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Underwater object detection is one of the important technologies for improving the efficiency of underwater 
inspection, but the existing methods still suffer from the problems of missed detection and insufficient tar-
get localization capability of targets. To address these problems, an improved Transformer and multi-scale 
attentional supervised feature fusion-based underwater object detection method is proposed. In our method, 
the underwater objects are preprocessed by prior knowledge first. Then, a new coordinate decomposition 
window-based (CDW) Transformer block is proposed to extract spatial location information more accurate-
ly, and scaling factors are introduced to reduce the intermediate computation. Finally, an attentional super-
vised fusion (ASF) method is proposed to strengthen the link between feature extraction and feature fusion, 
and further improve the detected performance by using compound attention weights. The cascade detection 
head is improved, where the information flow is reversed to enhance the prediction of coordinates. The av-
erage accuracy of the proposed method on the URPC and DUO datasets is 3.7% and 3.8% higher than that of 
the baseline network through the cross-test, and outperforms the state-of-the-art methods. This study can 
provide a reference for engineering applications such as automated marine operations and biodetected fish-
ing techniques.
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1. Introduction
The ocean is rich in resources and has many un-
knowns; however, the research on marine is much 
more difficult than that on land. With the continuous 
exploitation of marine resources, the demand for au-
tomated underwater operations is increasing, which 
has caused underwater object detection technology 
to receive people’s attention. Underwater object de-
tection can be applied to aquaculture, fishing, envi-
ronmental monitoring, underwater rescue and many 
other underwater tasks. Through this technology, ad-
vanced machines can realize autonomous underwa-
ter operations and greatly increase the efficiency of 
underwater operations.
In recent years, object detection algorithms have 
evolved from traditional manual feature extraction 
methods to deep learning methods. Traditional meth-
ods are highly affected by object and image acquisi-
tion, while deep learning methods use automatically 
extracted features to detect objects and can identify 
the physical characteristics of the objects more effec-
tively [7]. 
Furthermore, the Transformer-based approaches 
have shown better performances in object detection 
[8]. Transformers consist of self-attention and allow 
for better modelling of the relationships between all 
pixels [4]. Increasingly, researchers use Transform-
ers to obtain better models than just convolutional 
neural networks (CNNs), which gives us the moti-
vation to introduce the Transformer for underwater 
object detection.
The existing deep learning-based methods have 
achieved good performance in common scenes. 
However, when encountering complex underwa-
ter environments, these methods still exhibit miss-
ing detection and insufficient positioning ability for 
hard objects. Different from ordinary detection, the 
difficulty of underwater object detection comes from 
various disturbances and motion blur during visual 
data acquisition, which causes the existing problems. 
For the disturbances, some work reduced the noise 
through image enhancement, and others improved 
detection accuracy by adjusting the network struc-
ture. However, the motion blur is easily overlooked. 
Existing work often treats these two different sources 
of difficulty together, which leads to poor model gen-
eralization performance. In our work, we take motion 

blur as prior knowledge, and learn the disturbances in 
underwater images through an improved network.

The primary goal of this research is to reduce missed 
detection in underwater scenes and enhance the precise 
positioning capabilities, introducing Transformer to 
improve detected accuracy. The main contributions of 
this paper are as follows:
1 A coordinate decomposition window (CDW) 

Transformer block is proposed for the precise ob-
ject positioning, which strengthens the spatial po-
sition information by the novel coordinate decom-
position calculations and reduces the intermediate 
computation by the scaling factors.

2 An attentional supervised fusion method (ASF) is 
proposed for the Transformer and incorporated 
into the feature pyramid to enhance small objects 
features, which can supervise multi-scale informa-
tion fusion and strengthen the link between fea-
ture extraction and feature fusion.

3 During training, prior knowledge is used for data 
preprocessing to alleviate underwater motion blur, 
and the information flow in the cascade detection 
head is reversed to enhance coordinate prediction.

The rest of this paper is arranged as follows. Section 
2 presents some related works. Section 3 describes 
the proposed method. Section 4 presents the experi-
mental results and analysis. Finally, the conclusion is 
presented in Section 5.

2. Related Work
2.1. Underwater Object Detection
Underwater object detection can be divided into two 
categories according to the different signals of the ob-
ject The first category is the acoustic image collected 
by sonar [26]. The second category is optical images 
acquired by cameras. Sonar images usually have noisy 
data of lower resolution and more difficult interpre-
tation, so our approach aims to underwater optical 
images.
Currently, underwater object detection algorithms 
can be roughly divided into two categories: handcraft-
ed feature-based methods and deep learning-based 
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methods. As an example of the former type, Huang 
et al. [9] extracted a feature combination of colour, 
shape and texture properties to detect fishes. Weber’s 
Local Descriptor (WLD) [29] and Histogram of Ori-
ented Gradients (HOG) [11] descriptor were used ear-
ly to assist detection. However, these methods need 
specific characteristics and are far from meeting the 
needs of practical applications.
Deep learning-based methods are widely used in var-
ious fields [5], including underwater detection. The 
SWIPENet model [2] utilized a sample reweighting 
scheme to reduce environmental interference, sig-
nificantly improving the accuracy of small object 
detection. Dawid Połap et al. [26] analyzed the sonar 
images according to regions of interests (ROIs) by the 
histogram module to exclude non-target images and 
then classified the objects by CNN, which achieved 
good results in real scenarios. The RoIMix network 
[17] mixed the proposals extracted from different 
images to improve the detection of small underwater 
objects. This type of method has come to be further 
divided into one-stage and two-stage methods and 
has made some outstanding achievements, respec-
tively. For example, the R-CNN series of networks 
have been applied to underwater object detection for 
a long time. Li et al. [12] first introduced Fast R-CNN 
to fish species detection. Mandal et al. [23] first in-
troduced an end-to-end deep learning-based archi-
tecture that used Faster R-CNN to detect fish. How-
ever, these methods are less effective and slower in 
detecting when the targets overlap. In one-stage de-
tection methods, an improved YOLOv3 network was 
used with data augmentation methods to increase the 
domain diversity of the dataset and the speed of de-
tection [21]. Zhang et al. [34] focused on lightweight 
performance and proposed a lightweight underwater 
object detection method based on the YOLOv4. Lei et 
al. [10] first used YOLOv5, Swin Transformer and ad-
justed the feature fusion to achieve high detection ac-
curacy. Recently, Yan et al. [33] improved the YOLOv7 
network, incorporating the CBAM attention mecha-
nism to enhance features and achieving optimal re-
sults for one-stage underwater detection methods. 
However, the method is not accurate enough for de-
tecting tiny targets. Overall, the attention mechanism 
is popular for enhancing the ability of underwater tar-
get feature extraction, but there is still much room for 
accuracy improvement. We proposed a novel Trans-

former block and an attentional supervised fusion 
method to handle missing detection.

