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Breast cancer is a major cause of death among women in both developed and underdeveloped countries. Early 
detection and diagnosis of breast cancer are crucial for patients to receive proper treatment and increase their 
chances of survival. To improve the automatic detection and diagnosis of breast cancer, a new deep learning 
model called “Breast Cancer Prognosis Based Transfer Learning (BCP-TL)” has been developed. This model 
uses transfer learning, which applies the knowledge gained from solving one problem to another relevant prob-
lem. The model is based on a pre-trained convolutional neural network (CNN) that extracts features from the 
mammographic image analysis society (MIAS) dataset. Four different CNN architectures were used in this 
model: AlexNet, Xception, ResNeXt, and Channel Boosted CNN. The performance of the model was evaluated 
using six metrics, including accuracy, sensitivity, specificity, precision, F1-score, and the area under the ROC 
curve (AUC). The combination of Xception and Channel Boosted CNN showed excellent performance. By com-
bining essential features from multiple iterations, the Channel Boosted CNN can achieve higher accuracy in 
breast cancer diagnosis, with an overall accuracy of 98.96%. This highlights the potential of the BCP-TL model 
in effectively detecting and diagnosing breast cancer.
KEYWORDS: Breast cancer, deep learning, Convolutional Neural Networks, Transfer Learning, Deep Neural 
Networks.
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1. Introduction
Many deadly diseases affect people across the entire 
world. Cancer is the second most common cause of 
mortality, as reported by the World Health Organi-
zation (WHO) [11]. Notably, the prevalence of female 
breast cancer is substantially higher in developing 
nations than in industrialized ones. For instance, 
1.42 million people are diagnosed with breast cancer 
each year, and one-third of them pass away [16]. 10.5 
million people worldwide die from cancer each year, 
while 2 million people survive the disease. Breast 
cancer is the most prevalent and the leading cause of 
mortality worldwide for women between the ages of 
21 and 60 [27]. The likelihood of surviving breast can-
cer might rise to 83% if it is detected early [27]. 
To prevent cancer from spreading to the entire breast 
as well as other body areas, it is crucial to identify it 
early and begin treatment [4]. The proper first treat-
ment may boost the breast cancer survival rate by up 
to 83% following an accurate and successful diagno-
sis. Breast cancer-related tumors can be classified as 
benign or malignant. Both groups have the potential 
to be malignant or not [28]. For instance, benign tu-
mors cause abnormalities in the endothelial cells, but 
they cannot develop further. Therefore, these won’t 
cause breast cancer. Malignant cells, on the other 
hand, can be considered tumor cells and are harmful 
due to their erratic proliferation in the body. In mi-
croscopic pictures, distinguishing between benign 
and malignant tumors requires careful analysis and 
classification [14].
Mammography and biopsy are the two frequently uti-
lized screening techniques for the early identification 
of breast cancer. The clinician uses specialized breast 
images from mammography to look for early signs of 
cancer in female patients [32]. It has been noted that 
the fatality ratio has dropped due to the adoption of 
mammography for cancer detection. Another effective 
and reliable diagnosis approach for finding breast can-
cer is a biopsy. In this method, a physician examines a 
tissue specimen from the breast area impacted under a 
microscope to identify and classify the tumor. Current-
ly, a biopsy is essential for both the diagnosis of breast 
cancer and other types of cancers as well [26].
The physician can distinguish between benign and 
malignant tumors through biopsy. Although the ab-
normalities in the endothelial cells that make up the 

benign lesion are indeed malignant, the majority of 
these aberrations cannot give rise to breast cancer 
[12]. These cells start their divisions improperly, de-
velop erratically, and are classified as malignant or 
cancerous. Because regular and malignant cells have 
sporadic appearances, manually analyzing micro-
scopic images is challenging and complex [5].
Numerous researchers have put up various ideas over 
the last few years for automated cell categorization 
for the clinical diagnosis of cancer from breast histol-
ogy imagery [2]. In this connection, some scientists 
have focused on mitochondria analysis by extracting 
characteristics from nuclei to provide critical infor-
mation for cell classification into benign and malig-
nant types. Similar to how nuclei are segmented and 
classified, statistical sampling characteristics and 
training methods based on clustering are also used. 
Although histomorphological image analysis meth-
ods are evolving quickly, an automatic system is still 
essential to obtaining efficient and highly reliable 
findings [6].
These procedures are necessary to ensure uniformi-
ty in the outcomes during the observation process, 
improve neutrality, and provide the appropriate ori-
entation toward personal items for diagnosis [18]. In 
traditional machine learning systems, the sophisti-
cation of tasks like pre-processing, fragmentation, 
extraction, classification, etc., reduces the system’s 
performance in terms of precision and reliability.
Deep learning has been developed as a solution to 
the limitations of classic machine learning methods. 
It extracts pertinent data from unprocessed imagery 
and uses it in identification processes. Deep learn-
ing relies on general-purpose learning techniques to 
learn from data sets rather than directly tweaking fea-
tures. Convolution Neural Network (CNN) has made 
significant progress in medical applications and im-
age analysis in recent years [1]. Examples include the 
detection of tumors from dermoscopic examination, 
segmentation of neurological cellular membrane, rec-
ognition, and identification of lymphocytes, and char-
acterization of volume in screening mammography.
The two-dimensional input-image layout specifi-
cally modifies the CNN architecture. The medical 
industry needs more data for a CNN training task. 
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The Transfer Learning (TL) technique using pre-
trained image datasets, such as ImageNet, and the 
application of a fine-tuning technique are potential 
solutions to this issue. By integrating their knowl-
edge, the TL principle can improve the performance 
of individual CNN designs. The main benefits of TL 
are increased prediction accuracy and accelerated 
training. A model transfer is a suitable TL technique 
that involves pre-training the network configuration 
using the original data, applying them to the feature 
space, and then fine-tuning them for better produc-
tivity [19].
Diagnosing breast cancer at an early stage using im-
age features and ML algorithms is a challenging task 
due to several reasons:
1 Limited Image Quality: Early-stage breast cancer 

often results in subtle changes in the tissue struc-
ture, which may not be easily noticeable on mam-
mograms or other imaging modalities. This can 
lead to limited image quality, making it difficult for 
ML algorithms to accurately identify and classify 
the changes as cancerous.

2 Class Imbalance: The number of cases of ear-
ly-stage breast cancer is much lower compared to 
advanced breast cancer. This results in a class im-
balance problem in training ML models, leading to 
a higher chance of false negatives and a lower over-
all accuracy of the model.

3 Overfitting: ML algorithms tend to overfit the 
training data if the dataset is small, leading to poor 
generalization on new unseen data, especially 
when it comes to early-stage breast cancer.

4 Complexity: Breast tissue is complex and varies 
greatly among individuals, making it difficult to de-
velop ML algorithms that can accurately identify 
early-stage cancer in all cases.

5 Despite these challenges, advances in deep learn-
ing and computer vision techniques are continu-
ously improving the accuracy of breast cancer di-
agnosis using image features and ML algorithms.

The main goals of this work are the automatic ex-
traction of the afflicted region employing fragmenta-
tion, the minimization of training time, and improved 
prediction performance. In this regard, a system 
based on transfer learning for breast cancer detec-
tion and categorization is suggested. The suggested 
model contains two key phases. Several preprocess-

ing approaches are used in the first phase to enhance 
the breast images and perform feature extraction. 
The learned parameters are then applied to classify-
ing breast cancer using a pre-trained CNN, such as 
the AlexNet, ResNet, Xception, and Channel Boosted 
CNN.

1.1. Contributions to the Work
The major contributions of this research are as given 
below:
1 To propose a novel deep-learning model (BCP-TL) 

based on the transfer-learning technique for the ef-
fective and reliable prognosis of Breast Cancer.

2 To proficiently employ CNN architectures such as 
AlexNet, ResNet, Xception, and Channel Boosted 
CNN to classify between benign and malignant le-
sions with more accurate precision. 

3 To demonstrate the performance efficacy of the 
proposed model by minimizing the training time 
and retrieving only the impacted regions from 
breast images. 

1.2. Organization of the Paper
The remainder of the paper is organized as follows. 
Section 2 discusses the state-of-the-art works on 
Breast Cancer prognosis using Machine Learning and 
Deep Learning techniques. Section 3 briefs the pro-
posed methodology for breast cancer classification 
by detailing the CNN architectures such as AlexNet, 
ResNet, Xception, and Channel Boosted CNN. Sec-
tion 4 depicts the results and observations derived 
from the experimental analysis of the proposed model 
on the MIAS dataset. Section 5 summarizes the dis-
cussion on the performance of the proposed model. 
Section 6 concludes the present work.

