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To monitor electrical indications from the heart and assess its performance, the electrocardiogram (ECG) is the 
most common and routine diagnostic instrument employed. ECG records are used to diagnose an arrhythmia, 
an abnormal cardiac beat that can cause a stroke in extreme circumstances. However, due to the extensive data 
that an ECG contains, it is quite difficult to glean the necessary information through visual analysis. For decades, 
researchers have focused on developing methods to automatically and computationally categorize and identify 
cardiac arrhythmias. However, monitoring for arrhythmias in real-time is challenging. To streamline the detec-
tion and classification process, this research presents a hybrid deep learning-based technique. There are two 
major contributions to this study. To automate the noise reduction and feature extraction, 1D ECG data are first 
transformed into 2D Scalogram images. Following this, a combined approach called the Residual attention-based 
2D-CNN-LSTM-CNN (RACLC) is recommended by merging multiple learning models, specifically the 2D con-
volutional neural network (CNN) and the Long Short-Term Memory (LSTM) system, based on research findings. 
The name of this model comes from a combination of the two deep learning. Both the beats themselves, which 
provide morphological information, and the beats paired with neighboring segments, which provide temporal 
information, are essential. Our suggested model simultaneously collects time-domain and morphological ECG 
signal data and combines them. The application of the attention block to the network helps to strengthen the valu-
able information, acquire the confidential message in the ECG signal, and boost the efficiency of the model when 
it comes to categorization. To evaluate the efficacy of the proposed RACLC method, we carried out a complete 
experimental investigation making use of the MIT-BIH arrhythmia database, which is used by a large number of 
researchers. The results of our experiments show that the automated detection method we propose is effective.
KEYWORDS: Cardiac Arrhythmias, Hybrid Deep Learning, ECG, Scalogram, LSTM, CNN, MIT-BIH Dataset.
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1. Introduction
It is the primary cause of human sickness because 
cardiovascular disease claims the lives of more than 
17 million people every year. Research conducted 
by the World Heart Federation found that low-in-
come nations are home to more than 75 percent of 
the world’s population with cardiovascular disease 
(CVD). Electrocardiograms, often known as ECGs, 
are used to record the electrical activity caused by de-
polarizations of the heart muscle. This activity can be 
measured as it goes to the surface in impulses. Howev-
er, the electrical current is negligible; ECG electrodes 
can reliably detect it on the skin. Due to its non-inva-
sive nature, ease of use, and ability to offer valuable 
heart health and pathology data, electrocardiography 
(ECG) is the most basic and accessible approach for 
identifying cardiac arrhythmia (or heart rhythm ab-
normalities). Arrhythmias of the heart arise as a sig-
nificant sign of cardiovascular illness. The latter is a 
major social issue since 1) it is so common and deadly, 
and 2) it is so expensive to treat. These problems will 
get more severe as the global population ages, which 
could lead to a rise in mortality rates.
Arrhythmias, in which the heart beats in a way that 
is abnormal from its usual pattern, is one of the most 
frequent cardiovascular disorders. Classifying these 
atypical patterns into their respective subclasses is 
necessary for making practical treatment recom-
mendations. In cardiology, the electrocardiogram, 
often known as an ECG, is widely used to diagnose 
and determine the likelihood of cardiac conditions 
characterized by irregular heartbeats. Arrhythmia 
analysis relies heavily on electrocardiogram (ECG) 
readings. It’s a cutting-edge medical tool that records 
cardiac excitability, conduction, and recovery. The 
electrocardiogram (ECG) is an essential and accurate 
diagnostic tool in contemporary medicine, and the 
precise automation of the interpretation of ECG data 
is beneficial for clinical practice and patient security. 
Humans can experience problems with their heart’s 
rhythm and activity due to a condition known as ar-
rhythmia [35].
Machine learning (ML) approaches have been in-
creasingly widely used in recent years for tackling 
issues in many different industries, including health. 
The reality that ML can handle challenges that are 
hard to solve in the traditional sense because of un-
clear rules is largely responsible for its popularisa-

tion. Learning and the transferability of information 
make these techniques effective problem-solvers. 
Success in many scientific domains is attributable 
to artificial intelligence methods. Potential benefits 
of ML (especially computational intellectual ability) 
stem from features shared with their biomedical ana-
logs, such as the ability to learn and generalize aware-
ness, achieve global optimization (e.g., the process of 
adapting), and make use of unspecific terminology 
(e.g. fuzzy systems). Several machine learning (ML) 
techniques, such as support vector machines (SVM), 
have been proposed in recent decades to automate 
the classification of heart arrhythmias based on ECG 
signals. However, there were drawbacks to these 
methods that limited their adaptability in customized 
healthcare systems, such as technological restric-
tions in the learning process.
Studies that employ deep learning (DL) approaches 
frequently use CNN, which executes feature mining 
and categorization [9, 22]. A distinctive CNN consists 
of several successive convolutional and pooling lay-
ers, providing a deep network that can extract a single 
input’s underlying features while lowering the input’s 
complexity. These features make them ideally suited 
for research requiring substantial computational ef-
fort, such as ECG classification [11, 26-28]. Analysis 
of time series [23, 31], including speaker identifica-
tion [36] and speech synthesis [10], are typical appli-
cations of DL techniques like Convolutional Neural 
Networks [15]. One type of RNN, the long short-term 
memory (LSTM) network, represents a development 
from the original RNN. For ECG signal categorization 
[8], LSTM networks have proven popular due to their 
ability to learn the time evolution of the raw data and 
to preferentially recall or forget knowledge based on 
the present storage state.
The current research aims to classify cardiac ar-
rhythmias by proposing a hybrid DL model architec-
ture that blends CNNs with LSTMs with an atten-
tion mechanism. The fundamental idea behind this 
method is to achieve dimensionality reduction simul-
taneously by using the CNN component as a feature 
extractor and feeding the LSTM component with the 
most discriminatory features of the input. The sug-
gested model uses the categorical loss function to 
reduce prediction errors further and deal with data 
imbalance. The model is trained and tested with data 
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from the widely-used MIT-BIH atrial fibrillation da-
tabase of electrocardiograms.
The remaining parts of this work are organized in the 
following way: In Section 2, contextual information 
for cardiac arrhythmias is provided, and associated 
state-of-the-art deep-learning approaches for ECG 
classification are evaluated. Both of these topics are 
covered under the heading “Background Knowledge.” 
In Section 3, the research technique is broken down 
into its component parts, and in Section 4, the exper-
imental designs and procedures are analyzed. The 
recital appraisal process of the suggested model is 
described in Section 5, where it is then reviewed and 
numerically related to current investigations that are 
pertinent to the topic. Section 6, a summary of the 
findings, is presented in the final part of this study. 

