
Information Technology and Control 2024/1/5380

An Estimation of Distribution Based
Algorithm for Continuous Distributed
Constraint Optimization Problems

ITC 1/53
Information Technology
and Control
Vol. 53 / No. 1 / 2024
pp.80-97
DOI 10.5755/j01.itc.53.1.33343

An Estimation of Distribution Based Algorithm for Continuous
Distributed Constraint Optimization Problems

Received 2023/02/02 Accepted after revision 2023/08/13

HOW TO CITE: Shi, M., Zhang, P., Liao, X., Xue, Z. (2024). An Estimation of Distribution Based
Algorithm for Continuous Distributed Constraint Optimization Problems. Information Technology
and Control, 53(1), 80-97. https://doi.org/10.5755/j01.itc.53.1.33343

Corresponding author: zp2024ligong@stu.cqut.edu.cn

Meifeng Shi
College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China;
Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan;
e-mail: shimf@cqut.edu.cn

Peng Zhang, Xin Liao, Zhijian Xue
College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China;
e-mails: zp2024ligong@stu.cqut.edu.cn, lxchat@foxmail.com, blade1565@stu.cqut.edu.cn

Continuous Distributed Constraint Optimization Problem(C-DCOP) is a constraint processing framework for
continuous variables problems in multi-agent systems. There is a constraint cost function between two mutu-
ally restrictive agents in C-DCOP. The goal of the C-DCOP solving algorithm is to keep the sum of constraint
cost functions in an extreme state. In a C-DCOP, each function is defined by a set of continuous variables. At
present, some C-DCOP solving algorithms have been proposed, but there are some common problems such as
the limitation of constraints cost function form, easy to fall into local optimum, and lack of anytime attribute.
Aiming at these thorny problems, we propose a parallel optimization algorithm named Estimation of Distribu-
tion Based Algorithm for Continuous Distributed Constraint Optimization Problems (EDA-CD). In EDA-CD,
each solution is regarded as an individual, and the distribution of agent value is jointly described by all out-
standing individuals. Firstly, all agents cooperate to hold a distributed population. Secondly, each agent calcu-
lates the mean and variance of its variables to build probability models in parallel. Finally, the agent evaluates
the fitness of samples and updates the probability model through cooperative communication on Breadth First
Search (BFS) pseudo-tree. We theoretically prove that EDA-CD is an anytime algorithm. The extensive exper-
imental results on four types of benchmark problems show that the proposed EDA-CD outperforms the state-
of-the-art C-DCOP algorithms and has about 20% improvement in solution quality.
KEYWORDS: Estimation of Distribution Algorithm, C-DCOP, Multi-agent System, Breadth First Search
Pseudo-tree.

81Information Technology and Control 2024/1/53

1. Introduction
Distributed Constraint Optimization Problem
(DCOP) is a powerful framework used to model and
solve complex multi-agent system (MAS) problems.
In a MAS, autonomous agents interact with each oth-
er to accomplish individual goals or common objec-
tives. DCOP provides a framework for governing the
autonomous behavior of these agents [9]. It has been
widely used in practical applications, such as meet-
ing scheduling [6], resource allocation [4], missile
path plan [26], sensor networks [7], microgrid control
[17] and smart homes [10]. The DCOP algorithms can
be simply divided into complete algorithms and in-
complete algorithms. The complete algorithms aim
to provide a global optimal solution, but the compu-
tational and memory overhead is expensive, such as
ADOPT [18], DPOP [19], and PTFB [15]. Conversely,
the incomplete algorithms obtain an approximate
solution by reducing computational and memory
overhead, such as DSA [27], Max-Sum [8], MGM [16]
and ACO_DCOP [3]. DCOP algorithms can also be
classified based on their level of centralization into
centralized and fully distributed algorithms. Central-
ized algorithms can prevent unnecessary conflicts
among agents, while fully distributed algorithms offer
better information privacy and enable agents to in-
teract and coordinate without relying on a central au-
thority. DCOP algorithms can also be categorized into
asynchronous and synchronous algorithms. In asyn-
chronous algorithms, agents make decisions based
on their local view without specific messages from
neighbors. Although minimizing idle time, there is no
consistency in local views, requiring action revision.
Synchronous algorithms have a systematic search
in defined steps, requiring agents to wait for specific
messages. Although synchronous methods increase
idle time, agents hold a consistent view, which can be
preferable over inconsistent views. DCOP algorithms
can be further divided into two categories: search-
based methods and inference-based strategies.
Search-based methods, such as best-first, depth-first,
backtracking, and branch-and-bound, explore the
state space through systematic search. In contrast,
inference-based strategies allow agents to compute
aggregated constraint costs from their neighbors, re-
ducing the problem size at each step and propagating
the costs to neighboring agents [14].

However, the variables controlled by the agent are
continuous in most practical applications, such as ro-
tation angle, activation, and deactivation time of the
sensor. Therefore, C-DCOP was proposed to model
continuous problems.
Continuous Max-Sum (CMS) [23] is a continuous
version of the discrete Max-Sum algorithm which
was proposed to solve DCOP, it was proposed to deal
with the changes of variable, domain, and constraint
cost function. In CMS, the constraint cost function
is approximated as a piecewise linear function. How-
ever, the limitation of the constraint cost function
form makes CMS only applicable to a few practical
problems. Hybrid Continuous Max-Sum algorithm
(HCMS) [24] obtains a set of approximate solu-
tions by discrete Max-Sum algorithm and improves
the quality of approximate solutions by continuous
nonlinear optimization method. Since continuous
nonlinear optimization methods such as gradient
descent require derivative computations, HCMS is
difficult to solve non-differentiable problems and
cannot guarantee convergence. B-DPOP [12] ex-
tends DPOP algorithm by adding Bayesian optimiza-
tion and Gaussian process models to solve dynamic
coordination problems in continuous domains. It
converges to optimal solution in fewer sampling
iterations, but has high computational complexi-
ty requiring significant computing resources and
time for larger problems. Exact Continuous DPOP
(EC-DPOP), Approximate Continuous DPOP (AC-
DPOP), and Clustered AC-DPOP (CAC-DPOP) [13]
were proposed to solve C-DCOP, but they generate
exponential computation and memory overhead.
Moumita [5] proposed the Particle Swarm based
C-DCOP (PFD) to reduce the computational and
memory overhead. However, PFD has poor search
ability and it is easy to fall into local optimum. Amit
[20] proposed a non-iterative algorithm for C-DCOP
called Continuous Cooperative Constraint Approxi-
mation (C-CoCoA). It obtains higher solution quali-
ty through semi-greedy local search. Unfortunately,
C-CoCoA lacks the anytime attribute and has poor
robustness on complex problems. Jeroen proposed
the Distributed Bayesian (D-Bay) algorithm, which
solves C-DCOP by utilizing Bayesian optimization
for adaptive sampling of variables [11].

Information Technology and Control 2024/1/5382

Based on the above analysis, we proposed an Esti-
mation of Distribution Based Algorithm for Contin-
uous Distributed Constraint Optimization Problems
(EDA-CD) to deal with the limitations of existing
C-DCOP algorithms. EDA-CD describes the distribu-
tion of the solution from each dimension of the solu-
tion and approximates the optimal solution by nar-
rowing the distribution interval of each dimension. In
EDA-CD, a solution of C-DCOP is defined as a sam-
ple, and the global objective function is defined as the
fitness of the sample. It is worth mentioning that the
computations of fitness use basic operators. There-
fore, the evaluation method of fitness makes EDA-CD
not limited to constraints cost function form. Our
work can be summarized as follows:
 _ Design a parallel probability model construction

method to satisfy the distributed characteristics.
Simultaneously, we sample randomly from the
probability model to avoid the algorithm falling
into the local optimum.

 _ Design a rank elitist strategy to guarantee the
convergence of the proposed algorithm.

 _ Design the adaptive population size to improve the
robustness of the proposed algorithm.

 _ Prove that the proposed algorithm is an anytime
algorithm.

 _ Provide experimental comparisons between
the proposed algorithm and the state-of-the-art
C-DCOP algorithms on four types of benchmark
problems.

2. Problem Formulation and
Background

2.1. Distributed Constraint Optimization
Problem
A C-DCOP can be defined as a 5-tuple , , , ,A X D F α< >,
where:
 _

1 2{ , ,..., }nA a a a= is a set of agents. An agent controls
one or more variables.

 _
1 2{ , ,..., }mX x x x= is a set of continuous variables,

where each variable xi is controlled by agent
ia A∈ .

 _
1 2{ , ,..., }mD D D D= is a set of continuous domains.

Variable xi can get any value in [],i i iD LB UB= ,
where iLB and iUB represent the lower and upper
bounds of the domain, respectively.

 _ • 1 2{ , ,..., }= lF f f f is a set of constraint cost
functions. Each 1 2: ...∈ × × × →i i i ikf F D D D R
specifies the assigned constraint cost function to
each combination of 1 2, ,...,i i ikx x x . In this paper, we
consider all constraint cost functions are binary.

 _ • : X Aα → is a mapping function to associate
each variable jx X∈ to an agent ja A∈ . We assume
one agent controls only one variable (n m= , thus
the term “agent” and “variable” could be used
interchangeably). Therefore, we use the term agent

ix in the rest of this paper to avoid confusion.

The solution of a C-DCOP is an assignment *X to
all variables that minimizes the sum of all constraint
cost functions as shown in Equation 1.

computations of fitness use basic operators. Therefore,
the evaluation method of fitness makes EDA-CD not
limited to constraints cost function form. Our work can
be summarized as follows:

• Design a parallel probability model construction
method to satisfy the distributed characteristics.
Simultaneously, we sample randomly from the
probability model to avoid the algorithm falling into
the local optimum.

• Design a rank elitist strategy to guarantee the
convergence of the proposed algorithm.

• Design the adaptive population size to improve the
robustness of the proposed algorithm.

• Prove that the proposed algorithm is an anytime
algorithm.

• Provide experimental comparisons between the
proposed algorithm and the state-of-the-art C-DCOP
algorithms on four types of benchmark problems.

2. Problem Formulation and
Background

2.1. Distributed Constraint Optimization Problem

A C-DCOP can be defined as a 5-tuple , , , ,A X D F  
, where:

• 1 2{ , ,..., }nA a a a is a set of agents. An agent controls
one or more variables.

• 1 2{ , , ..., }mX x x x is a set of continuous variables,
where each variable 𝑥𝑥� is controlled by agent ia A .

• 1 2{ , , ..., }mD D D D is a set of continuous domains.
Variable 𝑥𝑥� can get any value in  ,i i iD LB UB , where

iLB and iUB represent the lower and upper bounds of
the domain, respectively.

• 1 2{ , ,..., } lF f f f is a set of constraint cost functions.
Each 1 2: ...    i i i ikf F D D D R specifies the
assigned constraint cost function to each combination
of 1 2, , ...,i i ikx x x . In this paper, we consider all constraint
cost functions are binary.

• : X A  is a mapping function to associate each
variable jx X to an agent ja A . We assume one
agent controls only one variable (n m , thus the term
“agent” and “variable” could be used interchangeably).
Therefore, we use the term agent ix in the rest of this
paper to avoid confusion.