2.2. Combination of Transformer and CNN 
Techniques
In recent years, the combination of Transformers 
with convolutional neural networks (CNNs) have 
been shown better detection results [15]. The con-
volutional operation in CNNs tends to focus on local 
feature processing, but the receptive field is usually 
small. In contrast, Transformers obtain the global re-
ceptive field by computing the global correlation, but 
the local details are weaker. To overcome these chal-
lenges, an approach based on the fusion of these two 
aspects has been widely studied. 
Broadly speaking, the DETR network and its variants 
[1] combine the CNN backbone with the Transform-
er encoder and decoder to interpret the relationship 
between the object and the global image, omitting 
postprocessing and outputting the final result di-
rectly. The authors of [20] introduced a hierarchical 
structure commonly used in CNNs to build a multi-
layer Transformer structure to enhance multiscale 
detection. Narrowly speaking, the combination of 
Transformer and CNN methods can be attributed to 
the combination of self-attention and convolution. 
For example, UniFormer [14] alternately uses convo-
lution and self-attention computations, while the AC-
mix model [24] reunifies the mapping part to combine 
convolution and self-attention mechanisms more ef-
fectively. These works show that the combination of 
the Transformer and CNN methods can enable the 
network to inherit the advantages of both global and 
local features. Inspired by these works, the proposed 
CDW Transformer block explores the advantages of 
global and local information, improving the detection 
performance in complex underwater scenes. Unlike 
other works, CDW is more capable of processing spa-
tial information and more flexible in intermediate 
calculations.

2.3. Multi-scale Feature Fusion
Multiscale feature fusion has been widely used in ob-
ject detection. For example, Lin et al. first proposed 
a feature pyramid network (FPN), which uses top-
down channels to build high-level feature maps at all 
scales [16]. PANet [18] added a path to obtain more 
details of objects. Aug-FPN [6] adaptively reduced the 
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loss of contextual information in high-level feature 
maps and accelerated inference. Bi-FPN [27] added 
various channels to the FPN to fuse features at dif-
ferent stages by different weights. These methods add 
various auxiliary means in the feature fusion stage to 
achieve a better fusion effect, but too many connec-
tions make the model computationally intensive.
However, these feature fusion processes are designed 
for CNN’s feature map, and the effect on the Trans-
former’s attention map of features is not as good as 
that in CNN. Therefore, a better method for adapting 
to the Transformer’s attention fusion needs to be ex-
plored. We propose a new attention supervision fu-
sion method, which designs a path supervised by the 
attention weight of the Transformer block on the ba-
sis of the FPN. The proposed ASF not only improves 
the feature extraction but also strengthens the link 
between feature extraction and feature fusion.

3. Proposed Method
The difficulty in underwater object detection is more 
about missed detection rather than false detection, 
so the model needs to focus on the spatial informa-

Figure 1
The overall architecture of the CDWTN

tion and object features. The overall architecture of 
our coordinate decomposition window-based Trans-
former network (CDWTN) is shown in Figure 1. First, 
the underwater image data are preprocessed for ob-
ject augmentation. Then, the feature is extracted by 
the improved Transformer blocks and processed by 
the attentional supervised fusion pyramid network 
(ASFPN). Finally, the detection results are output by 
the cascaded detection head.

3.1. Improved Transformer Feature 
Extraction Network
As shown in Figure 1, to maintain the detection capa-
bility for large underwater images, the backbone of 
the proposed method follows the design of four cas-
caded stages [30]. The model initially starts by slicing 
the image into nonoverlapping image patches, and 
then maps it into windows of arbitrary dimension us-
ing a patch partition layer and a linear embedding lay-
er. The feature map size in the first stage is H/4×W/4, 
and the number of output channels is C. In the follow-
ing three stages, each stage consists of multiple CDW 
Transformer blocks and a patch merging [20] layer 
to reduce the size of the feature maps. The downs-
ampling in the hierarchical Transformer allows the 

Then, the feature is extracted by the improved 
Transformer blocks and processed by the attentional 
supervised fusion pyramid network (ASFPN). Finally, the 

detection results are output by the cascaded detection 
head. 
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for large underwater images, the backbone of the 
proposed method follows the design of four cascaded 
stages [30]. The model initially starts by slicing the image 
into nonoverlapping image patches, and then maps it into 
windows of arbitrary dimension using a patch partition 
layer and a linear embedding layer. The feature map size 
in the first stage is H/4×W/4, and the number of output 
channels is C. In the following three stages, each stage 
consists of multiple CDW Transformer blocks and a patch 
merging [20] layer to reduce the size of the feature maps. 
The downsampling in the hierarchical Transformer 
allows the model to gradually extract global information 
and has better scale adaptability. 

3.2 CDW Transformer Block 

The proposed transformer block uses the decomposition 
coordinate information to strengthen the spatial position 
information in the self-attention, and effectively reduces 
the intermediate parameters by the scaling factor. 

The structure of the proposed CDW Transformer block is 
shown in Figure 2. The feature map after layer 

normalization (LN) is fed into multi-head self-attention 
blocks for feature learning and then fused with the 
residual-connected feature map. The SCDW-MSA block 
adds a shift operation [20] to the CDW-MSA block. The 
multi-head approach superposes single self-attention 
results in parallel. The entire feature extraction network 
is constructed with alternating window-based and shifted 
window-based CDW operations interacting between 
image patches within each stage. 

Figure 2 
CDW Transformer block, where CDW-MSA denotes 
coordinate decomposition window multi-head self-
attention and SCDW-MSA denotes shifted coordinate 
decomposition window multi-head self-attention 

 

Specifically, to emphasize spatial information, CDW 
integrates self-attention and convolution operations by 
introducing decomposed coordinate information into the 
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and SCDW-MSA denotes shifted coordinate decomposition 
window multi-head self-attention

model to gradually extract global information and has 
better scale adaptability.

