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Temporal reasoning is crucial for action recognition tasks. The previous works use 3D CNNs to jointly capture 
spatiotemporal information, but it causes a lot of computational costs as well. To improve the above problems, 
we propose a general channel split spatiotemporal network (CSST-Net) to achieve effective spatiotemporal 
feature representation learning. The CSST module consists of the grouped spatiotemporal modeling (GSTM) 
module and the parameter-free feature fusion (PFFF) module. The GSTM module decomposes features into 
spatial and temporal parts along the channel dimension in parallel, which focuses on spatial and temporal 
clues, respectively. Meanwhile, we utilize the combination of group-wise convolution and point-wise convo-
lution to reduce the number of parameters in the temporal branch, thus alleviating the overfitting of 3D CNNs. 
Furthermore, for the problem of spatiotemporal feature fusion, the PFFF module performs the recalibration 
and fusion of spatial and temporal features by a soft attention mechanism, without introducing extra param-
eters, thus ensuring the correct network information flow effectively. Finally, extensive experiments on three 
benchmark databases (Sth-Sth V1, Sth-Sth V2, and Jester) indicate that the proposed CSST-Net can achieve 
competitive performance compared to existing methods, and significantly reduces the number of parameters 
and FLOPs of 3D CNNs baseline.
KEYWORDS: Temporal reasoning, Action recognition, Spatiotemporal representation learning, Spatiotempo-
ral fusion.
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1. Introduction
The objective of action recognition is to predict the 
class of action on the pre-segmented temporal se-
quences. As one of the hottest topics of video under-
standing, it has received extensive attention from 
academia and industry due to its widespread applica-
tion scenarios in motion analysis, video surveillance, 
human-computer interaction, intelligent informa-
tion retrieval, and so on.
Existing action video datasets are usually derived 
from real application scenarios. However, the method 
based on traditional hand-craft features [30] has poor 
generalization ability. The development of convolu-
tional neural networks (CNNs), has shown strong 
generalization performance of image classification 
[7], [10], which has greatly inspired the research on 
CNNs-based action recognition. In addition, action 
video datasets are usually having complex motion 
patterns, so how to effectively capture the temporal 
information in the video is the focus of action recog-
nition. As shown in Figure 1, the Something-Some-
thing V1 dataset [5] contains some fine-grained ac-
tions such as “pushing something from left to right” 
and “pushing something from right to left”, using a 
single frame cannot effectively distinguish two ac-
tions. On the contrary, temporal reasoning is critical 
when processing temporal-related datasets. 
To model temporal information effectively, some 
works [22], [37] via employing the temporal module on 

the top of the 2D CNNs for later temporal fusion. How-
ever, it generally focuses on a coarser and long-term 
temporal structure, but cannot represents finer tempo-
ral relations in a local window. Thus, some works [24], 
[32] try to leverage optical flow to encode the motion 
information between adjacent frames. In practice, cal-
culating optical flow is an expensive and time-consum-
ing task, which hinders the application of optical flow-
based methods in the real world. Other works [1], [14], 
[29] have expanded existing 2D CNNs to 3D CNNs 
via 3D convolution and 3D pooling and extracted spa-
tial-temporal features from RGB volume. Although 3D 
CNNs have achieved competitive performance, it has 
introduced a large number of computational costs as 
well, which caused the performance degradation of the 
CNNs. Although some works [3], [23], [25], [36] factor-
ize the 3D convolution kernel into spatial and temporal 
parts to reduce computational overhead, it is still un-
known whether the simple decomposition of the 3D 
convolution kernel can capture the spatiotemporal in-
formation effectively.
To tackle the limitation of existing methods, we pro-
pose a CNNs architecture, dubbed CSST-Net, for effi-
cient video learning. The framework of the proposed 
method is shown in Figure 2, Specifically, CSST-Net 
consists of the stacked CSST block, which includes 
GSTM and PFFF modules. Different from previous 
works where the groups are symmetric, the GSTM 

Figure 1 
Sample of Fine-grained actions on Sth-Sth datasets
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To model temporal information effectively, some 
works [22], [37] via employing the temporal 
module on the top of the 2D CNNs for later 
temporal fusion. However, it generally focuses on 
a coarser and long-term temporal structure, but 
cannot represents finer temporal relations in a 
local window. Thus, some works [24], [32] try to 
leverage optical flow to encode the motion 
information between adjacent frames. In practice, 
calculating optical flow is an expensive and time-
consuming task, which hinders the application of 
optical flow-based methods in the real world. 
Other works [1], [14], [29] have expanded existing 
2D CNNs to 3D CNNs via 3D convolution and 3D 
pooling and extracted spatial-temporal features 
from RGB volume. Although 3D CNNs have 
achieved competitive performance, it has 
introduced a large number of computational costs 
as well, which caused the performance 
degradation of the CNNs. Although some works 
[3], [23], [25], [36] factorize the 3D convolution 
kernel into spatial and temporal parts to reduce 
computational overhead, it is still unknown 
whether the simple decomposition of the 3D 
convolution kernel can capture the spatiotemporal 
information effectively. 

To tackle the limitation of existing methods, we 

propose a CNNs architecture, dubbed CSST-
Net, for efficient video learning. The 
framework of the proposed method is shown 
in Figure 2, Specifically, CSST-Net consists of 
the stacked CSST block, which includes 
GSTM and PFFF modules. Different from 
previous works where the groups are 
symmetric, the GSTM module decomposes 
the input feature maps into the spatial branch 
and temporal branch along the channel 
dimensions in an asymmetric manner and 
performs different operations in parallel, to 
extract spatial and temporal features, 
respectively. Furthermore, inspired by 
MobileNet [26], we employ a parallel 
combination of 3D group-wise convolution 
and 3D point-wise convolution in the 
temporal branch to improve the efficiency of 
parameter learning and avoid damage to 
channel interaction information. Compared 
with vanilla 3D convolution, our model is 
more compact and facilitates the network to 
exploit features. 

