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Continuous Distributed Constraint Optimization Problem(C-DCOP) is a constraint processing framework for 
continuous variables problems in multi-agent systems. There is a constraint cost function between two mutu-
ally restrictive agents in C-DCOP. The goal of the C-DCOP solving algorithm is to keep the sum of constraint 
cost functions in an extreme state. In a C-DCOP, each function is defined by a set of continuous variables. At 
present, some C-DCOP solving algorithms have been proposed, but there are some common problems such as 
the limitation of constraints cost function form, easy to fall into local optimum, and lack of anytime attribute. 
Aiming at these thorny problems, we propose a parallel optimization algorithm named Estimation of Distribu-
tion Based Algorithm for Continuous Distributed Constraint Optimization Problems (EDA-CD). In EDA-CD, 
each solution is regarded as an individual, and the distribution of agent value is jointly described by all out-
standing individuals. Firstly, all agents cooperate to hold a distributed population. Secondly, each agent calcu-
lates the mean and variance of its variables to build probability models in parallel. Finally, the agent evaluates 
the fitness of samples and updates the probability model through cooperative communication on Breadth First 
Search (BFS) pseudo-tree. We theoretically prove that EDA-CD is an anytime algorithm. The extensive exper-
imental results on four types of benchmark problems show that the proposed EDA-CD outperforms the state-
of-the-art C-DCOP algorithms and has about 20% improvement in solution quality.
KEYWORDS: Estimation of Distribution Algorithm, C-DCOP, Multi-agent System, Breadth First Search 
Pseudo-tree.
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1. Introduction
Distributed Constraint Optimization Problem 
(DCOP) is a powerful framework used to model and 
solve complex multi-agent system (MAS) problems. 
In a MAS, autonomous agents interact with each oth-
er to accomplish individual goals or common objec-
tives. DCOP provides a framework for governing the 
autonomous behavior of these agents [9]. It has been 
widely used in practical applications, such as meet-
ing scheduling [6], resource allocation [4], missile 
path plan [26], sensor networks [7], microgrid control 
[17] and smart homes [10]. The DCOP algorithms can 
be simply divided into complete algorithms and in-
complete algorithms. The complete algorithms aim 
to provide a global optimal solution, but the compu-
tational and memory overhead is expensive, such as 
ADOPT [18], DPOP [19], and PTFB [15]. Conversely, 
the incomplete algorithms obtain an approximate 
solution by reducing computational and memory 
overhead, such as DSA [27], Max-Sum [8], MGM [16] 
and ACO_DCOP [3]. DCOP algorithms can also be 
classified based on their level of centralization into 
centralized and fully distributed algorithms. Central-
ized algorithms can prevent unnecessary conflicts 
among agents, while fully distributed algorithms offer 
better information privacy and enable agents to in-
teract and coordinate without relying on a central au-
thority. DCOP algorithms can also be categorized into 
asynchronous and synchronous algorithms. In asyn-
chronous algorithms, agents make decisions based 
on their local view without specific messages from 
neighbors. Although minimizing idle time, there is no 
consistency in local views, requiring action revision. 
Synchronous algorithms have a systematic search 
in defined steps, requiring agents to wait for specific 
messages. Although synchronous methods increase 
idle time, agents hold a consistent view, which can be 
preferable over inconsistent views. DCOP algorithms 
can be further divided into two categories: search-
based methods and inference-based strategies. 
Search-based methods, such as best-first, depth-first, 
backtracking, and branch-and-bound, explore the 
state space through systematic search. In contrast, 
inference-based strategies allow agents to compute 
aggregated constraint costs from their neighbors, re-
ducing the problem size at each step and propagating 
the costs to neighboring agents [14].

However, the variables controlled by the agent are 
continuous in most practical applications, such as ro-
tation angle, activation, and deactivation time of the 
sensor. Therefore, C-DCOP was proposed to model 
continuous problems.
Continuous Max-Sum (CMS) [23] is a continuous 
version of the discrete Max-Sum algorithm which 
was proposed to solve DCOP, it was proposed to deal 
with the changes of variable, domain, and constraint 
cost function. In CMS, the constraint cost function 
is approximated as a piecewise linear function. How-
ever, the limitation of the constraint cost function 
form makes CMS only applicable to a few practical 
problems. Hybrid Continuous Max-Sum algorithm 
(HCMS) [24] obtains a set of approximate solu-
tions by discrete Max-Sum algorithm and improves 
the quality of approximate solutions by continuous 
nonlinear optimization method. Since continuous 
nonlinear optimization methods such as gradient 
descent require derivative computations, HCMS is 
difficult to solve non-differentiable problems and 
cannot guarantee convergence. B-DPOP [12] ex-
tends DPOP algorithm by adding Bayesian optimiza-
tion and Gaussian process models to solve dynamic 
coordination problems in continuous domains. It 
converges to optimal solution in fewer sampling 
iterations, but has high computational complexi-
ty requiring significant computing resources and 
time for larger problems. Exact Continuous DPOP 
(EC-DPOP), Approximate Continuous DPOP (AC-
DPOP), and Clustered AC-DPOP (CAC-DPOP) [13] 
were proposed to solve C-DCOP, but they generate 
exponential computation and memory overhead. 
Moumita [5] proposed the Particle Swarm based 
C-DCOP (PFD) to reduce the computational and 
memory overhead. However, PFD has poor search 
ability and it is easy to fall into local optimum. Amit 
[20] proposed a non-iterative algorithm for C-DCOP 
called Continuous Cooperative Constraint Approxi-
mation (C-CoCoA). It obtains higher solution quali-
ty through semi-greedy local search. Unfortunately, 
C-CoCoA lacks the anytime attribute and has poor 
robustness on complex problems. Jeroen proposed 
the Distributed Bayesian (D-Bay) algorithm, which 
solves C-DCOP by utilizing Bayesian optimization 
for adaptive sampling of variables [11].
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Based on the above analysis, we proposed an Esti-
mation of Distribution Based Algorithm for Contin-
uous Distributed Constraint Optimization Problems 
(EDA-CD) to deal with the limitations of existing 
C-DCOP algorithms. EDA-CD describes the distribu-
tion of the solution from each dimension of the solu-
tion and approximates the optimal solution by nar-
rowing the distribution interval of each dimension. In 
EDA-CD, a solution of C-DCOP is defined as a sam-
ple, and the global objective function is defined as the 
fitness of the sample. It is worth mentioning that the 
computations of fitness use basic operators. There-
fore, the evaluation method of fitness makes EDA-CD 
not limited to constraints cost function form. Our 
work can be summarized as follows:
 _ Design a parallel probability model construction 

method to satisfy the distributed characteristics. 
Simultaneously, we sample randomly from the 
probability model to avoid the algorithm falling 
into the local optimum.

 _ Design a rank elitist strategy to guarantee the 
convergence of the proposed algorithm.

 _ Design the adaptive population size to improve the 
robustness of the proposed algorithm.

 _ Prove that the proposed algorithm is an anytime 
algorithm.

 _ Provide experimental comparisons between 
the proposed algorithm and the state-of-the-art 
C-DCOP algorithms on four types of benchmark 
problems.

2. Problem Formulation and 
Background

2.1. Distributed Constraint Optimization 
Problem
A C-DCOP can be defined as a 5-tuple , , , ,A X D F α< >, 
where:
 _

1 2{ , ,..., }nA a a a=  is a set of agents. An agent controls 
one or more variables.

 _
1 2{ , ,..., }mX x x x=  is a set of continuous variables, 

where each variable xi is controlled by agent 
ia A∈ .

 _
1 2{ , ,..., }mD D D D=  is a set of continuous domains. 

Variable xi can get any value in [ ],i i iD LB UB= , 
where iLB and iUB represent the lower and upper 
bounds of the domain, respectively.

 _ • 1 2{ , ,..., }= lF f f f is a set of constraint cost 
functions. Each 1 2: ...∈ × × × →i i i ikf F D D D R
specifies the assigned constraint cost function to 
each combination of 1 2, ,...,i i ikx x x . In this paper, we 
consider all constraint cost functions are binary.

