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The problem to be addressed is the high mortality rate of heart disease and the need for reliable and early de-
tection techniques to prevent fatalities. Several clinical tests, including electrocardiogram (ECG) signals, heart 
sound signals, impedance cardiography (ICG), magnetic resonance imaging, and computer tomography can be 
used to determine whether an individual has heart disease. In this research, three deep learning models - Multi-
layer Perceptrons (MLPs), Deep Belief Networks (DBNs), and Restricted Boltzmann Machines (RBMs) - were 
used to detect heart disease by using the electrocardiogram (ECG) signal as the primary source. The publicly 
available datasets MIT-BIH and PTB-ECG were used to train and validate the proposed model. The results 
showed that the proposed hybrid model achieved the best performance compared to existing models, with an 
accuracy of 98.6%, 97.4%, and 96.2% on the MIT-BIH dataset, and 97.1%, 96.4%, and 95.3% on the PTB-ECG 
dataset, respectively. Furthermore, the model had excellent F1-score and AUC values, indicating the robustness 
of the proposed approach.
KEYWORDS: Deep learning, heart disease, ECG signal, Generative Adversarial Networks, Deep Belief Net-
works.
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1. Introduction
Cardiovascular disease (CVD) is a widespread 
non-communicable illness that is a major cause of 
death worldwide. It can result from any anomaly 
in the cardiovascular system and can manifest in a 
number of forms such as heart failure, heart attacks, 
traumatic strokes, infarction strokes, and other ar-
rhythmia and heart muscle-related disorders [4]. 
According to the World Health Organization, an es-
timated 16.9 million people die from CVD every year, 
and it accounts for 29% of all deaths worldwide. De-
veloping nations are particularly affected, with 78% 
of deaths from CVD occurring in these countries. It is 
projected that by 2035, the number of annual deaths 
from CVD will reach 24 million [1]. The main contrib-
uting factors are hypertension, an irregular heartbeat, 
hyperlipidemia, hypoglycemia, and elevated blood 
pressure. The linked risk factors that may cause CVD 
are psychological trauma, lack of exercise, tobacco 
usage, alcoholism, overweight, genetic factors, poor 
diets, and a lack of physical workouts. The linked risk 
factors that may cause CVD are psychological trau-
ma, lack of exercise, tobacco usage, alcoholism, over-
weight, genetic factors, and poor diet [12].
Coronary artery disease (CAD) is one of the most fre-
quent kinds of CVD. This happens due to the abnor-
mality in minimum one of the left anterior dorsal, left 
circumflex, and right arteries [28]. In CAD, interfacial 
tissue in the epithelium of the coronary arterial wall 
mixes with low-density lipoprotein, exposing them to 
additional lipid modification and aggravation, which 
causes poor vascular lesions. As irritation progress-
es, cell interfacial fatty accumulation induces apop-
tosis in the vascular system, causing high magne-
sium deposition and ulceration. The carotid arteries’ 
thrombus expands, leading to myocardial luminal 
blockage, which limits blood circulation and provides 
the heart with enough blood and oxygen, thus leading 
to hypoxia in the muscles [13].
Despite having stiffening and fibro muscular cover-
ings, atherogenesis nodules with significantly tiny 
hydrophobic cores can slowly produce infarction due 
to progressive atherosclerotic volume increase that 
infringes the cardiac channel radius [14]. On the oth-
er hand, specific liposome arterial plaques have wider 
cores and weaker fibrous coverings that are prone to 
collapse, in which the fluids rapidly leak into the myo-

