
Information Technology and Control 2024/2/53584

A Construction Optimization
for Laser SLAM Based on
Odometer Constraint Fusion

ITC 2/53
Information Technology
and Control
Vol. 53 / No. 2 / 2024
pp. 584-600
DOI 10.5755/j01.itc.53.2.32897

A Construction Optimization for Laser SLAM
Based on Odometer Constraint Fusion

Received 2022/12/02 Accepted after revision 2024/01/01

HOW TO CITE: Huang, H., Yang, P., Cai, S., Li, J., Zheng, Y., Zou, T. (2024). A Construction
Optimization for Laser SLAM Based on Odometer Constraint Fusion. Information Technology and
Control, 53(2), 584-600. https://doi.org/10.5755/j01.itc.53.2.32897

Corresponding author: zouty@fafu.edu.cn

Haojun Huang, Puxian Yang, Shengqing Cai
College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University,
Fuzhou, Fujian 350002, China
Key Laboratory of Agricultural Information Sensoring Technology, Fujian Agriculture and Forestry University,
Fuzhou, Fujian 350002, China

Jixiang Li
Jinshan College, Fujian Agriculture and Forestry, China

Yuda Zheng, Tengyue Zou
College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University,
Fuzhou, Fujian 350002, China
Key Laboratory of Agricultural Information Sensoring Technology, Fujian Agriculture and Forestry University,
Fuzhou, Fujian 350002, China

The traditional laser SLAM (Simultaneous Localization and Mapping) algorithm uses the global relative poses
and local ones to form residual blocks. Its constructed map is not smooth enough and the constraint construction
is too simplex under some special scenarios. Thus, this paper proposes an odometer constraint fusion method
called FOSLAM (Fusion Odometer SLAM) to construct residual blocks between constrains and solve the nonlin-
ear least squares by Ceres. The effectiveness and accuracy of this method have been verified through comparative
experiments. Experimental results showed that without increasing the time and space complexity, by involving
the odometer constraint into the SLAM optimization process, the convergence of scan matching scores can be
improved and the constructed grid map edges are smoother and the jagged phenomenon can be reduced. Under
sophisticated scene, FOSLAM is able to acquire more accurate maps and laser odometer trajectory than Cartog-
rapher method. Therefore, it is suitable to be used on indoor robot for cleaning and inspection and can be further
deployed on autonomous unmanned vehicles involving spatial visualization and neuro-heuristic guidance.
KEYWORDS: Laser SLAM, Redisual blocks, Back-end optimization, Odometer constraint fusion, Ceres.

585Information Technology and Control 2024/2/53

1. Introduction
The SLAM method is mainly used to solve the local-
ization, navigation and map construction problems
for mobile robot under unknown environment [1] .
Therefore, it is suitable to be used on indoor robot for
cleaning and inspection [29] and can be further de-
ployed on autonomous unmanned vehicals involving
spatial visualization [4] and neuro-heuristic guid-
ance [24]. In recent years, improvements in SLAM
have mainly focused on sensor data fusion and artifi-
cial intelligence (AI) heuristic guidance. Kachurka et
al. [16] fused indoor wearable GPS information into
dataset to improve SLAM performance, and flying
lidar data are also taken to rise location accuracy for
unmanned aerial robot [25]. Jamaludin et al. [12] used
Rao-Blackwellized particle filter (RBPF) integrat-
ed with artificial neural networks (ANN) to assist in
SLAM modeling, and convolutional neural networks
(CNN) [13] can also be used to improve the fault de-
tection of scan matching in SLAM.
Robots with specific sensors are able to acquire their
poses by constructing environmental models without
any prior conditions, which can greatly improve the
autonomous navigation ability and their adaptability
to different application environments [30]. The meth-
od is also helpful to dynamic path planning, real-time
obstacle avoidance and multi-robot cooperation.
Modern SLAM framework can be divided into three
steps: front-end scan matching, back-end pose graph
optimization and loopback detection for positioning.
Scan matching builds map and stores pose data, pose
graph optimization fine-tunes the map by construct-
ing constraints. In scan matching step, the prior poses
are generally provided by IMU (Inertial Measurement
Unit) and odometer, then conducting scan matching by
combining laser data and prior poses. Finally, output
the grid map frame by frame. The pose nodes obtained
by scan matching at the front-end are added to the pose
graph at the back-end. Simultaneously, all the poses in
the graph are globally optimized and the correspond-
ing map points for each pose are corrected accordingly.
The framework of 2D SLAM is shown in Figure 1. On
Google’s Cartographer [11], in order to ensure the con-
vergence of closed-loop constraints and global optimi-
zation, loopback detection is usually needed to calcu-
late the constraints of intra- and inter-submap. Finally,
the information is added to the optimization problem
for nonlinear least squares solution.

The use of pose graph simplifies the structure of back-
end optimization process and it can greatly improve
the real-time performance. Therefore, the pose graph
optimization (PGO) has occupied a dominant posi-
tion in the current SLAM researches. The optimiza-
tion method does not directly solve the cost function
but through iteration. During the iterative process,
the independent variable is constantly adjusted and
the cost function is gradually reduced. When the cost
function cannot be decreased further or the change is
smaller than the threshold value, the iteration is com-
pleted.
With the development of the accuracy requirements
of SLAM, researchers have proposed some back-end
optimization methods. Konolige et al. [19] introduced
a nonlinear optimization system called sparse pose
adjustment (SPA) using efficient linear matrix con-
struction and sparse non-iterative Cholesky decom-
position to solve large sparse pose graphs. In addition,
mainstream SLAM back-end optimization libraries,
such as General Graphic Optimization (G2O) [20]
and Georgia Tech Smoothing and Mapping (GTSAM)
[21] are proposed based on SPA approach. Stochas-
tic gradient descent (GD) [8, 31] is developed to help
solving this probelm, but the descent efficiency is
unstable and it is easy to fall into local minimum. For
high dimensional data, the second derivatives may
be hard to be calculated. Gauss-Newton (GN) meth-
od [3, 28] is able to improve the efficiency of solving
it by fitting Jacobian and Hessian matrixes. However,
the results acquired by GN cannot guarantee the gra-

