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Recently, higher structure complicacy and performance requirements of the aero-engine have brought higher 
demands on its control system. With the rapid development of artificial intelligence technology, the intelligent 
controller with self-learning ability will be able to make a great difference. In the paper, we propose an aero-en-
gine intelligent controller design method based on twin delayed deep deterministic policy gradient (TD3) al-
gorithm. The design method allows the intelligent controller to interact autonomously with the aero-engine 
system to acquire the optimal control sequence. The JT9D turbofan engine is used to introduce the control-
ler design workflow proposed in the paper. First, the problem of aero-engine control is described as a Markov 
decision process for deep reinforcement learning (DRL) algorithms. Second, a complete intelligent controller 
design process is constructed by reasonably designing the network structures and reward function. Finally, 
the comparison simulations are carried out to verify the superior performance of the controller design meth-
ods. The simulation results indicate that low-pressure turbine speed has no overshoot, and the settling time 
does not exceed 0.88s during the engine acceleration process. In the deceleration process, the overshoot of the 
low-pressure turbine speed is limited to 0.74% and the settling time does not exceed about 0.6s. The results 
prove that the TD3 controller outperforms deep deterministic policy gradient (DDPG) and the proportional-in-
tegral-derivative (PID) in the speed tracking control. 
KEYWORDS:  TD3, intelligent control, turbofan engine, deep reinforcement learning, neural network.

1. Introduction
Aero-engines are highly complex multivariable 
control systems, which are characterized by non-
linearity, time-varying, and sensitivity to external 

environmental changes. The control method of the 
aircraft propulsion system is mainly based on PID 
control [19] with a simple and robust control struc-
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ture. However, as aero-engine systems continue to 
evolve, they are expected to exhibit even more pro-
nounced control characteristics, making the use of 
advanced control methods essential for improved 
performance. In recent years, scholars have pro-
posed many improved control methods for aero-en-
gine, such as Linear Quadratic Regulator (LQR) [14], 
H∞ [30]. Though, most of these methods are for lin-
ear models. Then scholars also proposed nonlinear 
control methods such as gain scheduling control [4, 
17], model predictive control [16], and sliding mode 
variable structure control [11] on this basis. All of 
these control methods require the establishment of 
a comparatively precise system model and design of 
accurate controller with the foundation. In practice, 
the complex aerothermodynamic processes make it 
challenging to develop an accurate model of the air-
craft propulsion system, which in turn makes it dif-
ficult to control the aero-engine. Accordingly, mod-
el-free control algorithms on the basis of artificial 
intelligence provide a new solution.
Reinforcement learning (RL) [22] is a model-free 
control algorithm, and originates from dynamic 
programming and optimal control theory. Its funda-
mental approach is to perceive the states of the envi-
ronment and select appropriate actions through tri-
al-and-error learning, without relying on an explicit 
model of the system. The algorithm explores the op-
timal policy through repeated interaction with the 
environment, learning from the feedback received 
in the form of rewards or penalties. Q-learning [2] 
is a common reinforcement learning method that 
discretizes the action and state space to solve prob-
lems using tables. It has been widely studied and im-
proved upon, leading to the development of SARSA 
[9], Deep Q-Network (DQN) [15], and Double-DQN 
[6]. The DQN algorithm is considered a pioneering 
work in the field of deep reinforcement learning as 
it combines reinforcement learning with deep learn-
ing techniques to address control problems based on 
visual perception. This algorithm has achieved fruit-
ful results in discrete behavior decision-making. 
However, its effectiveness in high-dimensional con-
tinuous action spaces requires further investigation. 
In 2015, the researchers presented DDPG algorithm 
[10] to solve the dimensional explosion issue caused 
by the discretization of continuous space. The al-
gorithm employs a network that outputs a certain 

value, which is provided by the deterministic poli-
cy gradient. As a result, the problem of continuous 
action and state space can be solved by the DDPG 
algorithm. Nevertheless, problems such as high esti-
mation of value network in DDPG algorithm still ex-
ist. Considering these problems, TD3 algorithm on 
account of deep double Q-learning is then proposed 
[3]. Up to now, reinforcement learning has been 
studied in diverse areas including robotics [12, 23], 
spacecraft guidance [1, 7],  flight control [24] and 
automatic text summarization [21]. However, there 
has been little research on the application of RL to 
aero-engine control. And these studies have focused 
on the DQN and DDPG algorithms.
This study proposes a model-free intelligent control-
ler design method based on TD3 algorithm, which di-
rectly maps the state information of aero-engine op-
eration to the control signals of the engine. The main 
contributions of the work are listed as follows:
1 The TD3 algorithm is applied to the intelligent con-

trol of turbofan engines, and a detailed design flow 
is given. This work provides a solid basis for future 
practical applications of reinforcement learning 
on turbofan engines.

2 This paper designs the neural network with gra-
dient threshold limitations and a reward function 
centered on speed control within safety boundar-
ies. The design ensures the practicality of the in-
telligent controller, and simulation results demon-
strate the effectiveness of the trained control 
strategy.

3 The comparison simulation is conducted between 
the controller based on the TD3 algorithm and the 
DDPG-based controller, PID controller for the ae-
ro-engine accelerating and decelerating control 
tasks. The TD3-based controller exhibits superior 
performance compared to the other two control-
lers.

The rest of the paper is organized as follows: Section 
2 shows some related works. Section 3 describes the 
aero-engine control problem as a Markov decision 
process and introduces the principle of related al-
gorithms. Section 4 describes in detail the design 
process of the intelligent controller based on TD3 
algorithm. Section 5 illustrates the simulation and 
analysis. Last, Section 6 concludes the content of the 
article. 
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2. Related Work
The aero-engine is a system with great uncertainty 
and needs to meet the demands of high performance, 
low fuel consumption rate and low noise during oper-
ation. The absence of a suitable aero-engine control 
system can lead to severe problems, such as compres-
sor surge and speed stalling. The control methods of 
aero-engine can be classified into model-based con-
trol and model-free control. In general, integrating 
mathematical models of aero-engines with control-
ler design is considered a model-based control algo-
rithm. The latter approach does not require the estab-
lishment of a precise model of the controlled target 
and allows for direct controller design.

2.1. Model-based Control
Modern control theory is generally considered   as 
model-based control algorithms. The approach is 
now extensively applied in the control of aero-engine. 
In applications of model-based control, the establish-
ment or identification of the aero-engine model is the 
first issue to be considered. When the model is avail-
able, we would be able to design the controller. 
Modeling an aero-engine with physical mechanisms 
heavily depends on the accuracy of its parameters. 
The model built by the identification method is de-
manded to reveal the dynamic properties of the ae-
ro-engine over a wide operating range. Therefore, the 
model-based control with the aero-engine is typically 
designed according to the following steps. Firstly, the 
operating envelope of the aero-engine is partitioned 
into several sub-regions based on specific points. In 
each of the regions, the mathematical model of the 
aero-engine can be constructed in diverse forms, e.g., 
small perturbation state space model [28, 29] and fi-
nite impulse response model [26]. Afterwards, con-
trollers based on different theories are designed us-
ing these models. Finally, aero-engine control within 
the full envelope is implemented by means of gain 
scheduling. For example, the method of the LQG/
LTR control was applied to the turbine speed control 
of aero-engine [8]. The simulations show the method 
can effectively reduce the turbine speed overshoot. 
Haiquan et al. [5] employed two degrees-of-freedom 
H∞ loop-shaping method to realize the aero-engine 
control with improved robustness. Model predictive 
control (MPC) is also a typical model-based control 

approach that has gained wide attention and inves-
tigation in recent years. The model of aero-engine 
constitutes one of the most fundamental components 
of this control algorithm. This model is primarily de-
signed to predict the dynamic output of engines based 
on historical data and future inputs. Using this infor-
mation, real-time rolling optimization and feedback 
correction can be carried out.  It is one of the most 
effective methods for dealing with constraint system 
control problems in engines.
However, the operation of an aero-engine involves a 
multitude of complex aerothermodynamic process-
es. Whether the modeling is based on mechanism or 
identification by data, it is difficult to avoid the large 
errors of model. Consequently, the performance of 
the aero-engine controller developed using a mod-
el-based approach will inevitably degrade to some 
extent. Based on that, the model-free control method 
would be a promising choice.

