
789Information Technology and Control 2023/3/52

Deep Semantic Understanding
and Sequence Relevance
Learning for Question Routing in
Community Question Answering

ITC 3/52
Information Technology
and Control
Vol. 52 / No. 3 / 2023
pp. 789-805
DOI 10.5755/j01.itc.52.3.33449

Deep Semantic Understanding and Sequence Relevance Learning for
Question Routing in Community Question Answering

Received 2023/02/20 Accepted after revision 2023/05/25

HOW TO CITE: Li, H., Li, J., Li, G., Wang, C., Cao, W., Chen, Z. (2023). Deep Semantic Understanding
and Sequence Relevance Learning for Question Routing in Community Question Answering.
Information Technology and Control, 52(3), 789-805. https://doi.org/10.5755/j01.itc.52.3.33449

Corresponding author: li0405@hust.edu.cn

Hong Li
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074,
China; e-mail: lilyhong420@hbut.edu.cn
College of Computer Science and Technology, Hubei University of Technology, Wuhan 430068, China

Jianjun Li
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074,
China; e-mail: li0405@hust.edu.cn

Guohui Li
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074,
China; e-mail: guohuili@hust.edu.cn

Chunzhi Wang
College of Computer Science and Technology, Hubei University of Technology, Wuhan 430068, China;
e-mail: chunzhiwang@163.com

Wenjun Cao
Hubei Key Laboratory of Solar Energy Efficient Utilization and Energy Storage Operation Control, Hubei
University of Technology, Wuhan 430068, China; e-mail: 102010322@hbut.edu.cn

Zixuan Chen
College of Computer Science and Technology, Hubei University of Technology, Wuhan 430068, China;
e-mail: 2110311226@hbut.edu.cn

Information Technology and Control 2023/3/52790

Question routing (QR) aims to route newly submitted questions to the potential experts most likely to pro-
vide answers. Many previous works formalize the question routing task as a text matching and ranking prob-
lem between questions and user profiles, focusing on text representation and semantic similarity computa-
tion. However, these works often fail to extract matching features efficiently and lack deep contextual textual
understanding. Moreover, we argue that in addition to the semantic similarity between terms, the interactive
relationship between question sequences and user profile sequences also plays an important role in match-
ing. In this paper, we proposed two BERT-based models called QR-BERTrep and QR-tBERTint to address these
issues from different perspectives. QR-BERTrep is a representation-based feature ensemble model in which we
integrated a weighted sum of BERT layer outputs as an extra feature into a Siamese deep matching network,
aiming to address the non-context-aware word embedding and limited semantic understanding. QR-tBERTint

is an interaction-based model that explores the interactive relationships between sequences as well as the se-
mantic similarity of terms through a topic-enhanced BERT model. Specifically, it fuses a short-text-friendly
topic model to capture corpus-level semantic information. Experimental results on real-world data demon-
strate that QR-BERTrep significantly outperforms other traditional representation-based models. Meanwhile,
QR-tBERTint exceeds QR-BERTrep and QR-BERTint with a maximum increase of 17.26% and 11.52% in MAP,
respectively, showing that combining global topic information and exploring interactive relationships between
sequences is quite effective for question routing tasks.
KEYWORDS: Community question answering, BERT, Question routing, Contextual language embedding,
Topic model.

1. Introduction
Community Question Answering (CQA) is an on-
line service that enables users to post questions and
obtain answers from other users, which has proven
to be a very effective way of sharing knowledge and
experience. Recently, with the increasing number of
questions that cannot be answered in time, much con-
cern has arisen over the efficiency and answer quali-
ty of CQA services [28]. Therefore, routing the newly
posted question to the right user for quick and accu-
rate answer is an important strategy to maintain user
engagement and the vibrancy of the CQA platform.
Modeling the similarities and relevance between
users’ profiles and questions is critical in the textu-
al content-based question routing approaches. User
modeling is generally based on the user’s historical
answer record, and all the answers provided by the
user in the past are collected to form the user’s pro-
file. When we treat users’ profiles as documents and
questions as queries, the question routing task can be
viewed as a classic text matching and ranking prob-
lem [24]. Finding and sorting documents that match
the query is equivalent to finding the best expert who
can answer the question.
Text understanding plays a vital role in matching
and ranking. Traditional methods mainly include

language models and topic models, which heavily
rely on lexical overlap or word co-occurrence [4, 38].
However, these methods have very limited text un-
derstanding ability and are usually unable to capture
deep and complex semantics efficiently, leading to
unsatisfactory results. Recently, along with the rap-
id development of distributed word embedding and
deep learning, neural ranking networks have been ap-
plied to question routing tasks [25, 36, 1, 31, 15]. Most
of these neural models are representation-based that
first turn the question and user profile into vectors
using word embedding (Word2Vec [21], GloVe [24]),
and then use a typical neural network (e.g., CNNs or
RNNs) to extract patterns and construct dense mean-
ingful feature vectors separately. Finally, the seman-
tic similarity is calculated for further ranking.
Although existing deep neural representation-based
methods have achieved promising performance, they
have several shortcomings: First, traditional word em-
bedding is static, which means it fails to distinguish the
term’s meaning in different scenarios [9]. Second, fea-
ture extractors are mainly based on CNNs or LSTMs,
however, CNN-based methods [36, 37] usually have a
limited receptive field to capture long-distance depen-

791Information Technology and Control 2023/3/52

dencies, and LSTM-based methods [7] are difficult to
parallelize. Third, they mainly focus on matching the
semantic similarity level while ignoring sequence in-
teractions. In fact, text matching is very complicated
in CQA, the relationships between the two sequences
are also important factors in matching. For the spe-
cific task of question routing, matching questions and
users can be seen as matching questions and answers
since the user’s profile is composed of answers. In gen-
eral, questions and answers not only share terms and
topics, but are often logically connected, and exploring
the semantic similarity of terms alone is not enough to
achieve good matching performance.
Recently, the pre-trained bidirectional contextual
language model BERT [8] has brought unprecedented
performance gains in text understanding tasks, and
we expect to adopt it to improve the performance of
question routing in community Q&A as well. Howev-
er, there are some special challenges that need to be
addressed. First, the low average participation rate of
users and the relatively short length of questions in
Q&A communities lead to severe data sparsity prob-
lems, which result in insufficient textual content for
user modeling and question modeling. According to
studies [18, 20], most answers come from very few
users, in Quora, a well-known community Q&A web-
site, 90% of the questions got less than 10 answers,
more than 30% of users did not answer any questions,
and only 16.74% of users answered more than 4 times
[30]. Second, modeling the similarities and relevance
between question-user pairs is challenging due to a
large number of domain-specific terms and the fact
that there is little direct lexical overlap between ques-
tion sequences and user profile sequences.
Based on the above analysis, in this paper, we propose
two novel models from different perspectives to ad-
dress the question routing task: a tag-word topic-en-
hanced interaction-based method called QR-tBERTint
and a combined representation-based model called
QR-BERTrep. Specifically, in QR-tBERTint, we take
questions and user profiles as query-document pairs,
and they are concatenated into a longer sequence as
input. By fine-tuning BERT on our task-specific data-
set, contextual semantic learning and question-pro-
file pair relationship exploration are integrated into
a unified model. In addition, we innovatively incor-
porate a tag-word topic model to handle domain-spe-
cific terms in QR-tBERTint. And in another model

QR-BERTrep, we incorporate the contextualized em-
beddings learned from the pre-trained model into an
existing Siamese deep learning-based matching mod-
el to enhance the semantic understanding.
The main contributions of this paper are as follows:
 _ We propose two novel BERT-based deep neural

models to solve the question routing task from
different perspectives: representation-focused
and interaction-focused. Specifically, we adopt
different strategies for modeling similarities
between questions and user profiles in different
models and propose to explore the interactive
relationships between question sequences and
user profile sequences. Our research can provide
experiences and references for other domain-
specific text understanding tasks in CQA.

 _ We incorporate a corpus-level tag-word topic
model to learn the global matching feature and
topic semantic information in QR-tBERTint to help
handle domain-specific cases, and we combine the
contextualized embeddings with the traditional
word embeddings to construct more meaningful
representations in QR-BERTrep to enhance the
matching performance.

 _ We conducted a detailed experimental study using
a real-world dataset from Stack Overflow. We
evaluated the performance of our two methods and
compared them with several baseline approaches.
The experimental results show that our approaches
yield satisfactory performance and significantly
outperform the baseline approaches.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the related work. Section 3 details
the proposed two models. In Section 4, we present our
dataset and experimental setting. Finally, we present
our experimental results and discussion in Section 5.
Section 6 concludes this paper.

2. Related Work
2.1. Question Routing
Question routing is a fundamental task that has been
widely studied in social communities and is also re-
ferred to as expert finding or expert recommendation
in many studies. Statistical language models [4, 3, 40]
and topic models [39, 32] have played an essential role
for a long time. Although they can solve question rout-

Information Technology and Control 2023/3/52792

ing tasks, they all lack deep textual understanding and
fail to capture complex semantic features.
Recently, deep learning technologies have brought
a revolutionary way to solve question routing issues
with more concise and efficient architectures [25, 36,
1, 31, 15]. A method to directly apply deep neural net-
works to question routing was proposed by Azzam et
al. [1] based on Deep Semantic Similarity Model [11].
In this model, questions and the users’ profiles are
mapped to a low-dimensional semantic space through
a deep neural network, and the similarity score is
computed using the cosine similarity function. Lat-
er, CNNs and LSTMs were gradually introduced into
the NLP field, bringing significant improvements.
Wang et al. [31] designed a variant of CNN architec-
ture to capture the semantics of the text for expert
recommendation tasks. Chen et al. [37] described an
effective convolutional neural network with three fil-
ters of different sizes to learn the representations of
questions and answers to identify experts. In another
work [36], the LSTM(long-short term memory) [10]
network has been employed to learn the question em-
bedding instead of CNN in the Quora dataset. More
recently, Li et al. [15] proposed to combine the embed-
ding of the question raiser learned by a heterogeneous
information network representation algorithm with
the embedding of the question content to enhance the
characterization of the question.
However, the performance of these representa-
tion-based deep learning methods often suffers from
data sparsity and inefficient feature extraction. In
addition, they encode the question and the user’s pro-
file as two separate sequences, facing the risk that
the interaction between the text sequences could be
ignored. Different from the above studies, in this pa-
per, we not only incorporate contextualized embed-
dings obtained from an efficient self-attentive mech-
anism-based feature extractor into traditional word
embeddings to improve representation performance
but also propose to explore the interactive relation-
ships between question and user sequences in addi-
tion to focusing on text semantic learning.

2.2. Pre-training Language Models
The pre-training language model aims to learn word
embeddings or representations with prior semantic
knowledge by performing pre-training tasks from a
large number of unlabeled corpora. Researchers from
the Google company released an exciting bidirection-

al language representation model BERT [8], aiming to
solve the unidirectional constraints in GPT [26] and
extend the model to multi-layer bidirectional Trans-
former [29] blocks, achieving the best performance
in many NLP tasks such as machine translation, text
classification, and question retrieval.
Many recent works have also introduced BERT to
solve question routing or expert recommendation
tasks and achieved relatively good results beyond the
traditional approaches. However, these works mainly
use pre-trained BERT models as encoders and feature
extractors, and the potential of BERT models is not
fully exploited, which has a limited effect on improv-
ing the overall question routing performance. For ex-
ample, Zhang et al. [35] conducted a Temporal Con-
text-aware Question Routing model in which BERT is
only used to encode the question content. Peinelt et
al. [23] proposed a semantic enhancement approach
that combines BERT embeddings with LDA-based
topics for semantic similarity prediction on the Quo-
ra dataset, which achieves better performance than
vanilla BERT. However, the above approach cannot
be directly applied to our task due to the need to learn
programming-specific terms in our dataset and the
fact that the length of the questions is too short which
leads to difficulty in topic derivation. Therefore, we
use a more targeted topic model, the tag-word topic
model, to learn specific domain terms and provide
corpus-level semantic information.

3. Our Proposed Models for Question
Routing
In this section, we will describe two BERT-based
models named QR-BERTrep and QR-tBERTint to ad-
dress the question routing task. In brief, QR-BERTrep
designs a feature ensemble method in which each text
sequence goes through the pre-trained BERT net-
work separately. Then, the outputs by the last four
highest-level Transformer layers corresponding to
each input token in different positions are extract-
ed as additional textual features and incorporated
into a Siamese neural matching network. Compared
to QR-BERTrep, QR-tBERTint concatenates two text
sequences to a longer sequence and adopts a more
flexible way by fine-tuning to learn the interaction
between questions and users from the beginning. In

793Information Technology and Control 2023/3/52

Figure 1
The overall framework of the topic-enhanced interaction-based model QR-tBERTint

Figure 2
The overall framework of the contextualized representation-based model QR-BERTrep

5

features and incorporated into a Siamese neural matching network. Compared to QR-BERTrep, QR-tBERTint
concatenates two text sequences to a longer sequence and adopts a more flexible way by fine-tuning to learn
the interaction between questions and users from the beginning. In addition, it combines a tag-word topic
model to enhance the semantic understanding and handle the domain-specific terms.

Input Q-P Pair

 Word Piece
Embeddings

V[CLS] VQ VQ V[SEP] VP VP V[SEP]

Position
Embeddings

Segment
Embeddings

SA SA SA SA SB SB SB

P1 P2 PN+1

Transformer
Encoder Blocks

L layers

�
+

�

�

+

++

�

�

�

PN+2 PN+3 PN+M+1 PK

Question Sequence: Q User Profile Sequence: P

� �

ę ę

S T1 TN T[SEP]� �

Concatenate

Ranking Results For esch q:
u1,u2,...uk

[CLS]

Trm

[SEP] [SEP]QT1 QTN PT1 PTM

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm

Trm
BERT

T[SEP]T1' TM'Contextualized
 word Representation

Input
Embeddings E[CLS] EQ1 E[SEP] EP1 EPM E[SEP]EQN

Tag-aware
Topic Model

TQ TP

MLP

Output Layer

All questions for which
user ui has provided the

best answer

Tags

Domain-specific
Information

Words

+

 Figure 1 The overall framework of the topic-enhanced interaction-based model QR-tBERTint

6

Input Q-P Pair Question Sequence

Layer1
BERT

Encoder

Layer2

Layer(L-1)

Layer(L-2)

Layer(L-3)

...

Layer L

Contextual
Embedding GloVe(s)

User Profile Sequence

Layer1

Layer2

Layer(L-1)

Layer(L-2)

Layer(L-3)

...

Layer L

Contextual
Embedding GloVe(s)

Fully Connected Hidden Layer

+ +

Fully Connected Hidden Layer

Pr (p |q)

q p

BERT
Encoder

Figure 2 The overall framework of the contextualized representation-based model QR-BERTrep

3.1 Community Question Answering: Stack Overflow
First, we introduce the necessary background of Stack Overflow, including the main characteristics and the
question-answering mechanism. There are several important components in a Q&A thread: (1) Questions are
the central element of Stack Overflow, which includes the title, body, and tags. The life cycle of a question
begins with an open state in which any user can provide an answer to the question. Subsequently, when the
questioner chooses the best answer, or other users choose the best answer by voting, the question is considered
solved and no more answers are received. (2) Answers are provided by different users and can be voted on by
other users. The more votes an answer receives, the higher the approval and the better the quality. In addition
to the best answer, all other answers are sorted in a thread in descending order of votes. (3) Best (Accepted)
Answer is selected by the questioner or selected by other users in which the answer received the largest number
of votes. Each question has only one best answer. It is at the top of the answer list. (4) Users include questioners
and respondents whose basic information is displayed under questions or answers related to them. (5) Tags are
assigned by the questioner and represent the knowledge area relevant to the question. A CQA website has
accumulated an enormous number of question-answer threads that provide a plethora of textual information
for us to explore.