2. Related Works
In the latest days, computer vision and computation-
al intelligence network have  not only made signifi-
cant gains in the domains of image processing, voice 
recognition, and a wide variety of other sectors, but 
it has also become routinely utilized in the supported 
detection of cardiac illness based on ECG data. Ku-
maraswamy and colleagues have developed a novel 
classifier for the categorization of heartbeats, which 
may be helpful in the diagnosis of arrhythmias [25] 
after taking into consideration the MIT-BIH arrhyth-
mia database. Precisely, to locate R-R intervals as fea-
tures, they used a random forest tree predictor in con-
junction with a discrete cosine transform (DCT). R-R 
intervals are a fundamental pattern that is utilized 
in the process of identifying arrhythmias. A predic-
tor suggested by Park et al. [32] that can recognize 17 
unique heartbeat variations can be used to diagnose 
arrhythmias. This predictor can sense the sequences. 
For the purpose of arrhythmia detection, Jun et al. 
[19] utilized a high-performance cloud system based 
on GPUs. In a manner analogous to [32], they identi-
fied and classified the data using the Pan-Tompkins 
algorithm in conjunction with KNN. 
The principles that are used in machine learning 
are strongly affected by feature architecture, with a 
particular emphasis being placed on the procedure 
of obtaining and limiting elements. For the machine 
learning algorithm to be able to learn and select ap-

propriate functions, it is necessary to incorporate all 
of the data that constitutes the signals into the learn-
ing process. Additionally, this theory serves as the 
foundation for the deep learning model, particularly 
CNN and its 1-D versions [24]. Researchers [1–3, 33] 
have begun using deep learning techniques to detect 
and classify a wide variety of chronic diseases. This 
is because deep learning techniques offer much-un-
tapped potential and promise. In the study of Pawiak 
et al. [34], the long-duration ECG signal was classi-
fied using a deep genetic ensemble of classifiers. Gao 
et al. [13] used an efficient long short-term memory 
(LSTM) recurrence network model to categorize  8 
different kinds of heartbeats. 
To discriminate amongst five separate heartbeats, atal 
et al. came up with the concept of a deep convolution-
al neural network that could adapt its efficacy [3, 10] 
Deep learning networks, in contrast to typical neural 
networks, can routinely extract features, identify  de-
tailed data patterns, and do away with compound signal 
preparation. Deep learning networks also have a supe-
rior capacity for nonlinear fitting, which allows them 
to recognize  single-lead, multi-class, and imbalanced 
ECG datasets with greater accuracy. CNN stands for 
“convolutional neural network,”. CNN’s have been the 
subject of extensive research and are being utilized in 
deep learning. CNNs have also been effectively helpful 
in the classification of arrhythmia. Because relatively 
little effort is put forward to categorize  the ECG sig-
nal’s micro-classes, the micro-classification of heart-
beats, which has five types, is our primary purpose for 
conducting this research.
An 8CSL method for the discovery has been project-
ed by Ping et al. [33]. This method uses shortcut in-
teractions in CNN, which helps increase the speed at 
which data can be transmitted, and one layer of LSTM, 
which helps to decrease the degree to which data de-
pend on one another over the long term. He contrast-
ed the proposed method multi-scale convolutional 
neural network (MCNN), and he found that the 8CSL 
retrieved features better when contrasted to the other 
two approaches in terms of F1-score 84.89%, 89.55%, 
and 85.64% with multiple data segment lengths. This 
was done so that he could conduct additional testing 
on the research methods that had been proposed. 
When it comes to heartbeat intercepts, Ullah et al. 
[39] used three distinct techniques: CNN, CNN+L-
STM, and CNN+LSTM+attention model for the cat-
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egorization  of five distinct types of arrhythmias in 
cardiac observations over two well-known datasets, 
MIT-BIH arrhythmias, and the PTB Clinical ECG Da-
tabase. These algorithms were applied to heartbeat 
detection systems over 3the MIT-BIH arrhythmias 
dataset and the PTB Diagnostic ECG Data system. 
While the article provides an overview of various 
techniques used in detecting cardiac illness using 
ECG data, it needs to discuss the limitations of these 
techniques or provide a comparative analysis of their 
effectiveness. Additionally, the article does not dis-
cuss potential ethical considerations surrounding 
the use of deep learning techniques in diagnosing and 
treating heart disease. Further research could explore 
these gaps to improve the understanding of the appli-
cations and limitations of computer vision and com-
putational intelligence networks in cardiology.

3. Proposed Methodology
This part discusses the dataset employed, several data 
cleaning and preparation approaches, and a detailed 
explanation of the suggested model. There are a few 
different approaches to dynamically analyze an elec-
trocardiogram (ECG), the most common of which are 
machine learning and deep learning. Because feature 
engineering is handled autonomously, deep learning 
techniques are more practically viable. The suggest-
ed model is educated with the assistance of K-fold 
cross-validation, and then hyper-parameter tweak-
ing is carried out. Figure 1 demonstrates the overall 
structure of the proposed method.

Figure 1 
The overall structure of the proposed methodology
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3.1. Dataset
This study makes use of the MIT-BIH database, 
which is an ECG database provided by MIT. This da-
tabase complies with global practices and has been 
documented by several industry experts (Moody and 
Mark, 2000). Researchers have extensively used the 
MIT-BIH database [14, 29, 38, 30] to study the catego-
rization of arrhythmic heartbeats.
In Figure 1, the ECG signal is preprocessed and fed as 
input to the continuous wavelet transform. They are 
instrumental in detecting and analyzing signals with 
non-stationary features or time-varying character-
istics.finally, analyzed data is augmented and a deep 
learning model is implemented for classifying the 
heart disease arrhythmia. 
Each of the 48 ECG recordings in the MIT-BIH da-
tabase was recorded over 30 minutes, with a sample 
rate of 360 hertz, and features two separate leads. In-
corporating expert annotations and techniques, the 
MIT-BIH dataset can fine-tune and improve upon its 
data [7, 17, 21, 4, 12].
Further, it takes cues from pre-existing solutions to 
improve upon itself. There are 36 recordings used here; 
all of them from the MIT-BIH regular sinus rhythm 
database [14], which has 18 long-term ECG measure-
ments from individuals diagnosed at Boston’s BIH ar-
rhythmia facility. There were no serious arrhythmias 
among the patients in this collection, including five 
males aged 26–45 and thirteen females aged 20–50.
The BIDMC heart failure collection [7] provided 
the source for these 30 recordings. Collection of 15 
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Table 1 
Datasets used in our proposed model

Database MIT-BIH cardiac arrhythmias 
database

MIT-BIH normal sinus rhythm 
database

BIDMC congestive heart failure 
database

Recording 96 36 30

Age group 34 to 79 20 to 50 22 to 79

Samples per second 128 128 250

Sampling rate 360Hz 128Hz 0.1 Hz to 40 Hz

long-term ECGs from individuals with NYHA class 
3-4 cardiovascular failure. Each recording lasts for 
over 20 hours and features 250 samples per second 
sampling rate, 12-bit resolution over a 10-millivolt 
spectrum, and two ECG signals. Table 1 shows the 
datasets used in our proposed model and Figure 3 
shows the number of each beat type from the dataset. 

