community Q&A web-
site, 90% of the questions got less than 10 answers, 
more than 30% of users did not answer any questions, 
and only 16.74% of users answered more than 4 times 
[30]. Second, modeling the similarities and relevance 
between question-user pairs is challenging due to a 
large number of domain-specific terms and the fact 
that there is little direct lexical overlap between ques-
tion sequences and user profile sequences. 
Based on the above analysis, in this paper, we propose 
two novel models from different perspectives to ad-
dress the question routing task: a tag-word topic-en-
hanced interaction-based method called QR-tBERTint 
and a combined representation-based model called 
QR-BERTrep. Specifically, in QR-tBERTint, we take 
questions and user profiles as query-document pairs, 
and they are concatenated into a longer sequence as 
input. By fine-tuning BERT on our task-specific data-
set, contextual semantic learning and question-pro-
file pair relationship exploration are integrated into 
a unified model. In addition, we innovatively incor-
porate a tag-word topic model to handle domain-spe-
cific terms in QR-tBERTint. And in another model 

QR-BERTrep, we incorporate the contextualized em-
beddings learned from the pre-trained model into an 
existing Siamese deep learning-based matching mod-
el to enhance the semantic understanding.
The main contributions of this paper are as follows:
 _ We propose two novel BERT-based deep neural 

models to solve the question routing task from 
different perspectives: representation-focused 
and interaction-focused. Specifically, we adopt 
different strategies for modeling similarities 
between questions and user profiles in different 
models and propose to explore the interactive 
relationships between question sequences and 
user profile sequences. Our research can provide 
experiences and references for other domain-
specific text understanding tasks in CQA. 

 _ We incorporate a corpus-level tag-word topic 
model to learn the global matching feature and 
topic semantic information in QR-tBERTint to help 
handle domain-specific cases, and we combine the 
contextualized embeddings with the traditional 
word embeddings to construct more meaningful 
representations in QR-BERTrep to enhance the 
matching performance.

 _ We conducted a detailed experimental study using 
a real-world dataset from Stack Overflow. We 
evaluated the performance of our two methods and 
compared them with several baseline approaches. 
The experimental results show that our approaches 
yield satisfactory performance and significantly 
outperform the baseline approaches.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the related work. Section 3 details 
the proposed two models. In Section 4, we present our 
dataset and experimental setting. Finally, we present 
our experimental results and discussion in Section 5. 
Section 6 concludes this paper. 

2. Related Work
2.1. Question Routing
Question routing is a fundamental task that has been 
widely studied in social communities and is also re-
ferred to as expert finding or expert recommendation 
in many studies. Statistical language models [4, 3, 40] 
and topic models [39, 32] have played an essential role 
for a long time. Although they can solve question rout-
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ing tasks, they all lack deep textual understanding and 
fail to capture complex semantic features.
Recently, deep learning technologies have brought 
a revolutionary way to solve question routing issues 
with more concise and efficient architectures [25, 36, 
1, 31, 15]. A method to directly apply deep neural net-
works to question routing was proposed by Azzam et 
al. [1] based on Deep Semantic Similarity Model [11]. 
In this model, questions and the users’ profiles are 
mapped to a low-dimensional semantic space through 
a deep neural network, and the similarity score is 
computed using the cosine similarity function. Lat-
er, CNNs and LSTMs were gradually introduced into 
the NLP field, bringing significant improvements. 
Wang et al. [31] designed a variant of CNN architec-
ture to capture the semantics of the text for expert 
recommendation tasks. Chen et al. [37] described an 
effective convolutional neural network with three fil-
ters of different sizes to learn the representations of 
questions and answers to identify experts. In another 
work [36], the LSTM(long-short term memory) [10] 
network has been employed to learn the question em-
bedding instead of CNN in the Quora dataset. More 
recently, Li et al. [15] proposed to combine the embed-
ding of the question raiser learned by a heterogeneous 
information network representation algorithm with 
the embedding of the question content to enhance the 
characterization of the question.
However, the performance of these representa-
tion-based deep learning methods often suffers from 
data sparsity and inefficient feature extraction. In 
addition, they encode the question and the user’s pro-
file as two separate sequences, facing the risk that 
the interaction between the text sequences could be 
ignored. Different from the above studies, in this pa-
per, we not only incorporate contextualized embed-
dings obtained from an efficient self-attentive mech-
anism-based feature extractor into traditional word 
embeddings to improve representation performance 
but also propose to explore the interactive relation-
ships between question and user sequences in addi-
tion to focusing on text semantic learning.

2.2. Pre-training Language Models
The pre-training language model aims to learn word 
embeddings or representations with prior semantic 
knowledge by performing pre-training tasks from a 
large number of unlabeled corpora. Researchers from 
the Google company released an exciting bidirection-

al language representation model BERT [8], aiming to 
solve the unidirectional constraints in GPT [26] and 
extend the model to multi-layer bidirectional Trans-
former [29] blocks, achieving the best performance 
in many NLP tasks such as machine translation, text 
classification, and question retrieval. 
Many recent works have also introduced BERT to 
solve question routing or expert recommendation 
tasks and achieved relatively good results beyond the 
traditional approaches. However, these works mainly 
use pre-trained BERT models as encoders and feature 
extractors, and the potential of BERT models is not 
fully exploited, which has a limited effect on improv-
ing the overall question routing performance. For ex-
ample, Zhang et al. [35] conducted a Temporal Con-
text-aware Question Routing model in which BERT is 
only used to encode the question content. Peinelt et 
al. [23] proposed a semantic enhancement approach 
that combines BERT embeddings with LDA-based 
topics for semantic similarity prediction on the Quo-
ra dataset, which achieves better performance than 
vanilla BERT. However, the above approach cannot 
be directly applied to our task due to the need to learn 
programming-specific terms in our dataset and the 
fact that the length of the questions is too short which 
leads to difficulty in topic derivation. Therefore, we 
use a more targeted topic model, the tag-word topic 
model, to learn specific domain terms and provide 
corpus-level semantic information.

3. Our Proposed Models for Question 
Routing
In this section, we will describe two BERT-based 
models named QR-BERTrep and QR-tBERTint to ad-
dress the question routing task. In brief, QR-BERTrep 
designs a feature ensemble method in which each text 
sequence goes through the pre-trained BERT net-
work separately. Then, the outputs by the last four 
highest-level Transformer layers corresponding to 
each input token in different positions are extract-
ed as additional textual features and incorporated 
into a Siamese neural matching network. Compared 
to QR-BERTrep, QR-tBERTint concatenates two text 
sequences to a longer sequence and adopts a more 
flexible way by fine-tuning to learn the interaction 
between questions and users from the beginning. In 
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Figure 1
The overall framework of the topic-enhanced interaction-based model QR-tBERTint

Figure 2
The overall framework of the contextualized representation-based model QR-BERTrep
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features and incorporated into a Siamese neural matching network. Compared to QR-BERTrep, QR-tBERTint 
concatenates two text sequences to a longer sequence and adopts a more flexible way by fine-tuning to learn 
the interaction between questions and users from the beginning. In addition, it combines a tag-word topic 
model to enhance the semantic understanding and handle the domain-specific terms. 
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     Figure 1 The overall framework of the topic-enhanced interaction-based model QR-tBERTint 
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Figure 2 The overall framework of the contextualized representation-based model QR-BERTrep 

 

3.1 Community Question Answering: Stack Overflow 
First, we introduce the necessary background of Stack Overflow, including the main characteristics and the 
question-answering mechanism. There are several important components in a Q&A thread: (1) Questions are 
the central element of Stack Overflow, which includes the title, body, and tags. The life cycle of a question 
begins with an open state in which any user can provide an answer to the question. Subsequently, when the 
questioner chooses the best answer, or other users choose the best answer by voting, the question is considered 
solved and no more answers are received. (2) Answers are provided by different users and can be voted on by 
other users. The more votes an answer receives, the higher the approval and the better the quality. In addition 
to the best answer, all other answers are sorted in a thread in descending order of votes. (3) Best (Accepted) 
Answer is selected by the questioner or selected by other users in which the answer received the largest number 
of votes. Each question has only one best answer. It is at the top of the answer list. (4) Users include questioners 
and respondents whose basic information is displayed under questions or answers related to them. (5) Tags are 
assigned by the questioner and represent the knowledge area relevant to the question. A CQA website has 
accumulated an enormous number of question-answer threads that provide a plethora of textual information 
for us to explore. 

3.2 Problem Statement 
As detailed above, a CQA dataset is built upon the static archive of the CQA website, which preserves all the 
question-answer threads accumulated over time. Let 𝑄𝑄𝑄𝑄 be a question set 𝑄𝑄𝑄𝑄 = {𝑞𝑞𝑞𝑞1, 𝑞𝑞𝑞𝑞2,… , 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛} (n is the number 
of questions) and 𝑈𝑈𝑈𝑈 be an answerer set 𝑈𝑈𝑈𝑈 = {𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2, … ,𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗� (j is the number of users). For each answerer 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗, a 
document 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  is a combination of all the best answers provided by 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗, and 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  is referred to as the profile of that 
answerer.   
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addition, it combines a tag-word topic model to en-
hance the semantic understanding and handle the do-
main-specific terms.

3.1. Community Question Answering: Stack 
Overflow
First, we introduce the necessary background of 
Stack Overflow, including the main characteristics 
and the question-answering mechanism. There are 
several important components in a Q&A thread: 
1 Questions are the central element of Stack Over-

flow, which includes the title, body, and tags. The 
life cycle of a question begins with an open state in 
which any user can provide an answer to the ques-
tion. Subsequently, when the questioner chooses 
the best answer, or other users choose the best an-
swer by voting, the question is considered solved 
and no more answers are received. 