3.2 Problem Statement
As detailed above, a CQA dataset is built upon the static archive of the CQA website, which preserves all the
question-answer threads accumulated over time. Let 𝑄𝑄𝑄𝑄 be a question set 𝑄𝑄𝑄𝑄 = {𝑞𝑞𝑞𝑞1, 𝑞𝑞𝑞𝑞2,… , 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛} (n is the number
of questions) and 𝑈𝑈𝑈𝑈 be an answerer set 𝑈𝑈𝑈𝑈 = {𝑢𝑢𝑢𝑢1,𝑢𝑢𝑢𝑢2, … ,𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗� (j is the number of users). For each answerer 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗, a
document 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is a combination of all the best answers provided by 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗, and 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is referred to as the profile of that
answerer.

Information Technology and Control 2023/3/52794

addition, it combines a tag-word topic model to en-
hance the semantic understanding and handle the do-
main-specific terms.

3.1. Community Question Answering: Stack
Overflow
First, we introduce the necessary background of
Stack Overflow, including the main characteristics
and the question-answering mechanism. There are
several important components in a Q&A thread:
1 Questions are the central element of Stack Over-

flow, which includes the title, body, and tags. The
life cycle of a question begins with an open state in
which any user can provide an answer to the ques-
tion. Subsequently, when the questioner chooses
the best answer, or other users choose the best an-
swer by voting, the question is considered solved
and no more answers are received.

2 Answers are provided by different users and can be
voted on by other users. The more votes an answer
receives, the higher the approval and the better the
quality. In addition to the best answer, all other an-
swers are sorted in a thread in descending order of
votes.

3 Best (Accepted) Answer is selected by the ques-
tioner or selected by other users in which the an-
swer received the largest number of votes. Each
question has only one best answer. It is at the top
of the answer list.

4 Users include questioners and respondents whose
basic information is displayed under questions or
answers related to them.

5 Tags are assigned by the questioner and represent
the knowledge area relevant to the question. A CQA
website has accumulated an enormous number of
question-answer threads that provide a plethora of
textual information for us to explore.

3.2. Problem Statement
As detailed above, a CQA dataset is built upon the stat-
ic archive of the CQA website, which preserves all the
question-answer threads accumulated over time. Let
Q be a question set Q = {q1, q2, ..., qn} (n is the number of
questions) and U be an answerer set U = {u1, u2, ..., uj} (j is
the number of users). For each answerer uj, a document
pi is a combination of all the best answers provided by uj,
and pi is referred to as the profile of that answerer.

Using the above notations, we formalize the question
routing task as a text match and ranking problem and
define it as follows: Given a newly posted question
q, let a set of C ∈ U be a candidate set C = {c1, c2, ..., ck}
(k is the number of candidates), and let a set of candi-
date profiles P = {p1, p2, ..., pk} We need to rank users in
C and route q to the highly ranked users, who are most
suitable to answer the question q with the required
knowledge. An essential part of this task is learning
the match patterns and capturing the relationships be-
tween question q and the profile of the candidate pi ∈ P.
Specifically, in our work, we need to estimate a score ri
of how relevant a candidate user’s pi is to a newly post-
ed question q or we need to calculate a probability Pr of
how likely a user’s profile pi is given the question q.

3.3. Tag-word Topic Enhanced Interaction-
based Approach: QR-tBERTint
In this section, we design a topic-enhanced BERT-
based model named QR-tBERTint for the question
routing task, the overall framework of which is illus-
trated in Figure 1. To learn the structural and textual
relevance, we assemble the question sequence and
user profile sequence into a longer text sequence and
encode it with the stacked Transformer blocks. We
take the special embedding of the first token in the
last layer as the fusion relevance representation of the
combined sequences. Meanwhile, a tag-word topic
model TTM [6] is adopted to derive high-quality top-
ics by building tag-word co-occurrence on the corpus
level, thereby helping to enhance the domain-specific
knowledge understanding and relieve the data spar-
sity problem. Based on previous studies which suc-
cessfully combined the corpus-level topic with neural
networks [23, 33, 22], we take the concatenation of
the sequence pair fusion representation S obtaining
form BERT and sequence-level topic representations
TQ and TP obtaining from the tag-word topic model
as the final representation F and send it to the next
task-specific ranking layers:

7

Using the above notations, we formalize the question routing task as a text match and ranking problem and
define it as follows: Given a newly posted question 𝑞𝑞𝑞𝑞, let a set of 𝐶𝐶𝐶𝐶 ∈ 𝑈𝑈𝑈𝑈 be a candidate set 𝐶𝐶𝐶𝐶 = {𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2,… , 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘} (k
is the number of candidates), and let a set of candidate profiles 𝑃𝑃𝑃𝑃 = {𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2, … , 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘}. We need to rank users in
𝐶𝐶𝐶𝐶 and route 𝑞𝑞𝑞𝑞 to the highly ranked users, who are most suitable to answer the question 𝑞𝑞𝑞𝑞 with the required
knowledge. An essential part of this task is learning the match patterns and capturing the relationships between
question 𝑞𝑞𝑞𝑞 and the profile of the candidate 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃. Specifically, in our work, we need to estimate a score 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 of
how relevant a candidate user’s 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is to a newly posted question 𝑞𝑞𝑞𝑞 or we need to calculate a probability 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟 of
how likely a user’s profile 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is given the question q.

3.3 Tag-word Topic Enhanced Interaction-based Approach: QR-tBERTint
In this section, we design a topic-enhanced BERT-based model named QR-tBERTint for the question routing
task, the overall framework of which is illustrated in Figure 1. To learn the structural and textual relevance,
we assemble the question sequence and user profile sequence into a longer text sequence and encode it with
the stacked Transformer blocks. We take the special embedding of the first token in the last layer as the fusion
relevance representation of the combined sequences. Meanwhile, a tag-word topic model TTM [6] is adopted
to derive high-quality topics by building tag-word co-occurrence on the corpus level, thereby helping to
enhance the domain-specific knowledge understanding and relieve the data sparsity problem. Based on
previous studies which successfully combined the corpus-level topic with neural networks [23, 33, 22], we
take the concatenation of the sequence pair fusion representation 𝑆𝑆𝑆𝑆 obtaining form BERT and sequence-level
topic representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 obtaining from the tag-word topic model as the final representation 𝐹𝐹𝐹𝐹 and send
it to the next task-specific ranking layers:

𝐹𝐹𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆 ,𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ,𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃), (1)

where 𝑆𝑆𝑆𝑆 ∈ ℝ𝑒𝑒𝑒𝑒, 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾, and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 . 𝐾𝐾𝐾𝐾 denotes the number of topics.
Corpus-level topic representation module. Topic models have been shown to provide additional information
to enhance text understanding and matching in earlier feature engineering-based models, and are particularly
effective for dealing with domain-specific terms [38, 32]. In recent years, many deep neural methods have
achieved impressive performance on many NLP tasks such as domain recommendation [33], semantic analysis
[23, 22], and machine translation [5] by combining topic models. However, extracting topics from relatively
short texts in CQA and constructing an efficient fusion model to combine the corpus-level topic information
is very challenging in the question routing task. According to the characteristics of Q&A threads described in
Section 3.1, we use the unsupervised learning tag-word topic model [6] to derive corpus-level topical
representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 for questions and users.
First, we construct a tag-word pool by combining a word and a tag. For example, a question with two tags
(𝐶𝐶𝐶𝐶1, 𝐶𝐶𝐶𝐶2) and three words (𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3) will generate six tag-words in the form of {(𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤3),
(𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤3)}. Second, by considering the entire corpus as a mixture of topics whose distribution
over topics comes from a Dirichlet allocation with priors α and assuming there are 𝐾𝐾𝐾𝐾 topics whose distribution
over tags and words are sampled from Dirichlet allocations with prior γ and β. The joint probability of a tag-
word can be formulated as:

𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗� = ∑ 𝑃𝑃𝑃𝑃(𝑘𝑘𝑘𝑘)𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘)𝑘𝑘𝑘𝑘 𝑃𝑃𝑃𝑃�𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗�𝑘𝑘𝑘𝑘� = ∑ 𝜃𝜃𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘𝜙𝜙𝜙𝜙𝑗𝑗𝑗𝑗|𝑘𝑘𝑘𝑘, (2)

where 𝑘𝑘𝑘𝑘 ∈ [1,𝐾𝐾𝐾𝐾] denotes a topic, 𝜃𝜃𝜃𝜃 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(α) denotes a topic distribution for the whole collection, 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘 ∽
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(γ) denotes a topic-specific tag distribution, and 𝜙𝜙𝜙𝜙𝑘𝑘𝑘𝑘 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(β) denotes a topic-specific word distribution.
We take the tag-word as the basic unit of the topic model and aggregate all tag-words from the whole corpus
for training. After obtaining the tag-word topic model, the question sequence and the user profile sequence are
passed to the topic model to infer topic-level embedding per sequence:

𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2 , … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁]) ∈ ℝ𝐾𝐾𝐾𝐾 , (3)

(1)

where S ∈ ℝe, TQ ∈ ℝK, and TP ∈ ℝK. K denotes the
number of topics.
Corpus-level topic representation module. Topic
models have been shown to provide additional infor-
mation to enhance text understanding and matching
in earlier feature engineering-based models, and are

795Information Technology and Control 2023/3/52

particularly effective for dealing with domain-specif-
ic terms [38, 32]. In recent years, many deep neural
methods have achieved impressive performance on
many NLP tasks such as domain recommendation
[33], semantic analysis [23, 22], and machine trans-
lation [5] by combining topic models. However, ex-
tracting topics from relatively short texts in CQA and
constructing an efficient fusion model to combine the
corpus-level topic information is very challenging in
the question routing task. According to the character-
istics of Q&A threads described in Section 3.1, we use
the unsupervised learning tag-word topic model [6]
to derive corpus-level topical representations TQ ∈ ℝK
and TP ∈ ℝK for questions and users.
First, we construct a tag-word pool by combining a
word and a tag. For example, a question with two tags
(t1, t2) and three words (w1, w2, w3) will generate six
tag-words in the form of {(t1, w1), (t1, w2), (t1, w3), (t2,
w1), (t2, w2), (t2, w3)}. Second, by considering the entire
corpus as a mixture of topics whose distribution over
topics comes from a Dirichlet allocation with priors
α and assuming there are K topics whose distribution
over tags and words are sampled from Dirichlet allo-
cations with prior γ and β. The joint probability of a
tag-word can be formulated as:

7

Using the above notations, we formalize the question routing task as a text match and ranking problem and
define it as follows: Given a newly posted question 𝑞𝑞𝑞𝑞, let a set of 𝐶𝐶𝐶𝐶 ∈ 𝑈𝑈𝑈𝑈 be a candidate set 𝐶𝐶𝐶𝐶 = {𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2,… , 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘} (k
is the number of candidates), and let a set of candidate profiles 𝑃𝑃𝑃𝑃 = {𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2, … , 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘}. We need to rank users in
𝐶𝐶𝐶𝐶 and route 𝑞𝑞𝑞𝑞 to the highly ranked users, who are most suitable to answer the question 𝑞𝑞𝑞𝑞 with the required
knowledge. An essential part of this task is learning the match patterns and capturing the relationships between
question 𝑞𝑞𝑞𝑞 and the profile of the candidate 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃. Specifically, in our work, we need to estimate a score 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 of
how relevant a candidate user’s 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is to a newly posted question 𝑞𝑞𝑞𝑞 or we need to calculate a probability 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟 of
how likely a user’s profile 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is given the question q.

3.3 Tag-word Topic Enhanced Interaction-based Approach: QR-tBERTint
In this section, we design a topic-enhanced BERT-based model named QR-tBERTint for the question routing
task, the overall framework of which is illustrated in Figure 1. To learn the structural and textual relevance,
we assemble the question sequence and user profile sequence into a longer text sequence and encode it with
the stacked Transformer blocks. We take the special embedding of the first token in the last layer as the fusion
relevance representation of the combined sequences. Meanwhile, a tag-word topic model TTM [6] is adopted
to derive high-quality topics by building tag-word co-occurrence on the corpus level, thereby helping to
enhance the domain-specific knowledge understanding and relieve the data sparsity problem. Based on
previous studies which successfully combined the corpus-level topic with neural networks [23, 33, 22], we
take the concatenation of the sequence pair fusion representation 𝑆𝑆𝑆𝑆 obtaining form BERT and sequence-level
topic representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 obtaining from the tag-word topic model as the final representation 𝐹𝐹𝐹𝐹 and send
it to the next task-specific ranking layers:

𝐹𝐹𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆 ,𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ,𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃), (1)

where 𝑆𝑆𝑆𝑆 ∈ ℝ𝑒𝑒𝑒𝑒, 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾, and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 . 𝐾𝐾𝐾𝐾 denotes the number of topics.
Corpus-level topic representation module. Topic models have been shown to provide additional information
to enhance text understanding and matching in earlier feature engineering-based models, and are particularly
effective for dealing with domain-specific terms [38, 32]. In recent years, many deep neural methods have
achieved impressive performance on many NLP tasks such as domain recommendation [33], semantic analysis
[23, 22], and machine translation [5] by combining topic models. However, extracting topics from relatively
short texts in CQA and constructing an efficient fusion model to combine the corpus-level topic information
is very challenging in the question routing task. According to the characteristics of Q&A threads described in
Section 3.1, we use the unsupervised learning tag-word topic model [6] to derive corpus-level topical
representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 for questions and users.
First, we construct a tag-word pool by combining a word and a tag. For example, a question with two tags
(𝐶𝐶𝐶𝐶1, 𝐶𝐶𝐶𝐶2) and three words (𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3) will generate six tag-words in the form of {(𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤3),
(𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤3)}. Second, by considering the entire corpus as a mixture of topics whose distribution
over topics comes from a Dirichlet allocation with priors α and assuming there are 𝐾𝐾𝐾𝐾 topics whose distribution
over tags and words are sampled from Dirichlet allocations with prior γ and β. The joint probability of a tag-
word can be formulated as:

𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗� = ∑ 𝑃𝑃𝑃𝑃(𝑘𝑘𝑘𝑘)𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘)𝑘𝑘𝑘𝑘 𝑃𝑃𝑃𝑃�𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗�𝑘𝑘𝑘𝑘� = ∑ 𝜃𝜃𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘𝜙𝜙𝜙𝜙𝑗𝑗𝑗𝑗|𝑘𝑘𝑘𝑘, (2)

where 𝑘𝑘𝑘𝑘 ∈ [1,𝐾𝐾𝐾𝐾] denotes a topic, 𝜃𝜃𝜃𝜃 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(α) denotes a topic distribution for the whole collection, 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘 ∽
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(γ) denotes a topic-specific tag distribution, and 𝜙𝜙𝜙𝜙𝑘𝑘𝑘𝑘 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(β) denotes a topic-specific word distribution.
We take the tag-word as the basic unit of the topic model and aggregate all tag-words from the whole corpus
for training. After obtaining the tag-word topic model, the question sequence and the user profile sequence are
passed to the topic model to infer topic-level embedding per sequence:

𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2 , … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁]) ∈ ℝ𝐾𝐾𝐾𝐾 , (3)

(2)

where k ∈ [1, K] denotes a topic, θ ~ Dir(α) denotes a
topic distribution for the whole collection, φk ~ Dir(γ)
denotes a topic-specific tag distribution, and ϕk ~
Dir(β) denotes a topic-specific word distribution. We
take the tag-word as the basic unit of the topic mod-
el and aggregate all tag-words from the whole corpus
for training. After obtaining the tag-word topic model,
the question sequence and the user profile sequence
are passed to the topic model to infer topic-level em-
bedding per sequence:

7

Using the above notations, we formalize the question routing task as a text match and ranking problem and
define it as follows: Given a newly posted question 𝑞𝑞𝑞𝑞, let a set of 𝐶𝐶𝐶𝐶 ∈ 𝑈𝑈𝑈𝑈 be a candidate set 𝐶𝐶𝐶𝐶 = {𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2,… , 𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘} (k
is the number of candidates), and let a set of candidate profiles 𝑃𝑃𝑃𝑃 = {𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝2, … , 𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘}. We need to rank users in
𝐶𝐶𝐶𝐶 and route 𝑞𝑞𝑞𝑞 to the highly ranked users, who are most suitable to answer the question 𝑞𝑞𝑞𝑞 with the required
knowledge. An essential part of this task is learning the match patterns and capturing the relationships between
question 𝑞𝑞𝑞𝑞 and the profile of the candidate 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃. Specifically, in our work, we need to estimate a score 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 of
how relevant a candidate user’s 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is to a newly posted question 𝑞𝑞𝑞𝑞 or we need to calculate a probability 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟 of
how likely a user’s profile 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is given the question q.