cardial stream, causing the emboli to develop. This 
development could obstruct the inflow of cerebral 
hypoxia in the cardiomyopathy resulting in Throm-
boembolic lesions. In this condition, an individual’s 
cardiac muscles perish due to oxygen deprivation for 
longer [6].
Myocardial infarction is a type of CVD caused due 
to hypo-perfusion, which harms the heart muscles. 
Chronic recurrent infarction might result in delete-
rious reconfiguration of the right atrium and dimin-
ished heart muscle contraction [26]. Additionally, 
physiological consequences of MI, such as rheumatic 
heart disease, decrease efficiency or breach the poste-
rior segment and atrial septal region, aggravating car-
dio humiliation and resulting in heart attacks. Timely 
diagnosis of myocardial infarctions is crucial for the 
early intervention and prevention of the potential on-
set of cardiovascular diseases [23].
Cardiovascular disease (CVD) diagnosis involves di-
agnostic procedures like coronary angiography and 
screening tests. Additionally, alternative passive car-
diac testing methods are also available that have oth-
er limitations ranging from uncertainty in detecting 
appropriate order, duration of the results, and selec-
tion of proper cardiac imaging procedures [8]. Fur-
ther, additionally, other assessments include cardiac 
neuroimaging or echocardiogram. The cost of echo-
cardiograms and the need for qualified specialists to 
examine the neuroimaging results are among the lim-
itations of these diagnostic tests. Machine learning 
techniques have recently been applied more success-
fully to classify CVDs.
The most prevalent type of CVDs is cardiac arrhyth-
mia, which can be correctly identified from electro-
cardiogram (ECG) records. The ECG signal detects 
the irregularity of the heart to identify cardiac ar-
rhythmia. An essential medical tool for automati-
cally detecting CVD is the ECG, which documents 
the features of cardiac contraction, healing, and sus-
ceptibility. Finding abnormal cardiac rhythms in the 
ECG readings is crucial. Manual examination, which 
is laborious and time-consuming, is necessary to in-
terpret the ECG recording. As a result, many Machine 
learning techniques have been used to identify cardi-
ac arrhythmias from ECG signals automatically. The 
main process control methods needed by convention-
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al ML systems are feature engineering, pattern dis-
covery, feature representation, and classification [29]. 
The main limitation of such systems is the selection 
of accurate features using the correct elements from 
the ECG signals to detect CVD. In recent times, appli-
cations requiring prediction and classification tasks 
have greatly benefited from the use of Deep Learning 
approaches, as these models do not suffer from the 
risk of selecting and extracting features [18]. How-
ever, because of the ECG signal’s weak amplitude, 
doctors frequently miss its abnormalities. There-
fore, creating trustworthy DL-based models for CAD 
early detection and robust classification is a difficult 
challenge. On the identification and categorization of 
CVD, numerous investigations have been conducted 
and reported in the literature [10].
Six different pieces of information collected from the 
patients are used to identify cardiac arrhythmia [25]. 
These diagnostic tests’ characteristics include Elec-
trocardiogram, heartbeat sound, Flow cytometry, 
MRI, and CT. These six different patient signals can be 
used for diagnostic purposes. However, each method 
has advantages and disadvantages for diagnosing car-
diac arrhythmia [21]. The main emphasis of this paper 
is the development of suitable CAD detection models 
using the participants’ ECG signals as input. In light of 
this, a review of the cardiovascular disease literature 
has been conducted with a focus on the material relat-
ing to ECG-based Cardiac arrhythmia identification 
[22]. To have a better understanding of the current 
stream of research on Cardiac arrhythmia, a small 
number of pertinent recent findings employing differ-
ent kinds of signals and features are also examined [9].
This work proposes a novel hybrid model based on 
deep learning to identify cardiac arrhythmia. Three 
deep models, such as Multilayer Perceptrons (MLPs), 
Deep Belief Networks (DBNs), and Restricted Boltz-
mann Machines (RBMs), are combined to diagnose 
cardiac arrhythmia from ECG signals effectively.

1.1. Contributions to the Existing Work
The main contributions of this work are as follows:
1 To employ a combined version of Multilayer Per-

ceptrons for hyperparameter optimization, Re-
stricted Boltzmann Machine for feature extraction, 
and Deep Belief Network for performing classifica-
tion between normal and affected patients by Car-
diac Arrhythmia.

2 To evaluate the performance of the proposed Hyb-
DeepNet model by applying it to two ECG sig-
nals-based datasets such as MIT-BIH and PTB-
ECG and compare the model’s performance to 
check the consistency of the model in making pre-
dictions for both datasets. 