The PFFF module is a simplified version of 
the SKNet [16] for the integration of spatial 
and temporal features. In general, the PFFF 
module is based on the soft-attention, which 



Information Technology and Control 2023/4/52954

module decomposes the input feature maps into the 
spatial branch and temporal branch along the channel 
dimensions in an asymmetric manner and performs 
different operations in parallel, to extract spatial and 
temporal features, respectively. Furthermore, in-
spired by MobileNet [26], we employ a parallel com-
bination of 3D group-wise convolution and 3D point-
wise convolution in the temporal branch to improve 
the efficiency of parameter learning and avoid dam-
age to channel interaction information. Compared 
with vanilla 3D convolution, our model is more com-
pact and facilitates the network to exploit features.
The PFFF module is a simplified version of the SK-
Net [16] for the integration of spatial and temporal 
features. In general, the PFFF module is based on the 
soft-attention, which allocates significance weights 
to the channels of the two branches, and then merges 
them via weighted summation to ensure the correct 
network information flow. In this manner, each chan-
nel integrates the spatial and temporal features of the 
previous layer. When the features are fed to the next 
layer, the PFFF is beneficial for multi-scale temporal 
modeling. Notably, the proposed module is efficient 

since it without introducing any extra parameters 
and can improve the performance of the network. We 
evaluated the proposed model on three benchmark 
databases, the evaluation results show that our CSST 
can yield a new state-of-the-art performance on three 
temporal relevant datasets such as Something-Some-
thing V1 (Sth-Sth V1), Something-Something V2 
(Sth-Sth V2), and Jester [21].
We summarize our main contributions as follows:
1 To reduce the FLOPs and feature redundancy of 

the existing 3D CNNs-based models, we propose 
a novel grouped spatiotemporal feature extraction 
module. Through the channel split of intermediate 
feature maps, the spatial and temporal information 
was obtained effectively, which improved the effi-
ciency of feature extraction.

2 To integrate spatiotemporal features and model 
multi-scale temporal information, we propose a pa-
rameter-free feature fusion module based on the 
soft-attention mechanism. The experimental results 
show that the module improves the network perfor-
mance and ensures the correct flow of information 
without introducing any additional parameters.

Figure 2 
The framework of channel split spatiotemporal networks
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and temporal features of the previous layer. When 
the features are fed to the next layer, the PFFF is 
beneficial for multi-scale temporal modeling. 
Notably, the proposed module is efficient since it 
without introducing any extra parameters and can 
improve the performance of the network. We 
evaluated the proposed model on three 
benchmark databases, the evaluation results show 
that our CSST can yield a new state-of-the-art 
performance on three temporal relevant datasets 
such as Something-Something V1 (Sth-Sth V1), 
Something-Something V2 (Sth-Sth V2), and Jester 
[21]. 

We summarize our main contributions as follows: 

1. To reduce the FLOPs and feature redundancy of 
the existing 3D CNNs-based models, we 
propose a novel grouped spatiotemporal 
feature extraction module. Through the channel 
split of intermediate feature maps, the spatial 
and temporal information was obtained 
effectively, which improved the efficiency of 
feature extraction. 

2. To integrate spatiotemporal features and model 
multi-scale temporal information, we propose a 
parameter-free feature fusion module based on 
the soft-attention mechanism. The experimental 
results show that the module improves the 
network performance and ensures the correct 

flow of information without introducing 
any additional parameters. 

3. Embedding CSST block into 2D ResNet50 
only adds a limited extra computational 
cost, and achieves competitive 
performance on the three benchmark 
datasets for action recognition. Meanwhile, 
extensive ablation experiments 
demonstrate that the proposed CSST-Net 
is superiority over previous work 
methods. 

 

2. Related Works 
Two stream-based. Two-stream network 
including spatial and temporal streams, 
which extracts appearance and motion 
features from single RGB video frames and 
stacked optical flow images, respectively. 
Both streams make independent predictions 
based on their inputs, and then the prediction 
scores of the two streams are later fused. 
Because the optical flow only encodes the 
motion information between two adjacent 
frames, which limits the access of two-stream 
to the temporal context. Some works 
proposed a few novel feature coding methods 
such as spatiotemporal pyramid [38] and 
temporal linear coding [2], which encodes 
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3 Embedding CSST block into 2D ResNet50 only 
adds a limited extra computational cost, and 
achieves competitive performance on the three 
benchmark datasets for action recognition. Mean-
while, extensive ablation experiments demon-
strate that the proposed CSST-Net is superiority 
over previous work methods.

2. Related Works
Two stream-based. Two-stream network including 
spatial and temporal streams, which extracts ap-
pearance and motion features from single RGB video 
frames and stacked optical flow images, respectively. 
Both streams make independent predictions based on 
their inputs, and then the prediction scores of the two 
streams are later fused. Because the optical flow only 
encodes the motion information between two adja-
cent frames, which limits the access of two-stream 
to the temporal context. Some works proposed a few 
novel feature coding methods such as spatiotemporal 
pyramid [38] and temporal linear coding [2], which 
encodes frame-level features into video-level rep-
resentations, trying to solve the problem that two-
stream networks have a weak ability for long-term 
temporal modeling. On the other hand, the calcula-
tion of optical flow is time-consuming, which brings 
challenges to real-world applications. Moreover, the 
feature learning of spatial and temporal streams is 
completely independent. Some works [28], [40] try 
to jointly optimize optical flow estimation and classi-
fication network or to implicitly simulate the optical 
flow of the RGB network.
3D CNNs-based. 3D CNNs via extending 2D convo-
lution to the temporal domain to jointly extract spa-
tiotemporal features from RGB volume. Most of the 
3D CNNs for action recognition task is based on the 
expansion of the 2D CNNs architecture such as I3D 
[1], ARTNet [32], etc. Some works decomposed the 
3D kernel into the 2D kernel and 1D kernel in spatial 
and temporal, respectively, to reduce parameters of 
3D CNNs such as P3D [23], R(2+1)D [3], S3D [36], etc. 
Wang et al. [31] proposed a learnable correlation op-
erator to capture the temporal relations between ad-
jacent frames for explicitly encoding short-term tem-
poral information. Zolfaghari [39] proposed to use 
2D CNNs in the top layers and 3D CNNs in the bot-
tom layers to trade-off accuracy and inference speed. 