2 Answers are provided by different users and can be 
voted on by other users. The more votes an answer 
receives, the higher the approval and the better the 
quality. In addition to the best answer, all other an-
swers are sorted in a thread in descending order of 
votes. 

3 Best (Accepted) Answer is selected by the ques-
tioner or selected by other users in which the an-
swer received the largest number of votes. Each 
question has only one best answer. It is at the top 
of the answer list. 

4 Users include questioners and respondents whose 
basic information is displayed under questions or 
answers related to them. 

5 Tags are assigned by the questioner and represent 
the knowledge area relevant to the question. A CQA 
website has accumulated an enormous number of 
question-answer threads that provide a plethora of 
textual information for us to explore.

3.2. Problem Statement
As detailed above, a CQA dataset is built upon the stat-
ic archive of the CQA website, which preserves all the 
question-answer threads accumulated over time. Let 
Q be a question set Q = {q1, q2, ..., qn} (n is the number of 
questions) and U be an answerer set U = {u1, u2, ..., uj} (j is 
the number of users). For each answerer uj, a document 
pi is a combination of all the best answers provided by uj, 
and pi is referred to as the profile of that answerer.  

Using the above notations, we formalize the question 
routing task as a text match and ranking problem and 
define it as follows: Given a newly posted question 
q, let a set of C ∈ U be a candidate set C = {c1, c2, ..., ck}  
(k is the number of candidates), and let a set of candi-
date profiles P = {p1, p2, ..., pk} We need to rank users in 
C and route  q to the highly ranked users, who are most 
suitable to answer the question q with the required 
knowledge. An essential part of this task is learning 
the match patterns and capturing the relationships be-
tween question q and the profile of the candidate  pi ∈ P. 
Specifically, in our work, we need to estimate a score ri 
of how relevant a candidate user’s pi is to a newly post-
ed question q or we need to calculate a probability Pr of 
how likely a user’s profile pi is given the question q.

3.3. Tag-word Topic Enhanced Interaction-
based Approach: QR-tBERTint
In this section, we design a topic-enhanced BERT-
based model named QR-tBERTint for the question 
routing task, the overall framework of which is illus-
trated in Figure 1. To learn the structural and textual 
relevance, we assemble the question sequence and 
user profile sequence into a longer text sequence and 
encode it with the stacked Transformer blocks. We 
take the special embedding of the first token in the 
last layer as the fusion relevance representation of the 
combined sequences. Meanwhile, a tag-word topic 
model TTM [6] is adopted to derive high-quality top-
ics by building tag-word co-occurrence on the corpus 
level, thereby helping to enhance the domain-specific 
knowledge understanding and relieve the data spar-
sity problem. Based on previous studies which suc-
cessfully combined the corpus-level topic with neural 
networks [23, 33, 22], we take the concatenation of 
the sequence pair fusion representation S obtaining 
form BERT and sequence-level topic representations  
TQ and TP obtaining from the tag-word topic model 
as the final representation F and send it to the next 
task-specific ranking layers:
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𝐶𝐶𝐶𝐶 and route 𝑞𝑞𝑞𝑞 to the highly ranked users, who are most suitable to answer the question 𝑞𝑞𝑞𝑞 with the required 
knowledge. An essential part of this task is learning the match patterns and capturing the relationships between 
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how likely a user’s profile 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is given the question q.

3.3 Tag-word Topic Enhanced Interaction-based Approach: QR-tBERTint 
In this section, we design a topic-enhanced BERT-based model named QR-tBERTint for the question routing 
task, the overall framework of which is illustrated in Figure 1. To learn the structural and textual relevance, 
we assemble the question sequence and user profile sequence into a longer text sequence and encode it with 
the stacked Transformer blocks. We take the special embedding of the first token in the last layer as the fusion 
relevance representation of the combined sequences. Meanwhile, a tag-word topic model TTM [6] is adopted 
to derive high-quality topics by building tag-word co-occurrence on the corpus level, thereby helping to 
enhance the domain-specific knowledge understanding and relieve the data sparsity problem. Based on 
previous studies which successfully combined the corpus-level topic with neural networks [23, 33, 22], we 
take the concatenation of the sequence pair fusion representation 𝑆𝑆𝑆𝑆 obtaining form BERT and sequence-level 
topic representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 obtaining from the tag-word topic model as the final representation 𝐹𝐹𝐹𝐹 and send 
it to the next task-specific ranking layers: 
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where 𝑆𝑆𝑆𝑆 ∈ ℝ𝑒𝑒𝑒𝑒, 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾, and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 . 𝐾𝐾𝐾𝐾 denotes the number of topics.  
Corpus-level topic representation module. Topic models have been shown to provide additional information 
to enhance text understanding and matching in earlier feature engineering-based models, and are particularly 
effective for dealing with domain-specific terms [38, 32]. In recent years, many deep neural methods have 
achieved impressive performance on many NLP tasks such as domain recommendation [33], semantic analysis 
[23, 22], and machine translation [5] by combining topic models. However, extracting topics from relatively 
short texts in CQA and constructing an efficient fusion model to combine the corpus-level topic information 
is very challenging in the question routing task. According to the characteristics of Q&A threads described in 
Section 3.1, we use the unsupervised learning tag-word topic model [6] to derive corpus-level topical 
representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 for questions and users. 
First, we construct a tag-word pool by combining a word and a tag. For example, a question with two tags 
(𝐶𝐶𝐶𝐶1, 𝐶𝐶𝐶𝐶2) and three words (𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3) will generate six tag-words in the form of {(𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤3), 
(𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤3)}. Second, by considering the entire corpus as a mixture of topics whose distribution 
over topics comes from a Dirichlet allocation with priors α and assuming there are 𝐾𝐾𝐾𝐾 topics whose distribution 
over tags and words are sampled from Dirichlet allocations with prior γ and β. The joint probability of a tag-
word can be formulated as: 

𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗� =  ∑ 𝑃𝑃𝑃𝑃(𝑘𝑘𝑘𝑘)𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘)𝑘𝑘𝑘𝑘 𝑃𝑃𝑃𝑃�𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗�𝑘𝑘𝑘𝑘� = ∑ 𝜃𝜃𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘𝜙𝜙𝜙𝜙𝑗𝑗𝑗𝑗|𝑘𝑘𝑘𝑘,                         (2) 

where 𝑘𝑘𝑘𝑘 ∈ [1,𝐾𝐾𝐾𝐾] denotes a topic, 𝜃𝜃𝜃𝜃 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(α)  denotes a topic distribution for the whole collection, 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘 ∽
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(γ) denotes a topic-specific tag distribution, and 𝜙𝜙𝜙𝜙𝑘𝑘𝑘𝑘 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(β) denotes a topic-specific word distribution. 
We take the tag-word as the basic unit of the topic model and aggregate all tag-words from the whole corpus 
for training. After obtaining the tag-word topic model, the question sequence and the user profile sequence are 
passed to the topic model to infer topic-level embedding per sequence: 

𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2 , … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁]) ∈ ℝ𝐾𝐾𝐾𝐾 ,                             (3) 

(1)

where S ∈ ℝe, TQ ∈ ℝK, and TP ∈ ℝK. K denotes the 
number of topics. 
Corpus-level topic representation module. Topic 
models have been shown to provide additional infor-
mation to enhance text understanding and matching 
in earlier feature engineering-based models, and are 
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particularly effective for dealing with domain-specif-
ic terms [38, 32]. In recent years, many deep neural 
methods have achieved impressive performance on 
many NLP tasks such as domain recommendation 
[33], semantic analysis [23, 22], and machine trans-
lation [5] by combining topic models. However, ex-
tracting topics from relatively short texts in CQA and 
constructing an efficient fusion model to combine the 
corpus-level topic information is very challenging in 
the question routing task. According to the character-
istics of Q&A threads described in Section 3.1, we use 
the unsupervised learning tag-word topic model [6] 
to derive corpus-level topical representations TQ ∈ ℝK  
and TP ∈ ℝK for questions and users.
First, we construct a tag-word pool by combining a 
word and a tag. For example, a question with two tags 
(t1, t2) and three words (w1, w2, w3) will generate six 
tag-words in the form of {(t1, w1), (t1, w2), (t1, w3), (t2, 
w1), (t2, w2), (t2, w3)}. Second, by considering the entire 
corpus as a mixture of topics whose distribution over 
topics comes from a Dirichlet allocation with priors 
α and assuming there are K topics whose distribution 
over tags and words are sampled from Dirichlet allo-
cations with prior γ and β. The joint probability of a 
tag-word can be formulated as:

7 

Using the above notations, we formalize the question routing task as a text match and ranking problem and 
define it as follows: Given a newly posted question 𝑞𝑞𝑞𝑞, let a set of 𝐶𝐶𝐶𝐶 ∈ 𝑈𝑈𝑈𝑈 be a candidate set 𝐶𝐶𝐶𝐶 = {𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2,… , 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘} (k 
is the number of candidates), and let a set of candidate profiles 𝑃𝑃𝑃𝑃 = {𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2, … , 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘}. We need to rank users in 
𝐶𝐶𝐶𝐶 and route 𝑞𝑞𝑞𝑞 to the highly ranked users, who are most suitable to answer the question 𝑞𝑞𝑞𝑞 with the required 
knowledge. An essential part of this task is learning the match patterns and capturing the relationships between 
question 𝑞𝑞𝑞𝑞 and the profile of the candidate 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃. Specifically, in our work, we need to estimate a score 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  of 
how relevant a candidate user’s 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is to a newly posted question 𝑞𝑞𝑞𝑞 or we need to calculate a probability 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟 of 
how likely a user’s profile 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is given the question q.