Figure 2 
Sample beats from each class in the dataset
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Figure 3 
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where A* is the ECG recording's values and C and X 
are the average and standard deviation of those val-
ues. Figure 4 shows the beats from the MIT-BIH car-
diac arrhythmias database after the Z-score normal-
ization.
In this step, information is readied for use in subse-
quent stages of the learning and assessment process. 
To begin, we use a converted storage service and the 
expand information helper procedure to divide up the 
information into manageable chunks. To create the 
scalograms, 1-D ECG signals were transformed using 
Continuous Wavelet Transformation (CWT), which 
was then used to create the final 2-D color images [5, 
40, 16, 41, 18, 37].
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Spectral analysis of signals is where CWT really shines. 
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coefficients can be used to feed images into a deep 
neural network for the purpose of signal 
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the original signal. 
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where R denotes the real waveform. x, y represents the dila-
tion and translation of the waveforms.
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Spectral analysis of signals is where CWT really 
shines. It can be used to analyze vibration patterns, 
frequency jumps, temporal jumps, bursts of signals, 
and the dampening of signals. Scalograms of CWT co-
efficients can be used to feed images into a deep neu-
ral network for the purpose of signal categorization. 
Figure 5 shows the scalogram of the original signal.
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Spectral analysis of signals is where CWT really shines. 
It can be used to analyze vibration patterns, frequency 

jumps, temporal jumps, bursts of signals, and the 
dampening of signals. Scalograms of CWT 
coefficients can be used to feed images into a deep 
neural network for the purpose of signal 
categorization. Figure 5 shows the scalogram of 
the original signal. 
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A total of n samples is indicated. The basic 
function of DWT is to use high-pass and low-pass 
filters to divide a signal into several resolutions. 
Employing a low- and high-class filter to a signal 
is how DWT breaks it down into its constituent 
parts. The coefficient approximation is denoted by 
𝐶𝐶𝐴𝐴  and the detailed coefficient is denoted by 
𝐶𝐶𝐶𝐶. The signal breakup may be expressed 
analytically as follows: 
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Algorithm 1: ECG signal Pre-processing 

1. input: { }1 2 3, , ....... mS s s s s=  

2. level = m 
3.output: Wavelet Coefficient  
4. Identify the length of the input signal 

5. calculate ( )xN len S=  

6. repeat the step 7 to 10 until the end of the signals 
7. Initialize high pass and low pass filter 

8. LPF= ( ) ( )2
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10. End loop 
11 return coefficients  
 
The aforementioned technique partitioned the whole 
number of samples into a set of discrete frequency 
ranges. The time domain signal is filtered using a 
combination of high-pass and low-pass filters 
sequentially to produce it. At last, a coefficient has been 
determined for the ECG signal that aids in suppressing 
background noise.The term "augmentation" is used to 
describe the act of adding new, relevant information to 
an existing set of data. As a result, it can occasionally 
enhance data quality and decrease the time spent 
manually entering new information. This procedure 
might be useful if CNN models are fed 2D pictures as 
input. For certain models, augmenting data may be more 
useful than for others. The outcomes of certain earlier 
efforts improved, while the results of others suffered, 
after being enhanced. 
 
3.3 Model Architecture 
The RACLC model is constructures with 
CNN+LSTM+CNN with residual and attention layers as 
shown in figure 6. CNNs depend on the slides of the 
convolutional window being applied to the input to 
extract meaningful local insights from the data. CNN’s 
also depend on the pooling layer in order to further 
improve the features and extract essential information 
from the input data. In general, the number of 
convolutional layers determines the level of 
sophistication that can be achieved with the 
characteristics that are extracted. However, once a 
certain threshold is reached in terms of the number of 

convolutional layers, the model begins to 
experience an issue known as gradient explosion. 
As a result of this, a residual block structure was 
incorporated into the system to ease the gradient 
problem. The skip connection is implemented on 
the residual network to link important information 
to a deeper network for the purposes of 
transmission. This result is preferable to the 
classic CNN's straightforward layered structure, 
which it replaces. 
Conventional feed-forward networks are 
impractical for 2D image classification as the 
number of free components in the raw picture 
continues to grow. By associating pixels in close 
proximity, however, it is now feasible to extract a 
wide variety of local information from 2D pictures 
using a CNN model. This study presents the 
introduction of the translation of a 1D ECG signal 
into 2D ECG pictures since it is possible to extract 
and filter the spatial neighborhood of 2D images 
using convolution and down-sampling layers. This 
method improves the ECG classification 
performance to at least the level attained by human 
examination. Consequently, the 2D CNN model 
can replace the current form of ECG arrhythmia 
diagnosis, which relies on the visual inspection of 
specialists. To acquire the convolution layer's 
output, we first offset the convolution kernel and 
then pass it on to the activation function. 
If the input to the convolution layer is 𝐼𝐼𝐼𝐼(𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙) and 
then the output ( ),z k l  is generated by the 

following formula: 
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Algorithm 1: ECG signal Pre-processing
1. input: { }1 2 3, , ....... mS s s s s=
2. level = m
3.output: Wavelet Coefficient 
4. Identify the length of the input signal
5. calculate ( )xN len S=

6. repeat the step 7 to 10 until the end of the signals
7. Initialize high pass and low pass filter
8. LPF = ( ) ( )2

m

A m l x m−∑
9. HPF = ( ) ( )2

m

A m h x m−∑
10. End loop
11 return coefficients 

The aforementioned technique partitioned the whole 
number of samples into a set of discrete frequen-
cy ranges. The time domain signal is filtered using a 
combination of high-pass and low-pass filters sequen-
tially to produce it. At last, a coefficient has been de-
termined for the ECG signal that aids in suppressing 
background noise.The term “augmentation” is used to 
describe the act of adding new, relevant information 
to an existing set of data. As a result, it can occasion-
ally enhance data quality and decrease the time spent 
manually entering new information. This procedure 
might be useful if CNN models are fed 2D pictures as 
input. For certain models, augmenting data may be 
more useful than for others. The outcomes of certain 
earlier efforts improved, while the results of others 
suffered, after being enhanced.

3.3. Model Architecture
The RACLC model is constructures with CNN+LST-
M+CNN with residual and attention layers as shown 



423Information Technology and Control 2023/2/52

in Figure 6. CNNs depend on the slides of the convo-
lutional window being applied to the input to extract 
meaningful local insights from the data. CNN’s also 
depend on the pooling layer in order to further im-
prove the features and extract essential information 
from the input data. In general, the number of convo-
lutional layers determines the level of sophistication 
that can be achieved with the characteristics that 
are extracted. However, once a certain threshold is 
reached in terms of the number of convolutional lay-
ers, the model begins to experience an issue known 
as gradient explosion. As a result of this, a residual 
block structure was incorporated into the system to 
ease the gradient problem. The skip connection is im-
plemented on the residual network to link important 
information to a deeper network for the purposes of 
transmission. This result is preferable to the classic 
CNN’s straightforward layered structure, which it re-
places.
Conventional feed-forward networks are impracti-
cal for 2D image classification as the number of free 
components in the raw picture continues to grow. By 
associating pixels in close proximity, however, it is 
now feasible to extract a wide variety of local infor-
mation from 2D pictures using a CNN model. This 
study presents the introduction of the translation of a 

1D ECG signal into 2D ECG pictures since it is possi-
ble to extract and filter the spatial neighborhood of 2D 
images using convolution and down-sampling layers. 
This method improves the ECG classification per-
formance to at least the level attained by human ex-
amination. Consequently, the 2D CNN model can re-
place the current form of ECG arrhythmia diagnosis, 
which relies on the visual inspection of specialists. To 
acquire the convolution layer’s output, we first offset 
the convolution kernel and then pass it on to the acti-
vation function.
If the input to the convolution layer is I(k, l) and then 
the output z(k, l) is generated by the following formula:
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The aforementioned technique partitioned the whole 
number of samples into a set of discrete frequency 
ranges. The time domain signal is filtered using a 
combination of high-pass and low-pass filters 
sequentially to produce it. At last, a coefficient has been 
determined for the ECG signal that aids in suppressing 
background noise.The term "augmentation" is used to 
describe the act of adding new, relevant information to 
an existing set of data. As a result, it can occasionally 
enhance data quality and decrease the time spent 
manually entering new information. This procedure 
might be useful if CNN models are fed 2D pictures as 
input. For certain models, augmenting data may be more 
useful than for others. The outcomes of certain earlier 
efforts improved, while the results of others suffered, 
after being enhanced. 
 
