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The traditional laser SLAM (Simultaneous Localization and Mapping) algorithm uses the global relative poses 
and local ones to form residual blocks. Its constructed map is not smooth enough and the constraint construction 
is too simplex under some special scenarios. Thus, this paper proposes an odometer constraint fusion method 
called FOSLAM (Fusion Odometer SLAM) to construct residual blocks between constrains and solve the nonlin-
ear least squares by Ceres. The effectiveness and accuracy of this method have been verified through comparative 
experiments. Experimental results showed that without increasing the time and space complexity, by involving 
the odometer constraint into the SLAM optimization process, the convergence of scan matching scores can be 
improved and the constructed grid map edges are smoother and the jagged phenomenon can be reduced. Under 
sophisticated scene, FOSLAM is able to acquire more accurate maps and laser odometer trajectory than Cartog-
rapher method. Therefore, it is suitable to be used on indoor robot for cleaning and inspection and can be further 
deployed on autonomous unmanned vehicles involving spatial visualization and neuro-heuristic guidance.
KEYWORDS: Laser SLAM, Redisual blocks, Back-end optimization, Odometer constraint fusion, Ceres.
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1. Introduction
The SLAM method is mainly used to solve the local-
ization, navigation and map construction problems 
for mobile robot under unknown environment [1] . 
Therefore, it is suitable to be used on indoor robot for 
cleaning and inspection [29] and can be further de-
ployed on autonomous unmanned vehicals involving 
spatial visualization [4] and neuro-heuristic guid-
ance [24]. In recent years, improvements in SLAM 
have mainly focused on sensor data fusion and artifi-
cial intelligence (AI) heuristic guidance. Kachurka et 
al. [16] fused indoor wearable GPS information into 
dataset to improve SLAM performance, and flying 
lidar data are also taken to rise location accuracy for 
unmanned aerial robot [25]. Jamaludin et al. [12] used 
Rao-Blackwellized particle filter (RBPF) integrat-
ed with artificial neural networks (ANN) to assist in 
SLAM modeling, and convolutional neural networks 
(CNN) [13] can also be used to improve the fault de-
tection of scan matching in SLAM.
Robots with specific sensors are able to acquire their 
poses by constructing environmental models without 
any prior conditions, which can greatly improve the 
autonomous navigation ability and their adaptability 
to different application environments [30]. The meth-
od is also helpful to dynamic path planning, real-time 
obstacle avoidance and multi-robot cooperation. 
Modern SLAM framework can be divided into three 
steps: front-end scan matching, back-end pose graph 
optimization and loopback detection for positioning. 
Scan matching builds map and stores pose data, pose 
graph optimization fine-tunes the map by construct-
ing constraints. In scan matching step, the prior poses 
are generally provided by IMU (Inertial Measurement 
Unit) and odometer, then conducting scan matching by 
combining laser data and prior poses. Finally, output 
the grid map frame by frame. The pose nodes obtained 
by scan matching at the front-end are added to the pose 
graph at the back-end. Simultaneously, all the poses in 
the graph are globally optimized and the correspond-
ing map points for each pose are corrected accordingly. 
The framework of 2D SLAM is shown in Figure 1. On 
Google’s Cartographer [11], in order to ensure the con-
vergence of closed-loop constraints and global optimi-
zation, loopback detection is usually needed to calcu-
late the constraints of intra- and inter-submap. Finally, 
the information is added to the optimization problem 
for nonlinear least squares solution.

The use of pose graph simplifies the structure of back-
end optimization process and it can greatly improve 
the real-time performance. Therefore, the pose graph 
optimization (PGO) has occupied a dominant posi-
tion in the current SLAM researches. The optimiza-
tion method does not directly solve the cost function 
but through iteration. During the iterative process, 
the independent variable is constantly adjusted and 
the cost function is gradually reduced. When the cost 
function cannot be decreased further or the change is 
smaller than the threshold value, the iteration is com-
pleted.
With the development of the accuracy requirements 
of SLAM, researchers have proposed some back-end 
optimization methods. Konolige et al. [19] introduced 
a nonlinear optimization system called sparse pose 
adjustment (SPA) using efficient linear matrix con-
struction and sparse non-iterative Cholesky decom-
position to solve large sparse pose graphs. In addition, 
mainstream SLAM back-end optimization libraries, 
such as General Graphic Optimization (G2O) [20] 
and Georgia Tech Smoothing and Mapping (GTSAM) 
[21] are proposed based on SPA approach. Stochas-
tic gradient descent (GD) [8, 31] is developed to help 
solving this probelm, but the descent efficiency is 
unstable and it is easy to fall into local minimum. For 
high dimensional data, the second derivatives may 
be hard to be calculated. Gauss-Newton (GN) meth-
od [3, 28] is able to improve the efficiency of solving 
it by fitting Jacobian and Hessian matrixes. However, 
the results acquired by GN cannot guarantee the gra-

Figure 1
A framework of laser SLAM
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dient descent. Thus, Levenbergt-Marquardt (LM) al-
gorithm [2, 27] is introduced to add a diagonal matrix 
to the fitting results to ensure the gradient descent. 
Furthermore, the Dogleg algorithm [10] uses the slope 
changes in the optimization process to adjust the 
trust region and guide the LM solution process.
In the optimization strategy of SLAM, the sparsity of 
the network must be guaranteed to speed up the com-
putation of the optimal solution [9]. Eckenhoff et al. 
[6] introduced a decoupled, consistent marginaliza-
tion and sparsification (DMS) approach for reducing 
the computational cost of graph-based SLAM to en-
able long-term operation. Recently, Gao et al. [7] have 
combined Cholesky decomposition with back-end 
optimization to improve the computational speed of 
the algorithm. In the simulation, the efficiency of op-
timized method was improved by 24% compared with 
the traditional ones.
However, there are common problems in these meth-
ods, they only focus on the efficiency of the algorithm 
but ignore the complex styles and high hardware cost. 
Furthermore, the selection of back-end constraints is 
also relatively simple, which does not make full use of 
front-end data. A suitable loss function is also need-
ed to penalize those terms with too large error [5]. In 
this paper, a new constraint construction method for 
SLAM back-end is introduced, named Fusion Odom-
eter SLAM (FOSLAM). The odometer data is fused 
into the SLAM back-end and the nonlinear least 
square method is used to optimize the poses. More-
over, FOSLAM is compared with other laser SLAM 
methods in terms of algorithmic complexity. The pos-
sibility of deploying FOSLAM on embedded devices 
is also verified.
This paper introduces the general laser SLAM frame-
work including the front-end scan matching in Sec-
tion 2. In Section 3, the new FOSLAM method is in-
troduced which imports the odometer data into the 
constraint construction at the back-end optimization 
and uses LMF procedure to guide the optimization 
iteration process. Finally, in Section 4, experimental 
results show that FOSLAM can improve the conver-
gence of scan matching without increasing the re-
dundancy and the its mapping results are smoother. 
Moreover, in high-complexity scenarios, FOSLAM is 
able to acquire better achievement than Cartographer 
method.