3.3 Tag-word Topic Enhanced Interaction-based Approach: QR-tBERTint 
In this section, we design a topic-enhanced BERT-based model named QR-tBERTint for the question routing 
task, the overall framework of which is illustrated in Figure 1. To learn the structural and textual relevance, 
we assemble the question sequence and user profile sequence into a longer text sequence and encode it with 
the stacked Transformer blocks. We take the special embedding of the first token in the last layer as the fusion 
relevance representation of the combined sequences. Meanwhile, a tag-word topic model TTM [6] is adopted 
to derive high-quality topics by building tag-word co-occurrence on the corpus level, thereby helping to 
enhance the domain-specific knowledge understanding and relieve the data sparsity problem. Based on 
previous studies which successfully combined the corpus-level topic with neural networks [23, 33, 22], we 
take the concatenation of the sequence pair fusion representation 𝑆𝑆𝑆𝑆 obtaining form BERT and sequence-level 
topic representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 obtaining from the tag-word topic model as the final representation 𝐹𝐹𝐹𝐹 and send 
it to the next task-specific ranking layers: 

𝐹𝐹𝐹𝐹 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆 ,𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ,𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ),                                                (1) 

where 𝑆𝑆𝑆𝑆 ∈ ℝ𝑒𝑒𝑒𝑒, 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾, and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 . 𝐾𝐾𝐾𝐾 denotes the number of topics.  
Corpus-level topic representation module. Topic models have been shown to provide additional information 
to enhance text understanding and matching in earlier feature engineering-based models, and are particularly 
effective for dealing with domain-specific terms [38, 32]. In recent years, many deep neural methods have 
achieved impressive performance on many NLP tasks such as domain recommendation [33], semantic analysis 
[23, 22], and machine translation [5] by combining topic models. However, extracting topics from relatively 
short texts in CQA and constructing an efficient fusion model to combine the corpus-level topic information 
is very challenging in the question routing task. According to the characteristics of Q&A threads described in 
Section 3.1, we use the unsupervised learning tag-word topic model [6] to derive corpus-level topical 
representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 for questions and users. 
First, we construct a tag-word pool by combining a word and a tag. For example, a question with two tags 
(𝐶𝐶𝐶𝐶1, 𝐶𝐶𝐶𝐶2) and three words (𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3) will generate six tag-words in the form of {(𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤3), 
(𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤3)}. Second, by considering the entire corpus as a mixture of topics whose distribution 
over topics comes from a Dirichlet allocation with priors α and assuming there are 𝐾𝐾𝐾𝐾 topics whose distribution 
over tags and words are sampled from Dirichlet allocations with prior γ and β. The joint probability of a tag-
word can be formulated as: 

𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗� =  ∑ 𝑃𝑃𝑃𝑃(𝑘𝑘𝑘𝑘)𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘)𝑘𝑘𝑘𝑘 𝑃𝑃𝑃𝑃�𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗�𝑘𝑘𝑘𝑘� = ∑ 𝜃𝜃𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘𝜙𝜙𝜙𝜙𝑗𝑗𝑗𝑗|𝑘𝑘𝑘𝑘,                         (2) 

where 𝑘𝑘𝑘𝑘 ∈ [1,𝐾𝐾𝐾𝐾] denotes a topic, 𝜃𝜃𝜃𝜃 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(α)  denotes a topic distribution for the whole collection, 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘 ∽
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(γ) denotes a topic-specific tag distribution, and 𝜙𝜙𝜙𝜙𝑘𝑘𝑘𝑘 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(β) denotes a topic-specific word distribution. 
We take the tag-word as the basic unit of the topic model and aggregate all tag-words from the whole corpus 
for training. After obtaining the tag-word topic model, the question sequence and the user profile sequence are 
passed to the topic model to infer topic-level embedding per sequence: 

𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2 , … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁]) ∈ ℝ𝐾𝐾𝐾𝐾 ,                             (3) 

(2)

where k ∈ [1, K] denotes a topic, θ ~ Dir(α) denotes a 
topic distribution for the whole collection, φk ~ Dir(γ)  
denotes a topic-specific tag distribution, and ϕk ~ 
Dir(β) denotes a topic-specific word distribution. We 
take the tag-word as the basic unit of the topic mod-
el and aggregate all tag-words from the whole corpus 
for training. After obtaining the tag-word topic model, 
the question sequence and the user profile sequence 
are passed to the topic model to infer topic-level em-
bedding per sequence:

7 

Using the above notations, we formalize the question routing task as a text match and ranking problem and 
define it as follows: Given a newly posted question 𝑞𝑞𝑞𝑞, let a set of 𝐶𝐶𝐶𝐶 ∈ 𝑈𝑈𝑈𝑈 be a candidate set 𝐶𝐶𝐶𝐶 = {𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2,… , 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘} (k 
is the number of candidates), and let a set of candidate profiles 𝑃𝑃𝑃𝑃 = {𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2, … , 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘}. We need to rank users in 
𝐶𝐶𝐶𝐶 and route 𝑞𝑞𝑞𝑞 to the highly ranked users, who are most suitable to answer the question 𝑞𝑞𝑞𝑞 with the required 
knowledge. An essential part of this task is learning the match patterns and capturing the relationships between 
question 𝑞𝑞𝑞𝑞 and the profile of the candidate 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃. Specifically, in our work, we need to estimate a score 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  of 
how relevant a candidate user’s 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is to a newly posted question 𝑞𝑞𝑞𝑞 or we need to calculate a probability 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟 of 
how likely a user’s profile 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is given the question q.

3.3 Tag-word Topic Enhanced Interaction-based Approach: QR-tBERTint 
In this section, we design a topic-enhanced BERT-based model named QR-tBERTint for the question routing 
task, the overall framework of which is illustrated in Figure 1. To learn the structural and textual relevance, 
we assemble the question sequence and user profile sequence into a longer text sequence and encode it with 
the stacked Transformer blocks. We take the special embedding of the first token in the last layer as the fusion 
relevance representation of the combined sequences. Meanwhile, a tag-word topic model TTM [6] is adopted 
to derive high-quality topics by building tag-word co-occurrence on the corpus level, thereby helping to 
enhance the domain-specific knowledge understanding and relieve the data sparsity problem. Based on 
previous studies which successfully combined the corpus-level topic with neural networks [23, 33, 22], we 
take the concatenation of the sequence pair fusion representation 𝑆𝑆𝑆𝑆 obtaining form BERT and sequence-level 
topic representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 obtaining from the tag-word topic model as the final representation 𝐹𝐹𝐹𝐹 and send 
it to the next task-specific ranking layers: 

𝐹𝐹𝐹𝐹 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆 ,𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ,𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ),                                                (1) 

where 𝑆𝑆𝑆𝑆 ∈ ℝ𝑒𝑒𝑒𝑒, 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾, and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 . 𝐾𝐾𝐾𝐾 denotes the number of topics.  
Corpus-level topic representation module. Topic models have been shown to provide additional information 
to enhance text understanding and matching in earlier feature engineering-based models, and are particularly 
effective for dealing with domain-specific terms [38, 32]. In recent years, many deep neural methods have 
achieved impressive performance on many NLP tasks such as domain recommendation [33], semantic analysis 
[23, 22], and machine translation [5] by combining topic models. However, extracting topics from relatively 
short texts in CQA and constructing an efficient fusion model to combine the corpus-level topic information 
is very challenging in the question routing task. According to the characteristics of Q&A threads described in 
Section 3.1, we use the unsupervised learning tag-word topic model [6] to derive corpus-level topical 
representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 for questions and users. 
First, we construct a tag-word pool by combining a word and a tag. For example, a question with two tags 
(𝐶𝐶𝐶𝐶1, 𝐶𝐶𝐶𝐶2) and three words (𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3) will generate six tag-words in the form of {(𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤3), 
(𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤3)}. Second, by considering the entire corpus as a mixture of topics whose distribution 
over topics comes from a Dirichlet allocation with priors α and assuming there are 𝐾𝐾𝐾𝐾 topics whose distribution 
over tags and words are sampled from Dirichlet allocations with prior γ and β. The joint probability of a tag-
word can be formulated as: 

𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗� =  ∑ 𝑃𝑃𝑃𝑃(𝑘𝑘𝑘𝑘)𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘)𝑘𝑘𝑘𝑘 𝑃𝑃𝑃𝑃�𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗�𝑘𝑘𝑘𝑘� = ∑ 𝜃𝜃𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘𝜙𝜙𝜙𝜙𝑗𝑗𝑗𝑗|𝑘𝑘𝑘𝑘,                         (2) 

where 𝑘𝑘𝑘𝑘 ∈ [1,𝐾𝐾𝐾𝐾] denotes a topic, 𝜃𝜃𝜃𝜃 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(α)  denotes a topic distribution for the whole collection, 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘 ∽
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(γ) denotes a topic-specific tag distribution, and 𝜙𝜙𝜙𝜙𝑘𝑘𝑘𝑘 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(β) denotes a topic-specific word distribution. 
We take the tag-word as the basic unit of the topic model and aggregate all tag-words from the whole corpus 
for training. After obtaining the tag-word topic model, the question sequence and the user profile sequence are 
passed to the topic model to infer topic-level embedding per sequence: 

𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2 , … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁]) ∈ ℝ𝐾𝐾𝐾𝐾 ,                             (3) , (3)
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𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 ,                             (4) 

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and  
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence. 

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the 
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is 
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  of 
the same dimension: 

ℎ𝑖𝑖𝑖𝑖0  =  𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖.                                      (5) 

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the 
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.  
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks, 
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention 
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each 
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention 
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which 
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our 
task, we believe that the multi-head attention mechanism can capture different types of token relationships by 
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and 
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers 
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around 
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden 
representation of each layer is shown as follows: 

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1),            (6) 
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��,         (7) 

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 +  Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��.     (8) 
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the 
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿  for all tokens of the input sequence. And next, we should perform candidate answerer ranking 
by using this feature embedding and then route the newly posted question to the candidate answerers that are 
ranked higher. 
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓),   (9) 
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We 
compute this probability for each candidate independently and obtain the final list of experts (profiles) by 
ranking them with respect to these probabilities. 
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question 
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the 
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained 
BERT model fully incorporates context information at each token position and contains sentence relationship 
information in the embedding of [CLS]. The loss is shown in Equation (10). 