3.3 Model Architecture 
The RACLC model is constructures with 
CNN+LSTM+CNN with residual and attention layers as 
shown in figure 6. CNNs depend on the slides of the 
convolutional window being applied to the input to 
extract meaningful local insights from the data. CNN’s 
also depend on the pooling layer in order to further 
improve the features and extract essential information 
from the input data. In general, the number of 
convolutional layers determines the level of 
sophistication that can be achieved with the 
characteristics that are extracted. However, once a 
certain threshold is reached in terms of the number of 

convolutional layers, the model begins to 
experience an issue known as gradient explosion. 
As a result of this, a residual block structure was 
incorporated into the system to ease the gradient 
problem. The skip connection is implemented on 
the residual network to link important information 
to a deeper network for the purposes of 
transmission. This result is preferable to the 
classic CNN's straightforward layered structure, 
which it replaces. 
Conventional feed-forward networks are 
impractical for 2D image classification as the 
number of free components in the raw picture 
continues to grow. By associating pixels in close 
proximity, however, it is now feasible to extract a 
wide variety of local information from 2D pictures 
using a CNN model. This study presents the 
introduction of the translation of a 1D ECG signal 
into 2D ECG pictures since it is possible to extract 
and filter the spatial neighborhood of 2D images 
using convolution and down-sampling layers. This 
method improves the ECG classification 
performance to at least the level attained by human 
examination. Consequently, the 2D CNN model 
can replace the current form of ECG arrhythmia 
diagnosis, which relies on the visual inspection of 
specialists. To acquire the convolution layer's 
output, we first offset the convolution kernel and 
then pass it on to the activation function. 
If the input to the convolution layer is 𝐼𝐼𝐼𝐼(𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙) and 
then the output ( ),z k l  is generated by the 

following formula: 
 
( ) ( ) ( )

( ) ( )

, , * ,

, . ,
yn ym xx

z k l I k l w k l

I m n w k m l n
=−=−

= =

− −∑ ∑


 

              (7) 

 
Using Batch normalization, the characteristics 
discovered by the convolution layer may be 
normalised. The network's Relu activation 
function, denoted by the function ( ).σ  , has the 
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The next layer, the max-pooling layer, receives the 
features. Non-linear down-sampling is carried out 
by the pooling layer to lower the feature quality. 
In order to represent the characteristics generated 
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Furthermore, when the input travels further into the 
network, dimensionality reduction occurs. The output is 
then sent to the Long Short-Term Memory (LSTM) 
section of the network, which is responsible for learning 
and remembering the data's long-term dependencies. 
One LSTM layer, one flatten layer (to produce one-
dimensional result from multi-dimensional input), one 
fully connected layer, one dropout layer, and one output 
layer (to predict a class for each input ECG beat) make 
up the LSTM portion. Non-linearity of the function In 
both the convolutional and fully-connected layers, ReLu 
is employed as the activation function. The softmax 
activation function is used for the output layer. Multi - 
classification networks often utilise an extension of the 
logistic function called softmax at the output layer, 
whereas a sigmoid function is used for binary 
classification issues. We can write down the formulae 
for the ReLU and softmax kernel function: 
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where K is convolutional kernal input. Due to the 
variable activation mapping on the relevant properties 
of arrhythmias, the identification degree varies, and 

other signals may create interference during 
arrhythmia detection. hence, it is possible that 
there is no connection between generational traits 
and arrhythmia disorders. Thus, the researchers 
here employed the attention block to amplify data 
related to arrhythmias while dampening data that 
was not. The recognition performance of the 
model was improved by continually enhancing the 
necessary information using four attention blocks 
in this study. To increase the size of the reception 
area, the input data first go via a convolution layer 
and then into a down-up sampling phase. The 
down-sampling and up-sampling procedures were 
Maxpooling and nearest interpolation, 
respectively. To compute the attention weight, the 
outcome of the ultimate features formed by the 
residual structure and the 1x1 convolution layer is 
fed into a softmax function. This allows the 
attention weight to be computed. The receiving 
domain may rapidly expand to acquire global data 
using symmetric down-sampling and up-sampling 
systems. A batch normalization layer is placed 
before the softmax function to avoid the gradient 
issue and overfitting during training. 
Target-to-estimated-label discrepancy is modeled 
as a cost function. To close the chasm, an 
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The next layer, the max-pooling layer, receives the 
features. Non-linear down-sampling is carried out by 
the pooling layer to lower the feature quality. In or-
der to represent the characteristics generated by the 
max-pooling layer, we may use the following formula:
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The aforementioned technique partitioned the whole 
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might be useful if CNN models are fed 2D pictures as 
input. For certain models, augmenting data may be more 
useful than for others. The outcomes of certain earlier 
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from the input data. In general, the number of 
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classic CNN's straightforward layered structure, 
which it replaces. 
Conventional feed-forward networks are 
impractical for 2D image classification as the 
number of free components in the raw picture 
continues to grow. By associating pixels in close 
proximity, however, it is now feasible to extract a 
wide variety of local information from 2D pictures 
using a CNN model. This study presents the 
introduction of the translation of a 1D ECG signal 
into 2D ECG pictures since it is possible to extract 
and filter the spatial neighborhood of 2D images 
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method improves the ECG classification 
performance to at least the level attained by human 
examination. Consequently, the 2D CNN model 
can replace the current form of ECG arrhythmia 
diagnosis, which relies on the visual inspection of 
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The next layer, the max-pooling layer, receives the 
features. Non-linear down-sampling is carried out 
by the pooling layer to lower the feature quality. 
In order to represent the characteristics generated 
by the max-pooling layer, we may use the 
following formula: 
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Furthermore, when the input travels further into 
the network, dimensionality reduction occurs. The 
output is then sent to the Long Short-Term Memory 
(LSTM) section of the network, which is responsible 
for learning and remembering the data’s long-term 
dependencies. One LSTM layer, one flatten layer (to 
produce one-dimensional result from multi-dimen-
sional input), one fully connected layer, one dropout 
layer, and one output layer (to predict a class for each 
input ECG beat) make up the LSTM portion. Non-lin-
earity of the function In both the convolutional and 
fully-connected layers, ReLu is employed as the ac-
tivation function. The softmax activation function is 
used for the output layer. Multi - classification net-
works often utilise an extension of the logistic func-
tion called softmax at the output layer, whereas a sig-
moid function is used for binary classification issues. 
We can write down the formulae for the ReLU and 
softmax kernel function:
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where K is convolutional kernal input. Due to the 
variable activation mapping on the relevant properties 
of arrhythmias, the identification degree varies, and 