Figure 1
A framework of laser SLAM

Information Technology and Control 2024/2/53586

dient descent. Thus, Levenbergt-Marquardt (LM) al-
gorithm [2, 27] is introduced to add a diagonal matrix
to the fitting results to ensure the gradient descent.
Furthermore, the Dogleg algorithm [10] uses the slope
changes in the optimization process to adjust the
trust region and guide the LM solution process.
In the optimization strategy of SLAM, the sparsity of
the network must be guaranteed to speed up the com-
putation of the optimal solution [9]. Eckenhoff et al.
[6] introduced a decoupled, consistent marginaliza-
tion and sparsification (DMS) approach for reducing
the computational cost of graph-based SLAM to en-
able long-term operation. Recently, Gao et al. [7] have
combined Cholesky decomposition with back-end
optimization to improve the computational speed of
the algorithm. In the simulation, the efficiency of op-
timized method was improved by 24% compared with
the traditional ones.
However, there are common problems in these meth-
ods, they only focus on the efficiency of the algorithm
but ignore the complex styles and high hardware cost.
Furthermore, the selection of back-end constraints is
also relatively simple, which does not make full use of
front-end data. A suitable loss function is also need-
ed to penalize those terms with too large error [5]. In
this paper, a new constraint construction method for
SLAM back-end is introduced, named Fusion Odom-
eter SLAM (FOSLAM). The odometer data is fused
into the SLAM back-end and the nonlinear least
square method is used to optimize the poses. More-
over, FOSLAM is compared with other laser SLAM
methods in terms of algorithmic complexity. The pos-
sibility of deploying FOSLAM on embedded devices
is also verified.
This paper introduces the general laser SLAM frame-
work including the front-end scan matching in Sec-
tion 2. In Section 3, the new FOSLAM method is in-
troduced which imports the odometer data into the
constraint construction at the back-end optimization
and uses LMF procedure to guide the optimization
iteration process. Finally, in Section 4, experimental
results show that FOSLAM can improve the conver-
gence of scan matching without increasing the re-
dundancy and the its mapping results are smoother.
Moreover, in high-complexity scenarios, FOSLAM is
able to acquire better achievement than Cartographer
method.

2. Local 2D Laser SLAM
The laser SLAM is generally classified as local SLAM
and global SLAM according to the different refer-
ence coordinates of robot poses. Local mapping is a
process to build a local map using sensor scan data,
also called local SLAM. The relationship among robot
pose points, observation data and map are established
by constraint quantity. There is error between the ro-
bot prior pose predicted by IMU and odometer data
and the actual one. Thus, it is necessary to update the
prior pose by the observation data further [33].

2.1. Submap Construction
Laser data, submaps and global map are linked by ro-
bot pose. When each frame of laser data is acquired,
the laser data are inserted into submap using the scan
matching method of Scan-to-Submap. Therefore, a
certain amount of laser data forms a submap, all sub-
maps eventually form a global map.
Laser data are usually denoted by vector hk (k=1,2,...).
It represents the coordinates of a set of laser points
with the LiDAR rotation center as the origin of the
coordinate system. In constructing procedure of sub-
map, the transformation matrix Tζ=(Rζ,tζ) is used to
represent the rotation and translation relationship
between the two neighbouring frames of laser data.
Then, transform the laser data hk into the submap co-
ordinate system to complete the construction of sub-
map by Equation (1).

Marquardt (LM) algorithm [2, 27] is introduced to add a
diagonal matrix to the fitting results to ensure the gradient
descent. Furthermore, the Dogleg algorithm [10] uses the
slope changes in the optimization process to adjust the trust
region and guide the LM solution process.
In the optimization strategy of SLAM, the sparsity of the
network must be guaranteed to speed up the computation
of the optimal solution [9]. Eckenhoff et al. [6] introduced
a decoupled, consistent marginalization and sparsification
(DMS) approach for reducing the computational cost of
graph-based SLAM to enable long-term operation.
Recently, Gao et al. [7] have combined Cholesky
decomposition with back-end optimization to improve the
computational speed of the algorithm. In the simulation,
the efficiency of optimized method was improved by 24%
compared with the traditional ones.
However, there are common problems in these methods,
they only focus on the efficiency of the algorithm but
ignore the complex styles and high hardware cost.
Furthermore, the selection of back-end constraints is also
relatively simple, which does not make full use of front-
end data. A suitable loss function is also needed to penalize
those terms with too large error [5]. In this paper, a new
constraint construction method for SLAM back-end is
introduced, named Fusion Odometer SLAM (FOSLAM).
The odometer data is fused into the SLAM back-end and
the nonlinear least square method is used to optimize the
poses. Moreover, FOSLAM is compared with other laser
SLAM methods in terms of algorithmic complexity. The
possibility of deploying FOSLAM on embedded devices is
also verified.
This paper introduces the general laser SLAM framework
including the front-end scan matching in Section 2. In
Section 3, the new FOSLAM method is introduced
which imports the odometer data into the constraint
construction at the back-end optimization and uses LMF
procedure to guide the optimization iteration process.
Finally, in Section 4, experimental results show that
FOSLAM can improve the convergence of scan matching
without increasing the redundancy and the its mapping
results are smoother. Moreover, in high-complexity
scenarios, FOSLAM is able to acquire better achievement
than Cartographer method.

2. Local 2D Laser SLAM
The laser SLAM is generally classified as local SLAM and
global SLAM according to the different reference
coordinates of robot poses. Local mapping is a process to
build a local map using sensor scan data, also called local
SLAM. The relationship among robot pose points,
observation data and map are established by constraint
quantity. There is error between the robot prior pose
predicted by IMU and odometer data and the actual one.
Thus, it is necessary to update the prior pose by the
observation data further [33].

2.1. Submap Construction
Laser data, submaps and global map are linked by robot
pose. When each frame of laser data is acquired, the laser
data are inserted into submap using the scan matching
method of Scan-to-Submap. Therefore, a certain amount of
laser data forms a submap, all submaps eventually form a
global map.
Laser data are usually denoted by vector hk (k=1,2,...). It
represents the coordinates of a set of laser points with the
LiDAR rotation center as the origin of the coordinate
system. In constructing procedure of submap, the
transformation matrix Tζ=(Rζ,tζ) is used to represent the
rotation and translation relationship between the two
neighbouring frames of laser data. Then, transform the
laser data hk into the submap coordinate system to complete
the construction of submap by Equation (1).

















 


y

x
kk hhT










 cossin

sincos
 (1)

where the pose transformation can be expressed as ζ = (ζx,
ζy, ζθ) with a [ζx, ζy] translation and a ζθ rotation. In this
coordinate transformation formula, the first 2*2
matrix is Rζ, the second 2*1 matrix is tζ.

2.2. Smooth Scan Matching
After the result of new scan is inserted into the submap, the
state of the 2D grid needs to be updated iteratively. The
updating method is as Equations (2)-(3) shown in [11].

prob
probprobodds



1

)((2)

)))())(((()(1
new hitold PoddsxModdsoddsclampxM   ,

(3)

(1)

where the pose transformation can be expressed as ζ =
(ζx, ζy, ζθ) with a [ζx, ζy] translation and a ζθ rotation. In
this coordinate transformation formula, the first 2*2
matrix is Rζ, the second 2*1 matrix is tζ.

