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Parkinson’s disease is caused by a disruption in the chemical products that enables the communication be-
tween brain cells. The brain’s dopamine cells are responsible for movement control, adaptability, and fluidity. 
Parkinson’s motor symptoms manifest when 60–80% of these cells are damaged due to insufficient dopamine. 
Researchers are working to find a way to identify the non-motor symptoms that manifest early detection in 
the disease to stop the disease’s progression because it is believed that the disease starts many years before the 
motor symptoms. This research presents Parkinson’s disease diagnosis based on deep learning. Processes for 
feature selection and classification encompass the suggested diagnosis technique. The proposed model search-
es for the best subset of characteristics using the Improved Glowworm Swarm Optimization (IGSO) algorithm. 
Radial Basis Functions Networks (RBFN) classifiers evaluate the chosen features. The suggested model is test-
ed using datasets from Parkinson’s Handwriting samples and Parkinson’s Speech and voice with various sound 
recordings. With an accuracy of about 95.78%, the suggested algorithm forecasts Parkinson’s disease using the 
VoicePD dataset more precisely.
KEYWORDS: Deep learning, Parkinson’s disease, bio-inspired algorithms, radial basis functions, glowworm 
swarm optimization.
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1. Introduction
The second most prevalent neurological dysfunction 
is Parkinson’s disease (PD), a neuroinflammatory 
psychosomatic disorder. People with Parkinson’s dis-
ease (PD) are becoming more common everywhere, 
particularly in Asia’s developing nations [4]. Even 
though the root cause of PD is uncertain, if it is discov-
ered in the early stages, the symptoms can be greatly 
reduced. Muscle spasms, stiffness, sluggish move-
ment, sensory symptom abnormalities, and poor pos-
ture are symptoms of PD [7]. According to research, 
phonation and communication issues are also typical 
among PD patients. In fact, phonation and commu-
nication issues can appear in PD patients up to five 
years before receiving a medical assessment. Dyspho-
nia, impaired vocal tract resonance, and apraxia of 
speech is the voice problems connected to PD [6].
The middle layer and the brain shell are the brain 
sections where PD spreads. The disease is believed 
to manifest itself years before the appearance of mo-
tor symptoms, including neurological disorders and 
weak muscles, absence of smell, sleep difficulties, 
and bowel problems [1]. Additionally, voice problems 
affect 90% of PD patients. Therefore, to slow the ad-
vancement of the disease, researchers are working to 
find strategies to identify these non-motor symptoms 
that manifest early in the illness [16]. 
Utilizing deep learning and machine learning tactics, 
techniques, and tools to examine real-world data-
sets in a clinical setting aid in developing a valuable 
and instructive framework that can assist doctors in 
making decisions [23]. The deep learning models are 
well-suited for clinical object recognition, ophthal-
mology, and optical diseases. Very few deep-learning 
models have been used to date to diagnose brain con-
ditions like Alzheimer’s disease, psychiatric illnesses, 
and Parkinson’s disease [27].
Although these models have demonstrated great ac-
curacy in discriminating between those with brain 
problems and those who are healthy, their medical use 
has not yet been established for several reasons [21]. 
The fact that a huge number of parameters will be 
generated during the initialization of the deep learn-
ing model and that these parameters must be tuned to 
attain a higher rating of accuracy is one of the funda-
mental limitations in the current deep learning-based 
demonstration models [12]. A multi-stage optimiza-

tion process utilizing glowworm swarm optimization 
is suggested in this study to create a deep-learning 
model that can forecast the early start of Parkinson’s 
disease. The proposed approach optimizes the deep 
learning model for accuracy and complexity in many 
phases, whereas earliest relevant research only con-
siders prediction accuracy as a goal.

1.1. Contributions to the Work
The significant contributions of this work are sum-
marized as follows.
1 To employ a nature-inspired optimization algo-

rithm such as Improved Glowworm Swarm Op-
timization to extract the best features for Parkin-
son’s disease diagnosis.

2 To implement a deep learning model such as Radial 
Basis Function Networks as a classifier to discrim-
inate between normal individuals and Parkinson’s 
disease-affected patients.

