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A human motion pattern recognition algorithm based on Nano-sensor and deep learning is studied to recog-
nize human motion patterns in real time and with high accuracy. First, human motion data are collected by 
micro electro mechanical system, and the noise in such data is filtered by smoothing filtering method to obtain 
high-quality motion data. Second, key time-domain features are extracted from high-quality motion data. Fi-
nally, after fusing and processing the key time-domain features, it is input into the deep long and short-term 
memory (LSTM) neural network to build a deep LSTM human motion pattern recognition model and complete 
human motion pattern recognition. The results show that the proposed algorithm can realize the recognition of 
various motion patterns with high accuracy of data acquisition, the average recognition accuracy is 94.8%, the 
average recall reaches 89.7%, and the F1 score of the algorithm are high, and the recognition time consuming 
is short, which can realize accurate and efficient human motion pattern recognition and provide guarantee for 
effective monitoring of the target human motion health.
KEYWORDS: Recognition, Human motion, Nano-sensor, Deep learning, Smoothing filtering method, Time do-
main features, LSTM neural network.

1. Introduction
Human motion pattern recognition is one of the key 
research issues in the field of computer vision [12, 
14]. Human motion pattern recognition is a process 
of recognizing motion patterns by recognizing the 

real-time motion state data of the target human and 
combining the effective analysis of motion data [18, 
19]. At present, such recognition technology has been 
applied in many fields, such as personnel navigation, 
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medical rehabilitation, intelligent health monitoring 
[17] and human-computer interaction [2]. However, 
how to accurately and effectively recognize the mo-
tion pattern of the target human has become the key 
to the research of this kind of problem [4]. At pres-
ent, many scholars have performed relevant research 
work in this regard [26]. Aiming at the important top-
ic of human motion pattern recognition, Liu Wei et al. 
[15] studied a motion recognition algorithm combin-
ing global constraint block matching and convolution 
neural network. It mainly extracts human motion 
features through convolution neural network, and 
completes the matching of the same motion features 
in combination with global constraint block matching 
to realize motion recognition [11]. Although this algo-
rithm can realize human motion pattern recognition. 
However, the recognition accuracy and timeliness are 
not ideal. Ali et al. [3] evaluated the accuracy and ro-
bustness of the combination of convolutional neural 
network and naive Bayes to correctly recognize the 
real alarm trigger in the form of buzzer sound. The re-
sults shows that pattern recognition can be achieved 
using either of the two methods, even when part of 
the motion pattern is derived as a subset of the full 
motion path. This paper verifies the effectiveness of 
convolution neural network and naive Bayes in hu-
man activity and motion pattern recognition. Howev-
er, the algorithm is not time-sensitive. Xue et al. [25] 
proposed a human hand motion recognition system 
based on multimodal perceptual information fusion, 
which synchronously collected finger trajectory, con-
tact force and electromyographic signal data through 
a multimodal data acquisition platform; second, a 
threshold segmentation method was used to achieve 
motion segmentation, and the maximum Lyapunov 
index was used to achieve multimodal signal feature 
extraction; then, a detailed nonlinear data analysis 
was conducted to complete the recognition of com-
plex human hand motion. However, the expression 
of relevant data information was still not accurate 
enough, which affected the recognition effect. Jian et 
al. [8] established a human activity model based on 
Cartesian coordinates and normalized the data in the 
model, then introduced the sliding window technique 
to establish a mapping map and designed a convolu-
tional neural network for human activity recognition, 
the algorithm has good operational efficienc; how-
ever, the poor data acquisition effect leads to poor 

recognition accuracy. Wang and Feng [21] proposed a 
human motion pattern recognition algorithm based 
on knowledge graph. The spatial features of human 
motion are sampled, and a three-dimensional contour 
feature reconstruction model is established. Adaptive 
edge feature detection method is used to reconstruct 
the spatial contour structure of human motion, ex-
tract the knowledge map of moving image, and multi-
scale information enhancement method is used to en-
hance and recognize human motion. The recognition 
time of this algorithm is less, which can ensure time-
liness. However, its recognition accuracy is not high.
At present, micro intelligent wearable monitoring de-
vices have attracted more and more attention of the 
public and are gradually popularized and applied in 
health and sports monitoring [1]. As one of the tech-
nologies further upgraded on the basis of micro, the 
scientific and rational application of Nano-sensor has 
attracted more attention [5].The micro electro me-
chanical system (MEMS) Nano-sensor based on nan-
otechnology is one of the representative cutting-edge 
technologies. It is a technology that can manufacture, 
process and design nano materials. Its emergence 
makes micro sensing technology gradually move to-
wards Nano-sensor technology [10, 24]. Smoothing 
filtering method belongs to a kind of spatial domain 
filtering and noise removal technology, which is main-
ly a technology for enhancing low-frequency signals. 
Its main functions include filtering fuzzy noise and 
enhancing signal quality [16]. Long and short-term 
memory (LSTM) neural network belongs to a repre-
sentative deep learning model. Its advantage is that it 
has better memory performance, has more advantag-
es in the field of processing long sequence data, and 
can realize the deep mining of long-term dependen-
cies in long sequence data. It is widely used in word 
classification, power prediction, risk prediction, ac-
tion recognition and other fields [6, 13].
Based on the above analysis, this paper studies a hu-
man motion pattern recognition algorithm combin-
ing Nano-sensor and deep learning. The main contri-
butions of this paper are as follows: (1) The angular 
velocity sensor and acceleration sensor in the MEMS 
Nano-sensor collect human motion data to ensure 
the quality and speed of data collection. It addresses 
the problem that the slow data acquisition speed of 
traditional algorithms leads to the decline of recogni-
tion efficiency, and can lay a solid foundation for the 
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subsequent human motion pattern recognition. (2) 
Fuse the key time-domain features, input the feature 
fusion results into the deep LSTM human motion 
pattern recognition model, and use the excellent per-
formance of the deep LSTM to ensure the accuracy 
of the recognition results. (3) The results of different 
data sets show that the proposed algorithm can effec-
tively recognize human motion patterns and achieve 
good application results

2. Methodology
2.1. General Architecture of Human Motion 
Pattern Recognition Algorithm
In this paper, we propose a human motion pattern 
recognition algorithm based on Nano-sensor and 
deep learning to realize the effective recognition of 
different human motion patterns. The overall archi-
tecture of the algorithm is shown in Figure 1.

tion data, which lays a solid foundation for subse-
quent feature extraction, fusion and human motion 
pattern recognition.
On this basis, the mean and skewness time-domain 
features of angular velocity sensor data are extracted, 
and the variance, interquartile spacing and peak value 
of acceleration sensor data are obtained, to realize the 
feature extraction of human motion data. The fusion 
processing feature processing results are input into 
the deep LSTM neural network in deep learning, and 
the human motion pattern recognition results are ob-
tained. The design of human motion pattern recogni-
tion algorithm based on nano-sensor and deep learn-
ing is completed. The micro Nano-sensor framework 
is shown in Figure 2.