The solution of a C-DCOP is an assignment *X to all
variables that minimizes the sum of all constraint cost
functions as shown in Equation 1.

*

,
arg min (,)
  

 
i i j j ij

ij i j
d D d D f F

X f d d . (1)

Figure 1 shows a simple example of C-DCOP,
where Figure 1(a) shows a constraint graph of four
variables and each edge represents a constraint
cost function defined in Figure 1(b). The domain
iD of ix is  5,5 .

Figure 1

An example of C-DCOP

x3

x2x1

x4

(a) Constraint Graph (b) Constraint Cost Functions

x5 x6

2.2. Estimation of Distribution Algorithm

Estimation of Distribution Algorithm (EDA) is a
population-based optimization algorithm. In
traditional population optimization algorithms,
such as genetic algorithms, the population is used
to represent a set of candidate solutions to the
optimization problem. Each individual in the
population has a corresponding fitness value and
then performs operations such as selection,
crossover, and mutation to simulate natural
evolution. However, there are no traditional
genetic operations such as crossover and mutation
in estimation of distribution algorithm, it updates
values by learning and sampling. EDA describes
the candidate solution by a probabilistic model. It
uses statistical learning methods to establish a
probabilistic model describing the solution
distribution (Algorithm 1: Lines 3). Each
individual calculates its own fitness (Algorithm 1:
Lines 5-6). It’s sorted by fitness and selects the
promising G individuals (Algorithm 1: Lines 7-
8). Then update the probabilistic model according
to the G individuals and randomly sample other
not selected individuals with a probability model
to generate a new population (Algorithm 1: Lines
10-11).

According to the complexity of the probability
model and different sampling methods, EDA has
developed many different specific
implementation methods, but they can all be
summarized into two main steps: firstly,
randomly generate a lot of solutions, and then
select a set of excellent individuals which are used
to construct a probability model describing the
current solution set using learning. A new
population is generated by random sampling
from the probability model. Generally, the Monte (1)

Figure 1 shows a simple example of C-DCOP, where
Figure 1(a) shows a of four variables and each edge
represents a constraint cost function defined in Fig-
ure 1(b). The domain iD of ix is []5,5− .

Figure 1
An example of C-DCOP

3

21

4

(a) Constraint Graph (b) Constraint Cost Functions

3 2 2
12 1 1 2 2f x x x x   

3
13 1 1 3 3sin() cos()f x x x x    

2 2
34 3 4 4cos()f x x x  

: [5,5]i ix X D   5 6

3 2
15 1 1 5 52 -f x x x x 

2 4
24 2 4ln(1)x xf x e x   

26 2 2 2 6log (1)f x x x  

(a) (b) Constraint Cost Functions

2.2. Estimation of Distribution Algorithm
Estimation of Distribution Algorithm (EDA) is a pop-
ulation-based optimization algorithm. In traditional
population optimization algorithms, such as genetic
algorithms, the population is used to represent a set
of candidate solutions to the optimization problem.
Each individual in the population has a correspond-

83Information Technology and Control 2024/1/53

ing fitness value and then performs operations such as
selection, crossover, and mutation to simulate natural
evolution. However, there are no traditional genetic
operations such as crossover and mutation in esti-
mation of distribution algorithm, it updates values by
learning and sampling. EDA describes the candidate
solution by a probabilistic model. It uses statistical
learning methods to establish a probabilistic mod-
el describing the solution distribution (Algorithm 1:
Lines 3). Each individual calculates its own fitness
(Algorithm 1: Lines 5-6). It’s sorted by fitness and se-
lects the promising G individuals (Algorithm 1: Lines
7-8). Then update the probabilistic model according
to the G individuals and randomly sample other not
selected individuals with a probability model to gen-
erate a new population (Algorithm 1: Lines 10-11).
According to the complexity of the probability model
and different sampling methods, EDA has developed
many different specific implementation methods,
but they can all be summarized into two main steps:
firstly, randomly generate a lot of solutions, and then
select a set of excellent individuals which are used to
construct a probability model describing the current
solution set using learning. A new population is gen-
erated by random sampling from the probability mod-
el. Generally, the Monte Carlo method is used to sam-
ple the probability model to obtain a new population.
The crossover and mutation in the genetic algorithm
will destroy the optimized individuals. Genetic algo-
rithm (GA) typically requires complex parameters
such as crossover rate, mutation rate, and selection
method, while EDA does not, making it easier to use
and implement. Additionally, EDA does not require
complex crossover and mutation operators to gen-
erate new solutions, instead using random sampling
and resampling to explore the search space more di-
versely. EDA models the solution space with a proba-
bilistic model, allowing for more accurate estimation
of solution fitness and avoiding limitations in selec-
tion operators found in GA. Most importantly, EDA
generates new solutions through random sampling
and resampling, resulting in a more comprehensive
search of the solution space and avoiding premature
convergence found in GA.

2.3. Breadth First Search Pseudo-tree
BFS pseudo-tree is a commonly used communication
structure for DCOP and C-DCOP. The characteristics

Algorithm 1: Estimation of Distribution
Optimization
1 Generate n -dimensional Samples, S
2 Randomly Initialize variables of each sample
3 calculate the current probabilistic model accord-

ing to S
4 while Termination condition not met do
5 for each sample kS S∈ do
6 calculate the current fitness
7 ().RS Rank S fitness←

8 R
GS ←Select the top samples in RS

9 update the probabilistic model according to R
GS

10 if R
k GS S≠

11 update variables according to the probabilistic
model

of BFS pseudo-tree are multi-branch parallel com-
puting, short communication path and time. We brief-
ly introduce the construction, basic terms, notations
and concepts of BFS pseudo-tree according to the ex-
ample in Figure 1. The details of BSF pseudo tree can
be found in [2].
 _ Firstly, taking agent 1x as root agent by breadth-

first search, and agents 2x , 3x and 5x are children of
1x . (Layer:

1
0xL =)

 _ Secondly, the algorithm determines that agent 4x
and 6x are children of 2x by traversing the neighbors
of 2x . Layer:

2 1
1 1x xL L= + = .

 _ Next, the algorithm traverses neighbors of 3x and
finds that the 4x is the child of 3x . Agent 4x has a
Parent (agent 2x), and 3x is the Pseudo-Parent of 4x
. (Layer:

3 1
1 1x xL L= + =).

 _ Then, the algorithm traverses neighbors of 5x , but
the 5x has no other neighbors except 1x . (Layer:

5 1
1 1x xL L= + =).

 _ After that, the algorithm traverses 4x .There is a
Parent (agent 2x) and a Pseudo-Parent (agent 3x).
(Layer:

4 2
1 2x xL L= + =).

Figure 2(a) shows the BFS pseudo-tree constructed
by the above steps, the dotted line represents Pseu-
do-Parent and Pseudo-Child. Solid lines represent
Parent and Child. Furthermore, Figure 2(b) shows
the ordered BFS pseudo-tree, an agent with a lower
layer has higher priority over an agent with a higher

Information Technology and Control 2024/1/5384

layer. Each agent knows the sets of its higher and low-
er priority neighbors. In this paper, we use i iP N⊆
and i iC N⊆ to represent the higher and the lower
priority neighbor sets of agent ix , respectively.
In Figure 2(b), agent 1x is the root agent, and agent

5x , 4x and 6x are the leaf agents. The neighbor set
of agents 2x is { }2 1 4 6, ,N x x x= , the higher priority
neighbor set is { }2 1P x= and the lower priority neigh-
bor set is { }2 4 6,C x x= .

Figure 2
Pseudo-tree construction (a) and ordered arrangement (b)

1

532

(a) BFS pseudo-tree (b) Ordered arrangement

4 6

1

532

4 6

(a) BFS pseudo-tree (b) Ordered arrangement

3. The EDA-CD Algorithm
3.1. Algorithm Introduction
EDA-CD consists of five phases: Initialization, Con-
struction, Evaluation, Update and Sampling. In the
Initialization phase, EDA-CD builds a BFS pseu-
do-tree, initializes parameters and distributed popu-
lation. In the Construction phase, each agent builds a
probability model through the distribution of values.
In the Evaluation phase, the agents calculate the fit-
ness of samples in a distributed way. In the Update
phase, agents communicate cooperatively to update
the probability model. In the Sampling phase, each
agent randomly samples from the updated probability
model. The specific steps can be found in Algorithm 2.
The Initialization Phase. Firstly, EDA-CD con-
structs an ordered BFS pseudo-tree. Secondly, it ini-
tializes three parameters:
 _ K : The number of samples.
 _ β : The learning rate, used to update the mean μ and

the standard deviation σ.
 _ G : The number of selected elitist samples.

Finally, agents collaboratively generate a distributed
population and each agent completes the assignment
of its dimension (Algorithm 2: Lines 3-9).

Algorithm 2: The EDA-CD Algorithm

1 Construct BFS pseudo-tree
2 Initialize parameters: , ,K Gβ
3 S ← Generate K samples

4 for each agent ix do

5 for each sample kS S∈ do

6 .k iS x ← a random value from iD
7 end for
8 send . iS x to agents in iC
9 end for
10 while Termination condition not met each agent

ix do

11 Calculate t
iµ according to (2)

12 Calculate t
iσ according to (3)

13 ()Messaging
14 if ix is a root agent then

15 ().RS Rank S fitness←

16 ()_1 .RS Worst S fitness←

17 R
GS ←Select the top G samples in RS

18 Send R
GS and _1S to agents in iC

19 end if

20 wait until R
GS and _1S are received from iP

21 if R
GS and _1S are received from iP then

22 Calculate 1t
iµ
+ according to (9)

23 Calculate 1t
iσ
+ according to (10)

24 .− ←iK GS x Sampling randomly K G−

25 . . .R
i G i iK GS x S x S x−← ∪

26 if 0iC ≠ then
27 Send . iS x to agents in iC

28 Send R
GS and _1S to agents in iC

29 end if
30 end if
31 end while

85Information Technology and Control 2024/1/53

Figure 3 shows a distributed population of n agents
and K samples. A sample represents a solution of
C-DCOP, agent ix holds one dimension of each sam-
ple, S represents a set of samples, named population.
We use .k nS x to represent the value of the sample k
under the dimension of the agent nx .

Figure 3
Distributed population

...

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

1Agent a 2Agent a 3Agent a nAgent a

1 1.S x

2 1.S x

1.kS x

1.KS x

Sample k

Sample K

1 2.S x 1 3.S x 1. nS x

2 2.S x

2.kS x

2.KS x

2 3.S x 2. nS x

3.kS x .k nS x

3.KS x .K nS x

1Sample

2Sample

The Construction Phase. Agents build probabili-
ty models in parallel at this phase. Specifically, each
agent calculates the mean and standard deviation
according to Equations 2-3, respectively, (Algorithm
2: Lines 11-12). t represents the number of itera-
tions. Therefore, the probability model of agent ix is

()()2
,t t

i iN µ σ .

Figure 3 shows a distributed population of n agents
and K samples. A sample represents a solution of C-
DCOP, agent ix holds one dimension of each sample,
S represents a set of samples, named population. We
use .k nS x to represent the value of the sample 𝑘𝑘 under
the dimension of the agent nx .