2.2. Smooth Scan Matching
After the result of new scan is inserted into the sub-
map, the state of the 2D grid needs to be updated iter-
atively. The updating method is as Equations (2)-(3)
shown in [11].

Marquardt (LM) algorithm [2, 27] is introduced to add a
diagonal matrix to the fitting results to ensure the gradient
descent. Furthermore, the Dogleg algorithm [10] uses the
slope changes in the optimization process to adjust the trust
region and guide the LM solution process.
In the optimization strategy of SLAM, the sparsity of the
network must be guaranteed to speed up the computation
of the optimal solution [9]. Eckenhoff et al. [6] introduced
a decoupled, consistent marginalization and sparsification
(DMS) approach for reducing the computational cost of
graph-based SLAM to enable long-term operation.
Recently, Gao et al. [7] have combined Cholesky
decomposition with back-end optimization to improve the
computational speed of the algorithm. In the simulation,
the efficiency of optimized method was improved by 24%
compared with the traditional ones.
However, there are common problems in these methods,
they only focus on the efficiency of the algorithm but
ignore the complex styles and high hardware cost.
Furthermore, the selection of back-end constraints is also
relatively simple, which does not make full use of front-
end data. A suitable loss function is also needed to penalize
those terms with too large error [5]. In this paper, a new
constraint construction method for SLAM back-end is
introduced, named Fusion Odometer SLAM (FOSLAM).
The odometer data is fused into the SLAM back-end and
the nonlinear least square method is used to optimize the
poses. Moreover, FOSLAM is compared with other laser
SLAM methods in terms of algorithmic complexity. The
possibility of deploying FOSLAM on embedded devices is
also verified.
This paper introduces the general laser SLAM framework
including the front-end scan matching in Section 2. In
Section 3, the new FOSLAM method is introduced
which imports the odometer data into the constraint
construction at the back-end optimization and uses LMF
procedure to guide the optimization iteration process.
Finally, in Section 4, experimental results show that
FOSLAM can improve the convergence of scan matching
without increasing the redundancy and the its mapping
results are smoother. Moreover, in high-complexity
scenarios, FOSLAM is able to acquire better achievement
than Cartographer method.

2. Local 2D Laser SLAM
The laser SLAM is generally classified as local SLAM and
global SLAM according to the different reference
coordinates of robot poses. Local mapping is a process to
build a local map using sensor scan data, also called local
SLAM. The relationship among robot pose points,
observation data and map are established by constraint
quantity. There is error between the robot prior pose
predicted by IMU and odometer data and the actual one.
Thus, it is necessary to update the prior pose by the
observation data further [33].

2.1. Submap Construction
Laser data, submaps and global map are linked by robot
pose. When each frame of laser data is acquired, the laser
data are inserted into submap using the scan matching
method of Scan-to-Submap. Therefore, a certain amount of
laser data forms a submap, all submaps eventually form a
global map.
Laser data are usually denoted by vector hk (k=1,2,...). It
represents the coordinates of a set of laser points with the
LiDAR rotation center as the origin of the coordinate
system. In constructing procedure of submap, the
transformation matrix Tζ=(Rζ,tζ) is used to represent the
rotation and translation relationship between the two
neighbouring frames of laser data. Then, transform the
laser data hk into the submap coordinate system to complete
the construction of submap by Equation (1).

















 


y

x
kk hhT










 cossin

sincos
 (1)

where the pose transformation can be expressed as ζ = (ζx,
ζy, ζθ) with a [ζx, ζy] translation and a ζθ rotation. In this
coordinate transformation formula, the first 2*2
matrix is Rζ, the second 2*1 matrix is tζ.

2.2. Smooth Scan Matching
After the result of new scan is inserted into the submap, the
state of the 2D grid needs to be updated iteratively. The
updating method is as Equations (2)-(3) shown in [11].

prob
probprobodds



1

)((2)

)))())(((()(1
new hitold PoddsxModdsoddsclampxM   ,

(3)

(2)

587Information Technology and Control 2024/2/53

Marquardt (LM) algorithm [2, 27] is introduced to add a
diagonal matrix to the fitting results to ensure the gradient
descent. Furthermore, the Dogleg algorithm [10] uses the
slope changes in the optimization process to adjust the trust
region and guide the LM solution process.
In the optimization strategy of SLAM, the sparsity of the
network must be guaranteed to speed up the computation
of the optimal solution [9]. Eckenhoff et al. [6] introduced
a decoupled, consistent marginalization and sparsification
(DMS) approach for reducing the computational cost of
graph-based SLAM to enable long-term operation.
Recently, Gao et al. [7] have combined Cholesky
decomposition with back-end optimization to improve the
computational speed of the algorithm. In the simulation,
the efficiency of optimized method was improved by 24%
compared with the traditional ones.
However, there are common problems in these methods,
they only focus on the efficiency of the algorithm but
ignore the complex styles and high hardware cost.
Furthermore, the selection of back-end constraints is also
relatively simple, which does not make full use of front-
end data. A suitable loss function is also needed to penalize
those terms with too large error [5]. In this paper, a new
constraint construction method for SLAM back-end is
introduced, named Fusion Odometer SLAM (FOSLAM).
The odometer data is fused into the SLAM back-end and
the nonlinear least square method is used to optimize the
poses. Moreover, FOSLAM is compared with other laser
SLAM methods in terms of algorithmic complexity. The
possibility of deploying FOSLAM on embedded devices is
also verified.
This paper introduces the general laser SLAM framework
including the front-end scan matching in Section 2. In
Section 3, the new FOSLAM method is introduced
which imports the odometer data into the constraint
construction at the back-end optimization and uses LMF
procedure to guide the optimization iteration process.
Finally, in Section 4, experimental results show that
FOSLAM can improve the convergence of scan matching
without increasing the redundancy and the its mapping
results are smoother. Moreover, in high-complexity
scenarios, FOSLAM is able to acquire better achievement
than Cartographer method.

2. Local 2D Laser SLAM
The laser SLAM is generally classified as local SLAM and
global SLAM according to the different reference
coordinates of robot poses. Local mapping is a process to
build a local map using sensor scan data, also called local
SLAM. The relationship among robot pose points,
observation data and map are established by constraint
quantity. There is error between the robot prior pose
predicted by IMU and odometer data and the actual one.
Thus, it is necessary to update the prior pose by the
observation data further [33].

2.1. Submap Construction
Laser data, submaps and global map are linked by robot
pose. When each frame of laser data is acquired, the laser
data are inserted into submap using the scan matching
method of Scan-to-Submap. Therefore, a certain amount of
laser data forms a submap, all submaps eventually form a
global map.
Laser data are usually denoted by vector hk (k=1,2,...). It
represents the coordinates of a set of laser points with the
LiDAR rotation center as the origin of the coordinate
system. In constructing procedure of submap, the
transformation matrix Tζ=(Rζ,tζ) is used to represent the
rotation and translation relationship between the two
neighbouring frames of laser data. Then, transform the
laser data hk into the submap coordinate system to complete
the construction of submap by Equation (1).

