2.2. Model-free Control
Reinforcement learning (RL) is a model-free control 
algorithm. As we mentioned earlier, the design of 
model-free controllers rarely depends on any mathe-
matical model of the controlled object. Instead, they 
rely entirely on the data obtained through interaction 
with the controlled systems. In highly unknown and 
uncertain nonlinear systems, these features of rein-
forcement learning algorithms offer prospective solu-
tions to develop optimal controllers.
In the framework of reinforcement learning, more 
and more control problems are solved. However, the 
application of RL in aero-engine control is still in its 
early stages. Zhang et al. [25] suggested an optimal 
controller of aero-engine on steady-state operating 
point based on DRL algorithm. Zheng et al. [27] pro-
posed that the deep Q-learning method can be uti-
lized to enhance the aero-engine acceleration perfor-
mance. Since the DQN algorithm cannot be applied 
directly to the continuous action space, this research 
suggests to find the action with the largest action val-
ue function at each step. This method requires evalu-
ation over the entire action space, leading to the diffi-
culty in real-time control. Miao et al. [13] proposed a 
transient controller design approach based on DDPG 
algorithm. The simulation results show that this ap-
proach can control the acceleration and deceleration 
process of turbofan engines and maintain the system 
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performance. Qian et al. [18] proposed the mathe-
matical model of the turbofan engine which is in the 
polynomial state space form. And they employed the 
DDPG algorithm to design the intelligent controller. 
The simulation results indicate that the controller 
brings about a great performance improvement of the 
aero-engine.
Most of the studies mentioned above have focused on 
addressing aero-engine control problem with mathe-
matical models and deep deterministic policy gradi-
ent algorithms. However, the DDPG algorithm suffers 
from the issues of sensitive hyperparameters and Q 
value overestimation, which can make it difficult to 
converge to the optimal policy. To address these issues, 
an aero-engine intelligent controller design method 
based on TD3 algorithm is proposed in this paper. 

3. The Principle of Deep 
Reinforcement Learning
3.1. Markov Decision Process (MDP) Model 
of Aero-engine Control
This paper takes the JT9D as the object of study, 
which is a high bypass ratio dual-rotor turbofan en-
gine. Its component-level model is developed based 
on the toolbox for the modeling and analysis of ther-
modynamic systems (T-MATS).
The following listed the operating conditions simu-
lated by this model:

( )674.22 , 130 / *
448.46 ,  5.528 ,  3.626 

t

t t

W pps h BTU lbm R
T degR P psia Pamb psia

= =

= = = ,

where W is the gas path flow of inlet,  ht is the total en-
thalpy, Tt is the inlet air temperature, Pt is the inlet air 
pressure,Pamb is the ambient pressure. As shown in 
Figure 1, it mostly consists of following components: 
aircraft inlet, fan, low-pressure compressor (LPC), 
high-pressure compressor (HPC), burner, high-pres-
sure turbine (HPT), low-pressure turbine (LPT), and 
tail nozzle. The purpose of the aero-engine control-
ler is to obtain the most efficient engine performance 
and the excellent thrust response within a safe range. 
The primary task of a turbofan engine controller is the 
tracking control of the turbine speed. In real-world 
applications, the thrust of the turbofan engine cannot 
be directly measured. Therefore, the low-pressure tur-

Figure 1 
The JT9D turbofan engine model

  

that this approach can control the acceleration and 
deceleration process of turbofan engines and 
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where 𝑊𝑊𝑊𝑊 is the gas path flow of inlet, ℎ𝑡𝑡𝑡𝑡 is the total 
enthalpy,𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡  is the inlet air temperature, 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡  is the 
inlet air pressure, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the ambient pressure. As 
shown in Figure 1, it mostly consists of following 
components: aircraft inlet, fan, low-pressure 
compressor (LPC), high-pressure compressor 
(HPC), burner, high-pressure turbine (HPT), low-
pressure turbine (LPT), and tail nozzle. The 
purpose of the aero-engine controller is to obtain 
the most efficient engine performance and the 
excellent thrust response within a safe range. The 
primary task of a turbofan engine controller is the 
tracking control of the turbine speed. In real-world 
applications, the thrust of the turbofan engine 
cannot be directly measured. Therefore, the low-
pressure turbine speed 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡), which is proportional 
to the thrust, is commonly used as a measurement 
for control. The controller adjusts the fuel-air ratio 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) , based on the error signal between the 

desired speed and the output speed of the 
turbofan turbine, which is regulated. The 
allowable range of the air-fuel ratio is 
[0.01,0.05]. 
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In reinforcement learning, the MDP model 
consists of the tuple〈𝑆𝑆𝑆𝑆,𝐹𝐹𝐹𝐹,𝑃𝑃𝑃𝑃, 𝑟𝑟𝑟𝑟, 𝛾𝛾𝛾𝛾〉, where  𝑆𝑆𝑆𝑆 is 
the set of states, 𝐹𝐹𝐹𝐹  is the set of actions, 𝛾𝛾𝛾𝛾 is the 
discount factor, and  𝑟𝑟𝑟𝑟(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃)  is the reward 
function. The value of the reward at a given 
point in time depends on the state and the 
action taken. The state transfer function, 
represented by 𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠′|𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃) , determines the 
likelihood of reaching the next state 
𝑠𝑠𝑠𝑠′. Reinforcement learning is a suitable 
approach for solving sequential decision 
problems. However, it is important to note 
that the system being solved must satisfy the 
assumption that the next state of the system is 
only dependent on the current state. Figure 2 
illustrates the basic elements of reinforcement 
learning and the corresponding interaction 
process. At each time step, the agent receives 
observations of the external environment and 
selects an action based on them. After the 
agent performs an action, the environment 
transitions to a new state and returns a reward 
to the agent. The reward at the current 
moment is called the immediate reward and is 
defined as 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 . The cumulative reward 
obtained by the agent from the environment is 
defined as 𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡 =  ∑ 𝛾𝛾𝛾𝛾𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡+𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡  , where the discount 
factor 𝛾𝛾𝛾𝛾 (0 ≤ 𝛾𝛾𝛾𝛾 ≤ 1)represents the effect of the 
reward value at future moments on the 
current cumulative reward.  
Figure 2 
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Aero-engine control system is a typical closed-loop 
feedback system. In the control loop, the control 
signal is calculated by the controller through the 
error between the reference signal and the system 
response. On this basis, we describe this control 
task in the MDP model as follows: 

State   𝑆𝑆𝑆𝑆 :  The primary task of a turbofan engine 
controller is the tracking control of the turbine 
speed. Accordingly, the low-pressure turbine 
speed 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡) and the error signal 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) between the 
given speed and the output speed of the turbofan 
turbine are the most necessary observation signals. 
The state space observed by the agent in this paper 
is defined as: 

[ ( ), ( ), ( ) ]t LS n t e t e t dt= ∫ .                                            (1) 

Action  𝐹𝐹𝐹𝐹 : Agent’s action is usually defined as a 
quantity related to the controller parameter or 
input.  In this paper, the output of the intelligent 
controller is the action. The action space is therefore 
as follows: 

[ ( )]tA FAR t= .                                                            (2) 

Reward 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡: The reward function is a scalar feedback 
signal provided by the environment, indicating the 
agent's gain in selecting a specific action at a 
particular time step. Designing an appropriate 
reward function is crucial, as it requires prior 
knowledge of aero-engine control and is a 
significant indicator of control performance. The 
details of the reward function are described in 
Section 4. 

Transition probability function  𝑃𝑃𝑃𝑃 : The transition 
probability function can be replaced by physical 
and thermodynamic response of aero-engine in 
practice. 
3.2 Basics of DDPG Algorithm 
In reinforcement learning, the objective of the agent 
is to maximize the cumulative reward value by 
optimizing its own policy. The agent observes the 
current state 𝑠𝑠𝑠𝑠 of the environment and selects the 
corresponding action 𝑃𝑃𝑃𝑃 based on the learned policy 
𝜇𝜇𝜇𝜇. The action taken by the agent modifies the state 

of the environment, and the environment 
provides the agent with a reward and a new 
state 𝑠𝑠𝑠𝑠′.  The state-action value function 
𝑄𝑄𝑄𝑄∗(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃) is updated by iterating through the 
Bellman equation. 

( ) ' '

*
~

, [ max ( , )]
s S a

Q s a E r Q s aγ ∗ ′ ′= + ,               (3) 

where 𝑟𝑟𝑟𝑟  is reward function, the  𝛾𝛾𝛾𝛾 is the 
discount factor, 𝐸𝐸𝐸𝐸[∙] is expected function, and 
the prime notation denotes the quantities at 
the next discrete time. The expected function 
is introduced due to the uncertainty of the 
state at the next moment. 

In practice, a function is usually used to 
approximate the 𝑄𝑄𝑄𝑄∗(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃),  which means 
𝑄𝑄𝑄𝑄∗(s, 𝑃𝑃𝑃𝑃) ≈ 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃|𝜃𝜃𝜃𝜃) . The parameter 𝜃𝜃𝜃𝜃  can be 
calculated by minimizing the loss function. 