Feichtenhofer [4] proposed a novel network design 
idea, which progressively expands tiny 2D CNNs into 
3D CNNs for video understanding along with space, 
time, width, and depth, to explore the influence of var-
ious dimensions on video learning.
2D CNNs-based. TSM [14] is utilized to implicitly 
capture the temporal information via shifting the 
channel along the temporal dimension, but this local 
way significantly lacks explicit modeling of motion 
information. To model motion information effec-
tively, TEA [18] and TEINet [19] proposed a motion 
excitation block, which calculates the feature-level 
difference between two adjacent segments, and then 
performs channel attention to activate motion-sen-
sitive features. Kwon et al. [11] proposed a motion 
squeeze block to establish temporal relations across 
frames and convert them into motion features. Liu et 
al. [20] proposed a temporal adaptive module to gen-
erate a video-specific kernel, and use local and global 
branches to learn short-term and long-term temporal 
structures, respectively. Jiang et al. [9] proposed two 
modules for modeling spatiotemporal and motion 
features, respectively, to replace the original ResNet 
blocks, and confirmed the complementarity of spa-
tiotemporal and motion information. Hussein [8] 
proposed multi-scale temporal convolution to learn 
the long-range temporal information of different re-
ceptive fields in a single layer, which is beneficial to 
modeling complex motion patterns. 

3. Research Methodology
In this section, we depict the CSST-Net in detail. We 
first explain the motivation of the proposed grouped 
spatiotemporal feature learning. Then, we give a tech-
nical description of the CSST block, and discuss the 
computational costs of CSST. Finally, we provide the 
implementation detail to instantiate CSST-Net with 
a ResNet50 backbone.

3.1. Grouped Spatiotemporal Feature 
Learning
For video understanding tasks, the input tensor X is 
represented as [N, Ci, T, H, W], where N is the batch 
size. Ci is the channel, T, H, W denote temporal and 
spatial dimensions, respectively. Suppose the output 
tensor is [N, Co, T, H, W], the parameters of vanilla 
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3D convolution can be calculated as Co×Ci×k×k×k, it is 
about k times of the 2D kernel. Considering that the 
channel of existing CNNs is usually large, this will 
significantly increase the computational overhead of 
3D CNNs.
As shown in Figure 3(b), to reduce the number of pa-
rameters of 3D CNNs, a common method is to factorize 
the 3D kernel into the 2D kernel and 1D kernel in spa-
tial and temporal, respectively, and then the spatiotem-
poral features are modeled via a cascading way. This 
method can effectively reduce the overfitting of 3D 
CNNs by decoupling the spatiotemporal learning. The 
whole process can be illustrated as the Equation (1). 

 

 

Equation (1). 

( )= ∗ ∗t sY W W X ,                                           (1) 

where * denote convolution operation, 
1i oC C k k× × × ×∈sW  , 1 1i oC C k× × × ×∈tW  denote shapes of 

spatial and temporal filters, respectively. 

3.2. Grouped Spatiotemporal Modeling 
Module 

As shown in Figure 3(c), different from the cascade 
decomposition above, we propose to split the 
input feature maps into spatial and temporal parts 
along channel dimensions. The motivation for this 
decomposition is that in the channel, some are 
more relevant to static appearance clues, while 
others are more focused on dynamic motion clues. 
Thus, we perform 2D convolution and 3D 
convolution on spatial and temporal branches, 
respectively, implicitly encoding both appearance 
and motion information. This decomposition 
method can promote the two branches to learn 
complementary features, so can improve the 
efficiency of feature learning. Furthermore, a 
channel scaling factor α is utilized to quantize the 
ratio of the temporal branch to control the capacity 
of the model. The decomposition course is shown 
in Equation (2). 
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where i oC C k k kW α × × × ×∈  and (1 ) 1i oC C k kW α− × × × ×∈  
denote the shape of the convolution kernel of 
temporal and spatial branches, respectively. 

In general, the proposed method is different from 
the conventional kernel decomposition strategy in 
three aspects. (1) The proposed method is for 
channel decomposition, rather than the 3D kernel, 
(2) The processing methods of decomposed 
features: one is parallel, and the other is cascaded. 
(3) Our method flexibly controls model parameters 

and computational cost by changing α. 

Meanwhile, inspired by Luo et al. [12], 
properly dropping the channel ratio of the 
temporal branch does not hurt performance 
significantly. We guess this phenomenon may 
be caused by feature redundancy, and local 
temporal relations may be related to sparse 
3D kernels. Therefore, we further designed 
the temporal branch and proposed the GSTM 
module.  

Specially, we utilize group-wise convolution 
in the temporal branch to reduce feature 
redundancy and improve the efficiency of 
parameter learning. Furthermore, we add 
point-wise convolution across all temporal 
channels to achieve cross-group information 
exchange among different groups feature 
maps. Group-wise convolution and point-
wise convolution conduct operations on all 
channels of the temporal branch 
simultaneously, aiming at efficient temporal 
feature learning. The experimental results 
show that this asymmetric spatiotemporal 
decomposition can effectively allocate the 
utilization space of parameters, to achieve 
better performance. Finally, we merge the 
outputs via element-wise addition since 
group-wise convolution and point-wise 
convolution are the same channel origin. So 
the temporal branch of Equation (2) can be 
formulated as Equation (3). 
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Here, we divide the temporal branch αCi into 
G groups and each group zi contains αCi/G 
channels. g

iiW  are parameters of group 
convolution kernel in i-th group.
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complementary features, so can improve the 
efficiency of feature learning. Furthermore, a 
channel scaling factor α is utilized to quantize the 
ratio of the temporal branch to control the capacity 
of the model. The decomposition course is shown 
in Equation (2). 
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where i oC C k k kW α × × × ×∈  and (1 ) 1i oC C k kW α− × × × ×∈  
denote the shape of the convolution kernel of 
temporal and spatial branches, respectively. 