 


y

x
kk hhT










 cossin

sincos
 (1)

where the pose transformation can be expressed as ζ = (ζx,
ζy, ζθ) with a [ζx, ζy] translation and a ζθ rotation. In this
coordinate transformation formula, the first 2*2
matrix is Rζ, the second 2*1 matrix is tζ.

2.2. Smooth Scan Matching
After the result of new scan is inserted into the submap, the
state of the 2D grid needs to be updated iteratively. The
updating method is as Equations (2)-(3) shown in [11].

prob
probprobodds



1

)((2)

)))())(((()(1
new hitold PoddsxModdsoddsclampxM   ,

(3)

, (3)

where prob is the occupancy probability Phit or
non-occupancy probability Pmiss, x represents the grid,
and clamp denotes the interval limiting function. odds
is an inverse proportional function that updates the
probability of hits and misses, and odds-1 is the inverse
function of odds. Mold is the existing probability grid
and Mnew is the iteratively updated probability grid.
This grid updating mechanism can effectively reduce
the interference of dynamic obstacles in the environ-
ment. Due to the large error in the predicted pose from
the motion model, the Scan-to-Submap matching is
used to further update the predicted pose with the
observed data. The usual method is to create a nonlin-
ear search window around the prior pose. Search and
match within the window to get the closest results to
the prior pose, and it is actually solving a nonlinear
least square problem as Equation (4) shown.

where prob is the occupancy probability Phit or non-
occupancy probability Pmiss, x represents the grid, and
clamp denotes the interval limiting function. odds is an
inverse proportional function that updates the probability
of hits and misses, and odds-1 is the inverse function of
odds. Mold is the existing probability grid and Mnew is the
iteratively updated probability grid.
This grid updating mechanism can effectively reduce the
interference of dynamic obstacles in the environment. Due
to the large error in the predicted pose from the motion
model, the Scan-to-Submap matching is used to further
update the predicted pose with the observed data. The
usual method is to create a nonlinear search window
around the prior pose. Search and match within the
window to get the closest results to the prior pose, and it is
actually solving a nonlinear least square problem as
Equation (4) shown.

 



K

k
ksmooth hTM

1

2))(1(minarg 
 (4)

The process of Equation (4) determines the matching
degree between laser data and submap. Msmooth is a
smoothing filter function obtained by bicubic interpolation
method. When the difference between interpolated result
and the prior pose is smallest, the matching is considered
to be successful.

3. Pose Graph Optimization
In the graph structure of SLAM back end, each scan frame
corresponds to a pair of global coordinates and a pair of
local coordinates in global and local submap coordinate
system, respectively. The front-end scan matching
continuously generates these coordinates and saves them
to the back end. The back end of SLAM algorithm
combines these pose information into various constraints
that actually form the pose graph [32, 14]. When the closed
loop is detected, global optimization is carried out on all
poses in the whole pose graph. When all poses will be
corrected and the corresponding map points on each pose
will be corrected accordingly. This is the pose graph
optimization process of the global mapping.
The pose graph optimization is based on nodes and edges.
A node is a global or local pose of a robot. The edge
represents the constraint relationship between two poses.

Thus, an edge is a coordinate transformation. In general,
there is a set of constraint relations between two global
poses. The structure of the pose graph is shown in Figure
2.
Figure 2
The structure of pose graph

3.1. Nonlinear Least Squares Modeling
In the algorithm, Ceres library is used to model the
optimization problem. Ceres solves robust bounds
constrained non-linear least squares problem by the
formula as Equation (5).

 
i

ikiix
xxf)),...,((

2
1min 2

1i (5)

where ρi is a loss function. Loss function is a function with
scalar value which reduces the impact of outliers on the
solution of nonlinear least square problem [26]. fi

represents a cost function that depends on the parameter
block. xi1,, xik are optimization variables and min
denotes the function to get the minimum value.

3.2. Construction of Residual Terms
In general, the construction of residual terms needs two
kinds of constraints. Under global coordinates, the
coordinate transformation between two nodes forms the
first constraints. The traditional back-end optimization
methods extract the transformation between the
corresponding nodes from the submap to form the second
constraints. However, these methods all ignore the useful
data collected by the front-end sensors. Thus, we designed
a Fusion Odometer SLAM (FOSLAM) method to adopt
relative pose data obtained from odometer to constitute
another set of constraints. FOSLAM uses the global
relative pose and odometer relative pose to make a set of
residual terms and constructing the cost function. Then
adopt Ceres to calculate the nonlinear least squares

(4)

The process of Equation (4) determines the match-
ing degree between laser data and submap. Msmooth is
a smoothing filter function obtained by bicubic in-
terpolation method. When the difference between
interpolated result and the prior pose is smallest, the
matching is considered to be successful.

3. Pose Graph Optimization
In the graph structure of SLAM back end, each scan
frame corresponds to a pair of global coordinates and
a pair of local coordinates in global and local sub-
map coordinate system, respectively. The front-end
scan matching continuously generates these coordi-
nates and saves them to the back end. The back end
of SLAM algorithm combines these pose information
into various constraints that actually form the pose
graph [32, 14]. When the closed loop is detected, glob-
al optimization is carried out on all poses in the whole
pose graph. When all poses will be corrected and the
corresponding map points on each pose will be cor-
rected accordingly. This is the pose graph optimiza-
tion process of the global mapping.
The pose graph optimization is based on nodes and
edges. A node is a global or local pose of a robot. The

edge represents the constraint relationship between
two poses. Thus, an edge is a coordinate transforma-
tion. In general, there is a set of constraint relations
between two global poses. The structure of the pose
graph is shown in Figure 2.

Figure 2
The structure of pose graph

3.1. Nonlinear Least Squares Modeling
In the algorithm, Ceres library is used to model the
optimization problem. Ceres solves robust bounds
constrained non-linear least squares problem by the
formula as Equation (5).

where prob is the occupancy probability Phit or non-
occupancy probability Pmiss, x represents the grid, and
clamp denotes the interval limiting function. odds is an
inverse proportional function that updates the probability
of hits and misses, and odds-1 is the inverse function of
odds. Mold is the existing probability grid and Mnew is the
iteratively updated probability grid.
This grid updating mechanism can effectively reduce the
interference of dynamic obstacles in the environment. Due
to the large error in the predicted pose from the motion
model, the Scan-to-Submap matching is used to further
update the predicted pose with the observed data. The
usual method is to create a nonlinear search window
around the prior pose. Search and match within the
window to get the closest results to the prior pose, and it is
actually solving a nonlinear least square problem as
Equation (4) shown.

