
260

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2013, Vol.42, No.3

Covert Channel for Cluster-based File Systems Using Multiple Cover Files

Nerijus Morkevičius

Computer Department, Kaunas University of Technology,
Studentų str. 50-214a, LT-51368, Kaunas, Lithuania

e-mail: nerijus.morkevicius@oksl.ktu.lt

Grigas Petraitis

Bentley Systems Lithuania,
Svitrigailos str. 11H, LT-03228, Vilnius, Lithuania

Algimantas Venčkauskas

Computer Department, Kaunas University of Technology,
Studentų str. 50-212, LT-51368, Kaunas, Lithuania

e-mail: algimantas.venckauskas@ktu.lt

Jonas Čeponis

Computer Department, Kaunas University of Technology,
Studentų str. 50-212, LT-51368, Kaunas, Lithuania

 http://dx.doi.org/10.5755/j01.itc.42.3.3328

Abstract. Problems of sensitive information hiding in disk drives using cluster-based file systems are analyzed in
this study. A new covert channel method for information hiding in disk drives is proposed and discussed. The method
uses multiple cover files and is based on relative allocation of clusters of cover files in relation to one another. The
experimental results presented in this paper show that the proposed method is easy to implement, provides good (for
the covert channel) storage capacity and has the property of two-fold plausible deniability. The proposed covert
channel method can be used for the storage of small and very sensitive information (such as passwords or encryption
keys) on removable disk drives.

Keywords: information hiding; steganography; covert channels; disk forensics.

1. Introduction
Secure storage and transmission of sensitive digital

information is a very important topic. Traditionally
secret information is encrypted by using
cryptographically strong algorithms, which are
constantly complemented with new methods [14],
[13]. Still, in some usage scenarios, data encryption by
using cryptographic methods is not sufficient. For
example, a very important problem in cryptography is
generation, management and storage of key
information [21], [22]. Secret keys are small, but very
sensitive information which in some cases must be

stored in the disk drives. Security provided by
traditional encryption methods is usually not sufficient
in such situations.

The fact of the existence of encrypted information
using cryptographic methods is easily detectable, so,
the owner could be forced to reveal it [19]. One of the
similar scenarios is the so-called “the prisoner’s
problem” which was first introduced by Lampson in
[12]. The most widely used data hiding strategies,
which can solve this problem, are steganography and
covert channels [17]. The steganography methods hide
sensitive information inside the innocuous information
blocks, which are transferred or stored [19]. Covert

Covert Channel for Cluster-based File Systems Using Multiple Cover Files

261

channels are a subclass of information hiding methods
and provide means to hide sensitive information in the
media that is neither designed for nor intended to
transfer information [20].

Khan et al. in [11] describe two levels of security
in data hiding methods. Plausible deniability “is a
security property of a mechanism that allows parties to
claim to others (e.g., a judge) that some information is
not in their possession” [15]. Usually the term
“plausible deniability” means that the parties can
reveal only a part of hidden and/or encrypted data and
successfully deny that any further data exists. The fact
of the existence of the hidden data is not denied.

On the other hand, “two-fold plausible deniability
can be used to provide the covertly communicating
parties two chances to deny the presence of hidden
information” [11]. The first chance is to deny the fact
of the existence of any hidden data. The second is the
same as in the plausible deniability scenario. Only the
covert channel methods, which do not add any
additional information while storing or transferring
hidden data, have the property of two-fold plausible
deniability.

In this paper we present a new effective and simple
to implement method for sensitive information storage
on the disk drives by using cluster-based file systems.
The experimental results show that the proposed
method has the property of two-fold plausible
deniability.

2. Related work
The data hiding methods are usually intended to be

used in communication protocols for sensitive data
transmission [9], [4]. Works [5], [16], [18] provide
effective data hiding methods for storing sensitive
information in the disk drives. General steganographic
methods for data hiding in an unused space of disk
structures and file systems are discussed in [5], [10],
[18], but in those cases the information can be easily
revealed by a third party in case it analyzes the disk.
Anderson et al. [1] proposed the steganographic file
system which uses two different methods for data
hiding in the cover files by filling the file system with
random data. Other authors [15], [16] introduce
further improvements to this method.