To evaluate the performance of the proposed ap-
proach using metrics such as accurate prediction, 
rate of prediction, and false prediction and compare it 
against the state-of-the-art methods in the literature 
to prove its performance supremacy.

1.2. Motivation
This research provides an excellent motivation for 
further investigation in the field of Parkinson’s dis-
ease diagnosis. The potential of using deep learning 
techniques to identify the early stages of Parkinson’s 
disease and stop its progression is a significant con-
tribution to neuroscience. The high accuracy of the 
proposed algorithm and its potential to use with dif-
ferent types of sound recordings makes it a promis-
ing tool for the early diagnosis of Parkinson’s disease. 
Thus, this research will likely motivate further stud-
ies to improve the proposed accuracy of the algorithm 
and explore other deep-learning techniques to detect 
the non-motor symptoms of Parkinson’s disease at an 
earlier stage.

1.3. Paper Organization
The remainder of the paper is organized as follows. 
Section 2 briefs the existing literature on diagnosing 
Parkinson’s disease using machine learning and deep 
learning techniques. Section 3 discusses the proposed 



Information Technology and Control 2024/2/53344

methodology, which combines Improved Glowworm 
Swarm Optimization and Radial Basis Function Net-
works for Parkinson’s disease. Section 4 summarizes 
the experimental setup, dataset description, evalu-
ation metrics, and results obtained on applying the 
proposed algorithm and also enumerates the discus-
sion on the experimental results achieved. Section 5 
concludes the present work.

2. Related Works
The direction of the suggested methodologies and im-
proving our understanding of the deep learning model 
have been made possible by some previously complet-
ed research, as discussed in this section.
Many researchers performed experiments using ma-
chine learning algorithms to diagnose PD patients 
on the same dataset, motivated by the findings in [9]. 
The authors compared the categorization ratings for 
the diagnosis of PD using artificial neural networks 
(ANN) and logistic functions [13]. With 93.5% accu-
racy, the ANN classifier produced the best results. A 
concurrent feed-forward artificial neural system cre-
ated by the authors of [5] produced a 9.6% increase 
in PD classification. In [11, 14], researchers reported 
a technique for detecting Parkinson’s disease (PD) 
that integrated feature extraction with a Support 
Vector Machine, leveraging mutual information, and 
achieved a prediction performance of 93.45% [15].
Machine learning techniques were used to estimate 
the psychological impact of PD [17]. ML application 
estimates the degree of trembling in PD patients [19]. 
Additionally, ML was used to predict the phase of 
PD [20]. However, the majority of the study focuses 
on ML-based early PD detection. To predict PD us-
ing motion data collected from people’s hands and 
wrists [22]. The experimental subjects were forced 
to do several performance tests while wearing a gad-
get on their upper extremities, as instructed by the 
researchers. After performing a positional, longitu-
dinal, and harmonic data analysis to generate param-
eters, several supervised learning techniques were 
employed for categorization. The detection of PD in 
[25] utilizes various feature extraction techniques 
and machine learning techniques. They demonstrat-
ed that the most straightforward task for PD detec-
tion is phonation. The study assessed classifiers such 

as K nearest neighbor algorithm, the Multilayer Per-
ceptron algorithm, and Ideal Route Prediction algo-
rithm. Artificial neural networks decreased the voice 
characteristics for the ML-based PD diagnosis [26]. 
Support Vector Machine was employed for segmen-
tation. In contrast, unsupervised techniques were 
developed for PD [28]. Self-organizing Kohenen maps 
were used for grouping and progressive regression of 
support vectors forecasting after sparse representa-
tion by fractional linear most minor.
It was challenging for researchers to predict this, ac-
cording to [29], because Parkinson’s disease symp-
toms did not start to manifest until late midlife. There 
are numerous suggestions for PD [31]. Three differ-
ent approaches to data mining were employed in the 
study to set a standard for voice articulation [33]. The 
three data mining techniques are derived from the 
statistical learner, graph, and KNN classifier, which 
are three different data mining environments [32, 34, 
35]. The output performances of the three classifiers 
are evaluated using the three performance indicators: 
precision, range, and responsiveness. The main goal 
of this study [30] is to develop the best network for 
people with Parkinson’s disease. However, addition-
al symptoms, including ecological and demographic 
variables and issues with speech and development, 
and shaking arms, legs, and hands were not consid-
ered; just the vocal sample was treated [24]. However, 
the incidents are still recorded with the wrong con-
clusion. The accuracy rate for the contributors of this 
work is 81.42%. To overcome the aforementioned re-
strictions, another researcher [8] used a telemonitor 
to calculate six aspects of significance algorithms and 
a total output of thirteen classification algorithms [2, 
3, 18, 33]. Table 1 compares the existing works based 
on deep learning and machine learning for Parkin-
son’s disease diagnosis.