2. Local 2D Laser SLAM
The laser SLAM is generally classified as local SLAM 
and global SLAM according to the different refer-
ence coordinates of robot poses. Local mapping is a 
process to build a local map using sensor scan data, 
also called local SLAM. The relationship among robot 
pose points, observation data and map are established 
by constraint quantity. There is error between the ro-
bot prior pose predicted by IMU and odometer data 
and the actual one. Thus, it is necessary to update the 
prior pose by the observation data further [33].

2.1. Submap Construction
Laser data, submaps and global map are linked by ro-
bot pose. When each frame of laser data is acquired, 
the laser data are inserted into submap using the scan 
matching method of Scan-to-Submap. Therefore, a 
certain amount of laser data forms a submap, all sub-
maps eventually form a global map.
Laser data are usually denoted by vector hk (k=1,2,...). 
It represents the coordinates of a set of laser points 
with the LiDAR rotation center as the origin of the 
coordinate system. In constructing procedure of sub-
map, the transformation matrix Tζ=(Rζ,tζ) is used to 
represent the rotation and translation relationship 
between the two neighbouring frames of laser data. 
Then, transform the laser data hk into the submap co-
ordinate system to complete the construction of sub-
map by Equation (1).
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where the pose transformation can be expressed as ζ = (ζx, 
ζy, ζθ) with a [ζx, ζy] translation and a ζθ rotation. In this 
coordinate transformation formula, the first  2*2 
matrix is Rζ, the second 2*1 matrix is tζ. 

2.2. Smooth Scan Matching 
After the result of new scan is inserted into the submap, the 
state of the 2D grid needs to be updated iteratively. The 
updating method is as Equations (2)-(3) shown in [11]. 
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where prob is the occupancy probability Phit or 
non-occupancy probability Pmiss, x represents the grid, 
and clamp denotes the interval limiting function. odds 
is an inverse proportional function that updates the 
probability of hits and misses, and odds-1 is the inverse 
function of odds. Mold is the existing probability grid 
and Mnew is the iteratively updated probability grid.
This grid updating mechanism can effectively reduce 
the interference of dynamic obstacles in the environ-
ment. Due to the large error in the predicted pose from 
the motion model, the Scan-to-Submap matching is 
used to further update the predicted pose with the 
observed data. The usual method is to create a nonlin-
ear search window around the prior pose. Search and 
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the prior pose, and it is actually solving a nonlinear 
least square problem as Equation (4) shown.
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The process of Equation (4) determines the matching 
degree between laser data and submap. Msmooth is a 
smoothing filter function obtained by bicubic interpolation 
method. When the difference between interpolated result 
and the prior pose is smallest, the matching is considered 
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Figure 2 
The structure of pose graph 

 

3.1. Nonlinear Least Squares Modeling 
In the algorithm, Ceres library is used to model the 
optimization problem. Ceres solves robust bounds 
constrained non-linear least squares problem by the 
formula as Equation (5). 
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graph [32, 14]. When the closed loop is detected, glob-
al optimization is carried out on all poses in the whole 
pose graph. When all poses will be corrected and the 
corresponding map points on each pose will be cor-
rected accordingly. This is the pose graph optimiza-
tion process of the global mapping.
The pose graph optimization is based on nodes and 
edges. A node is a global or local pose of a robot. The 
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tion. In general, there is a set of constraint relations 
between two global poses. The structure of the pose 
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In the algorithm, Ceres library is used to model the 
optimization problem. Ceres solves robust bounds 
constrained non-linear least squares problem by the 
formula as Equation (5).

where prob is the occupancy probability Phit or non-
occupancy probability Pmiss, x represents the grid, and 
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odds. Mold is the existing probability grid and Mnew is the 
iteratively updated probability grid. 
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where ρi is a loss function. Loss function is a function with 
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the coordinate transformation between two nodes 
forms the first constraints. The traditional back-end 
optimization methods extract the transformation be-
tween the corresponding nodes from the submap to 
form the second constraints. However, these meth-
ods all ignore the useful data collected by the front-
end sensors. Thus, we designed a Fusion Odometer 
SLAM (FOSLAM) method to adopt relative pose data 
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obtained from odometer to constitute another set of 
constraints. FOSLAM uses the global relative pose 
and odometer relative pose to make a set of residual 
terms and constructing the cost function. Then adopt 
Ceres to calculate the nonlinear least squares problem 
in the iterative process. Because both these two sets 
of constraints are in the form of three-dimensional 
vector [x,y,θ], the residual term generated is also in 
the same form, which can be written as Equation (6).
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In FOSLAM, Levenbergt-Marquardt-Fletcher (LMF) 
algorithm is used for iterative updating and Ceres method 
is adopt to help the calculation automatically. LMF gets 
rid of the restriction that it needs to iterate near the 
expansion point and uses Lagrange multiplier as a 
correction. The Lagrange multiplier is able to transform 
the least squares with point position constraints into least 
squares without constraints [15]. The essence of LMF is 
shown in Equation (7).  