All steganographic approaches and other popular
data hiding implementations [3] use random data
written into various “unused” places of file systems
and disks, which is easily detectable by a third party’s
investigator, so, consequently, they have only the
property of plausible deniability.

Two covert channel methods providing two-fold
plausible deniability and intended for sensitive data
storage in the disk file systems were proposed by
Khan et al. in [11]. These methods do not require any
additional information to be written to the disk. They
hide information by using special distribution of disk
allocation units (blocks or clusters) containing
innocuous cover files. Both methods use one cover

file. The real secret binary message is embedded using
the distribution of cover file clusters in FAT [2] file
system.

The first method applies the fragmentation
property of the files as storage media. The cluster of
each file starting with the second in FAT file system
may be next to the previous cluster (not fragmented)
or, if the next cluster is occupied, it may be in some
other place on the disk (fragmented). Bits of a secret
message are consecutively hidden by the
corresponding fragmented or not fragmented clusters
of the cover file. If two consecutive bits in the
message are the same, then the non-fragmented cluster
of the file is written to the disk. This method is
relatively simple to implement, but the problem occurs
when the non-fragmented cover file cluster has to be
written to the cluster already occupied by some other
file. The authors of the method provide solutions for
such situations.

The second method presented in [11] is based on
the approach that the message is divided into small
parts, these parts being interpreted as natural numbers,
and then each number is expressed by the distance
between the fragmented clusters of the cover file. In
such a case, the capacity of the covert channel is
increased compared to the first approach, but the data
embedding algorithm is more complex. The authors
discuss two types of collisions which may occur
during the message hiding process. Although the
authors present the algorithm which allows dealing
with all types of collisions, the method is quite
complex.

3. The proposed data hiding method
The main idea of the proposed data embedding

method is to use more than one cover file and to hide
the secret message by using relative positions of the
clusters of these files with respect to each other. In
such a case, all other files on the file system are
ignored and only the clusters belonging to all cover
files are analyzed. If we create the array of indexes of
these clusters in the file system and sort it in
ascending order, we get a sequence of clusters
belonging only to the cover files. If for some array
index we have a situation when the cluster of one
cover file is followed by the cluster of another cover
file, then we can interpret this situation as a bit “1” of
the hidden message and vice versa.

Moreover, in the case of using more than two
cover files, we can assign relative numbers to each
cover file and, for each index of the sorted clusters’
array, calculate the difference between the assigned
numbers of the previous and the current files. By
means of this strategy we can embed more than one
bit of the secret message into one cluster of the disk
file system. In such a case, the names of the cover files
become a secret key, because the receiving party has
to know the names and the exact order of these files in
order to successfully read the hidden message. The

N. Morkevičius, G. Petraitis, A. Venčkauskas, J. Čeponis

262

formal algorithms of data hiding and retrieval by using
two and more cover files are presented in the
following subsections.

3.1. Data hiding algorithm

Input:
Message 𝑀 to be embedded, 𝑀 = [𝑏0, 𝑏1, … ,

𝑏𝑛−1], where 𝑛 is the length of the message in bits, 𝑏𝑖,
𝑖 = 0, 1, … ,𝑛 − 1 – message bits.

Cover files 𝐹0,𝐹1, … ,𝐹𝑝−1, where p is the number
of cover files, 𝑝 = 2𝑚 , 𝑚 ∈ 𝑁. Natural number 𝑚 is
considered as secret shared information, part of the
secret key. The file names of the cover files 𝐹𝑖 are
strings 𝑡𝑖, 𝑖 = 0, 1, … , 𝑝 − 1. The file order is essential
information.

Matrix 𝐶 = [𝑐𝑖𝑗] contains the numbers of clusters
containing cover files 𝐹𝑖. In such way each cover file
𝐹𝑖 can be represented as the array of entries of this
matrix, 𝐹𝑖 = [𝑐𝑖0, 𝑐𝑖1, … , 𝑐𝑖𝐿𝑖] , where 𝐿𝑖 is the total
number of clusters for file 𝐹𝑖. In the worst case (when
all the cover files contain important information and
have to be preserved) the lengths of all cover files 𝐹𝑖
should be kLi ≥ , mn=k / .