3.2. CDW Transformer Block
The proposed transformer block uses the decomposi-
tion coordinate information to strengthen the spatial 
position information in the self-attention, and effec-
tively reduces the intermediate parameters by the 
scaling factor.
The structure of the proposed CDW Transform-
er block is shown in Figure 2. The feature map af-
ter layer normalization (LN) is fed into multi-head 
self-attention blocks for feature learning and then 
fused with the residual-connected feature map. The 
SCDW-MSA block adds a shift operation [20] to the 
CDW-MSA block. The multi-head approach super-
poses single self-attention results in parallel. The 
entire feature extraction network is constructed with 
alternating window-based and shifted window-based 
CDW operations interacting between image patches 
within each stage.

Then, the feature is extracted by the improved 
Transformer blocks and processed by the attentional 
supervised fusion pyramid network (ASFPN). Finally, the 

detection results are output by the cascaded detection 
head. 
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by introducing decomposed coordinate information 
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ing the backbone network to better generate atten-
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self-attention computation. This integration is applicable 
to images of various sizes and reduces information loss 
due to image chunking, thus allowing the backbone 
network to better generate attention weights. The 
continuous Transformer blocks are computed as 
Equations (1)-(4): 
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The ˆ lY  and lY  represent the output of the CDW 

Transformer block and the MLP block, respectively. The 
specific improvements are introduced as follows. 

3.2.1 Scaling Factor 

Since the traditional self-attention module calculates all 
pixel points and the object is widely distributed in the 
underwater environment, there is some redundant 
information in the calculation. Therefore, to lighten the 
model, two scaling factors nc and ns are introduced into 
the Transformer blocks. 

The query matrix (Q), key matrix (K), and value matrix 
(V), which have identical sizes after mapping the input 
image of height H and width W, are transformed by 

functions ( )qf x , ( )kf x and ( )vf x . The transformed 

matrices are the adjustable matrices Q’, K’ and V’ shown 
in Figure 3. 
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Diagram of the scaling factor 

 

In regard to the scaling factors, it is experimentally 
demonstrated that the adjusted image matrix does not 
degrade the detection accuracy when reducing 

computational overhead. 

3.2.2 Coordinate Decomposition Window-based Self-
attention  

In some Transformer structures, the image is sliced and 
shifted to avoid excessive computational complexity. 
However, in practical underwater scene applications, 
image slicing will result in poor detection accuracy for 
objects that are located in boundary regions and patch 
intersections. To address this problem, the method 
presented in this paper uses coordinate information to 
enrich the expressiveness of features. The method 
strengthens the weights of object locations and 
reorganizes self-attention and convolution. The pooling 
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an association with the surrounding image patches. The 
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self-attention calculation is shown in Figure 4. The upper 
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accuracy for objects that are located in boundary re-
gions and patch intersections. To address this prob-
lem, the method presented in this paper uses coor-
dinate information to enrich the expressiveness of 
features. The method strengthens the weights of 
object locations and reorganizes self-attention and 
convolution. The pooling operation is used to hasten 
the receptive fields to enable an association with the 
surrounding image patches. The single-channel coor-
dinate decomposition window-based self-attention 
calculation is shown in Figure 4. The upper half is 
the coordinate decomposition branch, and the lower 
half is the self-attention branch. While calculating 
the self-attention, the horizontal and vertical coordi-
nate decomposition information of the input and the 
neighbourhood, are calculated in the (H+2)× (W+2) 
region, respectively.

Figure 4
Coordinate decomposition window-based self-attention
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in the horizontal and vertical directions by averaging 
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with width w can be expressed as Equations (5) and 
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feature encoding reflects whether the exists in the 
corresponding row and column. Next, the four feature 
encodings are transposed and spliced by the concat 

approach. Then the pixels are reduced using a shared 
1×1 convolution and normalized with batch normal-
ization (BN) [28] to generate intermediate attention 
weight J. Finally, weight J is split into two separate 
matrices Jw and Jh along the spatial dimension, and 
the sigmoid mapping function is used to add nonlin-
ear properties, which smooths the gradient and avoids 
jumping output values. The classical sigmoid maps 
any real-valued number to a value between 0 and 1, 
which can be interpreted as a probability. In the CDW 
Transformer block, the sigmoid function outputs the 
probability that the coordinate location has an object.
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The self-attention branch is calculated using the deformed 
matrix. The attention weights are then multiplied by the 
coordinate decomposition weights to obtain the 
composite attention weight Wei. Wei is used for the feature 
fusion in the neck and will be weighted to the V’ matrix.  

Through a richer and more flexible attention calculation, 
the CDW Transformer block extracts richer object 
information during the feature extraction process. The 
coordinate decomposition calculation we designed can 
also be understood as a positional attention mechanism, 
which is used to strengthen the target position 
information. It not only preserves the details of the 
underwater objects through self-similarity but also 
enhances the location information of the object. 

After combining the coordinate decomposition 
calculation and the original self-attention, Equation (7) 
shows the calculation in the CDW Transformer Block. 
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The Q’, K’ and V’ are the adjustable matrices. Jw and Jh 
are the weight splits of J. As with all self-attention 
mechanisms, the softmax maps the output of multiple 
neurons into the (0,1) interval. The dk is the embedding 
dimension to represent each entity, which is used to 
prevent large-scale inputs from excessively affecting the 
calculation of weights.  

CDW-MSA is an extension of CDW-SA in which we run 
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3.3 Attentional Supervised Fusion and Cascaded 
Detection Head 
3.3.1 Attentional Supervised Fusion 

This paper designs an ASF to integrate multi-scale 
features in the neck stage. The closest work to our method 
is PANet, but the connection in PANet is unstable. 
Therefore, we design a new supervision method that 
connects the feature extraction and fusion of transformers. 
In addition, the coordinate decomposition information in 
CDW is retained to supervise the feature fusion of the 
object region. 

Inspired by spatial attention [32], the single-scale 
attention-supervised feature fusion introduces the novel 
spatial selection attention (SSA) module, as shown in 
Figure 5. The optimal combination of the average and 
maximum pooling results is obtained adaptively by log-
sum-exp (LSE) pooling [25]. The weight Wei is filtered by 
LSE pooling, residual concatenation, sigmoid mapping 
function and 7×7 convolution, which is consistent with 
the backbone window size, so that pixels with similar 
scores obtain similar weights in the training process. 