3.3 Tag-word Topic Enhanced Interaction-based Approach: QR-tBERTint
In this section, we design a topic-enhanced BERT-based model named QR-tBERTint for the question routing
task, the overall framework of which is illustrated in Figure 1. To learn the structural and textual relevance,
we assemble the question sequence and user profile sequence into a longer text sequence and encode it with
the stacked Transformer blocks. We take the special embedding of the first token in the last layer as the fusion
relevance representation of the combined sequences. Meanwhile, a tag-word topic model TTM [6] is adopted
to derive high-quality topics by building tag-word co-occurrence on the corpus level, thereby helping to
enhance the domain-specific knowledge understanding and relieve the data sparsity problem. Based on
previous studies which successfully combined the corpus-level topic with neural networks [23, 33, 22], we
take the concatenation of the sequence pair fusion representation 𝑆𝑆𝑆𝑆 obtaining form BERT and sequence-level
topic representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 obtaining from the tag-word topic model as the final representation 𝐹𝐹𝐹𝐹 and send
it to the next task-specific ranking layers:

𝐹𝐹𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆 ,𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ,𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃), (1)

where 𝑆𝑆𝑆𝑆 ∈ ℝ𝑒𝑒𝑒𝑒, 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾, and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 . 𝐾𝐾𝐾𝐾 denotes the number of topics.
Corpus-level topic representation module. Topic models have been shown to provide additional information
to enhance text understanding and matching in earlier feature engineering-based models, and are particularly
effective for dealing with domain-specific terms [38, 32]. In recent years, many deep neural methods have
achieved impressive performance on many NLP tasks such as domain recommendation [33], semantic analysis
[23, 22], and machine translation [5] by combining topic models. However, extracting topics from relatively
short texts in CQA and constructing an efficient fusion model to combine the corpus-level topic information
is very challenging in the question routing task. According to the characteristics of Q&A threads described in
Section 3.1, we use the unsupervised learning tag-word topic model [6] to derive corpus-level topical
representations 𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 ∈ ℝ𝐾𝐾𝐾𝐾 and 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 ∈ ℝ𝐾𝐾𝐾𝐾 for questions and users.
First, we construct a tag-word pool by combining a word and a tag. For example, a question with two tags
(𝐶𝐶𝐶𝐶1, 𝐶𝐶𝐶𝐶2) and three words (𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2,𝑤𝑤𝑤𝑤3) will generate six tag-words in the form of {(𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶1,𝑤𝑤𝑤𝑤3),
(𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤1), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤2), (𝐶𝐶𝐶𝐶2,𝑤𝑤𝑤𝑤3)}. Second, by considering the entire corpus as a mixture of topics whose distribution
over topics comes from a Dirichlet allocation with priors α and assuming there are 𝐾𝐾𝐾𝐾 topics whose distribution
over tags and words are sampled from Dirichlet allocations with prior γ and β. The joint probability of a tag-
word can be formulated as:

𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗� = ∑ 𝑃𝑃𝑃𝑃(𝑘𝑘𝑘𝑘)𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘)𝑘𝑘𝑘𝑘 𝑃𝑃𝑃𝑃�𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗�𝑘𝑘𝑘𝑘� = ∑ 𝜃𝜃𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘𝜙𝜙𝜙𝜙𝑗𝑗𝑗𝑗|𝑘𝑘𝑘𝑘, (2)

where 𝑘𝑘𝑘𝑘 ∈ [1,𝐾𝐾𝐾𝐾] denotes a topic, 𝜃𝜃𝜃𝜃 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(α) denotes a topic distribution for the whole collection, 𝜑𝜑𝜑𝜑𝑘𝑘𝑘𝑘 ∽
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(γ) denotes a topic-specific tag distribution, and 𝜙𝜙𝜙𝜙𝑘𝑘𝑘𝑘 ∽ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟(β) denotes a topic-specific word distribution.
We take the tag-word as the basic unit of the topic model and aggregate all tag-words from the whole corpus
for training. After obtaining the tag-word topic model, the question sequence and the user profile sequence are
passed to the topic model to infer topic-level embedding per sequence:

𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2 , … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁]) ∈ ℝ𝐾𝐾𝐾𝐾 , (3) , (3)

8

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 , (4)

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence.

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 of
the same dimension:

ℎ𝑖𝑖𝑖𝑖0 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖. (5)

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks,
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our
task, we believe that the multi-head attention mechanism can capture different types of token relationships by
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden
representation of each layer is shown as follows:

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1), (6)
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��, (7)

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 + Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��. (8)
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 for all tokens of the input sequence. And next, we should perform candidate answerer ranking
by using this feature embedding and then route the newly posted question to the candidate answerers that are
ranked higher.
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓), (9)
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We
compute this probability for each candidate independently and obtain the final list of experts (profiles) by
ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained
BERT model fully incorporates context information at each token position and contains sentence relationship
information in the embedding of [CLS]. The loss is shown in Equation (10).

𝐿𝐿𝐿𝐿 = −� ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ �, (10)
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label)
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing
the cross-entropy loss.

, (4)

where K denotes the number of topics, [QT1,
QT2, ..., QTN] denotes the questions sequence, and
[PT1, PT2, ..., PTM] denotes the user profile sequence.
Sequence Pair Fusion Representation Module
based on BERT. We take the linear concatenation of

the question tokens and the profile tokens as input.
For a given token vi, its final input representation
hi

0 ∈ ℝe is constructed by summing word piece em-
bedding vi, the segment embedding si, and position
embedding pi of the same dimension:

8

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 , (4)

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence.

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 of
the same dimension:

ℎ𝑖𝑖𝑖𝑖0 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖. (5)

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks,
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our
task, we believe that the multi-head attention mechanism can capture different types of token relationships by
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden
representation of each layer is shown as follows:

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1), (6)
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��, (7)

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 + Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��. (8)
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 for all tokens of the input sequence. And next, we should perform candidate answerer ranking
by using this feature embedding and then route the newly posted question to the candidate answerers that are
ranked higher.
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓), (9)
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We
compute this probability for each candidate independently and obtain the final list of experts (profiles) by
ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained
BERT model fully incorporates context information at each token position and contains sentence relationship
information in the embedding of [CLS]. The loss is shown in Equation (10).

𝐿𝐿𝐿𝐿 = −� ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ �, (10)
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label)
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing
the cross-entropy loss.

(5)

We truncate the question to have at most 64 tokens,
and the user profile is truncated to ensure that the
concatenation of the question, profile, and separator
token has a maximum length of 512 tokens.
As illustrated in Figure 1, when the input sequence
passes through the multi-layer Transformer encoder
blocks, the tokens of the entire sequence are read by
each Transformer encoder at once and learned by the
self-attention mechanism that results in contextual-
ized embeddings at different positions in each layer.
Specifically, each Transformer layer Trm has two sub-
layers: MultiSelf and PFFN. The former is a multi-head
self-attention mechanism-based network, while the
latter is a position-wise fully connected feed-forward
network which consists of two linear transformations
with Gaussian Error Linear Unit (GELU) activation in
between. In our task, we believe that the multi-head
attention mechanism can capture different types of
token relationships by using different attention ma-
trices, and the self-attention mechanism spans the
entire sequence of questions and user profiles so that
question-profile interactions are learned. The specif-
ic formulations of these two sublayers can be found in
the [29] and will not be repeated here. Based on the two
sublayers, a residual connection around each of the two
sub-layers and dropouts to the output of each sub-layer
is applied [2]. In summary, the hidden representation
of each layer is shown as follows:

8

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 , (4)

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence.

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 of
the same dimension:

ℎ𝑖𝑖𝑖𝑖0 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖. (5)

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks,
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our
task, we believe that the multi-head attention mechanism can capture different types of token relationships by
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden
representation of each layer is shown as follows:

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1), (6)
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��, (7)

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 + Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��. (8)
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 for all tokens of the input sequence. And next, we should perform candidate answerer ranking
by using this feature embedding and then route the newly posted question to the candidate answerers that are
ranked higher.
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓), (9)
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We
compute this probability for each candidate independently and obtain the final list of experts (profiles) by
ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained
BERT model fully incorporates context information at each token position and contains sentence relationship
information in the embedding of [CLS]. The loss is shown in Equation (10).

𝐿𝐿𝐿𝐿 = −� ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ �, (10)
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label)
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing
the cross-entropy loss.

, (6)

8

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 , (4)

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence.

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 of
the same dimension:

ℎ𝑖𝑖𝑖𝑖0 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖. (5)

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks,
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our
task, we believe that the multi-head attention mechanism can capture different types of token relationships by
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden
representation of each layer is shown as follows:

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1), (6)
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��, (7)

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 + Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��. (8)
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 for all tokens of the input sequence. And next, we should perform candidate answerer ranking
by using this feature embedding and then route the newly posted question to the candidate answerers that are
ranked higher.
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓), (9)
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We
compute this probability for each candidate independently and obtain the final list of experts (profiles) by
ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained
BERT model fully incorporates context information at each token position and contains sentence relationship
information in the embedding of [CLS]. The loss is shown in Equation (10).

𝐿𝐿𝐿𝐿 = −� ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ �, (10)
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label)
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing
the cross-entropy loss.

8

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 , (4)

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence.

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 of
the same dimension:

ℎ𝑖𝑖𝑖𝑖0 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖. (5)

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks,
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our
task, we believe that the multi-head attention mechanism can capture different types of token relationships by
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden
representation of each layer is shown as follows:

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1), (6)
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��, (7)

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 + Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��. (8)
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 for all tokens of the input sequence. And next, we should perform candidate answerer ranking
by using this feature embedding and then route the newly posted question to the candidate answerers that are
ranked higher.
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓), (9)
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We
compute this probability for each candidate independently and obtain the final list of experts (profiles) by
ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained
BERT model fully incorporates context information at each token position and contains sentence relationship
information in the embedding of [CLS]. The loss is shown in Equation (10).

𝐿𝐿𝐿𝐿 = −� ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ �, (10)
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label)
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing
the cross-entropy loss.

,
(7)

8

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 , (4)

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence.

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 of
the same dimension:

ℎ𝑖𝑖𝑖𝑖0 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖. (5)

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks,
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our
task, we believe that the multi-head attention mechanism can capture different types of token relationships by
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden
representation of each layer is shown as follows:

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1), (6)
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��, (7)

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 + Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��. (8)
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 for all tokens of the input sequence. And next, we should perform candidate answerer ranking
by using this feature embedding and then route the newly posted question to the candidate answerers that are
ranked higher.
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓), (9)
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We
compute this probability for each candidate independently and obtain the final list of experts (profiles) by
ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained
BERT model fully incorporates context information at each token position and contains sentence relationship
information in the embedding of [CLS]. The loss is shown in Equation (10).

𝐿𝐿𝐿𝐿 = −� ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ �, (10)
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label)
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing
the cross-entropy loss.

8

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 , (4)

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence.

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 of
the same dimension:

ℎ𝑖𝑖𝑖𝑖0 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖. (5)

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks,
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our
task, we believe that the multi-head attention mechanism can capture different types of token relationships by
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden
representation of each layer is shown as follows:

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1), (6)
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��, (7)

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 + Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��. (8)
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 for all tokens of the input sequence. And next, we should perform candidate answerer ranking
by using this feature embedding and then route the newly posted question to the candidate answerers that are
ranked higher.
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓), (9)
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We
compute this probability for each candidate independently and obtain the final list of experts (profiles) by
ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained
BERT model fully incorporates context information at each token position and contains sentence relationship
information in the embedding of [CLS]. The loss is shown in Equation (10).

𝐿𝐿𝐿𝐿 = −� ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ �, (10)
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label)
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing
the cross-entropy loss.

(8)

After L layers that hierarchically exchange infor-
mation across all positions in the previous layer, we
obtain the final output HL for all tokens of the input

Information Technology and Control 2023/3/52796

sequence. And next, we should perform candidate an-
swerer ranking by using this feature embedding and
then route the newly posted question to the candidate
answerers that are ranked higher.
Output. We use the softmax function to obtain the
probability of the profile being relevant:

8

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 , (4)

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence.

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 of
the same dimension:

ℎ𝑖𝑖𝑖𝑖0 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖. (5)

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks,
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our
task, we believe that the multi-head attention mechanism can capture different types of token relationships by
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden
representation of each layer is shown as follows:

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1), (6)
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��, (7)

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 + Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��. (8)
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 for all tokens of the input sequence. And next, we should perform candidate answerer ranking
by using this feature embedding and then route the newly posted question to the candidate answerers that are
ranked higher.
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓), (9)
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We
compute this probability for each candidate independently and obtain the final list of experts (profiles) by
ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained
BERT model fully incorporates context information at each token position and contains sentence relationship
information in the embedding of [CLS]. The loss is shown in Equation (10).

𝐿𝐿𝐿𝐿 = −� ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ �, (10)
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label)
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing
the cross-entropy loss.

, (9)

where W f ∈ ℝC×(e + 2k) is the learnable projection ma-
trix and b f is bias terms. C is the number of labels. We
compute this probability for each candidate inde-
pendently and obtain the final list of experts (profiles)
by ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model
(hidden size of 768, 12 Transformer blocks, and 12
self-attention heads) as a binary classification mod-
el. We start training from it and fine-tune it to our
question routing task using the cross-entropy loss.
Specifically, limited by the size of our training corpus,
we freeze the weights of the first few layers of the pre-
trained network during fine-tuning. We believe that a
well-trained BERT model fully incorporates context
information at each token position and contains sen-
tence relationship information in the embedding of
[CLS]. The loss is shown in Equation (10).

8

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇([𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1 ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀]) ∈ ℝ𝐾𝐾𝐾𝐾 , (4)

where 𝐾𝐾𝐾𝐾 denotes the number of topics, [𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇1,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇2, … ,𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁] denotes the questions sequence, and
[𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇1,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇2, … ,𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀] denotes the user profile sequence.