𝐿𝐿𝐿𝐿 =  −�  ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)  + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+  �,    (10) 
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label) 
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing 
the cross-entropy loss. 

, (4)

where K denotes the number of topics, [QT1,  
QT2, ..., QTN] denotes the questions sequence, and 
[PT1, PT2, ..., PTM] denotes the user profile sequence.
Sequence Pair Fusion Representation Module 
based on BERT. We take the linear concatenation of 

the question tokens and the profile tokens as input. 
For a given token vi, its final input representation  
hi

0 ∈ ℝe is constructed by summing word piece em-
bedding vi, the segment embedding si, and position 
embedding pi of the same dimension:
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Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the 
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is 
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  of 
the same dimension: 

ℎ𝑖𝑖𝑖𝑖0  =  𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖.                                      (5) 

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the 
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.  
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks, 
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention 
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each 
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention 
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which 
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our 
task, we believe that the multi-head attention mechanism can capture different types of token relationships by 
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and 
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers 
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around 
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden 
representation of each layer is shown as follows: 

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1),            (6) 
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𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 +  Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��.     (8) 
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the 
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿  for all tokens of the input sequence. And next, we should perform candidate answerer ranking 
by using this feature embedding and then route the newly posted question to the candidate answerers that are 
ranked higher. 
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓),   (9) 
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We 
compute this probability for each candidate independently and obtain the final list of experts (profiles) by 
ranking them with respect to these probabilities. 
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question 
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the 
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained 
BERT model fully incorporates context information at each token position and contains sentence relationship 
information in the embedding of [CLS]. The loss is shown in Equation (10). 

𝐿𝐿𝐿𝐿 =  −�  ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)  + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+  �,    (10) 
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label) 
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing 
the cross-entropy loss. 

(5)

We truncate the question to have at most 64 tokens, 
and the user profile is truncated to ensure that the 
concatenation of the question, profile, and separator 
token has a maximum length of 512 tokens. 
As illustrated in Figure 1, when the input sequence 
passes through the multi-layer Transformer encoder 
blocks, the tokens of the entire sequence are read by 
each Transformer encoder at once and learned by the 
self-attention mechanism that results in contextual-
ized embeddings at different positions in each layer. 
Specifically, each Transformer layer Trm has two sub-
layers: MultiSelf and PFFN. The former is a multi-head 
self-attention mechanism-based network, while the 
latter is a position-wise fully connected feed-forward 
network which consists of two linear transformations 
with Gaussian Error Linear Unit (GELU) activation in 
between. In our task, we believe that the multi-head 
attention mechanism can capture different types of 
token relationships by using different attention ma-
trices, and the self-attention mechanism spans the 
entire sequence of questions and user profiles so that 
question-profile interactions are learned. The specif-
ic formulations of these two sublayers can be found in 
the [29] and will not be repeated here. Based on the two 
sublayers, a residual connection around each of the two 
sub-layers and dropouts to the output of each sub-layer 
is applied [2]. In summary, the hidden representation 
of each layer is shown as follows:
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Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the 
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is 
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We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the 
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.  
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks, 
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention 
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each 
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention 
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which 
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our 
task, we believe that the multi-head attention mechanism can capture different types of token relationships by 
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and 
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers 
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around 
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden 
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𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 +  Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��.     (8) 
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the 
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿  for all tokens of the input sequence. And next, we should perform candidate answerer ranking 
by using this feature embedding and then route the newly posted question to the candidate answerers that are 
ranked higher. 
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓),   (9) 
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We 
compute this probability for each candidate independently and obtain the final list of experts (profiles) by 
ranking them with respect to these probabilities. 
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question 
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the 
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained 
BERT model fully incorporates context information at each token position and contains sentence relationship 
information in the embedding of [CLS]. The loss is shown in Equation (10). 

𝐿𝐿𝐿𝐿 =  −�  ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)  + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+  �,    (10) 
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label) 
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing 
the cross-entropy loss. 

, (6)
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𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 ,                             (4) 

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and  
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence. 

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the 
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is 
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  of 
the same dimension: 

ℎ𝑖𝑖𝑖𝑖0  =  𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖.                                      (5) 

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the 
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.  
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks, 
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention 
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each 
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention 
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which 
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our 
task, we believe that the multi-head attention mechanism can capture different types of token relationships by 
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and 
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers 
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around 
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden 
representation of each layer is shown as follows: 

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1),            (6) 
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��,         (7) 

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 +  Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��.     (8) 
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the 
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿  for all tokens of the input sequence. And next, we should perform candidate answerer ranking 
by using this feature embedding and then route the newly posted question to the candidate answerers that are 
ranked higher. 
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓),   (9) 
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We 
compute this probability for each candidate independently and obtain the final list of experts (profiles) by 
ranking them with respect to these probabilities. 
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question 
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the 
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained 
BERT model fully incorporates context information at each token position and contains sentence relationship 
information in the embedding of [CLS]. The loss is shown in Equation (10). 

𝐿𝐿𝐿𝐿 =  −�  ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)  + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+  �,    (10) 
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label) 
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing 
the cross-entropy loss. 
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𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 ,                             (4) 

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and  
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence. 

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the 
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is 
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  of 
the same dimension: 

ℎ𝑖𝑖𝑖𝑖0  =  𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖.                                      (5) 

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the 
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.  
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks, 
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention 
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each 
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention 
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which 
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our 
task, we believe that the multi-head attention mechanism can capture different types of token relationships by 
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and 
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers 
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around 
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden 
representation of each layer is shown as follows: 

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1),            (6) 
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��,         (7) 

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 +  Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��.     (8) 
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the 
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿  for all tokens of the input sequence. And next, we should perform candidate answerer ranking 
by using this feature embedding and then route the newly posted question to the candidate answerers that are 
ranked higher. 
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓),   (9) 
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We 
compute this probability for each candidate independently and obtain the final list of experts (profiles) by 
ranking them with respect to these probabilities. 
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question 
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the 
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained 
BERT model fully incorporates context information at each token position and contains sentence relationship 
information in the embedding of [CLS]. The loss is shown in Equation (10). 

𝐿𝐿𝐿𝐿 =  −�  ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)  + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+  �,    (10) 
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label) 
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing 
the cross-entropy loss. 

,
(7)
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𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 ,                             (4) 

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and  
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence. 

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the 
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is 
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  of 
the same dimension: 

ℎ𝑖𝑖𝑖𝑖0  =  𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖.                                      (5) 

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the 
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.  
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks, 
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention 
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each 
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention 
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which 
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our 
task, we believe that the multi-head attention mechanism can capture different types of token relationships by 
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and 
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers 
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around 
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden 
representation of each layer is shown as follows: 

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1),            (6) 
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��,         (7) 
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final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿  for all tokens of the input sequence. And next, we should perform candidate answerer ranking 
by using this feature embedding and then route the newly posted question to the candidate answerers that are 
ranked higher. 
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓),   (9) 
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We 
compute this probability for each candidate independently and obtain the final list of experts (profiles) by 
ranking them with respect to these probabilities. 
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question 
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the 
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained 
BERT model fully incorporates context information at each token position and contains sentence relationship 
information in the embedding of [CLS]. The loss is shown in Equation (10). 

𝐿𝐿𝐿𝐿 =  −�  ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)  + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+  �,    (10) 
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label) 
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing 
the cross-entropy loss. 
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After L layers that hierarchically exchange infor-
mation across all positions in the previous layer, we 
obtain the final output HL for all tokens of the input 
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sequence. And next, we should perform candidate an-
swerer ranking by using this feature embedding and 
then route the newly posted question to the candidate 
answerers that are ranked higher.
Output. We use the softmax function to obtain the 
probability of the profile being relevant:
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pendently and obtain the final list of experts (profiles) 
by ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model 
(hidden size of 768, 12 Transformer blocks, and 12 
self-attention heads) as a binary classification mod-
el. We start training from it and fine-tune it to our 
question routing task using the cross-entropy loss. 
Specifically, limited by the size of our training corpus, 
we freeze the weights of the first few layers of the pre-
trained network during fine-tuning. We believe that a 
well-trained BERT model fully incorporates context 
information at each token position and contains sen-
tence relationship information in the embedding of 
[CLS]. The loss is shown in Equation (10).
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using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and 
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers 
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around 
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden 
representation of each layer is shown as follows: 

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1),            (6) 
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��,         (7) 

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 +  Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��.     (8) 
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the 
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿  for all tokens of the input sequence. And next, we should perform candidate answerer ranking 
by using this feature embedding and then route the newly posted question to the candidate answerers that are 
ranked higher. 
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓),   (9) 
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We 
compute this probability for each candidate independently and obtain the final list of experts (profiles) by 
ranking them with respect to these probabilities. 
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question 
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the 
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained 
BERT model fully incorporates context information at each token position and contains sentence relationship 
information in the embedding of [CLS]. The loss is shown in Equation (10). 

𝐿𝐿𝐿𝐿 =  −�  ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)  + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+  �,    (10) 
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖  denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label) 
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing 
the cross-entropy loss. 

, (10)

where ri denotes the relevant score of the question 
and user, I+ is the set of indexed answerers (positive 
label) and I– is the set of indexed random non-an-
swerers (negative label). The model is fine-tuned by 
minimizing the cross-entropy loss.