Figure 3

Distributed population

...

.
..

.
..

.
..

..
.

.
..

..
.

.
..

.
..

The Construction Phase. Agents build probability
models in parallel at this phase. Specifically, each agent
calculates the mean and standard deviation according
to Equations 2-3, respectively, (Algorithm 2: Lines 11-
12). 𝑡𝑡 represents the number of iterations. Therefore,

the probability model of agent ix is   2
,t t
i iN   .

1

(.) / ,Kt
i k ik

S x K


  (2)

 2
1

((.)) / ,Kt t
i k i ik

S x K 


  (3)

Procedure 1:  Messaging

1 for . jS x received from
ji
P P do

2 for each sample kS S do

3  . (,) Cos . , .k i j ij k i k jS fitness x x t S X S X

4 end for

5 Send . (,)i jS fitness x x to agent in
ji
P

6 end for

7 wait until . (,)i jS fitness x x received from
agents in iC

8 if 0iC  and . (,)i jS fitness x x received
from agents in iC then

9 for each sample kS S do

10    . . ,
i

k i i j
j C

S fitness x S fitness x x


 

11 end for

12 if ix root then

13 Send  . iS fitness x to an
ji iP P

14 end for

15 end if

The Evaluation Phase can be described as five
steps:

1: When agent ix receives the value . jS x sent by
the higher priority neighbor

ji iP P , agent ix
calculates the partial fitness . (,)k i jS fitness x x with
each higher priority neighbor

ji iP P by Equation
4. In addition, agent ix sends . (,)k i jS fitness x x to
the higher neighbor

ji iP P (Procedure 1: Lines 1-
6).

    . , . , .k i j ij k i k jS fitness x x f S x S x . (4)

2: When agent ix receives the partial fitness sent
by the lower priority neighbors j ix C , the agent

ix sums the partial fitness of all the lower priority
neighbors as . []k iS fitness x by Equation 5
(Procedure 1: Lines 7-11).

  . [] . ,
i

k i k i j
j C

S fitness x S fitness x x


  . (5)

3: If the current agent is not the root agent,
. []k iS fitness x is sent by the agent ix to a higher

priority neighbor
ji iP P (Procedure 1: Lines 12-

14). If the agent jx is not the root agent, jx will
continue to send until its higher priority neighbor
is the root agent.

(2)

Figure 3 shows a distributed population of n agents
and K samples. A sample represents a solution of C-
DCOP, agent ix holds one dimension of each sample,
S represents a set of samples, named population. We
use .k nS x to represent the value of the sample 𝑘𝑘 under
the dimension of the agent nx .

Figure 3

Distributed population

...

.
..

.
..

.
..

..
.

.
..

..
.

.
..

.
..

The Construction Phase. Agents build probability
models in parallel at this phase. Specifically, each agent
calculates the mean and standard deviation according
to Equations 2-3, respectively, (Algorithm 2: Lines 11-
12). 𝑡𝑡 represents the number of iterations. Therefore,

the probability model of agent ix is   2
,t t
i iN   .

1

(.) / ,Kt
i k ik

S x K


  (2)

 2
1

((.)) / ,Kt t
i k i ik

S x K 


  (3)

Procedure 1:  Messaging

1 for . jS x received from
ji
P P do

2 for each sample kS S do

3  . (,) Cos . , .k i j ij k i k jS fitness x x t S X S X

4 end for

5 Send . (,)i jS fitness x x to agent in
ji
P

6 end for

7 wait until . (,)i jS fitness x x received from
agents in iC

8 if 0iC  and . (,)i jS fitness x x received
from agents in iC then

9 for each sample kS S do

10    . . ,
i

k i i j
j C

S fitness x S fitness x x


 

11 end for

12 if ix root then

13 Send  . iS fitness x to an
ji iP P

14 end for

15 end if

The Evaluation Phase can be described as five
steps:

1: When agent ix receives the value . jS x sent by
the higher priority neighbor

ji iP P , agent ix
calculates the partial fitness . (,)k i jS fitness x x with
each higher priority neighbor

ji iP P by Equation
4. In addition, agent ix sends . (,)k i jS fitness x x to
the higher neighbor

ji iP P (Procedure 1: Lines 1-
6).

    . , . , .k i j ij k i k jS fitness x x f S x S x . (4)

2: When agent ix receives the partial fitness sent
by the lower priority neighbors j ix C , the agent

ix sums the partial fitness of all the lower priority
neighbors as . []k iS fitness x by Equation 5
(Procedure 1: Lines 7-11).

  . [] . ,
i

k i k i j
j C

S fitness x S fitness x x


  . (5)

3: If the current agent is not the root agent,
. []k iS fitness x is sent by the agent ix to a higher

priority neighbor
ji iP P (Procedure 1: Lines 12-

14). If the agent jx is not the root agent, jx will
continue to send until its higher priority neighbor
is the root agent.

(3)

The Evaluation Phase can be described as five steps:
1 When agent ix receives the value . jS x sent by the

higher priority neighbor
ji iP P∈ , agent ix calcu-

lates the partial fitness . (,)k i jS fitness x x with each
higher priority neighbor

ji iP P∈ by Equation 4. In
addition, agent ix sends . (,)k i jS fitness x x to the
higher neighbor

ji iP P∈ (Procedure 1: Lines 1-6).

Figure 3 shows a distributed population of n agents
and K samples. A sample represents a solution of C-
DCOP, agent ix holds one dimension of each sample,
S represents a set of samples, named population. We
use .k nS x to represent the value of the sample 𝑘𝑘 under
the dimension of the agent nx .

Figure 3

Distributed population

...

.
..

.
..

.
..

..
.

.
..

..
.

.
..

.
..

The Construction Phase. Agents build probability
models in parallel at this phase. Specifically, each agent
calculates the mean and standard deviation according
to Equations 2-3, respectively, (Algorithm 2: Lines 11-
12). 𝑡𝑡 represents the number of iterations. Therefore,

the probability model of agent ix is   2
,t t
i iN   .

1

(.) / ,Kt
i k ik

S x K


  (2)

 2
1

((.)) / ,Kt t
i k i ik

S x K 


  (3)

Procedure 1:  Messaging

1 for . jS x received from
ji
P P do

2 for each sample kS S do

3  . (,) Cos . , .k i j ij k i k jS fitness x x t S X S X

4 end for

5 Send . (,)i jS fitness x x to agent in
ji
P

6 end for

7 wait until . (,)i jS fitness x x received from
agents in iC

8 if 0iC  and . (,)i jS fitness x x received
from agents in iC then

9 for each sample kS S do

10    . . ,
i

k i i j
j C

S fitness x S fitness x x


 

11 end for

12 if ix root then

13 Send  . iS fitness x to an
ji iP P

14 end for

15 end if

The Evaluation Phase can be described as five
steps:

1: When agent ix receives the value . jS x sent by
the higher priority neighbor

ji iP P , agent ix
calculates the partial fitness . (,)k i jS fitness x x with
each higher priority neighbor

ji iP P by Equation
4. In addition, agent ix sends . (,)k i jS fitness x x to
the higher neighbor

ji iP P (Procedure 1: Lines 1-
6).

    . , . , .k i j ij k i k jS fitness x x f S x S x . (4)

2: When agent ix receives the partial fitness sent
by the lower priority neighbors j ix C , the agent

ix sums the partial fitness of all the lower priority
neighbors as . []k iS fitness x by Equation 5
(Procedure 1: Lines 7-11).

  . [] . ,
i

k i k i j
j C

S fitness x S fitness x x


  . (5)

3: If the current agent is not the root agent,
. []k iS fitness x is sent by the agent ix to a higher

priority neighbor
ji iP P (Procedure 1: Lines 12-

14). If the agent jx is not the root agent, jx will
continue to send until its higher priority neighbor
is the root agent.

(4)

2 When agent ix receives the partial fitness sent by
the lower priority neighbors j ix C∈ , the agent ix

Procedure 1: ()Messaging

1 for . jS x received from
jiP P∈ do

2 for each sample kS S∈ do

3 (). (,) Cos . , .k i j ij k i k jS fitness x x t S X S X←

4 end for

5 Send . (,)i jS fitness x x to agent in
jiP

6 end for

7 wait until . (,)i jS fitness x x received from agents in
iC

8 if 0iC ≠ and . (,)i jS fitness x x received from agents
in iC then

9 for each sample kS S∈ do

10 [] (). . ,
i

k i i j
j C

S fitness x S fitness x x
∈

← ∑
11 end for
12 if ix root≠ then

13 Send []. iS fitness x to an
ji iP P∈

14 end for
15 end if

sums the partial fitness of all the lower priority
neighbors as . []k iS fitness x by Equation 5 (Proce-
dure 1: Lines 7-11).

Figure 3 shows a distributed population of n agents
and K samples. A sample represents a solution of C-
DCOP, agent ix holds one dimension of each sample,
S represents a set of samples, named population. We
use .k nS x to represent the value of the sample 𝑘𝑘 under
the dimension of the agent nx .

Figure 3

Distributed population

...

.
..

.
..

.
..

..
.

.
..

..
.

.
..

.
..

The Construction Phase. Agents build probability
models in parallel at this phase. Specifically, each agent
calculates the mean and standard deviation according
to Equations 2-3, respectively, (Algorithm 2: Lines 11-
12). 𝑡𝑡 represents the number of iterations. Therefore,

the probability model of agent ix is   2
,t t
i iN   .

1

(.) / ,Kt
i k ik

S x K


  (2)

 2
1

((.)) / ,Kt t
i k i ik

S x K 


  (3)

Procedure 1:  Messaging

1 for . jS x received from
ji
P P do

2 for each sample kS S do

3  . (,) Cos . , .k i j ij k i k jS fitness x x t S X S X

4 end for

5 Send . (,)i jS fitness x x to agent in
ji
P

6 end for

7 wait until . (,)i jS fitness x x received from
agents in iC

8 if 0iC  and . (,)i jS fitness x x received
from agents in iC then

9 for each sample kS S do

10    . . ,
i

k i i j
j C

S fitness x S fitness x x


 

11 end for

12 if ix root then

13 Send  . iS fitness x to an
ji iP P

14 end for

15 end if

The Evaluation Phase can be described as five
steps:

1: When agent ix receives the value . jS x sent by
the higher priority neighbor

ji iP P , agent ix
calculates the partial fitness . (,)k i jS fitness x x with
each higher priority neighbor

ji iP P by Equation
4. In addition, agent ix sends . (,)k i jS fitness x x to
the higher neighbor

ji iP P (Procedure 1: Lines 1-
6).

    . , . , .k i j ij k i k jS fitness x x f S x S x . (4)

2: When agent ix receives the partial fitness sent
by the lower priority neighbors j ix C , the agent

ix sums the partial fitness of all the lower priority
neighbors as . []k iS fitness x by Equation 5
(Procedure 1: Lines 7-11).