Array D contains the indices of empty clusters of
the disk file system before the hiding procedure,
𝐷 = [𝑐1, 𝑐2, … , 𝑐𝐿𝐷] , 𝑐1 < 𝑐2 < ⋯ < 𝑐𝐿𝐷 , where 𝑐𝑖 ,
𝑖 = 1, 2, … , 𝐿𝐷 are the indices of empty clusters in the
disk file system. In the worst case, 𝐿𝐷 should comply
with the following inequality:

∑
−

≥
1

0

p

=i
iD LL . (1)

Preparation:
Message 𝑀 is divided into blocks of m bits each,
[]kBBBM ,,, 21 2= , where mn=k / . If the last

block is not full, the message is padded with zero bits
up to a full block. Each bit block iB is interpreted as
the natural number: NBi ∈ , k,=i …0,1, ,

10 −≤≤ pBi . Where, the value of the block 0B
(initialization vector) is the additional secret
information or the last block of the previously
embedded message.

Hiding:
begin
 0:=ij , 10,1, −… p,=i ;
 for i=1 to k do
 ()pBBN iii mod: 1 += − , 10 −≤≤ pNi ;

iNi jNi cc =: (Write one cluster of the cover

file iNF to the file system at

position ic);
1: += iNiN jj ;

 end

Write the remaining parts of the cover files
110 ,, −… pF,FF to the file system (if needed);

end
Output:
Modified cluster distribution D on the file system

containing cover files.
The information needed to retrieve the hidden

information (secret key): value m , initialization
vector 𝐵0 and the permutation of all cover file names

it .

3.2. Data retrieval algorithm

Input:
Secret key information: hiding parametre 𝑚 ,

𝑚 ∈ 𝑁; initialization vector 𝐵0 and the permutation of
names 𝑡𝑖 of all cover files 𝐹0,𝐹1, … ,𝐹𝑝−1 , 𝑝 = 2𝑚 ,
also, the length 𝑛 of the hidden message.

The array 𝐷 of the indexes of clusters in the disk
file system containing cover files 𝐹𝑖 , 𝑖 = 0, 1, … ,
𝑝 − 1, 𝐷 = [𝑐1, 𝑐2, … , 𝑐𝐿𝐷], 𝑐1 < 𝑐2 < ⋯ < 𝑐𝐿𝐷 . Each
cluster 𝑐𝑙 in array 𝐷 belongs to one and only one of
cover files (𝑐𝑙 = 𝑐𝑖𝑙𝑗𝑙, 𝑙 = 1,2, … , 𝐿𝐷, where 𝑐𝑖𝑙𝑗𝑙 is the
𝑗𝑙-th cluster of the cover file 𝐹𝑖𝑙).

Preparation:
Message to be retrieved 𝑀 (memory space for

message) is divided into k blocks of m bits each,
[]kBBBM ,,, 21 2= . Each bit block iB is interpreted

as a natural number.
Retrieving:
begin
 0:=ij , 10,1, −… p,=i ;
 for l=1 to k do

read the l-th cluster lc from the disk file
system;
find cover file index lN , such that

lNl jNl cc = ;

1: += ll NN jj ;

()pBNB lll mod: 1−−= , 10 −≤≤ pBl ;

 end
discard trailing bits in the decoded message M
exceeding length n ;

end
Output:
Retrieved message M .

3.3. Data hiding example

Suppose we want to embed binary message
]0,0,1,1,1,00,1[,=M (8=n) to the cluster-based file

system. Assume that we have some free clusters as
shown in Fig. 1, “before” part.

Covert Channel for Cluster-based File Systems Using Multiple Cover Files

263

We freely choose parameter𝑚 = 2 , so now we
need 𝑝 = 2𝑚 = 4 cover files. We choose files with
names 𝑡0 = "𝐴. 𝑡𝑡𝑡" , 𝑡1 = "𝐵. 𝑡𝑡𝑡" , 𝑡2 = "𝐶. 𝑡𝑡𝑡" and
𝑡3 = "𝐷. 𝑡𝑡𝑡" for this purpose. At least 4 free clusters
are needed in the file system used to embed a secret
message. Also, all four cover files should be at least 4
clusters long (if we face the worst case scenario, when
all message is embedded by using only one file).
According to Fig. 1, array of indexes of free clusters
is𝐷 = [102,103,106,109, … ,] . Now we can divide
message 𝑀 into 2-bit length blocks: 𝑀 = [2,1,3,0]
(𝐵1 = 2,𝐵2 = 1, etc.). Additionally we have to freely
choose the value for the initialization vector 𝐵0 = 2.