3.4. Contextual Representation-based 
Approach: QR-BERTrep

Different from the above method that focuses on ex-
ploring interactions between sequences through 
BERT and incorporating tag-word topic models to 
enhance understanding of corpus-level semantic in-
formation, QR-BERTrep incorporates the weighted 
sum of the outputs of different layers of BERT as an 
additional feature into a traditional Siamese deep 
matching model. By combining contextualized em-
beddings with word embeddings, the representations 
of question sequences and user profile sequences can 
imply richer semantic knowledge and patterns, help-
ing to improve the expert discovery effect obtained by 

similarity computation. The overall framework of the 
contextual representation-based model QR-BERTrep 
is shown in Figure 2.
BERT contextualized embedding. Instead of con-
catenating the question tokens and the profile tokens 
into a single sequence as input, in this method, the 
question tokens and the profile tokens are fed into the 
pre-trained BERTBASE model separately to obtain the 
contextualized embedding layer by layer.
Encoding layer. Since BERT generates L-layer hidden 
states for all BPE tokens in a sequence, and each hid-
den layer contains different features and information, 
we employ a weighted sum of these hidden states to 
obtain more delicate embedding. Specifically, we take 
the hidden states of the last four layers in BERT. Sup-
pose a word w is tokenized to n BPE tokens w = {b1, b2, ..., 
bn}, and hi

l represents the token embedding in the l-th 
layer of BERT, 1 ≤ l ≤ L, 1 ≤ i ≤ n. Then, the contextu-
alized embedding of word w, ConEMw, is calculated as 
the weighted sum average of the embedding of the last 
four layers.
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ConEM𝑤𝑤𝑤𝑤 =  ∑ 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
∑ ℎ𝑖𝑖𝑖𝑖

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡=1
𝑛𝑛𝑛𝑛

𝐿𝐿𝐿𝐿
𝑙𝑙𝑙𝑙=1 ,            (11) 

where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙  denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and 
contextualized embedding ConEM𝑤𝑤𝑤𝑤 together to build a richer representation for each word. Therefore, the 
input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].  
Siamese neural ranking model. After encoding each word into a fixed-length fusion vector, we represent the 
question sequence and profile sequence by the fusion embeddings and feed them into a Siamese neural ranking 
model, which consists of two fully connected hidden layers with 300 nodes. This model is used to map word 
vectors to their semantic concept vectors for further similarity calculation. In detail, if we denote 𝑥𝑥𝑥𝑥 as the input 
word vector, 𝑦𝑦𝑦𝑦 as the output vector, ℎ𝑖𝑖𝑖𝑖 as the hidden layer vector, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 as the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ weight matrix, and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 as the 
𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ bias term, the mathematical formulas for each layer are described as follows:

ℎ1 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊1𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏1),            (12) 
ℎ𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖),            (13) 
𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁ℎ𝑁𝑁𝑁𝑁−1 + 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁),            (14) 

where the 𝐷𝐷𝐷𝐷 value goes from the first hidden layer 𝐷𝐷𝐷𝐷 = 2 to the output layer 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃, and we use the tanh as the 
activation function: 

𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥) = 1−𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥
 .           (15) 

Output layer. The output layer consists of 128 nodes. We measure the semantic similarity between question q 
and profile document p as: 

Sim(𝑞𝑞𝑞𝑞, 𝑝𝑝𝑝𝑝) = cosine�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 ,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝� = 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝
�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞��𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

，            (16) 

where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the 
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile 
given the question as shown below: 

Pr(𝑝𝑝𝑝𝑝|𝑞𝑞𝑞𝑞) = 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

∑ 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝐾𝐾𝐾𝐾
𝑛𝑛𝑛𝑛=1

，           (17) 

where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers, 
which includes the actual answerers and three randomly selected non-answerers. We detail the construction 
method of negative examples and positive examples for training in Section 4.1. 

(11)

where δl  denotes the weight for each layer. Then, we 
concatenate the 300-dim GloVe embedding and con-
textualized embedding ConEMw together to build a 
richer representation for each word. Therefore, the 
input vector for each word in the question sequence 
and profile sequence is w = [GloVe(w); ConEMw ]. 
Siamese neural ranking model. After encoding each 
word into a fixed-length fusion vector, we represent 
the question sequence and profile sequence by the fu-
sion embeddings and feed them into a Siamese neural 
ranking model, which consists of two fully connected 
hidden layers with 300 nodes. This model is used to 
map word vectors to their semantic concept vectors 
for further similarity calculation. In detail, if we de-
note x as the input word vector, y as the output vector, 
hi as the hidden layer vector, Wi as the ith weight ma-
trix, and bi as the ith bias term, the mathematical for-
mulas for each layer are described as follows:
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Different from the above method that focuses on exploring interactions between sequences through BERT and 
incorporating tag-word topic models to enhance understanding of corpus-level semantic information, QR-
BERTrep incorporates the weighted sum of the outputs of different layers of BERT as an additional feature into 
a traditional Siamese deep matching model. By combining contextualized embeddings with word embeddings, 
the representations of question sequences and user profile sequences can imply richer semantic knowledge and 
patterns, helping to improve the expert discovery effect obtained by similarity computation. The overall 
framework of the contextual representation-based model QR-BERTrep is shown in Figure 2. 
BERT contextualized embedding. Instead of concatenating the question tokens and the profile tokens into a 
single sequence as input, in this method, the question tokens and the profile tokens are fed into the pre-trained 
BERTBASE model separately to obtain the contextualized embedding layer by layer. 
Encoding layer. Since BERT generates 𝐿𝐿𝐿𝐿-layer hidden states for all BPE tokens in a sequence, and each hidden 
layer contains different features and information, we employ a weighted sum of these hidden states to obtain 
more delicate embedding. Specifically, we take the hidden states of the last four layers in BERT. Suppose a 
word 𝑤𝑤𝑤𝑤 is tokenized to 𝐶𝐶𝐶𝐶 BPE tokens 𝑤𝑤𝑤𝑤 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, … , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛}, and ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙  represents the token embedding in the 𝑀𝑀𝑀𝑀-th 
layer of BERT, 1 ≤ 𝑀𝑀𝑀𝑀 ≤ L, 1 ≤ 𝐷𝐷𝐷𝐷 ≤ 𝐶𝐶𝐶𝐶. Then, the contextualized embedding of word 𝑤𝑤𝑤𝑤, ConEM𝑤𝑤𝑤𝑤, is calculated 
as the weighted sum average of the embedding of the last four layers.

ConEM𝑤𝑤𝑤𝑤 =  ∑ 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
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where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙  denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and 
contextualized embedding ConEM𝑤𝑤𝑤𝑤 together to build a richer representation for each word. Therefore, the 
input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].  
Siamese neural ranking model. After encoding each word into a fixed-length fusion vector, we represent the 
question sequence and profile sequence by the fusion embeddings and feed them into a Siamese neural ranking 
model, which consists of two fully connected hidden layers with 300 nodes. This model is used to map word 
vectors to their semantic concept vectors for further similarity calculation. In detail, if we denote 𝑥𝑥𝑥𝑥 as the input 
word vector, 𝑦𝑦𝑦𝑦 as the output vector, ℎ𝑖𝑖𝑖𝑖 as the hidden layer vector, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 as the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ weight matrix, and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 as the 
𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ bias term, the mathematical formulas for each layer are described as follows:

ℎ1 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊1𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏1),            (12) 
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where the 𝐷𝐷𝐷𝐷 value goes from the first hidden layer 𝐷𝐷𝐷𝐷 = 2 to the output layer 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃, and we use the tanh as the 
activation function: 

𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥) = 1−𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥
 .           (15) 

Output layer. The output layer consists of 128 nodes. We measure the semantic similarity between question q 
and profile document p as: 

Sim(𝑞𝑞𝑞𝑞, 𝑝𝑝𝑝𝑝) = cosine�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 ,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝� = 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝
�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞��𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

，            (16) 

where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the 
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile 
given the question as shown below: 

Pr(𝑝𝑝𝑝𝑝|𝑞𝑞𝑞𝑞) = 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�
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𝑛𝑛𝑛𝑛=1
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where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers, 
which includes the actual answerers and three randomly selected non-answerers. We detail the construction 
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and profile document p as: 
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where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the 
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile 
given the question as shown below: 
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where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers, 
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softmax function on the output to covert the similarity relevance score into a probability of the user’s profile 
given the question as shown below: 
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，           (17) 

where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers, 
which includes the actual answerers and three randomly selected non-answerers. We detail the construction 
method of negative examples and positive examples for training in Section 4.1. 
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Output layer. The output layer consists of 128 nodes. 
We measure the semantic similarity between ques-
tion q and profile document p as:
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3.4 Contextual Representation-based Approach:  QR-BERTrep 
Different from the above method that focuses on exploring interactions between sequences through BERT and 
incorporating tag-word topic models to enhance understanding of corpus-level semantic information, QR-
BERTrep incorporates the weighted sum of the outputs of different layers of BERT as an additional feature into 
a traditional Siamese deep matching model. By combining contextualized embeddings with word embeddings, 
the representations of question sequences and user profile sequences can imply richer semantic knowledge and 
patterns, helping to improve the expert discovery effect obtained by similarity computation. The overall 
framework of the contextual representation-based model QR-BERTrep is shown in Figure 2. 
BERT contextualized embedding. Instead of concatenating the question tokens and the profile tokens into a 
single sequence as input, in this method, the question tokens and the profile tokens are fed into the pre-trained 
BERTBASE model separately to obtain the contextualized embedding layer by layer. 
Encoding layer. Since BERT generates 𝐿𝐿𝐿𝐿-layer hidden states for all BPE tokens in a sequence, and each hidden 
layer contains different features and information, we employ a weighted sum of these hidden states to obtain 
more delicate embedding. Specifically, we take the hidden states of the last four layers in BERT. Suppose a 
word 𝑤𝑤𝑤𝑤 is tokenized to 𝐶𝐶𝐶𝐶 BPE tokens 𝑤𝑤𝑤𝑤 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, … , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛}, and ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙  represents the token embedding in the 𝑀𝑀𝑀𝑀-th 
layer of BERT, 1 ≤ 𝑀𝑀𝑀𝑀 ≤ L, 1 ≤ 𝐷𝐷𝐷𝐷 ≤ 𝐶𝐶𝐶𝐶. Then, the contextualized embedding of word 𝑤𝑤𝑤𝑤, ConEM𝑤𝑤𝑤𝑤, is calculated 
as the weighted sum average of the embedding of the last four layers.