  . [] . ,
i

k i k i j
j C

S fitness x S fitness x x


  . (5)

3: If the current agent is not the root agent,
. []k iS fitness x is sent by the agent ix to a higher

priority neighbor
ji iP P (Procedure 1: Lines 12-

14). If the agent jx is not the root agent, jx will
continue to send until its higher priority neighbor
is the root agent.

(5)

3 If the current agent is not the root agent,
. []k iS fitness x is sent by the agent ix to a higher pri-

ority neighbor
ji iP P∈ (Procedure 1: Lines 12-14). If

the agent jx is not the root agent, jx will continue
to send until its higher priority neighbor is the root
agent.

4 When agent jx calculates and sends the
. []k jS fitness x to the agent in ji jH H∈ , all partial

fitness of samples are passed to the root agent rootx .
Therefore, the root agent rootx can calculate the
complete fitness of each sample by Equation 6.

4: When agent jx calculates and sends the
. []k jS fitness x to the agent in ji jH H , all partial fitness

of samples are passed to the root agent rootx . Therefore,
the root agent rootx can calculate the complete fitness of

 . . []
root

k k j
j C

S fitness S fitness x


  (6)

5: After the root agent obtains the complete fitness of
samples, the rootx ranks each sample according to the
fitness value and is denoted as RS . In addition, the root
agent sends the top G samples  RGS and the worst

sample  _1S to the lower priority neighbors rootC
(Algorithm 2: Lines 14-19). We use the examples in
Figure 1 and Figure 2 to explain the above five steps.
We use ijf to represent the partial fitness

 . ,k i jS fitness x x between ix and jx .

Each agent ix calculates the partial fitness ijf with
each higher priority neighbor

ji iP P and sends ijf to
it.

2 12 1:x f x

3 13 1:x f x

4 24 2 34 3: ,x f x f x 

5 15 1:x f x

6 26 2:x f x

Agent ix sums the partial fitness of lower
priority neighbors.

1 12 13 15:x f f f 

2 24 26:x f f

3 34:x f

Since agents 2x and 3x are not the root agent.

2 24 26 1:x f f x 

3 34 1:x f x

Root agent 1x obtains the completes fitness.

1 12 13 15 24 26 34:
ij

ijf F
x f f f f f f f


     

The Update Phase. When the agent 𝑥𝑥� receives
R
GS and _1S , ix calculates the mean and standard

deviation of R
GS by Equations 7- 8, respectively.

1
. (.) / ,Gsort sort

G i G ig
S x S x G


  (7)

    2

1
. . . / ,GR sort sort

G i G i G iig
S x S x S x G


  (8)

Table 1

Initialize values of each agent

 Agent 1a Agent 2a Agent 3a Agent 4a Agent 5a Agent 6a

Sample 1 -2.60 2.70 -4.80 -3.40 -4.60 -2.60

Sample 2 -3.20 3.20 -2.40 1.80 -3.00 0.80

Sample 3 -1.90 -2.70 -1.00 2.30 1.30 2.80

Sample 4 -4.00 -2.80 -0.70 -4.10 -4.10 3.70

Sample 5 -3.50 4.20 3.70 -4.80 -3.90 4.80

Sample 6 -2.70 -4.60 3.60 -1.70 -1.90 -3.40

Then, agent ix updates the mean and standard
deviation [21] of the probability model through by
Equations 9-10, where 1. iS x and 2 . iS x are the best and
sub-best samples under the dimension of ix ,
respectively (Algorithm 2: Lines 22-23). The updated

probability model is   21 1,t t
i iN    .  stands for the

learning rate.

   1
1 2 _11 * * . . . ,t t

i i i i iS x S x S x         (9)

   1 1 * * * ,t t R
i i G iS x        (10)

The Sampling Phase. In the final phase of EDA-CD,

agent ix is randomly sampled from the updated
probability model. To maintain population
balance, the sampling number is K G . Finally,

ix merges elitist samples .RG iS x and random
samples . iK GS x under one and it as one
dimension of a new population (Algorithm 2:
Lines 24-25).

3.2. An Example for EDA-CD

In this section, we will use an example to
specifically describe the process of EDA-CD.
Without considering the influence of the value
selection of K and G on solution quality, we set

(6)

5 After the root agent obtains the complete fitness of
samples, the rootx ranks each sample according to
the fitness value and is denoted as RS . In addition,

Information Technology and Control 2024/1/5386

the root agent sends the top G samples ()R
GS and

the worst sample ()_1S to the lower priority neigh-
bors rootC (Algorithm 2: Lines 14-19). We use the ex-
amples in Figure 1 and Figure 2 to explain the above
five steps. We use ijf to represent the partial fitness

(). ,k i jS fitness x x between ix and jx .
Each agent ix calculates the partial fitness ijf with
each higher priority neighbor

ji iP P∈ and sends ijf
to it.

2 12 1:x f x→

3 13 1:x f x→

4 24 2 34 3: ,x f x f x→ →

5 15 1:x f x→

6 26 2:x f x→

Agent ix sums the partial fitness of lower priority
neighbors.

1 12 13 15:x f f f+ +

2 24 26:x f f+

3 34:x f

Since agents 2x and 3x are not the root agent.
2 24 26 1:x f f x+ →

3 34 1:x f x→

Root agent 1x obtains the completes fitness.

1 12 13 15 24 26 34:
ij

ijf F
x f f f f f f f

∈
+ + + + + = ∑

The Update Phase. When the agent receives R
GS and

_1S , ix calculates the mean and standard deviation of
R
GS by Equations 7- 8, respectively.

4: When agent jx calculates and sends the
. []k jS fitness x to the agent in ji jH H , all partial fitness

of samples are passed to the root agent rootx . Therefore,
the root agent rootx can calculate the complete fitness of

 . . []
root

k k j
j C

S fitness S fitness x


  (6)

5: After the root agent obtains the complete fitness of
samples, the rootx ranks each sample according to the
fitness value and is denoted as RS . In addition, the root
agent sends the top G samples  RGS and the worst

sample  _1S to the lower priority neighbors rootC
(Algorithm 2: Lines 14-19). We use the examples in
Figure 1 and Figure 2 to explain the above five steps.
We use ijf to represent the partial fitness

 . ,k i jS fitness x x between ix and jx .

Each agent ix calculates the partial fitness ijf with
each higher priority neighbor

ji iP P and sends ijf to
it.

2 12 1:x f x

3 13 1:x f x

4 24 2 34 3: ,x f x f x 

5 15 1:x f x

6 26 2:x f x

Agent ix sums the partial fitness of lower
priority neighbors.

1 12 13 15:x f f f 

2 24 26:x f f

3 34:x f

Since agents 2x and 3x are not the root agent.

2 24 26 1:x f f x 

3 34 1:x f x

Root agent 1x obtains the completes fitness.

1 12 13 15 24 26 34:
ij

ijf F
x f f f f f f f


     

The Update Phase. When the agent 𝑥𝑥� receives
R
GS and _1S , ix calculates the mean and standard

deviation of R
GS by Equations 7- 8, respectively.

1
. (.) / ,Gsort sort

G i G ig
S x S x G


  (7)

    2

1
. . . / ,GR sort sort

G i G i G iig
S x S x S x G


  (8)

Table 1

Initialize values of each agent

 Agent 1a Agent 2a Agent 3a Agent 4a Agent 5a Agent 6a

Sample 1 -2.60 2.70 -4.80 -3.40 -4.60 -2.60

Sample 2 -3.20 3.20 -2.40 1.80 -3.00 0.80

Sample 3 -1.90 -2.70 -1.00 2.30 1.30 2.80

Sample 4 -4.00 -2.80 -0.70 -4.10 -4.10 3.70

Sample 5 -3.50 4.20 3.70 -4.80 -3.90 4.80

Sample 6 -2.70 -4.60 3.60 -1.70 -1.90 -3.40

Then, agent ix updates the mean and standard
deviation [21] of the probability model through by
Equations 9-10, where 1. iS x and 2 . iS x are the best and
sub-best samples under the dimension of ix ,
respectively (Algorithm 2: Lines 22-23). The updated

probability model is   21 1,t t
i iN    .  stands for the

learning rate.

   1
1 2 _11 * * . . . ,t t

i i i i iS x S x S x         (9)

   1 1 * * * ,t t R
i i G iS x        (10)

The Sampling Phase. In the final phase of EDA-CD,

agent ix is randomly sampled from the updated
probability model. To maintain population
balance, the sampling number is K G . Finally,

ix merges elitist samples .RG iS x and random
samples . iK GS x under one and it as one
dimension of a new population (Algorithm 2:
Lines 24-25).

3.2. An Example for EDA-CD

In this section, we will use an example to
specifically describe the process of EDA-CD.
Without considering the influence of the value
selection of K and G on solution quality, we set

(7)

4: When agent jx calculates and sends the
. []k jS fitness x to the agent in ji jH H , all partial fitness

of samples are passed to the root agent rootx . Therefore,
the root agent rootx can calculate the complete fitness of

 . . []
root

k k j
j C

S fitness S fitness x


  (6)

5: After the root agent obtains the complete fitness of
samples, the rootx ranks each sample according to the
fitness value and is denoted as RS . In addition, the root
agent sends the top G samples  RGS and the worst

sample  _1S to the lower priority neighbors rootC
(Algorithm 2: Lines 14-19). We use the examples in
Figure 1 and Figure 2 to explain the above five steps.
We use ijf to represent the partial fitness

 . ,k i jS fitness x x between ix and jx .

Each agent ix calculates the partial fitness ijf with
each higher priority neighbor

ji iP P and sends ijf to
it.

2 12 1:x f x

3 13 1:x f x

4 24 2 34 3: ,x f x f x 

5 15 1:x f x

6 26 2:x f x

Agent ix sums the partial fitness of lower
priority neighbors.

1 12 13 15:x f f f 

2 24 26:x f f

3 34:x f

Since agents 2x and 3x are not the root agent.

2 24 26 1:x f f x 

3 34 1:x f x

Root agent 1x obtains the completes fitness.

1 12 13 15 24 26 34:
ij

ijf F
x f f f f f f f


     

The Update Phase. When the agent 𝑥𝑥� receives
R
GS and _1S , ix calculates the mean and standard

deviation of R
GS by Equations 7- 8, respectively.

1
. (.) / ,Gsort sort

G i G ig
S x S x G


  (7)

    2

1
. . . / ,GR sort sort

G i G i G iig
S x S x S x G


  (8)

Table 1

Initialize values of each agent

 Agent 1a Agent 2a Agent 3a Agent 4a Agent 5a Agent 6a

Sample 1 -2.60 2.70 -4.80 -3.40 -4.60 -2.60

Sample 2 -3.20 3.20 -2.40 1.80 -3.00 0.80

Sample 3 -1.90 -2.70 -1.00 2.30 1.30 2.80

Sample 4 -4.00 -2.80 -0.70 -4.10 -4.10 3.70

Sample 5 -3.50 4.20 3.70 -4.80 -3.90 4.80

Sample 6 -2.70 -4.60 3.60 -1.70 -1.90 -3.40

Then, agent ix updates the mean and standard
deviation [21] of the probability model through by
Equations 9-10, where 1. iS x and 2 . iS x are the best and
sub-best samples under the dimension of ix ,
respectively (Algorithm 2: Lines 22-23). The updated

probability model is   21 1,t t
i iN    .  stands for the

learning rate.