2. Related Works
Over the past ten years, research into breast cancer 
detection has improved. Identifying malignant breast 
tissue and classifying tumors have been the focus of 
much research. Some researchers have chosen to de-
velop diagnosis systems using content-based image 
retrieval techniques, which would have the advan-
tage of providing practitioners with images found in a 
medical image database [8], whose content is known 
and comparable to image queries for which the phy-
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sician would have doubts. The search time and proper 
similarity measurement between the requested im-
age and those in the database are issues that this ap-
proach also brings up [7]. Using the expert informa-
tion found in many mammograms that make up the 
imagery database, Tourassi et al. suggested a seman-
tic search engine for cancer detection. To accomplish 
this, they use a perfectly matched pattern to identify 
imagery in the database comparable to the ROI re-
quest submitted by the system’s user. They devised 
a decision method that successfully integrates many 
similarity measures on the best matches to evaluate 
whether the query ROI contains a malignancy (of any 
kind) or solely healthy tissue [20].
Authors in [10] favored extracting adjectives that de-
scribed the edge’s thickness, contour, and direction-
ality. Tao et al. [9] combined the parameters linked to 
center pixel, form, and roughness to discover tumors 
similar to those in the ROI search and classify them 
as benign or cancerous. Zheng et al. [30] suggested a 
system that further interacts with the user to enhance 
visual similarity; in this system, the user is requested 
to assess the nature of speckled cancer in the search 
query so that the algorithm searches for similarities 
with equivalent degrees of supposition. The query 
base for this work was consecutively modified by de-
leting the ROIs that produced the lowest matching 
score [13].
George et al. [13] have opted to classify breast cancer 
and detect genetic material using stochastic neural 
networks and Support Vector Machines. Breast flow 
cytometry visuals were used in the experiments, and 
the results were compared based on their margins of 
error, exact identification rates, responsiveness, and 
precision. They assert that the outcomes obtained 
using their particular methods are significantly more 
potent and apply to several datasets [15]. Sharma et al. 
presented a thorough study on the categorization of 
breast cancer using traditional machine learning and 
deep learning techniques. They extracted the image 
attributes, texture feature histogram, and Correlation 
- based patterns to categorize them into benign and 
malignant lesions. Their suggested strategy produced 
accuracy levels between 94.36% and 94.39% [23].
A thorough study on the use of ML and DL applica-
tions to predict breast cancer was provided by Chugh 
et al. They reviewed the literature and studies linked 
to the categorization of breast cancer in great detail. 

They also emphasized both the advantages and dis-
advantages of these strategies’ characteristics. By 
incorporating the findings of earlier investigations, 
the authors of this study concluded that deep learning 
approaches are considered more appropriate for cat-
egorizing breast cancer images when the datasets are 
more extensive [24]. A systematic and in-depth anal-
ysis of deep learning and machine learning methods 
for breast cancer identification and categorization 
using medical imaging was presented by Houssein 
et al. They displayed all of the most recent applica-
tions for diagnosing illnesses and the quick adoption 
of deep learning and machine learning in the medical 
industry [21]. In their research, Hamed et al. suggest-
ed employing models created using ML to classify 
breast cancer. They asserted that whereas clinicians, 
on average, diagnose and classify breast cancer with 
an accuracy of around 75%, their suggested approach 
does so with an accuracy of 92% [3]. Authors in [25] 
classified breast cancer pictures using 582 samples 
and 25 characteristics using the Wisconsin Breast 
Cancer Dataset. The Kaggle repository was used to 
get the dataset. They gauged the effectiveness of their 
labor based on its precision and accuracy. They used 
artificial neural networks, K Nearest Neighbor, lo-
gistic regression, and Support Vector Machines as 
their methods [22]. To achieve the desired effects, 
they have employed them independently. They could 
classify breast cancer imagery with the highest mean 
precision of 99.1% [29, 17, 31]. A comparative analysis 
of the methods in the literature for Breast Cancer di-
agnosis is given in Table 1. 

2.1. Research Gap and Motivation of 
Research
The extensive literature review in this part concludes 
that deep and transfer learning is not very effective-
ly utilized for early cancer detection. According to 
the research mentioned, the task can be difficult due 
to a lack of resources or competent and experienced 
personnel. Researchers from the medical field have 
already put in a lot of work, but their conclusions 
are only sometimes accurate. We have attempted 
to address these issues by enhancing the process of 
correctly classifying breast cancer imagery by merg-
ing the ideas of deep learning and transfer learning, 
allowing for the accurate and promising detection of 
breast cancer in its early stages.
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Table 1 
Comparative analysis of the existing methods for CVD diagnosis

Reference Techniques Dataset Category Findings Limitations

[8] Random Forest BreakHis dataset Breast-mass 
classification

Sample distribution 
was balanced

Preprocessing was not 
performed

[20] K Nearest 
Neighbour

Wisconsin breast 
cancer dataset

Feature 
extraction

Segmentation of 
tumors was done 
automatically

The model was not 
evaluated with the 
appropriate parameters

[10] Naive Bayes and 
Decision tree BreakHis dataset Breast-mass 

classification
Multiple tasks were 
processed in parallel

Comparison of models 
was not implemented

[9] Deep Belief 
Network

Wisconsin breast 
cancer dataset

Feature 
extraction

Redundant features 
were trimmed during 
feature selection

The model was not 
evaluated with the 
appropriate parameters

[30] CNN BreakHis dataset Breast-mass 
classification

Image preprocessing 
was performed and its 
effects were analyzed

Sufficient training data 
was not present

[15] AlexNet METABRIC breast 
cancer dataset Histopathology Large datasets were 

used
Training time was not 
adequate

[23] VGGNet-16 Mammogram 
images Histopathology

Images collected from 
Internet sources were 
utilized

The quality of the 
collected images was not 
adequate

3. Proposed Methodology
This section discusses the proposed methodology for 
breast cancer prognosis using the transfer learning 
technique. Figure 1 represents the architecture of the 
proposed BCP-TL model.

Figure 1 
Proposed architecture
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The modified equation for Mini-batch gradient de-
scent with diminishing gradient descent can be rep-
resented as in (15):
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3.2 Preprocessing Stage 
Image preparation is crucial to reduce the restrictions on 
observing anomalies without an excessive amount of 
mammography effect. To cut down on computation 
time, the tumor patches in this study are automatically 
extracted using feature extraction methods before the 
learning process. Image denoising, contrast adjustment, 
and structural analysis performed before feature 
extraction can enhance image quality and increase the 
accuracy of the feature extraction findings. 
3.2.1 Image Denoising and Contrast Adjustment 
Contrast enhancement is used in mammography scans 
to modify the contrast, making image anomalies more 
obvious. The mammography image's quantization noise 
is filtered using a two-dimensional average filter of 3X3 
size. The contrast of the original image is improved 
across all levels using the traditional histogram-based 
method. This is achieved by successfully dispersing the 
image's most common gray level or by extending the 
image's spectrum. 
3.2.2 Structural Analysis 
Before feature extraction, it is crucial to remove non-
breast sections using structural analysis to ensure that 
the results are unaffected. When performing structural 
procedures, the structuring element is applied before the 
pertinent structures are recovered from the input image 
(SE). A minimum standard feature extraction method 
for dynamic edge selection can save computation time 
and allow the study to concentrate on the area most 
affected by cancer. This method produces a picture 
whose size matches the input. Each pixel's value is 
determined by the neighboring pixels and the matching 
pixel in the input. To fit the input size of the prie-trained 
Cnn model, the breast images are shrunk and 
transformed into three RGB channels. 
3.2.3 Data Augmentation 
Large datasets are preferable for Deep learning models 
than smaller ones. When training with very little data, 
overfitting can be avoided using one of the most 
common techniques for expanding the dataset: data 
augmentation. In this work, a set of adjustments can be 
used to add more images to the training data. To boost 
the input data, Data augmentation is used. The 
segmented images are then rotated to 90, 180, 270, and 
360 degrees clockwise. Each rotating image is then 
laterally inverted. Eight images will result from a single 
input image in this fashion. 
 