Sequence Pair Fusion Representation Module based on BERT. We take the linear concatenation of the
question tokens and the profile tokens as input. For a given token 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, its final input representation ℎ𝑖𝑖𝑖𝑖0 ∈ ℝ𝑒𝑒𝑒𝑒 is
constructed by summing word piece embedding 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖, the segment embedding 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, and position embedding 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 of
the same dimension:

ℎ𝑖𝑖𝑖𝑖0 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖. (5)

We truncate the question to have at most 64 tokens, and the user profile is truncated to ensure that the
concatenation of the question, profile, and separator token has a maximum length of 512 tokens.
As illustrated in Figure 1, when the input sequence passes through the multi-layer Transformer encoder blocks,
the tokens of the entire sequence are read by each Transformer encoder at once and learned by the self-attention
mechanism that results in contextualized embeddings at different positions in each layer. Specifically, each
Transformer layer Trm has two sublayers: MultiSelf and PFFN. The former is a multi-head self-attention
mechanism-based network, while the latter is a position-wise fully connected feed-forward network which
consists of two linear transformations with Gaussian Error Linear Unit (GELU) activation in between. In our
task, we believe that the multi-head attention mechanism can capture different types of token relationships by
using different attention matrices, and the self-attention mechanism spans the entire sequence of questions and
user profiles so that question-profile interactions are learned. The specific formulations of these two sublayers
can be found in the [4] and will not be repeated here. Based on the two sublayers, a residual connection around
each of the two sub-layers and dropouts to the output of each sub-layer is applied [2]. In summary, the hidden
representation of each layer is shown as follows:

𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙 = Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1), (6)
Trm(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1) = LayerNorm �𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 + Dropout�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1)��, (7)

𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙−1 = LayerNorm �𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1 + Dropout�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻𝐻𝐻𝑙𝑙𝑙𝑙−1)��. (8)
After 𝐿𝐿𝐿𝐿 layers that hierarchically exchange information across all positions in the previous layer, we obtain the
final output 𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 for all tokens of the input sequence. And next, we should perform candidate answerer ranking
by using this feature embedding and then route the newly posted question to the candidate answerers that are
ranked higher.
Output. We use the softmax function to obtain the probability of the profile being relevant:

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = softmax(𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∙ 𝐹𝐹𝐹𝐹 + 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓), (9)
where 𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓 ∈ ℝ𝐶𝐶𝐶𝐶×(𝑒𝑒𝑒𝑒+2𝑘𝑘𝑘𝑘) is the learnable projection matrix and 𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓 is bias terms. C is the number of labels. We
compute this probability for each candidate independently and obtain the final list of experts (profiles) by
ranking them with respect to these probabilities.
Fine-tune and Training. We use a BERTBASE model (hidden size of 768, 12 Transformer blocks, and 12 self-
attention heads) as a binary classification model. We start training from it and fine-tune it to our question
routing task using the cross-entropy loss. Specifically, limited by the size of our training corpus, we freeze the
weights of the first few layers of the pre-trained network during fine-tuning. We believe that a well-trained
BERT model fully incorporates context information at each token position and contains sentence relationship
information in the embedding of [CLS]. The loss is shown in Equation (10).

𝐿𝐿𝐿𝐿 = −� ∑ log(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + ∑ log(1 − 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼−𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ �, (10)
where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 denotes the relevant score of the question and user, 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive label)
and 𝐼𝐼𝐼𝐼− is the set of indexed random non-answerers (negative label). The model is fine-tuned by minimizing
the cross-entropy loss.

, (10)

where ri denotes the relevant score of the question
and user, I+ is the set of indexed answerers (positive
label) and I– is the set of indexed random non-an-
swerers (negative label). The model is fine-tuned by
minimizing the cross-entropy loss.

3.4. Contextual Representation-based
Approach: QR-BERTrep

Different from the above method that focuses on ex-
ploring interactions between sequences through
BERT and incorporating tag-word topic models to
enhance understanding of corpus-level semantic in-
formation, QR-BERTrep incorporates the weighted
sum of the outputs of different layers of BERT as an
additional feature into a traditional Siamese deep
matching model. By combining contextualized em-
beddings with word embeddings, the representations
of question sequences and user profile sequences can
imply richer semantic knowledge and patterns, help-
ing to improve the expert discovery effect obtained by

similarity computation. The overall framework of the
contextual representation-based model QR-BERTrep
is shown in Figure 2.
BERT contextualized embedding. Instead of con-
catenating the question tokens and the profile tokens
into a single sequence as input, in this method, the
question tokens and the profile tokens are fed into the
pre-trained BERTBASE model separately to obtain the
contextualized embedding layer by layer.
Encoding layer. Since BERT generates L-layer hidden
states for all BPE tokens in a sequence, and each hid-
den layer contains different features and information,
we employ a weighted sum of these hidden states to
obtain more delicate embedding. Specifically, we take
the hidden states of the last four layers in BERT. Sup-
pose a word w is tokenized to n BPE tokens w = {b1, b2, ...,
bn}, and hi

l represents the token embedding in the l-th
layer of BERT, 1 ≤ l ≤ L, 1 ≤ i ≤ n. Then, the contextu-
alized embedding of word w, ConEMw, is calculated as
the weighted sum average of the embedding of the last
four layers.

9

3.4 Contextual Representation-based Approach: QR-BERTrep
Different from the above method that focuses on exploring interactions between sequences through BERT and
incorporating tag-word topic models to enhance understanding of corpus-level semantic information, QR-
BERTrep incorporates the weighted sum of the outputs of different layers of BERT as an additional feature into
a traditional Siamese deep matching model. By combining contextualized embeddings with word embeddings,
the representations of question sequences and user profile sequences can imply richer semantic knowledge and
patterns, helping to improve the expert discovery effect obtained by similarity computation. The overall
framework of the contextual representation-based model QR-BERTrep is shown in Figure 2.
BERT contextualized embedding. Instead of concatenating the question tokens and the profile tokens into a
single sequence as input, in this method, the question tokens and the profile tokens are fed into the pre-trained
BERTBASE model separately to obtain the contextualized embedding layer by layer.
Encoding layer. Since BERT generates 𝐿𝐿𝐿𝐿-layer hidden states for all BPE tokens in a sequence, and each hidden
layer contains different features and information, we employ a weighted sum of these hidden states to obtain
more delicate embedding. Specifically, we take the hidden states of the last four layers in BERT. Suppose a
word 𝑤𝑤𝑤𝑤 is tokenized to 𝐶𝐶𝐶𝐶 BPE tokens 𝑤𝑤𝑤𝑤 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, … , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛}, and ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 represents the token embedding in the 𝑀𝑀𝑀𝑀-th
layer of BERT, 1 ≤ 𝑀𝑀𝑀𝑀 ≤ L, 1 ≤ 𝐷𝐷𝐷𝐷 ≤ 𝐶𝐶𝐶𝐶. Then, the contextualized embedding of word 𝑤𝑤𝑤𝑤, ConEM𝑤𝑤𝑤𝑤, is calculated
as the weighted sum average of the embedding of the last four layers.

ConEM𝑤𝑤𝑤𝑤 = ∑ 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
∑ ℎ𝑖𝑖𝑖𝑖

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡=1
𝑛𝑛𝑛𝑛

𝐿𝐿𝐿𝐿
𝑙𝑙𝑙𝑙=1 , (11)

where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and
contextualized embedding ConEM𝑤𝑤𝑤𝑤 together to build a richer representation for each word. Therefore, the
input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].
Siamese neural ranking model. After encoding each word into a fixed-length fusion vector, we represent the
question sequence and profile sequence by the fusion embeddings and feed them into a Siamese neural ranking
model, which consists of two fully connected hidden layers with 300 nodes. This model is used to map word
vectors to their semantic concept vectors for further similarity calculation. In detail, if we denote 𝑥𝑥𝑥𝑥 as the input
word vector, 𝑦𝑦𝑦𝑦 as the output vector, ℎ𝑖𝑖𝑖𝑖 as the hidden layer vector, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 as the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ weight matrix, and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 as the
𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ bias term, the mathematical formulas for each layer are described as follows:

ℎ1 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊1𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏1), (12)
ℎ𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖), (13)
𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁ℎ𝑁𝑁𝑁𝑁−1 + 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁), (14)

where the 𝐷𝐷𝐷𝐷 value goes from the first hidden layer 𝐷𝐷𝐷𝐷 = 2 to the output layer 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃, and we use the tanh as the
activation function:

𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥) = 1−𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥
 . (15)

Output layer. The output layer consists of 128 nodes. We measure the semantic similarity between question q
and profile document p as:

Sim(𝑞𝑞𝑞𝑞, 𝑝𝑝𝑝𝑝) = cosine�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 ,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝� = 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝
�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞��𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

， (16)

where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile
given the question as shown below:

Pr(𝑝𝑝𝑝𝑝|𝑞𝑞𝑞𝑞) = 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

∑ 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝐾𝐾𝐾𝐾
𝑛𝑛𝑛𝑛=1

， (17)

where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers,
which includes the actual answerers and three randomly selected non-answerers. We detail the construction
method of negative examples and positive examples for training in Section 4.1.

(11)

where δl denotes the weight for each layer. Then, we
concatenate the 300-dim GloVe embedding and con-
textualized embedding ConEMw together to build a
richer representation for each word. Therefore, the
input vector for each word in the question sequence
and profile sequence is w = [GloVe(w); ConEMw].
Siamese neural ranking model. After encoding each
word into a fixed-length fusion vector, we represent
the question sequence and profile sequence by the fu-
sion embeddings and feed them into a Siamese neural
ranking model, which consists of two fully connected
hidden layers with 300 nodes. This model is used to
map word vectors to their semantic concept vectors
for further similarity calculation. In detail, if we de-
note x as the input word vector, y as the output vector,
hi as the hidden layer vector, Wi as the ith weight ma-
trix, and bi as the ith bias term, the mathematical for-
mulas for each layer are described as follows:

9

3.4 Contextual Representation-based Approach: QR-BERTrep
Different from the above method that focuses on exploring interactions between sequences through BERT and
incorporating tag-word topic models to enhance understanding of corpus-level semantic information, QR-
BERTrep incorporates the weighted sum of the outputs of different layers of BERT as an additional feature into
a traditional Siamese deep matching model. By combining contextualized embeddings with word embeddings,
the representations of question sequences and user profile sequences can imply richer semantic knowledge and
patterns, helping to improve the expert discovery effect obtained by similarity computation. The overall
framework of the contextual representation-based model QR-BERTrep is shown in Figure 2.
BERT contextualized embedding. Instead of concatenating the question tokens and the profile tokens into a
single sequence as input, in this method, the question tokens and the profile tokens are fed into the pre-trained
BERTBASE model separately to obtain the contextualized embedding layer by layer.
Encoding layer. Since BERT generates 𝐿𝐿𝐿𝐿-layer hidden states for all BPE tokens in a sequence, and each hidden
layer contains different features and information, we employ a weighted sum of these hidden states to obtain
more delicate embedding. Specifically, we take the hidden states of the last four layers in BERT. Suppose a
word 𝑤𝑤𝑤𝑤 is tokenized to 𝐶𝐶𝐶𝐶 BPE tokens 𝑤𝑤𝑤𝑤 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, … , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛}, and ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 represents the token embedding in the 𝑀𝑀𝑀𝑀-th
layer of BERT, 1 ≤ 𝑀𝑀𝑀𝑀 ≤ L, 1 ≤ 𝐷𝐷𝐷𝐷 ≤ 𝐶𝐶𝐶𝐶. Then, the contextualized embedding of word 𝑤𝑤𝑤𝑤, ConEM𝑤𝑤𝑤𝑤, is calculated
as the weighted sum average of the embedding of the last four layers.

ConEM𝑤𝑤𝑤𝑤 = ∑ 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
∑ ℎ𝑖𝑖𝑖𝑖

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡=1
𝑛𝑛𝑛𝑛

𝐿𝐿𝐿𝐿
𝑙𝑙𝑙𝑙=1 , (11)

where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and
contextualized embedding ConEM𝑤𝑤𝑤𝑤 together to build a richer representation for each word. Therefore, the
input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].
Siamese neural ranking model. After encoding each word into a fixed-length fusion vector, we represent the
question sequence and profile sequence by the fusion embeddings and feed them into a Siamese neural ranking
model, which consists of two fully connected hidden layers with 300 nodes. This model is used to map word
vectors to their semantic concept vectors for further similarity calculation. In detail, if we denote 𝑥𝑥𝑥𝑥 as the input
word vector, 𝑦𝑦𝑦𝑦 as the output vector, ℎ𝑖𝑖𝑖𝑖 as the hidden layer vector, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 as the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ weight matrix, and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 as the
𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ bias term, the mathematical formulas for each layer are described as follows:

ℎ1 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊1𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏1), (12)
ℎ𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖), (13)
𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁ℎ𝑁𝑁𝑁𝑁−1 + 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁), (14)

where the 𝐷𝐷𝐷𝐷 value goes from the first hidden layer 𝐷𝐷𝐷𝐷 = 2 to the output layer 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃, and we use the tanh as the
activation function:

𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥) = 1−𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥
 . (15)

Output layer. The output layer consists of 128 nodes. We measure the semantic similarity between question q
and profile document p as:

Sim(𝑞𝑞𝑞𝑞, 𝑝𝑝𝑝𝑝) = cosine�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 ,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝� = 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝
�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞��𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

， (16)

where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile
given the question as shown below:

Pr(𝑝𝑝𝑝𝑝|𝑞𝑞𝑞𝑞) = 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

∑ 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝐾𝐾𝐾𝐾
𝑛𝑛𝑛𝑛=1

， (17)

where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers,
which includes the actual answerers and three randomly selected non-answerers. We detail the construction
method of negative examples and positive examples for training in Section 4.1.

, (12)

9

3.4 Contextual Representation-based Approach: QR-BERTrep
Different from the above method that focuses on exploring interactions between sequences through BERT and
incorporating tag-word topic models to enhance understanding of corpus-level semantic information, QR-
BERTrep incorporates the weighted sum of the outputs of different layers of BERT as an additional feature into
a traditional Siamese deep matching model. By combining contextualized embeddings with word embeddings,
the representations of question sequences and user profile sequences can imply richer semantic knowledge and
patterns, helping to improve the expert discovery effect obtained by similarity computation. The overall
framework of the contextual representation-based model QR-BERTrep is shown in Figure 2.
BERT contextualized embedding. Instead of concatenating the question tokens and the profile tokens into a
single sequence as input, in this method, the question tokens and the profile tokens are fed into the pre-trained
BERTBASE model separately to obtain the contextualized embedding layer by layer.
Encoding layer. Since BERT generates 𝐿𝐿𝐿𝐿-layer hidden states for all BPE tokens in a sequence, and each hidden
layer contains different features and information, we employ a weighted sum of these hidden states to obtain
more delicate embedding. Specifically, we take the hidden states of the last four layers in BERT. Suppose a
word 𝑤𝑤𝑤𝑤 is tokenized to 𝐶𝐶𝐶𝐶 BPE tokens 𝑤𝑤𝑤𝑤 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, … , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛}, and ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 represents the token embedding in the 𝑀𝑀𝑀𝑀-th
layer of BERT, 1 ≤ 𝑀𝑀𝑀𝑀 ≤ L, 1 ≤ 𝐷𝐷𝐷𝐷 ≤ 𝐶𝐶𝐶𝐶. Then, the contextualized embedding of word 𝑤𝑤𝑤𝑤, ConEM𝑤𝑤𝑤𝑤, is calculated
as the weighted sum average of the embedding of the last four layers.

ConEM𝑤𝑤𝑤𝑤 = ∑ 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
∑ ℎ𝑖𝑖𝑖𝑖

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡=1
𝑛𝑛𝑛𝑛

𝐿𝐿𝐿𝐿
𝑙𝑙𝑙𝑙=1 , (11)

where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and
contextualized embedding ConEM𝑤𝑤𝑤𝑤 together to build a richer representation for each word. Therefore, the
input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].
Siamese neural ranking model. After encoding each word into a fixed-length fusion vector, we represent the
question sequence and profile sequence by the fusion embeddings and feed them into a Siamese neural ranking
model, which consists of two fully connected hidden layers with 300 nodes. This model is used to map word
vectors to their semantic concept vectors for further similarity calculation. In detail, if we denote 𝑥𝑥𝑥𝑥 as the input
word vector, 𝑦𝑦𝑦𝑦 as the output vector, ℎ𝑖𝑖𝑖𝑖 as the hidden layer vector, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 as the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ weight matrix, and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 as the
𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ bias term, the mathematical formulas for each layer are described as follows:

ℎ1 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊1𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏1), (12)
ℎ𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖), (13)
𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁ℎ𝑁𝑁𝑁𝑁−1 + 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁), (14)

where the 𝐷𝐷𝐷𝐷 value goes from the first hidden layer 𝐷𝐷𝐷𝐷 = 2 to the output layer 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃, and we use the tanh as the
activation function:

𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥) = 1−𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥
 . (15)

Output layer. The output layer consists of 128 nodes. We measure the semantic similarity between question q
and profile document p as:

Sim(𝑞𝑞𝑞𝑞, 𝑝𝑝𝑝𝑝) = cosine�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 ,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝� = 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝
�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞��𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

， (16)

where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile
given the question as shown below:

Pr(𝑝𝑝𝑝𝑝|𝑞𝑞𝑞𝑞) = 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

∑ 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝐾𝐾𝐾𝐾
𝑛𝑛𝑛𝑛=1

， (17)

where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers,
which includes the actual answerers and three randomly selected non-answerers. We detail the construction
method of negative examples and positive examples for training in Section 4.1.