2.1. Research Gap and Motivation for Current 
Research
The feature selection problem in this article has been 
proposed to be solved using glowworm swarm optimi-
zation, which does not call for any algorithm-specific 
parameters. Compared to previous metaphor-orient-
ed optimization methods, these techniques are sim-
pler. The Radial basis function is used in conjunction 
with this optimization approach to diagnosing Par-
kinson’s disease accurately. 
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Table 1
Comparison of the existing ML works on the diagnosis of Parkinson’s disease

Reference Algorithm used Dataset used Inference Accuracy  Produced

[17] Hybrid Search UCI Machine 
Learning repository

Selected minimum number of features 
only 75.53%

[20] Kernel support vector 
machine PPMI database Diagnosed diseased patients from 

normal individuals with less precision 82.56%

[22] Neural Networks and 
Decision Trees mPower database The forecasting model was inefficient 81.45%

[25] Multilayer 
Perceptrons

HandPD Meander 
dataset

Entropy techniques were employed for 
feature selection 91.46%

[26] Probabilistic 
generative models PPMI database Feature extraction was based on vocal 

traits 92.78%

[28] Random Forests and 
Logistic Regression

HandPD Spiral 
dataset A less robust and reliable model 85.56%

[29] Long Short-Term 
Memory Networks SpeechPD dataset Word embedding models were utilized 

for handwriting patterns 86.85%

[33] K-NN classifiers mPower database Training time was too high 83.25%

[34] Deep Neural 
Networks VoicePD dataset Accuracy was good with fewer epochs 92.68%

[35] Recurrent Neural 
Networks

UCI Machine 
Learning repository

A small dataset was utilized for model 
training and validation 91.87%

3. Proposed Methodology
This section discusses the proposed methodology for 
the prediction of Parkinson’s disease. The suggested 
method employs Improved Glowworm Swarm Op-
timization to select the optimal set of features from 
the dataset and further implement the classification 
using Radial Basis Function Networks. The proposed 
architecture is depicted in Figure 1. The four datasets 
are collected and preprocessed to remove noises in the 
dataset. Then the processed dataset is used for select-
ing appropriate features, and classification is done.

3.1. Improved Glowworm Swarm 
Optimization
Glowworms containing the luminous substance lu-
ciferin are randomly positioned in the glowworm 
swarm optimization process in the target feature 
space. The location’s optimization problem and lu-
ciferin strength correlate, with higher luciferin lev-
els indicating suitable replacement and optimization 
problem values for glowworms. Figures 2-3 depict 
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the flowchart and algorithm flow for Improved Glow-
worm Swarm Optimization, respectively. The various 
phases in the GSO algorithm are as follows

Phase 1: Placement of glow worms
The population of the glowworms is initialized as a1, 
a2, ..., an along with the offset value p =1. Every glow-
worm is associated with a luminescence level indicat-
ed as in (1),
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where 𝛼𝛼 denotes the rate at which the location is 
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neighbors and the total count of the glow worms in 
the neighbor’s unit is given by 𝑛𝑛𝑢𝑢𝑚𝑚(𝑝𝑝). 
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Step 10: choose the mobility direction 
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where m1 is a constant that makes the value in the de-
nominator to be more than zero.