In general, the proposed method is different from 
the conventional kernel decomposition strategy in 
three aspects. (1) The proposed method is for 
channel decomposition, rather than the 3D kernel, 
(2) The processing methods of decomposed 
features: one is parallel, and the other is cascaded. 
(3) Our method flexibly controls model parameters 

and computational cost by changing α. 

Meanwhile, inspired by Luo et al. [12], 
properly dropping the channel ratio of the 
temporal branch does not hurt performance 
significantly. We guess this phenomenon may 
be caused by feature redundancy, and local 
temporal relations may be related to sparse 
3D kernels. Therefore, we further designed 
the temporal branch and proposed the GSTM 
module.  

Specially, we utilize group-wise convolution 
in the temporal branch to reduce feature 
redundancy and improve the efficiency of 
parameter learning. Furthermore, we add 
point-wise convolution across all temporal 
channels to achieve cross-group information 
exchange among different groups feature 
maps. Group-wise convolution and point-
wise convolution conduct operations on all 
channels of the temporal branch 
simultaneously, aiming at efficient temporal 
feature learning. The experimental results 
show that this asymmetric spatiotemporal 
decomposition can effectively allocate the 
utilization space of parameters, to achieve 
better performance. Finally, we merge the 
outputs via element-wise addition since 
group-wise convolution and point-wise 
convolution are the same channel origin. So 
the temporal branch of Equation (2) can be 
formulated as Equation (3). 
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Figure 3 
The decomposition strategy for reducing the number of param-
eters of 3D CNNs. (a) Vanilla 3D convolution, (b) Cascade de-
composition method, (c) Our proposed decomposition method

  

frame-level features into video-level 
representations, trying to solve the problem that 
two-stream networks have a weak ability for long-
term temporal modeling. On the other hand, the 
calculation of optical flow is time-consuming, 
which brings challenges to real-world applications. 
Moreover, the feature learning of spatial and 
temporal streams is completely independent. Some 
works [28], [40] try to jointly optimize optical flow 
estimation and classification network or to 
implicitly simulate the optical flow of the RGB 
network. 

3D CNNs-based. 3D CNNs via extending 2D 
convolution to the temporal domain to jointly 
extract spatiotemporal features from RGB volume. 
Most of the 3D CNNs for action recognition task is 
based on the expansion of the 2D CNNs 
architecture such as I3D [1], ARTNet [32], etc. 
Some works decomposed the 3D kernel into the 2D 
kernel and 1D kernel in spatial and temporal, 
respectively, to reduce parameters of 3D CNNs 
such as P3D [23], R(2+1)D [3], S3D [36], etc. Wang 
et al. [31] proposed a learnable correlation operator 
to capture the temporal relations between adjacent 
frames for explicitly encoding short-term temporal 
information. Zolfaghari [39] proposed to use 2D 
CNNs in the top layers and 3D CNNs in the 
bottom layers to trade-off accuracy and inference 
speed. Feichtenhofer [4] proposed a novel network 
design idea, which progressively expands tiny 2D 
CNNs into 3D CNNs for video understanding 
along with space, time, width, and depth, to 
explore the influence of various dimensions on 
video learning. 

2D CNNs-based. TSM [14] is utilized to implicitly 
capture the temporal information via shifting the 
channel along the temporal dimension, but this 
local way significantly lacks explicit modeling of 
motion information. To model motion information 
effectively, TEA [18] and TEINet [19] proposed a 
motion excitation block, which calculates the 
feature-level difference between two adjacent 
segments, and then performs channel attention to 
activate motion-sensitive features. Kwon et al. [11] 
proposed a motion squeeze block to establish 
temporal relations across frames and convert them 
into motion features. Liu et al. [20] proposed a 
temporal adaptive module to generate a video-
specific kernel, and use local and global branches 
to learn short-term and long-term temporal 
structures, respectively. Jiang et al. [9] proposed 
two modules for modeling spatiotemporal and 
motion features, respectively, to replace the 
original ResNet blocks, and confirmed the 
complementarity of spatiotemporal and motion 
information. Hussein [8] proposed multi-scale 

temporal convolution to learn the long-range 
temporal information of different receptive 
fields in a single layer, which is beneficial to 
modeling complex motion patterns.  

 
3. Research Methodology 
In this section, we depict the CSST-Net in 
detail. We first explain the motivation of the 
proposed grouped spatiotemporal feature 
learning. Then, we give a technical 
description of the CSST block, and discuss the 
computational costs of CSST. Finally, we 
provide the implementation detail to 
instantiate CSST-Net with a ResNet50 
backbone. 
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overhead of 3D CNNs. 
Figure 3  

The decomposition strategy for reducing the 
number of parameters of 3D CNNs. (a) Vanilla 3D 
convolution, (b) Cascade decomposition method, 
(c) Our proposed decomposition method 

 
As shown in Figure 3(b), to reduce the 
number of parameters of 3D CNNs, a 
common method is to factorize the 3D kernel 
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Here, we divide the temporal branch αCi into G groups 
and each group zi contains αCi/G channels. g

iiW  are 
parameters of group convolution kernel in i-th group.

3.3. Parameter Free Feature Fusion Module
So far, we have split the channel into two parts. For 
the temporal branch, we perform element-wise ad-
dition of 3×3×3 group-wise convolution and 1×1×1 
point-wise convolution to extract temporal features 
and alleviate the feature redundancy. For the spatial 
branch, the 3×3 convolution is utilized to extract the 
spatial features. Because the input of the two branch-
es comes from different channels, a fusion method 
is needed to control the information flow in the net-
work. In this paper, we proposed a novel PFFF mod-
ule, without extra parameters that can help improve 
performance.
In Figure 4, the gw represents group-wise convolu-
tion, the pw represents point-wise convolution. ⊕
denote element-wise addition, and ⊗  denote ele-
ment-wise multiplication. As shown in Figure 4, the 
global spatiotemporal information of the output U is 
aggregated by 3D global average pooling to generate 
two channel-wise statistical vectors 
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Secondly, vectors are stacked together and soft 
attention operations are conducted across channels 
to generate channel weight vectors c∈β  and 

c∈γ  . The c-th element of β , γ  can be calculated 
as Equation (5). 
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Finally, the features 1U  and 2U  from spatial and 
temporal branches are channel-wise multiplied 
with weight vectors β  and γ , respectively. Output 
Y  is obtained by merging the activation of spatial 

and temporal features. 