, (13)

797Information Technology and Control 2023/3/52

9

3.4 Contextual Representation-based Approach: QR-BERTrep
Different from the above method that focuses on exploring interactions between sequences through BERT and
incorporating tag-word topic models to enhance understanding of corpus-level semantic information, QR-
BERTrep incorporates the weighted sum of the outputs of different layers of BERT as an additional feature into
a traditional Siamese deep matching model. By combining contextualized embeddings with word embeddings,
the representations of question sequences and user profile sequences can imply richer semantic knowledge and
patterns, helping to improve the expert discovery effect obtained by similarity computation. The overall
framework of the contextual representation-based model QR-BERTrep is shown in Figure 2.
BERT contextualized embedding. Instead of concatenating the question tokens and the profile tokens into a
single sequence as input, in this method, the question tokens and the profile tokens are fed into the pre-trained
BERTBASE model separately to obtain the contextualized embedding layer by layer.
Encoding layer. Since BERT generates 𝐿𝐿𝐿𝐿-layer hidden states for all BPE tokens in a sequence, and each hidden
layer contains different features and information, we employ a weighted sum of these hidden states to obtain
more delicate embedding. Specifically, we take the hidden states of the last four layers in BERT. Suppose a
word 𝑤𝑤𝑤𝑤 is tokenized to 𝐶𝐶𝐶𝐶 BPE tokens 𝑤𝑤𝑤𝑤 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, … , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛}, and ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 represents the token embedding in the 𝑀𝑀𝑀𝑀-th
layer of BERT, 1 ≤ 𝑀𝑀𝑀𝑀 ≤ L, 1 ≤ 𝐷𝐷𝐷𝐷 ≤ 𝐶𝐶𝐶𝐶. Then, the contextualized embedding of word 𝑤𝑤𝑤𝑤, ConEM𝑤𝑤𝑤𝑤, is calculated
as the weighted sum average of the embedding of the last four layers.

ConEM𝑤𝑤𝑤𝑤 = ∑ 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
∑ ℎ𝑖𝑖𝑖𝑖

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡=1
𝑛𝑛𝑛𝑛

𝐿𝐿𝐿𝐿
𝑙𝑙𝑙𝑙=1 , (11)

where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and
contextualized embedding ConEM𝑤𝑤𝑤𝑤 together to build a richer representation for each word. Therefore, the
input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].
Siamese neural ranking model. After encoding each word into a fixed-length fusion vector, we represent the
question sequence and profile sequence by the fusion embeddings and feed them into a Siamese neural ranking
model, which consists of two fully connected hidden layers with 300 nodes. This model is used to map word
vectors to their semantic concept vectors for further similarity calculation. In detail, if we denote 𝑥𝑥𝑥𝑥 as the input
word vector, 𝑦𝑦𝑦𝑦 as the output vector, ℎ𝑖𝑖𝑖𝑖 as the hidden layer vector, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 as the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ weight matrix, and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 as the
𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ bias term, the mathematical formulas for each layer are described as follows:

ℎ1 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊1𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏1), (12)
ℎ𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖), (13)
𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁ℎ𝑁𝑁𝑁𝑁−1 + 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁), (14)

where the 𝐷𝐷𝐷𝐷 value goes from the first hidden layer 𝐷𝐷𝐷𝐷 = 2 to the output layer 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃, and we use the tanh as the
activation function:

𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥) = 1−𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥
 . (15)

Output layer. The output layer consists of 128 nodes. We measure the semantic similarity between question q
and profile document p as:

Sim(𝑞𝑞𝑞𝑞, 𝑝𝑝𝑝𝑝) = cosine�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 ,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝� = 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝
�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞��𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

， (16)

where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile
given the question as shown below:

Pr(𝑝𝑝𝑝𝑝|𝑞𝑞𝑞𝑞) = 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

∑ 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝐾𝐾𝐾𝐾
𝑛𝑛𝑛𝑛=1

， (17)

where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers,
which includes the actual answerers and three randomly selected non-answerers. We detail the construction
method of negative examples and positive examples for training in Section 4.1.

, (14)

where the i value goes from the first hidden layer i =
2 to the output layer i = N, and we use the tanh as the
activation function:

9

3.4 Contextual Representation-based Approach: QR-BERTrep
Different from the above method that focuses on exploring interactions between sequences through BERT and
incorporating tag-word topic models to enhance understanding of corpus-level semantic information, QR-
BERTrep incorporates the weighted sum of the outputs of different layers of BERT as an additional feature into
a traditional Siamese deep matching model. By combining contextualized embeddings with word embeddings,
the representations of question sequences and user profile sequences can imply richer semantic knowledge and
patterns, helping to improve the expert discovery effect obtained by similarity computation. The overall
framework of the contextual representation-based model QR-BERTrep is shown in Figure 2.
BERT contextualized embedding. Instead of concatenating the question tokens and the profile tokens into a
single sequence as input, in this method, the question tokens and the profile tokens are fed into the pre-trained
BERTBASE model separately to obtain the contextualized embedding layer by layer.
Encoding layer. Since BERT generates 𝐿𝐿𝐿𝐿-layer hidden states for all BPE tokens in a sequence, and each hidden
layer contains different features and information, we employ a weighted sum of these hidden states to obtain
more delicate embedding. Specifically, we take the hidden states of the last four layers in BERT. Suppose a
word 𝑤𝑤𝑤𝑤 is tokenized to 𝐶𝐶𝐶𝐶 BPE tokens 𝑤𝑤𝑤𝑤 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, … , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛}, and ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 represents the token embedding in the 𝑀𝑀𝑀𝑀-th
layer of BERT, 1 ≤ 𝑀𝑀𝑀𝑀 ≤ L, 1 ≤ 𝐷𝐷𝐷𝐷 ≤ 𝐶𝐶𝐶𝐶. Then, the contextualized embedding of word 𝑤𝑤𝑤𝑤, ConEM𝑤𝑤𝑤𝑤, is calculated
as the weighted sum average of the embedding of the last four layers.

ConEM𝑤𝑤𝑤𝑤 = ∑ 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
∑ ℎ𝑖𝑖𝑖𝑖

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡=1
𝑛𝑛𝑛𝑛

𝐿𝐿𝐿𝐿
𝑙𝑙𝑙𝑙=1 , (11)

where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and
contextualized embedding ConEM𝑤𝑤𝑤𝑤 together to build a richer representation for each word. Therefore, the
input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].
Siamese neural ranking model. After encoding each word into a fixed-length fusion vector, we represent the
question sequence and profile sequence by the fusion embeddings and feed them into a Siamese neural ranking
model, which consists of two fully connected hidden layers with 300 nodes. This model is used to map word
vectors to their semantic concept vectors for further similarity calculation. In detail, if we denote 𝑥𝑥𝑥𝑥 as the input
word vector, 𝑦𝑦𝑦𝑦 as the output vector, ℎ𝑖𝑖𝑖𝑖 as the hidden layer vector, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 as the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ weight matrix, and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 as the
𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ bias term, the mathematical formulas for each layer are described as follows:

ℎ1 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊1𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏1), (12)
ℎ𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖), (13)
𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁ℎ𝑁𝑁𝑁𝑁−1 + 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁), (14)

where the 𝐷𝐷𝐷𝐷 value goes from the first hidden layer 𝐷𝐷𝐷𝐷 = 2 to the output layer 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃, and we use the tanh as the
activation function:

𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥) = 1−𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥
 . (15)

Output layer. The output layer consists of 128 nodes. We measure the semantic similarity between question q
and profile document p as:

Sim(𝑞𝑞𝑞𝑞, 𝑝𝑝𝑝𝑝) = cosine�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 ,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝� = 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝
�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞��𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

， (16)

where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile
given the question as shown below:

Pr(𝑝𝑝𝑝𝑝|𝑞𝑞𝑞𝑞) = 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

∑ 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝐾𝐾𝐾𝐾
𝑛𝑛𝑛𝑛=1

， (17)

where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers,
which includes the actual answerers and three randomly selected non-answerers. We detail the construction
method of negative examples and positive examples for training in Section 4.1.

. (15)

Output layer. The output layer consists of 128 nodes.
We measure the semantic similarity between ques-
tion q and profile document p as:

9

3.4 Contextual Representation-based Approach: QR-BERTrep
Different from the above method that focuses on exploring interactions between sequences through BERT and
incorporating tag-word topic models to enhance understanding of corpus-level semantic information, QR-
BERTrep incorporates the weighted sum of the outputs of different layers of BERT as an additional feature into
a traditional Siamese deep matching model. By combining contextualized embeddings with word embeddings,
the representations of question sequences and user profile sequences can imply richer semantic knowledge and
patterns, helping to improve the expert discovery effect obtained by similarity computation. The overall
framework of the contextual representation-based model QR-BERTrep is shown in Figure 2.
BERT contextualized embedding. Instead of concatenating the question tokens and the profile tokens into a
single sequence as input, in this method, the question tokens and the profile tokens are fed into the pre-trained
BERTBASE model separately to obtain the contextualized embedding layer by layer.
Encoding layer. Since BERT generates 𝐿𝐿𝐿𝐿-layer hidden states for all BPE tokens in a sequence, and each hidden
layer contains different features and information, we employ a weighted sum of these hidden states to obtain
more delicate embedding. Specifically, we take the hidden states of the last four layers in BERT. Suppose a
word 𝑤𝑤𝑤𝑤 is tokenized to 𝐶𝐶𝐶𝐶 BPE tokens 𝑤𝑤𝑤𝑤 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, … , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛}, and ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 represents the token embedding in the 𝑀𝑀𝑀𝑀-th
layer of BERT, 1 ≤ 𝑀𝑀𝑀𝑀 ≤ L, 1 ≤ 𝐷𝐷𝐷𝐷 ≤ 𝐶𝐶𝐶𝐶. Then, the contextualized embedding of word 𝑤𝑤𝑤𝑤, ConEM𝑤𝑤𝑤𝑤, is calculated
as the weighted sum average of the embedding of the last four layers.

ConEM𝑤𝑤𝑤𝑤 = ∑ 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
∑ ℎ𝑖𝑖𝑖𝑖

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡=1
𝑛𝑛𝑛𝑛

𝐿𝐿𝐿𝐿
𝑙𝑙𝑙𝑙=1 , (11)

where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and
contextualized embedding ConEM𝑤𝑤𝑤𝑤 together to build a richer representation for each word. Therefore, the
input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].
Siamese neural ranking model. After encoding each word into a fixed-length fusion vector, we represent the
question sequence and profile sequence by the fusion embeddings and feed them into a Siamese neural ranking
model, which consists of two fully connected hidden layers with 300 nodes. This model is used to map word
vectors to their semantic concept vectors for further similarity calculation. In detail, if we denote 𝑥𝑥𝑥𝑥 as the input
word vector, 𝑦𝑦𝑦𝑦 as the output vector, ℎ𝑖𝑖𝑖𝑖 as the hidden layer vector, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 as the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ weight matrix, and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 as the
𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ bias term, the mathematical formulas for each layer are described as follows:

ℎ1 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊1𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏1), (12)
ℎ𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖), (13)
𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁ℎ𝑁𝑁𝑁𝑁−1 + 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁), (14)

where the 𝐷𝐷𝐷𝐷 value goes from the first hidden layer 𝐷𝐷𝐷𝐷 = 2 to the output layer 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃, and we use the tanh as the
activation function:

𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥) = 1−𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥
 . (15)

Output layer. The output layer consists of 128 nodes. We measure the semantic similarity between question q
and profile document p as:

Sim(𝑞𝑞𝑞𝑞, 𝑝𝑝𝑝𝑝) = cosine�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 ,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝� = 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝
�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞��𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

， (16)

where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile
given the question as shown below:

Pr(𝑝𝑝𝑝𝑝|𝑞𝑞𝑞𝑞) = 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

∑ 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝐾𝐾𝐾𝐾
𝑛𝑛𝑛𝑛=1

， (17)

where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers,
which includes the actual answerers and three randomly selected non-answerers. We detail the construction
method of negative examples and positive examples for training in Section 4.1.

, (16)

where yq and yp are the concept vectors of the ques-
tion and the user’s profile, respectively. We apply the
softmax function on the output to covert the similari-
ty relevance score into a probability of the user’s pro-
file given the question as shown below:

9

3.4 Contextual Representation-based Approach: QR-BERTrep
Different from the above method that focuses on exploring interactions between sequences through BERT and
incorporating tag-word topic models to enhance understanding of corpus-level semantic information, QR-
BERTrep incorporates the weighted sum of the outputs of different layers of BERT as an additional feature into
a traditional Siamese deep matching model. By combining contextualized embeddings with word embeddings,
the representations of question sequences and user profile sequences can imply richer semantic knowledge and
patterns, helping to improve the expert discovery effect obtained by similarity computation. The overall
framework of the contextual representation-based model QR-BERTrep is shown in Figure 2.
BERT contextualized embedding. Instead of concatenating the question tokens and the profile tokens into a
single sequence as input, in this method, the question tokens and the profile tokens are fed into the pre-trained
BERTBASE model separately to obtain the contextualized embedding layer by layer.
Encoding layer. Since BERT generates 𝐿𝐿𝐿𝐿-layer hidden states for all BPE tokens in a sequence, and each hidden
layer contains different features and information, we employ a weighted sum of these hidden states to obtain
more delicate embedding. Specifically, we take the hidden states of the last four layers in BERT. Suppose a
word 𝑤𝑤𝑤𝑤 is tokenized to 𝐶𝐶𝐶𝐶 BPE tokens 𝑤𝑤𝑤𝑤 = {𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, … , 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛}, and ℎ𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 represents the token embedding in the 𝑀𝑀𝑀𝑀-th
layer of BERT, 1 ≤ 𝑀𝑀𝑀𝑀 ≤ L, 1 ≤ 𝐷𝐷𝐷𝐷 ≤ 𝐶𝐶𝐶𝐶. Then, the contextualized embedding of word 𝑤𝑤𝑤𝑤, ConEM𝑤𝑤𝑤𝑤, is calculated
as the weighted sum average of the embedding of the last four layers.