 
 
 
 

Figure 2 
Proprocessing results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 represents the results obtained after 
applying the preprocessing steps. In this figure a) 
represents the original image. b) represents the 
image after applying image denoising. c) 
represents the image after incorporating contrast 
adjustment. d) represents the result after 
employing structural analysis. 
 
3.3 CNN Architectures 
The following Convolutional Neural Network 
architectures are applied to the given dataset.  
3.3.1 AlexNet 
Five convolutional layers and three fully 
connected layers make up AlexNet. Filters that use 
several Convolutional Kernels to extract useful 
features from images. There are typically multiple 
kernels of the same size in one convolutional 
layer. For instance, AlexNet's first Conv Layer has 
96 units, each 11x11x3 in size. The kernel's width 
and height are typically equal, and its depth is 
proportional to the number of channels. The 
architecture of the AlexNet model is depicted in 
Figure 3. 
The Overlapping Max Pooling layers are placed 
after the initial two Convolutional layers. Direct 
connections exist between the following 
consecutive convolutional layers. The 
Overlapping Max Pooling layer, whose output is 
fed into a series of two fully connected layers, is 
placed after the fifth convolutional layer. After all 
the convolutional and fully linked layers, ReLU 
nonlinearity is applied. Before pooling, a local 
equalization step is done after the first and second 
convolution layers' ReLU nonlinearity. 
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3.2. Preprocessing Stage
Image preparation is crucial to reduce the restrictions 
on observing anomalies without an excessive amount 
of mammography effect. To cut down on computation 
time, the tumor patches in this study are automatical-
ly extracted using feature extraction methods before 
the learning process. Image denoising, contrast ad-
justment, and structural analysis performed before 
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feature extraction can enhance image quality and in-
crease the accuracy of the feature extraction findings.

3.2.1. Image Denoising and Contrast Adjustment
Contrast enhancement is used in mammography 
scans to modify the contrast, making image anomalies 
more obvious. The mammography image’s quantiza-
tion noise is filtered using a two-dimensional average 
filter of 3X3 size. The contrast of the original image is 
improved across all levels using the traditional histo-
gram-based method. This is achieved by successfully 
dispersing the image’s most common gray level or by 
extending the image’s spectrum.

3.2.2. Structural Analysis
Before feature extraction, it is crucial to remove non-
breast sections using structural analysis to ensure 
that the results are unaffected. When performing 
structural procedures, the structuring element is ap-
plied before the pertinent structures are recovered 
from the input image (SE). A minimum standard fea-
ture extraction method for dynamic edge selection 
can save computation time and allow the study to 
concentrate on the area most affected by cancer. This 
method produces a picture whose size matches the 
input. Each pixel’s value is determined by the neigh-
boring pixels and the matching pixel in the input. To 
fit the input size of the prie-trained Cnn model, the 
breast images are shrunk and transformed into three 
RGB channels.

3.2.3. Data Augmentation
Large datasets are preferable for Deep learning mod-
els than smaller ones. When training with very little 
data, overfitting can be avoided using one of the most 
common techniques for expanding the dataset: data 
augmentation. In this work, a set of adjustments can 
be used to add more images to the training data. To 
boost the input data, Data augmentation is used. The 
segmented images are then rotated to 90, 180, 270, 
and 360 degrees clockwise. Each rotating image is 
then laterally inverted. Eight images will result from 
a single input image in this fashion.
Figure 2 represents the results obtained after ap-
plying the preprocessing steps. In this figure a) rep-
resents the original image. b) represents the image 
after applying image denoising. c) represents the im-
age after incorporating contrast adjustment. d) rep-
resents the result after employing structural analysis.

3.3. CNN Architectures
The following Convolutional Neural Network archi-
tectures are applied to the given dataset. 

3.3.1. AlexNet
Five convolutional layers and three fully connected 
layers make up AlexNet. Filters that use several Con-
volutional Kernels to extract useful features from im-
ages. There are typically multiple kernels of the same 
size in one convolutional layer. For instance, Alex-
Net’s first Conv Layer has 96 units, each 11x11x3 in 
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3.2 Preprocessing Stage 
Image preparation is crucial to reduce the restrictions on 
observing anomalies without an excessive amount of 
mammography effect. To cut down on computation 
time, the tumor patches in this study are automatically 
extracted using feature extraction methods before the 
learning process. Image denoising, contrast adjustment, 
and structural analysis performed before feature 
extraction can enhance image quality and increase the 
accuracy of the feature extraction findings. 
3.2.1 Image Denoising and Contrast Adjustment 
Contrast enhancement is used in mammography scans 
to modify the contrast, making image anomalies more 
obvious. The mammography image's quantization noise 
is filtered using a two-dimensional average filter of 3X3 
size. The contrast of the original image is improved 
across all levels using the traditional histogram-based 
method. This is achieved by successfully dispersing the 
image's most common gray level or by extending the 
image's spectrum. 
3.2.2 Structural Analysis 
Before feature extraction, it is crucial to remove non-
breast sections using structural analysis to ensure that 
the results are unaffected. When performing structural 
procedures, the structuring element is applied before the 
pertinent structures are recovered from the input image 
(SE). A minimum standard feature extraction method 
for dynamic edge selection can save computation time 
and allow the study to concentrate on the area most 
affected by cancer. This method produces a picture 
whose size matches the input. Each pixel's value is 
determined by the neighboring pixels and the matching 
pixel in the input. To fit the input size of the prie-trained 
Cnn model, the breast images are shrunk and 
transformed into three RGB channels. 
3.2.3 Data Augmentation 
Large datasets are preferable for Deep learning models 
than smaller ones. When training with very little data, 
overfitting can be avoided using one of the most 
common techniques for expanding the dataset: data 
augmentation. In this work, a set of adjustments can be 
used to add more images to the training data. To boost 
the input data, Data augmentation is used. The 
segmented images are then rotated to 90, 180, 270, and 
360 degrees clockwise. Each rotating image is then 
laterally inverted. Eight images will result from a single 
input image in this fashion. 
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The width and height of the convolutions are often 
downsampled while maintaining the same depth us-
ing Max Pooling layers. Similar to Max Pool layers, 
overlapping Max Pool layers work the same way and 
differ only by the method by which the neighbor-
ing windows over which the maximum is comput-
ed overlap. The pooling windows are usually set to 
3X3 in size and have a two stride between adjacent 
windows. Compared to employing non-overlapping 
pooling windows of size 22 with a stride of 2, which 
would yield the exact output dimensions, this over-
lapping pooling feature helped drastically cut the 
error rates. The AlexNet uses Rectified Linear Unit 
Nonlinearity, which is a crucial component. The 
standard method for training neural network mod-
els used to be tanh or sigmoid activation functions. 
Deep CNNs might be trained significantly more 
quickly utilizing ReLU nonlinearity than they could 
use saturating activation functions like tanh or sig-
moid, according to AlexNet.

3.3.2. Xception
Depthwise Separable Convolutions are used in the 
deep convolutional neural network architecture 
known as Xception. Researchers from Google cre-
ated it. According to Google, Inception modules in 
convolutional neural networks serve as a transitional 
stage between the depthwise separable convolution 
operation and ordinary convolution. In this context, a 
depthwise separable convolution can be viewed as an 
Inception module with the highest limit of columns. 
With Inception modules replaced with depthwise 
separable convolutions, Xception is a unique deep 
convolutional neural network design based on this 
result. Separable convolutions are replacements for 
convolutions that are ostensibly significantly faster 
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operation and ordinary convolution. In this context, a 
depthwise separable convolution can be viewed as an 
Inception module with the highest limit of columns. 
With Inception modules replaced with depthwise 
separable convolutions, Xception is a unique deep 
convolutional neural network design based on this 
result. Separable convolutions are replacements for 
convolutions that are ostensibly significantly faster to 
compute. The inflow, the mid flow, repeated eight times, 
and the outflow is all the steps the data must initially go 
through. Batch equalization comes after every 
Convolution and SeparableConvolution layer. The 
architecture of the Xception model is depicted in Figure 
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3.3.3 ResNeXt  

A homogeneous neural network called ResNeXt 
minimizes the amount of hyperparameters needed 
by traditional ResNet. They accomplish this by 
adding a third dimension—"cardinality"—to 
ResNet's width and depth. The number of 
transitions in the set is determined by cardinality. 
In this architecture, the transitions are repeated 
according to the specified cardinality and the 
outcomes are aggregated to achieve the final 
result. The divide-transit-append approach of 
Inception Network is paired with ResNet's 
repetition strategy in ResNeXt architecture. To put 
it another way, a network block divides the input, 
formats it as needed, and then combines it to 
provide an output where each unit has the same 
structure. Two rules specify ResNeXt's 
fundamental architecture. First, if the blocks 
create contour plots of the same resolution, they 
use the same set of hyperparameters. Second, if 
the contour plot is ever downscaled by a factor of 
2, the block's width is multiplied by the same 
factor. The architecture of the ResNeXt model is 
depicted in Figure 5. 