ConEM𝑤𝑤𝑤𝑤 =  ∑ 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
∑ ℎ𝑖𝑖𝑖𝑖
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𝐿𝐿𝐿𝐿
𝑙𝑙𝑙𝑙=1 ,            (11) 

where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙  denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and 
contextualized embedding ConEM𝑤𝑤𝑤𝑤 together to build a richer representation for each word. Therefore, the 
input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].  
Siamese neural ranking model. After encoding each word into a fixed-length fusion vector, we represent the 
question sequence and profile sequence by the fusion embeddings and feed them into a Siamese neural ranking 
model, which consists of two fully connected hidden layers with 300 nodes. This model is used to map word 
vectors to their semantic concept vectors for further similarity calculation. In detail, if we denote 𝑥𝑥𝑥𝑥 as the input 
word vector, 𝑦𝑦𝑦𝑦 as the output vector, ℎ𝑖𝑖𝑖𝑖 as the hidden layer vector, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 as the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ weight matrix, and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 as the 
𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ bias term, the mathematical formulas for each layer are described as follows:

ℎ1 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊1𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏1),            (12) 
ℎ𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖),            (13) 
𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁ℎ𝑁𝑁𝑁𝑁−1 + 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁),            (14) 

where the 𝐷𝐷𝐷𝐷 value goes from the first hidden layer 𝐷𝐷𝐷𝐷 = 2 to the output layer 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃, and we use the tanh as the 
activation function: 

𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥) = 1−𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥
 .           (15) 

Output layer. The output layer consists of 128 nodes. We measure the semantic similarity between question q 
and profile document p as: 
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，            (16) 

where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the 
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile 
given the question as shown below: 
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where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers, 
which includes the actual answerers and three randomly selected non-answerers. We detail the construction 
method of negative examples and positive examples for training in Section 4.1. 
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where yq and yp are the concept vectors of the ques-
tion and the user’s profile, respectively. We apply the 
softmax function on the output to covert the similari-
ty relevance score into a probability of the user’s pro-
file given the question as shown below:
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where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙  denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and 
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input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].  
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where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers, 
which includes the actual answerers and three randomly selected non-answerers. We detail the construction 
method of negative examples and positive examples for training in Section 4.1. 

, (17)

where K denotes the number of candidates to be 
ranked. We approximated K to be the list of the an-
swerers, which includes the actual answerers and 
three randomly selected non-answerers. We detail 
the construction method of negative examples and 
positive examples for training in Section 4.1.
Training. In training, the model parameters are esti-
mated to maximize the likelihood of positive answer-
ers given the questions across the training set. Put 
another way, we need to minimize the loss function, 
as shown in Equation (18).
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Training. In training, the model parameters are estimated to maximize the likelihood of positive answerers 
given the questions across the training set. Put another way, we need to minimize the loss function, as shown 
in Equation (18). 

𝐿𝐿𝐿𝐿(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) = − log∏ 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖|𝑞𝑞𝑞𝑞)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ ，           (18) 
where 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive labels). 

 
 

4 Experiments 

4.1 Dataset 
We constructed our dataset from a Stack Overflow snapshot by following all conditions mentioned in [12] and 
[27]. To reduce the size of the dataset while exhibiting the same properties according to the original dataset, 
we use the 21 tags reported in [12] to create a subset that is mainly selected according to the following criteria. 
Each selected question is an archived question with an accepted answer (i.e., best answer), and it has at least 
2 answers, and at least one of its tags matches the selected 21 specific tags. All questions are lowercase, and 
we only keep the questions with at least 2 words left after removing the stop words. The purpose of these 
selection operations is to filter out low-quality posts. As a result, the final subset contains 92,411 CQA sessions. 
According to the posted timestamp, the first 12 months of data are used as the training data, and the remaining 
data are used for testing. Therefore, the training and testing data do not overlap. There were 81,295 sessions 
in the training set and 11,116 sessions in the test set. 
Given the need to predict the best answerer and the reality that only a few users are responsible for the vast 
majority of answers in CQA, three user sets Dx were constructed based on the number of answers X provided 
by users in the training set (X = 10, 15, and 20 in this work). As can be seen from Table 1, set D20 includes 
2,977 users, indicating that these users provided at least 20 answers in this training set. Moreover, for each of 
the 8371 training questions, the questioner, the best answerer, and at least one other answerer are among these 
2977 users. For the 517 test questions, they were routed to these 2977 users. 
 

Table 1 The summary of  three datasets. 
The Set Name # of questions 

answered by user U 
# of Users 
U 

# of Training 
Questions QTrn 

# of Test Questions 
QTst 

D10 10 5,761 16,021 1,151 
D15 15 3,971 11,177 746 
D20 20 2,977 8,371 517 

 
Ground Truth: The list of answerers in 𝐷𝐷𝐷𝐷𝑋𝑋𝑋𝑋 who actually provided an answer to the test question is the ground 
truth in our experiment. 
Creating Examples: To train the model, we need to create positive and negative examples. According to our 
collected data, a training set consists of threads (question, asker, best answer, best answerer, other answers, 
other answerers ……). Following [1], if user 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖  is in the list of answerers of 𝑞𝑞𝑞𝑞 (the list includes the best 
answerer and other answerers of one thread), we consider (𝑞𝑞𝑞𝑞, 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖) as a positive example; otherwise, we consider 
(𝑞𝑞𝑞𝑞, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗) as a negative example. We obtained 54,218 positive training pairs for D10, 36,238 positive training pairs 
for D15, and 26,354 positive training pairs for D20. To train efficiently and reduce the training scale, we 
randomly select three non-answerers based on the NCE sampling strategy to construct the negative samples. 
The definitions of negative and positive examples are listed in Table 2. 

, (18)

where I+ is the set of indexed answerers (positive labels).

4. Experiments
4.1. Dataset
We constructed our dataset from a Stack Overflow 
snapshot by following all conditions mentioned in 
[12] and [27]. To reduce the size of the dataset while 
exhibiting the same properties according to the orig-
inal dataset, we use the 21 tags reported in [12] to 

create a subset that is mainly selected according to 
the following criteria. Each selected question is an 
archived question with an accepted answer (i.e., best 
answer), and it has at least 2 answers, and at least one 
of its tags matches the selected 21 specific tags. All 
questions are lowercase, and we only keep the ques-
tions with at least 2 words left after removing the stop 
words. The purpose of these selection operations is to 
filter out low-quality posts. As a result, the final sub-
set contains 92,411 CQA sessions. According to the 
posted timestamp, the first 12 months of data are used 
as the training data, and the remaining data are used 
for testing. Therefore, the training and testing data do 
not overlap. There were 81,295 sessions in the train-
ing set and 11,116 sessions in the test set.
Given the need to predict the best answerer and the 
reality that only a few users are responsible for the 
vast majority of answers in CQA, three user sets Dx 

were constructed based on the number of answers X 
provided by users in the training set (X = 10, 15, and 20 
in this work). As can be seen from Table 1, set D20 in-
cludes 2,977 users, indicating that these users provid-
ed at least 20 answers in this training set. Moreover, 
for each of the 8371 training questions, the question-
er, the best answerer, and at least one other answerer 
are among these 2977 users. For the 517 test ques-
tions, they were routed to these 2977 users.

Table 1
The summary of  three datasets

The Set 
Name

# of questions 
answered by 

user U

# of 
Users 

U

# of Training 
Questions 

QTrn

# of Test 
Questions 

QTst

D10 10 5,761 16,021 1,151

D15 15 3,971 11,177 746

D20 20 2,977 8,371 517

Ground Truth: The list of answerers in Dx who ac-
tually provided an answer to the test question is the 
ground truth in our experiment.
Creating Examples: To train the model, we need to 
create positive and negative examples. According to 
our collected data, a training set consists of threads 
(question, asker, best answer, best answerer, other an-
swers, other answerers ……). Following [1], if user ui is 
in the list of answerers of q (the list includes the best 
answerer and other answerers of one thread), we con-
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sider (q, ui) as a positive example; otherwise, we con-
sider (q, uj) as a negative example. We obtained 54,218 
positive training pairs for D10, 36,238 positive training 
pairs for D15, and 26,354 positive training pairs for 
D20. To train efficiently and reduce the training scale, 
we randomly select three non-answerers based on 
the NCE sampling strategy to construct the negative 
samples. The definitions of negative and positive ex-
amples are listed in Table 2.