Phase 3: Mobility phase
For any glow worm k, the probability of it moving to-
wards a glowing neighbor is denoted using (5),
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where mb denotes the length of the mobility step 
taken by the glow worm. 
If suppose the altered new location is not available 
for the glow worm, it can be updated using (7), 
 

     1 max min 1, ,hk k k hkp pa m n a  . (7) 

Phase 4: Alteration of the local decision unit 

The decision value is modified for every iteration 
using (8), 
 

 

      
1

min max 0,,

k
c

k
t c w

RR p

RR RR p u num p

 

 
,     

(8) 

where 𝛼𝛼 denotes the rate at which the location is 
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neighbors and the total count of the glow worms in 
the neighbor’s unit is given by 𝑛𝑛𝑢𝑢𝑚𝑚(𝑝𝑝). 

Algorithm 1.  
Improved Glowworm Swarm Optimization algorithm 
 
Input: Number of glow worms, luciferin value, local decision unit value 
Output: coordinates of location points 
 
Step 1: Initialize the number of glow worms to be n, initial luciferin value to be 𝐿𝐿� with initial local decision unit 
value to be 0RR  

Step 2: while( maxp   || 0    err the error known initially ) 
Step 3: for each glow worm k  
Step 4:         1 1  k k kL p L p F a p      

Step 5: for each glow worm k 
1

n

k k
k

A B

  

Step 6:            { : ; }k
y x c x ynum p y a p a p RR p L p L p     

Step 7: for each gloworm in the neighbor set 
Step 8: Calculate mobility probability 

Step 9:      
    1

y xy
x n

k xk

L p L p
B p

L p L p






 

Step 10: choose the mobility direction 

(5)

The location of the glow worm is altered after every 
turn and the new location is computed using (6) as,

 

 

 
Phase 2: Modification of luciferin  
The modification rule for the luciferin is as denoted in 
(3), 
 
        1 1  k k kL p L p F a p     ,    (3) 

 
where 𝛿𝛿 is a constant value that indicates the decay of 
the luciferin and ranges between 0 and 1. 𝛽𝛽 is a constant 
value that indicates the growth of the luciferin and 
ranges between 0 and 1. 𝐿𝐿�(𝑝𝑝) indicates the updated 
value of the luciferin for any k glow worm at 𝑝𝑝�� 
iteration. 𝐿𝐿�(𝑝𝑝 − 1) indicates the updated value of the 
luciferin for any k glow worm at (𝑝𝑝 − 1)��  iteration. 
𝐹𝐹(𝑎𝑎�(𝑝𝑝)) denotes the location strength of any k glow 
worm at 𝑝𝑝�� iteration and it can be represented as in (4), 
 

      1

1
k

k

F a p
g a p m




,                 (4) 
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where mb denotes the length of the mobility step 
taken by the glow worm. 
If suppose the altered new location is not available 
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where mb denotes the length of the mobility step tak-
en by the glow worm.
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where 𝑚𝑚�  is a constant that makes the value in the 
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where mb denotes the length of the mobility step 
taken by the glow worm. 
If suppose the altered new location is not available 
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where 𝛼𝛼 denotes the rate at which the location is 
modified, 𝑅𝑅𝑅𝑅�  denotes the range covered by the 
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where 𝑚𝑚�  is a constant that makes the value in the 
denominator to be more than zero. 
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where mb denotes the length of the mobility step 
taken by the glow worm. 
If suppose the altered new location is not available 
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the neighbor’s unit is given by 𝑛𝑛𝑢𝑢𝑚𝑚(𝑝𝑝). 
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where α denotes the rate at which the location is 
modified, RRt denotes the range covered by the glow 
worms, uw is a factor used to manage the count of the 
glow worms in the from the set of neighbors and the 
total count of the glow worms in the neighbor’s unit is 
given by num(p).

Algorithm 1 
Improved Glowworm Swarm Optimization algorithm

Input: Number of glow worms, luciferin value, local 
decision unit value
Output: coordinates of location points

Step 1: Initialize the number of glow worms to be n, 
initial luciferin value to be L0 with initial local deci-
sion unit value to be 0RR
Step 2: while( maxp <=  || 0    err the error known initially< ) 
Step 3: for each glow worm k 
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Step 13: update decision value 
Step 14:

( ) ( ) ( )( ){ }{ }1 min ,max 0,k k
c t c wRR p RR RR p u num pα+ = + −

( ) ( ) ( )( ){ }{ }1 min ,max 0,k k
c t c wRR p RR RR p u num pα+ = + −

Step 15: end for
Step 16: end for
Step 17: end for
Step 18: return location points coordinates

The algorithm uses a local decision unit and mobility 
probability to guide the movement of the glow worms 
towards better solutions. The algorithm repeats this 
process until a stopping criterion is met, and the best 
solution is returned as the output, which corresponds 
to the coordinates of the location points.