Unlike most existing feature fusion structures, we extract 
the composite attention weights in the backbone for 
supervising the guided fusion process, which provides a 
certain regularization effect for the network. The 
parameters used here other than the SSA module can be 
shared with the backbone, so the burden on the model is 
small. 
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CDW-MSA is an extension of CDW-SA in which we 
run k self-attention operations in parallel. In Equa-
tion (8), Umsa represents an output matrix related to 
the size of the intermediate mapping matrix [1].
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separate matrices Jw and Jh along the spatial dimension, 
and the sigmoid mapping function is used to add 
nonlinear properties, which smooths the gradient and 
avoids jumping output values. The classical sigmoid 
maps any real-valued number to a value between 0 and 1, 
which can be interpreted as a probability. In the CDW 
Transformer block, the sigmoid function outputs the 
probability that the coordinate location has an object. 
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starfish and water plants. After data screening according 
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images in the training set and 546 images in the test set. 
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3.3.2. Cascaded Detection Head
The final detection results are obtained by means 
of the adjusted cascade detection head. The detec-
tion head component refers to the HTC framework 
[3], which demonstrated the feasibility of reinforc-
ing the information flow between mask branches 
by feeding the mask features and the box features 
of the preceding stage. Similarly, we adjusted the 
direction of the information flow, using the simpli-
fied mask information flow as the inputs of the box 
regression branch to form a coordinate information 
flow. The cascaded detection heads are connected as 
shown in the head section on the lower side of Figure 
1. The coordinate information flow branch includes 
semantic head S [3] and coordinate information 
Mi. The lower half still uses a region proposal net-
work (RPN), pooling and bounding box regression 
Bi. If the coordinate information flow exceeds the 
bounding box, the prediction bounding box will be 
fine-tuned, while the information flow loss is added 
to the overall loss. This improves underwater object 
detection by combining the advantages of the cas-
cade approach and the complementary nature be-
tween object frame and mask coordinate prediction. 
Other structures are consistent with HTC. We apply 
SoftNMS to the box results, which makes the model 
more efficient. In each head block, the box head pre-
dicts the classification score ci and regression offset 
ri. The cross-entropy (CE) loss and smooth L1 loss 
are used to calculate box loss (Li

b) and semantic loss 
(Ls). Smooth L1 loss improves the generalization of 
the model. The information flow loss (Li

m) is calcu-
lated by the binary cross-entropy (BCE) loss. We set 
α = [1, 0.5, 0.25] and β = 1. The overall loss function 
takes the form of multi-task learning [3]:
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4. Experiment and Analysis
4.1. Experimental Data
4.1.1. Underwater Dataset
We use the 2020 Underwater Robot Profession-
al Contest (URPC) and DUO [22] object detection 
datasets for testing. In URPC, there are 5543 imag-
es covering five categories of objects: holothurian, 
echinus, scallop, starfish and water plants. After data 
screening according to official requirements, the final 
dataset contained 5455 images without water plants. 
Since no additional test sets were announced, while 
ensuring no overlapping data, the dataset was divid-
ed randomly at a ratio of 9:1, i.e., 4909 images in the 
training set and 546 images in the test set. In the DUO 
dataset, there are 7782 images covering four catego-
ries: sea urchins, sea cucumbers, scallops, and sea 
stars, with 6671 fixed images in the training set and 
1111 fixed images in the test set.
The download addresses of the datasets used in this 
article are as follows:
URPC2020 https://openi.pcl.ac.cn/OpenOrcinus_
orca/ URPC2020_dataset;
DUO https://drive.google.com/file/d/1w-bWevH7jF 
s7A1bIBlAOvXOxe2OFSHHs/view?usp=sharing.

4.1.2. Data Processing
Image quality has a profound impact on subsequent 
work [13]. Different from other environments, the un-
derwater images have many problems such as noise 
interference, blurred texture features, low contrast 
and colour distortion. Therefore, the underwater tar-
get detection task faces many challenges.
Existing underwater image enhancement methods 
focus on the various noises in the image, ignoring the 
motion blur caused by the image acquisition process 
and water movement. In this paper, the blurring prob-
lem of images is considered, which complements ex-
isting methods.
For motion blur and detailed loss in underwater im-
ages, we introduce prior knowledge and the mosa-
ic method to augment the objects. We introduce the 
method using local minimal pixel prior [31] to quickly 
deblur the image. The detected effect before and after 
deblurring is shown in Figure 7, which suggests that 
the recovered images are effective in improving the 
detected accuracy of some scenes.
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For some blurs that cannot be quickly removed, we 
design a blur prior fusion method to adapt to these 
blurs simply and effectively. Objects in the dataset are 
selected for pixel panning and proportional overlay to 
create a motion blur. Pixels are randomly shifted at a 
distance of no more than 1/20 of the object size; oth-
erwise, ghosting and duplicate recognition will occur. 
The background is cropped, and the brightness and 
three-channel histogram of the images are randomly 
adjusted. An example of blur prior fusion is shown in 
Figure 8.

Figure 7
Detected results before and after deblurring

Figure 8
Example of blur prior fusion

(a) before deblurring (b) after deblurring

In the DUO dataset, there are 7782 images covering four 
categories: sea urchins, sea cucumbers, scallops, and sea 
stars, with 6671 fixed images in the training set and 1111 
fixed images in the test set. 
The download addresses of the datasets used in this article 
are as follows: 
URPC2020：https://openi.pcl.ac.cn/OpenOrcinus_orca/ 
URPC2020_dataset; 
DUO ： https://drive.google.com/file/d/1w-bWevH7jF 
s7A1bIBlAOvXOxe2OFSHHs/view?usp=sharing. 

4.1.2 Data Processing 

Image quality has a profound impact on subsequent work 
[13]. Different from other environments, the underwater 
images have many problems such as noise interference, 
blurred texture features, low contrast and colour 
distortion. Therefore, the underwater target detection task 
faces many challenges. 

Existing underwater image enhancement methods focus 
on the various noises in the image, ignoring the motion 
blur caused by the image acquisition process and water 
movement. In this paper, the blurring problem of images 
is considered, which complements existing methods. 

For motion blur and detailed loss in underwater images, 
we introduce prior knowledge and the mosaic method to 
augment the objects. We introduce the method using local 
minimal pixel prior [31] to quickly deblur the image. The 
detected effect before and after deblurring is shown in 
Figure 7, which suggests that the recovered images are 
effective in improving the detected accuracy of some 
scenes. 
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For some blurs that cannot be quickly removed, we 
design a blur prior fusion method to adapt to these blurs  
simply and effectively. Objects in the dataset are selected 
for pixel panning and proportional overlay to create a 
motion blur. Pixels are randomly shifted at a distance of 
no more than 1/20 of the object size; otherwise, ghosting 
and duplicate recognition will occur. The background is 
cropped, and the brightness and three-channel histogram 

of the images are randomly adjusted. An example of blur 
prior fusion is shown in Figure 8. 