1 2+ γY = βU U ,                                                         
(6) 

To sum up, Y  can be formulated as Equation 
(7). 
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3.4. Computational Costs Analysis 

Since the parameters of the CSST block are 
concentrated in the temporal part. Hence, we 
employ α and g to control the complexity of 
CSST. Where, α denote the ratio of the 
temporal channels to the input channel, and g 
denote the number of groups of temporal 
convolutions. Furthermore, the number of 
output channels of the spatial branch and 
temporal branch are consistent, i.e, Cos = Cot = 
Co. The spatial branch performs the 2D 
convolution (1×k×k) with the number of 
parameters is 1×k×k×(1-α)Ci×Co. The temporal 
branch performs the 3D group-wise 
convolution (k×k×k) and 3D point-wise 
convolution (1×1×1) in parallel, and the 
number of parameters is k×k×k×(αCi/g)×(Co/g) 
×g+1×1×1×αCi×Co. The comparison of the 
number of parameters for CSST with four 
representative spatiotemporal learning blocks 
is shown in Table 1. 
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Figure 4 
The overall architecture of the CSST block
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the ratio of the temporal channels to the input chan-
nel, and g denote the number of groups of temporal 
convolutions. Furthermore, the number of output 
channels of the spatial branch and temporal branch 
are consistent, i.e, Cos = Cot = Co. The spatial branch per-
forms the 2D convolution (1×k×k) with the number of 
parameters is 1×k×k×(1-α)Ci×Co. The temporal branch 
performs the 3D group-wise convolution (k×k×k) and 
3D point-wise convolution (1×1×1) in parallel, and 
the number of parameters is k×k×k×(αCi/g)×(Co/g) 
×g+1×1×1×αCi×Co. The comparison of the number of 
parameters for CSST with four representative spatio-
temporal learning blocks is shown in Table 1.

Table 1
Comparison of the number of parameters for spatial-
temporal learning block

Model #Params

C2D k×k×Ci×Co

C3D k×k×k×Ci×Co

P3D (k×k+k)×Ci×Co

C3Dg k×k×k×Ci×Co/g

CSST (k×k×(1-α)+k×k×k×α/g+α)×Ci×Co

When α = 0.5 and g = 2, compare with the vanilla 3D 
convolution, the number of parameters of the pro-
posed CSST can be reduced by 2.30x, and slight-
ly smaller than the P3D model (P3D is reduced by 
2.25x). When α = 0.5 and g = 4, our CSST has an even 
fewer number of parameters than 2D Convolution. 
However, CSST has sufficient temporal convolution 
and excellent temporal reasoning ability.

3.5. Network Architecture
As discussed above, the proposed CSST-Net is based 
on the sparse temporal sampling of the TSN baseline 
to dispose of the video with variable temporal length. 
Especially, the video is divided into T segments ac-
cording to the uniform duration, and then a frame is 
randomly sampled from each segment to obtain the 
input sequence of T frames. As shown in Figure 2, 
we replace 3×3×3 convolution with the CSST from 
Conv2 to Conv5 since the spatiotemporal features are 
concentrated in the middle block. Finally, a temporal 
average pooling is utilized to average the prediction of 
all segments. Thus, the temporal interactions in the 
middle layers only come from CSST, which can better 
reflect the temporal modeling ability of CSST.

4. Experiments 
In this section, we first describe the benchmark da-
tabases and implementation details. Then, we per-
form ablation studies to measure the effectiveness 
of the proposed CSST-Net and to investigate its opti-
mal setting. Finally, we compare CSST-Net with the 
previous state-of-the-art (SOTA) methods on three 
benchmark databases.

4.1. Datasets
Sth-Sth datasets. The Sth-Sth datasets focus on 
fine-grained actions, which contain the humans 
performing pre-defined actions with daily objects. 
Sth-Sth V1 contains 174 classes with 108,499 video 
clips. Sth-Sth V2 is an updated version of Sth-Sth 
V1, which a total of 220,847 video clips. The Sth-Sth 
datasets are to perform the same action with differ-
ent objects (“something”), thus the model forcing to 
understand the action itself instead of recognizing 
the object.
Jester. The Jester dataset is a crowd-acted video data-
set for generic human hand gesture recognition. It 
includes 27 categories with 118,562 training videos. 
Notably, the data augmentation technique of random 
flipping cannot be used since some gestures are sym-
metric with each other, such as “swiping left”, “swip-
ing right” and “sliding two fingers down”, “sliding two 
fingers up”. Sample actions of benchmark databases 
are demonstrated in Figure 5.
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4.2. Implementation Details
We implement the model proposed in section 3.5 on 
PyTorch. We load the pre-trained ResNet50 on Ima-
geNet to initialize the weight of the spatial branch and 
randomly initialize the parameters of the temporal 
branch.
Training. We use the SGD with a momentum of 0.9 
and a weight decay of 0.0005 to train CSST-Net. The 
batch size is set to 8, and the input size is 224×224. 
The learning rate is initialized to 0.01, and the co-
sine learning rate schedule [13] is applied to ensure 
that the learning rate can be adjusted in each epoch. 
We train the network for 70 epochs on Syh-Sth V1, 
Sth-Sth V2, and 40 epochs on Jester. The first 10 ep-
ochs are used for linear warm-up [6]. To mitigate the 
over-fitting, we adopt dropout after the global pooling 
layer with a dropout ratio of 0.3, and apply the multi-
scale cropping and randomly horizontal flipping as 
data augmentation.
Test. We use an evaluation protocol similar to TEA 
[18] to ensure reasoning speed (center crop×1 clip). 
Firstly, 1 clip with T frames is sampled from a video. 
Then, each frame is resized to 256×256. Finally, the 
region of the center cropping is limited to 224×224 
for action prediction.