 

 

 

 

 

 

 

 

 

to compute. The inflow, the mid flow, repeated eight 
times, and the outflow is all the steps the data must 
initially go through. Batch equalization comes after 
every Convolution and SeparableConvolution layer. 
The architecture of the Xception model is depicted in 
Figure 4.

Figure 4 
Xception architecture

 
 

 

Figure 3  
AlexNet architecture 
 

 
 
The width and height of the convolutions are often 
downsampled while maintaining the same depth using 
Max Pooling layers. Similar to Max Pool layers, 
overlapping Max Pool layers work the same way and 
differ only by the method by which the neighboring 
windows over which the maximum is computed 
overlap. The pooling windows are usually set to 3X3 in 
size and have a two stride between adjacent windows. 
Compared to employing non-overlapping pooling 
windows of size 22 with a stride of 2, which would yield 
the exact output dimensions, this overlapping pooling 
feature helped drastically cut the error rates. The 
AlexNet uses Rectified Linear Unit Nonlinearity, which 
is a crucial component. The standard method for training 
neural network models used to be tanh or sigmoid 
activation functions. Deep CNNs might be trained 
significantly more quickly utilizing ReLU nonlinearity 
than they could use saturating activation functions like 
tanh or sigmoid, according to AlexNet. 
3.3.2 Xception 

Depthwise Separable Convolutions are used in the deep 
convolutional neural network architecture known as 
Xception. Researchers from Google created it. 
According to Google, Inception modules in 
convolutional neural networks serve as a transitional 
stage between the depthwise separable convolution 
operation and ordinary convolution. In this context, a 
depthwise separable convolution can be viewed as an 
Inception module with the highest limit of columns. 
With Inception modules replaced with depthwise 
separable convolutions, Xception is a unique deep 
convolutional neural network design based on this 
result. Separable convolutions are replacements for 
convolutions that are ostensibly significantly faster to 
compute. The inflow, the mid flow, repeated eight times, 
and the outflow is all the steps the data must initially go 
through. Batch equalization comes after every 
Convolution and SeparableConvolution layer. The 
architecture of the Xception model is depicted in Figure 
4 
 
 
 

Figure 4  

Xception architecture 

 
3.3.3 ResNeXt  

A homogeneous neural network called ResNeXt 
minimizes the amount of hyperparameters needed 
by traditional ResNet. They accomplish this by 
adding a third dimension—"cardinality"—to 
ResNet's width and depth. The number of 
transitions in the set is determined by cardinality. 
In this architecture, the transitions are repeated 
according to the specified cardinality and the 
outcomes are aggregated to achieve the final 
result. The divide-transit-append approach of 
Inception Network is paired with ResNet's 
repetition strategy in ResNeXt architecture. To put 
it another way, a network block divides the input, 
formats it as needed, and then combines it to 
provide an output where each unit has the same 
structure. Two rules specify ResNeXt's 
fundamental architecture. First, if the blocks 
create contour plots of the same resolution, they 
use the same set of hyperparameters. Second, if 
the contour plot is ever downscaled by a factor of 
2, the block's width is multiplied by the same 
factor. The architecture of the ResNeXt model is 
depicted in Figure 5. 

 

 

 

 

 

 

 

 

 

3.3.3. ResNeXt 
A homogeneous neural network called ResNeXt 
minimizes the amount of hyperparameters needed 
by traditional ResNet. They accomplish this by add-
ing a third dimension—”cardinality”—to ResNet’s 
width and depth. The number of transitions in the 
set is determined by cardinality. In this architecture, 
the transitions are repeated according to the speci-
fied cardinality and the outcomes are aggregated to 
achieve the final result. The divide-transit-append 
approach of Inception Network is paired with Res-
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put it another way, a network block divides the input, 
formats it as needed, and then combines it to provide 
an output where each unit has the same structure. 
Two rules specify ResNeXt’s fundamental architec-
ture. First, if the blocks create contour plots of the 
same resolution, they use the same set of hyperpa-
rameters. Second, if the contour plot is ever down-
scaled by a factor of 2, the block’s width is multiplied 
by the same factor. The architecture of the ResNeXt 
model is depicted in Figure 5.
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3.3.4. Channel Boosted CNN
The main motive behind the development of Channel 
Boosted CNN is to improve the capacity of the rep-
resentations to a more significant extent. A Channel 
Boosted input is constructed by combining the essen-
tial features from the information taken from several 
iterations. Any input is first passed through a supple-
mentary learner, which recreates the input and merges 
it with the original input to produce the boosted intake. 
The retrieved standard data information and internal 
and external invariance are added to the input data by 
supplementing information from numerous supple-
mentary learners. Any meta-model may be used as the 
supplementary learner in a channel-boosted module; 
the choice will mostly rely on the nature of the task. 
The purpose of the supplementary learner is to extract 
complicated interpretations from the data distribu-
tion and so increase the ability of the Channel Boost-
ed CNN to extract information. To create the Channel 
Boosted input, the data produced by supplementary 
learners are either concatenated with the input feature 
networks or some of the input vectors are substituted 
with rebuilt channels. The architecture of the Channel 
Boosted CNN model is depicted in Figure 6.
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Pseudocode for channel-boosted CNN 

 1. Load mammographic images into the network 
 2. Preprocess images to correct for variations in 

brightness, contrast, and resolution 
 3. Initialize convolutional layers with filters  
 4. For each image: 

   a. Apply filters to extract features 
   b. Apply pooling layers to reduce spatial 

dimensions 
                 c. Pass features through channel-boosted layer 

d. Pass output of channel-boosted layer through     
    fully connected layers 
 e. Apply softmax activation to generate  
      a probability distribution over two classes  
      (normal vs. abnormal) 
f. Choose the class with the highest probability as  
    a prediction 
4. Train the network using a large dataset of  
5.  Mammographic images and corresponding 

labels 
6. Update weights using a loss function (e.g.,   

 cross-entropy) 
7. Repeat steps 4-6 until the desired accuracy is   

  achieved 
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 cross-entropy) 
7. Repeat steps 4-6 until the desired accuracy is   

  achieved 

 

Figure 6  

Channel Boosted CNN architecture 

 
 
The benefits of transfer learning are applied to 
CNN training in the second phase to enhance 
adaptation and shorten the time required for 
activity. The pre-trained CNN, which provides 
information via Transfer Learning, is further 
learned and refined using the boosted input. The 
network's capacity for learning is enhanced by this 
additional refining leveraging the pre-trained 
enabled channels. The use of Transfer Learning 
has two benefits. First, it lowers the cost of 
training and improves adaptation to the transferred 
feature maps from the pre-trained CNN. Secondly, 
the classifier's ability to represent complex 

Pseudocode for channel-boosted CNN
1 Load mammographic images into the network
2 Preprocess images to correct for variations in 

brightness, contrast, and resolution
3 Initialize convolutional layers with filters 
4 For each image:

a Apply filters to extract features
b Apply pooling layers to reduce spatial dimen-

sions
c Pass features through channel-boosted layer
d Pass output of channel-boosted layer through    

fully connected layers
e Apply softmax activation to generate a proba-

bility distribution over two classes (normal vs. 
abnormal)

f Choose the class with the highest probability as 
a prediction

5 Train the network using a large dataset of 

6  Mammographic images and corresponding labels

7 Update weights using a loss function (e.g.,  
cross-entropy)

9 Repeat steps 4-6 until the desired accuracy is    
achieved

The benefits of transfer learning are applied to CNN 
training in the second phase to enhance adaptation 
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and shorten the time required for activity. The pre-
trained CNN, which provides information via Trans-
fer Learning, is further learned and refined using the 
boosted input. The network’s capacity for learning is 
enhanced by this additional refining leveraging the 
pre-trained enabled channels. The use of Transfer 
Learning has two benefits. First, it lowers the cost of 
training and improves adaptation to the transferred 
feature maps from the pre-trained CNN. Secondly, 
the classifier’s ability to represent complex classifica-
tion issues is enhanced by supplementing the auxil-
iary channels made accessible by Transfer Learning 
from the already trained Deep Neural Networks with 
original feature maps.