                    eJIJJx T
eke

T
e

1)(                               (7)                                                                                                   

Δx is the amount of iteration updates. e is the error function. 
-Je

Te is the negative gradient of the target function. And the 
denominator term Je

TJe+μkI is the Hessian matrix of the 
objective function with modification. The error function 
Jacobian Je reflects the differential relationship between 
variables. 
In the algorithm, the value of the modified weight μk is 
constantly adjusted, so that the ratio of the cost function  
Ψ(x) and the approximate cost function φ(x) approaches 1, 
indicating that the better the linearity is. The specific 
process is as Equation (8-10). 
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Therefore, the goal of the algorithm to is to use the 
modified parameter μk to ensure that each update of the 
iterative update quantity Δx is gradient descent. 
In FOSLAM, Cauchy kernel function is selected to reduce 
the negative impact of incorrect closed-loop detection on 
the final optimization result and enhance the algorithm 
robustness to outliers [22]. FOSLAM also uses the Ceres 
nonlinear optimization library to construct the residual 
block between the global relative pose and the odometer 
pose. The algorithm iterate the pose residual to obtain the 
optimal solution by creating the sparse cost function of 

automatic differentiation and import the front-end 
calculated odometer pose. 

 

4. Experiments and Results 
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construction idea, which is a real-time solution for building 
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is equipped with a single line laser LiDAR A1M8 
(SLAMTEC, China), a nine-axis IMU JY901 (Wit-
Motion, China) and a two-wheel differential chassis. The 
software framework is built based on ROS (Robot 
Operating System) and a mainstream SLAM algorithm 
deployed on it. The host Raspberry Pi 4B is mounted on 
the mobile robot and the secondary PC virtual machine 
uses Ubuntu 18.04 and ROS melodic version. The results 
of SLAM construction are observed through the Rviz 3D 
visualization plug-in that comes with ROS.  
Fusion Odometer SLAM (FOSLAM) uses the relative pose 
calculated from the odometer data as a set of constraints 
and constructs a residual term by the global constraints 
between poses. Furthermore, FOSLAM uses LMF to guide 
the iterative process and enhances its robustness through 
Cauchy kernel function. Utilize Google’s Ceres nonlinear 
optimization C++ package to resolve the nonlinear least 
square problem among constraints. The procedure of 
calculating constraints for FOSLAM is illustrated in 
Algorithm 1. 
In FOSLAM, the Ceres method with numerical automatic 
derivation is used to avoid complex Jacobian calculation. 
Thus, the Ceres’ function with the optimization variable 
and residual term passed in is the only requirement for 
solving the nonlinear least squares problem when 
constructing the cost function. In Algorithm 1, 
global_submap is the global coordinate of the origin node 
in the submap and global_node is the global coordinate of 
the pose node. The first constraint is the relative 
transformation between the pose node and the origin of the 
submap on the global coordinates, which is needed to be 
optimized in Ceres solution. The second constraint, which 
is marked as loro (local_observed_relative_ odometer), is 
the local relative coordinate transformation between their 
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algorithm is used for iterative updating and Ceres 
method is adopt to help the calculation automatically. 
LMF gets rid of the restriction that it needs to iterate 
near the expansion point and uses Lagrange multipli-
er as a correction. The Lagrange multiplier is able to 
transform the least squares with point position con-
straints into least squares without constraints [15]. 
The essence of LMF is shown in Equation (7). 
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Δx is the amount of iteration updates. e is the error function. 
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Te is the negative gradient of the target function. And the 
denominator term Je

TJe+μkI is the Hessian matrix of the 
objective function with modification. The error function 
Jacobian Je reflects the differential relationship between 
variables. 
In the algorithm, the value of the modified weight μk is 
constantly adjusted, so that the ratio of the cost function  
Ψ(x) and the approximate cost function φ(x) approaches 1, 
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Δx is the amount of iteration updates. e is the error 
function. -Je

Te is the negative gradient of the target 
function. And the denominator term Je

TJe+μkI is the 
Hessian matrix of the objective function with mod-
ification. The error function Jacobian Je reflects the 
differential relationship between variables.
In the algorithm, the value of the modified weight μk is 
constantly adjusted, so that the ratio of the cost func-
tion Ψ(x) and the approximate cost function φ(x) ap-
proaches 1, indicating that the better the linearity is. 
The specific process is as Equation (8-10).

problem in the iterative process. Because both these two 
sets of constraints are in the form of three-dimensional 
vector [x,y,θ], the residual term generated is also in the 
same form, which can be written as Equation (6). 
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In FOSLAM, Levenbergt-Marquardt-Fletcher (LMF) 
algorithm is used for iterative updating and Ceres method 
is adopt to help the calculation automatically. LMF gets 
rid of the restriction that it needs to iterate near the 
expansion point and uses Lagrange multiplier as a 
correction. The Lagrange multiplier is able to transform 
the least squares with point position constraints into least 
squares without constraints [15]. The essence of LMF is 
shown in Equation (7).  
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Therefore, the goal of the algorithm to is to use the 
modified parameter μk to ensure that each update of the 
iterative update quantity Δx is gradient descent. 
In FOSLAM, Cauchy kernel function is selected to reduce 
the negative impact of incorrect closed-loop detection on 
the final optimization result and enhance the algorithm 
robustness to outliers [22]. FOSLAM also uses the Ceres 
nonlinear optimization library to construct the residual 
block between the global relative pose and the odometer 
pose. The algorithm iterate the pose residual to obtain the 
optimal solution by creating the sparse cost function of 
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problem in the iterative process. Because both these two 
sets of constraints are in the form of three-dimensional 
vector [x,y,θ], the residual term generated is also in the 
same form, which can be written as Equation (6). 
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algorithm is used for iterative updating and Ceres method 
is adopt to help the calculation automatically. LMF gets 
rid of the restriction that it needs to iterate near the 
expansion point and uses Lagrange multiplier as a 
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the least squares with point position constraints into least 
squares without constraints [15]. The essence of LMF is 
shown in Equation (7).  
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Jacobian Je reflects the differential relationship between 
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constantly adjusted, so that the ratio of the cost function  
Ψ(x) and the approximate cost function φ(x) approaches 1, 
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problem in the iterative process. Because both these two 
sets of constraints are in the form of three-dimensional 
vector [x,y,θ], the residual term generated is also in the 
same form, which can be written as Equation (6). 