This loss function is defined as: 

( ) 2( ) [( , | ) ]i i s S i iL E y Q s aθ θ′= −


                    (4) 

1[ max ( , | )]i s S iy E r Q s aγ θ′ −′ ′= +


.                    (5) 

When the network parameters 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖−1 are 
constant, 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖) is optimized. The variables of 
the loss function are differentiated to obtain 
the gradient equation: 

                
( ) 1[( max ( , | )

                  ( , | )) ( , | )]
i

i

i i ia

i i

L E r Q s a

Q s a Q s a
θ

θ

θ γ θ

θ θ
−′

′ ′∇ = + −

∇
.            (6) 

The optimal policy is then derived by solving 
the Bellman equation. In the DQN algorithm, 
a critical technique is setting up the experience 
replay buffer. This buffer stores transition 
samples (𝑠𝑠𝑠𝑠,𝑃𝑃𝑃𝑃, 𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠′)  generated during the 
agent's interaction with the environment. The 
use of it helps to reduce the correlation 
between consecutive samples and stabilizes 
the learning process. 

The DDPG algorithm is an enhanced 
algorithm on a basis of the Actor-Critic 
network structure and introduces the target 
network. As shown in Figure 3, the target 
networks are created by replicating the 
original Actor and Critic neural networks. 
Therefore, they have the same network 
structure and initial parameters. By separating 
the functions of parameter updating, strategy 
selection, and value function calculation, the 
learning process becomes more stable. The 
Actor neural network is responsible for 
iteratively updating the parameters and 
selecting the action based on the current state. 
The Actor target network selects the optimal 
action 𝑃𝑃𝑃𝑃′ based on the next state sampled from 
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time step, the agent receives observations of the exter-
nal environment and selects an action based on them. 
After the agent performs an action, the environment 
transitions to a new state and returns a reward to the 
agent. The reward at the current moment is called the 
immediate reward and is defined as rt. The cumulative 
reward obtained by the agent from the environment is 
defined as Rt = ∑t 

t + Ntγr, where the discount factor γ(0 ≤ 
γ ≤ 1) represents the effect of the reward value at future 
moments on the current cumulative reward. 
Aero-engine control system is a typical closed-loop 
feedback system. In the control loop, the control 
signal is calculated by the controller through the er-
ror between the reference signal and the system re-
sponse. On this basis, we describe this control task in 
the MDP model as follows:
State S:The primary task of a turbofan engine con-
troller is the tracking control of the turbine speed. 
Accordingly, the low-pressure turbine speed nL(t) and 
the error signale e(t) between the given speed and the 
output speed of the turbofan turbine are the most nec-
essary observation signals. The state space observed 
by the agent in this paper is defined as:

[ ( ), ( ), ( ) ]t LS n t e t e t dt= ∫ . (1)

Action A: Agent’s action is usually defined as a quanti-
ty related to the controller parameter or input.  In this 
paper, the output of the intelligent controller is the ac-
tion. The action space is therefore as follows:

[ ( )]tA FAR t= . (2)

Reward rt: The reward function is a scalar feedback 
signal provided by the environment, indicating the 
agent’s gain in selecting a specific action at a par-
ticular time step. Designing an appropriate reward 
function is crucial, as it requires prior knowledge of 
aero-engine control and is a significant indicator of 
control performance. The details of the reward func-
tion are described in Section 4.
Transition probability function P: The transition 
probability function can be replaced by physical and 
thermodynamic response of aero-engine in practice.

3.2. Basics of DDPG Algorithm
In reinforcement learning, the objective of the agent 
is to maximize the cumulative reward value by opti-

mizing its own policy. The agent observes the current 
state s of the environment and selects the correspond-
ing action a based on the learned policy μ. The action 
taken by the agent modifies the state of the environ-
ment, and the environment provides the agent with 
a reward and a new state s'. The state-action value 
function Q*(s, a) is updated by iterating through the 
Bellman equation.

( ) ' '

*
~

, [ max ( , )]
s S a

Q s a E r Q s aγ ∗ ′ ′= + , (3)

where r is reward function, the γ is the discount fac-
tor,E[·] is expected function, and the prime notation 
denotes the quantities at the next discrete time. The 
expected function is introduced due to the uncertain-
ty of the state at the next moment.
In practice, a function is usually used to approximate 
the Q*(s, a), which means Q*(s, a) ≈ Q*(s, a|θ) . The 
parameter θ can be calculated by minimizing the loss 
function.
This loss function is defined as:
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Aero-engine control system is a typical closed-loop 
feedback system. In the control loop, the control 
signal is calculated by the controller through the 
error between the reference signal and the system 
response. On this basis, we describe this control 
task in the MDP model as follows: 

State   𝑆𝑆𝑆𝑆 :  The primary task of a turbofan engine 
controller is the tracking control of the turbine 
speed. Accordingly, the low-pressure turbine 
speed 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡) and the error signal 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) between the 
given speed and the output speed of the turbofan 
turbine are the most necessary observation signals. 
The state space observed by the agent in this paper 
is defined as: 

[ ( ), ( ), ( ) ]t LS n t e t e t dt= ∫ .                                            (1) 

Action  𝐹𝐹𝐹𝐹 : Agent’s action is usually defined as a 
quantity related to the controller parameter or 
input.  In this paper, the output of the intelligent 
controller is the action. The action space is therefore 
as follows: 

[ ( )]tA FAR t= .                                                            (2) 

Reward 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡: The reward function is a scalar feedback 
signal provided by the environment, indicating the 
agent's gain in selecting a specific action at a 
particular time step. Designing an appropriate 
reward function is crucial, as it requires prior 
knowledge of aero-engine control and is a 
significant indicator of control performance. The 
details of the reward function are described in 
Section 4. 

Transition probability function  𝑃𝑃𝑃𝑃 : The transition 
probability function can be replaced by physical 
and thermodynamic response of aero-engine in 
practice. 
3.2 Basics of DDPG Algorithm 
In reinforcement learning, the objective of the agent 
is to maximize the cumulative reward value by 
optimizing its own policy. The agent observes the 
current state 𝑠𝑠𝑠𝑠 of the environment and selects the 
corresponding action 𝑃𝑃𝑃𝑃 based on the learned policy 
𝜇𝜇𝜇𝜇. The action taken by the agent modifies the state 

of the environment, and the environment 
provides the agent with a reward and a new 
state 𝑠𝑠𝑠𝑠′.  The state-action value function 
𝑄𝑄𝑄𝑄∗(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃) is updated by iterating through the 
Bellman equation. 

( ) ' '

*
~

, [ max ( , )]
s S a

Q s a E r Q s aγ ∗ ′ ′= + ,               (3) 

where 𝑟𝑟𝑟𝑟  is reward function, the  𝛾𝛾𝛾𝛾 is the 
discount factor, 𝐸𝐸𝐸𝐸[∙] is expected function, and 
the prime notation denotes the quantities at 
the next discrete time. The expected function 
is introduced due to the uncertainty of the 
state at the next moment. 

In practice, a function is usually used to 
approximate the 𝑄𝑄𝑄𝑄∗(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃),  which means 
𝑄𝑄𝑄𝑄∗(s, 𝑃𝑃𝑃𝑃) ≈ 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃|𝜃𝜃𝜃𝜃) . The parameter 𝜃𝜃𝜃𝜃  can be 
calculated by minimizing the loss function. 

This loss function is defined as: 

( ) 2( ) [( , | ) ]i i s S i iL E y Q s aθ θ′= −


                    (4) 

1[ max ( , | )]i s S iy E r Q s aγ θ′ −′ ′= +


.                    (5) 

When the network parameters 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖−1 are 
constant, 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖) is optimized. The variables of 
the loss function are differentiated to obtain 
the gradient equation: 

                
( ) 1[( max ( , | )
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Q s a Q s a
θ

θ

θ γ θ

θ θ
−′

′ ′∇ = + −

∇
.            (6) 

The optimal policy is then derived by solving 
the Bellman equation. In the DQN algorithm, 
a critical technique is setting up the experience 
replay buffer. This buffer stores transition 
samples (𝑠𝑠𝑠𝑠,𝑃𝑃𝑃𝑃, 𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠′)  generated during the 
agent's interaction with the environment. The 
use of it helps to reduce the correlation 
between consecutive samples and stabilizes 
the learning process. 