Table 2 
Negative and positive examples for training

Question-User Pair Label/Class

(q, answerer1) Positive

(q, answerer2) Positive

… Positive

(q, answerern) Positive

(q, random-non-answerer1) Negative

(q, random-non-answerer2) Negative

(q, random-non-answerer3) Negative

4.2. Baseline Methods and Experimental 
Setting
Baseline Methods.To evaluate the performance of 
our proposed models, we use the following three dif-
ferent types of baselines for comparison: the tradi-
tional information retrieval model, topic-based mod-
el, and deep learning-based model.
1 Traditional IR model
TF-IDF: TF-IDF [27] is a standard measure of comput-
ing the importance and relevance of a word document 
based on the frequency of that word in the document 
and the inverse proportion of documents containing 
the word over the entire document corpus. For the 
question routing and expert finding task, we represent 
the posted question and user profile as vectors of their 
TF-IDF weights and then calculate the cosine similari-
ty between each user profile and question vector.
2 Topic-based model
LDA: LDA [17] is a three-level hierarchical Bayesian 
model that has been widely applied to address the 
term mismatch problem in IR. It mainly relies on word 
co-occurrence relationships and takes semantic in-

formation into account. In our experiments, all ques-
tions answered by a user are concatenated to build the 
user profile. We use Gibbs-LDA++ [14] with topic size 
K=100 to conduct LDA training. We set the LDA hy-
per-parameters α = 0.5 and β = 0.1, respectively.
MLQR: MLQR [6] is a multi-objective learning-to-
rank approach in which a tag-word topic model was 
proposed and applied to address the question routing 
problem. In this experiment, we set the number of 
topics K = 80, α = 0.7, β = 0.01, and γ = 0.01. Gibbs Sam-
pling is run for 1000 iterations.
3 Deep learning-based model
QR-DSSM: QR-DSSM [1] is a typical deep neural Si-
amese Network based on DSSM [11] to capture the 
semantic similarity between the profiles of the can-
didates and the posted question. In our experiment, 
to facilitate subsequent comparisons, we use GloVe 
embedding to represent the sequence instead of using 
the word hash embedding method. The code blocks 
are removed from the dataset. The number of itera-
tions of the neural network is 100, and the learning 
rate is 0.02.
CNN-based method: A CNN-based method [31] treats 
question routing as a classification problem and takes 
the best answerer of each question as a positive train-
ing example as well as the ground truth. We adopt the 
CNN-non-static [13] to capture the semantics of the 
text for best answerer prediction, which uses filter 
windows of 3, 4, and 5 with 100 feature maps each. 
The dropout rate is 0.5, and the mini-batch size is 50.
Experimental Setting. We use the English uncased 
BERT-Base model released by Google, which has 12 
layers, 768 hidden states, and 12 heads. Models are 
implemented with TensorFlow using TPUs. Regard-
ing the selection of hyperparameters, we fixed some 
empirically, such as choosing the Adam weight decay 
optimizer for the optimization with L2 weight decay 
of 0.01, β1 = 0.9, and β2 = 0.999. The dropout proba-
bility is always kept at 0.1. Some hyperparameters 
were set to different values during the training and 
were chosen according to their impact on perfor-
mance. The initial learning rate and batch size are 
set to [1e-3, 2e-5, 1e-7] and [16, 32, 64], respectively. 
In the tag-word topic model, we set α=0.8, β=0.01, and 
γ=0.01. The number of topics varies from 20 to 90. In 
addition, since the randomness of the parameter ini-
tialization leads to different results each time, we av-
eraged the results for 10 runs.
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4.3. Evaluation Metrics
The evaluation criteria measure how well the sys-
tem ranks the correct pair (q, answereri) against the 
other random candidates for the same question (q, 
random-non-answererj). Therefore, we adapt sever-
al standard metrics for expert finding and question 
routing to evaluate the performance as follows.
1 Precision at N (P@N): The precision at N reports 

the percentage of predicted positive users/experts 
observed at the top N retrieved results. In other 
words, it is the ratio of the number of positive us-
ers to the total number of candidates until N. For 
example, Precision@1(P@1) aims to compute the 
percentage of times the system ranks the correct 
answerers as the top item. More specifically, if our 
model returns 10 users for a given question, the rel-
evant users are ranked at 1, 2, 4, 6, and 9. Then, the 
P@5 is 3/5 and the P@10 is 5/10 in this case.

2 Mean Reciprocal Rank (MRR): The MRR com-
putes the inverse of the rank of the correct answer-
er among other answerers averaged for all queries. 
Alternatively, we can describe it as reflecting the 
average ranking of the actual answerer’s first ap-
pearance in a given test set question. For a given 
query set Q, we use the following formula to calcu-
late MRR.

12 

to their impact on performance. The initial learning rate and batch size are set to [1e-3, 2e-5, 1e-7] and [16, 32, 
64], respectively. In the tag-word topic model, we set α=0.8, β=0.01, and γ=0.01. The number of topics varies 
from 20 to 90. In addition, since the randomness of the parameter initialization leads to different results each 
time, we averaged the results for 10 runs. 

4.3 Evaluation Metrics 
The evaluation criteria measure how well the system ranks the correct pair (q, answereri) against the other 
random candidates for the same question (q, random-non-answererj). Therefore, we adapt several standard 
metrics for expert finding and question routing to evaluate the performance as follows. 
(1) Precision at N (P@N): The precision at N reports the percentage of predicted positive users/experts 
observed at the top N retrieved results. In other words, it is the ratio of the number of positive users to the total 
number of candidates until N. For example, Precision@1(P@1) aims to compute the percentage of times the 
system ranks the correct answerers as the top item. More specifically, if our model returns 10 users for a given 
question, the relevant users are ranked at 1, 2, 4, 6, and 9. Then, the P@5 is 3/5 and the P@10 is 5/10 in this 
case. 
(2) Mean Reciprocal Rank (MRR): The MRR computes the inverse of the rank of the correct answerer among 
other answerers averaged for all queries. Alternatively, we can describe it as reflecting the average ranking of 
the actual answerer’s first appearance in a given test set question. For a given query set Q, we use the following 
formula to calculate MRR. 

𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  1
𝑁𝑁𝑁𝑁

 ∑ 1
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗

𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1 ,            (19) 

where N is the number of queries and rankj is the position of the correct answerer. 
(3) Mean Average Precision (MAP): The MAP shows the overall retrieval quality score, which is the arithmetic 
mean of the average precision score for each test set question. 

 
 
5 Experiment Results and Analysis 
This section presents the effectiveness of our proposed models on question routing tasks comparing three types 
of different models over our dataset. 

Table 3 Comparison of different methods for question routing（X=10） 

Model 
Type 

Model Name 
D10 

P@5 P@10 MRR MAP 
Traditional IR TF-IDF 0.0251 0.0159 0.0558 0.0281 

Topic-based 
LDA 0.0358 0.0230 0.0820 0.0386 

MLQR 0.0657 0.0411 0.1522 0.0699 

Deep-learning 
QR-DSSM 0.1033 0.0568 0.2035 0.0957 
CNN-based 0.0927 0.0701 0.2244 0.1017 

Proposed 
QR-BERTrep 0.1629 0.1225 0.3223 0.1881 
QR-BERTint 0.1771 0.1208 0.3168 0.2019 

QR-tBERTint 0.1935 0.1487 0.3592 0.2407 

Table 4 Comparison of different methods for question routing（X=15） 

Model 
Type 

Model Name 
D15 

P@5 P@10 MRR MAP 
Traditional IR TF-IDF 0.0315 0.0200 0.0645 0.0321 
Topic-based LDA 0.0431 0.0268 0.0895 0.0439 

 
, (19)

where N is the number of queries and rankj is the 
position of the correct answerer.

3 Mean Average Precision (MAP): The MAP shows 
the overall retrieval quality score, which is the 
arithmetic mean of the average precision score for 
each test set question.

5. Experiment Results and Analysis
This section presents the effectiveness of our pro-
posed models on question routing tasks comparing 
three types of different models over our dataset.

5.1. Performance Analysis of Our Proposed 
Model Compared to Baseline Models
The results are summarized in Tables 3-5. We can 
see that all BERT-based models perform much better 
than the existing traditional retrieval models and the 
recently proposed neural network-based models. In 
detail, several main observations can be concluded 
from these tables.
1 Topic-based models exhibit much better perfor-

mance than the traditional information retrieval 
approaches. This finding suggests that semantic 
understanding is important in the question routing 
task of text-based analysis. Approaches that rely on 
lexical matching without any text semantics have 
significant limitations. Moreover, MLQR consis-
tently performs better than the LDA model, which 

Table 3
Comparison of different methods for question routing (X=10)

Model
Type Model Name

D10

P@5 P@10 MRR MAP

Traditional IR TF-IDF 0.0251 0.0159 0.0558 0.0281

Topic-based
LDA 0.0358 0.0230 0.0820 0.0386

MLQR 0.0657 0.0411 0.1522 0.0699

Deep-learning
QR-DSSM 0.1033 0.0568 0.2035 0.0957

CNN-based 0.0927 0.0701 0.2244 0.1017

Proposed

QR-BERTrep 0.1629 0.1225 0.3223 0.1881

QR-BERTint 0.1771 0.1208 0.3168 0.2019

QR-tBERTint 0.1935 0.1487 0.3592 0.2407
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Table 4
Comparison of different methods for question routing (X=15)

Model
Type Model Name

D15

P@5 P@10 MRR MAP

Traditional IR TF-IDF 0.0315 0.0200 0.0645 0.0321

Topic-based
LDA 0.0431 0.0268 0.0895 0.0439

MLQR 0.0813 0.0509 0.1776 0.0798

Deep-learning
QR-DSSM 0.1078 0.0662 0.2291 0.1093

CNN-based 0.1173 0.0813 0.2616 0.1193

Proposed

QR-BERTrep 0.1863 0.1477 0.3556 0.2312

QR-BERTint 0.2111 0.1724 0.3561 0.2296

QR-tBERTint 0.2324 0.2112 0.3905 0.2723

Table 5
Comparison of different methods for question routing (X=20)

Model
Type Model Name

D20

P@5 P@10 MRR MAP

Traditional IR TF-IDF 0.0312 0.0195 0.0687 0.0353

Topic-based
LDA 0.0445 0.0279 0.0967 0.0493

MLQR 0.0861 0.0551 0.1914 0.0899

Deep-learning
QR-DSSM 0.1158 0.0751 0.2492 0.1279

CNN-based 0.1271 0.0965 0.2897 0.1637

Proposed

QR-BERTrep 0.2226 0.1935 0.4156 0.2468

QR-BERTint 0.2562 0.2377 0.4440 0.2595

QR-tBERTint 0.2920 0.2797 0.5012 0.2894

indicates that taking advantage of the corpus-level 
topic information is quite effective for semantic 
understanding and can relieve the data sparsity 
problem in the question routing task.