Figure1 
Overall architecture of human motion pattern recognition 
algorithm

The overall architecture of human motion pattern 
recognition algorithm mainly includes three parts: 
Nano-sensor human motion data collection, human 
motion data feature extraction and human motion 
pattern recognition of deep learning. In which, the 
angular velocity sensor and acceleration sensor in 
MEMS Nano-sensor are used to collect human mo-

Figure 2 
Micro Nano-sensor framework

By analyzing the micro Nano-sensor framework in 
Figure 2, it can be seen that the framework is com-
posed of 9 micro Nano-sensor, which are used for 
angular velocity and acceleration data in human mo-
tion. The framework is divided into common anode 
and cathode, the wiring pattern reduces the number 
of wires, increases the monitoring direction of the 
monitored points, improves the survival rate of the 
sensors, and is able to lay a solid foundation for the 
operation of 9 micro-nano sensors, thus ensuring the 
quality and efficiency of data acquisition.
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2.2. Human Motion Data Acquisition Based on 
Nano-sensor
The existing nano-sensors mainly include nano bi-
ological and chemical sensors, nano gas sensors and 
other types of nano-sensors. The nano biological 
and chemical sensors have submicron dimensions, 
transducers, probes or nano micro systems, and the 
detection sensitivity is greatly improved compared 
with other sensors. MEMS Nano-sensors are a typi-
cal nano biological and chemical sensor. The current 
consumption of MEMS nanosensor is reduced to 
3μA. 24-bit measurement data output, with interrupt 
function, lightweight and compact package.
In this paper, MEMS Nano-sensor based on nano-
technology is selected to collect the motion data of the 
target human. The MEMS Nano-sensor combines an-
gular velocity and acceleration sensors. In the acqui-
sition process, the MEMS Nano-sensor is fixed at the 
back waist of the target human, and the X axis of the 
MEMS Nano-sensor is consistent with the motion 
direction of the target human. TheY axis is parallel 
to the ground, and the Z axis is perpendicular to the 
ground, which is consistent with the Cartesian coor-
dinate system of the right hand.
After the motion data of the target human is collect-
ed by the MEMS Nano-sensor, the noise in the initial 
motion data needs to be eliminated by filtering, so as 
to improve the quality of the motion data collected 
by the MEMS Nano-sensor and facilitate the subse-
quent extraction of the feagures of the human motion 
data in the sensor. Because the speed of human mo-
tion is relatively slow, most of the human motion data 
collected by MEMS Nano-sensors are low-frequency 
signals. It is inevitable that there are many redundant 
noise signals in the collected human motion data due 
to jitter, transmission noise and circuit interference 
in the collection process [9]. Let the measured value 
of human motion data of MEMS Nano-sensor be rep-
resented by measureC .The actual motion value is repre-
sented by C . Then
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where C′ represents the measurement error of 
MEMS Nano-sensor. Here, the smooth filtering 
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adjusted in real time, which is convenient to deal 
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value obtained after weighting is the new output 
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2.3. Feature Extraction of Human Motion 
Data from MEMS Nano-sensor
Before recognizing human motion patterns, it is nec-
essary to extract various feature quantities from the 
human motion data collected above, so as to lay the 
foundation for later motion pattern recognition. The 
effect of feature extraction affects the accuracy of 
subsequent motion pattern recognition. Here, vari-
ous time-domain features are selected as extraction 
targets, which are characterized by strong real-time, 
less extraction time and simple extraction process, 
which can more effectively ensure the effect of fea-
ture extraction. In this paper, we focus on two aspects: 
angular velocity sensor data of MEMS Nano-sensor 
and feature extraction of acceleration sensor data.  

2.3.1. Time Domain Feature Extraction of Angular 
Velocity Sensor Data
The time-domain feature extraction of angular ve-
locity sensor data includes mean value and skewness. 
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The detailed process is as follows:
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where iy is the i -th measured value in the sample.
y  refers to the measured average value of m data 

samples. σ  represents the standard deviation of 
the sample. 

When recognizing the motion patterns of 
downstairs, upstairs and walking, which are 
difficult to recognize, it is not only necessary to use 
the quartile spacing characteristic parameters of the 
acceleration sensor data, but also to combine the 
variance parameters and the skewness and mean 
value characteristic parameters of the angular 
velocity sensor data, and synthesize the recognition 
results of all the extracted characteristic parameters 
to complete the final recognition of the motion 
pattern of the target human. 

 

2.3.2. Time Domain Feature Extraction of 
Acceleration Sensor Data 

Time domain feature extraction of acceleration 
sensor data includes variance, interquartile spacing 
and peak value, as follows: 

(1) Variance: for the average value, the deviation 
degree of the data is variance [22], which 
represents the action range of the target human 
to implement the motion behavior mode. The 
higher the value, the larger the action range. 

The resultant acceleration is obtained by scalar sum 
calculation of triaxial acceleration. The actual 
wearing mode of the sensor cannot affect this value. 
At the same time, compared with uniaxial 
acceleration, this value is more stable. Therefore, the 
variance of resultant acceleration is selected as one 
of the time-domain features of the acceleration 
sensor data to be extracted, which is used to identify 
the running and standing modes in the motion 
mode of the target human.The calculation method 
of resultant acceleration a  is 

2 2 2
X Y Za a a a= + + ,                       （6） 

where Xa 、 Ya 、 Za  represents the acceleration of 
axis X 、 Y and Z  of the acceleration sensor, 
respectively. Let a sample of acceleration sensor 
data y′  be 1 2, , , my y y′ ′ ′

 .The Equation of variance 
δ  is 
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where iy′  represents the i -th measured value 
in the acceleration sensor data sample. y′  
represents the average of the measured values 
of m  data samples. 