other signals may create interference during 
arrhythmia detection. hence, it is possible that 
there is no connection between generational traits 
and arrhythmia disorders. Thus, the researchers 
here employed the attention block to amplify data 
related to arrhythmias while dampening data that 
was not. The recognition performance of the 
model was improved by continually enhancing the 
necessary information using four attention blocks 
in this study. To increase the size of the reception 
area, the input data first go via a convolution layer 
and then into a down-up sampling phase. The 
down-sampling and up-sampling procedures were 
Maxpooling and nearest interpolation, 
respectively. To compute the attention weight, the 
outcome of the ultimate features formed by the 
residual structure and the 1x1 convolution layer is 
fed into a softmax function. This allows the 
attention weight to be computed. The receiving 
domain may rapidly expand to acquire global data 
using symmetric down-sampling and up-sampling 
systems. A batch normalization layer is placed 
before the softmax function to avoid the gradient 
issue and overfitting during training. 
Target-to-estimated-label discrepancy is modeled 
as a cost function. To close the chasm, an 
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where K is convolutional kernal input. Due to the vari-
able activation mapping on the relevant properties of 
arrhythmias, the identification degree varies, and oth-
er signals may create interference during arrhythmia 
detection. hence, it is possible that there is no con-
nection between generational traits and arrhythmia 
disorders. Thus, the researchers here employed the 
attention block to amplify data related to arrhythmias 
while dampening data that was not. The recognition 
performance of the model was improved by continu-
ally enhancing the necessary information using four 
attention blocks in this study. To increase the size of 
the reception area, the input data first go via a convo-
lution layer and then into a down-up sampling phase. 
The down-sampling and up-sampling procedures 
were Maxpooling and nearest interpolation, respec-
tively. To compute the attention weight, the outcome 

of the ultimate features formed by the residual struc-
ture and the 1x1 convolution layer is fed into a softmax 
function. This allows the attention weight to be com-
puted. The receiving domain may rapidly expand to 
acquire global data using symmetric down-sampling 
and up-sampling systems. A batch normalization lay-
er is placed before the softmax function to avoid the 
gradient issue and overfitting during training.
Target-to-estimated-label discrepancy is modeled 
as a cost function. To close the chasm, an optimizer 
procedure is used. Although the neural network uses 
many other cost functions, the cross-entropy func-
tion is by far the most common.
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where 𝐶𝐶𝐶𝐶 is the cost function that must be reduced to the 
smallest possible value. The goal value is indicated by 
𝑧𝑧𝑧𝑧𝑘𝑘𝑘𝑘, while the class index is indicated by 𝑐𝑐𝑐𝑐. 𝑀𝑀𝑀𝑀 is the total 
number of classes, and 𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘  is the value considered 
accurate. The optimization process uses a gradient 
descent algorithm with a learning rate of 0.00001 
percent. RACLC model, and after fewer iterations, it 
arrived at the best possible solution. The models that 
achieve the highest levels of accuracy with the training 
data will be identified through the validation of the data. 
If we did not apply the validation data approach, then 
the model would suffer from the issue of overfitting 
because of the lack of data. Generally, the validation 
standard is the loss value that the RACLC model 
generates. In addition, based on our notice, the 
maximum sensitivity will not be received in the various 
arrhythmia ECG signal classifications if we have halted 
the RACLC model according to lost value. As a result, 
we use the mean of the sensitivity values found in the 
validation data as the criterion for validation. When the 
weighted sensitivity means stops rising, we will no 
longer use the learning approach and will instead begin 
the process of evaluating the test data 
 

4. Experimental Setup 
We have utilized the Keras Deep Learning Toolkit with 
the TensorFlow backend to apply deep learning 
methods. Initially, raw ECG signals were scaled in the 
range of 0-1 before being normalized. For this step, we 
relied on the sci-kit-learn library. The duration of the 
learning process was calculated using an early stopping 
strategy. Training can be halted before the model 
becomes overfit by keeping an eye on the loss values. 
Consequently, learning was halted to prevent overfitting 
issues in the various networks. We find a few frequent 
hyper-parameter tweaks for models for a learning rate of 
0.00001 and a batch size of 64. The analyzed networks 
dictate the optimization strategies and other parameters 
used. Every single experimental investigation has its 
unique presentation of the relevant modifications. 
The same databases were utilized in all model 
parameters, and the data was split into 80% training, 
10% validation, and 10% testing to stay consistent 
throughout all trials. During the training phase, the sci-
kit-learn package gave a class score to each class to 
account for the asymmetry in the data patterns across 
types. Results acquired for the test data were evaluated 

using the accuracy, sensitivity, specificity, 
precision, and F-score performance criteria. 
 
5. Results and Discussion 
The results of the proposed work are discussed in 
this section of the report. Using a variety of test 
cases, the performance is evaluated based on 
several distinct metrics, including the overall 
precision, recall, f-score, accuracy, and execution 
time. In addition, to assess the work that is being 
submitted, a comparison study with previously 
published studies is also given. 
 
Figure 7  
Confusion matrix of proposed method RACLC 

 
5.1 Performance Evaluation 
Figure 7 is an example of the confusion matrix, 
and it compares the subclasses that were predicted 
by using the planned work to the categories that 
were acknowledged and used as actual fact. You 
can see an example of the confusion matrix in this 
figure. According to the data in the table, there are 
five distinct classes of heartbeat, with 75020, 
2546, 8072, 7255, and 7129 beat samples, 
respectively, assigned to classes numbered 1 to 5. 
Class 2 through Class 5 are considered to be 
examples of arrhythmia, whereas Class 1 is an 
example of normal heart beat samples. 
However, the confusion matrix is not able to 
provide a quantitative measurement of the 
effectiveness of the model; Nevertheless, the point 
of a deep learning model is dependent not only on 
its ability to accurately forecast the class to which 
the data belong (sensitivity), but also on its ability 
to exclude incorrect classifications (specificity). 
This literally implies that certain models are 
capable of reliably predicting the correct class for 
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where C is the cost function that must be reduced to 
the smallest possible value. The goal value is indicat-
ed by zk, while the class index is indicated by c. M is 
the total number of classes, and ak is the value consid-
ered accurate. The optimization process uses a gradi-
ent descent algorithm with a learning rate of 0.00001 
percent. RACLC model, and after fewer iterations, it 
arrived at the best possible solution. The models that 
achieve the highest levels of accuracy with the train-
ing data will be identified through the validation of 
the data. If we did not apply the validation data ap-
proach, then the model would suffer from the issue of 
overfitting because of the lack of data. Generally, the 
validation standard is the loss value that the RACLC 
model generates. In addition, based on our notice, the 
maximum sensitivity will not be received in the vari-
ous arrhythmia ECG signal classifications if we have 
halted the RACLC model according to lost value. As a 
result, we use the mean of the sensitivity values found 
in the validation data as the criterion for validation. 
When the weighted sensitivity means stops rising, we 
will no longer use the learning approach and will in-
stead begin the process of evaluating the test data

4. Experimental Setup
We have utilized  the Keras Deep Learning Toolkit 
with the TensorFlow backend to apply deep learning 
methods. Initially, raw ECG signals were scaled in the 
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range of 0-1 before being normalized. For this step, 
we relied on the sci-kit-learn  library. The duration 
of the learning process was calculated using an early 
stopping strategy. Training can be halted before the 
model becomes overfit by keeping an eye on the loss 
values. Consequently, learning was halted to prevent 
overfitting issues in the various networks. We find a 
few frequent hyper-parameter tweaks for models for 
a learning rate of 0.00001 and a batch size of 64. The 
analyzed  networks dictate the optimization strate-
gies and other parameters used. Every single exper-
imental investigation has its unique presentation of 
the relevant modifications.
The same databases were utilized in all model pa-
rameters, and the data was split into 80% training, 
10% validation, and 10% testing to stay consistent 
throughout all trials. During the training phase, the 
sci-kit-learn package gave a class score to each class 
to account for the asymmetry in the data patterns 
across types. Results acquired for the test data were 
evaluated using the accuracy, sensitivity, specificity, 
precision, and F-score performance criteria.