2 Deep learning-based methods can significantly 
improve performance. These approaches main-
ly benefit from distributed word embeddings 
and efficient neural networks, which can capture 
more contextual semantic information through 
deeper and trainable architectures. Specifically, 
in Table 5, QR-DSSM achieves the best MRR of 
0.2492, meaning that the question could be rout-
ed to only 5 users on average to obtain an answer, 
while LDA requires at least 11 users and MLQR re-

quires at least 6 users. Moreover, the mean average 
precision of QR-DSSM is almost 42.26% higher 
than that of MLQR, and the CNN-based method 
achieved better performance than QR-DSSM, but 
the improvement was insignificant. This indicates 
that the CNN-based method has the ability to cap-
ture more contextual information and select more 
discriminative features through the exquisite con-
volutional layers.

3 The two methods we proposed significantly sur-
pass all baseline methods on our datasets in terms 
of all metrics. This result is encouraging and in-
dicates that our models are quite effective in ad-
dressing the question routing task. Specifically, 
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the best mean average precision of QR-BERTrep 
and QR-tBERTint is nearly 1.75 times and 2.22 
times higher than MLQR, respectively. Moreover, 
QR-tBERTint proved its remarkable superiority 
over the neural baseline model QR-DSSM and the 
CNN-based method in modeling the semantic sim-
ilarity and sequence relationship jointly. In Table 
5, when X=20, the best value of MRR achieved by 
QR-tBERTint is 0.5012, which indicates that each 
test question will be answered if we route it to the 
top 2 users on average. In contrast, QR-DSSM re-
quires at least 5 users, and the CNN-based model 
requires at least 4 users.

4 From Tables 3-5, we can observe that the D20 set 
achieves better results than the D15 set, and the D15 
set achieves better results than the D10 set. This in-
dicates that fewer negative samples can lead to bet-
ter results in our dataset. 

5 In addition, we note that the absolute values of mod-
el performance are relatively low in all three tables. 
We summarize the main reasons for this as follows. 
First, CQA faces a serious data sparsity problem, 
which leads to insufficient text for question mod-
eling and user modeling. Not only the text lengths 
of the questions and answers are short, but we also 
can see from Table 1 that the number of questions is 
much larger than the number of answerers. With an 
average of only a few user comments per question 
and a very low average number of answers posted 
per user, the reality is that most users are not ac-
tive in CQA. Second, we constructed our dataset 

by including the 21 most frequent tags, rather than 
including only a few tags. This makes our dataset 
more generalizable, but also more diverse in terms 
of the topics for which information is searched. As 
a result, finding the right expert to answer a specific 
question can be very challenging. Third, Stack Over-
flow is a vertical community Q&A with a complex 
composition of data, including code snippets, tables, 
domain-specific terms, and a few other discrete 
pieces of text. All of these factors contribute to the 
low absolute value of performance data.

5.2. Analysis of Representation-based 
Methods and Interaction-based Methods
As mentioned before, our proposed two BERT-based 
models, QR-BERTint and QR-tBERTrep, are both very 
effective on our dataset compared with three types of 
baselines. In this section, we will analyze their differ-
ences in more depth, and the performance compari-
son is shown in Figure 3.
As indicated in Figure 3, the topic-enhanced interac-
tion-based model QR-tBERTint performs much better 
than representation-based models QR-DSSM and 
QR-BERTrep. In addition, QR-tBERTint significant-
ly exceeds QR-BERTrep with a maximum increase of 
31.17% in p@5 and 44.54% in p@10, respectively. The 
main reasons can be summarized as follows: First, 
QR-tBERTint takes into account the interaction be-
tween sequences by connecting questions and user 
profiles in pairs as input, so that the hierarchical rela-
tionship between questions and profiles can be learned 

Figure 3 
Performance comparison of QR-DSSM, QR-BERTint and QR-tBERTrep
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can be summarized as follows: First, QR-tBERTint takes into account the interaction between sequences by 
connecting questions and user profiles in pairs as input, so that the hierarchical relationship between questions 
and profiles can be learned as an essential feature of matching. In contrast, QR-BERTrep encodes the question 
sequence and profile sequence separately so that the interaction between the two sequences is deferred to the 
end of the matching process, risking the loss of details important for matching. Second, QR-tBERTint takes the 
fine-tuning strategy to learn cross-attention between terms by directly using Transformers located in BERT. 
In contrast, QR-BERTrep only uses the pre-trained network to construct sequence representations. Third, the 
tag-word topic model can provide corpus-level information to enhance the understanding of the semantic 
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as an essential feature of matching. In contrast, QR-BERTrep 
encodes the question sequence and profile sequence separately 
so that the interaction between the two sequences is deferred to 
the end of the matching process, risking the loss of details im-
portant for matching. Second, QR-tBERTint takes the fine-tun-
ing strategy to learn cross-attention between terms by directly 
using Transformers located in BERT. In contrast, QR-BERTrep 
only uses the pre-trained network to construct sequence rep-
resentations. Third, the tag-word topic model can provide cor-
pus-level information to enhance the understanding of the se-
mantic relevance of the text.

5.3. Analysis of Tag-word Topic Representation Module
From Tables 3-5, we can see that combining tag-word topics 
can consistently improves the question routing performance 
across all metrics for all datasets. Specifically, without the tag-
word topic model, the performance of QR-BERTint decreases by 
11.41% and 10.33% in MRR and MAP, respectively, compared 
to QR-tBERTint. The main reason we summarize is that Stack 
Overflow is a programming-specific Q&A community, where the 
ability to detect domain-specific terms is crucial for text seman-
tic understanding and matching. However, the pre-training of 
BERT is based on general domain knowledge and is likely to fail 
to learn domain-specific words related to programming. Here, 
the tag-word topic model could serve as an additional source for 
dataset-specific information. Our findings are consistent with a 
lot of previous work that also confirms the effectiveness of in-
corporating topic models when dealing with semantic related 
tasks in specific knowledge domains, such as sentiment analysis 
in Microblogs [22] and machine translation [5].

5.4. Contextualized Embedding vs. Traditional Word 
Embedding
In this section, the proposed QR-BERTrep model is compared 
with the baselines in terms of word embedding representation, 
which is a crucial part that affects the performance of the repre-
sentation-based models. To explore the respective effects of con-
textualized embedding and word embedding, we conducted an 
ablation experiment called QR-BERTrep(WG) in which the GloVe 
embedding was removed. The performance comparison of differ-
ent representation-based models is shown in Figure 4.
It can be seen that the methods using distributed word rep-
resentation perform much better than the methods that rep-
resent the words in a sentence as a “bag of words”. Therefore, 
TF-IDF has the lowest MRR and MAP. In addition, we can see 
that neural rankers such as QR-DSSM and CNN-based models 
are greatly facilitated by using pre-trained word embeddings 
(e.g., Word2Vec or GloVe) for sequence representation. In  
QR-BERTrep, we concatenate the GloVe embedding and con-

Figure 4
The performance comparison of different 
representation-based models
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It can be seen that the methods using distributed word representation perform much better than the methods 
that represent the words in a sentence as a "bag of words". Therefore, TF-IDF has the lowest MRR and MAP. 
In addition, we can see that neural rankers such as QR-DSSM and CNN-based models are greatly facilitated 
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BERTrep, we concatenate the GloVe embedding and contextualized embedding together, the performance is 
dramatically boosted, almost doubling that of QR-DSSM. This result is consistent with previous observations 
in [19, 16], indicating that using contextualized language term embedding for text understanding and matching 
is very effective. 
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Although we have made some progress in our work, in future work we would like to introduce more QA 
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connected accounts on social networking sites) to enhance the performance. Moreover, taking advantage of 
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textualized embedding together, the performance is 
dramatically boosted, almost doubling that of QR-
DSSM. This result is consistent with previous obser-
vations in [19, 16], indicating that using contextual-
ized language term embedding for text understanding 
and matching is very effective.

6. Conclusions
In this paper, we explore two different ways to address 
the question routing task for CQA based on a pre-
trained contextual language model. QR-tBERTint is 
an interaction-based model that takes question-pro-
file pairs as input and fine-tunes BERT to capture the 
relationship between sequence pairs. In addition, a 
tag-word topic model is incorporated as an additional 
source of dataset-specific information. QR-BERTrep is 
a representation-based model that combines contex-
tualized embedding with traditional static word em-
bedding to enhance the representation for semantic 
understanding and matching.

Experimental results on real-world data demonstrat-
ed that both of our proposed models greatly exceed 
state-of-the-art baselines. The best result indicates 
that a question will be answered if it is routed to the 
top 2 candidates. QR-BERTrep exceeds all representa-
tion-based baselines discussed in this paper, showing 
that contextualized word embedding can carry rich-
er semantic information to enhance the representa-
tion in our task. Meanwhile, QR-tBERTint performs 
much better than QR-BERTrep, which indicates that 
the question routing task benefits from sequence re-
lationship learning and corpus-level topical semantic 
information. 
Although we have made some progress in our work, in 
future work we would like to introduce more QA fea-
tures (e.g., reputation, the willingness of experts) or 
non-QA features (e.g., number of followers and con-
nected accounts on social networking sites) to enhance 
the performance. Moreover, taking advantage of the 
knowledge graph to improve the effectiveness of ques-
tion routing is a very interesting work for the future.
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