Figure 2
Flow Chart of IGSO algorithm

3.2. Radial Basis Function Networks
Consider a set of data points D which are available in 
the input region in M dimension. Each input in this 
region can be represented as in (9),
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3.2.1. Network Training
There are three approaches that are used for optimiz-
ing the functions in order to train the networks effi-
ciently. 
a Arbitrary selection of centers
The easiest method of assigning the values for the pa-
rameters in the network is through the arbitrary se-
lection of center points. The width of all the selected 
points are assigned to be the same and are also fixed to 
a right size according to the disposition of the points 
as represented in (13),
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4.2.2. HandPD Spiral Dataset
This dataset was also gathered at Sao Paulo Univer-
sity in Brazil, where participants were instructed to 
draw spirals instead of meanders on the form. The 
study’s dataset also includes 158 participants, a total 
of 632 incidents, and 13 attributes. The samples of the 
spirals collected from individuals from varying age 
groups are shown in Figure 5. The major properties of 
this dataset are similar to that given in Table 3.

Figure 4
Samples for HandPD meanders
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4.4 Experimental Results 
The experimental results obtained by applying the 
proposed IGSO-RBFN technique to the four 
different datasets as, the HandPD Meander dataset, 
HandPD Spiral Dataset, SpeechPD dataset, and 
VoicePD dataset, are explained in this section. For 
comparison purposes, the Glowworm Swarm 
Optimization technique was applied in 
combination with the algorithms such as Random 
Forest, K Nearest Neighbour, Support Vector 
Machine, and Convolutional Neural Networks. 
The achieved results are compared with the results 
produced by Improved Glowworm Swarm 
Optimization (IGSO) and Radial Basis Function 
Networks combination.  
The HandPD Meander Dataset is initially 
considered and applied with the techniques shown 
in Table 2 and Figure 6. According to the results 
obtained, it can be observed that the proposed 
IGSO-RBFN produced an accurate prediction of 
92.57%, and also, the rate of prediction was 
91.24%. The false prophecy was lower at 78.75% 
in the proposed technique compared to the other 
algorithms. 
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Support Vector Machine, and Convolutional Neural 
Networks. The achieved results are compared with 
the results produced by Improved Glowworm Swarm 
Optimization (IGSO) and Radial Basis Function Net-
works combination. 
The HandPD Meander Dataset is initially considered 
and applied with the techniques shown in Table 2 and 
Figure 6. According to the results obtained, it can be 
observed that the proposed IGSO-RBFN produced 
an accurate prediction of 92.57%, and also, the rate of 
prediction was 91.24%. The false prophecy was lower 
at 78.75% in the proposed technique compared to the 
other algorithms.



Information Technology and Control 2024/2/53350

Table 2
Results on HandPD Meander Dataset

Classifiers Accurate Prediction (%)  Rate of Prediction (%)  False Prediction (%)  

GSO-RF 82.56 81.25 79.36

GSO-KNN 85.45 84.56 80.45

GSO-SVM 87.89 86.75 83.25

GSO-CNN 89.98 88.78 79.45

IGSO-RBFN 92.57 91.24 78.75

Table 3
Results on HandPD Spiral Dataset

Classifiers Accurate Prediction (%)   Rate of Prediction (%)  False Prediction (%)  

GSO-RF 83.45 85.45 82.45

GSO-KNN 84.75 87.65 81.25

GSO-SVM 86.78 88.95 76.35

GSO-CNN 90.78 89.67 79.45

IGSO-RBFN 91.36 90.75 75.25

Figure 6
Performance Comparison for Hand Meander Dataset
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Table 4 
Results on HandPD Speech Dataset 
 