 



K

k
ksmooth hTM

1

2))(1(minarg 
 (4)

The process of Equation (4) determines the matching
degree between laser data and submap. Msmooth is a
smoothing filter function obtained by bicubic interpolation
method. When the difference between interpolated result
and the prior pose is smallest, the matching is considered
to be successful.

3. Pose Graph Optimization
In the graph structure of SLAM back end, each scan frame
corresponds to a pair of global coordinates and a pair of
local coordinates in global and local submap coordinate
system, respectively. The front-end scan matching
continuously generates these coordinates and saves them
to the back end. The back end of SLAM algorithm
combines these pose information into various constraints
that actually form the pose graph [32, 14]. When the closed
loop is detected, global optimization is carried out on all
poses in the whole pose graph. When all poses will be
corrected and the corresponding map points on each pose
will be corrected accordingly. This is the pose graph
optimization process of the global mapping.
The pose graph optimization is based on nodes and edges.
A node is a global or local pose of a robot. The edge
represents the constraint relationship between two poses.

Thus, an edge is a coordinate transformation. In general,
there is a set of constraint relations between two global
poses. The structure of the pose graph is shown in Figure
2.
Figure 2
The structure of pose graph

3.1. Nonlinear Least Squares Modeling
In the algorithm, Ceres library is used to model the
optimization problem. Ceres solves robust bounds
constrained non-linear least squares problem by the
formula as Equation (5).

 
i

ikiix
xxf)),...,((

2
1min 2

1i (5)

where ρi is a loss function. Loss function is a function with
scalar value which reduces the impact of outliers on the
solution of nonlinear least square problem [26]. fi

represents a cost function that depends on the parameter
block. xi1,, xik are optimization variables and min
denotes the function to get the minimum value.

3.2. Construction of Residual Terms
In general, the construction of residual terms needs two
kinds of constraints. Under global coordinates, the
coordinate transformation between two nodes forms the
first constraints. The traditional back-end optimization
methods extract the transformation between the
corresponding nodes from the submap to form the second
constraints. However, these methods all ignore the useful
data collected by the front-end sensors. Thus, we designed
a Fusion Odometer SLAM (FOSLAM) method to adopt
relative pose data obtained from odometer to constitute
another set of constraints. FOSLAM uses the global
relative pose and odometer relative pose to make a set of
residual terms and constructing the cost function. Then
adopt Ceres to calculate the nonlinear least squares

(5)

where ρi is a loss function. Loss function is a function
with scalar value which reduces the impact of outliers
on the solution of nonlinear least square problem [26].
fi represents a cost function that depends on the pa-
rameter block. xi1,, xik are optimization variables and
min denotes the function to get the minimum value.

3.2. Construction of Residual Terms
In general, the construction of residual terms needs
two kinds of constraints. Under global coordinates,
the coordinate transformation between two nodes
forms the first constraints. The traditional back-end
optimization methods extract the transformation be-
tween the corresponding nodes from the submap to
form the second constraints. However, these meth-
ods all ignore the useful data collected by the front-
end sensors. Thus, we designed a Fusion Odometer
SLAM (FOSLAM) method to adopt relative pose data

Information Technology and Control 2024/2/53588

obtained from odometer to constitute another set of
constraints. FOSLAM uses the global relative pose
and odometer relative pose to make a set of residual
terms and constructing the cost function. Then adopt
Ceres to calculate the nonlinear least squares problem
in the iterative process. Because both these two sets
of constraints are in the form of three-dimensional
vector [x,y,θ], the residual term generated is also in
the same form, which can be written as Equation (6).

problem in the iterative process. Because both these two
sets of constraints are in the form of three-dimensional
vector [x,y,θ], the residual term generated is also in the
same form, which can be written as Equation (6).






































12

12

12

11

11

100
0cossin
0sincos





yy
xx
 (6)

In FOSLAM, Levenbergt-Marquardt-Fletcher (LMF)
algorithm is used for iterative updating and Ceres method
is adopt to help the calculation automatically. LMF gets
rid of the restriction that it needs to iterate near the
expansion point and uses Lagrange multiplier as a
correction. The Lagrange multiplier is able to transform
the least squares with point position constraints into least
squares without constraints [15]. The essence of LMF is
shown in Equation (7).

 eJIJJx T
eke

T
e

1)(  (7)

Δx is the amount of iteration updates. e is the error function.
-Je

Te is the negative gradient of the target function. And the
denominator term Je

TJe+μkI is the Hessian matrix of the
objective function with modification. The error function
Jacobian Je reflects the differential relationship between
variables.
In the algorithm, the value of the modified weight μk is
constantly adjusted, so that the ratio of the cost function
Ψ(x) and the approximate cost function φ(x) approaches 1,
indicating that the better the linearity is. The specific
process is as Equation (8-10).

)()()()()()1()()(kkkk xxxxx    (8)

xJJxeJxx e
T
e

TT
e

T  2)0()( (9)

xJJxeJx
xx

e
T
e

TT
e

T

kk

k 









2
)()()()1(


 (10)

Therefore, the goal of the algorithm to is to use the
modified parameter μk to ensure that each update of the
iterative update quantity Δx is gradient descent.
In FOSLAM, Cauchy kernel function is selected to reduce
the negative impact of incorrect closed-loop detection on
the final optimization result and enhance the algorithm
robustness to outliers [22]. FOSLAM also uses the Ceres
nonlinear optimization library to construct the residual
block between the global relative pose and the odometer
pose. The algorithm iterate the pose residual to obtain the
optimal solution by creating the sparse cost function of

automatic differentiation and import the front-end
calculated odometer pose.

4. Experiments and Results
The constraint construction strategy provided in this paper
is implemented based on Google’s Cartographer front-end
construction idea, which is a real-time solution for building
indoor grid maps. This section verifies the advantages of
FOSLAM through comparative experiments. In the
experiments, in order to control the system’s cost, the robot
is equipped with a single line laser LiDAR A1M8
(SLAMTEC, China), a nine-axis IMU JY901 (Wit-
Motion, China) and a two-wheel differential chassis. The
software framework is built based on ROS (Robot
Operating System) and a mainstream SLAM algorithm
deployed on it. The host Raspberry Pi 4B is mounted on
the mobile robot and the secondary PC virtual machine
uses Ubuntu 18.04 and ROS melodic version. The results
of SLAM construction are observed through the Rviz 3D
visualization plug-in that comes with ROS.
Fusion Odometer SLAM (FOSLAM) uses the relative pose
calculated from the odometer data as a set of constraints
and constructs a residual term by the global constraints
between poses. Furthermore, FOSLAM uses LMF to guide
the iterative process and enhances its robustness through
Cauchy kernel function. Utilize Google’s Ceres nonlinear
optimization C++ package to resolve the nonlinear least
square problem among constraints. The procedure of
calculating constraints for FOSLAM is illustrated in
Algorithm 1.
In FOSLAM, the Ceres method with numerical automatic
derivation is used to avoid complex Jacobian calculation.
Thus, the Ceres’ function with the optimization variable
and residual term passed in is the only requirement for
solving the nonlinear least squares problem when
constructing the cost function. In Algorithm 1,
global_submap is the global coordinate of the origin node
in the submap and global_node is the global coordinate of
the pose node. The first constraint is the relative
transformation between the pose node and the origin of the
submap on the global coordinates, which is needed to be
optimized in Ceres solution. The second constraint, which
is marked as loro (local_observed_relative_ odometer), is
the local relative coordinate transformation between their