...
101
102
103
104
105
106
107
108
109
...

...
xxx.txt
[free]
[free]
xxx.txt
yyy.log
[free]
xxx.txt
zzz.doc
[free]

...

Cluster

Content

...
101
102
103
104
105
106
107
108
109
...

...
xxx.txt
A.txt
D.txt

xxx.txt
yyy.log
A.txt

xxx.txt
zzz.doc
D.txt

...

Cluster

Content

before after

Figure 1. The proposed data hiding scheme applied to the
file system fragment

During the data hiding phase we take the message
block 𝐵1 and calculate the index of the cover file:
𝑁1 ≔ 𝐵0 + 𝐵1(𝑚𝑚𝑚4) = 2 + 2(𝑚𝑚𝑚4) = 0. Now we
have to write the first cluster of 𝐹0 (“A.txt”) into the
first free cluster of the file system at the address
102(𝑐1 ≔ 𝑐00) , increase the current cluster counter
for file 0F and proceed to the next message block.
One can easily calculate that 𝑁2 ≔ 3 , 𝑁3 ≔ 0 and
𝑁4 ≔ 3. So, free clusters should be filled as shown in
Fig. 1 “after” part: 𝑐2 ≔ 𝑐30 , 𝑐3 ≔ 𝑐01 , 𝑐4 ≔ 𝑐31 .
When the procedure is completed, the modified
cluster layout of the file system is
𝐷 = [102, 103, 106, 109, … ,] = [𝑐00, 𝑐30, 𝑐01, 𝑐31] .
On the other hand, 𝐹0 = [102,106, …] and 𝐹3 =
[103,109, …].

The last step is to freely write the remaining
clusters of all cover files into free clusters following
the filled ones (or just discard the remaining cover file
content if it is not important).

For data recovery, we have to know the “secret
key”, i. e. information which was used for data hiding:
𝑚 = 2 , 𝑡0 = "𝐴. 𝑡𝑡𝑡" , 𝑡1 = "𝐵. 𝑡𝑡𝑡" , 𝑡2 = "𝐶. 𝑡𝑡𝑡" ,
𝑡3 = "𝐷. 𝑡𝑡𝑡" and initialization vector 𝐵0 = 2 (also,
𝑛 = 8). To retrieve the message we prepare space for
message 𝑀 , and divide it into 2-bit blocks 𝑀 =
[𝐵1 ,𝐵2,𝐵3,𝐵4].

Message retrieval is done by sequentially reading
clusters 𝑐𝑙 belonging to all cover files starting with the
smallest cluster number. We know which cover file

each cluster belongs to, so we can find the cover file
index 𝑁𝑙. From Fig. 1 “after” situation, we know that
𝑐1 = 102 and 𝑐1 = 𝑐00 , because cluster with index
102 belongs to file “A.txt”, so 𝑁1 = 0. Now we can
calculate value of the first message block:
𝐵1 ∶= 𝑁1 − 𝐵0(𝑚𝑚𝑚4) = 0 − 2(𝑚𝑚𝑚4) = 2. Similar-
ly, all the remaining message blocks are recovered
(𝐵2 ∶= 3 − 2(𝑚𝑚𝑚4) = 1, 𝐵3 ∶= 3 and 𝐵4 ∶= 0).

4. Evaluation of the method
The proposed data hiding method in cluster-based

file systems using multiple cover files is very
straightforward to implement. Unlike two similar
methods, it does not create any collisions during the
operation, so other files on the disk do not have to be
touched during data embedding, which increases the
speed of operation.

Our experiments show that the storage capacity of
the proposed method, using two cover files, is equal to
the capacity of the first method in [11], which is one
bit per cluster. The storage capacity when using more
files is comparable to the second method in [11], but
our method does not depend on the occupation of the
file system by other (including cover) files.

The proposed data hiding method requires a secret
key to successfully recover the data; this provides
extra level of security for the hidden data causing
multi-level property of plausible deniability.