   






































12

12

12

11

11

100
0cossin
0sincos





yy
xx
                          (6)       

In FOSLAM, Levenbergt-Marquardt-Fletcher (LMF) 
algorithm is used for iterative updating and Ceres method 
is adopt to help the calculation automatically. LMF gets 
rid of the restriction that it needs to iterate near the 
expansion point and uses Lagrange multiplier as a 
correction. The Lagrange multiplier is able to transform 
the least squares with point position constraints into least 
squares without constraints [15]. The essence of LMF is 
shown in Equation (7).  
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Δx is the amount of iteration updates. e is the error function. 
-Je

Te is the negative gradient of the target function. And the 
denominator term Je

TJe+μkI is the Hessian matrix of the 
objective function with modification. The error function 
Jacobian Je reflects the differential relationship between 
variables. 
In the algorithm, the value of the modified weight μk is 
constantly adjusted, so that the ratio of the cost function  
Ψ(x) and the approximate cost function φ(x) approaches 1, 
indicating that the better the linearity is. The specific 
process is as Equation (8-10). 
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Therefore, the goal of the algorithm to is to use the 
modified parameter μk to ensure that each update of the 
iterative update quantity Δx is gradient descent. 
In FOSLAM, Cauchy kernel function is selected to reduce 
the negative impact of incorrect closed-loop detection on 
the final optimization result and enhance the algorithm 
robustness to outliers [22]. FOSLAM also uses the Ceres 
nonlinear optimization library to construct the residual 
block between the global relative pose and the odometer 
pose. The algorithm iterate the pose residual to obtain the 
optimal solution by creating the sparse cost function of 

automatic differentiation and import the front-end 
calculated odometer pose. 

 

4. Experiments and Results 
The constraint construction strategy provided in this paper 
is implemented based on Google’s Cartographer front-end 
construction idea, which is a real-time solution for building 
indoor grid maps. This section verifies the advantages of 
FOSLAM through comparative experiments. In the 
experiments, in order to control the system’s cost, the robot 
is equipped with a single line laser LiDAR A1M8 
(SLAMTEC, China), a nine-axis IMU JY901 (Wit-
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Therefore, the goal of the algorithm to is to use the 
modified parameter μk to ensure that each update of 
the iterative update quantity Δx is gradient descent.
In FOSLAM, Cauchy kernel function is selected to re-
duce the negative impact of incorrect closed-loop de-

tection on the final optimization result and enhance 
the algorithm robustness to outliers [22]. FOSLAM 
also uses the Ceres nonlinear optimization library to 
construct the residual block between the global rela-
tive pose and the odometer pose. The algorithm iter-
ate the pose residual to obtain the optimal solution by 
creating the sparse cost function of automatic differ-
entiation and import the front-end calculated odom-
eter pose.

4. Experiments and Results
The constraint construction strategy provided in this 
paper is implemented based on Google’s Cartogra-
pher front-end construction idea, which is a real-time 
solution for building indoor grid maps. This section 
verifies the advantages of FOSLAM through com-
parative experiments. In the experiments, in order to 
control the system’s cost, the robot is equipped with 
a single line laser LiDAR A1M8 (SLAMTEC, China), 
a nine-axis IMU JY901 (Wit-Motion, China) and a 
two-wheel differential chassis. The software frame-
work is built based on ROS (Robot Operating System) 
and a mainstream SLAM algorithm deployed on it. 
The host Raspberry Pi 4B is mounted on the mobile 
robot and the secondary PC virtual machine uses 
Ubuntu 18.04 and ROS melodic version. The results 
of SLAM construction are observed through the Rviz 
3D visualization plug-in that comes with ROS. 
Fusion Odometer SLAM (FOSLAM) uses the rela-
tive pose calculated from the odometer data as a set 
of constraints and constructs a residual term by the 
global constraints between poses. Furthermore, FO-
SLAM uses LMF to guide the iterative process and 
enhances its robustness through Cauchy kernel func-
tion. Utilize Google’s Ceres nonlinear optimization 
C++ package to resolve the nonlinear least square 
problem among constraints. The procedure of calcu-
lating constraints for FOSLAM is illustrated in Algo-
rithm 1.
In FOSLAM, the Ceres method with numerical au-
tomatic derivation is used to avoid complex Jaco-
bian calculation. Thus, the Ceres’ function with the 
optimization variable and residual term passed in is 
the only requirement for solving the nonlinear least 
squares problem when constructing the cost function. 
In Algorithm 1, global_submap is the global coordi-
nate of the origin node in the submap and global_node 
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is the global coordinate of the pose node. The first 
constraint is the relative transformation between the 
pose node and the origin of the submap on the global 
coordinates, which is needed to be optimized in Ceres 
solution. The second constraint, which is marked as 
loro (local_observed_relative_ odometer), is the lo-
cal relative coordinate transformation between their 
interpolation results. otw is odometer translation 
weight and orw is odometer rotation weight of the 
odometer. The main implementation steps are shown 
as follows.