Figure 8 
Example of blur prior fusion 

 

4.2 Model Training and Evaluation Metrics 

In this paper, the BN layer in the detection head is 
replaced with a group normalization (GN) layer to 
accelerate the convergence and reduce the accuracy 
reduction when the batch size is small. The number of the 
CDW Transformer blocks in each stage is set to 2, 2, 4, 
and 2, and the ImageNet-1K pretrained model is used to 
accelerate training. The window size is set to 7 by default. 
The Adam optimizer (initial learning rate of 0.0001 and 
weight decay of 0.05) is used to optimize the training 
process. Under the same experimental conditions, the 
input image size of the models was set to 512 × 512, while 
the convergence was accelerated using the respective 
pretrained models. The batch size is set to 4. The training 
and testing process was performed on an NVIDIA 
GeForce RTX 3090 GPU with 12 GB of RAM.  

In this paper, the average precision accuracy (AP) and the 
mean average precision (mAP) are calculated as 
evaluation metrics. The mAP includes  AP@0.5 and 
AP@0.5:0.95. AP@0.5 indicates the average accuracy 
when the threshold value of the intersection and merge 
ratio Intersection over Union (IoU) between the detection 
area and the object area is 0.5. AP@0.5:0.95 indicates that 
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4.3. Comparative Experiments
The proposed model is tested on the open URPC2020 
dataset and DUO dataset. Six pure CNN methods and 
five methods containing the Transformer are selected 
for comparison. 
The results are shown in Table 1. We perform 10 
cross-validations on the URPC dataset, and the re-
sults are given in Table 2. From Table 2, it can be seen 
that the accuracy change is only 0.4%, which suggests 
the stability of the model.
It can be seen in the experimental results in Table 
1 that the AP@0.5 index of CDWTN is 88.3% and 
92.8%, which is better than that of the other models. 
Compared with the optimal network of CNN on the 
URPC data, the AP@0.5 index is 1.4% higher than that 
of the state-of-the-art architecture, i.e., YOLOv7. The 
AP@0.50:0.95 index is 5.1% higher than that of the 
YOLOv7 network, and the model object positioning is 
significantly more robust and meets the detection re-
quirements for practical applications. Compared with 
Transformer class networks, the proposed method 
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Table 1
Performance comparison on the URPC2020 and DUO datasets

Categories Method Backbone
URPC DUO

AP@0.5 
%

AP@0.50: 0.95 
%

AP@0.5 
%

AP@0.50: 0.95 
%

CNN 

Faster R-CNN ResNet-50 65.2 35.0 67.7 37.1

RetinaNet ResNet-50 68.7 43.4 69.9 45.0

YOLOv3 DarkNet53 78.3 46.2 79.8 47.6

YOLOx CSPDarkNet 80.2 48.0 85.0 52.4

YOLOv5-s [10] CSPDarkNet53 80.1 45.6 86.6 57.9

YOLOv5-l [10] CSPDarkNet53 85.1 49.8 87.9 58.5

YOLOv7 [33] CSPDarkNet53 86.9 51.7 89.5 60.6

Transformer 

DETR [1] ResNet-50 65.5 38.7 76.7 50.9

Deformable Detr [35] ResNeXt-101 74.4 45.0 80.1 56.1

DAB DETR [19] ResNeXt-101 79.6 48.9 88.1 61.7

HTC ACmix [24] 85.8 53.3 88.4 62.8

HTC SwinT [20] 85.6 53.3 87.9 62.1

Ours CDW 88.3 56.8 92.8 67.3

Table 2
Cross-validation on URPC2020

Group 1 2 3 4 5 6 7 8 9 10

AP@0.5 56.8 56.4 56.6 56.6 56.7 56.8 56.4 56.8 56.8 56.5

AP@0.50:0.95 88.3 88.1 88.3 88.3 88.2 88.4 88.2 88.3 88.3 88.2

has a 2.5% higher AP@0.5 index than the novel ACmix 
backbone. The Transformer feature extraction meth-
od is adopted to enhance the robustness of different 
backgrounds through self-attention calculation, 
which is also more suitable for the complex underwa-
ter environment. Moreover, CDW blocks are adopt-
ed to improve the richness of feature extraction, and 
the convolution is integrated to focus on the location 
information of the object. The scaling factor is intro-
duced in addition to adding coordinate information, 
which makes the calculation of self-attention simpler 
and faster. Finally, ASFPN makes the fusion process 
subject to the supervision of Transformer backbones. 
Weight parameters are used to supervise the location 
and characteristics of objects in the fusion process, 
thus reducing the attention to other interference in-
formation, making the information of small objects in 

deeper networks better fused, and improving the ef-
fectiveness of multi-scale object detection.
Furthermore, we perform the cross-test using the 
training and test sets of the two datasets to verify the 
generalization performance of the model, the results 
of which are shown in Table 3.
From Table 3, the test accuracy has decreased due to 
the data for different distributions, but the accuracy is 
still higher than other methods. The CDWTN inherits 
the flexibility of hierarchical transformers to model at 
different scales and has flexible intermediate calcula-
tions. In addition, blur prior fusion also improves gen-
eralization performance. Furthermore, we plotted the 
PR curves of various objects. 
Figure 9 shows the PR curves of the proposed 
CDWTN for each class of underwater objects, where 
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Table 3
Performance comparison of different methods via cross-validation

Categories Method Backbone
Train/test (URPC/DUO) Train/test (DUO/URPC

AP@0.5 
%

AP@0.50: 0.95 
%

AP@0.5 
%

AP@0.50: 0.95 
%

CNN 

Faster R-CNN ResNet-50 55.6 30.2 60.3 35.3

RetinaNet ResNet-50 60.3 37.1 66.5 43.5

YOLOv3 DarkNet53 68.9 40.5 77.1 46.4

YOLOx CSPDarkNet 70.1 43.0 78.6 47.1

YOLOv5-s [10] CSPDarkNet53 73.3 42.9 78.2 45.4

YOLOv5-l [10] CSPDarkNet53 79.1 46.3 82.1 49.7

YOLOv7 [33] CSPDarkNet53 81.4 48.6 84.8 51.8

Transformer 

DETR [1] ResNet-50 61.3 35.1 66.7 39.8

Deformable Detr [35] ResNeXt-101 72.5 42.2 75.3 46.1

DAB DETR [19] ResNeXt-101 76.8 45.8 80.5 49.8

HTC ACmix [24] 82.3 50.4 85.8 53.4

HTC SwinT [20] 81.6 50.4 85.7 53.3

Ours CDW 85.4 53.1 89.4 57.3

Figure 9
PR curves of various objects
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P represents the precision and R represents the recall. 
The CDWTN has the best detection ability for echi-
nus, followed by starfish. The accuracy of the optimal 
model for both types of networks is also given for each 
category, as shown in Table 4. The accuracy of the 
proposed network is improved for each category, es-
pecially for the scallop category, which is 3.1% high-
er than that of the YOLOv7 network and 6.7% higher 
than that of the SwinT method.