 _ • : X Aα → is a mapping function to associate 
each variable jx X∈  to an agent ja A∈ . We assume 
one agent controls only one variable ( n m= , thus 
the term “agent” and “variable” could be used 
interchangeably). Therefore, we use the term agent 

ix  in the rest of this paper to avoid confusion.

The solution of a C-DCOP is an assignment *X  to 
all variables that minimizes the sum of all constraint 
cost functions as shown in Equation 1.
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,
arg min ( , )
  

 
i i j j ij

ij i j
d D d D f F

X f d d . (1) 

Figure 1 shows a simple example of C-DCOP, 
where Figure 1(a) shows a constraint graph of four 
variables and each edge represents a constraint 
cost function defined in Figure 1(b). The domain
iD of ix is  5,5 . 

Figure 1  

An example of C-DCOP 
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2.2. Estimation of Distribution Algorithm 

Estimation of Distribution Algorithm (EDA) is a 
population-based optimization algorithm. In 
traditional population optimization algorithms, 
such as genetic algorithms, the population is used 
to represent a set of candidate solutions to the 
optimization problem. Each individual in the 
population has a corresponding fitness value and 
then performs operations such as selection, 
crossover, and mutation to simulate natural 
evolution. However, there are no traditional 
genetic operations such as crossover and mutation 
in estimation of distribution algorithm, it updates 
values by learning and sampling. EDA describes 
the candidate solution by a probabilistic model. It 
uses statistical learning methods to establish a 
probabilistic model describing the solution 
distribution (Algorithm 1: Lines 3). Each 
individual calculates its own fitness (Algorithm 1: 
Lines 5-6). It’s sorted by fitness and selects the 
promising G  individuals (Algorithm 1: Lines 7-
8). Then update the probabilistic model according 
to the G  individuals and randomly sample other 
not selected individuals with a probability model 
to generate a new population (Algorithm 1: Lines 
10-11). 

According to the complexity of the probability 
model and different sampling methods, EDA has 
developed many different specific 
implementation methods, but they can all be 
summarized into two main steps: firstly, 
randomly generate a lot of solutions, and then 
select a set of excellent individuals which are used 
to construct a probability model describing the 
current solution set using learning. A new 
population is generated by random sampling 
from the probability model. Generally, the Monte (1)

Figure 1 shows a simple example of C-DCOP, where 
Figure 1(a) shows a  of four variables and each edge 
represents a constraint cost function defined in Fig-
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2.2. Estimation of Distribution Algorithm
Estimation of Distribution Algorithm (EDA) is a pop-
ulation-based optimization algorithm. In traditional 
population optimization algorithms, such as genetic 
algorithms, the population is used to represent a set 
of candidate solutions to the optimization problem. 
Each individual in the population has a correspond-
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ing fitness value and then performs operations such as 
selection, crossover, and mutation to simulate natural 
evolution. However, there are no traditional genetic 
operations such as crossover and mutation in esti-
mation of distribution algorithm, it updates values by 
learning and sampling. EDA describes the candidate 
solution by a probabilistic model. It uses statistical 
learning methods to establish a probabilistic mod-
el describing the solution distribution (Algorithm 1: 
Lines 3). Each individual calculates its own fitness 
(Algorithm 1: Lines 5-6). It’s sorted by fitness and se-
lects the promising G individuals (Algorithm 1: Lines 
7-8). Then update the probabilistic model according 
to the G individuals and randomly sample other not 
selected individuals with a probability model to gen-
erate a new population (Algorithm 1: Lines 10-11).
According to the complexity of the probability model 
and different sampling methods, EDA has developed 
many different specific implementation methods, 
but they can all be summarized into two main steps: 
firstly, randomly generate a lot of solutions, and then 
select a set of excellent individuals which are used to 
construct a probability model describing the current 
solution set using learning. A new population is gen-
erated by random sampling from the probability mod-
el. Generally, the Monte Carlo method is used to sam-
ple the probability model to obtain a new population. 
The crossover and mutation in the genetic algorithm 
will destroy the optimized individuals. Genetic algo-
rithm (GA) typically requires complex parameters 
such as crossover rate, mutation rate, and selection 
method, while EDA does not, making it easier to use 
and implement. Additionally, EDA does not require 
complex crossover and mutation operators to gen-
erate new solutions, instead using random sampling 
and resampling to explore the search space more di-
versely. EDA models the solution space with a proba-
bilistic model, allowing for more accurate estimation 
of solution fitness and avoiding limitations in selec-
tion operators found in GA. Most importantly, EDA 
generates new solutions through random sampling 
and resampling, resulting in a more comprehensive 
search of the solution space and avoiding premature 
convergence found in GA.

2.3. Breadth First Search Pseudo-tree
BFS pseudo-tree is a commonly used communication 
structure for DCOP and C-DCOP. The characteristics 

Algorithm 1: Estimation of Distribution 
Optimization
1 Generate n -dimensional Samples, S
2 Randomly Initialize variables of each sample
3 calculate the current probabilistic model accord-

ing to S
4 while Termination condition not met do
5   for each sample kS S∈  do
6     calculate the current fitness
7   ( ).RS Rank S fitness←

8   R
GS ←Select the top samples in RS

9   update the probabilistic model according to R
GS

10  if R
k GS S≠

11     update variables according to the probabilistic 
model

of BFS pseudo-tree are multi-branch parallel com-
puting, short communication path and time. We brief-
ly introduce the construction, basic terms, notations 
and concepts of BFS pseudo-tree according to the ex-
ample in Figure 1. The details of BSF pseudo tree can 
be found in [2].
 _ Firstly, taking agent 1x  as root agent by breadth-

first search, and agents 2x , 3x  and 5x  are children of 
1x . (Layer:

1
0xL = )

 _ Secondly, the algorithm determines that agent 4x  
and 6x  are children of 2x  by traversing the neighbors 
of 2x . Layer: 

2 1
1 1x xL L= + = .

 _ Next, the algorithm traverses neighbors of 3x  and 
finds that the 4x  is the child of 3x . Agent 4x  has a 
Parent (agent 2x ), and 3x  is the Pseudo-Parent of 4x
. (Layer: 

3 1
1 1x xL L= + = ).

 _ Then, the algorithm traverses neighbors of 5x , but 
the 5x  has no other neighbors except 1x . (Layer: 

5 1
1 1x xL L= + = ).

 _ After that, the algorithm traverses 4x .There is a 
Parent (agent 2x ) and a Pseudo-Parent (agent 3x ). 
(Layer: 

4 2
1 2x xL L= + = ).

Figure 2(a) shows the BFS pseudo-tree constructed 
by the above steps, the dotted line represents Pseu-
do-Parent and Pseudo-Child. Solid lines represent 
Parent and Child. Furthermore, Figure 2(b) shows 
the ordered BFS pseudo-tree, an agent with a lower 
layer has higher priority over an agent with a higher 
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layer. Each agent knows the sets of its higher and low-
er priority neighbors. In this paper, we use i iP N⊆  
and i iC N⊆   to represent the higher and the lower 
priority neighbor sets of agent ix , respectively.
In Figure 2(b), agent 1x  is the root agent, and agent 

5x , 4x  and 6x  are the leaf agents. The neighbor set 
of agents 2x  is { }2 1 4 6, ,N x x x= , the higher priority 
neighbor set is { }2 1P x= and the lower priority neigh-
bor set is { }2 4 6,C x x= .

Figure 2 
Pseudo-tree construction (a) and ordered arrangement (b)
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3. The EDA-CD Algorithm
3.1. Algorithm Introduction
EDA-CD consists of five phases: Initialization, Con-
struction, Evaluation, Update and Sampling. In the 
Initialization phase, EDA-CD builds a BFS pseu-
do-tree, initializes parameters and distributed popu-
lation. In the Construction phase, each agent builds a 
probability model through the distribution of values. 
In the Evaluation phase, the agents calculate the fit-
ness of samples in a distributed way. In the Update 
phase, agents communicate cooperatively to update 
the probability model. In the Sampling phase, each 
agent randomly samples from the updated probability 
model. The specific steps can be found in Algorithm 2.
The Initialization Phase. Firstly, EDA-CD con-
structs an ordered BFS pseudo-tree. Secondly, it ini-
tializes three parameters:
 _ K : The number of samples.
 _ β : The learning rate, used to update the mean μ and 

the standard deviation σ.
 _ G : The number of selected elitist samples.