Algorithm 1.  The procedure of calculating 
constraints for FOSLAM

problem.AddResidualBlock (CostFunction, Cauchy 
kernel, 

global_submap, global_node);
transform::Rigid3d  begin_odometer = 

OdometerInterpolate(global_submap.time);
transform::Rigid3d  end_odometer = 

OdometerInterpolate(global_node.time);
transform::Rigid3d  loro = 

begin_odometer ->inverse() * end_odometer;
ceres::AutoDiffCostFunction  CostFunction(loro, otw, 
orw)
{   template <typename T>

bool operator()(start_pose, end_pose, T* residual) 
const
{ComputeUnscaledResidual(loro, start_pose, 
end_pose);  

     residual[0] * otw;
     residual[1] * otw;
     residual[2] * orw;
     return true;}}
Ceres::Solver::Summary summary;
Ceres::Solve(options, &problem, &summary);

Step 1: Create the cost function and set the residu-
al block. According to the time, the odometer data 
are interpolated to obtain the local poses at the be-
ginning and the end of a period of time, which are 
begin_odometer and end_odometer respectively. 
The relative change between these two coordinates 
is loro, which is a constraint relation. Then, the au-
tomatic differential cost function in Ceres is created 
and the variables need to be optimized are passed in. 
In that procedure, the global_submap corresponds 
to start_pose and the global_node corresponds to 
end_pose, which is another constraint relation. Thus, 

the residual term between these two constraints is 
able to be calculated. The residual built has the same 
structure as the three-dimensional pose vector T[x-
,y,ɵ]. There is a transformation between two different 
poses in global coordinate system. Then, by using the 
odometer data, another transformation between the 
same two poses can be discovered. As a result, a set 
of residuals is created based on these two coordinate 
transformations. In the algorithm, transformation is 
calculated as Equation (11), where R is the rotation 
matrix and t is the translation matrix.
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Step 2: The LMF optimization approach is used to 
construct the optimization issue that needs to be solved. 
Use the automatic differential cost function to determine 
the Jacobi. 
Step 3: Create a residual block and add a loss function. The 
Cauchy kernel function is used to reduce the negative 
impact of mismatching between global constraints and 
odometer constraints on the final optimization result. 
Cauchy loss function is as Equation (12) shown, where s is 
the square of the residual. 
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Step 4: The final residual block is added to Ceres to solve 
the least square problem with variable constraints. 
Figure 3 
(a) Cartographer mapping result on ROS in a 30 m*100 m 
area; (b) FOSLAM mapping result on ROS in a 30 m*100 
m area 

 
The mapping results of a 30 m*100 m area from the 
conventional Cartographer algorithm and FOSLAM are 
shown in Figure 3. It can be found that FOSLAM 
performed better than Cartographer in terms of 
expressiveness. The items were deformed and their 
outlines were not discernible at positions 2 and 3 of Figure 
3(a). However, in Figure 3(b), the objects' forms were 
more regular and FOSLAM lessened the effect of external 
noise during the mapping process. Furthermore, at the 1, 4, 
5 and 6 places and edges in Figure 3, the FOSLAM 
mapping is far smoother and less jagged. The importation 
of odometer data, which results in more precise poses of 
scan matching in the front-end, is the primary cause of this 
improvement.  
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dimensional pose vector T[x,y,ɵ]. There is a 
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coordinate system. Then, by using the odometer data, 
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on these two coordinate transformations. In the algorithm, 
transformation is calculated as Equation (11), where R is 
the rotation matrix and t is the translation matrix. 








 





10
)( 12

1
12

1
1

2
1

112
ttRRR

TTT        (11)           

Step 2: The LMF optimization approach is used to 
construct the optimization issue that needs to be solved. 
Use the automatic differential cost function to determine 
the Jacobi. 
Step 3: Create a residual block and add a loss function. The 
Cauchy kernel function is used to reduce the negative 
impact of mismatching between global constraints and 
odometer constraints on the final optimization result. 
Cauchy loss function is as Equation (12) shown, where s is 
the square of the residual. 
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The mapping results of a 30 m*100 m area from the 
conventional Cartographer algorithm and FOSLAM are 
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of odometer data, which results in more precise poses of 
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Step 4: The final residual block is added to Ceres to 
solve the least square problem with variable con-
straints.
The mapping results of a 30 m*100 m area from the 
conventional Cartographer algorithm and FOSLAM 
are shown in Figure 3. It can be found that FOSLAM 
performed better than Cartographer in terms of ex-
pressiveness. The items were deformed and their 
outlines were not discernible at positions 2 and 3 
of Figure 3(a). However, in Figure 3(b), the objects’ 
forms were more regular and FOSLAM lessened the 
effect of external noise during the mapping process. 
Furthermore, at the 1, 4, 5 and 6 places and edges in 
Figure 3, the FOSLAM mapping is far smoother and 
less jagged. The importation of odometer data, which 
results in more precise poses of scan matching in the 
front-end, is the primary cause of this improvement. 
The front-end scan matching analysis was also done to 
confirm the accuracy of the results. The robot was set 
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Figure 3
(a) Cartographer mapping result on ROS in a 30 m*100 m area; 
(b) FOSLAM mapping result on ROS in a 30 m*100 m area

Figure 4
(a) The average score of scan matching in each submap; (b) The maximum score, minimum score and average score of four 
algorithms in front-end scan matching

up in the same location. The global map was created by gen-
erating a total of 10 submaps. The scan matching of FOSLAM 
saves the matching score of the node pose to back end. The 
average scan matching score for each submap during the ex-
periment was obtained from the algorithm’s back-end.
For comparison, the two conventional laser SLAM algo-
rithms Karto [18] and Hector [17] were also involved in the 
experiments. The results are shown in Figure 4,

(a)

(a)

(b)

(b)

Tables 1 and 2. Based on the information in 
Figure 4(a) and Table 1, Cartographer has the 
maximum score of 67.5% and the minimum 
score of 52.3% during the initial mapping 
phase, which is the construction of the first 
four submaps, with a difference of 15.2%. While 
the maximum score of FOSLAM is 65.6% and 
the minimum score is 56.2%, with a differ-
ence of 9.3%. According to the above analysis, 
the variation of scan matching score of FOS-
LAM is 9.3%, which is 5.9% less than the one 
of Cartographer in the initial mapping phase. 
In order to make the global poses more accu-
rate, the FOSLAM integrates the odometer 
data into the back end for constraint construc-
tion when estimating the poses. Therefore, 
the prior poses used by FOSLAM scan match-
ing is closer to the real value. That results in 
a smoother transition proceduire between 
the neighboring two frames of laser data, and 
avoiding the distortion of the mapping caused 
by the large fluctuation in the scan matching. 
Thus, the performance of FOSLAMin the ini-
tial mapping stage is more stable.
Moreover, Figure 4(a) and Table 1 show the 
changing trend of the scan matching scores 
during the entire process. After the fourth sub-
map, FOSLAM had a score range between 57.7% 
and 61.1% with a difference of 3.4%. The Car-
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Table 1
The average score of scan matching for each submap