1.2. Organization of the Paper
The remainder of the paper is organized as follows. 
Section 2 reviews the existing works related to car-
diovascular disease prediction. Section 3 outlines the 
proposed hybrid deep neural network model. Section 
4 discusses the results of performing experiments us-
ing the datasets. Section 5 concludes the current re-
search work

2. Related Works
The state-of-the-art studies in the existing literature 
for cardiovascular disease prediction are discussed 
briefly in this section. Several articles published be-
tween 2014 and 2022 are chosen to review the works 
carried out by several authors for the problem taken. 
It was discovered that most of the results used signals 
such as heart sound, Radiography, and Optical coher-
ence tomography. Research on the papers gathered 
from various sources shows that different forms of 
pulses from the human body have been used as in-
put to perform cardiovascular disease classification 
methods.
Sinus arrhythmia was directly determined in [27] us-
ing a Recurrent neural network. Accuracy of 97.6% and 
98.55% are claimed to be obtained for 30 participants 
using 10-fold cross-validation and for ten participants 
using blindfold validation. The deep learning tech-
nique based on bi-LSTM is utilized in [30] to catego-
rize the ECG signal. The median filter analysis in the 
study is used to retrieve the secondary signal’s bands, 
followed by using it in the deep neural networks as in-
put. A 98.54% recognition rate has been achieved for 
the suggested method. Using coupled CNN and LSTM 
models, the ECG signal has been detected in [31]. In the 
initial layers, the CNN is utilized to extract features, 
and the LSTM learning algorithm is then further em-
ployed for classification using the features that the 
CNN has removed. According to reports, the combined 
technique offers a better accuracy rate [11].
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In [16], four different characteristics are extracted 
from the ECG signal before input into the LSTM mod-
el for diagnosis. The experiments conducted through 
simulation produce a reasonable level of precision, 
accuracy, and F1-score. The authors in [25] describe 
the development of an attributes-based bi-LSTM 
model for classifying arrhythmia from ECG data. The 
work in [21] reports on the localization of cardiac 
rhythm using a temporal LSTM network. It is demon-
strated that the suggested paradigm offers convincing 
performance. Using GAN, suppression of noises in CT 
has been accomplished in another intriguing research 
[25]. The simulation study used unbalanced CT data, 
and the GAN approach’s successful application in 
reducing the noise component was demonstrated. In 
[17], a mixed hybrid model is proposed, exhibiting an 
enhanced performance and noise reduction in CT im-
ages. The CVD categorization based on Convolution-
al Neural Networks is claimed to produce an altered 
ECG signal before feeding it to the CNN model. More-
over, it incorporates Short Time Fourier Transform 
for preprocessing [3, 20]. 

Support vector machine (SVM) was used by the au-
thors of [32] as a classifier to identify CAD. The opti-
mization algorithms such as genetic and binary PSO 
have been used to choose the features. The suggested 
model is trained and tested using the 10-fold valida-
tion. It is shown that the proposed strategy performs 

Table 1 
Comparative analysis of the existing methods for CVD diagnosis

Reference Dataset Type of CVD Techniques Inference Limitations

[27] PTB -XL Myocardial 
infarction ANN Produced Accuracy 

of 85.2%
Data augmentation not 
performed

[30] UCI dataset Coronary Artery 
Disease CNN Produced Accuracy 

of 87.2% Trivial dataset

[11] Private Congestive Heart 
failure LSTM Produced Accuracy 

of 87.8%
Not suitable for a dataset 
with more classes

[16] PTB DB Cardiac Arrhythmia Random Forest 
classifier

Produced Accuracy 
of 78.6% Less accurate prediction

[25] MIT-DB Cardiac Arrhythmia ResNet and AlexNet Produced Accuracy 
of 90.2% Less reliable

[21] Private Congestive Heart 
failure SVM Produced Accuracy 

of 83.5%
Data augmentation not 
performed

[17] MIT-DB Myocardial 
infarction

bi-LSTM+
PSO

Produced Accuracy 
of 89.4%

Not suitable for datasets 
with more classes

better prediction performance while requiring less 
complexity than the SVM model used without optimi-
zation [26]. Table 1 provides a comparative analysis of 
the existing methods in the literature for cardiovas-
cular disease diagnosis. 