4. Result 
4.1. Experimental Setup
A computer with an Intel Core i5 CPU running at 
2.40 GHz and 4 GB of memory is used for the inves-
tigations, which runs on a version of Windows 11 as 
the processor’s operating system. The Python 3.9 lan-
guage is used to implement the experiments. To im-
plement and test the source code, Python packages 
like Pandas, Scikit-Learn, Numpy, and Matplotlib are 
incorporated. The Keras library is used to generate 
the deep learning model for the CNN architectures, 
while Theano Framework is used for the backend ap-
plication.

4.2. Dataset Description
Mammographic Image Analysis Society (MIAS) gave 
the applicable mammography database used in this 
study. The primary motivation behind using the MIAS 
dataset for this research is that it is important to use 
a standard assessment database (data set) while eval-
uating an algorithm so that researchers can compare 
the outcomes immediately. Most mammographic da-
tabases are not accessible to the general public. MIAS 
is the database that is most often utilized for breast 
cancer-based research since it is the easiest to access 
the publicly available dataset.
The dataset used for the experimental purpose in 
this research can be accessed using the following 
link, https://www.kaggle.com/datasets/kmader/
mias-mammography?resource=download.Each 
image is stored in portable gray map format with a 

1024x1024 dimension. In-depth information about 
the mammography images are provided, including 
baseline muscle, the class of abnormalities detected, 
the tumor category, the coordinates of the abnormal-
ity center, and an approximation of the circle’s cir-
cumference. The anomaly class is represented in six 
formats, as shown in Table 2. 322 imagery in total, di-
vided into three categories—61 for mild cases, 52 for 
malignant cases, and 209 for standard cases—make 
up the MIAS dataset.

Table 2 
Anomaly representations

Name of the anomaly Represented Format

Calcification CALC

Well-defined circumscribed masses CIRC

Spiculated masses SPIC

Other ill-defined masses MISC

Architectural distortion ARCH

Asymmetry ASYM

The proposed system is effective for any stage of 
the patients. This system analyzes the background 
tissue to categorize it as Fatty, Fatty-glandular, or 
Dense-glandular. Further, it identifies the type of 
prevalent abnormality as per the classes specified in 
Table 2. In addition, the severity of the abnormality 
is also interpreted. These steps are applicable to pa-
tients with the disease at any stage.

4.3. Performance Metrics
The following metrics are used in order to evaluate 
the performance of the proposed model.
a Accuracy(Perfacc)
One of the simplest Classification metrics to use is 
accuracy, which is calculated as the proportion of ac-
curate predictions to all other predictions.
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b) Sensitivity( senPerf ) 
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of actual positives that were mistakenly detected. 
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c) Specificity( spePerf ) 
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correctly detects is known as specificity. 
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e) F1-score 
A binary classification model is evaluated using 
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b Sensitivity(Perfsen)
This parameter seeks to determine the percentage of 
actual positives that were mistakenly detected. This 
is also known as recall.
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f Area Under Curve
AUC determines the performance across all levels 
and offers an overall measurement. AUC has a value 
between 0 and 1. AUC stands for the area under the 
curve, and a model with 100% incorrect predictions 
will have an AUC of 0.0, while a model with 100% cor-
rect predictions will have an AUC of 1.0.

4.4. Experimental Results

This section presents the results obtained from ex-
periments using the proposed model on the MIAS 
dataset. Transfer Learning is applied to four CNN ar-
chitectures: AlexNet, ResNet, Xception, and Channel 
Boosted CNN. The performance of these models is 
evaluated using the metrics specified in Section 4.2. 
The performance of the CNN architectures in classi-
fying benign and malignant tumors is evaluated, and 
the results are tabulated in Table 3. AlexNet architec-
ture produces an accuracy of 93.32%, ResNeXt makes 
94.2%, Xception 95.85%, and compared to the other 
architectures, Channel Boosted CNN has higher ac-

Table 3 
Performance comparison of CNN architectures

Model AlexNet ResNeXt Xception Channel 
Boosted CNN

Perfacc(%) 93.32 94.2 95.85 96.52

Perfsen(%) 91.2 92.5 93.4 94.2

Perfspe (%) 93.56 93.89 96.2 97.1

Perfprec (%) 92.3 92.6 93.8 94.5

PerfF1 (%) 92.8 93.9 94.78 96.4

PerfAUE(%) 98.2 98.2 98.2 98.3

curacy of 96.52%. AUC values for all the architectures 
are pretty close, with Channel Boosted CNN showing 
a slightly different value of 98.3%.
Channel Boosted CNN offers better performance 
with increased data than other architectures. Figure 
7 depicts the performance comparison of the CNN 
architectures for Breast Cancer Classification. The 
performance of the proposed architectures on Prolif-
erated data is also evaluated, and the observations are 
shown in Table 4.
Channel Boosted CNN shows an accuracy of 97.45%, 
a sensitivity of 96.8%, a specificity of 97.8%, a preci-
sion of 96.5%, an F1 score of 96.8%, and an AUC of 
99.1%. The accuracy obtained by the other models is 
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results are tabulated in Table 3. AlexNet architecture 
produces an accuracy of 93.32%, ResNeXt makes 
94.2%, Xception 95.85%, and compared to the other 
architectures, Channel Boosted CNN has higher 
accuracy of 96.52%. AUC values for all the architectures 
are pretty close, with Channel Boosted CNN showing a 
slightly different value of 98.3%. 
 
Table 3  
Performance comparison of CNN architectures 
 

Model AlexNet ResNeXt Xception Channel 
Boosted 
CNN 

accPerf (%) 93.32 94.2 95.85 96.52 

senPerf (%) 91.2 92.5 93.4 94.2 

spePerf (%) 93.56 93.89 96.2 97.1 

precPerf (%) 92.3 92.6 93.8 94.5 

1FPerf (%) 92.8 93.9 94.78 96.4 

AUEPerf (%) 98.2 98.2 98.2 98.3 

 
 
Channel Boosted CNN offers better performance with 
increased data than other architectures. Figure 7 depicts 
the performance comparison of the CNN architectures 
for Breast Cancer Classification. The performance of the 
proposed architectures on Proliferated data is also 
evaluated, and the observations are shown in Table 4. 
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Channel Boosted CNN shows an accuracy of 
97.45%, a sensitivity of 96.8%, a specificity of 
97.8%, a precision of 96.5%, an F1 score of 96.8%, 
and an AUC of 99.1%. The accuracy obtained by 
the other models is comparatively low, with 
AlexNet 92.36%, ResNeXt 93.52%, and Xception 
95.78%, respectively. 
 
Table 4  
Performance evaluation on proliferated data 
 

Model AlexNet ResNeXt Xception Channel 
Boosted 
CNN 

accPerf (%) 92.36 93.52 95.78 97.45 

senPerf (%) 92.2 92.5 94.8 96.8 

spePerf (%) 93.56 93.78 95.9 97.8 

precPerf (%) 93.4 93.65 94.7 96.5 

1FPerf (%) 92.4 92.7 94.9 96.8 

AUEPerf (%) 97.4 97.8 97.9 99.1 

 

The models are also executed under two cross-
validation techniques: five-fold cross-validation 
and ten-fold cross-validation. The analysis results 
are recorded in Tables 5 and 6 for five-fold and 
ten-fold cross-validation, respectively. For both 
cases, the Xception model performed better than 
the other models under consideration. AlexNet, 
ResNeXt, and Channel Boosted CNN produced an 
accuracy of 92.5%, 93.4%, and 94.5%, 
respectively. The Xception model made an 
accuracy of 96.78% for five-fold cross-validation. 
Though Channel Boosted CNN produced a higher 
performance for the original data and increased 
data, the Xception model demonstrated better 
performance under the cross-validation 

Figure 7 
Performance comparison of CNN architectures



Information Technology and Control 2023/2/52392

comparatively low, with AlexNet 92.36%, ResNeXt 
93.52%, and Xception 95.78%, respectively.
The models are also executed under two cross-val-
idation techniques: five-fold cross-validation and 
ten-fold cross-validation. The analysis results are 
recorded in Tables 5 and 6 for five-fold and ten-fold 
cross-validation, respectively. For both cases, the 
Xception model performed better than the oth-
er models under consideration. AlexNet, ResNeXt, 
and Channel Boosted CNN produced an accuracy 
of 92.5%, 93.4%, and 94.5%, respectively. The Xcep-
tion model made an accuracy of 96.78% for five-fold 
cross-validation.