5. Results and Discussion
The results of the proposed work are discussed in 
this section of the report. Using a variety of test cas-
es, the performance is evaluated based on several dis-
tinct metrics, including the overall precision, recall, 
f-score, accuracy, and execution time. In addition, to 
assess the work that is being submitted, a comparison 
study with previously published studies is also given.

5.1. Performance Evaluation
Figure 7 is an example of the confusion matrix, and it 
compares the subclasses that were predicted by using 
the planned work to the categories that were acknowl-
edged and used as actual fact. You can see an exam-
ple of the confusion matrix in this figure. According 
to the data in the table, there are five distinct classes 
of heartbeat, with 75020, 2546, 8072, 7255, and 7129 
beat samples, respectively, assigned to classes num-
bered 1 to 5. Class 2 through Class 5 are considered 
to be examples of arrhythmia, whereas Class 1 is an 
example of normal heart beat samples.
However, the confusion matrix is not able to provide 
a quantitative measurement of the effectiveness of 
the model; Nevertheless, the point of a deep learn-

Figure 7 
Confusion matrix of proposed method RACLC

ing model is dependent not only on its ability to ac-
curately forecast the class to which the data belong 
(sensitivity), but also on its ability to exclude incor-
rect classifications (specificity). This literally implies 
that certain models are capable of reliably predicting 
the correct class for the bulk of the data (Trpos, Fapos), 
but they fail to reject the erroneous classes for part 
of the data (Trneg, Taneg). For this reason, the model’s 
sensitivity and specificity should both be sufficient-
ly high enough so that it can perform well even when 
presented with data that has not yet been observed. 
Hence, it is necessary to compute several commonly 
used metrics, which are as follows.
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The assessment metrics for each of the five 
modules may be determined using the equations 
presented before, and the results can be found in 
Table 2. 

 
Table 2  
Precision, recall, f1-score of proposed model RACLC 
 

Class precision recall f1-score 

Nonectopic beats (N) 0.99 0.99 0.99 
Supraventricular ectopic beat (S) 1.00 1.00 1.00 
Ventricular ectopic beat (V) 0.99 0.99 1.00 
Fusion beat (F) 1.00 1.00 0.98 
Unknown beat (Q) 0.98 0.98 0.99 
 
 
Figure 8 displays the lines of the total loss and efficiency 
during the model‘s training by using all of the data. 
These curves can be seen in the previous figure. After 
100 epochs, it is easy to see that the network has reached 
a point where both values have converged. 
 
Figure 8  
Accuracy and Loss of the proposed model RACLC 
(a) Loss 
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optimizer procedure is used. Although the neural 
network uses many other cost functions, the cross-
entropy function is by far the most common. 
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where 𝐶𝐶 is the cost function that must be reduced to the 
smallest possible value. The goal value is indicated by 
𝑧𝑧�, while the class index is indicated by 𝑐𝑐. 𝑀𝑀 is the total 
number of classes, and 𝑎𝑎�  is the value considered 
accurate. The optimization process uses a gradient 
descent algorithm with a learning rate of 0.00001 
percent. RACLC model, and after fewer iterations, it 
arrived at the best possible solution. The models that 
achieve the highest levels of accuracy with the training 
data will be identified through the validation of the data. 
If we did not apply the validation data approach, then 
the model would suffer from the issue of overfitting 
because of the lack of data. Generally, the validation 
standard is the loss value that the RACLC model 
generates. In addition, based on our notice, the 
maximum sensitivity will not be received in the various 
arrhythmia ECG signal classifications if we have halted 
the RACLC model according to lost value. As a result, 
we use the mean of the sensitivity values found in the 
validation data as the criterion for validation. When the 
weighted sensitivity means stops rising, we will no 
longer use the learning approach and will instead begin 
the process of evaluating the test data 
 
4. Experimental Setup 
We have utilized the Keras Deep Learning Toolkit with 
the TensorFlow backend to apply deep learning 
methods. Initially, raw ECG signals were scaled in the 
range of 0-1 before being normalized. For this step, we 
relied on the sci-kit-learn library. The duration of the 
learning process was calculated using an early stopping 
strategy. Training can be halted before the model 
becomes overfit by keeping an eye on the loss values. 
Consequently, learning was halted to prevent overfitting 
issues in the various networks. We find a few frequent 
hyper-parameter tweaks for models for a learning rate of 
0.00001 and a batch size of 64. The analyzed networks 
dictate the optimization strategies and other parameters 
used. Every single experimental investigation has its 
unique presentation of the relevant modifications. 
The same databases were utilized in all model 
parameters, and the data was split into 80% training, 
10% validation, and 10% testing to stay consistent 
throughout all trials. During the training phase, the sci-
kit-learn package gave a class score to each class to 
account for the asymmetry in the data patterns across 
types. Results acquired for the test data were evaluated 

using the accuracy, sensitivity, specificity, 
precision, and F-score performance criteria. 
 
5. Results and Discussion 
The results of the proposed work are discussed in 
this section of the report. Using a variety of test 
cases, the performance is evaluated based on 
several distinct metrics, including the overall 
precision, recall, f-score, accuracy, and execution 
time. In addition, to assess the work that is being 
submitted, a comparison study with previously 
published studies is also given. 
 
Figure 7  
Confusion matrix of proposed method RACLC 

 
5.1 Performance Evaluation 
Figure 7 is an example of the confusion matrix, 
and it compares the subclasses that were predicted 
by using the planned work to the categories that 
were acknowledged and used as actual fact. You 
can see an example of the confusion matrix in this 
figure. According to the data in the table, there are 
five distinct classes of heartbeat, with 75020, 
2546, 8072, 7255, and 7129 beat samples, 
respectively, assigned to classes numbered 1 to 5. 
Class 2 through Class 5 are considered to be 
examples of arrhythmia, whereas Class 1 is an 
example of normal heart beat samples. 
However, the confusion matrix is not able to 
provide a quantitative measurement of the 
effectiveness of the model; Nevertheless, the point 
of a deep learning model is dependent not only on 
its ability to accurately forecast the class to which 
the data belong (sensitivity), but also on its ability 
to exclude incorrect classifications (specificity). 
This literally implies that certain models are 
capable of reliably predicting the correct class for 
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The assessment metrics for each of the five modules 
may be determined using the equations presented be-
fore, and the results can be found in Table 2.
Figure 8 displays the lines of the total loss and effi-
ciency during the model‘s training by using all of the 
data. These curves can be seen in the previous figure. 
After 100 epochs, it is easy to see that the network has 
reached a point where both values have converged.
After having conducted an extensive and comprehen-
sive research to assess the accuracy of the findings 
made for all of the categories, it was deduced that the 
accuracy rate for the five major heart rhythm classes, 
as well as the regular class, was greater than 99.8%. 