Finally, agents collaboratively generate a distributed 
population and each agent completes the assignment 
of its dimension (Algorithm 2: Lines 3-9).

Algorithm 2: The EDA-CD Algorithm

1 Construct BFS pseudo-tree
2 Initialize parameters: , ,K Gβ
3 S ←  Generate K  samples

4 for each agent ix  do

5   for each sample kS S∈  do

6     .k iS x ←  a random value from iD
7   end for
8   send . iS x  to agents in iC
9 end for
10 while Termination condition not met each agent 

ix  do

11   Calculate t
iµ  according to (2)

12   Calculate t
iσ  according to (3)

13   ( )Messaging
14   if ix  is a root agent then

15     ( ).RS Rank S fitness←

16     ( )_1 .RS Worst S fitness←

17     R
GS ←Select the top G samples in RS

18      Send R
GS  and _1S  to agents in iC

19   end if

20   wait until R
GS  and _1S  are received from iP

21   if R
GS  and _1S  are received from iP  then

22     Calculate 1t
iµ
+  according to (9)

23     Calculate 1t
iσ
+  according to (10)

24     .− ←iK GS x  Sampling randomly K G−

25     . . .R
i G i iK GS x S x S x−← ∪

26      if 0iC ≠  then
27       Send . iS x to agents in iC

28       Send R
GS  and _1S  to agents in iC

29     end if
30   end if
31 end while
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Figure 3 shows a distributed population of n  agents 
and K samples. A sample represents a solution of 
C-DCOP, agent ix  holds one dimension of each sam-
ple, S represents a set of samples, named population. 
We use .k nS x   to represent the value of the sample k 
under the dimension of the agent nx .

Figure 3 
Distributed population
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The Construction Phase. Agents build probabili-
ty models in parallel at this phase. Specifically, each 
agent calculates the mean and standard deviation 
according to Equations 2-3, respectively, (Algorithm 
2: Lines 11-12). t represents the number of itera-
tions. Therefore, the probability model of agent ix  is 

( )( )2
,t t

i iN µ σ .
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Procedure 1:  Messaging  

1 for . jS x received from 
ji
P P  do 

2   for each sample kS S  do 

3      . ( , ) Cos . , .k i j ij k i k jS fitness x x t S X S X  

4   end for 

5   Send . ( , )i jS fitness x x  to agent in 
ji
P  

6 end for 

7 wait until . ( , )i jS fitness x x  received from 
agents in iC  

8 if 0iC   and . ( , )i jS fitness x x  received 
from agents in iC  then 

9   for each sample kS S  do 

10        . . ,
i

k i i j
j C

S fitness x S fitness x x


   

11   end for 

12   if ix root then 

13      Send  . iS fitness x  to an 
ji iP P  

14   end for 

15 end if  

The Evaluation Phase can be described as five 
steps: 

1: When agent ix  receives the value . jS x sent by 
the higher priority neighbor

ji iP P , agent ix  
calculates the partial fitness . ( , )k i jS fitness x x  with 
each higher priority neighbor 

ji iP P  by Equation 
4. In addition, agent ix  sends . ( , )k i jS fitness x x  to 
the higher neighbor 

ji iP P  (Procedure 1: Lines 1-
6). 

             . , . , .k i j ij k i k jS fitness x x f S x S x . (4) 

2: When agent ix  receives the partial fitness sent 
by the lower priority neighbors j ix C , the agent 

ix  sums the partial fitness of all the lower priority 
neighbors as . [ ]k iS fitness x  by Equation 5 
(Procedure 1: Lines 7-11). 

           . [ ] . ,
i

k i k i j
j C

S fitness x S fitness x x


  . (5) 

3: If the current agent is not the root agent, 
. [ ]k iS fitness x is sent by the agent ix  to a higher 

priority neighbor 
ji iP P  (Procedure 1: Lines 12-

14). If the agent jx  is not the root agent, jx will 
continue to send until its higher priority neighbor 
is the root agent. 

(2)
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the probability model of agent ix  is   2
,t t
i iN   . 
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Procedure 1:  Messaging  

1 for . jS x received from 
ji
P P  do 

2   for each sample kS S  do 

3      . ( , ) Cos . , .k i j ij k i k jS fitness x x t S X S X  

4   end for 

5   Send . ( , )i jS fitness x x  to agent in 
ji
P  

6 end for 

7 wait until . ( , )i jS fitness x x  received from 
agents in iC  

8 if 0iC   and . ( , )i jS fitness x x  received 
from agents in iC  then 

9   for each sample kS S  do 

10        . . ,
i

k i i j
j C

S fitness x S fitness x x


   

11   end for 

12   if ix root then 

13      Send  . iS fitness x  to an 
ji iP P  

14   end for 

15 end if  

The Evaluation Phase can be described as five 
steps: 

1: When agent ix  receives the value . jS x sent by 
the higher priority neighbor

ji iP P , agent ix  
calculates the partial fitness . ( , )k i jS fitness x x  with 
each higher priority neighbor 

ji iP P  by Equation 
4. In addition, agent ix  sends . ( , )k i jS fitness x x  to 
the higher neighbor 

ji iP P  (Procedure 1: Lines 1-
6). 

             . , . , .k i j ij k i k jS fitness x x f S x S x . (4) 

2: When agent ix  receives the partial fitness sent 
by the lower priority neighbors j ix C , the agent 

ix  sums the partial fitness of all the lower priority 
neighbors as . [ ]k iS fitness x  by Equation 5 
(Procedure 1: Lines 7-11). 

           . [ ] . ,
i

k i k i j
j C

S fitness x S fitness x x


  . (5) 

3: If the current agent is not the root agent, 
. [ ]k iS fitness x is sent by the agent ix  to a higher 

priority neighbor 
ji iP P  (Procedure 1: Lines 12-

14). If the agent jx  is not the root agent, jx will 
continue to send until its higher priority neighbor 
is the root agent. 

(3)

The Evaluation Phase can be described as five steps:
1  When agent ix  receives the value . jS x sent by the 

higher priority neighbor
ji iP P∈ , agent ix  calcu-

lates the partial fitness . ( , )k i jS fitness x x  with each 
higher priority neighbor 

ji iP P∈  by Equation 4. In 
addition, agent ix  sends . ( , )k i jS fitness x x  to the 
higher neighbor 

ji iP P∈  (Procedure 1: Lines 1-6).

  

Figure 3 shows a distributed population of n  agents 
and K samples. A sample represents a solution of C-
DCOP, agent ix  holds one dimension of each sample, 
S represents a set of samples, named population. We 
use .k nS x   to represent the value of the sample 𝑘𝑘 under 
the dimension of the agent nx . 

Figure 3  

Distributed population 
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The Construction Phase. Agents build probability 
models in parallel at this phase. Specifically, each agent 
calculates the mean and standard deviation according 
to Equations 2-3, respectively, (Algorithm 2: Lines 11-
12). 𝑡𝑡  represents the number of iterations. Therefore, 

the probability model of agent ix  is   2
,t t
i iN   . 

         
1

( . ) / ,Kt
i k ik

S x K


   (2) 

         2
1

( ( . ) ) / ,Kt t
i k i ik

S x K 


     (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Procedure 1:  Messaging  

1 for . jS x received from 
ji
P P  do 

2   for each sample kS S  do 

3      . ( , ) Cos . , .k i j ij k i k jS fitness x x t S X S X  

4   end for 

5   Send . ( , )i jS fitness x x  to agent in 
ji
P  

6 end for 

7 wait until . ( , )i jS fitness x x  received from 
agents in iC  

8 if 0iC   and . ( , )i jS fitness x x  received 
from agents in iC  then 

9   for each sample kS S  do 

10        . . ,
i

k i i j
j C

S fitness x S fitness x x


   

11   end for 

12   if ix root then 

13      Send  . iS fitness x  to an 
ji iP P  

14   end for 

15 end if  

The Evaluation Phase can be described as five 
steps: 

1: When agent ix  receives the value . jS x sent by 
the higher priority neighbor

ji iP P , agent ix  
calculates the partial fitness . ( , )k i jS fitness x x  with 
each higher priority neighbor 

ji iP P  by Equation 
4. In addition, agent ix  sends . ( , )k i jS fitness x x  to 
the higher neighbor 

ji iP P  (Procedure 1: Lines 1-
6). 