Interquartile spacing: this feature is selected in 
this paper to identify the motion patterns of 
the target human.This feature has the feature 
of small overlapping part, which can 
effectively distinguish the characteristics of 
going upstairs and downstairs and walking in 
the human motion mode. Sort the  X axis data 

Xa  of the acceleration sensor according to the 
order from small to large. 1 2, , ,X X Xma a a  
represents the sorted data sequence. Divide 
this sequence into quartiles, subtract the first 
quartile 1Q from the third quartile 3Q , and the 
result is the quartile spacing Q  value. As 
shown in Equation (8): 

         3 1Q Q Q= − .                                  （8） 

Peak value: the peak value of motion data 
refers to the change intensity of motion data 
signal in a specific period of time. The higher 
the value, the greater the motion amplitude of 
the target human, and vice versa [7]. Here, the 
peak feature is used for fall pattern recognition 
in the motion of the target human, and the 
motion of the target human in all directions 
can be presented by the data peak of the three 
axes of the acceleration sensor. When the peak 
value of the X axis data is higher than that of 
the conventional motion mode data, it 
represents that the target human may fall 
forward. At the same time, combined with the 
peak value fluctuation of the three-axis data of 
the acceleration sensor, the actual fall mode of 
the target human is identified. 

2.4. Human Motion Pattern Recognition 
Based on Deep Learning 

After fusing and processing the key time-
domain features, it is input into the deep 
LSTM neural network to build a deep LSTM 
human motion pattern recognition model to 
complete human motion pattern recognition. 
The LSTM neural network is used to build a 
human motion pattern recognition model 
based on deep learning. After fusing the time-
domain features of all MEMS Nano-sensor 
human motion data extracted, the fused 
features are input into the neural network to 
obtain the output of human motion pattern 
recognition results, and complete the 
recognition of the target human motion 

, (5)

where iy
 is the i -th measured value in the sample.y  

refers to the measured average value of m data sam-
ples. σ  represents the standard deviation of the sam-
ple.
When recognizing the motion patterns of downstairs, 
upstairs and walking, which are difficult to recognize, 
it is not only necessary to use the quartile spacing 
characteristic parameters of the acceleration sen-
sor data, but also to combine the variance parame-
ters and the skewness and mean value characteristic 
parameters of the angular velocity sensor data, and 
synthesize the recognition results of all the extracted 
characteristic parameters to complete the final recog-
nition of the motion pattern of the target human.

2.3.2. Time Domain Feature Extraction of 
Acceleration Sensor Data
Time domain feature extraction of acceleration sen-
sor data includes variance, interquartile spacing and 
peak value, as follows:
1 Variance: for the average value, the deviation de-

gree of the data is variance [22], which represents 
the action range of the target human to implement 
the motion behavior mode. The higher the value, 
the larger the action range.

The resultant acceleration is obtained by scalar sum 
calculation of triaxial acceleration. The actual wearing 
mode of the sensor cannot affect this value. At the same 
time, compared with uniaxial acceleration, this value is 
more stable. Therefore, the variance of resultant accel-
eration is selected as one of the time-domain features 
of the acceleration sensor data to be extracted, which 
is used to identify the running and standing modes in 
the motion mode of the target human.The calculation 
method of resultant acceleration a  is
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where iy′  represents the i -th measured value 
in the acceleration sensor data sample. y′  
represents the average of the measured values 
of m  data samples. 

Interquartile spacing: this feature is selected in 
this paper to identify the motion patterns of 
the target human.This feature has the feature 
of small overlapping part, which can 
effectively distinguish the characteristics of 
going upstairs and downstairs and walking in 
the human motion mode. Sort the  X axis data 

Xa  of the acceleration sensor according to the 
order from small to large. 1 2, , ,X X Xma a a  
represents the sorted data sequence. Divide 
this sequence into quartiles, subtract the first 
quartile 1Q from the third quartile 3Q , and the 
result is the quartile spacing Q  value. As 
shown in Equation (8): 
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Peak value: the peak value of motion data 
refers to the change intensity of motion data 
signal in a specific period of time. The higher 
the value, the greater the motion amplitude of 
the target human, and vice versa [7]. Here, the 
peak feature is used for fall pattern recognition 
in the motion of the target human, and the 
motion of the target human in all directions 
can be presented by the data peak of the three 
axes of the acceleration sensor. When the peak 
value of the X axis data is higher than that of 
the conventional motion mode data, it 
represents that the target human may fall 
forward. At the same time, combined with the 
peak value fluctuation of the three-axis data of 
the acceleration sensor, the actual fall mode of 
the target human is identified. 

2.4. Human Motion Pattern Recognition 
Based on Deep Learning 

After fusing and processing the key time-
domain features, it is input into the deep 
LSTM neural network to build a deep LSTM 
human motion pattern recognition model to 
complete human motion pattern recognition. 
The LSTM neural network is used to build a 
human motion pattern recognition model 
based on deep learning. After fusing the time-
domain features of all MEMS Nano-sensor 
human motion data extracted, the fused 
features are input into the neural network to 
obtain the output of human motion pattern 
recognition results, and complete the 
recognition of the target human motion 
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where iy is the i -th measured value in the sample.
y  refers to the measured average value of m data 

samples. σ  represents the standard deviation of 
the sample. 
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value characteristic parameters of the angular 
velocity sensor data, and synthesize the recognition 
results of all the extracted characteristic parameters 
to complete the final recognition of the motion 
pattern of the target human. 
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where iy′  represents the i -th measured value 
in the acceleration sensor data sample. y′  
represents the average of the measured values 
of m  data samples. 

Interquartile spacing: this feature is selected in 
this paper to identify the motion patterns of 
the target human.This feature has the feature 
of small overlapping part, which can 
effectively distinguish the characteristics of 
going upstairs and downstairs and walking in 
the human motion mode. Sort the  X axis data 

Xa  of the acceleration sensor according to the 
order from small to large. 1 2, , ,X X Xma a a  
represents the sorted data sequence. Divide 
this sequence into quartiles, subtract the first 
quartile 1Q from the third quartile 3Q , and the 
result is the quartile spacing Q  value. As 
shown in Equation (8): 
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Peak value: the peak value of motion data 
refers to the change intensity of motion data 
signal in a specific period of time. The higher 
the value, the greater the motion amplitude of 
the target human, and vice versa [7]. Here, the 
peak feature is used for fall pattern recognition 
in the motion of the target human, and the 
motion of the target human in all directions 
can be presented by the data peak of the three 
axes of the acceleration sensor. When the peak 
value of the X axis data is higher than that of 
the conventional motion mode data, it 
represents that the target human may fall 
forward. At the same time, combined with the 
peak value fluctuation of the three-axis data of 
the acceleration sensor, the actual fall mode of 
the target human is identified. 