Table 2 
Precision, recall, f1-score of proposed model RACLC

Class precision recall f1-score

Nonectopic beats (N) 0.99 0.99 0.99

Supraventricular ectopic beat (S) 1.00 1.00 1.00

Ventricular ectopic beat (V) 0.99 0.99 1.00

Fusion beat (F) 1.00 1.00 0.98

Unknown beat (Q) 0.98 0.98 0.99

Figure 8 
Accuracy and Loss of the proposed model RACLC

(a) Loss (b) Accuracy
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After having conducted an extensive and 
comprehensive research to assess the accuracy of the 
findings made for all of the categories, it was deduced 
that the accuracy rate for the five major heart rhythm 
classes, as well as the regular class, was greater than 
99.8%. This was the conclusion reached following the 
completion of the study. When it came to the assessment 
of the model, a method known as laminated 10-fold 
cross validation was utilised. This indicates that the 
dataset was divided into 10 groups, with the goal of 
making sure that each group has the same proportion of 
observations corresponding to a certain category value. 
The model was trained on each of the ten folds by 
utilising the nine folds as training data, and the trained 

model was then verified on the data that remained 
after the training process was complete (the 10th 
fold). After a total of one hundred epochs of 
training, the procedure was finished, and the 
optimal weights were re-established for each 
training phase. 
 
5.2 Performance Comparison  
A random deviation test is conducted in order to 
investigate the differences in organization 
performance between the proposed RACLC 
algorithm and other methods for the datasets. The 
comparative findings of the suggested RACLC 
algorithm's performance assessment with those of 
existing CNN algorithms are presented in Table 
3,4,5. The suggested RACLC model that we 
developed had an average accuracy of 99.8%. In 
recent times, 2D CNN models have been used for 
the purpose of classifying the input ECG signals 
into their appropriate groups. Before beginning 
the process of feature extraction, the 1D ECGs that 
are provided as input are converted into 2D. 
The 2D CNN models provide greater uniqueness 
and are more resilient when dealing with noise in 
the input signals. Before mining vigorous features, 
the model that has been suggested makes use of 
the CWT to transform the input 1D ECG into a 2D 
signal. 
 
 

 
Table 3  
Performance analysis of CNN model 

CNN Model 
Class N S V F Q 𝑺𝑺𝒆𝒆(%) 𝑺𝑺𝒑𝒑(%) 𝑷𝑷𝒓𝒓(%) 

N 95 10 0.5 12 12 95 94 95 
S 0.5 96 0.5 15 15 93 94 95 
V 0.11 12 95 20 20 94 93 94 
F 0.2 0.7 0.0 93 12 95 96 94 
Q 0.01 0.2 0.2 0.5 94 93 94 95 

 
Table 4  
Performance analysis of LSTM model 

LSTM Model 
Class N S V F Q 𝑺𝑺𝒆𝒆(%) 𝑺𝑺𝒑𝒑(%) 𝑷𝑷𝒓𝒓(%) 

N 97 14 12 8 4 97 96 96 
S 4 96 1 10 2 96 97 96 
V 0.10 10 96 16 10 95 95 96 
F 0.8 0.8 0.5 95 8 96 96 95 
Q 0.6 0.5 0.9 0.8 95 94 96 93 

 
Table 5  

This was the conclusion reached following the com-
pletion of the study. When it came to the assessment 
of the model, a method known as laminated 10-fold 
cross validation was utilised. This indicates that the 
dataset was divided into 10 groups, with the goal of 
making sure that each group has the same propor-
tion of observations corresponding to a certain cate-
gory value. The model was trained on each of the ten 
folds by utilising the nine folds as training data, and 
the trained model was then verified on the data that 
remained after the training process was complete 
(the 10th fold). After a total of one hundred epochs of 
training, the procedure was finished, and the optimal 
weights were re-established for each training phase.
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5.2. Performance Comparison 
A random deviation test is conducted in order to in-
vestigate the differences in organization performance 
between the proposed RACLC algorithm and other 
methods for the datasets. The comparative findings 
of the suggested RACLC algorithm’s performance 
assessment with those of existing CNN algorithms 

are presented in Table 3,4,5. The suggested RACLC 
model that we developed had an average accuracy of 
99.8%. In recent times, 2D CNN models have been 
used for the purpose of classifying the input ECG sig-
nals into their appropriate groups. Before beginning 
the process of feature extraction, the 1D ECGs that 
are provided as input are converted into 2D.

Table 3 
Performance analysis of CNN model

CNN Model

Class N S V F Q Se(%) Sp(%) Pr(%)

N 95 10 0.5 12 12 95 94 95

S 0.5 96 0.5 15 15 93 94 95

V 0.11 12 95 20 20 94 93 94

F 0.2 0.7 0.0 93 12 95 96 94

Q 0.01 0.2 0.2 0.5 94 93 94 95

Table 4 
Performance analysis of LSTM model

LSTM Model

Class N S V F Q Se (%) Sp (%) Pr (%)

N 97 14 12 8 4 97 96 96

S 4 96 1 10 2 96 97 96

V 0.10 10 96 16 10 95 95 96

F 0.8 0.8 0.5 95 8 96 96 95

Q 0.6 0.5 0.9 0.8 95 94 96 93

Table 5 
Performance analysis of CNN-LSTM model

CNN - LSTM Model

Class N S V F Q Se (%) Sp (%) Pr (%)

N 98 7 0.5 0.8 0.5 98 97 98

S 0.2 97 0.2 0.0 10 97 97 97

V 0.12 5 98 0.1 3 98 98 97

F 0.5 0.4 0.2 98 0.8 97 98 98

Q 0.2 0.0 0.0 0.5 97 97 97 98
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Figure 9 
Accuracy Loss of the LSTM model

  

Performance analysis of CNN-LSTM model 
CNN - LSTM Model 

Class N S V F Q 𝑺𝑺𝒆𝒆(%) 𝑺𝑺𝒑𝒑(%) 𝑷𝑷𝒓𝒓(%) 
N 98 7 0.5 0.8 0.5 98 97 98 
S 0.2 97 0.2 0.0 10 97 97 97 
V 0.12 5 98 0.1 3 98 98 97 
F 0.5 0.4 0.2 98 0.8 97 98 98 
Q 0.2 0.0 0.0 0.5 97 97 97 98 

 

 

 

       

Figure 10 
Accuracy Loss of the CNN model

The 2D CNN models provide greater uniqueness and 
are more resilient when dealing with noise in the in-
put signals. Before mining vigorous features, the mod-
el that has been suggested makes use of the CWT to 
transform the input 1D ECG into a 2D signal.
The accuracy of the 2D CNN model that was sug-
gested is superior to that of the existing model. In the 
work that has been proposed, DWT is used to extract 
characteristics of the ECG signal waveform. The suc-
cess of the developed RACLC-based arrhythmia clas-
sification is further examined in comparison to the 

works that have already been done employing various 
neural network-based approaches found in the pub-
lished research. The exactness that the earlier study 
has developed is shown in Figures 9-10, along with the 
work that will be undertaken in the future.
The following is a list of the drawbacks of our ap-
proach: complicated structure requiring lengthier sys-
tems integration (more extended training and optimi-
zation). Following many trials and tribulations about 
the variety of layers and their respective numbers, the 
hybrid RACLC model has emerged victorious and has 

  