(6)

In FOSLAM, Levenbergt-Marquardt-Fletcher (LMF)
algorithm is used for iterative updating and Ceres
method is adopt to help the calculation automatically.
LMF gets rid of the restriction that it needs to iterate
near the expansion point and uses Lagrange multipli-
er as a correction. The Lagrange multiplier is able to
transform the least squares with point position con-
straints into least squares without constraints [15].
The essence of LMF is shown in Equation (7).

problem in the iterative process. Because both these two
sets of constraints are in the form of three-dimensional
vector [x,y,θ], the residual term generated is also in the
same form, which can be written as Equation (6).






































12

12

12

11

11

100
0cossin
0sincos





yy
xx
 (6)

In FOSLAM, Levenbergt-Marquardt-Fletcher (LMF)
algorithm is used for iterative updating and Ceres method
is adopt to help the calculation automatically. LMF gets
rid of the restriction that it needs to iterate near the
expansion point and uses Lagrange multiplier as a
correction. The Lagrange multiplier is able to transform
the least squares with point position constraints into least
squares without constraints [15]. The essence of LMF is
shown in Equation (7).

 eJIJJx T
eke

T
e

1)(  (7)

Δx is the amount of iteration updates. e is the error function.
-Je

Te is the negative gradient of the target function. And the
denominator term Je

TJe+μkI is the Hessian matrix of the
objective function with modification. The error function
Jacobian Je reflects the differential relationship between
variables.
In the algorithm, the value of the modified weight μk is
constantly adjusted, so that the ratio of the cost function
Ψ(x) and the approximate cost function φ(x) approaches 1,
indicating that the better the linearity is. The specific
process is as Equation (8-10).

)()()()()()1()()(kkkk xxxxx    (8)

xJJxeJxx e
T
e

TT
e

T  2)0()( (9)

xJJxeJx
xx

e
T
e

TT
e

T

kk

k 









2
)()()()1(


 (10)

Therefore, the goal of the algorithm to is to use the
modified parameter μk to ensure that each update of the
iterative update quantity Δx is gradient descent.
In FOSLAM, Cauchy kernel function is selected to reduce
the negative impact of incorrect closed-loop detection on
the final optimization result and enhance the algorithm
robustness to outliers [22]. FOSLAM also uses the Ceres
nonlinear optimization library to construct the residual
block between the global relative pose and the odometer
pose. The algorithm iterate the pose residual to obtain the
optimal solution by creating the sparse cost function of

automatic differentiation and import the front-end
calculated odometer pose.

4. Experiments and Results
The constraint construction strategy provided in this paper
is implemented based on Google’s Cartographer front-end
construction idea, which is a real-time solution for building
indoor grid maps. This section verifies the advantages of
FOSLAM through comparative experiments. In the
experiments, in order to control the system’s cost, the robot
is equipped with a single line laser LiDAR A1M8
(SLAMTEC, China), a nine-axis IMU JY901 (Wit-
Motion, China) and a two-wheel differential chassis. The
software framework is built based on ROS (Robot
Operating System) and a mainstream SLAM algorithm
deployed on it. The host Raspberry Pi 4B is mounted on
the mobile robot and the secondary PC virtual machine
uses Ubuntu 18.04 and ROS melodic version. The results
of SLAM construction are observed through the Rviz 3D
visualization plug-in that comes with ROS.
Fusion Odometer SLAM (FOSLAM) uses the relative pose
calculated from the odometer data as a set of constraints
and constructs a residual term by the global constraints
between poses. Furthermore, FOSLAM uses LMF to guide
the iterative process and enhances its robustness through
Cauchy kernel function. Utilize Google’s Ceres nonlinear
optimization C++ package to resolve the nonlinear least
square problem among constraints. The procedure of
calculating constraints for FOSLAM is illustrated in
Algorithm 1.
In FOSLAM, the Ceres method with numerical automatic
derivation is used to avoid complex Jacobian calculation.
Thus, the Ceres’ function with the optimization variable
and residual term passed in is the only requirement for
solving the nonlinear least squares problem when
constructing the cost function. In Algorithm 1,
global_submap is the global coordinate of the origin node
in the submap and global_node is the global coordinate of
the pose node. The first constraint is the relative
transformation between the pose node and the origin of the
submap on the global coordinates, which is needed to be
optimized in Ceres solution. The second constraint, which
is marked as loro (local_observed_relative_ odometer), is
the local relative coordinate transformation between their

(7)

Δx is the amount of iteration updates. e is the error
function. -Je

Te is the negative gradient of the target
function. And the denominator term Je

TJe+μkI is the
Hessian matrix of the objective function with mod-
ification. The error function Jacobian Je reflects the
differential relationship between variables.
In the algorithm, the value of the modified weight μk is
constantly adjusted, so that the ratio of the cost func-
tion Ψ(x) and the approximate cost function φ(x) ap-
proaches 1, indicating that the better the linearity is.
The specific process is as Equation (8-10).

problem in the iterative process. Because both these two
sets of constraints are in the form of three-dimensional
vector [x,y,θ], the residual term generated is also in the
same form, which can be written as Equation (6).






































12

12

12

11

11

100
0cossin
0sincos





yy
xx
 (6)

In FOSLAM, Levenbergt-Marquardt-Fletcher (LMF)
algorithm is used for iterative updating and Ceres method
is adopt to help the calculation automatically. LMF gets
rid of the restriction that it needs to iterate near the
expansion point and uses Lagrange multiplier as a
correction. The Lagrange multiplier is able to transform
the least squares with point position constraints into least
squares without constraints [15]. The essence of LMF is
shown in Equation (7).

 eJIJJx T
eke

T
e

1)(  (7)

Δx is the amount of iteration updates. e is the error function.
-Je

Te is the negative gradient of the target function. And the
denominator term Je

TJe+μkI is the Hessian matrix of the
objective function with modification. The error function
Jacobian Je reflects the differential relationship between
variables.
In the algorithm, the value of the modified weight μk is
constantly adjusted, so that the ratio of the cost function
Ψ(x) and the approximate cost function φ(x) approaches 1,
indicating that the better the linearity is. The specific
process is as Equation (8-10).