2.1. Research Gap and Motivation of Research
From the perspective of health care, reliable, precise, 
and quick detection of cardiovascular diseases is the 
highest priority. Additionally, it is true that the Deep 
learning-based detection of Heart diseases generally 
provides more excellent performance in contrast to 
the Machine learning techniques. Further, it is ob-
served that in most existing works for heart disease 
prediction, only one dataset has been utilized to eval-
uate the effectiveness of the various models for clas-
sification. The conclusion drawn from one dataset’s 
findings may not apply to other datasets. Hence, there 
is necessary to test and assess the performance of the 
proposed models with at least two standard datasets.
Additionally, it has been noted that the ensemble 
rendition of the best-performing models shows im-
proved detection accuracy compared to the models 
employed individually. Several DL models, including 
MLP, RBM, and DBN, have only been utilized in a few 
studies. Hence, these models are combined in the 
present research to detect cardiac arrhythmia from 
ECG signals
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3. Proposed Methodology
This section outlines the proposed methodology, 
which involves three deep learning models Multilay-
er Perceptrons, Restricted Boltzmann Machines, and 
Deep Belief Networks. These models are mainly de-
veloped for this research as these models have been 
rare for Cardiac arrhythmia prediction using deep 
learning. Moreover, to achieve high performance, in-
stead of using these models independently, a hybrid 
approach is proposed to combine these models. MLPs 
are used to optimize the proposed model’s hyperpa-
rameters, RBMs extract insightful features from the 
data, and further, the classification of whether the pa-
tient is affected by cardiac arrhythmia or not is per-
formed using the DBNs. The architecture of the pro-
posed hybrid model is presented in Figure 1.

Figure 1 
Proposed methodology
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Table 2 
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Parameter Name Specification
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Weight value 0.1

Mode of Training Batch Mode

The algorithm for the Multilayer perceptron is given 
in Algorithm1.

Algorithm 1
Multilayer Perceptron Algorithm
Input: Nodes 1 2, , ., nx x x…  in the input layer
Output: Nodes , , ., 1 2z z zn…  in the output layer
Step 1: Initialize b as bias and w as weights
Step 2: For each weight wxy

Step 3: ( )w w wxy xy xyδ= +

Step 4: For each bias yσ

Step 5: ( )y y yσ σ δ σ= +

Step 6: For each training sample s in N
Step 7: For each unit x in the input layer 
Step 8:  Out Inx x=

Step 9: For each unit y in the hidden layer

Step 10:      Hid W In by xy x y= Σ +

Step 11: 
1

 
1

fnact x
e

= −
+

Step 12: For each unit z in the output layer
Step 13: ( )( )1E O O D Ox z x z x= − −

Step 14:  For each unit y in the hidden layer, moving 
from the final to initial layer in the hidden unit

Step 15: ( )( )  0
N

E Error W iy xyi= ∑ =
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3.2. Restricted Boltzmann Machines (RBMs)
The Boltzmann Machine is a random probabilistic 
model stacked in two layers. This model’s two layers 
are hidden and viewable in nature. The viewable layer 
includes a set of states. Similarly, the hidden layer is 
represented as, The states that relate these two lay-
ers are completely packed and interconnected. The 
structure of the RBM model is presented in Figure 
3. The conditions are devoid of connections with-
in themselves. This model is also known as a model 
based on energy. There exists a multiplicative type of 
energy between the layers. The model learns by alter-
ing this energy variant according to the requirement. 
The distribution of the probability-based function for 
the RBM model is denoted as in (1):

Figure 2
Structure of Multilayer Perceptron
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Here, xyw denotes the weight variable, ym and 

xn  denotes the bias variables. The bias variable 
may be modified in order to train the model in a 
better way to improve the performance. The 
computational complexity of the system depends 
on number of layers and techniques used to 
implement features that are selected.  
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3.3 Deep Belief Networks (DBNs) 

Deep belief networks (DBN) are probability 
distribution models of numerous hidden layers. 
Adjusting the weights between nodes increases the 
likelihood that the whole model will be generated. The 
DBN's fundamental structure is depicted in Figure 4. It 
consists of a backpropagation (BP) neural network and 
several restricted Boltzmann machines (RBMs). RBM 
is a two different neural network with bidirectional 
connections, with its output being passed as input to 
the subsequent RBM. Thus, a continuous overlay of an 
inner layer structure is possible 
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The above equations, probN and probG  denote 
the numerical and generative probability of the 
model. The DBN's training strategy is broken up 
into two phases. Each RBM is first trained from 
the ground up. The second stage involves top-
down fine-tuning of the hyperparameters.  
The estimation of the distribution of RBM model 
is computed mathematically as shown in 
Equations (13)-(15): 
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3.3 Deep Belief Networks (DBNs) 