   1
1 2 _11 * * . . . ,t t

i i i i iS x S x S x         (9)

   1 1 * * * ,t t R
i i G iS x        (10)

The Sampling Phase. In the final phase of EDA-CD,

agent ix is randomly sampled from the updated
probability model. To maintain population
balance, the sampling number is K G . Finally,

ix merges elitist samples .RG iS x and random
samples . iK GS x under one and it as one
dimension of a new population (Algorithm 2:
Lines 24-25).

3.2. An Example for EDA-CD

In this section, we will use an example to
specifically describe the process of EDA-CD.
Without considering the influence of the value
selection of K and G on solution quality, we set

(8)

Then, agent ix updates the mean and standard devia-
tion [21] of the probability model through by Equations
9-10, where 1. iS x and 2 . iS x are the best and sub-best
samples under the dimension of ix , respectively (Algo-
rithm 2: Lines 22-23). The updated probability model
is ()()21 1,t t

i iN µ σ+ + . β stands for the learning rate.

4: When agent jx calculates and sends the
. []k jS fitness x to the agent in ji jH H , all partial fitness

of samples are passed to the root agent rootx . Therefore,
the root agent rootx can calculate the complete fitness of
each sample by Equation 6.

 . . []
root

k k j
j C

S fitness S fitness x


  (6)

5: After the root agent obtains the complete fitness of
samples, the rootx ranks each sample according to the
fitness value and is denoted as RS . In addition, the root
agent sends the top G samples  RGS and the worst

sample  _1S to the lower priority neighbors rootC
(Algorithm 2: Lines 14-19). We use the examples in
Figure 1 and Figure 2 to explain the above five steps.
We use ijf to represent the partial fitness

 . ,k i jS fitness x x between ix and jx .

Each agent ix calculates the partial fitness ijf with
each higher priority neighbor

ji iP P and sends ijf to
it.

2 12 1:x f x

3 13 1:x f x

4 24 2 34 3: ,x f x f x 

5 15 1:x f x

6 26 2:x f x

Agent ix sums the partial fitness of lower
priority neighbors.

1 12 13 15:x f f f 

2 24 26:x f f

3 34:x f

Since agents 2x and 3x are not the root agent.

2 24 26 1:x f f x 

3 34 1:x f x

Root agent 1x obtains the completes fitness.

1 12 13 15 24 26 34:
ij

ijf F
x f f f f f f f


     

The Update Phase. When the agent 𝑥𝑥� receives
R
GS and _1S , ix calculates the mean and standard

deviation of R
GS by Equations 7- 8, respectively.

1
. (.) / ,Gsort sort

G i G ig
S x S x G


  (7)

    2

1
. . . / ,GR sort sort

G i G i G iig
S x S x S x G


  (8)

Table 1

Initialize values of each agent

 Agent 1a Agent 2a Agent 3a Agent 4a Agent 5a Agent 6a

Sample 1 -2.60 2.70 -4.80 -3.40 -4.60 -2.60

Sample 2 -3.20 3.20 -2.40 1.80 -3.00 0.80

Sample 3 -1.90 -2.70 -1.00 2.30 1.30 2.80

Sample 4 -4.00 -2.80 -0.70 -4.10 -4.10 3.70

Sample 5 -3.50 4.20 3.70 -4.80 -3.90 4.80

Sample 6 -2.70 -4.60 3.60 -1.70 -1.90 -3.40

Then, agent ix updates the mean and standard
deviation [21] of the probability model through by
Equations 9-10, where 1. iS x and 2 . iS x are the best and
sub-best samples under the dimension of ix ,
respectively (Algorithm 2: Lines 22-23). The updated

probability model is   21 1,t t
i iN    .  stands for the

learning rate.

   1
1 2 _11 * * . . . ,t t

i i i i iS x S x S x         (9)

   1 1 * * * ,t t R
i i G iS x        (10)

The Sampling Phase. In the final phase of EDA-CD,

agent ix is randomly sampled from the updated
probability model. To maintain population
balance, the sampling number is K G . Finally,

ix merges elitist samples .RG iS x and random
samples . iK GS x under one and it as one
dimension of a new population (Algorithm 2:
Lines 24-25).

3.2. An Example for EDA-CD

In this section, we will use an example to
specifically describe the process of EDA-CD.
Without considering the influence of the value
selection of K and G on solution quality, we set

(9)

4: When agent jx calculates and sends the
. []k jS fitness x to the agent in ji jH H , all partial fitness

of samples are passed to the root agent rootx . Therefore,
the root agent rootx can calculate the complete fitness of
each sample by Equation 6.

 . . []
root

k k j
j C

S fitness S fitness x


  (6)

5: After the root agent obtains the complete fitness of
samples, the rootx ranks each sample according to the
fitness value and is denoted as RS . In addition, the root
agent sends the top G samples  RGS and the worst

sample  _1S to the lower priority neighbors rootC
(Algorithm 2: Lines 14-19). We use the examples in
Figure 1 and Figure 2 to explain the above five steps.
We use ijf to represent the partial fitness

 . ,k i jS fitness x x between ix and jx .

Each agent ix calculates the partial fitness ijf with
each higher priority neighbor

ji iP P and sends ijf to
it.

2 12 1:x f x

3 13 1:x f x

4 24 2 34 3: ,x f x f x 

5 15 1:x f x

6 26 2:x f x

Agent ix sums the partial fitness of lower
priority neighbors.

1 12 13 15:x f f f 

2 24 26:x f f

3 34:x f

Since agents 2x and 3x are not the root agent.

2 24 26 1:x f f x 

3 34 1:x f x

Root agent 1x obtains the completes fitness.

1 12 13 15 24 26 34:
ij

ijf F
x f f f f f f f


     

The Update Phase. When the agent 𝑥𝑥� receives
R
GS and _1S , ix calculates the mean and standard

deviation of R
GS by Equations 7- 8, respectively.

1
. (.) / ,Gsort sort

G i G ig
S x S x G


  (7)

    2

1
. . . / ,GR sort sort

G i G i G iig
S x S x S x G


  (8)

Table 1

Initialize values of each agent

 Agent 1a Agent 2a Agent 3a Agent 4a Agent 5a Agent 6a

Sample 1 -2.60 2.70 -4.80 -3.40 -4.60 -2.60

Sample 2 -3.20 3.20 -2.40 1.80 -3.00 0.80

Sample 3 -1.90 -2.70 -1.00 2.30 1.30 2.80

Sample 4 -4.00 -2.80 -0.70 -4.10 -4.10 3.70

Sample 5 -3.50 4.20 3.70 -4.80 -3.90 4.80

Sample 6 -2.70 -4.60 3.60 -1.70 -1.90 -3.40

Then, agent ix updates the mean and standard
deviation [21] of the probability model through by
Equations 9-10, where 1. iS x and 2 . iS x are the best and
sub-best samples under the dimension of ix ,
respectively (Algorithm 2: Lines 22-23). The updated

probability model is   21 1,t t
i iN    .  stands for the

learning rate.

   1
1 2 _11 * * . . . ,t t

i i i i iS x S x S x         (9)

   1 1 * * * ,t t R
i i G iS x        (10)

The Sampling Phase. In the final phase of EDA-CD,

agent ix is randomly sampled from the updated
probability model. To maintain population
balance, the sampling number is K G . Finally,

ix merges elitist samples .RG iS x and random
samples . iK GS x under one and it as one
dimension of a new population (Algorithm 2:
Lines 24-25).

3.2. An Example for EDA-CD

In this section, we will use an example to
specifically describe the process of EDA-CD.
Without considering the influence of the value
selection of K and G on solution quality, we set

(10)

The Sampling Phase. In the final phase of EDA-CD,
agent ix is randomly sampled from the updated prob-
ability model. To maintain population balance, the
sampling number is K G− . Finally, ix merges elit-
ist samples .R

G iS x and random samples . iK GS x− under
one and it as one dimension of a new population (Al-
gorithm 2: Lines 24-25).

3.2. An Example for EDA-CD
In this section, we will use an example to specifically
describe the process of EDA-CD. Without consider-
ing the influence of the value selection of K and G on
solution quality, we set the domain of each agent ix to
[]5 5− ， , 0.01β = 3K = and 6G = . It should be noted
that in each calculation, we only keep two digits after
the decimal point.
Taking Figure 2 as an example, we first initialize the
parameters of all samples. Table 1 shows the specific
values.

Value propagation:

1 1 1 2 1 3
1

1 4 1 5 1 6

. 2.60, . 3.20, . 1.90
.

. 4.00, . 3.50, . 2.70
X S X S X S

X S
X S X S X S

= − = − = − 
=  = − = − = − 

2 1 2 2 2 3
2

2 4 2 5 2 6

. 2.70, . 3.20, . 2.70
.

. 2.80, . 4.20, . 4.60
X S X S X S

X S
X S X S X S

= = = − 
=  = − = = − 

3 1 3 2 3 3
3

3 4 3 5 3 6

. 4.80, . 2.40, . 1.00
.

. 0.70, . 3.70, . 3.60
X S X S X S

X S
X S X S X S

= − = − = − 
=  = − = = 

4 1 4 2 4 3
4

4 4 4 5 4 6

. 3.40, . 1.80, . 2.30
.

. 4.10, . 4.80, . 1.70
X S X S X S

X S
X S X S X S

= − = = 
=  = − = − = − 

5 1 5 2 5 3
5

5 4 5 5 5 6

. 4.60, . 3.00, . 1.30
.

. 4.10, . 3.90, . 1.90
X S X S X S

X S
X S X S X S

= − = − = 
=  = − = − = − 

6 1 6 2 6 3
6

6 4 6 5 6 6

. 2.60, . 0.80, . 2.80
.

. 3.70, . 4.80, . 3.40
X S X S X S

X S
X S X S X S

= − = = 
=  = = = − 

1 2 3 5. , ,X S X X X→

2 4 6. ,X S X X→

3 4.X S X→

Evaluation
Calculate the mean and standard deviation in each
agent:

1 2 3

4 5 6

2.98, 0.00, 0.27

1.65, 2.70, 1.02

t t t
t
i t t t

µ µ µ
µ

µ µ µ

 = − = = − =  
= − = − =  

87Information Technology and Control 2024/1/53

Table 1
Initialize values of each agent

Agent a1 Agent a2 Agent a2 Agent a4 Agent a5 Agent a6

Sample 1 -2.60 2.70 -4.80 -3.40 -4.60 -2.60

Sample 2 -3.20 3.20 -2.40 1.80 -3.00 0.80

Sample 3 -1.90 -2.70 -1.00 2.30 1.30 2.80

Sample 4 -4.00 -2.80 -0.70 -4.10 -4.10 3.70

Sample 5 -3.50 4.20 3.70 -4.80 -3.90 4.80

Sample 6 -2.70 -4.60 3.60 -1.70 -1.90 -3.40

1 2 3

4 5 6

0.68, 3.45, 3.07

2.78, 1.99, 3.09

t t t
t
i t t t

σ σ σ
σ

σ σ σ

 = = = =  
= = =  

Calculate the fitness value between each other:

1 2

14.35, 29.57, 5.88
(. , .)