Table 4
Results for various classes from the URPC2020 test set

Method
AP

Holothurian Echinus Scallop Starfish

YOLOv5-l 77.6 91.6 83.0 88.2

YOLOv7 80.5 91.4 85.4 90.3

SwinT 78.9 91.2 81.8 90.5

CDWTN 80.5 92.8 88.5 91.7

4.4. Ablation Study
In this paper, to verify the module effectiveness, each 
modified version of the CDWTN underwater object de-
tection method is tested separately on the URPC2020 
dataset, where Baseline denotes the SwinT method. 
Baseline + A-data denotes the use of the pro-processed 
methods. Baseline + nc&ns denotes the introduction 
of scale factors. Baseline + CDW denotes the use of 

Table 5
Ablation experimental results

method AP@0.5 AP@0.50:0.95 APs APm APl

Baseline 85.6 53.3 25.5 46.3 58.0

Baseline + A-data 86.1 54.4 26.8 47.4 58.6

Baseline + nc& ns 85.6 53.2 25.4 46.2 58.1

Baseline + CDW 86.0 54.0 26.3 47.0 58.3

Baseline + ASFPN 86.4 54.6 27.9 48.3 58.8

Baseline + A-data + CDW 87.5 55.2 27.8 48.7 59.5

Baseline + A-data + ASFPN 87.3 55.8 29.2 50.5 59.2

Baseline + CDW + ASFPN 86.9 55.6 29.0 50.8 59.1

CDWTN 88.3 56.8 29.7 51.1 60.1

the improved coordinate decomposition self-atten-
tion calculation. Baseline + ASFPN denotes the use of 
the ASF method. CDWTN denotes the proposed final 
method. The results of the ablation experiments are 
shown in Table 5, where APs are set as small object AP 
values with pixels smaller than 322, APm refers to me-
dium object AP values with object pixels between 322 
and 962, and, APl refers to large object AP values with 
pixels larger than 962.
Experiments of A-data. As shown in Table 4, Base-
line + A-data enriches multiscale objects by prior 
knowledge. The indexes AP@0.5 and AP@0.5:0.95 in-
crease by 0.5% and 1.1%, respectively, compared with 
the baseline network. It can be found that the increase 
in object volume is beneficial to network learning. 
The object is richer in the local scope of the picture by 
using blur prior fusion. 
Experiments of CDW Transformer blocks. As 
shown in Table 5, with the introduction of the scale 
factors, the number of intermediate calculations can 
be reduced and has little influence on accuracy. Base-
line + CDW introduces a scaling factor and coordinate 
decomposition window-based self-attention, which 
improve objects of all scales to a certain extent. The 
introduction of coordinate decomposition attention 
can better extract the features of objects in fuzzy im-
ages with rich image backgrounds and can strengthen 
the ability to extract objects.
Table 6 shows the experimental results with different 
quantities of Transformer blocks, with the number of 
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Table 6
Experimental results with different quantities of CDW 
Transformer blocks

Number of Transformer 
blocks in four stages AP@0.5 AP@0.50:0.95 FPS 

f/s 

2, 2, 2, 2 80.6 49.3 13.4

2, 2, 4, 2 86.0 54.2 11.3

2, 2, 6, 2 86.6 54.7 8.0

frames per second (FPS) transmitted as a reference 
metric. The number of blocks in each phase should be 
an even number of blocks, following the principle of 
alternate use. As shown in Table 6, three block num-
ber ratios are demonstrated, and a better combination 
of speed and accuracy can be achieved by reducing 
the number of blocks in the third stage to 4 within the 
range of accuracy allowed. After adding the deforma-
tion factor, the accuracy of the model remains good, 
while offsetting the computational complexity caused 
by other additional parameters.
Experiments of ASFPN. The introduction of the 
ASFPN module Baseline + ASFPN reduces the loss 
of small objects caused by feature fusion. Compared 
with the baseline network, AP@0.5 and AP@0.5:0.95 
increase by 0.8% and 1.3%, respectively, and the de-
tection accuracy of small objects APs increases by 
2.4%, indicating that replacing the original FPN fea-
ture fusion method with ASFPN can enhance the 
small object detection capability. ASFPN uses a su-
pervised approach that utilizes attention to focus on 
the location of objects, making the feature extraction 
and feature fusion fitter.
To further demonstrate the feature fusion effect, 
this paper compares the same type of feature fusion 
methods on the baseline network, as shown in Table 7. 

Among them, PANet and Bi-FPN can bring great im-
provement in convolutional networks. However, the 
improvement brought by ASFPN for the Transformer 
network is more effective for improving underwater 
detection accuracy. Finally, the best detection per-
formance is obtained by integrating all the above im-
provements of the proposed method.

4.5. Visualization Results
We plotted the accuracy curve (mAP@50) for every 
10 epochs and the loss curve for every 25 iterations. In 
Figure 10, it can be seen that the model is constantly 
converging, and is not overfitting. Since the batch size 
setting is small, the glitch of the loss curve is notice-
able.