             . , . , .k i j ij k i k jS fitness x x f S x S x . (4) 

2: When agent ix  receives the partial fitness sent 
by the lower priority neighbors j ix C , the agent 

ix  sums the partial fitness of all the lower priority 
neighbors as . [ ]k iS fitness x  by Equation 5 
(Procedure 1: Lines 7-11). 

           . [ ] . ,
i

k i k i j
j C

S fitness x S fitness x x


  . (5) 

3: If the current agent is not the root agent, 
. [ ]k iS fitness x is sent by the agent ix  to a higher 

priority neighbor 
ji iP P  (Procedure 1: Lines 12-

14). If the agent jx  is not the root agent, jx will 
continue to send until its higher priority neighbor 
is the root agent. 

(4)

2 When agent ix  receives the partial fitness sent by 
the lower priority neighbors j ix C∈ , the agent ix  

Procedure 1: ( )Messaging

1 for . jS x  received from 
jiP P∈  do

2   for each sample kS S∈  do

3     ( ). ( , ) Cos . , .k i j ij k i k jS fitness x x t S X S X←

4   end for

5   Send . ( , )i jS fitness x x  to agent in 
jiP

6 end for

7 wait until . ( , )i jS fitness x x  received from agents in 
iC

8 if 0iC ≠  and . ( , )i jS fitness x x  received from agents 
in iC  then

9   for each sample kS S∈  do

10     [ ] ( ). . ,
i

k i i j
j C

S fitness x S fitness x x
∈

← ∑
11   end for
12   if ix root≠  then

13      Send [ ]. iS fitness x  to an 
ji iP P∈

14   end for
15  end if 

sums the partial fitness of all the lower priority 
neighbors as . [ ]k iS fitness x  by Equation 5 (Proce-
dure 1: Lines 7-11).

  

Figure 3 shows a distributed population of n  agents 
and K samples. A sample represents a solution of C-
DCOP, agent ix  holds one dimension of each sample, 
S represents a set of samples, named population. We 
use .k nS x   to represent the value of the sample 𝑘𝑘 under 
the dimension of the agent nx . 
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The Construction Phase. Agents build probability 
models in parallel at this phase. Specifically, each agent 
calculates the mean and standard deviation according 
to Equations 2-3, respectively, (Algorithm 2: Lines 11-
12). 𝑡𝑡  represents the number of iterations. Therefore, 

the probability model of agent ix  is   2
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Procedure 1:  Messaging  

1 for . jS x received from 
ji
P P  do 

2   for each sample kS S  do 

3      . ( , ) Cos . , .k i j ij k i k jS fitness x x t S X S X  

4   end for 

5   Send . ( , )i jS fitness x x  to agent in 
ji
P  

6 end for 

7 wait until . ( , )i jS fitness x x  received from 
agents in iC  

8 if 0iC   and . ( , )i jS fitness x x  received 
from agents in iC  then 

9   for each sample kS S  do 

10        . . ,
i

k i i j
j C

S fitness x S fitness x x


   

11   end for 

12   if ix root then 

13      Send  . iS fitness x  to an 
ji iP P  

14   end for 

15 end if  

The Evaluation Phase can be described as five 
steps: 

1: When agent ix  receives the value . jS x sent by 
the higher priority neighbor

ji iP P , agent ix  
calculates the partial fitness . ( , )k i jS fitness x x  with 
each higher priority neighbor 

ji iP P  by Equation 
4. In addition, agent ix  sends . ( , )k i jS fitness x x  to 
the higher neighbor 

ji iP P  (Procedure 1: Lines 1-
6). 

             . , . , .k i j ij k i k jS fitness x x f S x S x . (4) 

2: When agent ix  receives the partial fitness sent 
by the lower priority neighbors j ix C , the agent 

ix  sums the partial fitness of all the lower priority 
neighbors as . [ ]k iS fitness x  by Equation 5 
(Procedure 1: Lines 7-11). 

           . [ ] . ,
i

k i k i j
j C

S fitness x S fitness x x


  . (5) 

3: If the current agent is not the root agent, 
. [ ]k iS fitness x is sent by the agent ix  to a higher 

priority neighbor 
ji iP P  (Procedure 1: Lines 12-

14). If the agent jx  is not the root agent, jx will 
continue to send until its higher priority neighbor 
is the root agent. 

(5)

3 If the current agent is not the root agent, 
. [ ]k iS fitness x  is sent by the agent ix  to a higher pri-

ority neighbor 
ji iP P∈  (Procedure 1: Lines 12-14). If 

the agent jx  is not the root agent, jx  will continue 
to send until its higher priority neighbor is the root 
agent.

4 When agent jx  calculates and sends the 
. [ ]k jS fitness x  to the agent in ji jH H∈ , all partial 

fitness of samples are passed to the root agent rootx . 
Therefore, the root agent rootx  can calculate the 
complete fitness of each sample by Equation 6.

 

 

4: When agent jx  calculates and sends the 
. [ ]k jS fitness x  to the agent in ji jH H , all partial fitness 

of samples are passed to the root agent rootx . Therefore, 
the root agent rootx  can calculate the complete fitness of 

          . . [ ]
root

k k j
j C

S fitness S fitness x


   (6) 

5: After the root agent obtains the complete fitness of 
samples, the rootx  ranks each sample according to the 
fitness value and is denoted as RS . In addition, the root 
agent sends the top G samples  RGS and the worst 

sample  _1S  to the lower priority neighbors rootC  
(Algorithm 2: Lines 14-19). We use the examples in 
Figure 1 and Figure 2 to explain the above five steps. 
We use ijf   to represent the partial fitness  

 . ,k i jS fitness x x  between ix  and jx . 

Each agent ix  calculates the partial fitness ijf  with 
each higher priority neighbor 

ji iP P  and sends ijf  to 
it. 

2 12 1:x f x   

3 13 1:x f x  

4 24 2 34 3: ,x f x f x   

5 15 1:x f x  

6 26 2:x f x  

Agent ix  sums the partial fitness of lower 
priority neighbors. 

1 12 13 15:x f f f   

2 24 26:x f f  

3 34:x f  

Since agents 2x  and 3x  are not the root agent. 

2 24 26 1:x f f x   

3 34 1:x f x  

Root agent 1x  obtains the completes fitness. 

1 12 13 15 24 26 34:
ij

ijf F
x f f f f f f f


       

The Update Phase. When the agent 𝑥𝑥� receives 
R
GS  and _1S , ix  calculates the mean and standard 

deviation of R
GS  by Equations 7- 8, respectively. 

1
. ( . ) / ,Gsort sort

G i G ig
S x S x G


     (7) 

    2

1
. . . / ,GR sort sort

G i G i G iig
S x S x S x G


      (8) 

Table 1 

Initialize values of each agent 

 Agent 1a  Agent 2a  Agent 3a  Agent 4a  Agent 5a  Agent 6a  

Sample 1 -2.60 2.70 -4.80 -3.40 -4.60 -2.60 

Sample 2 -3.20 3.20 -2.40 1.80 -3.00 0.80 

Sample 3 -1.90 -2.70 -1.00 2.30 1.30 2.80 

Sample 4 -4.00 -2.80 -0.70 -4.10 -4.10 3.70 

Sample 5 -3.50 4.20 3.70 -4.80 -3.90 4.80 

Sample 6 -2.70 -4.60 3.60 -1.70 -1.90 -3.40 

 

Then, agent ix  updates the mean and standard 
deviation [21] of the probability model through by 
Equations 9-10, where 1. iS x  and 2 . iS x  are the best and 
sub-best samples under the dimension of ix , 
respectively (Algorithm 2: Lines 22-23). The updated 

probability model is   21 1,t t
i iN    .   stands for the 

learning rate. 