69.36, 33.28, 10.41
f S x S x

− − − 
=  − − − 

1 3

12.92, 30.09, 4.55
(. , .)

64.11, 46.16, 24.40
f S x S x

− − − 
=  − − − 

1 5

15.26, 39.74, 9.21
(. , .)

56.66, 36.41, 31.52
f S x S x

− − 
=  − − − 

2 4

450.04,8.28,146.91
(. , .)

8.10,8109.04,14.57
f S x S x  

=  
 

2 6

5.70,5.03,0.40
(. , .)

4.37,8.60, 0.54
f S x S x  

=  − 

3 4

11.17,3.33, 3.70
(. , .)

15.37, 10.16,10.66
f S x S x

− 
=  − − 

The fitness value is propagated to the high priority:

3 4 3(. , .)f S x S x X→

2 6 2(. , .)f S x S x X→

2 4 2(. , .)f S x S x X→

1 5 1(. , .)f S x S x X→

1 3 3 4 1(. , .) (. , .)f S x S x f S x S x X+ →

1 2 2 6 2 4 1(. , .) (. , .) (. , .)f S x S x f S x S x f S x S x X+ + →

The total fitness value of each sample:
454.90, 82.76,123.97

. .
193.03,7991.63, 41.64

S X fitness
− 

=  − − 

Sort the fitness values in ascending order:

()
193.03 82.76 41.64

.
123.97 454.90 7991.63

Rank S fitness
− < − < − 

=  < < < 
The root agent sends the top G samples ()R

GS and the
worst sample ()_1S to the lower priority neighbors.

:rootC

{ } { }4 2 6, , 193.03, 82.76, 41.64R
GS S S S= = − − −

_1 7991.63S =

_1, R
G iS S C→

Update
Each agent ix calculates the new mean and standard
deviation:

{ }. 3.30, 1.40,0.17, 1.33, 3.00,0.37R
G iS x = − − − −

() { }. 0.54,3.33,2.52,2.42,0.90,2.91R
G iS x σ =

Then, agent ix updates the mean and standard devia-
tion of the probability model

{ }1 2.99, 0.04, 0.34, 1.61, 2.65,1.01t
iµ
+ = − − − − −

{ }1 0.68,0.71,0.70,0.70,0.68,0.70t
iσ
+ =

The remaining unselected samples update their val-
ues (). iK GS x− according to the probability model

{ }1 3 5. . , . , .i i i iK GS x S x S x S x− =

1 2 3
1

4 5 6

3.23, 1.22, 0.77
.

0.73, 3.76, 1.61
x x x

S X
x x x
= − = − = 

=  = − = − = 

1 2 3
3

4 5 6

2.86, 0.16, 0.97
.

0.79, 2.7, 0.64
x x x

S X
x x x
= − = − = − 

=  = − = − = 

1 2 3
5

4 5 6

3.90, 1.23, 0.58
.

1.55, 1.5, 1.40
x x x

S X
x x x
= − = = 

=  = − = − = 

Information Technology and Control 2024/1/5388

4. Algorithm Theoretical Analysis
In this section, we define the communication step as
CS , which represents the times that an agent com-
municates with one of its neighbors. In addition, we
define the depth of BFS pseudo-tree as D , and the lon-
gest path as L . The optimal solution at each iteration
is defined as bestS .

4.1. Theoretical Proof
Theorem 1. When CS T L D= + + , all agents obtain

bestS at CS T= .
Proof of Theorem 1. bestS is the sample that has the
lowest fitness. In order to calculate the complete fit-
ness of each sample, the root agent needs to wait at
the most L communication steps since the longest
path of BFS pseudo-tree is L. When the root agent
obtains bestS , it needs to be passed down to each agent
through the BFS pseudo-tree. Since the depth of the
pseudo-tree is D , each agent needs to wait at most
T L D+ + , and all agents obtain bestS at CS T= .

Proposition 1. EDA-CD is an anytime algorithm.
Proof of Proposition 1. When ()0CS T L D δ δ= + + + > ,
each agent obtains bestS at CS T δ= + . According to
the proposed rank elitist strategy, the optimal solu-
tion is retained in the next iteration. bestS is updated
only after a better solution is searched, only after at
CS T L D δ= + + + will not be worse than CS T δ= + .
The solution quality does not decrease over time, and
EDA-CD can provide bestS at any time. Hence, EDA-
CD is an anytime algorithm.

Table 2
Update values of each agent

Agent a1 Agent a2 Agent a2 Agent a4 Agent a5 Agent a6

Sample 1 -3.23 -1.22 0.77 -0.73 -3.76 1.61

Sample 2 -3.20 3.20 -2.40 1.80 -3.00 0.80

Sample 3 -2.86 -0.16 -0.97 -0.79 -2.70 0.64

Sample 4 -4.00 -2.80 -0.70 -4.10 -4.10 3.70

Sample 5 -3.90 1.23 0.58 -1.55 -1.50 1.40

Sample 6 -2.70 -4.60 3.60 -1.70 -1.90 -3.40

4.2. Complexity Analysis
In this section, we define some parameters as
follows:

 _ K : The number of samples.
 _ n : The number of agents.
 _ P and C : The number of higher and lower

priority neighbors, respectively. N P C= + .
Furthermore, we assume the as a complete graph,
N n≈ . A complete iteration is defined as the entire

process of construction, evaluation, updating and
sampling phase.

The Number of Messages:
 _ Initialization and sampling phase: Agent ix sends

. iS x to each lower priority neighbor
jiC , ()2*O C .

 _ Evaluation phase: Agent ix sends (). ,i jS fitness x x
each higher priority neighbor jiP , ()O P . In addition,
agent ix sends . jS fitness x   received from

1jiC to

2jiP once, ()1O .

The number of messages sent by an agent during an
iteration is () ()2* 1 1O C P O N C+ + = + + . In the
worst case, all neighbors are lower priority neighbors,
the number of messages by an agent during an itera-
tion is () ()2* 1O n O n+ = .

The Size of Messages:
In EDA-CD, an agent sends the following four types of
messages to neighbors:
 _ . iS x and: Containing K samples, ()2* *O K n .
 _ R

GS : Containing G samples, ()*O G n .
 _

_1S : Containing one sample, ()1*O n .

89Information Technology and Control 2024/1/53

Hence, the size of messages sent by an agent during an
iteration is. () ()2* * * 1* *O K n G n n O K n+ + = .

Computational Complexity
During an iteration, an agent performs the following
computation:
 _ (). ,i jS fitness x x with K samples: ()*O K n .
 _ t

iµ and t
iσ : ()2O .

 _ 1t
iµ
+ and 1t

iσ
+ : ()2O .

 _ .R
G iS x and ().R

G iS x σ : ()2O .

Therefore, the computational complexity of an agent
is (* 2*2 2) (*)O K n O K n+ + = .

5. Experimental Result and Analysis
We verify the performance of the proposed EDA-CD by
comparing it with the state-of-the-art C-DCOP solving
algorithms on four types of benchmark problems. Al-
though EDA-CD can use any form of function as the
constraint cost function, we follow the constrained
cost function form 2 2ax bx cxy dy ey f+ + + + + in [13]
to better show the experimental comparison results,
where , , , ,a b c d e and f are random numbers in the
range [–5, 5]. We set the domain of each agent xi to [–50,
50] and the iteration to 500. For each experimental
configuration, we independently run the algorithm 30
times and take the average as the experimental result.
The number of agents was defined as n in this section.

5.1. Benchmark Problem
 _ Random graphs: We provide two random graph

configurations, sparse (density 0.1) and dense (den-
sity 0.6), where density represents the probability of
any two nodes connected during the construction.
We set n from 10 to 100 and the interval to 10.

 _ Random trees: We use random trees as a
benchmark problem according to [5]. Firstly, we
randomly select a number as the root node from
the continuous integer array [1,]n and delete the
number. Then, we start breadth first search from
the root node, randomly select ()[1,6]m m∈ sub-
nodes and delete their number. Finally, we repeat
the random selection until the length of the array
is zero. n is set from 50 to 100 and the interval is 5.

 _ Scale-free networks: We use BA model [1] to gener-
ate scale-free networks problems. Firstly, the model

generates a connected network of 15 agents. Then, a
new agent is connected to the 7 agents in the current
network during each iteration. Finally, new agents
are added repeatedly until all agents join the net-
work. We set n from 50 to 100 and the interval to 5.

 _ Small-world networks: We use [25] topological model
to generate small-world networks. A ring nearest-
neighbor coupled network with n nodes, each node
is connected to the nearest 3 nodes on both sides. A
node and an edge connected are chosen to connect
to a random node on the ring with probability p = 0.5
there can be no multi-edges or loops. We set n from
50 to 100 and the interval to 5.

5.2. Fine-tuning Parameters
EDA-CD is a population-based algorithm that has
several parameters including the number of samples
K , learning rate β , and elitist samples G . Accord-

ing to other C-DCOP algorithms, we generally set the
learning rate to 0.01. For the determination of K and
G , we set two adaptive values (,k g) and *K k n= ,

*G g n= (n represents the number of agents). Their
values range from 1-10 and 1-9, and we determine
them by experiments on sparse random graphs.
In this experiment, we divide the value of g into 10 groups
(1-9), and each group is matched with k (1-10) values re-
spectively. In each of the groups, we select the solution
which quality is the best for comparison in Figure 4.

Figure 4
Solution quality of EDA-CD with different adaptive values
g and k on sparse random graphs

Information Technology and Control 2024/1/5390

Figure 5
Solution quality of EDA-CD with adaptive values g = 2 and
g = 4 on sparse random graphs

In Figure 4, We can see that the quality of the solution
is the best when g is equal to 4, the solution converg-
es the fastest when g is equal to 2, and the quality of
the solution is the second best. Thus, we conducted a
set of further experiments. As in the previous exper-
iment, we divided the value of g (2g = and 4g =)
into 10 groups, each g matching 10 groups of k val-
ues. In Figure 5, we can see that the solution converg-
es quickly and the quality of the solution is best when

2.8g = and 8k = from the partial magnification.

Due to the limitation that D-Bay can only solve prob-
lems with 10 agents, only the results of D-Bay with 10
agents are presented in Figures 6-7. Figure 6(a) shows
the solution quality of EDA-CD and competing algo-
rithms on sparse random graphs. It can be seen from
Figure 6(a) that the solution quality of EDA-CD is
superior to all the competing algorithms in different
problem scales. Figure 6(b) shows the Convergence
curve. C-CoCoA converges the fastest for it is a non-it-
erative algorithm, but its quality is not the best. As the
number of iterations increases, the solution quality of
EDA-CD is better than other algorithms in the end.
Although EDA-CD has a slower convergence speed, it
has the best quality solution among all algorithms.

5.3. Experimental Result
We evaluate EDA-CD and its competing algorithms
(HCMS, PFD, PFD-LD and C-CoCoA) and the param-
eters of each algorithm are set as follows:
 _ HCMS: Based on [13] the number of discrete points

is set to 3 and the step size of gradient descent is set
to 0.001.