Deep belief networks (DBN) are probability 
distribution models of numerous hidden layers. 
Adjusting the weights between nodes increases the 
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several restricted Boltzmann machines (RBMs). RBM 
is a two different neural network with bidirectional 
connections, with its output being passed as input to 
the subsequent RBM. Thus, a continuous overlay of an 
inner layer structure is possible 
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4. Results and Discussion
For the performance evaluation of the proposed mod-
el, experiments have been conducted using two pub-
licly available datasets that comprise ECG signals. 
The data is preprocessed and fed into the deep hybrid 
models. A detailed description of the dataset, as well 
as the experimental findings, are discussed in this 
section.

4.1. Dataset Specification
The two datasets selected for the experimentation of 
the present research are MIT-BIH [11] and PTB-ECG 
[20] datasets. The details about the number of sam-
ples in the dataset and how it is utilized in this work 
are presented in Table 3. The total number of samples 
in the MIT-BIH dataset is 268, whereas in PTB-ECG 
is 200. Out of 268, 104 samples are for patients affect-
ed by cardiovascular disease, and 164 samples rep-
resent patients without the condition. Similarly, for 
the PTB-ECG dataset, the affected patient’s count is 
close to 54, and the unaffected is 146. The dataset is 
split in the ratio of 75:25 for training and validation. 
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In that case, for the MIT-BIH dataset, 201 samples are 
taken for the training phase, and 67 are used for the 
validation phase. Considering the PTB-ECG dataset, 
150 samples are taken for the training phase, and 50 
are employed for validation.

4.2. Performance Metrics
The performance of the models is evalu-
ated using three different metrics such as 

,   1model model and modelacc aucf s−  which are ac-
curacy, F1-score, and Area under curve respectively. 
These metrics are technically represented as shown 
below. , ,   model model odel and modeltp tn fp fn  in Equa-
tions (16)-(17) represent true positive, true negative, 
false positive, and false negative values respectively.
a accmodel :
This is a measure that represents the predictions that 
are made correctly as expected that is classifying pos-
itive predictions and negative predictions according-
ly as per the actual results.
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c) aucmodel :  
The relationship between accuracy and precision 
is plotted on the receiver operating characteristics 
(ROC) curve. It alludes to a binary classification 
assessment matrix. The ROC's AUC measures its 
capacity to differentiate between both positive 
and negative classifications. The performance of 
a classifier improves with increasing AUC 
values. 
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observed from the obtained results that there is 
only a slight difference between the performances 
exhibited by the proposed model for both 
datasets. The model works best in making cardiac 
arrhythmia predictions from both datasets 
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Table 3
Datasets Specification Details

Specification MIT-BIH PTB-ECG

Number of samples 268 200

Number of samples for affected 
individuals 104 54

Number of samples for 
unaffected individuals 164 146

Number of samples taken for 
training 201 150

Number of samples taken for 
validation 67 50

c aucmodel : 
The relationship between accuracy and precision 
is plotted on the receiver operating characteristics 
(ROC) curve. It alludes to a binary classification as-
sessment matrix. The ROC’s AUC measures its ca-
pacity to differentiate between both positive and neg-
ative classifications. The performance of a classifier 
improves with increasing AUC values.

4.3. Performance Evaluation
The performance of the proposed model for both the 
datasets, such as MIT-BIH and PTB-ECG, is present-
ed in Table 4. The proposed model produces an accu-
racy of 98.6% for the MIT-BIH and 97.1% for the PTB-
ECG dataset. The F1 Score for MIT-BIH is 97.4%, 
whereas for the PTB-ECG dataset is 96.4%. Similarly, 
the AUC value is 96.2% and 95.3% for the MIT-BIH 
and PTB-ECG datasets, respectively. It can be ob-
served from the obtained results that there is only a 
slight difference between the performances exhibited 
by the proposed model for both datasets. The model 
works best in making cardiac arrhythmia predictions 
from both datasets.