   1
1 2 _11 * * . . . ,t t

i i i i iS x S x S x           (9) 

   1 1 * * * ,t t R
i i G iS x                             (10) 

The Sampling Phase. In the final phase of EDA-CD, 

agent ix  is randomly sampled from the updated 
probability model. To maintain population 
balance, the sampling number is K G . Finally, 

ix merges elitist samples .RG iS x  and random 
samples . iK GS x  under one and it as one 
dimension of a new population (Algorithm 2: 
Lines 24-25). 

3.2. An Example for EDA-CD 

In this section, we will use an example to 
specifically describe the process of EDA-CD. 
Without considering the influence of the value 
selection of K and G on solution quality, we set 

(6)

5 After the root agent obtains the complete fitness of 
samples, the rootx  ranks each sample according to 
the fitness value and is denoted as RS . In addition,
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the root agent sends the top G samples ( )R
GS and 

the worst sample ( )_1S  to the lower priority neigh-
bors rootC  (Algorithm 2: Lines 14-19). We use the ex-
amples in Figure 1 and Figure 2 to explain the above 
five steps. We use ijf   to represent the partial fitness  

( ). ,k i jS fitness x x  between ix  and jx .
Each agent ix  calculates the partial fitness ijf  with 
each higher priority neighbor 

ji iP P∈  and sends ijf  
to it.

2 12 1:x f x→  

3 13 1:x f x→

4 24 2 34 3: ,x f x f x→ →

5 15 1:x f x→

6 26 2:x f x→

Agent ix  sums the partial fitness of lower priority 
neighbors.

1 12 13 15:x f f f+ +

2 24 26:x f f+

3 34:x f

Since agents 2x  and 3x  are not the root agent.
2 24 26 1:x f f x+ →

3 34 1:x f x→

Root agent 1x  obtains the completes fitness.

1 12 13 15 24 26 34:
ij

ijf F
x f f f f f f f

∈
+ + + + + = ∑

The Update Phase. When the agent  receives R
GS  and

_1S , ix  calculates the mean and standard deviation of 
R
GS  by Equations 7- 8, respectively.
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The Update Phase. When the agent 𝑥𝑥� receives 
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deviation of R
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Then, agent ix  updates the mean and standard 
deviation [21] of the probability model through by 
Equations 9-10, where 1. iS x  and 2 . iS x  are the best and 
sub-best samples under the dimension of ix , 
respectively (Algorithm 2: Lines 22-23). The updated 
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The Sampling Phase. In the final phase of EDA-CD, 
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samples . iK GS x  under one and it as one 
dimension of a new population (Algorithm 2: 
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deviation [21] of the probability model through by 
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The Sampling Phase. In the final phase of EDA-CD, 
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The Sampling Phase. In the final phase of EDA-CD, 
agent ix  is randomly sampled from the updated prob-
ability model. To maintain population balance, the 
sampling number is K G− . Finally, ix merges elit-
ist samples .R

G iS x  and random samples . iK GS x−  under 
one and it as one dimension of a new population (Al-
gorithm 2: Lines 24-25).

3.2. An Example for EDA-CD
In this section, we will use an example to specifically 
describe the process of EDA-CD. Without consider-
ing the influence of the value selection of K and G on 
solution quality, we set the domain of each agent ix  to 
[ ]5 5− ， , 0.01β =  3K = and 6G = . It should be noted 
that in each calculation, we only keep two digits after 
the decimal point.
Taking Figure 2 as an example, we first initialize the 
parameters of all samples. Table 1 shows the specific 
values.

Value propagation:

1 1 1 2 1 3
1

1 4 1 5 1 6

. 2.60, . 3.20, . 1.90
.

. 4.00, . 3.50, . 2.70
X S X S X S

X S
X S X S X S

= − = − = − 
=  = − = − = − 

2 1 2 2 2 3
2

2 4 2 5 2 6

. 2.70, . 3.20, . 2.70
.

. 2.80, . 4.20, . 4.60
X S X S X S

X S
X S X S X S

= = = − 
=  = − = = − 

3 1 3 2 3 3
3

3 4 3 5 3 6

. 4.80, . 2.40, . 1.00
.

. 0.70, . 3.70, . 3.60
X S X S X S

X S
X S X S X S

= − = − = − 
=  = − = = 

4 1 4 2 4 3
4

4 4 4 5 4 6

. 3.40, . 1.80, . 2.30
.

. 4.10, . 4.80, . 1.70
X S X S X S

X S
X S X S X S

= − = = 
=  = − = − = − 

5 1 5 2 5 3
5

5 4 5 5 5 6

. 4.60, . 3.00, . 1.30
.

. 4.10, . 3.90, . 1.90
X S X S X S

X S
X S X S X S

= − = − = 
=  = − = − = − 

6 1 6 2 6 3
6

6 4 6 5 6 6

. 2.60, . 0.80, . 2.80
.

. 3.70, . 4.80, . 3.40
X S X S X S

X S
X S X S X S

= − = = 
=  = = = − 

1 2 3 5. , ,X S X X X→

2 4 6. ,X S X X→

3 4.X S X→

Evaluation
Calculate the mean and standard deviation in each 
agent:

1 2 3

4 5 6

2.98, 0.00, 0.27

1.65, 2.70, 1.02

t t t
t
i t t t

µ µ µ
µ

µ µ µ

 = − = = − =  
= − = − =  
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Table 1
Initialize values of each agent

Agent a1 Agent a2 Agent a2 Agent a4 Agent a5 Agent a6 

Sample 1 -2.60 2.70 -4.80 -3.40 -4.60 -2.60

Sample 2 -3.20 3.20 -2.40 1.80 -3.00 0.80

Sample 3 -1.90 -2.70 -1.00 2.30 1.30 2.80

Sample 4 -4.00 -2.80 -0.70 -4.10 -4.10 3.70

Sample 5 -3.50 4.20 3.70 -4.80 -3.90 4.80

Sample 6 -2.70 -4.60 3.60 -1.70 -1.90 -3.40

1 2 3

4 5 6

0.68, 3.45, 3.07

2.78, 1.99, 3.09

t t t
t
i t t t

σ σ σ
σ

σ σ σ

 = = = =  
= = =  

Calculate the fitness value between each other:

1 2

14.35, 29.57, 5.88
( . , . )

69.36, 33.28, 10.41
f S x S x

− − − 
=  − − − 

1 3

12.92, 30.09, 4.55
( . , . )

64.11, 46.16, 24.40
f S x S x

− − − 
=  − − − 

1 5

15.26, 39.74, 9.21
( . , . )

56.66, 36.41, 31.52
f S x S x

− − 
=  − − − 

2 4

450.04,8.28,146.91
( . , . )

8.10,8109.04,14.57
f S x S x  

=  
 

2 6

5.70,5.03,0.40
( . , . )

4.37,8.60, 0.54
f S x S x  

=  − 

3 4

11.17,3.33, 3.70
( . , . )

15.37, 10.16,10.66
f S x S x

− 
=  − − 

The fitness value is propagated to the high priority:

3 4 3( . , . )f S x S x X→

2 6 2( . , . )f S x S x X→

2 4 2( . , . )f S x S x X→

1 5 1( . , . )f S x S x X→

1 3 3 4 1( . , . ) ( . , . )f S x S x f S x S x X+ →

1 2 2 6 2 4 1( . , . ) ( . , . ) ( . , . )f S x S x f S x S x f S x S x X+ + →

The total fitness value of each sample:
454.90, 82.76,123.97

. .
193.03,7991.63, 41.64

S X fitness
− 

=  − − 

Sort the fitness values in ascending order:

( )
193.03 82.76 41.64

.
123.97 454.90 7991.63

Rank S fitness
− < − < − 

=  < < < 
The root agent sends the top G  samples ( )R

GS  and the 
worst sample ( )_1S  to the lower priority neighbors.