The DDPG algorithm is an enhanced 
algorithm on a basis of the Actor-Critic 
network structure and introduces the target 
network. As shown in Figure 3, the target 
networks are created by replicating the 
original Actor and Critic neural networks. 
Therefore, they have the same network 
structure and initial parameters. By separating 
the functions of parameter updating, strategy 
selection, and value function calculation, the 
learning process becomes more stable. The 
Actor neural network is responsible for 
iteratively updating the parameters and 
selecting the action based on the current state. 
The Actor target network selects the optimal 
action 𝑃𝑃𝑃𝑃′ based on the next state sampled from 

(4)
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Aero-engine control system is a typical closed-loop 
feedback system. In the control loop, the control 
signal is calculated by the controller through the 
error between the reference signal and the system 
response. On this basis, we describe this control 
task in the MDP model as follows: 

State   𝑆𝑆𝑆𝑆 :  The primary task of a turbofan engine 
controller is the tracking control of the turbine 
speed. Accordingly, the low-pressure turbine 
speed 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡) and the error signal 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) between the 
given speed and the output speed of the turbofan 
turbine are the most necessary observation signals. 
The state space observed by the agent in this paper 
is defined as: 

[ ( ), ( ), ( ) ]t LS n t e t e t dt= ∫ .                                            (1) 

Action  𝐹𝐹𝐹𝐹 : Agent’s action is usually defined as a 
quantity related to the controller parameter or 
input.  In this paper, the output of the intelligent 
controller is the action. The action space is therefore 
as follows: 

[ ( )]tA FAR t= .                                                            (2) 

Reward 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡: The reward function is a scalar feedback 
signal provided by the environment, indicating the 
agent's gain in selecting a specific action at a 
particular time step. Designing an appropriate 
reward function is crucial, as it requires prior 
knowledge of aero-engine control and is a 
significant indicator of control performance. The 
details of the reward function are described in 
Section 4. 

Transition probability function  𝑃𝑃𝑃𝑃 : The transition 
probability function can be replaced by physical 
and thermodynamic response of aero-engine in 
practice. 
3.2 Basics of DDPG Algorithm 
In reinforcement learning, the objective of the agent 
is to maximize the cumulative reward value by 
optimizing its own policy. The agent observes the 
current state 𝑠𝑠𝑠𝑠 of the environment and selects the 
corresponding action 𝑃𝑃𝑃𝑃 based on the learned policy 
𝜇𝜇𝜇𝜇. The action taken by the agent modifies the state 

of the environment, and the environment 
provides the agent with a reward and a new 
state 𝑠𝑠𝑠𝑠′.  The state-action value function 
𝑄𝑄𝑄𝑄∗(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃) is updated by iterating through the 
Bellman equation. 
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where 𝑟𝑟𝑟𝑟  is reward function, the  𝛾𝛾𝛾𝛾 is the 
discount factor, 𝐸𝐸𝐸𝐸[∙] is expected function, and 
the prime notation denotes the quantities at 
the next discrete time. The expected function 
is introduced due to the uncertainty of the 
state at the next moment. 

In practice, a function is usually used to 
approximate the 𝑄𝑄𝑄𝑄∗(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃),  which means 
𝑄𝑄𝑄𝑄∗(s, 𝑃𝑃𝑃𝑃) ≈ 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃|𝜃𝜃𝜃𝜃) . The parameter 𝜃𝜃𝜃𝜃  can be 
calculated by minimizing the loss function. 

This loss function is defined as: 

( ) 2( ) [( , | ) ]i i s S i iL E y Q s aθ θ′= −


                    (4) 

1[ max ( , | )]i s S iy E r Q s aγ θ′ −′ ′= +


.                    (5) 

When the network parameters 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖−1 are 
constant, 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖(𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖) is optimized. The variables of 
the loss function are differentiated to obtain 
the gradient equation: 
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The optimal policy is then derived by solving 
the Bellman equation. In the DQN algorithm, 
a critical technique is setting up the experience 
replay buffer. This buffer stores transition 
samples (𝑠𝑠𝑠𝑠,𝑃𝑃𝑃𝑃, 𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠′)  generated during the 
agent's interaction with the environment. The 
use of it helps to reduce the correlation 
between consecutive samples and stabilizes 
the learning process. 

The DDPG algorithm is an enhanced 
algorithm on a basis of the Actor-Critic 
network structure and introduces the target 
network. As shown in Figure 3, the target 
networks are created by replicating the 
original Actor and Critic neural networks. 
Therefore, they have the same network 
structure and initial parameters. By separating 
the functions of parameter updating, strategy 
selection, and value function calculation, the 
learning process becomes more stable. The 
Actor neural network is responsible for 
iteratively updating the parameters and 
selecting the action based on the current state. 
The Actor target network selects the optimal 
action 𝑃𝑃𝑃𝑃′ based on the next state sampled from 

(5)

When the network parameters θi – 1 are constant, Li(θi)  
is optimized. The variables of the loss function are 
differentiated to obtain the gradient equation:

( ) 1[( max ( , | )

                  ( , | )) ( , | )]
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The optimal policy is then derived by solving the Bell-
man equation. In the DQN algorithm, a critical tech-
nique is setting up the experience replay buffer. This buf-
fer stores transition samples (s, a, r, s') generated during 
the agent’s interaction with the environment. The use of 
it helps to reduce the correlation between consecutive 
samples and stabilizes the learning process.
The DDPG algorithm is an enhanced algorithm on a 
basis of the Actor-Critic network structure and in-
troduces the target network. As shown in Figure 3, 
the target networks are created by replicating the 
original Actor and Critic neural networks. Therefore, 
they have the same network structure and initial pa-
rameters. By separating the functions of parameter 
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updating, strategy selection, and value function cal-
culation, the learning process becomes more stable. 
The Actor neural network is responsible for iterative-
ly updating the parameters and selecting the action 
based on the current state. The Actor target network 
selects the optimal action a' based on the next state 
sampled from the experience replay buffer which can 
be expressed as a = μ(s|θ μ). The Critic network is pri-
marily responsible for computing the current Q value 
function Q(s, a|θQ) and updating its parameters. The 
Critic target network is primarily utilized to calculate 
the target Q value which is involved in TD-error.
The equation for calculating the target Q value is:

( ), ( | ) | Q
iy r Q s s µγ µ θ θ′ ′′ ′= + , (7)

where yi is  target Q value, μ(s'|θ μ') is the output of the 
Actor target network, Q(s', μ(s'|θ μ')|θQ') is the output 
of the Critic target network. 
The Critic neural network is trained by minimizing 
TD-error:

2

1

1 ( ( , | ))
N

Q
i

i
L y Q s a

N
θ

=

= −∑ , (8)

where Q(s, a)|θQ) is the output of the Critic neural net-
work, L is the square mean value of TD-error.
The Actor network then maps state through the poli-
cy to the specified action and updates the current pol-
icy. It is updated in order to obtain the optimal policy 
that maximizes the cumulative reward. Thus, the ob-
jective function for neural network training is defined 
as the expectation of cumulative rewards. The formu-
la is as follows:

Figure 3
Network structure of DDPG algorithm
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The equation for calculating the target Q value is: 

( ), ( | ) | Q
iy r Q s s µγ µ θ θ′ ′′ ′= + ,                            (7)  

where  𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖   is  target Q value, 𝜇𝜇𝜇𝜇�𝑠𝑠𝑠𝑠′|𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇′�  is the output 
of the Actor target network,  𝑄𝑄𝑄𝑄�𝑠𝑠𝑠𝑠′, 𝜇𝜇𝜇𝜇�𝑠𝑠𝑠𝑠′|𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇′�|𝜃𝜃𝜃𝜃𝑄𝑄𝑄𝑄′� is 
the output of the Critic target network.  

The Critic neural network is trained by                
minimizing TD-error: 
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1 ( ( , | ))
N

Q
i

i
L y Q s a

N
θ

=

= −∑ ,                                     (8) 

where 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃|𝜃𝜃𝜃𝜃𝑄𝑄𝑄𝑄) is the output of the Critic neural 
network, 𝐿𝐿𝐿𝐿 is the square mean value of TD-error. 

The Actor network then maps state through the 
policy to the specified action and updates the 
current policy. It is updated in order to obtain the 
optimal policy that maximizes the cumulative 
reward. Thus, the objective function for neural 
network training is defined as the expectation of 
cumulative rewards. The formula is as follows: 

( ) ( ),
T

i t
i i

i t
J E r s aγ −

=

 ≈  
 
∑ ,                                            (9) 

where  𝐽𝐽𝐽𝐽 is the objective function. 

In 2014, Sliver et al. have proven the validity of the 
following formula [20]. The formula shows the 
relationship between the gradient of the objective 
function and the gradient of 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃|𝜃𝜃𝜃𝜃𝑄𝑄𝑄𝑄).     

( ) ( ), | | , |Q
i iJ E Q s a s s a sµ µ

µ
θ θ

θ µ θ ∇ ≈ ∇ = =  , 

(10) 

where  ∇𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇𝐽𝐽𝐽𝐽  is the gradient of the objective 
function, ∇𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃|𝜃𝜃𝜃𝜃𝑄𝑄𝑄𝑄)  is the gradient of 
𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃|𝜃𝜃𝜃𝜃𝑄𝑄𝑄𝑄). 