Table 4 
Performance Evaluation of the Proposed HybDeepNet model

Performance Metric MIT-BIH PTB-ECG

Accuracy 98.6 % 97.1 %

F1-score 97.4 % 96.4 %

AUC 96.2 % 95.3 %

The performance of the proposed model is compared 
against various deep learning models, and the accura-
cy exhibited by each model is presented in Table 5 and 
graphically depicted in Figure 5. The Convolutional 
Neural Network model, when executed on the MIT-
BIH dataset, showed an accuracy of 88.2%, and the 
same model for the PTB-ECG dataset showed 90.5%. 
This model showed better performance for the PTB-
ECG dataset.
The Recurrent Neural Networks model made accu-
rate predictions of 89.9% for MIT-BIH and 88.5% for 
PTB-ECG datasets. Though the accuracy is more for 
MIT-BIH for the RNN model, the difference is very 
marginal in this case. The ensemble models, like Con-



441Information Technology and Control 2023/2/52

Figure 5
Proposed model Vs DL models

  

 
Figure 5 
Proposed model Vs DL models 

 
The Recurrent Neural Networks model made accurate 
predictions of 89.9% for MIT-BIH and 88.5% for PTB-
ECG datasets. Though the accuracy is more for MIT-
BIH for the RNN model, the difference is very marginal 
in this case. The ensemble models, like Convolutional 
Neural Networks with Long Short Term Memory 
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Generative Adversarial Networks, were also validated 
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The proposed hybrid deep network model is also 
compared against existing hybrid models in [20], [32], 
[26], [7], and [5] as shown in Table 6. In [20], a hybrid 
model combining the CNN architectures such as 
ResNet50, AlexNet, and SqueezeNet has been 
proposed. In [32], an ensemble model with Deep Neural 
Networks, CNN, and LSTM is suggested. In [26], 

another ensemble model based on Self Organizing 
Maps and Autoencoders is developed for CVD 
diagnosis. Similarly, in [7], Deep Belief Networks 
along with XGBOOST are employed for heart 
disease prediction. In [5], authors have devised a 
deep learning model MobileNet v2-based DNN 
and utilized it for CVD research[2, 15, 19]. 
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and XGBOOST combination in [7] works well to ex-
hibit forecasts with an accuracy of 93.4% and 95.2% 
for MIT-BIH and PTB-ECG datasets, respectively. 
The model in [5] shows a lower accuracy than other 
models in the existing works taken for performance 
analysis. It exhibits 91.2% for the MIT-BIH dataset 
and 92.8% for the PTB-ECG dataset. However, the 
accuracy of all these models is lower than that of the 
proposed HybDeepNet model, as shown in Figure 6.

5. Conclusion
The proposed model, HybDeepNet, utilizes a unique 
hybrid approach for diagnosing Cardiac Arrhythmia 
using ECG signals. This includes the use of three dif-
ferent models: Multilayer Perceptrons for optimizing 
the model’s hyperparameters, a Restricted Boltz-
mann Machine for feature extraction, and Deep Belief 
Networks for classification. The model is evaluated 
using two publicly available datasets, MIT-BIH and 
PTB-ECG. The proposed HybDeepNet model was 
compared to several deep learning models and two 
previous works in terms of performance. The results 

show that the proposed model outperforms the oth-
ers, achieving an accuracy of 98.6% on the MIT-BIH 
dataset and 97.1% on the PTB-ECG dataset. Howev-
er, one limitation of this research is that the analysis 
was only conducted on consistent datasets. Further 
validation is needed using larger, more diverse data-
sets. Additionally, the computational requirements, 
specifically CPU time, for the hybrid model are rela-
tively high. The proposed HybDeepNet model exhib-
ited superior performance for diagnosing Cardiac 
Arrhythmia using ECG signals, but there is potential 
for further improvement. One potential approach 
is to integrate different types of classification tech-
niques, such as nature-based optimization methods, 
to enhance the model’s performance. Additionally, 
the same method could be adapted for detecting oth-
er diseases by using deep learning detection models. 
To aid remote patients, the technique could be imple-
mented on an Internet of Things platform as a cloud 
service. Another area of focus for future work could 
be on increasing the operating speed of the model 
through fast convergence, which would enable re-
al-time diagnosis. Finally, reducing implementation 
overhead for the developed strategy is another area 
where work can be done further.
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