Our method does not write any additional
information into the disk at all, so none of the byte
level disk content analysis methods would detect the
fact of the hidden data. File fragmentation is increased
by using all similar methods, but this situation is not
uncommon in file systems.

The proposed method not only fragments the cover
files, but also introduces a special type of
fragmentation – the interlaced files. Further in this
paper we provide experimental results which show
that the increased fragmentation and the interlaced
files can be justified by natural causes, which means
that the proposed method possesses the property of
two-fold plausible deniability, when the fact of the
existence of the hidden data could be denied.

4.1. Performance evaluation

The storage capacity of the proposed method can
be expressed by the following equation:

pC 2log= , (2)

where 𝐶 is the covert channel storage capacity
expressed in bits per cluster, 𝑝 is the number of cover
files. Equation (2) is relevant only in the case when
the information stored in all cover files is not
important, and we can discard the remaining parts of
the cover files, after the whole secret message is
embedded. If this is not the case, then the total
required storage is bounded by inequality (1). Further

http://en.wikipedia.org/wiki/%E2%89%94
http://en.wikipedia.org/wiki/%E2%89%94
http://en.wikipedia.org/wiki/%E2%89%94
http://en.wikipedia.org/wiki/%E2%89%94
http://en.wikipedia.org/wiki/%E2%89%94
http://en.wikipedia.org/wiki/%E2%89%94
http://en.wikipedia.org/wiki/%E2%89%94
http://en.wikipedia.org/wiki/%E2%89%94

N. Morkevičius, G. Petraitis, A. Venčkauskas, J. Čeponis

264

in this paper we discuss only the first case, which is
more likely in real situations.

The study of real file systems of various types
shows that the most common gaps between two
clusters of the same file are rather small. The most
common gap is 8, 16 or 32 blocks as observed by
Garfinkel in his study [7]. After the analysis of the
available file systems, Khan et al. [11] say that if the
data hiding algorithm claims to be undetectable by the
investigator, then it has to use the most common sizes
of gaps between the clusters: “... a good algorithm
might use a gap size of 7/8/6 clusters to represent one
type of the hidden bit ...”.

Considering these conditions, we can compare the
storage capacity of the methods under discussion. In
Fig. 2 two methods using different parameters are
compared. The first three lines (marked as Khan)
represent the second (more efficient in terms of
capacity) method from [11]. Parameter l in this
method represents bits per cluster. In the case when
we require the gaps between the clusters to be less
than 32, we have three “good” values for l (3, 4 and
5). Other parameters are the same as in Fig. 6 in [11],
α = 0.5. The last three lines represent the proposed
multi-file (MF) data hiding method, using 4, 8 and 2
cover files, respectively.

Figure 2. Comparison of the capacity of the data hiding

methods

Fig. 2 shows that the storage capacity per cluster
of the proposed method does not decrease when the
file system is filled, which means that our method is
more suitable for small disks (flash cards, USB drives,
etc.). Storage capacity is comparable to other methods
and gets relatively better when the number of the
occupied cluster increases. It is even possible to fully
fill the disk with cover files and use each cluster for
the storage of hidden information, which is very
unlikely when using other methods.

4.2. Stability of the hidden data

The steganography methods, which rely on the
hidden information storage in the unused places of file

systems, are vulnerable to accidental corruption
caused by modification of the file system by OS or
other program unaware of the existence of the hidden
data. For example, a new file created by the user can
overwrite the hidden data stored in the unallocated
sectors of the disk.

The proposed method does not store any additional
information and all structures of the file system fully
comply with the standards (i. e. FAT32), so the hidden
information is resistant to common disk modifications
(regular file edition, deletion, creation, etc.). On the
other hand, some low level tools (such as disk
defragmentation utilities) can change the cover file
allocation and destroy the hidden data. Modification
and appendage to one of the cover files are risky
operations which can cause reallocation of the file
clusters. Renaming, moving, copying or deleting one
of the cover files will destroy the hidden information.

4.3. Security evaluation

The proposed covert channel method is
undetectable by disk byte analysis methods. The only
noticeable result it creates is the increased fragmenta-
tion of files. Fragmentation of files is a natural state of
nearly full, frequently used file systems. One question,
however, still exists: what parameters of the hiding
algorithm should there be that the fragmentation
caused by it would be the same as caused by natural
reasons?