4.3. Ablation Studies
In the subsection, we carry out technical research 
on the hyper-parameters and effectiveness of the 
network. To perform fair comparisons, all methods 
follow sparse temporal sampling, sampling 8 frames 
from each video as input. Inference stage, we report 
Top-1 & Top-5 and computational efficiency or pa-
rameters utilization efficiency to comprehensively 
evaluate accuracy and efficiency.
First, we evaluate the effects of the depth of the back-
bone We use ResNet18, ResNet34, ResNet50, and 

ResNet101 to instantiate CSST-Net, and the α, g is 
set to 0.5 and 2, respectively. To better capture the 
relation between boosted performance and add-on 
computation, we define the computational efficiency 
formulated as Equation (8).
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-1= Top
FLOPs

γ ∆
∆

,                                                   (8) 

where both ΔTop-1 and ΔFLOPs are in 
percent, γ is the computational efficiency that 
represents how many Top-1 accuracy in 
percent are increased to introducing 1% 
FLOPs (higher indicates more efficient). 
Specially, we choose CSST-ResNet18 as the 
baseline, and the evaluation results of CSST-
ResNet at different depths are shown in Table 
2.

Table 2 

Ablation study on model depths 

Models Backbone FLOPs ΔFLOPs Top-1(%) ΔTop-1 γ 

CSST 

ResNet18 18.81G - 43.1 - - 

ResNet34 38.27G 19.46G(+103.5%) 46.5 +3.4(7.9%) 7.6% 

ResNet50 37.69G 18.88G(+100.4%) 47.6 +4.5(10.4%) 10.1% 

ResNet101 72.43G 53.62G(+285.1%) 48.2 +5.1(11.8%) 4.1% 

From Table 2, the computational efficiency γ of 
ResNet34, ResNet50, and ResNet101 are 7.6%, 
10.4%, and 4.7%, respectively, so the CSST-
ResNet50 is the most computational efficiency 
when taking γ into account. Therefore, we choose 
ResNet50 as the backbone network in the 
following experiments. 

Then, we utilize different combinations of the 
input channel proportion (α) and the group 
number (g) of the group-wise convolution to figure 
out the optimal hyper-parameters of the proposed 
CSST-Net. Although different stages might require 
different α, it would be too elaborate, so we 
provide a uniform global α for CSST-Net, and 
α∈[0.25, 0.50, 0.75]. The quantitative comparison 
results of different settings are listed in Table 3. It 
can be noticed that our method with α = 0.5 and g = 

2 achieves the highest performance shown in 
Table 3, which will be applied in the 
following experiments. 

Table 3 

Ablation studying on hyper-parameter 
settings 

Models α,g FLOPs Top-1(%) Top-5(%) 

CSST-
ResNet50 

0.25, 2 35.43G 47.0 76.7 

0.50, 2 37.69G 47.6 77.1 

0.75, 2 39.96G 46.9 76.2 

0.50, 2 37.69G 47.6 77.1 

0.50, 4 32.14G 46.8 76.2 

0.50, 8 29.37G 46.5 76.0 

, (8)

where both ΔTop-1 and ΔFLOPs are in percent, γ is the 
computational efficiency that represents how many 
Top-1 accuracy in percent are increased to introduc-
ing 1% FLOPs (higher indicates more efficient). Spe-
cially, we choose CSST-ResNet18 as the baseline, and 
the evaluation results of CSST-ResNet at different 
depths are shown in Table 2.
From Table 2, the computational efficiency γ of Res-
Net34, ResNet50, and ResNet101 are 7.6%, 10.4%, and 
4.7%, respectively, so the CSST-ResNet50 is the most 
computational efficiency when taking γ into account. 
Therefore, we choose ResNet50 as the backbone net-
work in the following experiments.
Then, we utilize different combinations of the input 
channel proportion (α) and the group number (g) of 
the group-wise convolution to figure out the opti-
mal hyper-parameters of the proposed CSST-Net. 
Although different stages might require different α, 
it would be too elaborate, so we provide a uniform 
global α for CSST-Net, and α∈[0.25, 0.50, 0.75]. The 
quantitative comparison results of different settings 
are listed in Table 3. It can be noticed that our meth-
od with α = 0.5 and g = 2 achieves the highest perfor-
mance shown in Table 3, which will be applied in the 
following experiments.
In Table 4, we compare the proposed CSST-Net with 
four competitive spatiotemporal learning models, 
such as C2D, C3D, C3Dg, and P3D. Specially, all mod-
els use the ResNet50 as the backbone, and choose the 

Table 2
Ablation study on model depths

Models Backbone FLOPs ΔFLOPs Top-1(%) ΔTop-1 γ

CSST

ResNet18 18.81G - 43.1 - -

ResNet34 38.27G 19.46G(+103.5%) 46.5 +3.4(7.9%) 7.6%

ResNet50 37.69G 18.88G(+100.4%) 47.6 +4.5(10.4%) 10.1%

ResNet101 72.43G 53.62G(+285.1%) 48.2 +5.1(11.8%) 4.1%
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C2D as baseline. To better capture the relation be-
tween boosted performance and add-on parameters, 
we define the parameters utilization efficiency for-
mulated as Equation (9).

 
 

 

In Table 4, we compare the proposed CSST-Net 
with four competitive spatiotemporal learning 
models, such as C2D, C3D, C3Dg, and P3D. 
Specially, all models use the ResNet50 as the 
backbone, and choose the C2D as baseline. To 
better capture the relation between boosted 
performance and add-on parameters, we define 
the parameters utilization efficiency formulated as 
Equation (9). 

-1= Top
param

η ∆
∆

,                                                   (9) 

where both ΔTop-1 and Δparam are in percent, η is 
the parameters utilization efficiency that 
represents how many Top-1 accuracy in percent 
are increased to introducing 1% parameters 
(higher indicates more efficient). 

Table 4 

Comparison with counterparts of spatiotemporal 
learning on Sth-Sth V1.  