:rootC

{ } { }4 2 6, , 193.03, 82.76, 41.64R
GS S S S= = − − −

_1 7991.63S =

_1, R
G iS S C→

Update
Each agent ix  calculates the new mean and standard 
deviation:

{ }. 3.30, 1.40,0.17, 1.33, 3.00,0.37R
G iS x = − − − −

( ) { }. 0.54,3.33,2.52,2.42,0.90,2.91R
G iS x σ =

Then, agent ix  updates the mean and standard devia-
tion of the probability model 

{ }1 2.99, 0.04, 0.34, 1.61, 2.65,1.01t
iµ
+ = − − − − −

{ }1 0.68,0.71,0.70,0.70,0.68,0.70t
iσ
+ =

The remaining unselected samples update their val-
ues ( ). iK GS x−  according to the probability model

{ }1 3 5. . , . , .i i i iK GS x S x S x S x− =

1 2 3
1

4 5 6

3.23, 1.22, 0.77
.

0.73, 3.76, 1.61
x x x

S X
x x x
= − = − = 

=  = − = − = 

1 2 3
3

4 5 6

2.86, 0.16, 0.97
.

0.79, 2.7, 0.64
x x x

S X
x x x
= − = − = − 

=  = − = − = 

1 2 3
5

4 5 6

3.90, 1.23, 0.58
.

1.55, 1.5, 1.40
x x x

S X
x x x
= − = = 

=  = − = − = 
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4. Algorithm Theoretical Analysis
In this section, we define the communication step as 
CS , which represents the times that an agent com-
municates with one of its neighbors. In addition, we 
define the depth of BFS pseudo-tree as D , and the lon-
gest path as L . The optimal solution at each iteration 
is defined as bestS .

4.1. Theoretical Proof
Theorem 1. When CS T L D= + + , all agents obtain  

bestS  at CS T= .
Proof of Theorem 1. bestS  is the sample that has the 
lowest fitness. In order to calculate the complete fit-
ness of each sample, the root agent needs to wait at 
the most L  communication steps since the longest 
path of BFS pseudo-tree is L. When the root agent 
obtains bestS , it needs to be passed down to each agent 
through the BFS pseudo-tree. Since the depth of the 
pseudo-tree is D , each agent needs to wait at most
T L D+ + , and all agents obtain bestS  at CS T= .

Proposition 1. EDA-CD is an anytime algorithm.
Proof of Proposition 1. When ( )0CS T L D δ δ= + + + > , 
each agent obtains bestS  at CS T δ= + . According to 
the proposed rank elitist strategy, the optimal solu-
tion is retained in the next iteration. bestS  is updated 
only after a better solution is searched, only after at 
CS T L D δ= + + +  will not be worse than CS T δ= + . 
The solution quality does not decrease over time, and 
EDA-CD can provide bestS  at any time. Hence, EDA-
CD is an anytime algorithm.

Table 2
Update values of each agent

Agent a1 Agent a2 Agent a2 Agent a4 Agent a5 Agent a6 

Sample 1 -3.23 -1.22 0.77 -0.73 -3.76 1.61

Sample 2 -3.20 3.20 -2.40 1.80 -3.00 0.80

Sample 3 -2.86 -0.16 -0.97 -0.79 -2.70 0.64

Sample 4 -4.00 -2.80 -0.70 -4.10 -4.10 3.70

Sample 5 -3.90 1.23 0.58 -1.55 -1.50 1.40

Sample 6 -2.70 -4.60 3.60 -1.70 -1.90 -3.40

4.2. Complexity Analysis
In this section, we define some parameters as 
follows:

 _ K : The number of samples.
 _ n : The number of agents.
 _ P  and C : The number of higher and lower 

priority neighbors, respectively. N P C= + . 
Furthermore, we assume the  as a complete graph, 
N n≈ . A complete iteration is defined as the entire 

process of construction, evaluation, updating and 
sampling phase.

The Number of Messages:
 _ Initialization and sampling phase: Agent ix  sends 

. iS x to each lower priority neighbor 
jiC , ( )2*O C .

 _ Evaluation phase: Agent ix  sends ( ). ,i jS fitness x x  
each higher priority neighbor jiP , ( )O P . In addition, 
agent ix  sends . jS fitness x   received from 

1jiC  to 

2jiP  once, ( )1O .

The number of messages sent by an agent during an 
iteration is ( ) ( )2* 1 1O C P O N C+ + = + + . In the 
worst case, all neighbors are lower priority neighbors, 
the number of messages by an agent during an itera-
tion is ( ) ( )2* 1O n O n+ = .

The Size of Messages:
In EDA-CD, an agent sends the following four types of 
messages to neighbors:
 _ . iS x  and: Containing K samples, ( )2* *O K n .
 _ R

GS : Containing G samples, ( )*O G n .
 _

_1S : Containing one sample, ( )1*O n .
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Hence, the size of messages sent by an agent during an 
iteration is. ( ) ( )2* * * 1* *O K n G n n O K n+ + = .

Computational Complexity
During an iteration, an agent performs the following 
computation:
 _ ( ). ,i jS fitness x x  with K  samples: ( )*O K n .
 _ t

iµ and t
iσ : ( )2O .

 _ 1t
iµ
+ and 1t

iσ
+ : ( )2O .

 _ .R
G iS x and ( ).R

G iS x σ : ( )2O .  

Therefore, the computational complexity of an agent 
is ( * 2*2 2) ( * )O K n O K n+ + = .

5. Experimental Result and Analysis
We verify the performance of the proposed EDA-CD by 
comparing it with the state-of-the-art C-DCOP solving 
algorithms on four types of benchmark problems. Al-
though EDA-CD can use any form of function as the 
constraint cost function, we follow the constrained 
cost function form 2 2ax bx cxy dy ey f+ + + + +  in [13] 
to better show the experimental comparison results, 
where , , , ,a b c d e  and f are random numbers in the 
range [–5, 5]. We set the domain of each agent xi to   [–50, 
50] and the iteration to 500. For each experimental 
configuration, we independently run the algorithm 30 
times and take the average as the experimental result. 
The number of agents was defined as  n in this section.

5.1. Benchmark Problem
 _ Random graphs: We provide two random graph 

configurations, sparse (density 0.1) and dense (den-
sity 0.6), where density represents the probability of 
any two nodes connected during the construction. 
We set n from 10 to 100 and the interval to 10.

 _ Random trees: We use random trees as a 
benchmark problem according to [5]. Firstly, we 
randomly select a number as the root node from 
the continuous integer array [1, ]n  and delete the 
number. Then, we start breadth first search from 
the root node, randomly select ( )[1,6]m m∈ sub-
nodes and delete their number. Finally, we repeat 
the random selection until the length of the array 
is zero. n is set from 50 to 100 and the interval is 5.

 _ Scale-free networks: We use BA model [1] to gener-
ate scale-free networks problems. Firstly, the model 

generates a connected network of 15 agents. Then, a 
new agent is connected to the 7 agents in the current 
network during each iteration. Finally, new agents 
are added repeatedly until all agents join the net-
work. We set n from 50 to 100 and the interval to 5.

 _ Small-world networks: We use [25] topological model 
to generate small-world networks. A ring nearest-
neighbor coupled network with n nodes, each node 
is connected to the nearest 3 nodes on both sides. A 
node and an edge connected are chosen to connect 
to a random node on the ring with probability p = 0.5 
there can be no multi-edges or loops. We set n from 
50 to 100 and the interval to 5.

5.2. Fine-tuning Parameters
EDA-CD is a population-based algorithm that has 
several parameters including the number of samples 
K , learning rate β , and elitist samples G . Accord-

ing to other C-DCOP algorithms, we generally set the 
learning rate to 0.01. For the determination of K  and 
G , we set two adaptive values ( ,k g ) and *K k n= ,

*G g n=  ( n represents the number of agents). Their 
values range from 1-10 and 1-9, and we determine 
them by experiments on sparse random graphs.
In this experiment, we divide the value of g into 10 groups 
(1-9), and each group is matched with k  (1-10) values re-
spectively. In each of the groups, we select the solution 
which quality is the best for comparison in Figure 4.