 _ PFD: According to [5] 0.9w = , 2000K = , 1 0.9c = ,
2 0.1c = , max 15sc = and max 5fc = .

 _ C-CoCoA: Refer to [20] the number of discrete
points is set to 3, the step size of gradient descent
is set to 0.01 and the number of optimizations is set
to 100.

 _ PFD-LD: According to [22] 0.9w = , 10*K n= ,
1 0.9c = , 2 0.1c = , 0.1β = , 0.1α = , max 15sc = and

max 5fc = .
 _ EDA-CD: 0.01β = , 2.8*G n= and 2.8*K n= .

(a) Solution quality

(b) Convergence curve (100 agents)

Figure 6
Comparison of EDA-CD and its competing algorithms on
sparse random graphs

91Information Technology and Control 2024/1/53

Figure 7 shows the solution quality of EDA-CD and
competing algorithms on dense random graphs. Figure
7(a) exhibits that the solution quality of the EDA-CD is
better than the other four algorithms under the differ-
ent number of agents. It can be seen from Figure 7(b)
that C-CoCoA is the fastest algorithm to solve the prob-
lem, but its solution quality is not good. As the number
of iterations increases, HCMS and PFD begin to con-
verge and keep the current optimal solution. After that,
EDA-CD continues to optimize and converge to a high-
er solution quality until the end of the iteration. The
convergence speed of EDA-CD is slower than compet-
ing algorithms since the sample space of the probability

Figure 7
Comparison of EDA-CD and its competing algorithms on
dense random graphs

(a) Solution quality

(b) Convergence curve (100 agents)

model is large in the early. However, the sample space is
constantly approaching the current excellent solution
with the update of the probability model, the updated
samples are distributed around the optimal solution.
Therefore, the solution quality improves over time.
In Figure 8 we can see that the solution quality of
EDA-CD is significantly better than HCMS, and PFD.
However, the solution quality of EDA-CD is slight-
ly better than C-CoCoA and PFD-LD. The reason is
that the nodes in the random trees are less connected
and the topological relationship is simple. The semi-
greedy local search strategy in C-CoCoA and with lo-
cal search strategy in PFD-LD perform well.

Figure 8
Comparison of EDA-CD and its competing algorithms on
random trees

a) Solution quality

(b) Convergence curve (100 agents)

Information Technology and Control 2024/1/5392

In addition, the solution quality gap between EDA-
CD and competing algorithms is more obvious with
the increase in the number of agents. Figure 9 pres-
ents the solution quality of these four algorithms on
scale-free networks. It is obvious that the solving
performance of EDA-CD is excellent and the solution
quality of EDA-CD is superior to HCMS, PFD, PFD-
LD and C-CoCoA on all quantity configurations. Due
to the topological relationship of scale-free networks
being more complex than random trees. C-CoCoA
performs worse than others.

Figure 9
Comparison of EDA-CD and its competing algorithms on
scale-free networks

(a) Solution quality

(b) Convergence curve (100 agents)

Figure 10
Comparison of EDA-CD and its competing algorithms on
small-world networks

Figure 10 exhibits the solution quality of EDA-CD and
competing algorithms on small-world networks. We
can see that the solution quality of EDA-CD is better
than the counterparts on all quantity configurations.
Table 3 displays the CPU running time percentages of
EDA-CD compared to four competing algorithms on
different benchmark problems, with the percentag-
es rounded to two decimal places. It can be seen that
EDA-CD is slightly inferior to other algorithms on
sparse random graphs, but significantly faster in solv-
ing dense random graphs than the other algorithm.

(b) Convergence curve (100 agents)

(a) Solution quality

93Information Technology and Control 2024/1/53

Table 3
The average CPU runtime improvement rates of EDA-CD compared to four competing algorithms

Type of problem HCMS PFD C-CoCoA PFD-LD

Sparse random graphs -4.12% -8.10% -9.76% -3.78%

Dense random graphs 19.73% 16.49% 21.88% 20.67%

Random trees 1.74% 0.70% -7.55% 8.29%

Scale-free networks 3.46% 4.76% 8.94% 9.14%

Small-world networks -2.98% -0.12% -5.94% 3.76%

The above experiments indicate that the EDA-CD
algorithm has good stability and produces solutions
with small fluctuations in quality when solving com-
plex problems. This algorithm is suitable for various
types of continuous distributed constraint optimiza-
tion problems, and can adapt flexibly to different cost
function forms. Additionally, by changing the sample
generation strategy and parameters, the performance
and robustness of the EDA-CD algorithm can be fur-
ther improved.

6. Statistical Analysis
In order to effectively illustrate the significant supe-
riority of EDA-CD, we use the Wilcoxon signed rank
test to analyze 30 independent experiments for each
experiment configuration. The steps are as follows:
 _ We set the significance level 0.05slα = .
 _ We define the solution quality of EDA-CD and

competing algorithms as pS and cS . The difference
∆ is defined as p cS S∆ = − .

 _ If 0∆ < , 1R R+ += + , ()w w rank+ += + ∆ .
 _ If 0∆ > , 1R R− −= + , ()w w rank− −= + ∆ .
 _ We determine the value of p based on the

distribution of rank sum.

If slp α< , there is a significant difference between
EDA-CD and competing algorithms.
If slp α> , there is no significant difference between
EDA-CD and competing algorithms.
After statistical analysis of the data, the performance
of EDA-CD and its competing algorithms on random
graphs is shown in Table 4. We can see that EDA-CD

significantly outperforms HCMS and C-CoCoA on all
numbers of agents. In the case of a small number of
agents, EDA-CD not obviously outperforms PFD and
PFD-LD since EDA-CD requires a large number of
samples to gain a probability model.
Table 5 is the statistical results on the random tree.
C-CoCoA is a semi-greedy search algorithm and the
random tree communication structure is simple, so
EDA-CD is not obviously excellent in simple prob-
lems. EDA-CD is significantly better than other algo-
rithms when they face the same problem.
Tables 6-7 are the statistical results of EDA-CD and
the competing algorithms on the scale-free network
and the small-world network, respectively. We can
see that EDA-CD is significantly better than HCMS
and PFD on scale-free networks, and it is significant-
ly better than HCMS, PFD and C-CoCoA on small-
world networks.
Table 8 presents the average improvement rates of
EDA-CD compared to four competing algorithms
on different benchmark problems. We use the im-
provement rate of each quantity configuration on the
benchmark problems to calculate the average im-
provement rates, and the results are rounded to two
decimal places.
It can be seen from Table 8 that EDA-CD is superior
to other competitive algorithms and has a good aver-
age improvement rate on four benchmark problems.
Although C-CoCoA has good performance on the
random trees, EDA-CD still has 1.96% average im-
provement rate compared with C-CoCoA in solution
quality. As for the latest PFD-LD, the performance
improvement rate of EDA-CD is also at least 5.12%.

Information Technology and Control 2024/1/5394

Table 4
Wilcoxon signed ranks test results of convergence quality with a level of significance α=0.05 on random graphs

Agent
EDA-CD vs HCMS EDA-CD vs PFD EDA-CD vs C-CoCoA EDA-CD vs PFD-LD

/R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p

10 S 30/0 465/0 0.000 10/17 140/237 0.244 25/5 381/84 0.002 11/19 171/294 0.206

D 28/2 458/7 0.000 10/20 135/330 0.045 29/1 460/5 0.000 12/18 95/370 0.005

20 S 30/0 465/0 0.000 22/8 383/82 0.002 17/13 375/90 0.003 14/16 213/252 0.688

D 26/4 439/26 0.000 19/10 307/128 0.053 30/0 465/0 0.000 19/11 248/217 0.750

30 S 30/0 465/0 0.000 27/3 457/8 0.000 26/4 454/11 0.000 15/15 224/241 0.861

D 26/4 451/14 0.000 17/13 450/15 0.001 30/0 465/0 0.000 14/16 203/062 0.544

40 S 28/2 458/7 0.000 27/3 451/14 0.000 23/7 403/62 0.000 20/10 257/208 0.614

D 30/0 465/0 0.000 28/2 460/5 0.000 30/0 465/0 0.000 21/9 303/162 0.147

50 S 30/0 465/0 0.000 30/0 465/0 0.000 24/6 433/32 0.000 10/20 159/306 0.131

D 30/0 465/0 0.000 30/0 465/0 0.000 27/3 453/12 0.000 20/10 294/171 0.206

60 S 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 26/4 446/19 0.000

D 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 26/4 446/19 0.000

70 S 30/0 465/0 0.000 30/0 465/0 0.000 29/1 464/1 0.000 22/8 389/76 0.001

D 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 20/10 387/78 0.001

80 S 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 19/11 373/92 0.004

D 29/1 463/2 0.000 30/0 465/0 0.000 30/0 465/0 0.000 23/7 376/89 0.003

90 S 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 27/3 458/7 0.000

D 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 25/5 427/38 0.000

100 S 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 28/2 454/11 0.000

D 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 24/6 437/28 0.000

Table 5
Wilcoxon signed ranks test results of convergence quality with a level of significance α=0.05 on random tree

Agent
EDA-CD vs HCMS EDA-CD vs PFD EDA-CD vs C-CoCoA EDA-CD vs PFD-LD

/R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p

60 30/0 465/0 0.000 10/17 140/237 0.000 19115 354/111 0.012 16/14 244/221 0.813

65 30/0 465/0 0.000 29/1 463/2 0.000 22/8 334/131 0.030 19/11 320/145 0.072

70 30/0 465/0 0.000 30/0 465/0 0.000 26/4 417/48 0.000 23/7 403/62 0.000

75 30/0 465/0 0.000 30/0 465/0 0.000 21/9 325/140 0.057 23/7 383/82 0.002

80 30/0 465/0 0.000 30/0 465/0 0.000 19/11 334/136 0.037 24/6 369/960. 0.005

85 30/0 465/0 0.000 30/0 465/0 0.000 12/18 203/262 0.544 24/6 430/35 0.000

90 30/0 465/0 0.000 30/0 465/0 0.000 16/14 308/157 0.120 20/10 360/105 0.009

95 30/0 465/0 0.000 30/0 465/0 0.000 25/5 445/20 0.000 30/0 465/0 0.000

100 30/0 465/0 0.000 30/0 465/0 0.000 16/14 315/150 0.090 27/3 446/19 0.000

95Information Technology and Control 2024/1/53

Table 6
Wilcoxon signed ranks test results of convergence quality with a level of significance α=0.05 on scale-free networks