)()()()()()1()()(kkkk xxxxx    (8)

xJJxeJxx e
T
e

TT
e

T  2)0()( (9)

xJJxeJx
xx

e
T
e

TT
e

T

kk

k 









2
)()()()1(


 (10)

Therefore, the goal of the algorithm to is to use the
modified parameter μk to ensure that each update of the
iterative update quantity Δx is gradient descent.
In FOSLAM, Cauchy kernel function is selected to reduce
the negative impact of incorrect closed-loop detection on
the final optimization result and enhance the algorithm
robustness to outliers [22]. FOSLAM also uses the Ceres
nonlinear optimization library to construct the residual
block between the global relative pose and the odometer
pose. The algorithm iterate the pose residual to obtain the
optimal solution by creating the sparse cost function of

automatic differentiation and import the front-end
calculated odometer pose.

4. Experiments and Results
The constraint construction strategy provided in this paper
is implemented based on Google’s Cartographer front-end
construction idea, which is a real-time solution for building
indoor grid maps. This section verifies the advantages of
FOSLAM through comparative experiments. In the
experiments, in order to control the system’s cost, the robot
is equipped with a single line laser LiDAR A1M8
(SLAMTEC, China), a nine-axis IMU JY901 (Wit-
Motion, China) and a two-wheel differential chassis. The
software framework is built based on ROS (Robot
Operating System) and a mainstream SLAM algorithm
deployed on it. The host Raspberry Pi 4B is mounted on
the mobile robot and the secondary PC virtual machine
uses Ubuntu 18.04 and ROS melodic version. The results
of SLAM construction are observed through the Rviz 3D
visualization plug-in that comes with ROS.
Fusion Odometer SLAM (FOSLAM) uses the relative pose
calculated from the odometer data as a set of constraints
and constructs a residual term by the global constraints
between poses. Furthermore, FOSLAM uses LMF to guide
the iterative process and enhances its robustness through
Cauchy kernel function. Utilize Google’s Ceres nonlinear
optimization C++ package to resolve the nonlinear least
square problem among constraints. The procedure of
calculating constraints for FOSLAM is illustrated in
Algorithm 1.
In FOSLAM, the Ceres method with numerical automatic
derivation is used to avoid complex Jacobian calculation.
Thus, the Ceres’ function with the optimization variable
and residual term passed in is the only requirement for
solving the nonlinear least squares problem when
constructing the cost function. In Algorithm 1,
global_submap is the global coordinate of the origin node
in the submap and global_node is the global coordinate of
the pose node. The first constraint is the relative
transformation between the pose node and the origin of the
submap on the global coordinates, which is needed to be
optimized in Ceres solution. The second constraint, which
is marked as loro (local_observed_relative_ odometer), is
the local relative coordinate transformation between their

(8)

problem in the iterative process. Because both these two
sets of constraints are in the form of three-dimensional
vector [x,y,θ], the residual term generated is also in the
same form, which can be written as Equation (6).






































12

12

12

11

11

100
0cossin
0sincos





yy
xx
 (6)

In FOSLAM, Levenbergt-Marquardt-Fletcher (LMF)
algorithm is used for iterative updating and Ceres method
is adopt to help the calculation automatically. LMF gets
rid of the restriction that it needs to iterate near the
expansion point and uses Lagrange multiplier as a
correction. The Lagrange multiplier is able to transform
the least squares with point position constraints into least
squares without constraints [15]. The essence of LMF is
shown in Equation (7).

 eJIJJx T
eke

T
e

1)(  (7)

Δx is the amount of iteration updates. e is the error function.
-Je

Te is the negative gradient of the target function. And the
denominator term Je

TJe+μkI is the Hessian matrix of the
objective function with modification. The error function
Jacobian Je reflects the differential relationship between
variables.
In the algorithm, the value of the modified weight μk is
constantly adjusted, so that the ratio of the cost function
Ψ(x) and the approximate cost function φ(x) approaches 1,
indicating that the better the linearity is. The specific
process is as Equation (8-10).

)()()()()()1()()(kkkk xxxxx    (8)

xJJxeJxx e
T
e

TT
e

T  2)0()( (9)

xJJxeJx
xx

e
T
e

TT
e

T

kk

k 









2
)()()()1(


 (10)

Therefore, the goal of the algorithm to is to use the
modified parameter μk to ensure that each update of the
iterative update quantity Δx is gradient descent.
In FOSLAM, Cauchy kernel function is selected to reduce
the negative impact of incorrect closed-loop detection on
the final optimization result and enhance the algorithm
robustness to outliers [22]. FOSLAM also uses the Ceres
nonlinear optimization library to construct the residual
block between the global relative pose and the odometer
pose. The algorithm iterate the pose residual to obtain the
optimal solution by creating the sparse cost function of

automatic differentiation and import the front-end
calculated odometer pose.

4. Experiments and Results
The constraint construction strategy provided in this paper
is implemented based on Google’s Cartographer front-end
construction idea, which is a real-time solution for building
indoor grid maps. This section verifies the advantages of
FOSLAM through comparative experiments. In the
experiments, in order to control the system’s cost, the robot
is equipped with a single line laser LiDAR A1M8
(SLAMTEC, China), a nine-axis IMU JY901 (Wit-
Motion, China) and a two-wheel differential chassis. The
software framework is built based on ROS (Robot
Operating System) and a mainstream SLAM algorithm
deployed on it. The host Raspberry Pi 4B is mounted on
the mobile robot and the secondary PC virtual machine
uses Ubuntu 18.04 and ROS melodic version. The results
of SLAM construction are observed through the Rviz 3D
visualization plug-in that comes with ROS.
Fusion Odometer SLAM (FOSLAM) uses the relative pose
calculated from the odometer data as a set of constraints
and constructs a residual term by the global constraints
between poses. Furthermore, FOSLAM uses LMF to guide
the iterative process and enhances its robustness through
Cauchy kernel function. Utilize Google’s Ceres nonlinear
optimization C++ package to resolve the nonlinear least
square problem among constraints. The procedure of
calculating constraints for FOSLAM is illustrated in
Algorithm 1.
In FOSLAM, the Ceres method with numerical automatic
derivation is used to avoid complex Jacobian calculation.
Thus, the Ceres’ function with the optimization variable
and residual term passed in is the only requirement for
solving the nonlinear least squares problem when
constructing the cost function. In Algorithm 1,
global_submap is the global coordinate of the origin node
in the submap and global_node is the global coordinate of
the pose node. The first constraint is the relative
transformation between the pose node and the origin of the
submap on the global coordinates, which is needed to be
optimized in Ceres solution. The second constraint, which
is marked as loro (local_observed_relative_ odometer), is
the local relative coordinate transformation between their

(9)

problem in the iterative process. Because both these two
sets of constraints are in the form of three-dimensional
vector [x,y,θ], the residual term generated is also in the
same form, which can be written as Equation (6).






