Figure 4 
Solution quality of EDA-CD with different adaptive values 
g  and k on sparse random graphs
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Figure 5 
Solution quality of EDA-CD with adaptive values g = 2  and 
g = 4 on sparse random graphs

In Figure 4, We can see that the quality of the solution 
is the best when g  is equal to 4, the solution converg-
es the fastest when g  is equal to 2, and the quality of 
the solution is the second best. Thus, we conducted a 
set of further experiments. As in the previous exper-
iment, we divided the value of g  ( 2g =  and 4g = ) 
into 10 groups, each g matching 10 groups of k  val-
ues. In Figure 5, we can see that the solution converg-
es quickly and the quality of the solution is best when 

2.8g =  and 8k =  from the partial magnification.

Due to the limitation that D-Bay can only solve prob-
lems with 10 agents, only the results of D-Bay with 10 
agents are presented in Figures 6-7. Figure 6(a) shows 
the solution quality of EDA-CD and competing algo-
rithms on sparse random graphs. It can be seen from 
Figure 6(a) that the solution quality of EDA-CD is 
superior to all the competing algorithms in different 
problem scales. Figure 6(b) shows the Convergence 
curve. C-CoCoA converges the fastest for it is a non-it-
erative algorithm, but its quality is not the best. As the 
number of iterations increases, the solution quality of 
EDA-CD is better than other algorithms in the end. 
Although EDA-CD has a slower convergence speed, it 
has the best quality solution among all algorithms.

5.3. Experimental Result
We evaluate EDA-CD and its competing algorithms 
(HCMS, PFD, PFD-LD and C-CoCoA) and the param-
eters of each algorithm are set as follows:
 _ HCMS: Based on [13] the number of discrete points 

is set to 3 and the step size of gradient descent is set 
to 0.001.

 _ PFD: According to [5] 0.9w = , 2000K = , 1 0.9c = , 
2 0.1c = , max 15sc =  and max 5fc = .

 _ C-CoCoA: Refer to [20] the number of discrete 
points is set to 3, the step size of gradient descent 
is set to 0.01 and the number of optimizations is set 
to 100.

 _ PFD-LD: According to [22] 0.9w = , 10*K n= , 
1 0.9c = , 2 0.1c = , 0.1β = , 0.1α = , max 15sc =  and 

max 5fc = .
 _ EDA-CD: 0.01β = , 2.8*G n=  and  2.8*K n= .

(a)  Solution quality

(b)  Convergence curve (100 agents)

Figure 6 
Comparison of EDA-CD and its competing algorithms on 
sparse random graphs
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Figure 7 shows the solution quality of EDA-CD and 
competing algorithms on dense random graphs. Figure 
7(a) exhibits that the solution quality of the EDA-CD is 
better than the other four algorithms under the differ-
ent number of agents. It can be seen from Figure 7(b) 
that C-CoCoA is the fastest algorithm to solve the prob-
lem, but its solution quality is not good. As the number 
of iterations increases, HCMS and PFD begin to con-
verge and keep the current optimal solution. After that, 
EDA-CD continues to optimize and converge to a high-
er solution quality until the end of the iteration. The 
convergence speed of EDA-CD is slower than compet-
ing algorithms since the sample space of the probability 

Figure 7 
Comparison of EDA-CD and its competing algorithms on 
dense random graphs

(a)  Solution quality

(b)  Convergence curve (100 agents)

model is large in the early. However, the sample space is 
constantly approaching the current excellent solution 
with the update of the probability model, the updated 
samples are distributed around the optimal solution. 
Therefore, the solution quality improves over time.
In Figure 8 we can see that the solution quality of 
EDA-CD is significantly better than HCMS, and PFD. 
However, the solution quality of EDA-CD is slight-
ly better than C-CoCoA and PFD-LD. The reason is 
that the nodes in the random trees are less connected 
and the topological relationship is simple. The semi-
greedy local search strategy in C-CoCoA and with lo-
cal search strategy in PFD-LD perform well.

Figure 8 
Comparison of EDA-CD and its competing algorithms on 
random trees

a)  Solution quality  

(b)  Convergence curve (100 agents)
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In addition, the solution quality gap between EDA-
CD and competing algorithms is more obvious with 
the increase in the number of agents. Figure 9 pres-
ents the solution quality of these four algorithms on 
scale-free networks. It is obvious that the solving 
performance of EDA-CD is excellent and the solution 
quality of EDA-CD is superior to HCMS, PFD, PFD-
LD and C-CoCoA on all quantity configurations. Due 
to the topological relationship of scale-free networks 
being more complex than random trees. C-CoCoA 
performs worse than others.

Figure 9 
Comparison of EDA-CD and its competing algorithms on 
scale-free networks

(a)  Solution quality

(b)  Convergence curve (100 agents)

Figure 10
Comparison of EDA-CD and its competing algorithms on 
small-world networks

Figure 10 exhibits the solution quality of EDA-CD and 
competing algorithms on small-world networks. We 
can see that the solution quality of EDA-CD is better 
than the counterparts on all quantity configurations.
Table 3 displays the CPU running time percentages of 
EDA-CD compared to four competing algorithms on 
different benchmark problems, with the percentag-
es rounded to two decimal places. It can be seen that 
EDA-CD is slightly inferior to other algorithms on 
sparse random graphs, but significantly faster in solv-
ing dense random graphs than the other algorithm.

(b)  Convergence curve (100 agents)

(a)  Solution quality



93Information Technology and Control 2024/1/53

Table 3
The average CPU runtime improvement rates of EDA-CD compared to four competing algorithms

Type of problem HCMS PFD C-CoCoA PFD-LD

Sparse random graphs -4.12% -8.10% -9.76% -3.78%

Dense random graphs 19.73% 16.49% 21.88% 20.67%

Random trees 1.74% 0.70% -7.55% 8.29%

Scale-free networks 3.46% 4.76% 8.94% 9.14%

Small-world networks -2.98% -0.12% -5.94% 3.76%

The above experiments indicate that the EDA-CD 
algorithm has good stability and produces solutions 
with small fluctuations in quality when solving com-
plex problems. This algorithm is suitable for various 
types of continuous distributed constraint optimiza-
tion problems, and can adapt flexibly to different cost 
function forms. Additionally, by changing the sample 
generation strategy and parameters, the performance 
and robustness of the EDA-CD algorithm can be fur-
ther improved.

6. Statistical Analysis
In order to effectively illustrate the significant supe-
riority of EDA-CD, we use the Wilcoxon signed rank 
test to analyze 30 independent experiments for each 
experiment configuration. The steps are as follows:
 _ We set the significance level 0.05slα = .
 _ We define the solution quality of EDA-CD and 

competing algorithms as pS  and cS . The difference 
∆  is defined as p cS S∆ = − .

 _ If 0∆ < , 1R R+ += + , ( )w w rank+ += + ∆ .
 _ If 0∆ > , 1R R− −= + , ( )w w rank− −= + ∆ .
 _ We determine the value of p  based on the 

distribution of rank sum.

If slp α< , there is a significant difference between 
EDA-CD and competing algorithms.
If slp α> , there is no significant difference between 
EDA-CD and competing algorithms.
After statistical analysis of the data, the performance 
of EDA-CD and its competing algorithms on random 
graphs is shown in Table 4. We can see that EDA-CD 

significantly outperforms HCMS and C-CoCoA on all 
numbers of agents. In the case of a small number of 
agents, EDA-CD not obviously outperforms PFD and 
PFD-LD since EDA-CD requires a large number of 
samples to gain a probability model. 
Table 5 is the statistical results on the random tree. 
C-CoCoA is a semi-greedy search algorithm and the 
random tree communication structure is simple, so 
EDA-CD is not obviously excellent in simple prob-
lems. EDA-CD is significantly better than other algo-
rithms when they face the same problem.
Tables 6-7 are the statistical results of EDA-CD and 
the competing algorithms on the scale-free network 
and the small-world network, respectively. We can 
see that EDA-CD is significantly better than HCMS 
and PFD on scale-free networks, and it is significant-
ly better than HCMS, PFD and C-CoCoA on small-
world networks.
Table 8 presents the average improvement rates of 
EDA-CD compared to four competing algorithms 
on different benchmark problems. We use the im-
provement rate of each quantity configuration on the 
benchmark problems to calculate the average im-
provement rates, and the results are rounded to two 
decimal places.
It can be seen from Table 8 that EDA-CD is superior 
to other competitive algorithms and has a good aver-
age improvement rate on four benchmark problems. 
Although C-CoCoA has good performance on the 
random trees, EDA-CD still has 1.96% average im-
provement rate compared with C-CoCoA in solution 
quality. As for the latest PFD-LD, the performance 
improvement rate of EDA-CD is also at least 5.12%.
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Table 4
Wilcoxon signed ranks test results of convergence quality with a level of significance α=0.05 on random graphs