Submap 
number

The average score of 
FOSLAM for scan matching 

The average score of 
Cartographer for scan matching 

The average score of 
Karto for scan matching

The average score of 
Hector for  scan matching 

1 56.8% 52.3% 43.6% 42.7%

2 65.6% 67.5% 49.8% 46.8%

3 61.8% 59.3% 47.2% 46.4%

4 56.2% 55.3% 45.7% 43.7%

5 61.1% 57.2% 46.8% 44.3%

6 58.3% 63.7% 50.2% 44.9%

7 57.7% 54.5% 44.5% 46.1%

8 60.3% 58.6% 46.4% 45.4%

9 60.1% 59.5% 46.1% 45.7%

10 60.1% 59.3% 46.2% 45.6%

tographer received a score range from 54.5% to 63.7% 
with a 9.2% difference. These data clearly showed that 
FOSLAM scan matching has stronger convergence 
ability than Cartographer. Furthermore, it can be seen 
from Figure 4(a) that the scan matching curve of FO-
SLAM at the later stage of mapping has a more gentle 
variation. In particular, between submap 6 and sub-
map 7, the score of FOSLAM changed by only 0.6%, 
while that of Cartographer changed by 9.2%. This also 
resulted in distorted and jagged map on Cartographer, 
as evidenced by position 2 and position 3 in Figure 3. 
The two-dimensional map created by FOSLAM was 
smoother in Figure 3 due to the significant conver-
gence. It can also be clearly seen in Figure 4(a) and Ta-
ble 1 that the scan matching results of FOSLAM out-
performs those of conventional Karto and Hector.
The average matching score for FOSLAM is 57.56%, 
nearly the same as Cartographer’s, but 12.22% and 

Table 2
The maximum score, minimum score and average score of four algorithms

maximum score minimum score average score

FOSLAM 71.37% 48.11% 57.56%

Cartographer 70.91% 48.11% 57.59%

Karto 62.35% 37.72% 45.34%

Hector 49.62% 32.65% 42.91%

14.65% higher than that for Karto and Hector, respec-
tively. The scan matching process of FOSLAM was 
made easier to be convergent by including odometer 
data in the constraint building, resulting in a smooth-
er map and less jagged edges. 
The space and time complexity of the algorithms 
were further checked to confirm whether FOSLAM 
can be implemented on lightweight embedded devic-
es. The experiments primarily compared the mapping 
performance and speed of FOSLAM with Cartogra-
pher, Karto and Hector. The four methods unified the 
timestamp in ROS environment and output the log. 
Under the same experimental scenario, FOSLAM and 
Cartographer needed five stages to complete the map-
ping, meanwhile Karto and Hector needed six stages. 
Table 3 displays the mapping degree and time con-
sumption for entire mapping process. 
Under the identical circumstances, FOSLAM took  
48 s on average for mapping, compared to 46 s on aver-
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age for Cartographer. Table 3 shows the total mapping 
degree at the end of each phase. For example, at the 
end of Stage 3, the FOSLAM mapping degree is 57.81%, 
while Hector had mapped only 49.72%. The incremen-
tal mapping degrees for each stage were calculated and 
shown in Table 4, FOSLAM was mapped at 13.42%, 
21.24%, 23.15%, 24.16% and 18.03%, respectively. The 
mapping degrees of Cartographer for each of the five 
phases were 14.71%, 20.39%, 22.22%, 25.7% and 16.98%, 
respectively. Thus, FOSLAM and Cartographer had 
similar mapping degree at each stage. The efficiency of 
the mapping completion at each stage is also compara-
ble. Karto and Hector took 54 s and 58 s on average to 
map the same area, respectively. Due to the fact that the 
integration of the odometer data does not increase the 
computing load, the mapping time consumption of FO-
SLAM was still comparable to that of Cartographer.
The scan matching process continuously saves the 
successfully matched node data to the back end during 

Table 3
Mapping degree and time consumption for entire mapping process

Stage FOSLAM’s 
mapping degree

Cartographer’s mapping 
degree

Karto’s 
mapping degree

Hector’s 
mapping degree

1 13.42% 14.71% 10.27% 9.56%

2 34.66% 35.10% 28.09% 26.31%

3 57.81% 57.32% 50.75% 49.72%

4 81.97% 83.02% 69.39% 69.14%

5 100.00% (48s) 100.00% (46s) 84.71% 83.62%

6 Completed Completed 100.00% (54s) 100.00% (58s)

Table 4
Mapping degree for each stage

Stage FOSLAM’s incremental 
mapping degree for each stage

Cartographer’s incremental 
mapping degree for each stage

Karto’s  incremental map-
ping  egree for each stage

Hector’s  incremental map-
ping  degree for each stage

1 13.42% 14.71% 10.27% 9.56%

2 21.24% 20.39% 17.82% 16.75%

3 23.15% 22.22% 22.66% 23.41%

4 24.16% 25.70% 18.64% 19.42%

5 18.03% 16.98% 15.32% 14.48%

6 Completed Completed 15.29% 16.38%

SLAM mapping. Thus, besides comparing the time 
complexity, the experiments also tested their memory 
consumption of nodes and submaps. The testing pro-
cesses were excuted in the same 30 m*100 m area. In 
the test, the total number of submaps and nodes con-
sumed were extracted from the back end of the algo-
rithm. Ten submaps were constructed for each algo-
rithm to facilitate analysis. All data generated during 
the mapping process were saved to the dataset corre-
sponding to the 10 submaps. The results were shown in 
Figure 5. The global map was made up of these 10 sub-
maps and Tables 5 and 6 display the data.
As shown in Figure 5(a), during the process of creat-
ing the first 7 submaps, the total number of pose nodes 
produced by FOSLAM and Cartographer gradually 
increased with comparatively constant growth rate. 
During the process of creating the last 3 submaps, the 
node growth rate is relatively slow and the number of 
nodes tends to be stable. This is mainly due to the fact 
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(a) (b)