2.4. Human Motion Pattern Recognition 
Based on Deep Learning 

After fusing and processing the key time-
domain features, it is input into the deep 
LSTM neural network to build a deep LSTM 
human motion pattern recognition model to 
complete human motion pattern recognition. 
The LSTM neural network is used to build a 
human motion pattern recognition model 
based on deep learning. After fusing the time-
domain features of all MEMS Nano-sensor 
human motion data extracted, the fused 
features are input into the neural network to 
obtain the output of human motion pattern 
recognition results, and complete the 
recognition of the target human motion 
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where iy′ represents the i-th measured value in the ac-
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age of the measured values of m data samples.
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part, which can effectively distinguish the character-
istics of going upstairs and downstairs and walking 
in the human motion mode. Sort the X axis data Xa  of 
the acceleration sensor according to the order from 
small to large. 1 2, , ,X X Xma a a  represents the sort-
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where iy is the i -th measured value in the sample.
y  refers to the measured average value of m data 

samples. σ  represents the standard deviation of 
the sample. 

When recognizing the motion patterns of 
downstairs, upstairs and walking, which are 
difficult to recognize, it is not only necessary to use 
the quartile spacing characteristic parameters of the 
acceleration sensor data, but also to combine the 
variance parameters and the skewness and mean 
value characteristic parameters of the angular 
velocity sensor data, and synthesize the recognition 
results of all the extracted characteristic parameters 
to complete the final recognition of the motion 
pattern of the target human. 
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Acceleration Sensor Data 
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and peak value, as follows: 

(1) Variance: for the average value, the deviation 
degree of the data is variance [22], which 
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to implement the motion behavior mode. The 
higher the value, the larger the action range. 

The resultant acceleration is obtained by scalar sum 
calculation of triaxial acceleration. The actual 
wearing mode of the sensor cannot affect this value. 
At the same time, compared with uniaxial 
acceleration, this value is more stable. Therefore, the 
variance of resultant acceleration is selected as one 
of the time-domain features of the acceleration 
sensor data to be extracted, which is used to identify 
the running and standing modes in the motion 
mode of the target human.The calculation method 
of resultant acceleration a  is 
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where Xa 、 Ya 、 Za  represents the acceleration of 
axis X 、 Y and Z  of the acceleration sensor, 
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 .The Equation of variance 
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where iy′  represents the i -th measured value 
in the acceleration sensor data sample. y′  
represents the average of the measured values 
of m  data samples. 

Interquartile spacing: this feature is selected in 
this paper to identify the motion patterns of 
the target human.This feature has the feature 
of small overlapping part, which can 
effectively distinguish the characteristics of 
going upstairs and downstairs and walking in 
the human motion mode. Sort the  X axis data 

Xa  of the acceleration sensor according to the 
order from small to large. 1 2, , ,X X Xma a a  
represents the sorted data sequence. Divide 
this sequence into quartiles, subtract the first 
quartile 1Q from the third quartile 3Q , and the 
result is the quartile spacing Q  value. As 
shown in Equation (8): 
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Peak value: the peak value of motion data 
refers to the change intensity of motion data 
signal in a specific period of time. The higher 
the value, the greater the motion amplitude of 
the target human, and vice versa [7]. Here, the 
peak feature is used for fall pattern recognition 
in the motion of the target human, and the 
motion of the target human in all directions 
can be presented by the data peak of the three 
axes of the acceleration sensor. When the peak 
value of the X axis data is higher than that of 
the conventional motion mode data, it 
represents that the target human may fall 
forward. At the same time, combined with the 
peak value fluctuation of the three-axis data of 
the acceleration sensor, the actual fall mode of 
the target human is identified. 

2.4. Human Motion Pattern Recognition 
Based on Deep Learning 

After fusing and processing the key time-
domain features, it is input into the deep 
LSTM neural network to build a deep LSTM 
human motion pattern recognition model to 
complete human motion pattern recognition. 
The LSTM neural network is used to build a 
human motion pattern recognition model 
based on deep learning. After fusing the time-
domain features of all MEMS Nano-sensor 
human motion data extracted, the fused 
features are input into the neural network to 
obtain the output of human motion pattern 
recognition results, and complete the 
recognition of the target human motion 

(8)

Peak value: the peak value of motion data refers to the 
change intensity of motion data signal in a specific pe-
riod of time. The higher the value, the greater the mo-
tion amplitude of the target human, and vice versa [7]. 
Here, the peak feature is used for fall pattern recogni-
tion in the motion of the target human, and the motion 
of the target human in all directions can be presented 
by the data peak of the three axes of the acceleration 
sensor. When the peak value of the X axis data is high-
er than that of the conventional motion mode data, it 
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represents that the target human may fall forward. At 
the same time, combined with the peak value fluctua-
tion of the three-axis data of the acceleration sensor, 
the actual fall mode of the target human is identified.

2.4. Human Motion Pattern Recognition 
Based on Deep Learning
After fusing and processing the key time-domain fea-
tures, it is input into the deep LSTM neural network 
to build a deep LSTM human motion pattern recog-
nition model to complete human motion pattern rec-
ognition. The LSTM neural network is used to build 
a human motion pattern recognition model based on 
deep learning. After fusing the time-domain features 
of all MEMS Nano-sensor human motion data ex-
tracted, the fused features are input into the neural 
network to obtain the output of human motion pat-
tern recognition results, and complete the recogni-
tion of the target human motion pattern. Each neuron 
of LSTM is composed of three gating and a memory 
storage part [23]. In which, the three gates include in-
put gate, forgetting gate and output gate. The function 
of forgetting gate is to control the forgetting degree of 
the previous unit status, and the functions of receiv-
ing, adjusting and output parameters are realized by 
input gate and output gate. The function of memory 
is to store and record the condition of neurons. The 
constructed deep LSTM human motion pattern rec-
ognition model is shown in Figure 3.
According to the data in Figure 3. After the time-do-
main features of the extracted angular velocity sensor 
and acceleration sensor are fused, they are input into 
the constructed LSTM, and the human motion pat-
tern recognition results are output after training. The 
deep LSTM model is composed of full connection lay-
er, BN layer, LSTM layer and Dropout layer. In LSTM, 
the results of fusion processing are transmitted in two 
directions through hidden layer neurons, namely, to 
the output layer and to the hidden layer in subsequent 
periods, and the operation is continued. In this kind 
of recursive transmission structure, the deep reached 
by LSTM is deeper. However, because this recurrent 
neural network is only applicable to the processing of 
short sequence data, it is easy to have problems such 
as over fitting and gradient disappearance. Therefore, 
the dropout layer and BN layer are introduced into 
the LSTM to obtain the deep LSTM network struc-
ture, effectively address the gradient disappearance 
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According to the data in Figure 3. After the time-
domain features of the extracted angular velocity 
sensor and acceleration sensor are fused, they are 
input into the constructed LSTM, and the human 
motion pattern recognition results are output after 
training. The deep LSTM model is composed of full 
connection layer, BN layer, LSTM layer and 
Dropout layer. In LSTM, the results of fusion 
processing are transmitted in two directions 
through hidden layer neurons, namely, to the 
output layer and to the hidden layer in subsequent 
periods, and the operation is continued. In this kind 
of recursive transmission structure, the deep 
reached by LSTM is deeper.  However, because this 
recurrent neural network is only applicable to the 
processing of short sequence data, it is easy to have 
problems such as over fitting and gradient 
disappearance. Therefore, the dropout layer and 
BN layer are introduced into the LSTM to obtain the 
deep LSTM network structure, effectively address 
the gradient disappearance and over fitting 
problems, and integrate memory units into the 
hidden layer neurons of the LSTM, so as to realize 
the effective control of memory data in the time 
series and further prevent the gradient explosion 
and disappearance. The function from input layer 