Agent
EDA-CD vs HCMS EDA-CD vs PFD EDA-CD vs C-CoCoA EDA-CD vs PFD-LD

/R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p

60 30/0 465/0 0.000 30/0 465/0 0.000 19/11 354/111 0.012 16/14 244/221 0.813

65 30/0 465/0 0.000 29/1 463/2 0.000 22/8 334/131 0.037 19/11 320/145 0.072

70 30/0 465/0 0.000 30/0 465/0 0.000 26/4 417/48 0.000 23/7 403/62 0.000

75 30/0 465/0 0.000 30/0 465/0 0.000 21/9 325/140 0.057 23/7 383/82 0.002

80 30/0 465/0 0.000 30/0 465/0 0.000 19/11 334/131 0.037 24/6 369/96 0.005

85 30/0 465/0 0.000 30/0 465/0 0.000 12/18 203/262 0.544 24/6 430/35 0.000

90 30/0 465/0 0.000 30/0 465/0 0.000 16/14 308/157 0.120 20/10 360/105 0.009

95 30/0 465/0 0.000 30/0 465/0 0.000 25/5 445/20 0.000 30/0 465/0 0.000

100 30/0 465/0 0.000 30/0 465/0 0.000 16/14 315/150 0.090 27/3 446/19 0.000

Table 7
Wilcoxon signed ranks test results of convergence quality with a level of significance α=0.05 on small-world networks

Agent
EDA-CD vs HCMS EDA-CD vs PFD EDA-CD vs C-CoCoA EDA-CD vs PFD-LD

/R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p /R R+ − /w w+ − p

60 30/0 465/0 0.000 30/0 465/0 0.000 24/6 418/48 0.000 14/16 240/225 0.877

65 30/0 465/0 0.000 30/0 465/0 0.000 28/2 457/8 0.000 21/9 301/164 0.159

70 30/0 465/0 0.000 30/0 465/0 0.000 27/3 453/12 0.000 17/13 277/188 0.360

75 30/0 465/0 0.000 30/0 465/0 0.000 29/1 463/2 0.000 20/10 340/125 0.027

80 29/1 464/1 0.000 30/0 465/0 0.000 29/1 464/1 0.000 22/8 390/75 0.001

85 30/0 465/0 0.000 30/0 465/0 0.000 29/1 464/1 0.000 24/6 387/78 0.001

90 30/0 465/0 0.000 30/0 465/0 0.000 27/3 450/15 0.001 18/12 385/80 0.021

95 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 21/9 395/70 0.001

100 30/0 465/0 0.000 30/0 465/0 0.000 30/0 465/0 0.000 25/5 431/34 0.000

Table 8
The average improvement rates of EDA-CD compared to four competing algorithms

Type of problem HCMS PFD C-CoCoA PFD-LD

Sparse random graphs 16.98% 15.44% 10.40% 8.40%

Dense random graphs 20.82% 16.57% 36.04% 5.32%

Random trees 24.22% 17.89% 1.96% 5.48%

Scale-free networks 21.76% 25.18% 23.92% 21.40%

Small-world networks 21.15% 21.19% 13.82% 5.12%

Information Technology and Control 2024/1/5396

7. Conclusion and Future Work
In this paper, EDA-CD is proposed for solving Contin-
uous Distributed Constraint Optimization Problem
due to currently C-DCOP solving algorithms are easy
to fall into local optimization and the solution quality
is poor. In EDA-CD, one solution *X is multidimen-
sional and each agent completes the assignment of
its dimension. To find the best assignment of each di-
mension, agents construct probability models using
elite solutions in parallel to describe the distribution
of the current population and then randomly sample
the constructed probability models simultaneously to
generate offspring solutions, which makes EDA-CD
improve the solution quality and avoid falling into the
local optimum. EDA-CD is theoretically proven to
be an anytime algorithm and extensive experiments
demonstrate that EDA-CD is significantly superi-

or to the state-of-art C-DCOP solving algorithms. It
is worth noting that EDA-CD provides a novel idea
based on the probability model for solving C-DCOP.
While experimental results on four benchmark prob-
lems demonstrate EDA-CD’s superiority, further
evaluation on real-world problems is needed. Future
work includes modeling real-world multi-agent sys-
tems using the C-DCOP framework and comparing
EDA-CD’s efficiency with other algorithms in practi-
cal problem-solving scenarios.

Acknowledgeent
This work is supported by the Youth Project of Science
and Technology Research Program of Chongqing Ed-
ucation Commission of China (No. KJQN202001139),
Graduate Education High-Quality Development Ac-
tion Plan of Chongqing University of Technology (No.
gzlcx20233190).

References
1. Barabási, A-L., Albert, R. Emergence of Scaling in

Random Networks. Science, 1999, 286, 5439, 509-512.
https://doi.org/10.1126/science.286.5439.509

2. Chen, Z., He, Z., He, C. An Improved DPOP Algorithm
Based on Breadth First Search Pseudo-Tree for Distrib-
uted Constraint Optimization. Applied Intelligence,
2017, 47, 3, 607-623. https://doi.org/10.1007/s10489-
017-0905-4

3. Chen, Z., Wu, T., Deng, Y., Zhang, C. An Ant-Based Al-
gorithm to Solve Distributed Constraint Optimization
Problems. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 2018, 32, 1. https://doi.org/10.1609/
aaai.v32i1.11580

4. Cheng, S., Raja, A., Xie, J. Dynamic Multiagent Load
Balancing Using Distributed Constraint Optimization
Techniques. Web Intelligence and Agent Systems: An
International Journal, 2014, 12, 2, 111-138. https://doi.
org/10.3233/WIA-140288

5. Choudhury, M., Mahmud, S., Khan, M. M. A Particle
Swarm Based Algorithm for Functional Distributed
Constraint Optimization Problems. Proceedings of the
AAAI Conference on Artificial Intelligence, 2020, 34,
05, 7111-7118. https://doi.org/10.1609/aaai.v34i05.6198

6. Enembreck, F., André Barthès, J.-P. Distributed Con-
straint Optimization with MULBS: A Case Study on

Collaborative Meeting Scheduling. Journal of Net-
work and Computer Applications, 2012, 35, 1, 164-175.
https://doi.org/10.1016/j.jnca.2011.02.016

7. Farinelli, A., Rogers, A., Jennings, N. R. Agent-based
Decentralised Coordination for Sensor Networks Us-
ing the max-sum Algorithm. Autonomous Agents and
Multi-Agent Systems, 2014, 28, 3, 337-380. https://doi.
org/10.1007/s10458-013-9225-1

8. Farinelli, A., Rogers, A., Petcu, A., Jennings, N. R. Decen-
tralised Coordination of Low-Power Embedded Devic-
es Using the Max-Sum Algorithm. Seventh Internation-
al Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-08) (12/05/08 - 16/05/08), 2008,
639-646.

9. Fioretto, F., Pontelli, E., Yeoh, W. Distributed Constraint
Optimization Problems and Applications: A Survey.
Journal of Artificial Intelligence Research, 2018, 61,
623-698. https://doi.org/10.1613/jair.5565

10. Fioretto, F., Yeoh, W., Pontelli, E. A Multiagent System
Approach to Scheduling Devices in Smart Homes. Pro-
ceedings of the 16th Conference on Autonomous Agents
and MultiAgent Systems, 2017, 981-989.

11. Fransman, J., Sijs, J., Dol, H., Theunissen, E., De Schut-
ter, B. Distributed Bayesian: A Continuous Distribut-
ed Constraint Optimization Problem Solver. Journal

97Information Technology and Control 2024/1/53

of Artificial Intelligence Research, 2023, 76, 393-433.
https://doi.org/10.1613/jair.1.14151

12. Fransman, J., Sijs, J., Dol, H., Theunissen, E., Schutter,
BD. Bayesian-DPOP for Continuous Distributed Con-
straint Optimization Problems. Proceedings of the 18th
International Conference on Autonomous Agents and
MultiAgent Systems, 2019, 1961-1963.

13. Hoang, K. D., Yeoh, W., Yokoo, M., Rabinovich, Z. New
Algorithms for Continuous Distributed Constraint Op-
timization Problems. Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiA-
gent Systems, 2020, 502-510.

14. Leite, A. R., Enembreck, F., Barthès, J.-P. A Distributed
Constraint Optimization Problems: Review and perspec-
tives. Expert Systems with Applications, 2014, 41, 11,
5139-5157. https://doi.org/10.1016/j.eswa.2014.02.039

15. Litov, O., Meisels, A. Forward Bounding on Pseudo-trees
for DCOPs and ADCOPs. Artificial Intelligence, 2017,
252, 83-99. https://doi.org/10.1016/j.artint.2017.07.003

16. Maheswaran, R. T., Pearce, J. P., Tambe, M. Distributed
Algorithms for DCOP: A Graphical-Game-Based Ap-
proach. Parallel and Distributed Computing Systems
(ISCA), 2004.

17. Miller, S., Ramchurn, S. D., Rogers, A. Optimal Decen-
tralised Dispatch of Embedded Generation in the Smart
Grid. Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems, 2012,
1, 281-288.

18. Modi, P. J., Shen, W.-M., Tambe, M., Yokoo, M. Adopt:
Asynchronous Distributed Constraint Optimization with
Quality Guarantees. Artificial Intelligence, 2005, 161, 1-2,
149-180. https://doi.org/10.1016/j.artint.2004.09.003

19. Petcu, A., Faltings, B. A Scalable Method for Multiagent
Constraint Optimization. Proceedings of the 19th In-
ternational Joint Conference on Artificial Intelligence,
2005, 266-271

20. Sarker, A., Choudhury, M., Khan, M. M. A Local Search
Based Approach to Solve Continuous DCOPs. Proceed-
ings of the 20th International Conference on Autono-
mous Agents and Multi-Agent Systems, 2021, 1127-1135.

21. Sebag, M., Ducoulombier, A. Extending Popula-
tion-Based Incremental Learning to Continuous
Search Spaces. Parallel Problem Solving from Nature
- PPSN V, 1998, 1498, 418-427. https://doi.org/10.1007/
BFb0056884

22. Shi, M., Liao, X., Chen, Y. A Particle Swarm with Lo-
cal Decision Algorithm for Functional Distributed
Constraint Optimization Problems. International
Journal of Pattern Recognition and Artificial Intelli-
gence, 2022, 36, 12, 2259025. https://doi.org/10.1142/
S021800142259025X

23. Stranders, R., Farinelli, A., Rogers, A., Jennings, N. R.
Decentralised Coordination of Continuously Valued
Control Parameters Using the Max-Sum Algorithm. Pro-
ceedings of the 8th International Conference on Autono-
mous Agents and Multiagent Systems, 2009, 1, 601-608.

24. Voice, T., Stranders, R., Rogers, A., Jennings, N. A Hy-
brid Continuous Max-Sum Algorithm for Decentralised
Coordination. 19th European Conference on Artificial
Intelligence (16/08/10-20/08/10), 2010, 61-66.

25. Watts, D. J., Strogatz, S. H. Collective Dynamics of
‘Small-World’ Networks. Nature, 1998, 393, 6684, 440-
442. https://doi.org/10.1038/30918

26. Xing-Ming, L., Chang-Feng, X., Ling, W., Fa-Xing, L.
Path Planning for Multi-platform Missiles Based on
Distributed Constrained Optimization. ACTA ELEC-
TONICA SINICA, 2012, 40, 10, 2068-2072.

27. Zhang, W., Wang, G., Xing, Z., Wittenburg, L. Distrib-
uted Stochastic Search and Distributed Breakout:
Properties, Comparison and Applications to Con-
straint Optimization Problems in Sensor Networks.
Artificial Intelligence, 2005, 161, 1-2, 55-87. https://doi.
org/10.1016/j.artint.2004.10.004

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