We have performed the extensive analysis of the
used disk drives available in our university campus to
find out how the files fragment during the basic usage.
We also considered similar studies carried out in [7],
[11]. We used “The Sleuth Kit” [6], [8] to collect
intermediate statistical information from disk drives.
Then this information was transformed and imported
into the relational database. All the further analysis
was conducted by using common queries and some
programming methods against this database. The
results confirm the ones presented in other papers.

However, the most important questions were
related to the specifics of our method. Do real file
systems contain interlaced files? Is there any “normal”
disk usage pattern, which causes files to interlace?

To be more specific, we have to formally define
the term of interlaced files.

Definition. Two files 𝐹1 = [𝑐1𝑂 , 𝑐1𝑙 , … , 𝑐1𝐿1 and
𝐹2 = [𝑐2𝑂, 𝑐2𝑙 , … , 𝑐2𝐿2 are considered interlaced if
there exists at least one index pair 𝑖, 𝑗 , such that
𝑐1𝑖 < 𝑐2𝑗 < 𝑐2𝑗+1 < 𝑐1𝑖+1 or 𝑐2𝑗 < 𝑐1𝑖 < 𝑐2𝑗+1 <
𝑐1𝑖+1. If such a situation is encountered several times,
then two files 𝐹1 and 𝐹2 are interlaced corresponding
number of times, we will call it the number of
interlaces.

On the other hand, each file 𝐹𝑖 can be interlaced
with a number of other files, denoted by 𝑛𝐹𝑖 . If we
count all the interlaces of file 𝐹𝑖 with all other files,
we will get the total number of interlaces for file 𝐹𝑖,
denoted by 𝑁𝐹𝑖.

1 .104 2 .104 3 .104 4 .104 5 .104 6 .104 7 .104 8 .104

1

2

3

4

5
Khan, l=3
Khan, l=4
Khan, l=5
MF, p=4
MF, p=8
MF, p=2

Number of occupied clusters

C
ap

ac
ity

 (n
um

be
r o

f b
its

 p
er

 c
lu

ste
r)

Covert Channel for Cluster-based File Systems Using Multiple Cover Files

265

The results of the study of the available file
systems are presented in Fig. 3. The bars in this chart
represent the relative quantity of the interlaced files.
For example, the first bar means that 4.33% of all files
are interlaced with at least one other file (𝑛𝐹 ≥ 1).
The curve represents the average number of the
interlaces (NF) for each interlaced file in the
corresponding pool. For example, all files which are
interlaced with at least three other files (second bar)
have on average 1460 interlaces.

Figure 3. Amount of interlaced files (nF) and average

number of interlaces (NF) for one interlaced file

Most interlaced files according to the file type are
listed in Table 1. Only the types of files which on
average were interlaced with at least three other files
and the average number of such files in the analyzed
file systems was more than 10 are included.

Table 1. Most interlaced files according to the file type

File
type

Avg.
number

of files on
disk

Avg. file
size in

clusters

Avg.
number of
interlaced
files (nF)

Max.
number of
interlaced
files (nF)

.msi 14 893 326 5357
.jar 132 204 134 5715
.zip 16 2153 127 5062
.msp 22 2320 114 5247
.msf 15 39 106 3774

.LOG 124 41 102 4659
.otp 12 46 100 3036
.cab 33 885 81 5662
.db 29 67 76 4704
.frx 62 7 61 2728
.mo 103 16 54 3260
.svg 23 7 53 3036
.dll 2159 111 45 6158

Another interesting quality of file types observed

during our analysis is a relative tendency to interlace
which is summarized in Fig. 4. The numbers
represented by bars are calculated by dividing the
average number of the interlaced files (nF) by the
length of the corresponding file. These numbers show
which file types are best candidates for cover files.
The investigation shows that small files, which are

frequently updated during their lifetime, have a bigger
tendency to interlace.