to hidden layer in deep LSTM can be 
expressed as 

( ) ( )( )1tg t D WX t eη −= + + ,                      (9)           

where ( )X t  represents the input layer of 
deep LSTM. η  indicates activation function.
D  and W represent the offset matrix and 
weight matrix between the input layer and the 
hidden layer, respectively. ( )g t  is the output 

matrix of the hidden layer. 1te −  represents the 
memory up to the previous moment. Select 
tanh function in this activation function. The 
function expression from hidden layer to 
output layer in deep LSTM is 

( ) ( )Y t D p t W′ ′= + ,               (10)      

where ( )Y t represents the output matrix of 
the output layer. D′  represents the offset 
matrix of the hidden layer connecting the 
output layer. ( )p t  and W ′  represent the 
input matrix and weight matrix between them, 
respectively. The forgetting gate vector tl  
operation equation of the memory unit 
integrated into the hidden layer neurons of the 
deep LSTM is the following: 

( )1 1t Xl t Yl t Gl t ll W X W Y W G d η− −= + + + ,     (11)                          

where ld  represents the forgetting gate offset 

vector. tY  and tX  represent output signal and 
input signal, respectively. 1tY −  indicates the 

last output signal. YlW  and XlW  represent the 
weight moments of forgetting gate connected 
with tY  and tX , respectively. tG  represents 
the vector of memory cell state. 1tG −  indicates 

its previous round of memory status. GlW  
represents the weight matrix of forgetting gate 
connected with tG . The tG  vector expression 
of the memory unit is the following: 

( )1 1tant t XG t YG t G t tG j Y W X W Y d l G− −= + + + ,  (12) 

where tj  represents the input gate of the 
memory unit. XGW  and YGW  represent the 

weight matrix of tG  vector connected with 

input and output signals, respectively. Gd
represents the offset vector of tG . The 

expression of tj  vector of memory unit is the 
following: 
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According to the data in Figure 3. After the time-
domain features of the extracted angular velocity 
sensor and acceleration sensor are fused, they are 
input into the constructed LSTM, and the human 
motion pattern recognition results are output after 
training. The deep LSTM model is composed of full 
connection layer, BN layer, LSTM layer and 
Dropout layer. In LSTM, the results of fusion 
processing are transmitted in two directions 
through hidden layer neurons, namely, to the 
output layer and to the hidden layer in subsequent 
periods, and the operation is continued. In this kind 
of recursive transmission structure, the deep 
reached by LSTM is deeper.  However, because this 
recurrent neural network is only applicable to the 
processing of short sequence data, it is easy to have 
problems such as over fitting and gradient 
disappearance. Therefore, the dropout layer and 
BN layer are introduced into the LSTM to obtain the 
deep LSTM network structure, effectively address 
the gradient disappearance and over fitting 
problems, and integrate memory units into the 
hidden layer neurons of the LSTM, so as to realize 
the effective control of memory data in the time 
series and further prevent the gradient explosion 
and disappearance. The function from input layer 
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the output matrix of the hidden layer. 1te −  represents 
the memory up to the previous moment. Select tanh 
function in this activation function. The function 
expression from hidden layer to output layer in deep 
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pattern. Each neuron of LSTM is composed of three 
gating and a memory storage part [23]. In which, 
the three gates include input gate, forgetting gate 
and output gate. The function of forgetting gate is 
to control the forgetting degree of the previous unit 
status, and the functions of receiving, adjusting and 
output parameters are realized by input gate and 
output gate. The function of memory is to store and 
record the condition of neurons. The constructed 
deep LSTM human motion pattern recognition 
model is shown in Figure 3. 
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According to the data in Figure 3. After the time-
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Dropout layer. In LSTM, the results of fusion 
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According to the data in Figure 3. After the time-
domain features of the extracted angular velocity 
sensor and acceleration sensor are fused, they are 
input into the constructed LSTM, and the human 
motion pattern recognition results are output after 
training. The deep LSTM model is composed of full 
connection layer, BN layer, LSTM layer and 
Dropout layer. In LSTM, the results of fusion 
processing are transmitted in two directions 
through hidden layer neurons, namely, to the 
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with tY  and tX , respectively. tG  represents 
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where jd represents the offset vector of tj . GjW  

represents the weight matrix connecting tj  and tG

XjW  and YjW  represent the weight matrix of tj  
connected with input and output signals, 
respectively. The expression of the output gate 
vector th of the memory unit is the following: 
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where hd  represents the offset vector of th . GhW  

represents the weight matrix connecting th  and tG
. XhW  and YhW  represent the weight matrix of th  
connected with input and output signals, 
respectively. The expression of output signal tY  is 
the following: 

     ( )tant t tY h Y G= .                                        （15） 

 
3. Experimental Results and 

Analysis 
3.1. Data Sets 

HiEve data set: it contains a large number of 
postures (>1m), the maximum number of complex 
event action tags (>56k), and the maximum number 
of long-term persistent tracks (average track length 
>480). It is used for data collection in challenging 
scenes under various crowded and complex events 
(such as dining, earthquake escape, subway getting 
off, collision), it can play a good role in the fields of 
multi-target tracking, attitude estimation and 
tracking, motion recognition and so on. Weizmann 
data set: this data set includes a total of 90 videos, 
which are performed by 9 people with 10 different 
actions (bend, Jack, jump, run, side, skip, walk, 
WAVE1, WAVE2). The background, perspective 
and camera of the video are static. Moreover, the 
dataset provides annotated foreground contour 
video. 