During the training process, the Actor neural 
network is updated by means of batch 
samples. The final update formula is: 
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where N denotes the size of the batch samples. 
3.3 Basics of TD3 Algorithm 
The DDPG algorithm has practical limitations, 
including overestimation issues, which affect 
its performance in real-world applications. In 
response, the TD3 algorithm incorporates 
three key techniques to improve the training 
process: clipped double Q-learning, delayed 
policy updates, and target policy smoothing. 

In Equation (3), the operation of taking the 
maximum value when calculating the state-
action value function may lead to the problem 
of overestimating Q.Clipped double Q-
learning is a technique used in the TD3 
algorithm to mitigate the problem. This 
technique involves the use of two Q-functions 
instead of one. Both Q-functions are updated 
using the same target, but during the 
calculation of the target Q value, the smaller Q 
value is chosen to avoid overestimation. The 
equation is written as follows: 

1,2
min ( , | )Q

ii
y r Q s aγ θ

=
′ ′= + ,                              (12) 

where 𝑦𝑦𝑦𝑦 is target Q value in TD3 algorithm. 

Based on the target policy 𝜇𝜇𝜇𝜇 , target policy 
smoothing derives the target action by adding 
a perturbation factor to each dimension of the 
action, ensuring that the target action takes a 
value that satisfies the condition 𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑃𝑃𝑃𝑃 ≤
𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ .The second key skill can be expressed as: 

                ( ( ) , , )low higha clip s o a aµ′ ′= + (13) 
( (0, ), , )o clip N c cσ − ,                                     (14) 

where 𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  and 𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ  respectively indicate the 
maximum and minimum values of the action 
𝑃𝑃𝑃𝑃  , 𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎)  represents Gaussian noise, and 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥,−𝑦𝑦𝑦𝑦, 𝑦𝑦𝑦𝑦)  means each element of 𝑥𝑥𝑥𝑥  is 
clipped to the effective range [−𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦].The key 
skill of the TD3 algorithm is to address the 
issue of potential overestimation in the Q 
function approximator by quickly correcting 
any incorrect peaks through target policy 
smoothing. 

The delayed update policy means that the 
parameters of the Critic network are updated 
more frequently than the parameters of the 
Actor network and the target network. By 
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where J is the objective function.
In 2014, Sliver et al. have proven the validity of the fol-
lowing formula [20]. The formula shows the relation-
ship between the gradient of the objective function 
and the gradient of Q(s, a|θQ).     

( ) ( ), | | , |Q
i iJ E Q s a s s a sµ µ

µ
θ θ

θ µ θ ∇ ≈ ∇ = =  , (10)

where ∇θμ J is the gradient of the objective function, 
∇θμ Q(s, a| θQ) is the gradient of  Q(s, a| θQ).
During the training process, the Actor neural network 
is updated by means of batch samples. The final up-
date formula is:

  

the experience replay buffer which can be expressed 
as 𝑃𝑃𝑃𝑃 = 𝜇𝜇𝜇𝜇(𝑠𝑠𝑠𝑠|𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇) . The Critic network is primarily 
responsible for computing the current Q value 
function 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃|𝜃𝜃𝜃𝜃𝑄𝑄𝑄𝑄) and updating its parameters. 
The Critic target network is primarily utilized to 
calculate the target Q value which is involved in 
TD-error. 
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The equation for calculating the target Q value is: 
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where 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃|𝜃𝜃𝜃𝜃𝑄𝑄𝑄𝑄) is the output of the Critic neural 
network, 𝐿𝐿𝐿𝐿 is the square mean value of TD-error. 

The Actor network then maps state through the 
policy to the specified action and updates the 
current policy. It is updated in order to obtain the 
optimal policy that maximizes the cumulative 
reward. Thus, the objective function for neural 
network training is defined as the expectation of 
cumulative rewards. The formula is as follows: 
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where  𝐽𝐽𝐽𝐽 is the objective function. 
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where N denotes the size of the batch samples. 
3.3 Basics of TD3 Algorithm 
The DDPG algorithm has practical limitations, 
including overestimation issues, which affect 
its performance in real-world applications. In 
response, the TD3 algorithm incorporates 
three key techniques to improve the training 
process: clipped double Q-learning, delayed 
policy updates, and target policy smoothing. 

In Equation (3), the operation of taking the 
maximum value when calculating the state-
action value function may lead to the problem 
of overestimating Q.Clipped double Q-
learning is a technique used in the TD3 
algorithm to mitigate the problem. This 
technique involves the use of two Q-functions 
instead of one. Both Q-functions are updated 
using the same target, but during the 
calculation of the target Q value, the smaller Q 
value is chosen to avoid overestimation. The 
equation is written as follows: 
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where 𝑦𝑦𝑦𝑦 is target Q value in TD3 algorithm. 

Based on the target policy 𝜇𝜇𝜇𝜇 , target policy 
smoothing derives the target action by adding 
a perturbation factor to each dimension of the 
action, ensuring that the target action takes a 
value that satisfies the condition 𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑃𝑃𝑃𝑃 ≤
𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ .The second key skill can be expressed as: 
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where 𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  and 𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ  respectively indicate the 
maximum and minimum values of the action 
𝑃𝑃𝑃𝑃  , 𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎)  represents Gaussian noise, and 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥,−𝑦𝑦𝑦𝑦, 𝑦𝑦𝑦𝑦)  means each element of 𝑥𝑥𝑥𝑥  is 
clipped to the effective range [−𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦].The key 
skill of the TD3 algorithm is to address the 
issue of potential overestimation in the Q 
function approximator by quickly correcting 
any incorrect peaks through target policy 
smoothing. 

The delayed update policy means that the 
parameters of the Critic network are updated 
more frequently than the parameters of the 
Actor network and the target network. By 
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where N denotes the size of the batch samples.
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one. Both Q-functions are updated using the same 
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where  y is target Q value in TD3 algorithm.
Based on the target policy μ, target policy smoothing 
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tor to each dimension of the action, ensuring that the 
target action takes a value that satisfies the condition 
alow ≤ a ≤ ahigh.The second key skill can be expressed as:

  

the experience replay buffer which can be expressed 
as 𝑃𝑃𝑃𝑃 = 𝜇𝜇𝜇𝜇(𝑠𝑠𝑠𝑠|𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇) . The Critic network is primarily 
responsible for computing the current Q value 
function 𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃|𝜃𝜃𝜃𝜃𝑄𝑄𝑄𝑄) and updating its parameters. 
The Critic target network is primarily utilized to 
calculate the target Q value which is involved in 
TD-error. 
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network, 𝐿𝐿𝐿𝐿 is the square mean value of TD-error. 

The Actor network then maps state through the 
policy to the specified action and updates the 
current policy. It is updated in order to obtain the 
optimal policy that maximizes the cumulative 
reward. Thus, the objective function for neural 
network training is defined as the expectation of 
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where  𝐽𝐽𝐽𝐽 is the objective function. 
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where  ∇𝜃𝜃𝜃𝜃𝜇𝜇𝜇𝜇𝐽𝐽𝐽𝐽  is the gradient of the objective 
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where N denotes the size of the batch samples. 
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three key techniques to improve the training 
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calculation of the target Q value, the smaller Q 
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clipped to the effective range [−𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦].The key 
skill of the TD3 algorithm is to address the 
issue of potential overestimation in the Q 
function approximator by quickly correcting 
any incorrect peaks through target policy 
smoothing. 

The delayed update policy means that the 
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more frequently than the parameters of the 
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The equation for calculating the target Q value is: 
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network, 𝐿𝐿𝐿𝐿 is the square mean value of TD-error. 

The Actor network then maps state through the 
policy to the specified action and updates the 
current policy. It is updated in order to obtain the 
optimal policy that maximizes the cumulative 
reward. Thus, the objective function for neural 
network training is defined as the expectation of 
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where  𝐽𝐽𝐽𝐽 is the objective function. 
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where N denotes the size of the batch samples. 
3.3 Basics of TD3 Algorithm 
The DDPG algorithm has practical limitations, 
including overestimation issues, which affect 
its performance in real-world applications. In 
response, the TD3 algorithm incorporates 
three key techniques to improve the training 
process: clipped double Q-learning, delayed 
policy updates, and target policy smoothing. 

In Equation (3), the operation of taking the 
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where 𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  and 𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ  respectively indicate the 
maximum and minimum values of the action 
𝑃𝑃𝑃𝑃  , 𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎)  represents Gaussian noise, and 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥,−𝑦𝑦𝑦𝑦, 𝑦𝑦𝑦𝑦)  means each element of 𝑥𝑥𝑥𝑥  is 
clipped to the effective range [−𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦].The key 
skill of the TD3 algorithm is to address the 
issue of potential overestimation in the Q 
function approximator by quickly correcting 
any incorrect peaks through target policy 
smoothing. 