ConEM𝑤𝑤𝑤𝑤 = ∑ 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
∑ ℎ𝑖𝑖𝑖𝑖

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡=1
𝑛𝑛𝑛𝑛

𝐿𝐿𝐿𝐿
𝑙𝑙𝑙𝑙=1 , (11)

where 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 denotes the weight for each layer. Then, we concatenate the 300-dim GloVe embedding and
contextualized embedding ConEM𝑤𝑤𝑤𝑤 together to build a richer representation for each word. Therefore, the
input vector for each word in the question sequence and profile sequence is 𝑤𝑤𝑤𝑤 = [GloVe(w);ConEM𝑤𝑤𝑤𝑤].
Siamese neural ranking model. After encoding each word into a fixed-length fusion vector, we represent the
question sequence and profile sequence by the fusion embeddings and feed them into a Siamese neural ranking
model, which consists of two fully connected hidden layers with 300 nodes. This model is used to map word
vectors to their semantic concept vectors for further similarity calculation. In detail, if we denote 𝑥𝑥𝑥𝑥 as the input
word vector, 𝑦𝑦𝑦𝑦 as the output vector, ℎ𝑖𝑖𝑖𝑖 as the hidden layer vector, 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 as the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ weight matrix, and 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 as the
𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡ℎ bias term, the mathematical formulas for each layer are described as follows:

ℎ1 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊1𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏1), (12)
ℎ𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖−1 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖), (13)
𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑁𝑁𝑁𝑁ℎ𝑁𝑁𝑁𝑁−1 + 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁), (14)

where the 𝐷𝐷𝐷𝐷 value goes from the first hidden layer 𝐷𝐷𝐷𝐷 = 2 to the output layer 𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑃𝑃, and we use the tanh as the
activation function:

𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥) = 1−𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥

1+𝑒𝑒𝑒𝑒−2𝑥𝑥𝑥𝑥
 . (15)

Output layer. The output layer consists of 128 nodes. We measure the semantic similarity between question q
and profile document p as:

Sim(𝑞𝑞𝑞𝑞, 𝑝𝑝𝑝𝑝) = cosine�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 ,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝� = 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝
�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞��𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

， (16)

where 𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞 and 𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝 are the concept vectors of the question and the user’s profile, respectively. We apply the
softmax function on the output to covert the similarity relevance score into a probability of the user’s profile
given the question as shown below:

Pr(𝑝𝑝𝑝𝑝|𝑞𝑞𝑞𝑞) = 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝�

∑ 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐�𝑦𝑦𝑦𝑦𝑞𝑞𝑞𝑞,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛�𝐾𝐾𝐾𝐾
𝑛𝑛𝑛𝑛=1

， (17)

where 𝐾𝐾𝐾𝐾 denotes the number of candidates to be ranked. We approximated 𝐾𝐾𝐾𝐾 to be the list of the answerers,
which includes the actual answerers and three randomly selected non-answerers. We detail the construction
method of negative examples and positive examples for training in Section 4.1.

, (17)

where K denotes the number of candidates to be
ranked. We approximated K to be the list of the an-
swerers, which includes the actual answerers and
three randomly selected non-answerers. We detail
the construction method of negative examples and
positive examples for training in Section 4.1.
Training. In training, the model parameters are esti-
mated to maximize the likelihood of positive answer-
ers given the questions across the training set. Put
another way, we need to minimize the loss function,
as shown in Equation (18).

10

Training. In training, the model parameters are estimated to maximize the likelihood of positive answerers
given the questions across the training set. Put another way, we need to minimize the loss function, as shown
in Equation (18).

𝐿𝐿𝐿𝐿(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) = − log∏ 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖|𝑞𝑞𝑞𝑞)𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼+ ， (18)
where 𝐼𝐼𝐼𝐼+ is the set of indexed answerers (positive labels).

4 Experiments

4.1 Dataset
We constructed our dataset from a Stack Overflow snapshot by following all conditions mentioned in [12] and
[27]. To reduce the size of the dataset while exhibiting the same properties according to the original dataset,
we use the 21 tags reported in [12] to create a subset that is mainly selected according to the following criteria.
Each selected question is an archived question with an accepted answer (i.e., best answer), and it has at least
2 answers, and at least one of its tags matches the selected 21 specific tags. All questions are lowercase, and
we only keep the questions with at least 2 words left after removing the stop words. The purpose of these
selection operations is to filter out low-quality posts. As a result, the final subset contains 92,411 CQA sessions.
According to the posted timestamp, the first 12 months of data are used as the training data, and the remaining
data are used for testing. Therefore, the training and testing data do not overlap. There were 81,295 sessions
in the training set and 11,116 sessions in the test set.
Given the need to predict the best answerer and the reality that only a few users are responsible for the vast
majority of answers in CQA, three user sets Dx were constructed based on the number of answers X provided
by users in the training set (X = 10, 15, and 20 in this work). As can be seen from Table 1, set D20 includes
2,977 users, indicating that these users provided at least 20 answers in this training set. Moreover, for each of
the 8371 training questions, the questioner, the best answerer, and at least one other answerer are among these
2977 users. For the 517 test questions, they were routed to these 2977 users.

Table 1 The summary of three datasets.
The Set Name # of questions

answered by user U
of Users
U

of Training
Questions QTrn

of Test Questions
QTst

D10 10 5,761 16,021 1,151
D15 15 3,971 11,177 746
D20 20 2,977 8,371 517

Ground Truth: The list of answerers in 𝐷𝐷𝐷𝐷𝑋𝑋𝑋𝑋 who actually provided an answer to the test question is the ground
truth in our experiment.
Creating Examples: To train the model, we need to create positive and negative examples. According to our
collected data, a training set consists of threads (question, asker, best answer, best answerer, other answers,
other answerers ……). Following [1], if user 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 is in the list of answerers of 𝑞𝑞𝑞𝑞 (the list includes the best
answerer and other answerers of one thread), we consider (𝑞𝑞𝑞𝑞, 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖) as a positive example; otherwise, we consider
(𝑞𝑞𝑞𝑞, 𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗) as a negative example. We obtained 54,218 positive training pairs for D10, 36,238 positive training pairs
for D15, and 26,354 positive training pairs for D20. To train efficiently and reduce the training scale, we
randomly select three non-answerers based on the NCE sampling strategy to construct the negative samples.
The definitions of negative and positive examples are listed in Table 2.

, (18)

where I+ is the set of indexed answerers (positive labels).

4. Experiments
4.1. Dataset
We constructed our dataset from a Stack Overflow
snapshot by following all conditions mentioned in
[12] and [27]. To reduce the size of the dataset while
exhibiting the same properties according to the orig-
inal dataset, we use the 21 tags reported in [12] to

create a subset that is mainly selected according to
the following criteria. Each selected question is an
archived question with an accepted answer (i.e., best
answer), and it has at least 2 answers, and at least one
of its tags matches the selected 21 specific tags. All
questions are lowercase, and we only keep the ques-
tions with at least 2 words left after removing the stop
words. The purpose of these selection operations is to
filter out low-quality posts. As a result, the final sub-
set contains 92,411 CQA sessions. According to the
posted timestamp, the first 12 months of data are used
as the training data, and the remaining data are used
for testing. Therefore, the training and testing data do
not overlap. There were 81,295 sessions in the train-
ing set and 11,116 sessions in the test set.
Given the need to predict the best answerer and the
reality that only a few users are responsible for the
vast majority of answers in CQA, three user sets Dx

were constructed based on the number of answers X
provided by users in the training set (X = 10, 15, and 20
in this work). As can be seen from Table 1, set D20 in-
cludes 2,977 users, indicating that these users provid-
ed at least 20 answers in this training set. Moreover,
for each of the 8371 training questions, the question-
er, the best answerer, and at least one other answerer
are among these 2977 users. For the 517 test ques-
tions, they were routed to these 2977 users.

Table 1
The summary of three datasets

The Set
Name

of questions
answered by

user U

of
Users

U

of Training
Questions

QTrn

of Test
Questions

QTst

D10 10 5,761 16,021 1,151

D15 15 3,971 11,177 746

D20 20 2,977 8,371 517

Ground Truth: The list of answerers in Dx who ac-
tually provided an answer to the test question is the
ground truth in our experiment.
Creating Examples: To train the model, we need to
create positive and negative examples. According to
our collected data, a training set consists of threads
(question, asker, best answer, best answerer, other an-
swers, other answerers ……). Following [1], if user ui is
in the list of answerers of q (the list includes the best
answerer and other answerers of one thread), we con-

Information Technology and Control 2023/3/52798

sider (q, ui) as a positive example; otherwise, we con-
sider (q, uj) as a negative example. We obtained 54,218
positive training pairs for D10, 36,238 positive training
pairs for D15, and 26,354 positive training pairs for
D20. To train efficiently and reduce the training scale,
we randomly select three non-answerers based on
the NCE sampling strategy to construct the negative
samples. The definitions of negative and positive ex-
amples are listed in Table 2.

Table 2
Negative and positive examples for training

Question-User Pair Label/Class

(q, answerer1) Positive

(q, answerer2) Positive

… Positive

(q, answerern) Positive

(q, random-non-answerer1) Negative

(q, random-non-answerer2) Negative

(q, random-non-answerer3) Negative

4.2. Baseline Methods and Experimental
Setting
Baseline Methods.To evaluate the performance of
our proposed models, we use the following three dif-
ferent types of baselines for comparison: the tradi-
tional information retrieval model, topic-based mod-
el, and deep learning-based model.
1 Traditional IR model
TF-IDF: TF-IDF [27] is a standard measure of comput-
ing the importance and relevance of a word document
based on the frequency of that word in the document
and the inverse proportion of documents containing
the word over the entire document corpus. For the
question routing and expert finding task, we represent
the posted question and user profile as vectors of their
TF-IDF weights and then calculate the cosine similari-
ty between each user profile and question vector.
2 Topic-based model
LDA: LDA [17] is a three-level hierarchical Bayesian
model that has been widely applied to address the
term mismatch problem in IR. It mainly relies on word
co-occurrence relationships and takes semantic in-

formation into account. In our experiments, all ques-
tions answered by a user are concatenated to build the
user profile. We use Gibbs-LDA++ [14] with topic size
K=100 to conduct LDA training. We set the LDA hy-
per-parameters α = 0.5 and β = 0.1, respectively.
MLQR: MLQR [6] is a multi-objective learning-to-
rank approach in which a tag-word topic model was
proposed and applied to address the question routing
problem. In this experiment, we set the number of
topics K = 80, α = 0.7, β = 0.01, and γ = 0.01. Gibbs Sam-
pling is run for 1000 iterations.
3 Deep learning-based model
QR-DSSM: QR-DSSM [1] is a typical deep neural Si-
amese Network based on DSSM [11] to capture the
semantic similarity between the profiles of the can-
didates and the posted question. In our experiment,
to facilitate subsequent comparisons, we use GloVe
embedding to represent the sequence instead of using
the word hash embedding method. The code blocks
are removed from the dataset. The number of itera-
tions of the neural network is 100, and the learning
rate is 0.02.
CNN-based method: A CNN-based method [31] treats
question routing as a classification problem and takes
the best answerer of each question as a positive train-
ing example as well as the ground truth. We adopt the
CNN-non-static [13] to capture the semantics of the
text for best answerer prediction, which uses filter
windows of 3, 4, and 5 with 100 feature maps each.
The dropout rate is 0.5, and the mini-batch size is 50.
Experimental Setting. We use the English uncased
BERT-Base model released by Google, which has 12
layers, 768 hidden states, and 12 heads. Models are
implemented with TensorFlow using TPUs. Regard-
ing the selection of hyperparameters, we fixed some
empirically, such as choosing the Adam weight decay
optimizer for the optimization with L2 weight decay
of 0.01, β1 = 0.9, and β2 = 0.999. The dropout proba-
bility is always kept at 0.1. Some hyperparameters
were set to different values during the training and
were chosen according to their impact on perfor-
mance. The initial learning rate and batch size are
set to [1e-3, 2e-5, 1e-7] and [16, 32, 64], respectively.
In the tag-word topic model, we set α=0.8, β=0.01, and
γ=0.01. The number of topics varies from 20 to 90. In
addition, since the randomness of the parameter ini-
tialization leads to different results each time, we av-
eraged the results for 10 runs.

799Information Technology and Control 2023/3/52

4.3. Evaluation Metrics
The evaluation criteria measure how well the sys-
tem ranks the correct pair (q, answereri) against the
other random candidates for the same question (q,
random-non-answererj). Therefore, we adapt sever-
al standard metrics for expert finding and question
routing to evaluate the performance as follows.
1 Precision at N (P@N): The precision at N reports

the percentage of predicted positive users/experts
observed at the top N retrieved results. In other
words, it is the ratio of the number of positive us-
ers to the total number of candidates until N. For
example, Precision@1(P@1) aims to compute the
percentage of times the system ranks the correct
answerers as the top item. More specifically, if our
model returns 10 users for a given question, the rel-
evant users are ranked at 1, 2, 4, 6, and 9. Then, the
P@5 is 3/5 and the P@10 is 5/10 in this case.

2 Mean Reciprocal Rank (MRR): The MRR com-
putes the inverse of the rank of the correct answer-
er among other answerers averaged for all queries.
Alternatively, we can describe it as reflecting the
average ranking of the actual answerer’s first ap-
pearance in a given test set question. For a given
query set Q, we use the following formula to calcu-
late MRR.

12

to their impact on performance. The initial learning rate and batch size are set to [1e-3, 2e-5, 1e-7] and [16, 32,
64], respectively. In the tag-word topic model, we set α=0.8, β=0.01, and γ=0.01. The number of topics varies
from 20 to 90. In addition, since the randomness of the parameter initialization leads to different results each
time, we averaged the results for 10 runs.

4.3 Evaluation Metrics
The evaluation criteria measure how well the system ranks the correct pair (q, answereri) against the other
random candidates for the same question (q, random-non-answererj). Therefore, we adapt several standard
metrics for expert finding and question routing to evaluate the performance as follows.
(1) Precision at N (P@N): The precision at N reports the percentage of predicted positive users/experts
observed at the top N retrieved results. In other words, it is the ratio of the number of positive users to the total
number of candidates until N. For example, Precision@1(P@1) aims to compute the percentage of times the
system ranks the correct answerers as the top item. More specifically, if our model returns 10 users for a given
question, the relevant users are ranked at 1, 2, 4, 6, and 9. Then, the P@5 is 3/5 and the P@10 is 5/10 in this
case.
(2) Mean Reciprocal Rank (MRR): The MRR computes the inverse of the rank of the correct answerer among
other answerers averaged for all queries. Alternatively, we can describe it as reflecting the average ranking of
the actual answerer’s first appearance in a given test set question. For a given query set Q, we use the following
formula to calculate MRR.

𝑇𝑇𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1
𝑁𝑁𝑁𝑁

 ∑ 1
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗

𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1 , (19)

where N is the number of queries and rankj is the position of the correct answerer.
(3) Mean Average Precision (MAP): The MAP shows the overall retrieval quality score, which is the arithmetic
mean of the average precision score for each test set question.

5 Experiment Results and Analysis
This section presents the effectiveness of our proposed models on question routing tasks comparing three types
of different models over our dataset.

Table 3 Comparison of different methods for question routing（X=10）

Model
Type

Model Name
D10

P@5 P@10 MRR MAP
Traditional IR TF-IDF 0.0251 0.0159 0.0558 0.0281

Topic-based
LDA 0.0358 0.0230 0.0820 0.0386

MLQR 0.0657 0.0411 0.1522 0.0699

Deep-learning
QR-DSSM 0.1033 0.0568 0.2035 0.0957
CNN-based 0.0927 0.0701 0.2244 0.1017

Proposed
QR-BERTrep 0.1629 0.1225 0.3223 0.1881
QR-BERTint 0.1771 0.1208 0.3168 0.2019

QR-tBERTint 0.1935 0.1487 0.3592 0.2407

Table 4 Comparison of different methods for question routing（X=15）

Model
Type

Model Name
D15

P@5 P@10 MRR MAP
Traditional IR TF-IDF 0.0315 0.0200 0.0645 0.0321
Topic-based LDA 0.0431 0.0268 0.0895 0.0439

, (19)

where N is the number of queries and rankj is the
position of the correct answerer.

3 Mean Average Precision (MAP): The MAP shows
the overall retrieval quality score, which is the
arithmetic mean of the average precision score for
each test set question.

5. Experiment Results and Analysis
This section presents the effectiveness of our pro-
posed models on question routing tasks comparing
three types of different models over our dataset.