In the experiment, HiEve and Weizmann two public 
data sets are selected as the experimental data sets 
to test the recognition effect of the algorithm in this 
paper. The two experimental data sets include 
walked forward, running, going upstairs, going 
downstairs, falling forward, falling backward and 
back off. Thirty subjects of different ages and 
genders were selected as the targets to be identified 
in the experimental detection, and each subject was 
asked to make seven motion patterns of walked 
forward, running, going upstairs, going 

downstairs, falling forward, falling backward 
and back off under different indoor and 
outdoor scenes according to the motion 
patterns in the two experimental data sets. The 
recognition is performed by using the 
algorithm in this paper, and the recognition 
effect of this algorithm is tested. The 
experimental sample data size is 26.35G. After 
the experimental data set is set, the data will 
be filtered and cleaned first to standardize and 
unify the data format, and eliminate abnormal 
data and duplicate data. Then, the data will be 
converted into a form suitable for deep LSTM 
network computing through generalization 
and normalization. Finally, the pre-processed 
data is used as the experimental input data, 
and it is divided into two parts: the training set 
and the test set. The data in the training set is 
input to the simulation software for trial 
operation. 

The MEMS angular velocity sensor and MEMS 
acceleration sensor used in the proposed 
algorithm are ML728 and SCA3300-D01, 
respectively. The establishment of the deep 
LSTM network recognition model is based on 
the pythoch deep learning framework. The 
network parameters are optimized using the 
genetic algorithm's hyperparametric 
evolutionary algorithm, and the network 
model is trained using the Adam optimization 
algorithm. The initial learning rate is set to 
0.001, the iteration batch is set to 64, and the 
weight attenuation factor is 0.002. This 
parameter is always used during the 
experiment to ensure the authenticity and 
reliability of the experimental results. 

3.2. Experimental Index 

The calculation Equation of human motion 
acquisition accuracy is as follows: 
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where F represents the size of data accurately 
collected.G  represents the total size of data. 

The Equation for calculating the accuracy 
index of human motion pattern recognition is 
as follows: 
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where TP  means the predicted answer is 
correct. FP indicates that other categories are 
incorrectly predicted as this category. 

The calculation Equation of human motion 
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where jd represents the offset vector of tj . GjW  rep-
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and YjW  represent the weight matrix of tj  connected 
with input and output signals, respectively. The ex-
pression of the output gate vector th of the memory 
unit is the following:
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input to the simulation software for trial 
operation. 

The MEMS angular velocity sensor and MEMS 
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algorithm are ML728 and SCA3300-D01, 
respectively. The establishment of the deep 
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correct. FP indicates that other categories are 
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3. Experimental Results and Analysis
3.1. Data Sets
HiEve data set: it contains a large number of postures 
(>1m), the maximum number of complex event action 
tags (>56k), and the maximum number of long-term 

persistent tracks (average track length >480). It is used 
for data collection in challenging scenes under various 
crowded and complex events (such as dining, earth-
quake escape, subway getting off, collision), it can play 
a good role in the fields of multi-target tracking, atti-
tude estimation and tracking, motion recognition and 
so on. Weizmann data set: this data set includes a to-
tal of 90 videos, which are performed by 9 people with 
10 different actions (bend, Jack, jump, run, side, skip, 
walk, WAVE1, WAVE2). The background, perspective 
and camera of the video are static. Moreover, the data-
set provides annotated foreground contour video.
In the experiment, HiEve and Weizmann two public 
data sets are selected as the experimental data sets to 
test the recognition effect of the algorithm in this pa-
per. The two experimental data sets include walked 
forward, running, going upstairs, going downstairs, 
falling forward, falling backward and back off. Thirty 
subjects of different ages and genders were selected as 
the targets to be identified in the experimental detec-
tion, and each subject was asked to make seven motion 
patterns of walked forward, running, going upstairs, 
going downstairs, falling forward, falling backward and 
back off under different indoor and outdoor scenes ac-
cording to the motion patterns in the two experimental 
data sets. The recognition is performed by using the 
algorithm in this paper, and the recognition effect of 
this algorithm is tested. The experimental sample data 
size is 26.35G. After the experimental data set is set, the 
data will be filtered and cleaned first to standardize and 
unify the data format, and eliminate abnormal data and 
duplicate data. Then, the data will be converted into 
a form suitable for deep LSTM network computing 
through generalization and normalization. Finally, the 
pre-processed data is used as the experimental input 
data, and it is divided into two parts: the training set 
and the test set. The data in the training set is input to 
the simulation software for trial operation.
The MEMS angular velocity sensor and MEMS ac-
celeration sensor used in the proposed algorithm are 
ML728 and SCA3300-D01, respectively. The estab-
lishment of the deep LSTM network recognition model 
is based on the pythoch deep learning framework. The 
network parameters are optimized using the genetic 
algorithm’s hyperparametric evolutionary algorithm, 
and the network model is trained using the Adam op-
timization algorithm. The initial learning rate is set to 
0.001, the iteration batch is set to 64, and the weight 
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attenuation factor is 0.002. This parameter is always 
used during the experiment to ensure the authenticity 
and reliability of the experimental results.

3.2. Experimental Index
The calculation Equation of human motion acquisi-
tion accuracy is as follows:
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postures (>1m), the maximum number of complex 
event action tags (>56k), and the maximum number 
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multi-target tracking, attitude estimation and 
tracking, motion recognition and so on. Weizmann 
data set: this data set includes a total of 90 videos, 
which are performed by 9 people with 10 different 
actions (bend, Jack, jump, run, side, skip, walk, 
WAVE1, WAVE2). The background, perspective 
and camera of the video are static. Moreover, the 
dataset provides annotated foreground contour 
video. 

In the experiment, HiEve and Weizmann two public 
data sets are selected as the experimental data sets 
to test the recognition effect of the algorithm in this 
paper. The two experimental data sets include 
walked forward, running, going upstairs, going 
downstairs, falling forward, falling backward and 
back off. Thirty subjects of different ages and 
genders were selected as the targets to be identified 
in the experimental detection, and each subject was 
asked to make seven motion patterns of walked 
forward, running, going upstairs, going 

downstairs, falling forward, falling backward 
and back off under different indoor and 
outdoor scenes according to the motion 
patterns in the two experimental data sets. The 
recognition is performed by using the 
algorithm in this paper, and the recognition 
effect of this algorithm is tested. The 
experimental sample data size is 26.35G. After 
the experimental data set is set, the data will 
be filtered and cleaned first to standardize and 
unify the data format, and eliminate abnormal 
data and duplicate data. Then, the data will be 
converted into a form suitable for deep LSTM 
network computing through generalization 
and normalization. Finally, the pre-processed 
data is used as the experimental input data, 
and it is divided into two parts: the training set 
and the test set. The data in the training set is 
input to the simulation software for trial 
operation. 

The MEMS angular velocity sensor and MEMS 
acceleration sensor used in the proposed 
algorithm are ML728 and SCA3300-D01, 
respectively. The establishment of the deep 
LSTM network recognition model is based on 
the pythoch deep learning framework. The 
network parameters are optimized using the 
genetic algorithm's hyperparametric 
evolutionary algorithm, and the network 
model is trained using the Adam optimization 
algorithm. The initial learning rate is set to 
0.001, the iteration batch is set to 64, and the 
weight attenuation factor is 0.002. This 
parameter is always used during the 
experiment to ensure the authenticity and 
reliability of the experimental results. 