Agent
EDA-CD vs HCMS EDA-CD vs PFD EDA-CD vs C-CoCoA EDA-CD vs PFD-LD

/R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p

10 S 30/0 465/0 0.000 10/17 140/237 0.244 25/5 381/84 0.002 11/19 171/294 0.206

D 28/2 458/7 0.000 10/20 135/330 0.045 29/1 460/5 0.000 12/18 95/370 0.005

20 S 30/0 465/0 0.000 22/8 383/82 0.002 17/13 375/90 0.003 14/16 213/252 0.688

D 26/4 439/26 0.000 19/10 307/128 0.053 30/0 465/0 0.000 19/11 248/217 0.750

30 S 30/0 465/0 0.000 27/3 457/8 0.000 26/4 454/11 0.000 15/15 224/241 0.861

D 26/4 451/14 0.000 17/13 450/15 0.001 30/0 465/0 0.000 14/16 203/062 0.544

40 S 28/2 458/7 0.000 27/3 451/14 0.000 23/7 403/62 0.000 20/10 257/208 0.614

D 30/0 465/0 0.000 28/2 460/5 0.000 30/0 465/0 0.000 21/9 303/162 0.147

50 S 30/0 465/0 0.000 30/0 465/0 0.000 24/6 433/32 0.000 10/20 159/306 0.131

D 30/0 465/0 0.000 30/0 465/0 0.000 27/3 453/12 0.000 20/10 294/171 0.206

60 S 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 26/4 446/19 0.000

D 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 26/4 446/19 0.000

70 S 30/0 465/0 0.000 30/0 465/0 0.000 29/1 464/1 0.000 22/8 389/76 0.001

D 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 20/10 387/78 0.001

80 S 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 19/11 373/92 0.004

D 29/1 463/2 0.000 30/0 465/0 0.000 30/0 465/0 0.000 23/7 376/89 0.003

90 S 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 27/3 458/7 0.000

D 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 25/5 427/38 0.000

100 S 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 28/2 454/11 0.000

D 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 24/6 437/28 0.000

Table 5
Wilcoxon signed ranks test results of convergence quality with a level of significance α=0.05 on random tree

Agent
EDA-CD vs HCMS EDA-CD vs PFD EDA-CD vs C-CoCoA EDA-CD vs PFD-LD

/R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p

60 30/0 465/0 0.000 10/17 140/237 0.000 19115 354/111 0.012 16/14 244/221 0.813

65 30/0 465/0 0.000 29/1 463/2 0.000 22/8 334/131 0.030 19/11 320/145 0.072

70 30/0 465/0 0.000 30/0 465/0 0.000 26/4 417/48 0.000 23/7 403/62 0.000

75 30/0 465/0 0.000 30/0 465/0 0.000 21/9 325/140 0.057 23/7 383/82 0.002

80 30/0 465/0 0.000 30/0 465/0 0.000 19/11 334/136 0.037 24/6 369/960. 0.005

85 30/0 465/0 0.000 30/0 465/0 0.000 12/18 203/262 0.544 24/6 430/35 0.000

90 30/0 465/0 0.000 30/0 465/0 0.000 16/14 308/157 0.120 20/10 360/105 0.009

95 30/0 465/0 0.000 30/0 465/0 0.000 25/5 445/20 0.000 30/0 465/0 0.000

100 30/0 465/0 0.000 30/0  465/0 0.000 16/14 315/150 0.090 27/3 446/19 0.000
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Table 6
Wilcoxon signed ranks test results of convergence quality with a level of significance α=0.05 on scale-free networks

Agent
EDA-CD vs HCMS EDA-CD vs PFD EDA-CD vs C-CoCoA EDA-CD vs PFD-LD

/R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p

60 30/0 465/0 0.000 30/0 465/0 0.000 19/11 354/111 0.012 16/14 244/221 0.813

65 30/0 465/0 0.000 29/1 463/2 0.000 22/8 334/131 0.037 19/11 320/145 0.072

70 30/0 465/0 0.000 30/0 465/0 0.000  26/4 417/48 0.000 23/7 403/62 0.000

75 30/0 465/0 0.000 30/0 465/0 0.000 21/9 325/140 0.057 23/7 383/82 0.002

80 30/0 465/0 0.000 30/0 465/0 0.000 19/11 334/131 0.037 24/6 369/96 0.005

85 30/0 465/0 0.000 30/0 465/0 0.000 12/18 203/262 0.544 24/6 430/35 0.000

90 30/0 465/0 0.000 30/0 465/0 0.000 16/14 308/157 0.120 20/10 360/105 0.009

95 30/0 465/0 0.000 30/0 465/0 0.000 25/5 445/20 0.000 30/0 465/0 0.000

100 30/0 465/0 0.000 30/0 465/0 0.000 16/14 315/150 0.090 27/3 446/19 0.000

Table 7
Wilcoxon signed ranks test results of convergence quality with a level of significance α=0.05 on small-world networks

Agent
EDA-CD vs HCMS EDA-CD vs PFD EDA-CD vs C-CoCoA EDA-CD vs PFD-LD

/R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p

60 30/0 465/0 0.000 30/0 465/0 0.000 24/6 418/48 0.000 14/16 240/225 0.877

65 30/0 465/0 0.000 30/0 465/0 0.000 28/2 457/8 0.000 21/9 301/164 0.159

70 30/0 465/0 0.000 30/0 465/0 0.000 27/3 453/12 0.000 17/13 277/188 0.360

75 30/0 465/0 0.000 30/0 465/0 0.000 29/1 463/2 0.000 20/10 340/125 0.027

80 29/1 464/1 0.000 30/0 465/0 0.000 29/1 464/1 0.000 22/8 390/75 0.001

85 30/0 465/0 0.000 30/0 465/0 0.000 29/1 464/1 0.000 24/6 387/78 0.001

90 30/0 465/0 0.000 30/0 465/0 0.000 27/3 450/15 0.001 18/12 385/80 0.021

95 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 21/9 395/70 0.001

100 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 25/5 431/34 0.000

Table 8
The average improvement rates of EDA-CD compared to four competing algorithms

Type of problem HCMS PFD C-CoCoA PFD-LD

Sparse random graphs 16.98% 15.44% 10.40% 8.40%

Dense random graphs 20.82% 16.57% 36.04% 5.32%

Random trees 24.22% 17.89% 1.96% 5.48%

Scale-free networks 21.76% 25.18% 23.92% 21.40%

Small-world networks 21.15% 21.19% 13.82% 5.12%
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7. Conclusion and Future Work
In this paper, EDA-CD is proposed for solving Contin-
uous Distributed Constraint Optimization Problem 
due to currently C-DCOP solving algorithms are easy 
to fall into local optimization and the solution quality 
is poor. In EDA-CD, one solution *X  is multidimen-
sional and each agent completes the assignment of 
its dimension. To find the best assignment of each di-
mension, agents construct probability models using 
elite solutions in parallel to describe the distribution 
of the current population and then randomly sample 
the constructed probability models simultaneously to 
generate offspring solutions, which makes EDA-CD 
improve the solution quality and avoid falling into the 
local optimum.  EDA-CD is theoretically proven to 
be an anytime algorithm and extensive experiments 
demonstrate that EDA-CD is significantly superi-

or to the state-of-art C-DCOP solving algorithms. It 
is worth noting that EDA-CD provides a novel idea 
based on the probability model for solving C-DCOP.
While experimental results on four benchmark prob-
lems demonstrate EDA-CD’s superiority, further 
evaluation on real-world problems is needed. Future 
work includes modeling real-world multi-agent sys-
tems using the C-DCOP framework and comparing 
EDA-CD’s efficiency with other algorithms in practi-
cal problem-solving scenarios.
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