Table 4 
Performance evaluation on proliferated data

Model AlexNet ResNeXt Xcep-
tion

Channel 
Boosted CNN

Perfacc(%) 92.36 93.52 95.78 97.45

Perfsen(%) 92.2 92.5 94.8 96.8

Perfspe (%) 93.56 93.78 95.9 97.8

Perfprec (%) 93.4 93.65 94.7 96.5

PerfF1 (%) 92.4 92.7 94.9 96.8

PerfAUE(%) 97.4 97.8 97.9 99.1

Table 5 
Performance comparison using 5 fold cross validation

Model AlexNet ResNeXt Xception Channel 
Boosted CNN

Perfacc(%) 92.5 93.4 96.78 94.5

Perfsen(%) 93.6 92.4 95.8 93.7

Perfspe (%) 92.8 93.6 96.6 94.8

Perfprec (%) 93.4 92.7 95.7 93.8

PerfF1 (%) 93.5 94.7 95.8 94.2

PerfAUE(%) 98.1 98.2 98.9 97.9

Table 6 
Performance comparison using 5 fold cross validation

Model AlexNet ResNeXt Xception Channel 
Boosted CNN

Perfacc(%) 93.6 94.9 97.5 96.8

Perfsen(%) 92.8 93.7 96.8 95.8

Perfspe (%) 93.6 94.5 97.2 96.9

Perfprec (%) 92.7 93.8 96.7 95.8

PerfF1 (%) 93.4 94.66 97.5 96.9

PerfAUE(%) 98.3 98.5 99.2 98.7

Though Channel Boosted CNN produced a higher per-
formance for the original data and increased data, the 
Xception model demonstrated better performance 
under the cross-validation techniques. Similarly, for 
the ten-fold cross-validation technique, the Xception 
model produced an accuracy of 97.5%, a sensitivity of 
96.8%, a Specificity of 97.2%, a Precision of 96.7%, an 
F1 score of 97.5%, and an AUC of 99.2%. Figure 8 com-
pares the performance exhibited by each model under 
ten-fold cross-validation.

Figure 8 
Performance comparison using 10 fold cross validation
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Further, two models were combined and executed 
on the MIAS dataset to observe the performance, 
and the results are presented in Table 7. The 
models taken for experimental analysis are 
AlexNet with ResNeXt, ResNeXt with Xception, 
AlexNet with Xception, ResNeXt with Channel 
Boosted CNN, AlexNet with Channel Boosted 
CNN, and Xception with Channel Boosted CNN. 
Among these combinations of models, Xception 
with Channel Boosted CNN showed a higher 
accuracy of 98.96%. While AlexNet with Channel 
Boosted CNN showed an accuracy of 97.4%, 
AlexNet with ResNeXt showed the least accuracy 
of 95.2%. AUC values were also higher for 
Xception with the Channel Boosted CNN model 
with 99.7%. 
 
Table 7  
Performance comparison on combined CNN 
architectures 

Model AlexNet+ 
ResNeXt 

ResNeXt+ 
Xception 

AlexNet+ 
Xception 

ResNeXt+ 
Channel 
Boosted 

CNN 

AlexNet+ 
Channel 
Boosted 

CNN 

Xception+ 
Channel 
Boosted 

CNN 

accPerf
(%) 

95.2 96.3 95.4 96.9 97.4 98.96 

senPerf
(%) 

94.5 95.6 94.8 95.6 96.7 98.5 

spePerf
(%) 

95.8 96.7 95.7 96.8 96.7 98.6 

precPerf
(%) 

94.6 95.8 95.9 96.2 97.2 98.7 

1FPerf
(%) 

95.9 96.8 95.9 96.5 97.1 98.5 

AUEPerf
(%) 

98.6 98.5 98.3 98.9 99.3 99.7 

 
The proposed model was compared with the 
existing models, and the results are as per the 
observations detailed in Table 8. Figure 9 
compares proposed and current models in terms of 
performance metrics. Authors in [5] executed 

Further, two models were combined and executed on 
the MIAS dataset to observe the performance, and 
the results are presented in Table 7. The models taken 
for experimental analysis are AlexNet with ResNeXt, 
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ResNeXt with Xception, AlexNet with Xception, 
ResNeXt with Channel Boosted CNN, AlexNet with 
Channel Boosted CNN, and Xception with Channel 
Boosted CNN. Among these combinations of models, 
Xception with Channel Boosted CNN showed a high-
er accuracy of 98.96%. While AlexNet with Channel 
Boosted CNN showed an accuracy of 97.4%, AlexNet 
with ResNeXt showed the least accuracy of 95.2%. 
AUC values were also higher for Xception with the 
Channel Boosted CNN model with 99.7%.
The proposed model was compared with the existing 
models, and the results are as per the observations 
detailed in Table 8. Figure 9 compares proposed and 
current models in terms of performance metrics. Au-
thors in [5] executed transfer learning for breast can-
cer prediction using VGG models and achieved an ac-

Table 7 
Performance comparison on combined CNN architectures

Model AlexNet+ 
ResNeXt

ResNeXt+
Xception

AlexNet+
Xception

ResNeXt+
Channel Boosted CNN

AlexNet+
Channel Boosted CNN

Xception+
Channel Boosted CNN

Perfacc(%) 95.2 96.3 95.4 96.9 97.4 98.96

Perfsen(%) 94.5 95.6 94.8 95.6 96.7 98.5

Perfspe (%) 95.8 96.7 95.7 96.8 96.7 98.6

Perfprec (%) 94.6 95.8 95.9 96.2 97.2 98.7

PerfF1 (%) 95.9 96.8 95.9 96.5 97.1 98.5

PerfAUE(%) 98.6 98.5 98.3 98.9 99.3 99.7

Table 8
Performance comparison between the proposed vs existing 
models

Model [5] [17] [21] [23] Proposed Model

Perfacc(%) 95.6 96.3 97.5 97.9 98.9

Perfsen(%) 94.8 95.6 96.8 96.5 98.5

Perfspe (%) 95.9 95.8 96.5 96.4 98.6

Perfprec (%) 95.8 96.1 97.2 97.3 98.7

PerfF1 (%) 95.2 95.6 96.9 96.8 98.5

PerfAUE(%) 98.6 98.7 99.2 99.4 99.7

Figure 9 
Performance of the proposed vs existing models

  

transfer learning for breast cancer prediction using VGG 
models and achieved an accuracy of 95.6%. The work 
proposed in [17] was based on Inception models, which 
produced an accuracy of 96.3%. The work in [21] 
employed InceptionNet and ResNet, which exhibited 
97.5% accuracy. The researchers in [23] demonstrated 
an accuracy of 97.9% for breast cancer classification 
with the DenseNet model. However, the proposed model 
outperformed the other with an accuracy of 98.96%. 
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In the proposed system, Data parallelism and model 
parallelism are coupled to create mixed parallelism, also 
known as hybrid parallelism, in order to obtain a higher 
level of parallelism. The Hybrid Parallelism Technique 
divides the CNN architectures so that convolutional 
layers and pooling layers can utilize data parallelism and 
fully connected levels can exploit model parallelism 
because the complexity of the various CNN layers 
varies. This type of parallelism technique is adopted in 
order to train deeper networks using a sufficient quantity 
of resources. As a result, communication cost and 
overhead are minimized by a factor of 1.1-23.0 in 
comparison to these techniques being employed 

individually. Application of Hybrid parallelism in 
the proposed system also outperformed existing 
systems in terms of runtime performance.  