5.1. Performance Analysis of Our Proposed
Model Compared to Baseline Models
The results are summarized in Tables 3-5. We can
see that all BERT-based models perform much better
than the existing traditional retrieval models and the
recently proposed neural network-based models. In
detail, several main observations can be concluded
from these tables.
1 Topic-based models exhibit much better perfor-

mance than the traditional information retrieval
approaches. This finding suggests that semantic
understanding is important in the question routing
task of text-based analysis. Approaches that rely on
lexical matching without any text semantics have
significant limitations. Moreover, MLQR consis-
tently performs better than the LDA model, which

Table 3
Comparison of different methods for question routing (X=10)

Model
Type Model Name

D10

P@5 P@10 MRR MAP

Traditional IR TF-IDF 0.0251 0.0159 0.0558 0.0281

Topic-based
LDA 0.0358 0.0230 0.0820 0.0386

MLQR 0.0657 0.0411 0.1522 0.0699

Deep-learning
QR-DSSM 0.1033 0.0568 0.2035 0.0957

CNN-based 0.0927 0.0701 0.2244 0.1017

Proposed

QR-BERTrep 0.1629 0.1225 0.3223 0.1881

QR-BERTint 0.1771 0.1208 0.3168 0.2019

QR-tBERTint 0.1935 0.1487 0.3592 0.2407

Information Technology and Control 2023/3/52800

Table 4
Comparison of different methods for question routing (X=15)

Model
Type Model Name

D15

P@5 P@10 MRR MAP

Traditional IR TF-IDF 0.0315 0.0200 0.0645 0.0321

Topic-based
LDA 0.0431 0.0268 0.0895 0.0439

MLQR 0.0813 0.0509 0.1776 0.0798

Deep-learning
QR-DSSM 0.1078 0.0662 0.2291 0.1093

CNN-based 0.1173 0.0813 0.2616 0.1193

Proposed

QR-BERTrep 0.1863 0.1477 0.3556 0.2312

QR-BERTint 0.2111 0.1724 0.3561 0.2296

QR-tBERTint 0.2324 0.2112 0.3905 0.2723

Table 5
Comparison of different methods for question routing (X=20)

Model
Type Model Name

D20

P@5 P@10 MRR MAP

Traditional IR TF-IDF 0.0312 0.0195 0.0687 0.0353

Topic-based
LDA 0.0445 0.0279 0.0967 0.0493

MLQR 0.0861 0.0551 0.1914 0.0899

Deep-learning
QR-DSSM 0.1158 0.0751 0.2492 0.1279

CNN-based 0.1271 0.0965 0.2897 0.1637

Proposed

QR-BERTrep 0.2226 0.1935 0.4156 0.2468

QR-BERTint 0.2562 0.2377 0.4440 0.2595

QR-tBERTint 0.2920 0.2797 0.5012 0.2894

indicates that taking advantage of the corpus-level
topic information is quite effective for semantic
understanding and can relieve the data sparsity
problem in the question routing task.

2 Deep learning-based methods can significantly
improve performance. These approaches main-
ly benefit from distributed word embeddings
and efficient neural networks, which can capture
more contextual semantic information through
deeper and trainable architectures. Specifically,
in Table 5, QR-DSSM achieves the best MRR of
0.2492, meaning that the question could be rout-
ed to only 5 users on average to obtain an answer,
while LDA requires at least 11 users and MLQR re-

quires at least 6 users. Moreover, the mean average
precision of QR-DSSM is almost 42.26% higher
than that of MLQR, and the CNN-based method
achieved better performance than QR-DSSM, but
the improvement was insignificant. This indicates
that the CNN-based method has the ability to cap-
ture more contextual information and select more
discriminative features through the exquisite con-
volutional layers.

3 The two methods we proposed significantly sur-
pass all baseline methods on our datasets in terms
of all metrics. This result is encouraging and in-
dicates that our models are quite effective in ad-
dressing the question routing task. Specifically,

801Information Technology and Control 2023/3/52

the best mean average precision of QR-BERTrep
and QR-tBERTint is nearly 1.75 times and 2.22
times higher than MLQR, respectively. Moreover,
QR-tBERTint proved its remarkable superiority
over the neural baseline model QR-DSSM and the
CNN-based method in modeling the semantic sim-
ilarity and sequence relationship jointly. In Table
5, when X=20, the best value of MRR achieved by
QR-tBERTint is 0.5012, which indicates that each
test question will be answered if we route it to the
top 2 users on average. In contrast, QR-DSSM re-
quires at least 5 users, and the CNN-based model
requires at least 4 users.

4 From Tables 3-5, we can observe that the D20 set
achieves better results than the D15 set, and the D15
set achieves better results than the D10 set. This in-
dicates that fewer negative samples can lead to bet-
ter results in our dataset.

5 In addition, we note that the absolute values of mod-
el performance are relatively low in all three tables.
We summarize the main reasons for this as follows.
First, CQA faces a serious data sparsity problem,
which leads to insufficient text for question mod-
eling and user modeling. Not only the text lengths
of the questions and answers are short, but we also
can see from Table 1 that the number of questions is
much larger than the number of answerers. With an
average of only a few user comments per question
and a very low average number of answers posted
per user, the reality is that most users are not ac-
tive in CQA. Second, we constructed our dataset

by including the 21 most frequent tags, rather than
including only a few tags. This makes our dataset
more generalizable, but also more diverse in terms
of the topics for which information is searched. As
a result, finding the right expert to answer a specific
question can be very challenging. Third, Stack Over-
flow is a vertical community Q&A with a complex
composition of data, including code snippets, tables,
domain-specific terms, and a few other discrete
pieces of text. All of these factors contribute to the
low absolute value of performance data.

5.2. Analysis of Representation-based
Methods and Interaction-based Methods
As mentioned before, our proposed two BERT-based
models, QR-BERTint and QR-tBERTrep, are both very
effective on our dataset compared with three types of
baselines. In this section, we will analyze their differ-
ences in more depth, and the performance compari-
son is shown in Figure 3.
As indicated in Figure 3, the topic-enhanced interac-
tion-based model QR-tBERTint performs much better
than representation-based models QR-DSSM and
QR-BERTrep. In addition, QR-tBERTint significant-
ly exceeds QR-BERTrep with a maximum increase of
31.17% in p@5 and 44.54% in p@10, respectively. The
main reasons can be summarized as follows: First,
QR-tBERTint takes into account the interaction be-
tween sequences by connecting questions and user
profiles in pairs as input, so that the hierarchical rela-
tionship between questions and profiles can be learned

Figure 3
Performance comparison of QR-DSSM, QR-BERTint and QR-tBERTrep

14

(4) From Tables 3-5, we can observe that the D20 set achieves better results than the D15 set, and the D15 set
achieves better results than the D10 set. This indicates that fewer negative samples can lead to better results in
our dataset.
(5) In addition, we note that the absolute values of model performance are relatively low in all three tables.
We summarize the main reasons for this as follows. First, CQA faces a serious data sparsity problem, which
leads to insufficient text for question modeling and user modeling. Not only the text lengths of the questions
and answers are short, but we also can see from Table 1 that the number of questions is much larger than the
number of answerers. With an average of only a few user comments per question and a very low average
number of answers posted per user, the reality is that most users are not active in CQA. Second, we constructed
our dataset by including the 21 most frequent tags, rather than including only a few tags. This makes our
dataset more generalizable, but also more diverse in terms of the topics for which information is searched. As
a result, finding the right expert to answer a specific question can be very challenging. Third, Stack Overflow
is a vertical community Q&A with a complex composition of data, including code snippets, tables, domain-
specific terms, and a few other discrete pieces of text. All of these factors contribute to the low absolute value
of performance data.

5.2 Analysis of Representation-based Methods and Interaction-based Methods
As mentioned before, our proposed two BERT-based models, QR-BERTint and QR-tBERTrep, are both very
effective on our dataset compared with three types of baselines. In this section, we will analyze their differences
in more depth, and the performance comparison is shown in Figure 3.

As indicated in Figure 3, the topic-enhanced interaction-based model QR-tBERTint performs much better than
representation-based models QR-DSSM and QR-BERTrep. In addition, QR-tBERTint significantly exceeds QR-
BERTrep with a maximum increase of 31.17% in p@5 and 44.54% in p@10, respectively. The main reasons
can be summarized as follows: First, QR-tBERTint takes into account the interaction between sequences by
connecting questions and user profiles in pairs as input, so that the hierarchical relationship between questions
and profiles can be learned as an essential feature of matching. In contrast, QR-BERTrep encodes the question
sequence and profile sequence separately so that the interaction between the two sequences is deferred to the
end of the matching process, risking the loss of details important for matching. Second, QR-tBERTint takes the
fine-tuning strategy to learn cross-attention between terms by directly using Transformers located in BERT.
In contrast, QR-BERTrep only uses the pre-trained network to construct sequence representations. Third, the
tag-word topic model can provide corpus-level information to enhance the understanding of the semantic
relevance of the text.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

P@5 P@10 MRR MAP P@5 P@10 MRR MAP P@5 P@10 MRR MAP

N=10 N=15 N=20

QR-DSSM QR-BERTrep QR-tBERTint

Information Technology and Control 2023/3/52802

as an essential feature of matching. In contrast, QR-BERTrep
encodes the question sequence and profile sequence separately
so that the interaction between the two sequences is deferred to
the end of the matching process, risking the loss of details im-
portant for matching. Second, QR-tBERTint takes the fine-tun-
ing strategy to learn cross-attention between terms by directly
using Transformers located in BERT. In contrast, QR-BERTrep
only uses the pre-trained network to construct sequence rep-
resentations. Third, the tag-word topic model can provide cor-
pus-level information to enhance the understanding of the se-
mantic relevance of the text.

5.3. Analysis of Tag-word Topic Representation Module
From Tables 3-5, we can see that combining tag-word topics
can consistently improves the question routing performance
across all metrics for all datasets. Specifically, without the tag-
word topic model, the performance of QR-BERTint decreases by
11.41% and 10.33% in MRR and MAP, respectively, compared
to QR-tBERTint. The main reason we summarize is that Stack
Overflow is a programming-specific Q&A community, where the
ability to detect domain-specific terms is crucial for text seman-
tic understanding and matching. However, the pre-training of
BERT is based on general domain knowledge and is likely to fail
to learn domain-specific words related to programming. Here,
the tag-word topic model could serve as an additional source for
dataset-specific information. Our findings are consistent with a
lot of previous work that also confirms the effectiveness of in-
corporating topic models when dealing with semantic related
tasks in specific knowledge domains, such as sentiment analysis
in Microblogs [22] and machine translation [5].

5.4. Contextualized Embedding vs. Traditional Word
Embedding
In this section, the proposed QR-BERTrep model is compared
with the baselines in terms of word embedding representation,
which is a crucial part that affects the performance of the repre-
sentation-based models. To explore the respective effects of con-
textualized embedding and word embedding, we conducted an
ablation experiment called QR-BERTrep(WG) in which the GloVe
embedding was removed. The performance comparison of differ-
ent representation-based models is shown in Figure 4.
It can be seen that the methods using distributed word rep-
resentation perform much better than the methods that rep-
resent the words in a sentence as a “bag of words”. Therefore,
TF-IDF has the lowest MRR and MAP. In addition, we can see
that neural rankers such as QR-DSSM and CNN-based models
are greatly facilitated by using pre-trained word embeddings
(e.g., Word2Vec or GloVe) for sequence representation. In
QR-BERTrep, we concatenate the GloVe embedding and con-

Figure 4
The performance comparison of different
representation-based models

15

Figure 3 Performance comparison of QR-DSSM, QR-BERTint and QR-tBERTrep

5.3 Analysis of Tag-word Topic Representation Module
From Tables 3-5, we can see that combining tag-word topics can consistently improves the question routing
performance across all metrics for all datasets. Specifically, without the tag-word topic model, the performance
of QR-BERTint decreases by 11.41% and 10.33% in MRR and MAP, respectively, compared to QR-tBERTint.
The main reason we summarize is that Stack Overflow is a programming-specific Q&A community, where
the ability to detect domain-specific terms is crucial for text semantic understanding and matching. However,
the pre-training of BERT is based on general domain knowledge and is likely to fail to learn domain-specific
words related to programming. Here, the tag-word topic model could serve as an additional source for dataset-
specific information. Our findings are consistent with a lot of previous work that also confirms the
effectiveness of incorporating topic models when dealing with semantic related tasks in specific knowledge
domains, such as sentiment analysis in Microblogs [22] and machine translation [5].

5.4 Contextualized Embedding vs. Traditional Word Embedding
In this section, the proposed QR-BERTrep model is compared with the baselines in terms of word embedding
representation, which is a crucial part that affects the performance of the representation-based models. To
explore the respective effects of contextualized embedding and word embedding, we conducted an ablation
experiment called QR-BERTrep(WG) in which the GloVe embedding was removed. The performance
comparison of different representation-based models is shown in Figure 4.
It can be seen that the methods using distributed word representation perform much better than the methods
that represent the words in a sentence as a "bag of words". Therefore, TF-IDF has the lowest MRR and MAP.
In addition, we can see that neural rankers such as QR-DSSM and CNN-based models are greatly facilitated
by using pre-trained word embeddings (e.g., Word2Vec or GloVe) for sequence representation. In QR-
BERTrep, we concatenate the GloVe embedding and contextualized embedding together, the performance is
dramatically boosted, almost doubling that of QR-DSSM. This result is consistent with previous observations
in [19, 16], indicating that using contextualized language term embedding for text understanding and matching
is very effective.

(a) (b)

0.00

0.05

0.10

0.15

0.20

0.25
P@1

N=10 N=15 N=20

0.00

0.05

0.10

0.15

0.20

0.25
P@5

N=10 N=15 N=20

15

Figure 3 Performance comparison of QR-DSSM, QR-BERTint and QR-tBERTrep

5.3 Analysis of Tag-word Topic Representation Module
From Tables 3-5, we can see that combining tag-word topics can consistently improves the question routing
performance across all metrics for all datasets. Specifically, without the tag-word topic model, the performance
of QR-BERTint decreases by 11.41% and 10.33% in MRR and MAP, respectively, compared to QR-tBERTint.
The main reason we summarize is that Stack Overflow is a programming-specific Q&A community, where
the ability to detect domain-specific terms is crucial for text semantic understanding and matching. However,
the pre-training of BERT is based on general domain knowledge and is likely to fail to learn domain-specific
words related to programming. Here, the tag-word topic model could serve as an additional source for dataset-
specific information. Our findings are consistent with a lot of previous work that also confirms the
effectiveness of incorporating topic models when dealing with semantic related tasks in specific knowledge
domains, such as sentiment analysis in Microblogs [22] and machine translation [5].

5.4 Contextualized Embedding vs. Traditional Word Embedding
In this section, the proposed QR-BERTrep model is compared with the baselines in terms of word embedding
representation, which is a crucial part that affects the performance of the representation-based models. To
explore the respective effects of contextualized embedding and word embedding, we conducted an ablation
experiment called QR-BERTrep(WG) in which the GloVe embedding was removed. The performance
comparison of different representation-based models is shown in Figure 4.
It can be seen that the methods using distributed word representation perform much better than the methods
that represent the words in a sentence as a "bag of words". Therefore, TF-IDF has the lowest MRR and MAP.
In addition, we can see that neural rankers such as QR-DSSM and CNN-based models are greatly facilitated
by using pre-trained word embeddings (e.g., Word2Vec or GloVe) for sequence representation. In QR-
BERTrep, we concatenate the GloVe embedding and contextualized embedding together, the performance is
dramatically boosted, almost doubling that of QR-DSSM. This result is consistent with previous observations
in [19, 16], indicating that using contextualized language term embedding for text understanding and matching
is very effective.