Classifiers Accurate Prediction (%)   Rate of Prediction (%)   False Prediction (%)   

GSO-RF 84.56 83.96 85.45 

GSO-KNN 85.98 84.65 84.67 

GSO-SVM 87.86 86.78 85.36 

GSO-CNN 88.98 86.24 82.45 

The results obtained for the HandPD Spiral dataset 
are tabulated in Table 3. The accurate predictions 
produced by the proposed technique, 91.36% for 
this dataset, are a little lower compared to the pre-
dictions made on the HandPD Meander dataset but 
comparatively higher to the other algorithms con-
sidered for comparison. For this dataset, GSO-RF 

produced the least accurate predictions of 83.45%, a 
rate of the forecast of 85.45%, and the highest false 
prophecy of 82.45%.
The accurate prediction, rate of prediction, and false 
prediction produced by the IGSO-RBFN algorithm are 
91.78%, 90.68%, and 80.21%, respectively, for the Hand-
PD Speech dataset, as shown in Table 4. GSO-CNN al-
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Table 4
Results on HandPD Speech Dataset

Classifiers Accurate Prediction (%)   Rate of Prediction (%)  False Prediction (%)  

GSO-RF 84.56 83.96 85.45

GSO-KNN 85.98 84.65 84.67

GSO-SVM 87.86 86.78 85.36

GSO-CNN 88.98 86.24 82.45

IGSO-RBFN 91.78 90.68 80.21

Figure 7
Performance Comparison on VoicePD dataset
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The results obtained for the HandPD Spiral dataset are 
tabulated in Table 3. The accurate predictions produced 
by the proposed technique, 91.36% for this dataset, are 
a little lower compared to the predictions made on the 
HandPD Meander dataset but comparatively higher to 
the other algorithms considered for comparison. For this 
dataset, GSO-RF produced the least accurate 
predictions of 83.45%, a rate of the forecast of 85.45%, 
and the highest false prophecy of 82.45%. 
The accurate prediction, rate of prediction, and false 
prediction produced by the IGSO-RBFN algorithm are 
91.78%, 90.68%, and 80.21%, respectively, for the 
HandPD Speech dataset, as shown in Table 4. GSO-
CNN algorithm produced the second-best performance 

next to the proposed technique with 88.98%, 
86.24%, and 82.45% accurate prediction, rate of 
prediction, and false predictions, respectively. 
Out of all the datasets used in the experimentation, 
the accurate predictions produced by the proposed 
technique are the highest for the VoicePD dataset 
with 95.78% as depicted in Table 5 and Figure 7. 
The rate of prediction is higher at 94.75% and with 
a lower false forecast of 80.75%. Comparatively, 
the performance of the other algorithms is also 
improved for the VoicePD dataset, however, it is 
lower compared to the proposed technique. 
 

 
Figure 7 
Performance Comparison on VoicePD dataset 
 

 
Table 5.  
Results on HandPD Voice Dataset 

Classifiers Accurate Prediction  (%)   Rate of Prediction (%)   False Prediction (%)   

GSO-RF 86.54 85.64 86.32 

GSO-KNN 87.96 86.98 85.74 

GSO-SVM 89.87 88.78 82.54 

GSO-CNN 91.24 90.25 81.75 

IGSO-RBFN 95.78 94.75 80.75 

Table 5 
Results on HandPD Voice Dataset

Classifiers Accurate Prediction  (%)  Rate of Prediction (%)  False Prediction (%)  

GSO-RF 86.54 85.64 86.32

GSO-KNN 87.96 86.98 85.74

GSO-SVM 89.87 88.78 82.54

GSO-CNN 91.24 90.25 81.75

IGSO-RBFN 95.78 94.75 80.75

gorithm produced the second-best performance next 
to the proposed technique with 88.98%, 86.24%, and 
82.45% accurate prediction, rate of prediction, and 
false predictions, respectively.