5. Discussion 
Investigations demonstrated that transfer learning, 
even between unrelated tasks, benefits our job of 
concern. Initializing with weights already taught is 
a decent technique to begin the learning process. 
The loaded weights will then be gradually refined 
to synchronize the network with the latest dataset. 
Resuming backpropagation on the layers with a 
slow learning rate allows for this. Overfitting is the 
outcome of too much refining, which produces 
subpar results. The standard method for refining 
freezes the network's top layers and propagates 
backward through a few of the final convolutional 
layers. This is based on the idea that whereas the 
last layers of a CNN tend to be more unique to the 
data, the initial layers learn generic features. Since 
the early convolutional layers are already 
optimized to learn generic features, especially 
when we are missing data to train on, there is no 
need to adjust their weights significantly. Instead, 
the goal is to have the last convolutional layers 
learn more data-specific features. 
This concept is improved by refining the per-
exponentially declining learning rate, which 
causes acclimation to occur more naturally and 
automatically than its opponent. The rate at which 
weights change for each network component can 
be regulated using the suggested method. In other 
words, some of the layers can be more or less 
responsive to change while refining. The final 
convolutional layers will be heavily represented, 
while the initial layers will be changed the least. 
Given that the intermediate convolutional layers 
may be in charge of picking up slightly more 
complicated characteristics than the initial layers, 
they need to be substantially altered. The finest 
method for assisting us in this is the auto-
regressive learning rate. 
The proposed technique reduced the risk of 
overfitting caused by the lack of data. Empirically, 
the model's performance was consistent across 
small and comparatively more significant datasets. 
The proposed model avoided overfitting by 
refining the declining learning rate for every layer, 
accounting for label associations during the 
categorization process, and using other techniques 
like feature extraction, regularization, and 
dropout. The suggested system can provide 
comprehensive observations, giving the physician 
a comprehensive view of the region of interest. 
This can aid in decision-making and eventually 
help him improve the accuracy of the diagnoses. 
 

curacy of 95.6%. The work proposed in [17] was based 
on Inception models, which produced an accuracy 
of 96.3%. The work in [21] employed InceptionNet 
and ResNet, which exhibited 97.5% accuracy. The re-
searchers in [23] demonstrated an accuracy of 97.9% 
for breast cancer classification with the DenseNet 
model. However, the proposed model outperformed 
the other with an accuracy of 98.96%.
In the proposed system, Data parallelism and model 
parallelism are coupled to create mixed parallelism, 
also known as hybrid parallelism, in order to obtain 
a higher level of parallelism. The Hybrid Parallelism 
Technique divides the CNN architectures so that con-
volutional layers and pooling layers can utilize data 
parallelism and fully connected levels can exploit mod-
el parallelism because the complexity of the various 
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CNN layers varies. This type of parallelism technique 
is adopted in order to train deeper networks using a 
sufficient quantity of resources. As a result, communi-
cation cost and overhead are minimized by a factor of 
1.1-23.0 in comparison to these techniques being em-
ployed individually. Application of Hybrid parallelism 
in the proposed system also  outperformed existing 
systems in terms of runtime performance. 

5. Discussion
Investigations demonstrated that transfer learning, 
even between unrelated tasks, benefits our job of 
concern. Initializing with weights already taught is a 
decent technique to begin the learning process. The 
loaded weights will then be gradually refined to syn-
chronize the network with the latest dataset. Resum-
ing backpropagation on the layers with a slow learn-
ing rate allows for this. Overfitting is the outcome of 
too much refining, which produces subpar results. 
The standard method for refining freezes the net-
work’s top layers and propagates backward through 
a few of the final convolutional layers. This is based 
on the idea that whereas the last layers of a CNN tend 
to be more unique to the data, the initial layers learn 
generic features. Since the early convolutional layers 
are already optimized to learn generic features, espe-
cially when we are missing data to train on, there is no 
need to adjust their weights significantly. Instead, the 
goal is to have the last convolutional layers learn more 
data-specific features.
This concept is improved by refining the per-exponen-
tially declining learning rate, which causes acclima-
tion to occur more naturally and automatically than 
its opponent. The rate at which weights change for 
each network component can be regulated using the 
suggested method. In other words, some of the layers 
can be more or less responsive to change while refin-
ing. The final convolutional layers will be heavily rep-
resented, while the initial layers will be changed the 
least. Given that the intermediate convolutional layers 
may be in charge of picking up slightly more compli-
cated characteristics than the initial layers, they need 
to be substantially altered. The finest method for as-
sisting us in this is the auto-regressive learning rate.
The proposed technique reduced the risk of over-
fitting caused by the lack of data. Empirically, the 

model’s performance was consistent across small 
and comparatively more significant datasets. The 
proposed model avoided overfitting by refining the 
declining learning rate for every layer, accounting for 
label associations during the categorization process, 
and using other techniques like feature extraction, 
regularization, and dropout. The suggested system 
can provide comprehensive observations, giving the 
physician a comprehensive view of the region of in-
terest. This can aid in decision-making and eventu-
ally help him improve the accuracy of the diagnoses.

6. Conclusion
An innovative deep-learning model for enhancing the 
breast cancer classification outcomes on the MIAS 
dataset was put forth in this research. This approach 
is meant to aid physicians in the detection and diag-
nosis of Breast Cancer. The three types of MIAS imag-
es—benign, malignant, and normal—were separated. 
The original MIAS dataset underwent pre-processing 
to denoise noise, enhance breast picture contrast, re-
move non-breast regions, and identify the malignant 
area. To improve the CNN structure’s performance, 
the data augmentation concept was also suggested. 
The experimental results on the MIAS dataset were 
performed under various combinations, and finally, 
Xception with Channel Boosted CNN produced high-
er accuracy of 98.96%.
Furthermore, a definite advancement over other cur-
rent methods can be accomplished by incorporating 
CNN architectures with transfer learning into the 
screening mechanism. The sensitivity, specificity, 
precision, F1 score, and AUC values produced by the 
proposed model are 98.5%, 98.6%, 98.78%, 98.5%, and 
99.7%, respectively. One limitation of the present re-
search is that it uses only mammography images for 
experimental purposes. Future research will focus on 
finding strategies to use the unique characteristics of 
the non-linear problems to develop a joint image-la-
bel embedding that characterizes both the contextual 
attribute dependency and the relevance of the model 
relationship. In order to construct an effective, reli-
able, and potent computer-aided diagnosis system for 
early breast cancer diagnosis, we would also like to 
use imaging modalities other than mammography in 
the learning process.



395Information Technology and Control 2023/2/52

References
1. Ahmad, S., Ur, Rehman, S., Iqbal, A., Farooq, R. K., Sha-

hid, A., Ullah, M. I., Breast Cancer Research in Paki-
stan: A Bibliometric Analysis. SAGE Open, 2021, 11(3). 
https://doi.org/10.1177/21582440211046934

2. Agrawal, D. K., Kirar, B. S., Pachori, R. B. Automated 
Glaucoma Detection Using Quasi-Bivariate Variational 
Mode Decomposition From Fundus Images. IET Im-
age Processing, 2019, 13(13), 2401-2408. https://doi.
org/10.1049/iet-ipr.2019.0036

3. Al-antari, M. A., Al-masni, M. A., Choi, M. T., Han, S. M., 
Kim, T. S. A Fully Integrated Computer-Aided Diagno-
sis System for Digital X-Ray Mammograms via Deep 
Learning Detection, Segmentation, and Classification. 
International Journal of Medical Informatics, 2018, 117, 
44-54. https://doi.org/10.1016/j.ijmedinf.2018.06.003

4. Brancati, N., De Pietro, G., Frucci, M., Riccio, D. A Deep 
Learning Approach for Breast Invasive Ductal Carci-
noma Detection and Lymphoma Multi-Classification 
in Histological Images. IEEE Access, 2019, 7, 44709-
44720. https://doi.org/10.1109/ACCESS.2019.2908724

5. Chaudhary, P. K., Pachori, R. B. Automatic Diagnosis 
of Glaucoma Using Two-Dimensional Fourier-Bessel 
Series Expansion Based Empirical Wavelet Transform. 
Biomedical Signal Processing and Control, 2021, 64, 
102237. https://doi.org/10.1016/j.bspc.2020.102237

6. Chatterjee, S., Dey, D., Munshi, S. Empirical Wavelet 
Fractal Texture Analysis for Skin Disease Identifica-
tion. IEEE, 2020, 819-822. https://doi.org/10.1109/
TENSYMP50017.2020.9230698

7. Chougrad, H., Zouaki, H., Alheyane, O. Convolutional 
Neural Networks for Breast Cancer Screening: Trans-
fer Learning with Exponential Decay. Proceedings of 
the NIPS-Machine Learning of Health Workshop, 2017, 
1711(10752).