Performance analysis of CNN-LSTM model 
CNN - LSTM Model 

Class N S V F Q 𝑺𝑺𝒆𝒆(%) 𝑺𝑺𝒑𝒑(%) 𝑷𝑷𝒓𝒓(%) 
N 98 7 0.5 0.8 0.5 98 97 98 
S 0.2 97 0.2 0.0 10 97 97 97 
V 0.12 5 98 0.1 3 98 98 97 
F 0.5 0.4 0.2 98 0.8 97 98 98 
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Figure 11 
Performance comparison with other research work

been adopted. Figure 11 shows the recital assessment 
of the existing model proposed by other researchers. 
To provide even more specifics, it was discovered that 
the learning curve could be considerably lowered by 
deactivating constituents of the network layers. This 
would result in a substantially lower actual number of 
matrix multiplication for the system, which, in turn, 
would lead to the training being considerably lower. 
This was because deleting these layers would occur 
in a much reduced average quantity of simulations. 
When just the CNN component of the system was uti-
lized, the values for particularity and sensitivity were 
found to be 97.48% and 98.16%, respectively. On the 
other hand, when only the LSTM component of the 
network was utilized, the optimal making was 96.30% 
and 97.77%, respectively. However, it was shown that 
reducing layers resulted in a reduction in both the av-
erage sensitivity and specificity of the test. This sug-
gests that the hybrid network is superior to both past 
editions since it integrates the strengths of both previ-
ous models to utilize them fully.
This is the case even though the time required for 
training is somewhat decreased in both scenarios. 
On the other hand, increasing the number of CNN 
layers resulted in no change to the overall sensitivity 
or specificity, even though the training period rose to 
around one minute for each epoch. The hybrid RACLC 

 

 

 
 
 
The accuracy of the 2D CNN model that was suggested 
is superior to that of the existing model. In the work that 
has been proposed, DWT is used to extract 
characteristics of the ECG signal waveform. The 
success of the developed RACLC-based arrhythmia 
classification is further examined in comparison to the 
works that have already been done employing various 
neural network-based approaches found in the published 
research. The exactness that the earlier study has 
developed is shown in Figures 9-10, along with the work 
that will be undertaken in the future. 
The following is a list of the drawbacks of our approach: 
complicated structure requiring lengthier systems 
integration (more extended training and optimization). 
Following many trials and tribulations about the variety 
of layers and their respective numbers, the hybrid 
RACLC model has emerged victorious and has been 
adopted.  Figure 11 shows the recital assessment of the 
existing model proposed by other researchers. To 
provide even more specifics, it was discovered that the 
learning curve could be considerably lowered by 
deactivating constituents of the network layers. This 
would result in a substantially lower actual number of 
matrix multiplication for the system, which, in turn, 
would lead to the training being considerably lower. 
This was because deleting these layers would occur in a 
much reduced average quantity of simulations. When 
just the CNN component of the system was utilized, the 
values for particularity and sensitivity were found to be 
97.48% and 98.16%, respectively. On the other hand, 
when only the LSTM component of the network was 
utilized, the optimal making was 96.30% and 97.77%, 
respectively. However, it was shown that reducing 
layers resulted in a reduction in both the average 
sensitivity and specificity of the test. This suggests that 
the hybrid network is superior to both past editions since 
it integrates the strengths of both previous models to 
utilize them fully. 

This is the case even though the time required for 
training is somewhat decreased in both scenarios. 
On the other hand, increasing the number of CNN 
layers resulted in no change to the overall 
sensitivity or specificity, even though the training 
period rose to around one minute for each epoch. 
The hybrid RACLC approach gives the maximum 
aggregation of performance (sensitivity and 
specificity) when combined with all of the past 
empirical investigations. The provided model 
fulfills well for enormously unbalanced datasets. 
The center of focus loss function produces 
enhanced consequences than the conventional 
cross entropy function for predictions and 
classification. Additionally, the technique might 
be applied for accurate arrhythmia identification 
as the predictor. Below is a listing of the general 
achievements made possible because of this study: 
The hybrid RACLC method provides the 
maximum possible level of accuracy, measured in 
terms of sensitivity and specificity. 

6. Conclusion and Future Work 
Recent advances in medical technology have 
resulted in substantial shifts in the organization of 
medical care and its delivery. The 
electrocardiogram (ECG), a portable instrument, 
made it possible to record the heart's electrical 
activity, which was helpful in responding to 
medical problems. However, due to its intricacy 
and the noise acquired from previous generations, 
its accurate interpretation has yet to be questioned. 
In this study, three different approaches to the 
classification of electrocardiogram (ECG) signals 
are proposed. Each system can accurately and 
effectively categorize ECG data into one of five 
primary arrhythmia types. DWT is utilized in the 

approach gives the maximum aggregation of perfor-
mance (sensitivity and specificity) when combined 
with all of the past empirical investigations. The pro-
vided model fulfills well for enormously unbalanced 
datasets. The center of focus loss function produces 
enhanced consequences than the conventional cross 
entropy function for predictions and classification. 
Additionally, the technique might be applied for accu-
rate arrhythmia identification as the predictor. Below 
is a listing of the general achievements made possi-
ble because of this study: The hybrid RACLC meth-
od provides the maximum possible level of accuracy, 
measured in terms of sensitivity and specificity.

6. Conclusion and Future Work
Recent advances in medical technology have result-
ed in substantial shifts in the organization of medical 
care and its delivery. The electrocardiogram (ECG), 
a portable instrument, made it possible to record the 
heart’s electrical activity, which was helpful in re-
sponding to medical problems. However, due to its 
intricacy and the noise acquired from previous gener-
ations, its accurate interpretation has yet to be ques-
tioned. In this study, three different approaches to the 
classification of electrocardiogram (ECG) signals are 
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proposed. Each system can accurately and effectively 
categorize ECG data into one of five primary arrhyth-
mia types. DWT is utilized in the first step to denoise 
the ECG samples, and RACLC is then used for clas-
sification. The proposed work outperformed most of 
the state-of-the-art structures consisting of neural 
networks to improve accuracy for ECG classification. 
This was determined through a similar evaluation 
with existing methods for classifying arrhythmias 
that take advantage of the architecture of neural net-
works. Our proposed model fitted to the ECG signal, 
discovering helpful characteristics from the provid-
ed data. In the final step, automated cataloging of the 
ECG signal is performed using the earlier recovered 
features. An accuracy of 99.8 percent may be achieved 
when classifying the ECG signal by utilizing a 2D 
CNN with an LSTM model. This level of accuracy is 
superior to that attained by the other algorithms uti-
lised in earlier research. Similarly, it is possible to 
build efficient and practical algorithms for classifying 

arrhythmia ECG signals by first translating 1D ECG 
signal into 2D ECG pictures and then using this as an 
input to the 2D CNN algorithm. This process may be 
accomplished. Using 2D pictures, the method that we 
have recommended can classify arrhythmia with a 
99.8 percent accuracy rate.
In the future, the effort that was presented can be ex-
panded to cover more arrhythmia classes to provide 
an all-encompassing method for the categorization of 
arrhythmias via ECG data. Future work will involve 
the development of an integrated system for the clas-
sification of arrhythmia ECG signals. This system 
will be able to monitor and scan the patient’s ECG us-
ing the internal camera of the robot. It will also be able 
to forecast and identify the arrhythmia ECG signal in 
order to provide advice to the medical professional. 
The current investigation makes use of a single ECG 
signal as its data source. In the future, it will be help-
ful to categorise ECG data by using data from many 
channels at the same time.
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