Table 7 
Performance comparison of different feature fusion methods

Feature Fusion Method AP@0.5 AP@0.50:0.95 APs

FPN [16] 85.6 53.3 25.5

PANet [18] 85.8 53.8 26.7

Bi-FPN [27] 86.2 54.1 26.3

ASFPN 86.4 55.6 27.9
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Figure 10 
Accuracy curve and loss curve  
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In addition to the quantitative comparison, some 
visualization results are shown in Figures 11 and 12. To 
facilitate the display, the detection results are marked 
using transparent rectangular blocks. Among them, 
holothurian, echinus, scallop and starfish are shown with 
dark blue, purple, brown and light blue transparent 
rectangular blocks, respectively, with the aid of white 
boxes. The CDWTN network proposed in this paper, to a 
certain extent, solves the problem of missed detection and 
false detection of image edge objects existing in the 
baseline network and makes a great improvement in the 
detection of small objects and fuzzy objects. However, 
there is still room for improvement for some small objects 
that cannot be discerned by the naked eye. Figure 11 
shows the good detection results in some blurred scenes. 

Figure 11 
Detected results of fuzzy scene 

   

Figure 12 shows a partial comparison of the detection 
results between the method presented in this paper and 
the SwinT method. Figure 12(a) demonstrates that the 
method makes a significant improvement in the detection 
accuracy for small objects in blurred scenes. The 
proposed method improves the information interaction 
between image patches. It also benefits from the 
attentional supervised feature fusion process, which 
allows small object features to be retained in deeper 
networks when resolution is reduced. Figure 12(b) shows 
a low-light image with a large original image size. The 
proposed method reduces the false detection of scallops 
with the presence of varying degrees of sediment 
obscuration. The improved method increases the 
learnable object data on the one hand and improves the 
attention module to enhance the richness of feature 
extraction on the other hand, thus enabling the method to 
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boxes. The CDWTN network proposed in this paper, to a 
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false detection of image edge objects existing in the 
baseline network and makes a great improvement in the 
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there is still room for improvement for some small objects 
that cannot be discerned by the naked eye. Figure 11 
shows the good detection results in some blurred scenes. 
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better identify the objects. Figure 12(c) also shows some 
improvement in the case of overlapping multiple objects， 
reducing missed and false detections. The object context 
is enriched by data enhancement, which improves the 
detection ability of the model for overlapping objects. 
From the results, it can be seen that the improved method 

has a better solution for difficult objects such as small 
underwater samples and fuzzy objects, and the detection 
performance is better than other methods. In summary, 
the method presented does have better capability for 
underwater object detection. 
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Experiments of ASFPN. The introduction of the ASFPN 
module Baseline + ASFPN reduces the loss of small 
objects caused by feature fusion. Compared with the 
baseline network, AP@0.5 and AP@0.5:0.95 increase by 
0.8% and 1.3%, respectively, and the detection accuracy 
of small objects APs increases by 2.4%, indicating that 
replacing the original FPN feature fusion method with 
ASFPN can enhance the small object detection capability. 
ASFPN uses a supervised approach that utilizes attention 
to focus on the location of objects, making the feature 
extraction and feature fusion fitter. 

To further demonstrate the feature fusion effect, this 
paper compares the same type of feature fusion methods 
on the baseline network, as shown in Table 7. Among 
them, PANet and Bi-FPN can bring great improvement in 
convolutional networks. However, the improvement 
brought by ASFPN for the Transformer network is more 
effective for improving underwater detection accuracy. 
Finally, the best detection performance is obtained by 
integrating all the above improvements of the proposed 
method. 

Table 7  
Performance comparison of different feature fusion 
methods 

Feature 
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FPN [16] 85.6 53.3 25.5 
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ASFPN 86.4 55.6 27.9 

4.5 Visualization Results 

We plotted the accuracy curve (mAP@50) for every 10 
epochs and the loss curve for every 25 iterations. In 
Figure 10, it can be seen that the model is constantly 
converging, and is not overfitting. Since the batch size 
setting is small, the glitch of the loss curve is noticeable. 
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Accuracy curve and loss curve  
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In addition to the quantitative comparison, some 
visualization results are shown in Figures 11 and 12. To 
facilitate the display, the detection results are marked 
using transparent rectangular blocks. Among them, 
holothurian, echinus, scallop and starfish are shown with 
dark blue, purple, brown and light blue transparent 
rectangular blocks, respectively, with the aid of white 
boxes. The CDWTN network proposed in this paper, to a 
certain extent, solves the problem of missed detection and 
false detection of image edge objects existing in the 
baseline network and makes a great improvement in the 
detection of small objects and fuzzy objects. However, 
there is still room for improvement for some small objects 
that cannot be discerned by the naked eye. Figure 11 
shows the good detection results in some blurred scenes. 
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Detected results of fuzzy scene 
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a low-light image with a large original image size. The 
proposed method reduces the false detection of scallops 
with the presence of varying degrees of sediment 
obscuration. The improved method increases the 
learnable object data on the one hand and improves the 
attention module to enhance the richness of feature 
extraction on the other hand, thus enabling the method to 
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and the SwinT method. Figure 12(a) demonstrates 
that the method makes a significant improvement in 
the detection accuracy for small objects in blurred 
scenes. The proposed method improves the infor-
mation interaction between image patches. It also 
benefits from the attentional supervised feature fu-
sion process, which allows small object features to 
be retained in deeper networks when resolution is 
reduced. Figure 12(b) shows a low-light image with 
a large original image size. The proposed method re-
duces the false detection of scallops with the pres-
ence of varying degrees of sediment obscuration. The 
improved method increases the learnable object data 
on the one hand and improves the attention module 
to enhance the richness of feature extraction on the 
other hand, thus enabling the method to better iden-
tify the objects. Figure 12(c) also shows some im-
provement in the case of overlapping multiple objects  
reducing missed and false detections. The object 
context is enriched by data enhancement, which im-
proves the detection ability of the model for overlap-
ping objects. From the results, it can be seen that the 
improved method has a better solution for difficult 
objects such as small underwater samples and fuzzy 
objects, and the detection performance is better than 
other methods. In summary, the method presented 

Table 8
Experiments on the robustness of the model

Changes
Ours YOLOv7

AP@0.5 AP@0.50:0.95 AP@0.5 AP@0.50:0.95

None 88.3 56.8 86.9 51.7

-25% light 86.9 53.3 82.3 49.3

-15% light 88.0 54.8 86.0 51.1

+15% light 88.1 55.4 86.3 51.2

+25% light 87.2 53.6 84.2 50.6

+10 Gaussian noise 83.7 50.7 81.8 48.9

+20 Gaussian noise 77.2 43.3 75.6 39.4

+30 Gaussian noise 60.9 34.7 59.1 30.4

does have better capability for underwater object de-
tection.

4.6. More Experiments
In order to verify other model performances , we con-
duct experiments on different brightnesses, different 
Gaussian noise and different angle interferences.