Out of all the datasets used in the experimentation, 
the accurate predictions produced by the proposed 

technique are the highest for the VoicePD dataset 
with 95.78% as depicted in Table 5 and Figure 7. The 
rate of prediction is higher at 94.75% and with a lower 
false forecast of 80.75%. Comparatively, the perfor-
mance of the other algorithms is also improved for the 
VoicePD dataset, however, it is lower compared to the 
proposed technique.
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Figure 8
Performance Comparison Existing Vs Proposed Models
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Table 6 
Performance Comparison of Existing vs Proposed based on Accuracy in % 
 

Classifiers HandPD Meander 
Dataset 

HandPD Spiral 
Dataset 

SpeechPD Dataset VoicePD Dataset 

MLP [25] 91.46 - - - 

RF & LR [28] - 85.56 - - 

LSTM&PSO 
[29] 

- - 86.85 - 

DNN [34] - - - 92.68 

Proposed 92.57 91.36 91.78 95.78 
 

 
Further, the performance of the proposed technique is 
also compared with the existing works on Parkinson’s 
disease diagnosis, as in Table 6 and Figure 8. Multilayer 
perceptrons were used in [25] and were applied to the 
HandPD Meander dataset, which obtained an accuracy 
of 91.46%. Random Forests and Logistic regression 
combination were tested on the HandPD Spiral dataset 
and produced an accuracy of 85.56% [28]. Long Short-
Term Memory Networks were combined with Particle 
Swarm Optimization in [29] for the SpeechPD dataset 
and had an accuracy of 86.85%. Deep Neural Networks 
were used in [34] for predicting Parkinson’s disease 

using the VoicePD dataset with an accuracy of 
92.68%. However, the proposed model 
outperformed the existing works for all the 
datasets and produced the highest accuracy of 
95.78% for the VoicePD dataset. 
 
5. Conclusion 
This study presents a new approach to feature 
selection using an improved glowworm swarm 
optimization algorithm. The proposed algorithm is 
designed to select a smaller subset of relevant 
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Further, the performance of the proposed technique is 
also compared with the existing works on Parkinson’s 
disease diagnosis, as in Table 6 and Figure 8. Multilayer 
perceptrons were used in [25] and were applied to the 
HandPD Meander dataset, which obtained an accura-
cy of 91.46%. Random Forests and Logistic regression 
combination were tested on the HandPD Spiral dataset 
and produced an accuracy of 85.56% [28]. Long Short-

Term Memory Networks were combined with Particle 
Swarm Optimization in [29] for the SpeechPD dataset 
and had an accuracy of 86.85%. Deep Neural Networks 
were used in [34] for predicting Parkinson’s disease 
using the VoicePD dataset with an accuracy of 92.68%. 
However, the proposed model outperformed the exist-
ing works for all the datasets and produced the highest 
accuracy of 95.78% for the VoicePD dataset.

Table 6
Performance Comparison of Existing vs Proposed based on Accuracy in %

Classifiers HandPD Meander Dataset HandPD Spiral Dataset SpeechPD Dataset VoicePD Dataset

MLP [25] 91.46 - - -

RF & LR [28] - 85.56 - -

LSTM&PSO
[29] - - 86.85 -

DNN [34] - - - 92.68

Proposed 92.57 91.36 91.78 95.78

5. Conclusion
This study presents a new approach to feature selec-
tion using an improved glowworm swarm optimiza-
tion algorithm. The proposed algorithm is designed 
to select a smaller subset of relevant features, and the 
classification is performed using Radial Basis Func-
tion Networks. This method can improve the accura-

cy and efficiency of various machine-learning tasks 
requiring feature selection. The IGSO-RBFN algo-
rithm is applied to four different datasets: the Hand-
PD Meander dataset, HandPD Spiral dataset, Speech-
PD dataset, and VoicePD dataset. In comparison 
with machine learning techniques and deep learning 
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techniques like KNN, Random Forest, Support Vec-
tor Machine, and Convolutional Neural Networks 
in combination with traditional Glowworm Swarm 
Optimization algorithm, the proposed IGSO-RBFN 
outperforms all the datasets and, in particular, the 
highest accurate prediction of 95.78% is obtained for 

the VoicePD dataset. One of the limitations of this 
work is that all the datasets are tested independently 
of each other. By coming up with ways to merge the 
HandPD and Voice Datasets models, further research 
in the same area of Parkinson’s disease diagnosis can 
be done to improve detection accuracy.
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