(a) (b)

0.00

0.05

0.10

0.15

0.20

0.25
P@1

N=10 N=15 N=20

0.00

0.05

0.10

0.15

0.20

0.25
P@5

N=10 N=15 N=20

16

(c) (d)

Figure 4 The performance comparison of different representation-based models

6 Conclusions
In this paper, we explore two different ways to address the question routing task for CQA based on a pre-
trained contextual language model. QR-tBERTint is an interaction-based model that takes question-profile pairs
as input and fine-tunes BERT to capture the relationship between sequence pairs. In addition, a tag-word topic
model is incorporated as an additional source of dataset-specific information. QR-BERTrep is a representation-
based model that combines contextualized embedding with traditional static word embedding to enhance the
representation for semantic understanding and matching.
Experimental results on real-world data demonstrated that both of our proposed models greatly exceed state-
of-the-art baselines. The best result indicates that a question will be answered if it is routed to the top 2
candidates. QR-BERTrep exceeds all representation-based baselines discussed in this paper, showing that
contextualized word embedding can carry richer semantic information to enhance the representation in our
task. Meanwhile, QR-tBERTint performs much better than QR-BERTrep, which indicates that the question
routing task benefits from sequence relationship learning and corpus-level topical semantic information.
Although we have made some progress in our work, in future work we would like to introduce more QA
features (e.g., reputation, the willingness of experts) or non-QA features (e.g., number of followers and
connected accounts on social networking sites) to enhance the performance. Moreover, taking advantage of
the knowledge graph to improve the effectiveness of question routing is a very interesting work for the future.

References

1. Azzam, A., Tazi, N., Hossny, A. A Question Routing Technique Using Deep Neural Network for
Communities of Question Answering. International Conference on Database Systems for Advanced
Applications, Springer, 2017, 35-49.
2. Ba, J. L., Kiros, J. R., Hinton, G. E. Layer Normalization. Stat, 2016, 1050, 21.
3. Balog, K., Azzopardi, L., De Rijke, M. Formal Models for Expert Finding in Enterprise Corpora.
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2006, 43-50.
4. Balog, K., Azzopardi, L., de Rijke, M., Management. A Language Modeling Framework for Expert

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

MRR
N=10 N=15 N=20

0.00

0.05

0.10

0.15

0.20

0.25

0.30
MAP

N=10 N=15 N=20

16

(c) (d)

Figure 4 The performance comparison of different representation-based models

6 Conclusions
In this paper, we explore two different ways to address the question routing task for CQA based on a pre-
trained contextual language model. QR-tBERTint is an interaction-based model that takes question-profile pairs
as input and fine-tunes BERT to capture the relationship between sequence pairs. In addition, a tag-word topic
model is incorporated as an additional source of dataset-specific information. QR-BERTrep is a representation-
based model that combines contextualized embedding with traditional static word embedding to enhance the
representation for semantic understanding and matching.
Experimental results on real-world data demonstrated that both of our proposed models greatly exceed state-
of-the-art baselines. The best result indicates that a question will be answered if it is routed to the top 2
candidates. QR-BERTrep exceeds all representation-based baselines discussed in this paper, showing that
contextualized word embedding can carry richer semantic information to enhance the representation in our
task. Meanwhile, QR-tBERTint performs much better than QR-BERTrep, which indicates that the question
routing task benefits from sequence relationship learning and corpus-level topical semantic information.
Although we have made some progress in our work, in future work we would like to introduce more QA
features (e.g., reputation, the willingness of experts) or non-QA features (e.g., number of followers and
connected accounts on social networking sites) to enhance the performance. Moreover, taking advantage of
the knowledge graph to improve the effectiveness of question routing is a very interesting work for the future.

References

1. Azzam, A., Tazi, N., Hossny, A. A Question Routing Technique Using Deep Neural Network for
Communities of Question Answering. International Conference on Database Systems for Advanced
Applications, Springer, 2017, 35-49.
2. Ba, J. L., Kiros, J. R., Hinton, G. E. Layer Normalization. Stat, 2016, 1050, 21.
3. Balog, K., Azzopardi, L., De Rijke, M. Formal Models for Expert Finding in Enterprise Corpora.
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2006, 43-50.
4. Balog, K., Azzopardi, L., de Rijke, M., Management. A Language Modeling Framework for Expert

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

MRR
N=10 N=15 N=20

0.00

0.05

0.10

0.15

0.20

0.25

0.30
MAP

N=10 N=15 N=20

(a)

(b)

(c)

(d)

803Information Technology and Control 2023/3/52

textualized embedding together, the performance is
dramatically boosted, almost doubling that of QR-
DSSM. This result is consistent with previous obser-
vations in [19, 16], indicating that using contextual-
ized language term embedding for text understanding
and matching is very effective.

6. Conclusions
In this paper, we explore two different ways to address
the question routing task for CQA based on a pre-
trained contextual language model. QR-tBERTint is
an interaction-based model that takes question-pro-
file pairs as input and fine-tunes BERT to capture the
relationship between sequence pairs. In addition, a
tag-word topic model is incorporated as an additional
source of dataset-specific information. QR-BERTrep is
a representation-based model that combines contex-
tualized embedding with traditional static word em-
bedding to enhance the representation for semantic
understanding and matching.

Experimental results on real-world data demonstrat-
ed that both of our proposed models greatly exceed
state-of-the-art baselines. The best result indicates
that a question will be answered if it is routed to the
top 2 candidates. QR-BERTrep exceeds all representa-
tion-based baselines discussed in this paper, showing
that contextualized word embedding can carry rich-
er semantic information to enhance the representa-
tion in our task. Meanwhile, QR-tBERTint performs
much better than QR-BERTrep, which indicates that
the question routing task benefits from sequence re-
lationship learning and corpus-level topical semantic
information.
Although we have made some progress in our work, in
future work we would like to introduce more QA fea-
tures (e.g., reputation, the willingness of experts) or
non-QA features (e.g., number of followers and con-
nected accounts on social networking sites) to enhance
the performance. Moreover, taking advantage of the
knowledge graph to improve the effectiveness of ques-
tion routing is a very interesting work for the future.

References
1. Azzam, A., Tazi, N., Hossny, A. A Question Routing Tech-

nique Using Deep Neural Network for Communities of
Question Answering. International Conference on Data-
base Systems for Advanced Applications, Springer, 2017,
35-49. https://doi.org/10.1007/978-3-319-55753-3_3

2. Ba, J. L., Kiros, J. R., Hinton, G. E. Layer Normalization.
Stat, 2016, 1050, 21.

3. Balog, K., Azzopardi, L., De Rijke, M. Formal Models for
Expert Finding in Enterprise Corpora. Proceedings of
the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
2006, 43-50. https://doi.org/10.1145/1148170.1148181

4. Balog, K., Azzopardi, L., de Rijke, M., Management. A
Language Modeling Framework for Expert Finding.
Information Processing, 2009, 45(1), 1-19. https://doi.
org/10.1016/j.ipm.2008.06.003

5. Chen, W., Matusov, E., Khadivi, S., Peter, J.-T. Guided
Alignment Training for Topic-Aware Neural Machine
Translation. arXiv Preprint, 2016.

6. Cheng, X., Zhu, S., Su, S., Chen, G. A Multi-Objective Op-
timization Approach for Question Routing in Commu-
nity Question Answering Services. IEEE Transactions
on Knowledge Data Engineering, 2017, 29(9), 1779-
1792. https://doi.org/10.1109/TKDE.2017.2696008

7. Dehghan, M., Biabani, M., Abin, A. A. Temporal Expert
Profiling: With an Application to T-Shaped Expert Fin-
ding. ACM Transactions on Knowledge Discovery from
Data Management Information Processing, 2019, 55(3),
1067-1079. https://doi.org/10.1016/j.ipm.2019.02.017

8. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. Bert:
Pre-Training of Deep Bidirectional Transformers for
Language Understanding, 2018, 4171-4186. arXiv pre-
print arXiv:1810.04805.

9. Dong, H., Wang, J., Lin, H., Xu, B., Yang, Z. Predicting Best
Answerers for New Questions: An Approach Leveraging
Distributed Representations of Words in Community
Question Answering. 9th IEEE International Conferen-
ce on Frontier of Computer Science and Technology,
2015, 13-18. https://doi.org/10.1109/FCST.2015.56

10. Hochreiter, S., Schmidhuber, J. Long Short-Term Me-
mory. Neural Computation, 1997, 9(8), 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735

11. Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.
Learning Deep Structured Semantic Models for Web
Search Using Clickthrough Data. Proceedings of the
22nd ACM International Conference on Information &
Knowledge Management, 2013, 2333-2338. https://doi.
org/10.1145/2505515.2505665

Information Technology and Control 2023/3/52804

12. Ji, Z., Wang, B. Learning to Rank for Question Routing
in Community Question Answering. Proceedings of the
22nd ACM International Conference on Information
and Knowledge Management, 2013, 2363-2368. https://
doi.org/10.1145/2505515.2505670

13. Kim, Y. Convolutional Neural Networks for Sentence
Classification, 2014. arXiv preprint arXiv:1408.5882.
https://doi.org/10.3115/v1/D14-1181

14. Li, B., King, I., Lyu, M. R. Question Routing in Commu-
nity Question Answering: Putting Category in Its Place.
Proceedings of the 20th ACM International Conferen-
ce on Information and Knowledge Management, 2011,
2041-2044. https://doi.org/10.1145/2063576.2063885

15. Li, Z., Jiang, J.-Y., Sun, Y., Wang, W. Personalized Ques-
tion Routing via Heterogeneous Network Embedding,
2019. https://doi.org/10.1609/aaai.v33i01.3301192

16. Li, Z., Jiang, J.-Y., Sun, Y., Wang, W. Personalized Ques-
tion Routing via Heterogeneous Network Embedding.
Proceedings of the AAAI Conference on Artificial Intel-
ligence, 2019, 33(01), 192-199. https://doi.org/10.1609/
aaai.v33i01.3301192

17. Liu, M., Liu, Y., Yang, Q. Predicting Best Answerers for
New Questions in Community Question Answering.
International Conference on Web-Age Informati-
on Management, Springer, 2010, 127-138. https://doi.
org/10.1007/978-3-642-14246-8_15

18. Liu, Z., Jansen, B. J. Analysis of Question and Answering
Behavior in Question Routing Services. CYTED-RITOS
International Workshop on Groupware, Springer, 2015,
72-85. https://doi.org/10.1007/978-3-319-22747-4_6

19. MacAvaney, S., Yates, A., Cohan, A., Goharian, N. Cedr:
Contextualized Embeddings for Document Ranking. Pro-
ceedings of the 42nd International ACM SIGIR Conferen-
ce on Research and Development in Information Retrieval,
2019, 1101-1104. https://doi.org/10.1145/3331184.3331317

20. Mathew, B., Dutt, R., Maity, S. K., Goyal, P., Mukher-
jee, A. Deep Dive into Anonymity: Large Scale Analy-
sis of Quora Questions. International Conference on
Social Informatics, Springer, 2019, 35-49. https://doi.
org/10.1007/978-3-030-34971-4_3

21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean,
J. Distributed Representations of Words and Phrases
and Their Compositionality. Advances in Neural Infor-
mation Processing Systems, 2013, 3111-3119.

22. Palani, S., Rajagopal, P., Pancholi, S. T-BERT--Model for
Sentiment Analysis of Micro-blogs Integrating Topic
Model and BERT. arXiv Preprint, 2021.

23. Peinelt, N., Nguyen, D., Liakata, M. tBERT: Topic Models
and BERT Joining Forces for Semantic Similarity De-

tection. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 2020, 7047-
7055. https://doi.org/10.18653/v1/2020.acl-main.630

24. Pennington, J., Socher, R., Manning, C. Glove: Glo-
bal Vectors for Word Representation. Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), 2014, 1532-1543.
https://doi.org/10.3115/v1/D14-1162

25. Qiu, X., Huang, X. Convolutional Neural Tensor Ne-
twork Architecture for Community-Based Question
Answering. 24th International Joint Conference on Ar-
tificial Intelligence, 2015.

26. Radford, A., Narasimhan, K., Salimans, T., Sutskever,
I. Improving Language Understanding by Generative
Pre-Training. Preprint, 2018.

27. Riahi, F., Zolaktaf, Z., Shafiei, M., Milios, E. Finding Expert
Users in Community Question Answering. Proceedings
of the 21st International Conference on World Wide Web,
2012, 791-798. https://doi.org/10.1145/2187980.2188202

28. Sun, J., Zhao, J., Sun, H., Parthasarathy, S. EndCold: An
End-to-End Framework for Cold Question Routing in
Community Question Answering Services. Proceedings
of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, 2020, 3244-3250. https://doi.
org/10.24963/ijcai.2020/449

29. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jo-
nes, L., Gomez, A. N., Kaiser, L., Polosukkhin, I. Atten-
tion is All You Need. Advances in Neural Information
Processing Systems, 2017, 5998-6008.

30. Wang, G., Gill, K., Mohanlal, M., Zheng, H., Zhao, B.
Y. Wisdom in the Social Crowd: An Analysis of Quo-
ra. Proceedings of the 22nd International Conferen-
ce on World Wide Web, 2013, 1341-1352. https://doi.
org/10.1145/2488388.2488506

31. Wang, J., Sun, J., Lin, H., Dong, H., Zhang, S. Convo-
lutional Neural Networks for Expert Recommen-
dation in Community Question Answering. Scien-
ce China Information Sciences, 2017, 60(11), 1-9.
https://doi.org/10.1007/s11432-016-9197-0

32. Yang, L., Qiu, M., Gottipati, S., Zhu, F., Jiang, J., Sun, H.,
Chen, Z. Cqarank: Jointly Model Topics and Expertise
in Community Question Answering. Proceedings of the
22nd ACM International Conference on Information
and Knowledge Management, 2013, 99-108. https://doi.
org/10.1145/2505515.2505720

33. Yang, N., Jo, J., Jeon, M., Kim, W., Kang, J. Semantic and
Explainable Research-Related Recommendation System
Based on Semi-Supervised Methodology Using BERT and
LDA Models. Expert Systems with Applications, 2022,
190, 116209. https://doi.org/10.1016/j.eswa.2021.116209

805Information Technology and Control 2023/3/52

34. Yuan, S., Zhang, Y., Tang, J., Hall, W., Cabotú, J. B. Expert
Finding in Community Question Answering: A Review.
Artificial Intelligence Review, 2019, 1-32. https://doi.
org/10.1007/s10462-018-09680-6

35. Zhang, X., Cheng, W., Zong, B., Chen, Y., Xu, J., Li, D., Chen,
H.Temporal Context-Aware Representation Learning
for Question Routing. Proceedings of the 13th Internati-
onal Conference on Web Search and Data Mining, 2020,
753-761. https://doi.org/10.1145/3336191.3371847

36. Zhao, Z., Yang, Q., Cai, D., He, X., Zhuang, Y. Expert Fin-
ding for Community-Based Question Answering via
Ranking Metric Network Learning. IJCAI, 2016, 16,
3000-3006.

37. Zheng, C., Zhai, S., Zhang, Z. A Deep Learning Appro-
ach for Expert Identification in Question Answering
Communities. arXiv preprint arXiv:.05350, 2017.

38. Zhou, G., Lai, S., Liu, K., Zhao, J. Topic-Sensitive
Probabilistic Model for Expert Finding in Question
Answer Communities. Proceedings of the 21st ACM
International Conference on Information and Kno-
wledge Management, 2012, 1662-1666. https://doi.
org/10.1145/2396761.2398493

39. Zhou, G., Zhao, J., He, T., Wu, W. An Empirical Study of
Topic-Sensitive Probabilistic Model for Expert Finding
in Question Answer Communities. Knowledge-Based
Systems, 2014, 66, 136-145. https://doi.org/10.1016/j.
knosys.2014.04.032

40. Zhou, Y., Cong, G., Cui, B., Jensen, C. S., Yao, J. Routing
Questions to the Right Users in Online Communities.
2009 IEEE 25th International Conference on Data
Engineering, 2009, 700-711. https://doi.org/10.1109/
ICDE.2009.44

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