Figure 4. Relative tendency to interlace according

to the file type

To answer the second question, we created the
software which simulates different situations in
Windows 7, Windows XP and Ubuntu 11.04 operating
systems using FAT32 and NTFS file systems. The
software starts several threads which perform the
following actions: 1. Copy several files simulta-
neously into the same location; 2. Download several
files simultaneously into the same location by using
BitTorrent protocol; 3. Write several files
simultaneously by using “append” method. The main
point here is that this software does not perform any
direct access to the file system structures; it fully
relies on the standard system calls of OS.

The experimental results show that the first two
scenarios do not produce any significant
fragmentation. The results of the third scenario are
summarized in Table 2. As one can see, the files are
extremely highly interlaced.

Table 2. Results of parallel work with files

OS
File
system
type

Number
of

threads

Average
number
of frag-
ments

Number of
occurrences

of
interlaced
files (NF)

Linux FAT32 2 24774 49546
Linux NTFS 2 7 12
Windows 7 FAT32 2 25579 51157
Windows 7 NTFS 2 19869 29684
Windows XP FAT32 2 16457 14812
Windows XP NTFS 2 24675 49341
Windows 7 FAT32 3 14122 46995
Windows 7 NTFS 3 25326 97875
Windows 7 FAT32 4 11410 44229
Windows 7 NTFS 4 25521 148634

5. Conclusions
In this paper we have presented a new method for

secure data hiding in cluster-based file systems. This
method uses multiple cover files and is based on the

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 4 8 16 32 64 128 256

Number of interlaced files

Av
er

ag
e

nu
m

be
r N

F
fo

r o
ne

 fi
le

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

Pe
rc

en
t f

ro
m

 a
ll

fil
es

 in
 fi

le
 sy

st
em

Percent from all fi les Average number NF for one fi le

Relative tendency to interlace

0

2

4

6

8

10

12

14

16

18

20

.prop
ert

ies .xu
l

.D
TD

.K01
.pyc .rd

f
.FRT

.xb
a .frx .sv

g .js .xs
l

.ott

N. Morkevičius, G. Petraitis, A. Venčkauskas, J. Čeponis

266

relative allocation of the clusters of cover files in
relation to one another. Our method is very easy to
implement, because it does not cause any collisions
with other files (regular or cover).

The performance of the proposed method does not
depend on the size of the file system or free space left
on the disk drive (see Fig. 2). It provides the constant
bit per cluster storage capacity ratio and enables full
filling of the whole file system with the cover files.
Based on the situation, one can freely choose the
number of cover files whose names and order
compose the secret key information needed to decode
the message. The choice of the number of the cover
files enables a wide range variation of the covert
channel storage capacity.

Our experiments show that the storage capacity of
the proposed method is comparable or higher to other
existing methods, provided they are used with the
parameters recommended for secure (undetectable)
operation (see Fig. 2).

Although all covert channel techniques provide
secure storage capabilities which are inferior to the
traditional encryption methods, they are perfect for
storing small but very sensitive information. The
proposed data hiding method is best suited for secure
storage of encryption keys and user passwords on
removable media, such as flash drives.

One can choose to use two or four cover files, if
she wants to hide bank account’s password in her flash
drive. On the other hand, if one wants to hide a secret
file of considerable size, the better choice is to use 128
or even 256 cover files. Experimental results show
(see Fig. 3) that in both cases the fact of existence of
hidden information is plausibly deniable.

We have implemented the proposed data hiding
method for usage with the FAT32 file system. This file
system is most widely used on the small removable
media devices; it is supported in almost all operating
systems and compatible with widest range of smart
devices. On the other hand, experimental results show
(see Table 2) that modern NTFS file system is another
good candidate for implementation of the proposed
covert channel method.

The proposed data hiding technique causes
fragmentation of the file system and creates interlaced
files. Our experiments confirm that the interlaced files
are common in intensively used file systems;
moreover, heavily interlaced files can be caused by
ordinary programs which constantly append
information to several files. As a final conclusion, we
can state that the proposed data hiding method has the
property of two-fold plausible deniability.

References
[1] R. J. Anderson, R. M. Needham, A. Shamir. The

steganographic file system. In: Proceedings of the
Second International Workshop on Information
Hiding, London, UK, 1998, pp. 73–82.

[2] B. Carrier. File system forensic analysis. Addison-
Wesley Professional, 2005.