Model #Param Δparam Top-1 ΔTop-
1(%) η 

C2D 
[32] 

23.86M - 20.4% - - 

C3D 
[29] 

46.50M 
+22.64(+94

.9%) 
46.0% 

+25.6(+1

25.5%) 
1.3 

P3D 
[23] 

29.40M 
+5.54(+23.2

%) 
45.6% 

+25.2(+1

23.5%) 
5.3 

C3Dg 

[3] 
29.52M 

+5.66(+23.7

%) 
45.0% 

+24.6(+1

20.6%) 
5.1 

CSST-
Net 

27.34M 
+3.48(+14.6

%) 
47.6% 

+27.2(+1

33.3%) 
9.1 

As can be seen from Table 4, our model yields a 
superior performance of ~27% higher than C2D 
since 2D CNNs fail to process the temporal 
information. When α = 0.5 and g = 2, our CSST 
significantly performs better than P3D and C3Dg = 2. 
This indicates that the asymmetric parallel 

decomposition can better utilize parameters 
than the cascaded method like P3D. 
Meanwhile, this shows replacing a set of 
spatiotemporal convolutions with spatial-
only convolution is beneficial. Even 
compared with C3D, CSST still performs 
better, because vanilla 3D CNNs have feature 
redundancy when modeling spatiotemporal 
features. We split the channel into spatial and 
temporal parts, and perform 3D group-wise 
convolution and point-wise convolution on 
the temporal branch in parallel, which 
effectively reduces the parameters and 
feature redundancy of the network, and 
enhances the generalization ability of the 
network. In addition, from the perspective of 
parameter utilization efficiency, the proposed 
CSST-Net is ~10x higher than C2D, and it is 
better than other spatiotemporal learning 
models, which further demonstrates that the 
proposed CSST-Net can significantly improve 
the parameter utilization efficiency and has 
more advantages in temporal reasoning. 

4.4. Comparison with Other Methods 

Performance analysis. In Table 5, we give a 
performance comparison of CSST-Net with 
other methods on three challenging datasets. 
On Sth-Sth datasets, CSST-Net only samples 8 
frames as input, and its performance already 
outperforms most existing models. 
Specifically, CSST-Net is superior to later or 
medium temporal fusion approaches such as 
TRN, ECO, since CSST-Net via embedding 
CSST blocks globally, temporal information 
can be encoded more efficiently. Meanwhile, 
our model outperforms the 2D CNNs 

Table 5 

Comparison with other methods on benchmark datasets. (All models only taking RGB frames as inputs 
are listed in the table) 

Method Backbone #Frames #Param FLOPs 
Sth-Sth V1 

Top-1(%) Top-5(%) 

TSN [32] BNInception 8 10.7M 16G 19.5 - 

TRN [37] BNInception 8 18.3M 16G 42.0 - 

TSM [14] 

ResNet50 

8 24.3M 33G 45.6 74.2 

TSM [14] 16 24.3M 65G 47.2 77.1 

TAM [20] 8 25.6M 33G 46.5 75.8 

TAM [20] 16 25.6M 66G 47.6 77.7 

SmallBigNet [17] 8 - 52G 47.0 77.1 

TEINet [19] 8 30.4M 33G 47.4 - 

, (9)

where both ΔTop-1 and Δparam are in percent, η is 
the parameters utilization efficiency that represents 
how many Top-1 accuracy in percent are increased 
to introducing 1% parameters (higher indicates more 
efficient).

with spatial-only convolution is beneficial. Even com-
pared with C3D, CSST still performs better, because 
vanilla 3D CNNs have feature redundancy when mod-
eling spatiotemporal features. We split the channel 
into spatial and temporal parts, and perform 3D group-
wise convolution and point-wise convolution on the 
temporal branch in parallel, which effectively reduces 
the parameters and feature redundancy of the network, 
and enhances the generalization ability of the network. 
In addition, from the perspective of parameter utiliza-
tion efficiency, the proposed CSST-Net is ~10x higher 
than C2D, and it is better than other spatiotemporal 
learning models, which further demonstrates that the 
proposed CSST-Net can significantly improve the pa-
rameter utilization efficiency and has more advantages 
in temporal reasoning.

4.4. Comparison with Other Methods
Performance analysis. In Table 5, we give a perfor-
mance comparison of CSST-Net with other methods 
on three challenging datasets. On Sth-Sth datasets, 
CSST-Net only samples 8 frames as input, and its per-
formance already outperforms most existing models. 
Specifically, CSST-Net is superior to later or medi-
um temporal fusion approaches such as TRN, ECO, 
since CSST-Net via embedding CSST blocks globally, 
temporal information can be encoded more efficient-
ly. Meanwhile, our model outperforms the 2D CNNs 
counterparts with small extra computational costs, 
TSM, TEINet, and SmallBigNet. This is owing to 
our complementary design of the GSTM module and 
PFFF module, the PFFF module can recalibrate and 
merge the spatiotemporal features, so that when the 
features are fed to the next layer, the GSTM module 
can perform multi-scale temporal feature learning 
in a single layer. It is worth noting that our model 
can achieve almost the same performance as S3D-G 
(48.4% vs 48.2%) using only a few frames (12f vs 64f), 
and it even outperforms the complex models such 
as Non-local [35] with graph convolution [34]. This 
shows that CSST can allocate the parameter utiliza-
tion space effectively, and alleviate the phenomenon 
of feature redundancy on 3D CNNs.
To further demonstrate the temporal reasoning abili-
ty of the proposed CSST-Net, we also conduct exper-
iments on the Sth-Sth V2 and Jester datasets. The 
Sth-Sth V2 contains more video clips than the Sth-
Sth V1, which can further release the full abilities of 

Table 3
Ablation studying on hyper-parameter settings

Models α,g FLOPs Top-1(%) Top-5(%)