8. Chugh, G., Kumar, S., Singh, N. Survey on Machine Learn-
ing and Deep Learning Applications in Breast Cancer Di-
agnosis. Cognitive Computation, 2021, 13(6), 1451-1470. 
https://doi.org/10.1007/s12559-020-09813-6

9. Danaee, P., Ghaeini, R., Hendrix, D. A. A Deep Learn-
ing Approach for Cancer Detection and Relevant Gene 
Identification. In Proceedings in Biocomputing, 2017, 
219-229.

10. Dhungel, N., Carneiro, G., Bradley, A. P. Automated 
Mass Detection in Mammograms Using Cascaded 
Deep Learning and Random Forests. In Proceedings 
of International Conference on Digital Image Comput-

ing: Techniques and Applications (DICTA), 2015, 1-8. 
https://doi.org/10.1109/DICTA.2015.7371234

11. Galassi, A., Lippi, M., Torroni, P. Attention, Please! A 
Critical Review of Neural Attention Models in Natural 
Language Processing. Arxiv, 2019. arXiv:1902.02181.

12. Ghosh, S. K., Ghosh, A. Classification of Gene Expres-
sion Patterns Using a Novel Type- 2 Fuzzy Multi Granu-
lation-Based SVM Model for the Recognition of Cancer 
Mediating Biomarkers. Neural Computing and Applica-
tions, 2021, 33(9), 4263-4281. https://doi.org/10.1007/
s00521-020-05241-7

13. Gupta, P., Kaur, Malhi, A. Using Deep Learning to En-
hance Head and Neck Cancer Diagnosis and Classi-
fication. In 2018 IEEE International Conference on 
System, Computation, Automation and Network-
ing (Icscan), 2018, 1-6. https://doi.org/10.1109/ICS-
CAN.2018.8541142

14. Kausar, T., MingJiang, W., Ashraf, M. A., Kausar, A. 
SmallMitosis: Small Size Mitotic Cells Detection in 
Breast Histopathology Images. IEEE Access, 2020. 
https://doi.org/10.1109/ACCESS.2020.3044625

15. Khan, S., Islam, N., Jan, Z., Ud Din, I., Rodrigues, J. J. 
P. C. A Novel Deep Learning Based Framework for the 
Detection and Classification of Breast Cancer Using 
Transfer Learning. Pattern Recognition Letters, 2019, 
125, 1-6. https://doi.org/10.1016/j.patrec.2019.03.022 

16. Man, R., Yang, P., Xu, B. Classification of Breast Can-
cer Histopathological Images Using Discriminative 
Patches Screened by Generative Adversarial Networks. 
IEEE Access, 2020, 8, 155362-155377. https://doi.
org/10.1109/ACCESS.2020.3019327

17. Maqsood, S., Damaševičwasius, R., Maskeliūnas, R. 
TTCNN: A Breast Cancer Detection and Classifica-
tion Towards Computer-Aided Diagnosis Using Digital 
Mammography in Early Stages. Applied Sciences, 2022, 
12(7), 3273. https://doi.org/10.3390/app12073273

18. Nguyen, H. G., Blank, A., Dawson, H. E., Lugli, A., Zlobec, 
I. Classification of Colorectal Tissue Images from High 
Throughput Tissue Microarrays by Ensemble Deep 
Learning Methods. Scientific Reports, 2021, 11(1), 1-11. 
https://doi.org/10.1038/s41598-021-81352-y

19. Pandian, A. P. Identification and Classification of Can-
cer Cells Using Capsule Networks with Pathological 
Images, Journal of Artificial Intelligence and Capsule 
Networks, 2019, 1(1), 37-44. https://doi.org/10.36548/
jaicn.2019.1.005



Information Technology and Control 2023/2/52396

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

20. Platania, R., Shams, S., Yang, S., Zhang, J., Lee, K., 
Park, S. J. Automated Breast Cancer Diagnosis Using 
Deep Learning and Region of Interest Detection (BC-
DROID). In Proceedings of 8th ACM International 
Conference on Bioinformatics, Computational Biolo-
gy, and Health Informatics, 2017, 536-543. https://doi.
org/10.1145/3107411.3107484

21. Qiu, Y., Yan, S., Gundreddy, R. R., Wang, Y., Cheng, S., 
Liu, H., Zheng, B. A New Approach to Develop Comput-
er-Aided Diagnosis Scheme of Breast Mass Classifica-
tion Using Deep Learning Technology. Journal of X-Ray 
Science and Technology, 2017, 25(5), 751-763. https://
doi.org/10.3233/XST-16226

22. Quist, J., Taylor, L., Staaf, J., Grigoriadis, A. Random 
Forest Modeling of High-Dimensional Mixed-Type 
Data for Breast Cancer Classification. Cancers, 2021, 
13(5), 991. https://doi.org/10.3390/cancers13050991

23. Rakhlin, A., Shvets, A., Iglovikov, V., Kalinin, A. A. Deep 
Convolutional Neural Networks for Breast Cancer His-
tology Image Analysis. In Proceedings of International 
Conference on Image Analysis and Recognition. Cham, 
Switzerland: Springer, 2018, 737-744. https://doi.
org/10.1007/978-3-319-93000-8_83

24. Rodríguez-Ruiz, A., Krupinski, E., Mordang, J. J., Schil-
ling, K., Heywang-Köbrunner, S. H., Sechopoulos, I., 
Mann, R. M. Detection of Breast Cancer with Mam-
mography: Effect of an Artificial Intelligence Support 
System. Radiology, 2019, 290(2), 305-314. https://doi.
org/10.1148/radiol.2018181371

25. Shamy, S., Dheeba, J. A Research on Detection and 
Classification of Breast Cancer using K- Means GMM & 
CNN Algorithms. International Journal of Engineering 
and Advanced Technology, 2019, 11, 315-320.

26. Shu, X., Zhang, L., Wang, Z., Lv, Q., Yi, Z. Deep Neural 
Networks with Region-Based Pooling Structures for 
Mammographic Image Classification. IEEE Trans-

actions on Medical Imaging, 2020, 39(6), 2246-2255. 
https://doi.org/10.1109/TMI.2020.2968397

27. Valkonen, M., Isola, J., Ylinen, O., Muhonen, V., Saxlin, 
A., Tolonen, T., Nykter, M., Ruusuvuori, P. Cytokera-
tin-Supervised Deep Learning for Automatic Recog-
nition of Epithelial Cells in Breast Cancers Stained 
for ER, PR, and Ki-67. IEEE Transactions on Medical 
Imaging, 2020, 39(2), 534-542. https://doi.org/10.1109/
TMI.2019.2933656

28. Wang, Y.I., Wang, N. A., Xu, M., Yu, J., Qin, C., Luo, X., 
Yang, X., Wang, T., Li, A., Ni, D. Deeply-Supervised 
Networks With Threshold Loss for Cancer Detection 
in Automated Breast Ultrasound. IEEE Transactions 
on Medical Imaging, 2020, 39(4), 866-876. https://doi.
org/10.1109/TMI.2019.2936500

29. Wu, J., Hicks, C., Breast Cancer Type Classification 
Using Machine Learning. Journal of Personalized 
Medicine, 2021, 11(2), 61. https://doi.org/10.3390/
jpm11020061

30. Yap, M. H., Pons, G., Marti, J., Ganau, S., Sentis, M., 
Zwiggelaar, R., Davison, A. K., Marti, R. Automated 
Breast Ultrasound Lesions Detection Using Convolu-
tional Neural Networks. IEEE Journal of Biomedical 
and Health Informatics, 2018, 22(4), 1218-1226. https://
doi.org/10.1109/JBHI.2017.2731873

31. Zebari, D. A., Ibrahim, D. A., Zeebaree, D. Q., Mohammed, 
M. A., Haron, H., Zebari, N. A., Damaševičius, R., Maske-
liūnas, R. Breast Cancer Detection Using Mammogram 
Images with Improved Multi-Fractal Dimension Ap-
proach And Feature Fusion. Applied Sciences, 2021, 
11(24), 12122. https://doi.org/10.3390/app112412122 

32. Zheng, J., Lin, D., Gao, Z., Wang, S., He, M., Fan, J. Deep 
Learning Assisted Efficient Adaboost Algorithm for 
Breast Cancer Detection and Early Diagnosis. IEEE 
Access, 2020, 8, 96946-96954. https://doi.org/10.1109/
ACCESS.2020.2993536 