[3] A. Czeskis, D. J. S. Hilaire, K. Koscher,
S. D. Gribble, T. Kohno, B. Schneier. Defeating
encrypted and deniable file systems: TrueCrypt v5.1a
and the Case of the Tattling OS and Applications.
HotSec, 2008, pp. 1–7.

[4] D. M. Dakhane, S. Patil, M. Patil. Detection and
elimination of covert communication in transport and
internet layer - A Survey. In: IJCA Proceedings on
International Conference on Recent Trends in
Information Technology and Computer Science
(ICRTITCS-2011), New York, USA, 2012, Vol. 1,
pp. 36–41.

[5] K. Eckstein, M. Jahnke. Data hiding in journaling file
systems. In: Refereed Proceedings of the 5th Annual
Digital Forensic Research Workshop, New Orleans,
Louisiana, USA, 2005, pp. 1–8.

[6] D. V. Forte. Open source forensics: The PTK: An
alternative advanced interface for Sleuth Kit. Network
Security, 2008, Vol. 2008, 10–13.

[7] S. L. Garfinkel. Carving contiguous and fragmented
files with fast object validation. Digital Investigation,
2007, Vol. 4, Suppl., 2–12.

[8] S. L. Garfinkel. Automating disk forensic processing
with SleuthKit, XML and Python. SADFE, 2009,
73-84.

[9] G. Hanaoka, Y. Hanaoka, M. Hagiwara,
H. Watanabe, H. Imai. Unconditionally secure
chaffing-and-winnowing: a relationship between
encryption and authentication. In: Proceedings of the
16th international conference on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes,
Berlin, Heidelberg, 2006, pp. 154–162.

[10] E. Huebner, D. Bem, C. K. Wee. Data hiding in the
NTFS file system. Digital Investigation, 2006, Vol. 3,
211–226.

[11] H. Khan, M. Javed, S. A. Khayam, F. Mirza.
Designing a cluster-based covert channel to evade disk
investigation and forensics. Computers & Security,
2011, Vol. 30, 35–49.

[12] B. W. Lampson. A note on the confinement problem.
Communications of the ACM, 1973, Vol. 16, 613–615.

[13] K. Luksys, E. Sakalauskas. Matrix power cipher.
Information Technology and Control, 2012, Vol. 41,
349–355.

[14] K. Luksys, E. Sakalauskas, A. Venckauskas. Imple-
mentation analysis of matrix power cipher in
embedded systems. Electronics and Electrical
Engineering, 2012, Vol. 118, 95–98.

[15] A. D. McDonald, M. G. Kuhn. StegFS: a steganogra-
phic file system for Linux. Information Hiding, 1999,
Vol. 1768, 462–477.

[16] H. Pang, K. L. Tan, X. Zhou. StegFS: a steganogra-
phic file system. In: Proceedings of the 19th
International Conference on Data Engineering, 2003,
Vol. 1, pp. 657–668.

[17] F. A. P. Petitcolas, R. J. Anderson, M. G. Kuhn.
Information hiding - a survey. In: Proceedings of the
IEEE: Special Issue on Protection of Multimedia
Content, 1999, Vol. 87, pp. 1062–1078.

[18] S. Piper, M. Davis, G. Manes, S. Shenoi. Detecting
hidden data in ext2/ext3 file systems. IFIP Int. Conf.
Digital Forensics, 2005, 245–256.

Covert Channel for Cluster-based File Systems Using Multiple Cover Files

267

[19] N. Provos, P. Honeyman. Hide and seek: an introduc-
tion to steganography. IEEE Security and Privacy,
2003, Vol. 1, 32–44.

[20] G. J. Simmons. The prisoners’ problem and the subli-
minal channel. Advances in Cryptology, Proceedings
of Crypto 83, New York, 1984, pp. 51–67.

[21] A. Venckauskas, N. Jusas, L. Kizauskiene,
E. Kazanavicius, V. Kazanavicius. Security method

of embedded software for mechatronic systems.
Mechanika, 2012, Vol. 18, 196–202.

[22] A. Venckauskas, N. Jusas, I. Mikuckiene,
S. Maciulevicius. Generation of the secret encryption
key using the signature of the embedded system.
Information Technology and Control, 2012, Vol. 41,
368–375.

Received January 2013.