CSST-ResNet50

0.25, 2 35.43G 47.0 76.7

0.50, 2 37.69G 47.6 77.1

0.75, 2 39.96G 46.9 76.2

0.50, 2 37.69G 47.6 77.1

0.50, 4 32.14G 46.8 76.2

0.50, 8 29.37G 46.5 76.0

Table 4
Comparison with counterparts of spatiotemporal learning 
on Sth-Sth V1

Model #Param Δparam Top-1 ΔTop-1(%) η

C2D [32] 23.86M - 20.4% - -

C3D [29] 46.50M +22.64(+94.9%) 46.0% +25.6(+125.5%) 1.3

P3D [23] 29.40M +5.54(+23.2%) 45.6% +25.2(+123.5%) 5.3

C3Dg [3] 29.52M +5.66(+23.7%) 45.0% +24.6(+120.6%) 5.1

CSST-Net 27.34M +3.48(+14.6%) 47.6% +27.2(+133.3%) 9.1

As can be seen from Table 4, our model yields a superior 
performance of ~27% higher than C2D since 2D CNNs 
fail to process the temporal information. When α = 0.5 
and g = 2, our CSST significantly performs better than 
P3D and C3Dg = 2. This indicates that the asymmetric 
parallel decomposition can better utilize parameters 
than the cascaded method like P3D. Meanwhile, this 
shows replacing a set of spatiotemporal convolutions 
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CSST-Net without suffering overfitting. We sample 8 
frames from the video as input, and use 2 clips with 
3 crops to report the accuracy in Table 6. On the Sth-
Sth Vl dataset, compared with others with the same 
backbone, our method achieves a preferable perfor-
mance, which shows the advantages of CSST-Net in 
modeling long-term temporal models. Secondly, on 
the Jester dataset, compared with previous works, 
our proposed method outperforms most architec-
tures with similar structures, further verifying that 
CSST has significant performance in temporal mod-
eling. Notably, our method is slightly lower than STM, 
but the latter obviously uses an evaluation protocol 
that is more computationally expensive.

Method Backbone #Frames #Param FLOPs
Sth-Sth V1

Top-1(%) Top-5(%)

TSN [32] BNInception 8 10.7M 16G 19.5 -

TRN [37] BNInception 8 18.3M 16G 42.0 -

TSM [14]

ResNet50

8 24.3M 33G 45.6 74.2

TSM [14] 16 24.3M 65G 47.2 77.1

TAM [20] 8 25.6M 33G 46.5 75.8

TAM [20] 16 25.6M 66G 47.6 77.7

SmallBigNet [17] 8 - 52G 47.0 77.1

TEINet [19] 8 30.4M 33G 47.4 -

GSM [27] 8 10.5M 17G 47.2 -

I3D [1] 3D ResNet50 28.0M 153G×2 41.6 72.2

NL I3D [35] 3D ResNet50 32×2clip 35.3M 168G×2 44.4 76.0

NL I3D+GCN [34] 3D ResNet50+GCN 62.2M 303G×2 46.1 76.8

ECO [39]
BNInception+3D 

Res18

8 47.5M 32G 39.6 -

ECO [39] 16 47.5M 64G 41.4 -

ECOEN lite [39] 92 150M 267G 46.4 -

S3D-G [36] BNInception 64 11.6M 71G 48.2 78.7

CorrNet-26 [31] R(2+1)D-26 32 - 78G 47.4 -

GST [12] 3D ResNet50 8×2clip 21.0M 29.5G×2 47.6 76.6

CSST-Net ResNet50 8 27.3M 37.7G 47.6 77.1

CSST-Net ResNet50 12 27.3M 55.4G 48.4 77.8

Table 5
Comparison with other methods on benchmark datasets. (All models only taking RGB frames as inputs are listed in the table)

Efficiency analysis. Figure 6 analyzes the memo-
ry overhead and computational complexity of the 
proposed CSST-Net and other representative ap-
proaches to evaluate the trade-off in accuracy, pa-
rameters, and FLOPs on the Sth-Sth V1 dataset. 
Specially, the area of bubbles represents the num-
ber of parameters for each method. As can be seen 
from Figure 6, compared with other methods, our 
method has more competitive performance, and has 
a more compromised computational cost and mem-
ory, which further demonstrates that our method 
can efficiently allocate the parameter space, and 
achieves the preferable balance between accuracy 
and computational costs.
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Table 6
Comparison to the state-of-the-art on Sth-Sth V2 and Jester datasets

Method Backbone #Frames
Sth-Sth V2 Jester

Top-1(%) Top-5(%) Top-1(%) Top-5(%)

TSN[32] ResNet50 8×2×3 27.8 57.6 82.3 99.2

TRN[37] BNInception 8×1×1 48.8 77.6 95.0 -

TSM[14] ResNet50 8×2×3 58.6 85.3 94.7 99.7

TAM[20] 8×2×3 62.0 87.6 - -

SmallBigNet[17] 8×2×3 61.6 81.7 - -

STM[9] 8×3×10 62.3 88.8 96.6 99.9

TEA[18] 8×2×3 - - 96.5 99.8

CSST-Net ResNet50 8×2×3 62.3 88.6 96.5 99.9

5. Conclusions 
In this paper, we propose a novel channel split spa-
tiotemporal (CSST) block to efficiently capture the 
spatial and temporal information in videos, and built 
a powerful video architecture (CSST-Net). The pro-
posed CSST block achieves a good trade-off in terms 

Figure 6 
Video classification performance on Sth-Sth V1

 
 

 

approaches to evaluate the trade-off in accuracy, 
parameters, and FLOPs on the Sth-Sth V1 dataset. 
Specially, the area of bubbles represents the number 
of parameters for each method. As can be seen from 
Figure 6, compared with other methods, our method 
has more competitive performance, and has a more 
compromised computational cost and memory, 
which further demonstrates that our method can 
efficiently allocate the parameter space, and 
achieves the preferable balance between accuracy 
and computational costs. 
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5. Conclusions  
In this paper, we propose a novel channel split 
spatiotemporal (CSST) block to efficiently capture 
the spatial and temporal information in videos, and 
built a powerful video architecture (CSST-Net). The 
proposed CSST block achieves a good trade-off in 
terms of FLOPs and accuracy with the well-
designed temporal module. Furthermore, we 
propose an efficient spatiotemporal fusion method, 
which can perform the recalibration and fusion of 
spatial and temporal features, and without 
introducing extra parameters. Experiments results 
on three challenging datasets (Sth-Sth V1, Sth-Sth V2 
and Jester) indicate that CSST-Net is superior to the 
existing temporal modules significantly, 
demonstrating the effectiveness of CSST-Net on 
temporal reasoning. 
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