that the driving route of robot in the experiment is a 
loop. The nodes generated overlapped with some of 
the ones at the beginning when the robot travelled to 
the end of the loop. To reduce computation, duplicate 
nodes are no longer saved to the back end. According 
to the Table 5, FOSLAM generated a total of 426 pose 
nodes during the entire mapping process compared 
with 417 nodes made by Cartographer. 
From the perspective of memory consumption, the 
considerable improvement of FOSLAM in the map-
ping performance is only at the cost of the more mem-
ory consumption of 9 nodes. According to Table 7, the 
incremental mapping degree for each submap of FOS-
LAM is 10.79%, 14.56%, 11.5%, 11.5%, 13.62%, 14.08%, 
13.15%, 7.27%, 2.35% and 1.18%, respectively, which 
are nearly same to Cartographer. The most difference 

occurs in the third submap, FOSLAM generated only 
1.91% of the additional cost. This results showed that 
involving of odometer constraint in the back end does 
not increase the space complexity of the submap ob-
servably, but improves the accuracy of mapping.
The number of nodes generated by Karto and Hector 
are fewer, but they cannot complete the high-pre-
cision mapping tasks. The space complexity of FO-
SLAM is also reflected in the number of pose nodes 
contained in each submap. The number of nodes in 
each submap is a factor in the space complexity of 
algorithms in addition to the changing trend of the 
total number of nodes shown in Figure 5. Only FOS-
LAM and Cartographer are taken into account here 
because Karto and Hector are rarely used in practical 
engineering. As shown in Figure 6.

Figure 5
(a) The total number of nodes generated with the creation of the submaps; (b) The mapping completion degree with the 
creation of submaps

Table 5
The total number of nodes generated by the creation of the submaps

1 2 3 4 5 6 7 8 9 10

FOSLAM 46 108 157 206 264 324 380 411 421 426

Cartographer 43 104 144 198 249 309 365 403 413 417

Karto 33 76 118 162 203 239 281 309 323 328

Hector 28 61 103 139 162 198 242 277 286 291
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Table 6
The mapping degree generated by the creation of submaps for entire mapping process

1 2 3 4 5 6 7 8 9 10

FOSLAM 10.79% 25.35% 36.85% 48.35% 61.97% 76.05% 89.20% 96.47% 98.82% 100%

Cartographer 10.31% 24.94% 34.53% 47.48% 59.71% 74.10% 87.53% 96.64% 99.04% 100%

Karto 12.38% 23.80% 31.42% 42.85% 56.19% 66.66% 80.95% 90.47% 96.19% 100%

Hector 12.27% 22.11% 30.82% 43.38% 56.50% 64.17% 78.69% 88.47% 95.13% 100%

Table 7
The incremental mapping degree for each submap

1 2 3 4 5 6 7 8 9 10

FOSLAM 10.79% 14.56% 11.50% 11.50% 13.62% 14.08% 13.15% 7.27% 2.35% 1.18%

Cartographer 10.31% 14.63% 9.59% 12.95% 12.23% 14.39% 13.43% 9.11% 2.40% 0.96%

Karto 12.38% 11.42% 7.62% 11.43% 13.34% 10.47% 14.29% 9.52% 5.72% 3.81%

Hector 12.27% 9.84% 8.71% 12.56% 13.12% 7.67% 14.52% 9.78% 6.66% 4.87%

Figure 6 shows the number of nodes for each submap 
of FOSLAM and Cartographer. The third submap of 
FOSLAM contains 9 more nodes than the ones of 
Cartographer. Furthermore, from the whole process, 
the number of nodes contained in each submap are 
also consistent with the data in Table 4. Thus, it also 
shows that FOSLAM does not increase memory us-
age too much. The above analysis results show that 
FOSLAM does not occupy much computing resourc-
es and cost less memory. Thus, it is suitable to be run 
on lightweight embedded.

Figure 6
Number of nodes contained in each submap

devices with high accuracy and smoother map. Final-
ly, do supplemental verification of the 3D point cloud 
mapping produced by FOSLAM, as illustrated in Fig-
ure 7. The findings demonstrate that FOSLAM also 
has strong stability when it comes to 3D SLAM and 
also can achieve high accuracy when building dense 
point clouds of nearby objects. 
According to the performance under the above exper-
imental scenarios, the advantages of FOSLAM can be 
found. In the 2DSLAM field nowadays, the popular 
methods are Hector, Karto and Cartographer. Cartog-
rapher is considered to be the most commonly imple-
mented method among these three methods in engi-
neering. For the new FOSLAM method proposed in 
this paper, it involves real-time local pose relationship 
obtained by front-end odometer to construct con-
straint terms. The constraint relationship between 
poses is strengthened and the convergence of scan 
matching score is improved. Therefore, compared 
with the state-of-the-art Cartographer algorithm, 
FOSLAM performed smoother and less jaggedly due 
to strong constraints between neighbouring poses. In 
terms of the time consumption under the same scene, 
FOSLAM has the advantage of time consumption 
compared with Hector and Karto, and its mapping 
efficiency is higher. Moreover, through algorithm 
complexity analysis, all these improvements will not 
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Figure 7
3D point cloud mapping

increase time and space consumption much and the 
method is able to be lightweight implementation.
In order to verify the performance of FOSLAM un-
der real environment, a teaching building with high 
complexity and diverse details for global mapping is 
selected as the testing scene. The original laboratory 
equipment and objects are kept without moving. In 
this experiment, FOSLAM is performed compared 
with Cartographer, involving mapping, scan matching 
and accuracy. The global mapping effect of FOSLAM 
and Cartographer is shown in Figure 8.
As shown in Figure 8, it can be found that the mapping 
result of Cartographer showed map drift and overlap. 
Ten mapping tests were carried out by Cartographer 
under the same scenario, the robot path and speed 
were kept unchanged. On average, eight out of ten 
mapping tests resulted in drift and overlap as shown 
in Figure 8(b). However, the mapping result of FOS-
LAM can always reflect the accurate size of the map. 
This is because FOSLAM introduces the real-time 
pose data acquired by the front-end odometer to con-
struct residual terms as constraint conditions.
During the experiment, FOSLAM generated 9815 
pose nodes in global mapping while Cartographer 
generated 9748. In order to estimate the influence of 
the odometer constraint fusion on the front-end scan 