4.6.1. Robustness Experiments 
Experiments were performed on the test dataset with 
different illuminations (±15%, ±25%) and Gaussian 
noise with variances of 10, 20 and 30. We compare the 
robustness of the model with YOLOv7, and the aver-
age accuracy is listed in Table 8. 
As shown in Table 8, although the proposed CDWTN 
method degrades with the increasing influence of 
light and Gaussian noise, our method achieves bet-
ter performance for different noise levels on the 
URPC dataset. The experimental results of direct 
testing show that light within 15% has little effect 
on the image. Gaussian noise with a variance of 10 
has less effect on accuracy. These results prove that 
the robustness of the model is good, which learns 
various information well in the data. The visualiza-
tion results with local magnification are shown in 
Figure 13.
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Figure 13
Visualization results of experiments on the robustness

Visualization results Local magnification Visualization results Local magnification

-25% light -15% light

+15% light +25% light

+15 Gaussian noise +30 Gaussian noise

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 

Figure 13 
Visualization results of experiments on the robustness 

 

4.6.2 Viewpoint and Size Invariance 

We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 15, 
which prove the viewpoint and size invariance of the 
model when the features of the object are not destroyed. 
For these images of different rotation angles and sizes, 
our method has the same efficient detection results. This 
is because multi-scale information has been learned in the 
CDWTN, and is better integrated under the attentional 

supervision. 

Figure 14 
Results of different rotation angles 

   
 

(a) original (b) 30° (c) 45° (d) 90° 

Visualization results  Local magnification  Visualization results Local magnification 

    

    
-25% light 

 
-15% light 

    

    
+15% light 

 
+25% light 

    

    
+15 Gaussian noise 

 
+30 Gaussian noise 



413Information Technology and Control 2023/2/52

4.6.2. Viewpoint and Size Invariance
We rotated the image and changed the image size. The 
detection results can be seen in Figure 14 and Figure 
15, which prove the viewpoint and size invariance of 
the model when the features of the object are not de-
stroyed. For these images of different rotation angles 
and sizes, our method has the same efficient detection 
results. This is because multi-scale information has 
been learned in the CDWTN, and is better integrated 
under the attentional supervision.

Figure 14
Results of different rotation angles

Figure 15
Results of different image sizes

(a) original (b) 30° (c) 45° (d) 90°
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5. Conclusion 

In this paper, a new underwater object detection method, 
CDWTN, is proposed by combining a Transformer with 
CNN techniques. Specifically, blur prior fusion is 
proposed to adapt to the blurred scene. A CDW 
Transformer block is proposed for the precise positioning 
of underwater objects and effective reduction of the 
intermediate computation. To address the problem of 
small object detection, weighted supervision is adopted to 
integrate multi-scale information in the novel ASFPN. In 
addition, other adjustments are also made for accuracy. 
The improved CDWTN method focuses more on the 
spatial location information of the object while retaining 
more global and local information. Finally, the 
experimental results show that the proposed method 
receives the state-of-the-art results. 

In recent years, the rapid development and popularization 
of artificial intelligence (AI) technology have further 
enhanced the capabilities of the Internet of Things (IoT), 
and artificial intelligence technologies such as object 
detection can be used to post-process the information 
collected by sensors. In marine-related fields, the IoT is 
gradually being applied to many marine fields such as 
ocean observation, island ecological monitoring and 
intelligent ships. This paper mainly studies the object 
detection method based on underwater optical images, 
which can be applied to specific tasks such as fry 
detection in marine ranching or ship reef detection. 
Higher precision detection networks can increase the 
success rate of underwater autonomous operations. In 
future works, we will further study the proposed model in 
other image tasks. 
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Figure 15 
Results of different image sizes 
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5. Conclusion 

In this paper, a new underwater object detection method, 
CDWTN, is proposed by combining a Transformer with 
CNN techniques. Specifically, blur prior fusion is 
proposed to adapt to the blurred scene. A CDW 
Transformer block is proposed for the precise positioning 
of underwater objects and effective reduction of the 
intermediate computation. To address the problem of 
small object detection, weighted supervision is adopted to 
integrate multi-scale information in the novel ASFPN. In 
addition, other adjustments are also made for accuracy. 
The improved CDWTN method focuses more on the 
spatial location information of the object while retaining 
more global and local information. Finally, the 
experimental results show that the proposed method 
receives the state-of-the-art results. 

In recent years, the rapid development and popularization 
of artificial intelligence (AI) technology have further 
enhanced the capabilities of the Internet of Things (IoT), 
and artificial intelligence technologies such as object 
detection can be used to post-process the information 
collected by sensors. In marine-related fields, the IoT is 
gradually being applied to many marine fields such as 
ocean observation, island ecological monitoring and 
intelligent ships. This paper mainly studies the object 
detection method based on underwater optical images, 
which can be applied to specific tasks such as fry 
detection in marine ranching or ship reef detection. 
Higher precision detection networks can increase the 
success rate of underwater autonomous operations. In 
future works, we will further study the proposed model in 
other image tasks. 
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5. Conclusion
In this paper, a new underwater object detection meth-
od, CDWTN, is proposed by combining a Transformer 
with CNN techniques. Specifically, blur prior fusion is 
proposed to adapt to the blurred scene. A CDW Trans-
former block is proposed for the precise positioning 
of underwater objects and effective reduction of the 
intermediate computation. To address the problem 
of small object detection, weighted supervision is ad-
opted to integrate multi-scale information in the novel 
ASFPN. In addition, other adjustments are also made 
for accuracy. The improved CDWTN method focuses 
more on the spatial location information of the object 
while retaining more global and local information. Fi-
nally, the experimental results show that the proposed 
method receives the state-of-the-art results.
In recent years, the rapid development and popu-
larization of artificial intelligence (AI) technology 
have further enhanced the capabilities of the In-
ternet of Things (IoT), and artificial intelligence 
technologies such as object detection can be used to 
post-process the information collected by sensors. 
In marine-related fields, the IoT is gradually being 
applied to many marine fields such as ocean obser-
vation, island ecological monitoring and intelligent 
ships. This paper mainly studies the object detection 
method based on underwater optical images, which 
can be applied to specific tasks such as fry detection 
in marine ranching or ship reef detection. Higher 
precision detection networks can increase the suc-
cess rate of underwater autonomous operations. In 
future works, we will further study the proposed 
model in other image tasks.
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