The delayed update policy means that the 
parameters of the Critic network are updated 
more frequently than the parameters of the 
Actor network and the target network. By 

, (14)

where alow and ahigh respectively indicate the maxi-
mum and minimum values of the action a, N(0, σ) 
represents Gaussian noise, and clip(x, –y, y)  means 
each element of x is clipped to the effective range [–y, 
y].The key skill of the TD3 algorithm is to address the 
issue of potential overestimation in the Q function 
approximator by quickly correcting any incorrect 
peaks through target policy smoothing.
The delayed update policy means that the parameters 
of the Critic network are updated more frequently than 
the parameters of the Actor network and the target 
network. By delaying the update of the Actor network 
and target network, the Critic network has more time 
to learn and provide more accurate Q value estimates.
The target network is updated by soft-update method. 
The update equation is:

(1 )

(1 )

Q Q Q
i i i
µ µ µ

θ τθ τ θ

θ τθ τ θ

′ ′

′ ′

← + −

← + −
, (15)

where τ is the soft update rate.

4. Design of Intelligent Controller
4.1. The Structure of the Intelligent Controller
The goal of the intelligent controller is to achieve 
optimal policy in the interaction with the aero-en-
gine and to complete the control work. The optimal 
control policy guides it to maximize reward returns. 
The observations obtained from the environment 
provide information about the current state of the 
aero-engine system. And the speed reference signal 
is embedded in the reward function and observa-
tions. Figure 4 shows the workflow of the intelligent 
controller. 
As illustrated in Figure 4, the TD3 algorithm structure 
involves six deep neural networks, consisting of one 
Actor network, one Actor target network, two Critic 
networks, and two Critic target networks. The Actor 
network generates a control policy based on the cur-
rent state st and adds noise O to produce the current 
action at. The aero-engine executes the action at, ob-
tains the current state information, and computes the 
current reward rt according to the reward function. 
The control experience (st, at, rt, st+1) acquired through 
exploration is subsequently stored to the experience 
replay buffer. The Actor and Critic neural networks 
are trained by learning from the relevant experiences 
in the experience replay buffer. The parameters of the 
Actor and Critic neural networks are updated based 
on the aforementioned rules.

Figure 4
The structure of the intelligent controller
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4.2. The Design of the Reward Function
The reward function is an important part of the re-
inforcement learning algorithm. It guides the re-
inforcement learning agent to learn and affects the 
convergence speed of the algorithm. In this paper, 
speed tracking control of the aero-engine is the main 
assumption. Thus, it is necessary to maintain the 
controller effectiveness by setting some constraint 
boundaries for signals.
To enable the intelligent controller to track control of 
the reference signal, the continuous reward function 
is designed as:

0.02* ( )
1( ) e tr t e−= . (16)

The reward function r1(t) reflects the deviation be-
tween the reference signal and the output of the en-
gine, and it is the core component of the reward signal. 
The agent is rewarded with a higher value if it can re-
duce the deviation between the low-pressure turbine 
speed and the reference speed. The value of reward 
function r1(t) is in the range of [0, 1]. It will enable the 
training neural network to converge more rapidly.
The reward functions r2(t) and r3(t) are discrete and 
serve as boundary penalty functions. The input must 
be constrained to a specified range for the aero-en-
gine to operate normally. As a consequence, the re-
ward function r2(t) is defined as:

2

0 0.01 0.05
( )

0.2
FAR

r t
other

< <
= −

. (17)

When the engine control signal fuel-air ratio 
FAR≤0.01 or FAR≥0.05, the intelligent controller is 
given a penalty of -0.2. The phenomenon of converg-
ing to the boundary value will be effectively alleviated 
by reward r2(t).
The reward function r3(t) is used as a stopping signal 
for the agent, and is designed to optimize the output of 
the system. This reward is shown Equation (16):

3

0 2000 5000
( )

100
Ln

r t
other
≤ ≤

= −
. (18)

When the output of the system exceeds the rea-
sonable range, the agent would stop training in the 
round and receives a penalty of -100. This reward 

function can expedite the algorithm’s convergence 
to a certain extent.
Therefore, the final reward received by the agent is:

1 2 3( ) ( ) ( )+ ( )r t r t r t r t= + . (19)

4.3. The Design of Neural Network Structure 
The neural network in this paper is a multi-layer 
feedforward neural network. The information about 
the Actor neural network is revealed in Figure 5. 
There are five layers in the network, which are one 
input layer, three hidden layers, one output layer. The 
input layer of the actor network has three neurons, 
which connected to three input variables, namely, for 
the low-pressure turbine speed nL(t), the error signal 
between the given speed and the output speed of the 
turbofan turbine e(t) and the integral of error ∫e(t)dt. 
The action value FAR(t) is the output of actor net-
work. The role of the first hidden layer is to map states 
into features and the activation function is the ReLU. 
The purpose of the last hidden layer is to normalize 
the output of the previous layer and exports the ac-
tion values. To some extent, the Actor neural network 
can be referred to as an end-to-end control strategy. 
It can convert the low-pressure turbine speed and 
error information into a fuel flow signal without the 
need for manual design of intermediate control logic. 
Therefore, it is sufficient to deploy the trained Actor 
neural network on the embedded system. The embed-
ded system only needs to handle the inference of the 
Actor neural network, which has much lower com-
putational requirements than training the network. 
It only requires approximately 5000 floating-point 

Figure 5
The structure of the actor neural network
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𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡), the error signal between the given speed 
and the output speed of the turbofan turbine 
𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) and the integral of error∫ 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. The action 
value 𝐹𝐹𝐹𝐹AR(𝑡𝑡𝑡𝑡) is the output of actor network. The 
role of the first hidden layer is to map states into 
features and the activation function is the ReLU. 
The purpose of the last hidden layer is to 
normalize the output of the previous layer and 
exports the action values. To some extent, the 
Actor neural network can be referred to as an 
end-to-end control strategy. It can convert the 
low-pressure turbine speed and error 
information into a fuel flow signal without the 
need for manual design of intermediate control 
logic. Therefore, it is sufficient to deploy the 
trained Actor neural network on the embedded 
system. The embedded system only needs to 
handle the inference of the Actor neural 
network, which has much lower computational 
requirements than training the network. It only 
requires approximately 5000 floating-point 
operations. High-performance microcontrollers 
can achieve real-time inference and control. 
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The specific details of the Critic neural network 
are depicted in Figure 6. It also contains one 
input layer, three hidden layers and one output 
layer. The input layer of the critical neural 
network corresponds to a 3-dimensional state 
space and a 1-dimensional action space. The role 
of the first hidden layer is still to extract the 
input states as features, and the activation 
function is the ReLU. It allows for sparsity in the 
network and better exploration of relevant 
features. The input of the second hidden layer is 
the feature which is weighted and summarized 
by ReLU to output. The final hidden layer takes 
the output from the previous layer as input and 
uses an activation function to output Q values to 
the output layer. 

 
Figure 6 
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operations. High-performance microcontrollers can 
achieve real-time inference and control.
The specific details of the Critic neural network are 
depicted in Figure 6. It also contains one input layer, 
three hidden layers and one output layer. The input 
layer of the critical neural network corresponds to a 
3-dimensional state space and a 1-dimensional action 
space. The role of the first hidden layer is still to ex-
tract the input states as features, and the activation 
function is the ReLU. It allows for sparsity in the net-
work and better exploration of relevant features. The 
input of the second hidden layer is the feature which 
is weighted and summarized by ReLU to output. The 
final hidden layer takes the output from the previous 
layer as input and uses an activation function to out-
put Q values to the output layer.

Figure 6
The structure of the critic neural network

 
 

 

 

 

5.Simulation and Analysis 

 
5.1 Simulation Setup 
In the simulation, we compare the control 
performance of TD3, DDPG, and PID controller. 
For TD3 and DDPG controller, we choose the 
best control policy in the training process, and 
we also set some common parameters uniformly. 
The relevant parameters in the training process 
are shown in Table 1. As illustrated in Section 
4.3, the hidden layers of both the Actor and Critic 
neural networks are set to three layers. Both the 
Actor and Critic neural networks contain hidden 
layers with 50, 25, and 25 neurons. The selection 
of the learning rate is one of the most critical 
hyperparameter, as it has a significant impact on 
the convergence and learning speed. The usage 
of a larger learning rate can lead to non-
convergence of the neural networks. Conversely, 
a smaller learning rate may increase the 
probability of model convergence, but can also 
impact the rate of convergence. In this study, the 
learning rate for the Actor neural network was 
set to 0.0001, and the learning rate for the Critic 
neural network was set to 0.001. Gradient 
thresholding for neural networks typically 
involves gradient clipping, which can help 

mitigate the issue of exploding or vanishing 
gradients during training. As a result, the 
stability and performance of the algorithm can 
be improved. For the training of the Actor and 
Critic neural networks, a threshold of 1 was set 
for gradient clipping. The soft update parameter 
is utilized to update the target neural network. 
In this paper, the soft update rate is 0.001. In this 
paper, the experience replay buffer size was set 
to 1000000, which can store a greater amount of 
information. The neural network was trained 
using batch samples, and the size of batch 
samples is 256 in this study. 