3.2. Experimental Index 
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human motion pattern recognition is as follows: 
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where 1t represents the recognition start time. 2t  
indicates the end time of recognition. 

3.3. Results and Discussion 

First, two experimental data sets are used to test the 
recognition performance of the proposed 
algorithm. The proposed algorithm is applied to 
recognize the motion pattern of the tester in reality. 
Through the actual recognition results, the 
recognition effect of this algorithm is analyzed. 
Four randomly selected movements in various 
patterns made by 30 experimental testers are 
presented in the form of images, as shown in Figure 
4. 
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According to the analysis of Figure 4, the 
proposed algorithm can recognize the walked 
forward, running and upstairs motions of the 
tester, which can ensure the recognition effect. 
The recognition results of five testers were 
randomly selected for inspection, as shown in 
Table 1. 

It can be seen from table1 that the proposed 
algorithm can recognize different motion 
patterns of different testers. In the randomly 
selected partial recognition results, only the Go 
upstairs motion pattern of tester 4 is incorrectly 
recognized as the walked forward motion 
pattern, and the other recognition results are 
consistent with the actual motion pattern.  

HMTR [15] algorithm, HAMPR [3] algorithm, 
HHMR [25] algorithm, HART [8] algorithm and 
REAHM [21] algorithm are used as the 
comparison object to test multiple experimental 
indicators. The two experimental data sets of 
HiEve and Weizmann are input into the 
proposed algorithm and the five comparative 
algorithms, respectively. The test index values 
of the seven operation modes in the two 
experimental data sets are identified by the 
comparison methods and the proposed 
algorithm, and the average value of each mode 
recognition index in the two data sets is taken as 
the final test index value. 

The comparison results of human motion data 
acquisition accuracy of different algorithms are 
shown in Figure 5. By analyzing the data in 
Figure 5, we can see that the human motion data 
acquisition accuracy curve of the proposed 
algorithm is always above the experimental 
comparison algorithm, indicating that the data 
acquisition accuracy of the proposed algorithm 
is higher. For example, for the motion mode of 
walked forward, the human motion data 
acquisition accuracy of the proposed algorithm 
is 97%, which is 17%, 30%, 17%, 19% and 17% 
higher than the algorithms in HMTR [15], 
HAMPR [3], HHMR [25], HART [8] and 
REAHM [21], respectively, It shows that 
compared with the experimental comparison 
method, the data acquisition accuracy of this 
algorithm is higher, which can lay a solid data 
foundation for the subsequent human motion 
pattern recognition. 
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algorithm, and the average value of each mode 
recognition index in the two data sets is taken as 
the final test index value. 

The comparison results of human motion data 
acquisition accuracy of different algorithms are 
shown in Figure 5. By analyzing the data in 
Figure 5, we can see that the human motion data 
acquisition accuracy curve of the proposed 
algorithm is always above the experimental 
comparison algorithm, indicating that the data 
acquisition accuracy of the proposed algorithm 
is higher. For example, for the motion mode of 
walked forward, the human motion data 
acquisition accuracy of the proposed algorithm 
is 97%, which is 17%, 30%, 17%, 19% and 17% 
higher than the algorithms in HMTR [15], 
HAMPR [3], HHMR [25], HART [8] and 
REAHM [21], respectively, It shows that 
compared with the experimental comparison 
method, the data acquisition accuracy of this 
algorithm is higher, which can lay a solid data 
foundation for the subsequent human motion 
pattern recognition. 

 
Table 1 
Recognition results of proposed algorithm 

(a) Walked forward

(c) Running

According to the analysis of Figure 4, the proposed 
algorithm can recognize the walked forward, running 
and upstairs motions of the tester, which can ensure 
the recognition effect. The recognition results of five 
testers were randomly selected for inspection, as 
shown in Table 1.
It can be seen from table1 that the proposed algorithm 
can recognize different motion patterns of different 
testers. In the randomly selected partial recognition 
results, only the Go upstairs motion pattern of tes-
ter 4 is incorrectly recognized as the walked forward 
motion pattern, and the other recognition results are 
consistent with the actual motion pattern. 
HMTR [15] algorithm, HAMPR [3] algorithm, HHMR 
[25] algorithm, HART [8] algorithm and REAHM [21] 
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Table 1
Recognition results of proposed algorithm

Motion mode Tester 1 Tester 2 Tester 3 Tester 4 Tester 5

Walked forward Walked forward Walked forward Walked forward Walked forward Walked forward

Back off Back off Back off Back off Back off Back off

Go upstairs Go upstairs Go upstairs Go upstairs Go forward Go upstairs

Go downstairs Go downstairs Go downstairs Go downstairs Go downstairs Go downstairs

Falling forward Falling forward Falling forward Falling forward Falling forward Falling forward

Falling backward Falling backward Falling backward Falling backward Falling backward Falling backward

Running Running Running Running Running Running

algorithm are used as the comparison object to test 
multiple experimental indicators. The two experi-
mental data sets of HiEve and Weizmann are input 
into the proposed algorithm and the five comparative 
algorithms, respectively. The test index values of the 
seven operation modes in the two experimental data 
sets are identified by the comparison methods and 
the proposed algorithm, and the average value of each 
mode recognition index in the two data sets is taken 
as the final test index value.
The comparison results of human motion data ac-
quisition accuracy of different algorithms are shown 
in Figure 5. By analyzing the data in Figure 5, we can 
see that the human motion data acquisition accuracy 
curve of the proposed algorithm is always above the 

experimental comparison algorithm, indicating that 
the data acquisition accuracy of the proposed algo-
rithm is higher. For example, for the motion mode of 
walked forward, the human motion data acquisition 
accuracy of the proposed algorithm is 97%, which is 
17%, 30%, 17%, 19% and 17% higher than the algo-
rithms in HMTR [15], HAMPR [3], HHMR [25], HART 
[8] and REAHM [21], respectively, It shows that com-
pared with the experimental comparison method, the 
data acquisition accuracy of this algorithm is higher, 
which can lay a solid data foundation for the subse-
quent human motion pattern recognition.
The comparison results of human motion pattern 
recognition accuracy of different algorithms are 
shown in Table 2. According to the data in Table 2, 
the average accuracy of human motion pattern rec-
ognition of this algorithm is 94.8%, which is 7.3%, 
2.7%, 6.8%, 2.6% and 7.5% higher than that of HMTR 
[15] algorithm, HAMPR [3] algorithm, HHMR [25] 
algorithm, HART [8] algorithm and REAHM [21] 
algorithm, respectively. This is because this paper 
improves the traditional LSTM network and con-
structs a deep LSTM human motion pattern recog-
nition model. Through the recognition analysis of 
this model, the problem of inaccurate human motion 
data expression is avoided, and the accuracy of rec-
ognition results is improved.
According to the data in Table 3, we can see that the 
average recall of human motion pattern recognition 
of this algorithm is 89.7%, which is 13.3%, 5.1%, 16.0%, 
4.9%, and 14.2% higher than that of HMTR [15] algo-
rithm, HAMPR [3] algorithm, HHMR [25] algorithm, 
HART [8] algorithm and REAHM [21] algorithm, 