Figure 8
Mapping results of a floor of the teaching building (a) 
FOSLAM mapping result; (b) Cartographer mapping result

(a) (a)

matching procedure, the number of nodes in each in-
terval of the scan matching scores was counted. Fig-
ure 9 shows the number of pose nodes in each score 
interval acquired by these two methods at the front-
end of SLAM. The matching scores from FOSLAM 
were mostly between [0.58,0.64], while those of Car-
tographer were mostly between [0.55,0.58]. This indi-



Information Technology and Control 2024/2/53596

Figure 9
The number of pose nodes contained in each score interval 
of scan matching at the front-end of SLAM

Figure 10
The APE situation of Cartographer method. (a) Global APE error between the estimated trajectory from the Cartographer 
laser odometer and the actual trajectory (b) The change curve of the APE error over time

cates that the pose nodes of FOSLAM are more well-
matched to the map, and the same conclusion can also 
be found in Figure 8. 
For large-scale mapping, the cumulative errors of the 
laser odometer at the front-end of SLAM will be con-
stantly superimposed, resulting in reduction of the 
track accuracy. The odometer constraint construc-
tion method continuously obtains the pose of the con-
structed trajectory for optimization and feeds it back 
to the front-end of SLAM for subsequent scan match-
ing. For error evaluation, APE (Absolute Pose Error), 
RPE (Relative Pose Error) and RMSE (Root Mean 
Square Error) error indexes are the commonly used 
evaluating indicators [23, 34]. Figure 10 (a) shows the 
global APE error between the laser odometer of Car-
tographer after back-end pose optimization and the 

(a) (b)

actual trajectory of the robot in a large scene. Figure 
10 (b) shows the change curve of that APE error over 
time. In the same way, Figure 11 shows the APE situa-
tion of FOSLAM method. 

The comparative results for other APE error indi-
cators are shown in Table 8. In the case of the same 
trajectory, the comparative results of RPE error are 
shown in Table 9.
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Figure 11
The APE situation of FOSLAM method. (a) Global APE error between the estimated trajectory from the FOSLAM laser 
odometer and the actual trajectory (b) The change curve of the APE error over time

(a) (b)

Table 8
The MEAN error, RMSE and standard deviation data of 
APE evaluation criteria from Cartographer and FOSLAM 
performance under large applicaition scene, respectively

MEAN (m) RMSE (m) STD (m)

Cartographer 0.569705 0.610834 0.220350

FOSLAM 0.385600 0.452806 0.217372

Table 9
The MEAN error, RMSE and standard deviation data of 
RPE evaluation criteria from Cartographer and FOSLAM 
performance under large applicaition scene, respectively

MEAN (m) RMSE (m) STD (m)

Cartographer 0.002238 0.003228 0.002376

FOSLAM 0.002185 0.002965 0.001945

According to the experimental results, the FOSLAM’s 
estimated trajectories are more accurate than Cartog-
rapher’s. The global evaluation results of APE showed 
that the trajectory acquired by the FOSLAM is more 
globally consistent. Its mean error is about 0.18 m low-
er than Cartographer’s and its root mean square error 
was about 0.16 m lower than Cartographer. However, 
the traditional back-end optimization algorithms, such 
as Cartographer, lack the real-time front-end pose in-
formation and the constraints between pose nodes are 
relatively simple. Therefore, their laser odometer es-
timated results fed back to the front-end function are 
less accurate than FOSLAM. These results can also be 
found in the RPE evaluation of the trajectory. Further-
more, FOSLAM can enhance the constraint between 
nodes without sacrificing too much running time and 
memory space, improve the convergence of the front-
end scan matching score of the SLAM system and then 
make the mapping performance smoother and more 
accurate than Cartographer. FOSLAM is also more ef-
ficient than Hector and Karto. 
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5. Conclusion
In this paper, we introduced a FOSLAM method which 
fuse the front-end two-wheel differential odometer 
data into the back-end pose graph optimization and 
use the Ceres nonlinear least square library to con-
struct residual. The advantage of the algorithm was 
verified on a dataset of 30 m*100 m area by experi-
ments. Global optimization of node pose is performed 
by using Ceres method. The optimized global pose 
makes the prior data of the front-end more accurate 
and the scan matching process smoother.
The data analysis results show that FOSLAM does 
not increase the redundant time and space complex-
ity compared to the traditional method Cartographer. 
Furthermore, it optimized the convergence of front-
end scan matching and improved the robustness of 
the mapping process. Moreover, FOSLAM achieves 
smoother in terms of rendering and its match per-
formance is better than some popular laser SLAM al-
gorithms, such as Hector and Karto. In experiments, 
FOSLAM is evaluated against Cartographer, state-of-
the-art 2D laser SLAM algorithm, in a floor scenario 

with higher environmental complexity. FOSLAM’s 
mapping results are consistently better than Cartog-
rapher’s and its front-end laser odometer trajectory 
estimation is also more accurate than Cartographer’s. 
FOSLAM is suitable to be applied on indoor robot for 
cleaning and inspection and can be further deployed 
on autonomous unmanned vehicals. Although the 
lack of visual information makes its performance 
slightly insufficient when facing complex environ-
ments, its low cost, relatively high reliability and 
rapid response capabilities make it more suitable for 
large-scale deployments, especially under econom-
ical environments and harsh working conditions. In 
the future, the addition of neuro-heuristic algorithms 
may further increase its performance.
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