In addition, the PID controller is adjusted to 
obtain the best dynamic response. In the 
acceleration process control of aero-engine, the 
PID controller parameters are set as 𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃 =
0.000008, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 = 0.000008, 𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑 = 0 . In the 
deceleration process control of aero-engine, the 
PID controller parameters are set as 𝑘𝑘𝑘𝑘𝑃𝑃𝑃𝑃 =
0.000007, 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 = 0.000006, 𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑 = 0. 

Table 1 

The table of training parameters 
Name of the 

parameter 
Parameter Value 

Number of hidden 
layers 3 

Number of Actor 
hidden units 

[50,25,25] 

Number of Critic 
hidden units [50,25,25] 

The learning rate of 
Actor 

0.0001 

The gradient threshold 
of Actor 1 

The learning rate of 
Critic 

0.001 

The gradient threshold 
of Critic 1 

Soft update rate 0.001 

Size of the replay 
buffer 

1000000 

Number of samples 
per minibatch 

256 

 
5.2 Case 1: The Acceleration Process 
Control of Aero-engine  
To verify the effect of the TD3 controller and the 
benefits of the reward function designed in 
Section 4.2, we gradually increase the low-
pressure turbine speed from 2500 rpm to 4500 
rpm in the simulation. Meanwhile, the 
equivalent experiments of the DDPG controller 

5. Simulation and Analysis
We perform some comparative simulations to val-
idate the efficacy and superiority of the TD3 con-
troller in this section. To verify the intelligent con-
troller under different speed phases, the simulation 
experiments are conducted from the speed range of 
2500 rpm to 4500 rpm. Both the acceleration and 
the deceleration process are considered in our sim-
ulations. For example, case 1: the acceleration pro-
cess control of aero-engine; case 2: the deceleration 
process control of aero-engine. We then evaluate the 
tracking performances at different operating speed. 

5.1. Simulation Setup
In the simulation, we compare the control perfor-
mance of TD3, DDPG, and PID controller. For TD3 
and DDPG controller, we choose the best control pol-
icy in the training process, and we also set some com-
mon parameters uniformly. The relevant parameters 
in the training process are shown in Table 1. As illus-
trated in Section 4.3, the hidden layers of both the Ac-
tor and Critic neural networks are set to three layers. 
Both the Actor and Critic neural networks contain 
hidden layers with 50, 25, and 25 neurons. The se-
lection of the learning rate is one of the most critical 
hyperparameter, as it has a significant impact on the 
convergence and learning speed. The usage of a larg-
er learning rate can lead to non-convergence of the 
neural networks. Conversely, a smaller learning rate 
may increase the probability of model convergence, 
but can also impact the rate of convergence. In this 
study, the learning rate for the Actor neural network 
was set to 0.0001, and the learning rate for the Critic 
neural network was set to 0.001. Gradient threshold-
ing for neural networks typically involves gradient 
clipping, which can help mitigate the issue of explod-
ing or vanishing gradients during training. As a result, 
the stability and performance of the algorithm can 
be improved. For the training of the Actor and Critic 
neural networks, a threshold of 1 was set for gradient 
clipping. The soft update parameter is utilized to up-
date the target neural network. In this paper, the soft 
update rate is 0.001. In this paper, the experience re-

Table 1
The table of training parameters

Name of the parameter Parameter Value

Number of hidden layers 3

Number of Actor hidden units [50,25,25]

Number of Critic hidden units [50,25,25]

The learning rate of Actor 0.0001

The gradient threshold of Actor 1

The learning rate of Critic 0.001

The gradient threshold of Critic 1

Soft update rate 0.001

Size of the replay buffer 1000000

Number of samples per minibatch 256
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play buffer size was set to 1000000, which can store 
a greater amount of information. The neural network 
was trained using batch samples, and the size of batch 
samples is 256 in this study.
In addition, the PID controller is adjusted to obtain 
the best dynamic response. In the acceleration pro-
cess control of aero-engine, the PID controller pa-
rameters are set as kp = 0.000008, ki = 0.000008, kd = 
0. In the deceleration process control of aero-engine, 
the PID controller parameters are set as kp = 0.000007, 
ki = 0.000006, kd = 0.

5.2. Case 1: The Acceleration Process Control 
of Aero-engine 
To verify the effect of the TD3 controller and the 
benefits of the reward function designed in Section 
4.2, we gradually increase the low-pressure turbine 
speed from 2500 rpm to 4500 rpm in the simulation. 
Meanwhile, the equivalent experiments of the DDPG 
controller are completed. The principles of the two al-
gorithms and the corresponding details are described 
above.  There, we explore the differences between the 
TD3 algorithm and the DDPG algorithm in intelligent 
controller training design. The average reward curve 
is shown in Figure 7, and the specific performance in-
dicators are listed in Table 2.
Figure 7 implies that the TD3 algorithm has achieved 
better performance on aero-engine control task. The 
blue curve and the red curve represent the average 
reward values of the TD3 algorithm and the DDPG 

Figure 7
The curve of the average reward value
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Figure 7 implies that the TD3 algorithm has 
achieved better performance on aero-engine 
control task. The blue curve and the red curve 
represent the average reward values of the TD3 
algorithm and the DDPG algorithm during 
training. The average reward function value is 

obtained by computing the mean reward value 
over the current episode as well as all previous 
episodes. The shaded area shows the fluctuation 
range of the actual episode reward value. In the 
training process, the reward value of TD3 agent 
begins to rise around the 13th round. In previous 
explorations, the actions of the agent could easily 
touch the boundary value and stop training. In 
the following parts, the reward value fluctuates 
between 900 and 1000. However, the average 
reward for the DDPG algorithm fluctuates 
around 800. In Table 2, we present a comparative 
performance analysis of the DDPG and TD3 
algorithms. The average reward value achieved 
at the point of final convergence for each 
algorithm is used as a metric for evaluating their 
performance. Additionally, the last column of 
the table reports the number of episodes 
required for the reward values of both 
algorithms to converge to a stable value. Table 2 
indicates that the average reward value of TD3 
algorithm is about 100 higher than that of DDPG 
algorithm. The simulation results show that TD3 
algorithm overcomes Q value overestimation 
and converges to a better control policy. 

The control performances of the three controllers 
are compared and the results are displayed in 
Figure 8. It is evident that all three controllers 
demonstrate a favorable impact on the tracking 
control of the low-pressure turbine speed. 
Compared with PID controller, the intelligent 
controllers based on reinforcement learning 
algorithm exhibit notably superior tracking 
performance. In each speed range, the intelligent 
controller can obtain the optimal control strategy 
according to the change of the speed. It generates 
smaller overshoot and faster response. 
Furthermore, the benefit of the intelligent 
controller gets apparent with the higher speed 
range. Consequently, at the acceleration process, 
the proposed controller provides a more stable 
and faster system response. 
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algorithm during training. The average reward 
function value is obtained by computing the mean 
reward value over the current episode as well as all 
previous episodes. The shaded area shows the fluc-
tuation range of the actual episode reward value. In 
the training process, the reward value of TD3 agent 
begins to rise around the 13th round. In previous 
explorations, the actions of the agent could easily 
touch the boundary value and stop training. In the 
following parts, the reward value fluctuates between 
900 and 1000. However, the average reward for the 
DDPG algorithm fluctuates around 800. In Table 2, 
we present a comparative performance analysis of 
the DDPG and TD3 algorithms. The average reward 
value achieved at the point of final convergence for 
each algorithm is used as a metric for evaluating 
their performance. Additionally, the last column of 
the table reports the number of episodes required 
for the reward values of both algorithms to converge 
to a stable value. Table 2 indicates that the average 
reward value of TD3 algorithm is about 100 higher 
than that of DDPG algorithm. The simulation results 
show that TD3 algorithm overcomes Q value overes-
timation and converges to a better control policy.
The control performances of the three controllers 
are compared and the results are displayed in Figure 
8. It is evident that all three controllers demonstrate 
a favorable impact on the tracking control of the 
low-pressure turbine speed. Compared with PID con-
troller, the intelligent controllers based on reinforce-
ment learning algorithm exhibit notably superior 
tracking performance. In each speed range, the intel-
ligent controller can obtain the optimal control strat-
egy according to the change of the speed. It generates 
smaller overshoot and faster response. Furthermore, 
the benefit of the intelligent controller gets apparent 
with the higher speed range. Consequently, at the ac-
celeration process, the proposed controller provides a 
more stable and faster system response.
For the purpose of quantifying the control perfor-
mance of three controllers, we list the relevant control 