Figure 5 
Comparison of data acquisition accuracyFigure 5  

Comparison of data acquisition accuracy 
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Table 2 
Comparison of recognition accuracy

Algorithms Walked 
forward Back off Go 

upstairs Go downstairs Falling 
forward

Falling back-
ward Running Average 

value

Proposed 97.3 94.6 91.2 92.3 95.4 96.8 95.7 94.8

HMTR [15] 89.2 88.5 90.1 85.3 85.6 87.8 89.2 87.9

HAMPR [3] 94.1 93.6 87.7 90.4 92.2 91.4 93.5 91.8

HHMR [25] 90.5 88.2 86.0 85.7 89.4 90.5 85.8 88.0

HART [8] 92.6 92.8 90.5 91.5 91.7 93.3 93.1 92.2

REAHM [21] 89.5 89.2 90.1 89.3 85.4 85.6 82.5 87.3

Table 3
Comparison of recognition recall

Algorithms Walked 
forward

Back 
off

Go up-
stairs Go downstairs Falling 

forward
Falling back-

ward running Average 
value

Proposed 89.6 88.9 90.3 90.1 89.2 89.1 90.6 89.7

HMTR [15] 78.3 75.2 76.8 77.9 77.0 75.2 74.4 76.4

HAMPR [3] 84.7 85.4 85.2 85.1 86.1 84.4 81.3 84.6

HHMR [25] 74.3 74.2 73.6 75.4 72.8 75.9 70.3 73.7

HART [8] 84.3 84.4 85.1 85.2 87.2 83.4 84.3 84.8

REAHM [21] 73.7 78.7 75.4 78.5 75.6 72.8 74.3 75.5

Table 4 
Comparison of F1 score

Algorithms Walked 
forward

Back 
off

Go 
upstairs

Go 
downstairs

Falling 
forward

Falling 
backward Running Average 

value

Proposed 0.88 0.87 0.87 0.88 0.89 0.91 0.89 0.88

HMTR [15] 0.81 0.71 0.72 0.72 0.74 0.77 0.78 0.75

HAMPR [3] 0.82 0.81 0.83 0.84 0.81 0.84 0.79 0.82

HHMR [25] 0.77 0.72 0.75 0.79 0.82 0.80 0.75 0.77

HART [8] 0.79 0.80 0.84 0.78 0.84 0.85 0.82 0.81

REAHM [21] 0.73 0.76 0.74 0.75 0.70 0.76 0.72 0.74

respectively. This shows that compared with the ex-
perimental comparison algorithm, the recall of this 
algorithm is higher, which can comprehensively rec-
ognize human motion patterns and ensure the recog-
nition effect.
The F1 score comparison results of human motion 
pattern recognition with different algorithms are 

shown in Table 4.According to the data in Table 4, we 
can see that the average F1 score of the proposed al-
gorithm is 0.88, which is 0.13,0.06,0.11, 0.07, and 0.14 
higher than that of the HMTR [15] algorithm, HAM-
PR [3] algorithm, HHMR [25] algorithm, HART [8] 
algorithm and REAHM [21] algorithm, respectively, 
indicating that compared with the experimental com-
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Figure 6
Comparison of recognition time consuming

Figure 5  
Comparison of data acquisition accuracy 

 
 
 

Figure 6 

Comparison of recognition time consuming 

 

parison algorithm, the F1 score of the proposed algo-
rithm is higher and the human motion pattern recog-
nition effect is better.
The time consuming comparison results of human 
motion pattern recognition with different algo-
rithms are shown in Figure 6. By analyzing the data 
in Figure 6, we can see that the time consuming curve 
of human motion pattern recognition of this algo-
rithm is always lower than that of the experimental 
comparison algorithm, which shows that the recog-
nition time consuming of proposed algorithm is the 
lowest and the efficiency is higher. For the human 
motion pattern of walking forward, the human mo-
tion pattern recognition time consuming of the pro-
posed algorithm is 63ms, which is lower than 17ms, 
32ms, 23ms, 44ms and 8ms than the algorithms in 
HMTR [15], HAMPR [3], HHMR [25], HART [8], 
and REAHM [21], respectively, indicating that the 
human motion pattern recognition time consuming 
of the proposed algorithm is shorter and the overall 
efficiency is higher.

4. Conclusions
In this paper, a human motion pattern recognition al-
gorithm based on Nano-sensor and deep learning is 
proposed. By wearing MEMS Nano-sensor including 
angular velocity sensors and acceleration sensors on 
the waist of the target human, the motion data of the 
target human is collected in real time. For the noise 
contained in the collected motion data, the smooth 
filtering method is used to remove and enhance the 
motion data signal. From this kind of motion data, the 
mean value and skewness features of angular velocity 
sensor data, the peak value, variance and interquar-
tile spacing features of acceleration sensor data are 
extracted, respectively. After fusing all the features, 
the deep LSTM recognition model is constructed as 
input, and the final recognition result is obtained. The 
results show that the accuracy of human motion data 
acquisition of this algorithm is 97%, the average accu-
racy of human motion pattern recognition is 94.8%, the 
average recall of human motion pattern recognition 
is 89.7%, the average F1 score is 0.88, and the time of 
human motion pattern recognition is 63ms, which 
can realize the accurate recognition of human motion 
patterns. Overall, the gaps and cutting edges in human 
motion pattern recognition based on nano-sensors and 
deep learning reflect the ongoing efforts to improve the 
accuracy, efficiency, and reliability of motion recogni-
tion systems. However, we review the latest advances 
in deep learning techniques for human motion pattern 
recognition, including cutting-edge methods such as 
graph neural networks and meta-learning approaches. 
However, there are still gaps in our understanding of 
how to optimize deep learning models for efficient and 
effective motion recognition, particularly with respect 
to dealing with small datasets and reducing the compu-
tational complexity of these models. In future research, 
we need to further test the recognition effect of more 
types of motion patterns to further verify the practical 
application performance of proposed algorithm.
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