Table 2
The comparison of DDPG and TD3

Algorithm Performance Convergence

DDPG 858.519 172

TD3 988.206 180

http://f in


Information Technology and Control 2023/4/521020

performance indicators at two speed levels. Clearly, 
the intelligent controller performs great self-learn-
ing ability on the optimal control policy. As illustrat-
ed in Table 3, the rising time for the three controllers 
when the low-pressure turbine speed increases from 
2500 to 3000 rpm are 0.52, 0.84, and 2.6. Regarding 
the setting time, the TD3 controller demonstrates a 
reduction of 2.08 and 0.02 seconds compared to the 
PID controller and DDPG controller, respectively. 
There is no substantial variation in the amount of 

Figure 8
The acceleration process control of aero-engine 

 

 

 

For the purpose of quantifying the control 
performance of three controllers, we list the 
relevant control performance indicators at two 
speed levels. Clearly, the intelligent controller 
performs great self-learning ability on the optimal 
control policy. As illustrated in Table 3, the rising 
time for the three controllers when the low-
pressure turbine speed increases from 2500 to 3000 
rpm are 0.52, 0.84, and 2.6. Regarding the setting 
time, the TD3 controller demonstrates a reduction 
of 2.08 and 0.02 seconds compared to the PID 
controller and DDPG controller, respectively. 
There is no substantial variation in the amount of 
overshoot between the three controllers. However, 
after stabilization, the PID controller exhibits 
slightly more fluctuations compared to the other 
controllers. The scenario is essentially analogous in 
the speed range of 3500-4000, where the TD3 
controller minimizes the setting time by 0.08 and 
2.64 seconds compared to the other two controllers. 
Based on Figure 8, it can be observed that the PID 
controller displays the least overshoot only within 
a specific speed range (e.g., 3000-3500rpm) across a 
wide range of speeds. Yet the smaller overshoots 
are obtained at the cost of more settling time and 
more rise time. While for the similar overshoot, 
TD3 controller has a comparative advantage over 
DDPG controller in terms of rapidity. This provides 
additional support for the observation that the TD3 
algorithm ultimately achieves a higher reward 
value than the DDPG algorithm. In short, the 
intelligent controller based on TD3 algorithm 
generates more rapid response with less speed 
overshoot than other controllers. 
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 Performance comparisons for Case 1 

With the aim to properly measure the static 
and dynamic errors of the controllers, the 
integral absolute error (IAE) is introduced: 

0 Lr LIAE n n dt
∞

= −∫ ,                                        (20) 

where 𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿 are the reference speed and 
the low-pressure turbine speed of the aero-
engine, respectively. Figure 9 displays the IAE 
derived from the simulation outcomes of each 
controller throughout the speed-up phase. In 
comparison with the PID controller, TD3 
controller yields 40585 reductions on integral 
absolute error. It is 8120 less than the error of 
DDPG controller. As a result, intelligent 
controller reveals more superior performance 
than traditional one in speed tracking control 
task. Moreover, the control policy obtained by 
TD3 algorithm is more superior. 
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Table 3
Performance comparisons for Case 1

Speed Range(rpm) 2500-3000 3500-4000

Rising Time(s)

TD3 0.52 0.68

DDPG 0.84 0.96

PID 2.60 1.88

Setting Time(s)

TD3 0.84 0.88

DDPG 0.86 0.96

PID 2.92 3.52

Overshoot (%)

TD3 0.3862 0.1285

DDPG 0.0704 0.1280

PID 0.7677 1.2267

overshoot between the three controllers. However, 
after stabilization, the PID controller exhibits slightly 
more fluctuations compared to the other controllers. 
The scenario is essentially analogous in the speed 
range of 3500-4000, where the TD3 controller mini-
mizes the setting time by 0.08 and 2.64 seconds com-
pared to the other two controllers. Based on Figure 
8, it can be observed that the PID controller displays 
the least overshoot only within a specific speed range 
(e.g., 3000-3500rpm) across a wide range of speeds. 
Yet the smaller overshoots are obtained at the cost of 
more settling time and more rise time. While for the 
similar overshoot, TD3 controller has a comparative 
advantage over DDPG controller in terms of rapidity. 
This provides additional support for the observation 
that the TD3 algorithm ultimately achieves a higher 
reward value than the DDPG algorithm. In short, the 
intelligent controller based on TD3 algorithm gener-
ates more rapid response with less speed overshoot 
than other controllers.
With the aim to properly measure the static and dy-
namic errors of the controllers, the integral absolute 
error (IAE) is introduced:

0 Lr LIAE n n dt
∞

= −∫ , (20)

where nLr and nL are the reference speed and the 
low-pressure turbine speed of the aero-engine, re-
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spectively. Figure 9 displays the IAE derived from 
the simulation outcomes of each controller through-
out the speed-up phase. In comparison with the PID 
controller, TD3 controller yields 40585 reductions on 
integral absolute error. It is 8120 less than the error of 
DDPG controller. As a result, intelligent controller re-
veals more superior performance than traditional one 
in speed tracking control task. Moreover, the control 
policy obtained by TD3 algorithm is more superior.

Figure 9
IAE of the speed tracking of Case 1
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5.3. Case 2: The Deceleration Process Control 
of Aero-engine 
To further observe the performance of the TD3 con-
troller under different working conditions, we also 
simulate the tracking control of descending step sig-
nal. We step down the low-pressure turbine speed 
signal from 4500rpm to 2500rpm. The performance 
comparison results between the DDPG algorithm and 
TD3 algorithm during the speed-down phase are sim-
ilar to those presented in Section 5.2. This will not be 
further elaborated here. The control performance of 
the three controllers is shown in Figure 10.
Obviously, all the three controllers realize the speed 
tracking control in the descending speed section. 
Meanwhile, the intelligent controllers show more sig-
nificant advantages in rapidity. The three controllers 
result in very similar effects on overshoot. Compared 
with Figure 8, traditional PID controller has higher 
overshoot in high speed range, as it adapts poor to 
fixed parameters. The control policy of the intelligent 
controller can fit the change of speed to achieve effec-
tive control at all speed.
To have a further investigation, we computed perfor-
mance metrics for each of the three controllers in Ta-
ble 4. In the 3000-3500rpm speed range, the advan-
tage of the TD3 controller in terms of response speed 
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is more prominent. The rise time of the TD3 control-
ler is significantly shorter than that of the DDPG and 
PID controllers by 0.28s and 1.84s, respectively. The 
setting time of three controllers are 0.56s, 3.36s and 
6.24s. In the overshoot, the TD3 controller exhibits 
reductions of 0.17 and 1.08 compared to the other two 
controllers. In the speed range of 3500-4000rpm, it 
should be noted that although the PID controller does 
not exhibit overshoot, it results in a longer rise time 
and setting time. The TD3 controller demonstrates 

Table 4
Performance comparisons for Case 2

Speed Range(rpm) 3000-3500 3500-4000

Rising
Time(s)

TD3 0.28 0.32

DDPG 0.56 0.68

PID 2.12 3.88

Setting
Time(s)

TD3 0.56 0.60

DDPG 3.36 1.56

PID 6.24 3.88

Overshoot
(%)

TD3 0.74 0.4951

DDPG 0.91 0.8182

PID 1.82 0

Figure 11
IAE of the speed tracking of Case 2

more outstanding results in terms of rise time and 
settling time. According to the simulation results, it is 
apparent that the reinforcement learning algorithm 
demonstrates exceptional performance in aero-en-
gine control due to its optimal control characteristics. 
Between the TD3 and DDPG algorithms, the TD3 al-
gorithm displays a more pronounced superiority.
The same as Case 1, the IAE is also used to analyze 
the control performance of the controllers. Figure 11 
demonstrates that the integral absolute error of TD3 
controller is the least. Compared with other control-
lers, it achieves 9928 and 51433 reductions on integral 
absolute error. Therefore, TD3 controller exhibits ex-
cellent tracking control performance of descending 
step signal.

6. Conclusion
In this paper, we propose an aero-engine intelligent 
controller design method based on TD3 algorithm. The 
major advantage of this method is its ability to design 
the controller without significant knowledge of the ae-
ro-engine model. The proposed approach presents an 
effective solution to compensate for the limitations of 
model-based control algorithms in aero-engines that 
involve complex aerodynamic and thermodynamic 
processes. The detailed design flow of intelligent con-
troller is given which provides a solid basis for future 
practical applications of reinforcement learning on 
turbofan engines. The research confirms the feasibility 
and advantages of the method. The comparison sim-
ulation results prove that the TD3 controller enables 
tracking control of low-pressure turbine speed with 
faster response and less overshoot. Future work will 
extend this approach to include more input variables 
and cover a wider range of operating conditions. Addi-
tionally, the trained control strategies will be written 
into the embedded system for further testing and eval-
uation. We believe that guided by reinforcement learn-
ing theory, the aero-engine intelligent control method 
will achieve greater development and have strong ef-
fect in practice in the near future.
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