12

12

12

11

11

100
0cossin
0sincos





yy
xx
 (6)

In FOSLAM, Levenbergt-Marquardt-Fletcher (LMF)
algorithm is used for iterative updating and Ceres method
is adopt to help the calculation automatically. LMF gets
rid of the restriction that it needs to iterate near the
expansion point and uses Lagrange multiplier as a
correction. The Lagrange multiplier is able to transform
the least squares with point position constraints into least
squares without constraints [15]. The essence of LMF is
shown in Equation (7).

 eJIJJx T
eke

T
e

1)(  (7)

Δx is the amount of iteration updates. e is the error function.
-Je

Te is the negative gradient of the target function. And the
denominator term Je

TJe+μkI is the Hessian matrix of the
objective function with modification. The error function
Jacobian Je reflects the differential relationship between
variables.
In the algorithm, the value of the modified weight μk is
constantly adjusted, so that the ratio of the cost function
Ψ(x) and the approximate cost function φ(x) approaches 1,
indicating that the better the linearity is. The specific
process is as Equation (8-10).

)()()()()()1()()(kkkk xxxxx    (8)

xJJxeJxx e
T
e

TT
e

T  2)0()( (9)

xJJxeJx
xx

e
T
e

TT
e

T

kk

k 









2
)()()()1(


 (10)

Therefore, the goal of the algorithm to is to use the
modified parameter μk to ensure that each update of the
iterative update quantity Δx is gradient descent.
In FOSLAM, Cauchy kernel function is selected to reduce
the negative impact of incorrect closed-loop detection on
the final optimization result and enhance the algorithm
robustness to outliers [22]. FOSLAM also uses the Ceres
nonlinear optimization library to construct the residual
block between the global relative pose and the odometer
pose. The algorithm iterate the pose residual to obtain the
optimal solution by creating the sparse cost function of

automatic differentiation and import the front-end
calculated odometer pose.

4. Experiments and Results
The constraint construction strategy provided in this paper
is implemented based on Google’s Cartographer front-end
construction idea, which is a real-time solution for building
indoor grid maps. This section verifies the advantages of
FOSLAM through comparative experiments. In the
experiments, in order to control the system’s cost, the robot
is equipped with a single line laser LiDAR A1M8
(SLAMTEC, China), a nine-axis IMU JY901 (Wit-
Motion, China) and a two-wheel differential chassis. The
software framework is built based on ROS (Robot
Operating System) and a mainstream SLAM algorithm
deployed on it. The host Raspberry Pi 4B is mounted on
the mobile robot and the secondary PC virtual machine
uses Ubuntu 18.04 and ROS melodic version. The results
of SLAM construction are observed through the Rviz 3D
visualization plug-in that comes with ROS.
Fusion Odometer SLAM (FOSLAM) uses the relative pose
calculated from the odometer data as a set of constraints
and constructs a residual term by the global constraints
between poses. Furthermore, FOSLAM uses LMF to guide
the iterative process and enhances its robustness through
Cauchy kernel function. Utilize Google’s Ceres nonlinear
optimization C++ package to resolve the nonlinear least
square problem among constraints. The procedure of
calculating constraints for FOSLAM is illustrated in
Algorithm 1.
In FOSLAM, the Ceres method with numerical automatic
derivation is used to avoid complex Jacobian calculation.
Thus, the Ceres’ function with the optimization variable
and residual term passed in is the only requirement for
solving the nonlinear least squares problem when
constructing the cost function. In Algorithm 1,
global_submap is the global coordinate of the origin node
in the submap and global_node is the global coordinate of
the pose node. The first constraint is the relative
transformation between the pose node and the origin of the
submap on the global coordinates, which is needed to be
optimized in Ceres solution. The second constraint, which
is marked as loro (local_observed_relative_ odometer), is
the local relative coordinate transformation between their

(10)

Therefore, the goal of the algorithm to is to use the
modified parameter μk to ensure that each update of
the iterative update quantity Δx is gradient descent.
In FOSLAM, Cauchy kernel function is selected to re-
duce the negative impact of incorrect closed-loop de-

tection on the final optimization result and enhance
the algorithm robustness to outliers [22]. FOSLAM
also uses the Ceres nonlinear optimization library to
construct the residual block between the global rela-
tive pose and the odometer pose. The algorithm iter-
ate the pose residual to obtain the optimal solution by
creating the sparse cost function of automatic differ-
entiation and import the front-end calculated odom-
eter pose.

4. Experiments and Results
The constraint construction strategy provided in this
paper is implemented based on Google’s Cartogra-
pher front-end construction idea, which is a real-time
solution for building indoor grid maps. This section
verifies the advantages of FOSLAM through com-
parative experiments. In the experiments, in order to
control the system’s cost, the robot is equipped with
a single line laser LiDAR A1M8 (SLAMTEC, China),
a nine-axis IMU JY901 (Wit-Motion, China) and a
two-wheel differential chassis. The software frame-
work is built based on ROS (Robot Operating System)
and a mainstream SLAM algorithm deployed on it.
The host Raspberry Pi 4B is mounted on the mobile
robot and the secondary PC virtual machine uses
Ubuntu 18.04 and ROS melodic version. The results
of SLAM construction are observed through the Rviz
3D visualization plug-in that comes with ROS.
Fusion Odometer SLAM (FOSLAM) uses the rela-
tive pose calculated from the odometer data as a set
of constraints and constructs a residual term by the
global constraints between poses. Furthermore, FO-
SLAM uses LMF to guide the iterative process and
enhances its robustness through Cauchy kernel func-
tion. Utilize Google’s Ceres nonlinear optimization
C++ package to resolve the nonlinear least square
problem among constraints. The procedure of calcu-
lating constraints for FOSLAM is illustrated in Algo-
rithm 1.
In FOSLAM, the Ceres method with numerical au-
tomatic derivation is used to avoid complex Jaco-
bian calculation. Thus, the Ceres’ function with the
optimization variable and residual term passed in is
the only requirement for solving the nonlinear least
squares problem when constructing the cost function.
In Algorithm 1, global_submap is the global coordi-
nate of the origin node in the submap and global_node

589Information Technology and Control 2024/2/53

is the global coordinate of the pose node. The first
constraint is the relative transformation between the
pose node and the origin of the submap on the global
coordinates, which is needed to be optimized in Ceres
solution. The second constraint, which is marked as
loro (local_observed_relative_ odometer), is the lo-
cal relative coordinate transformation between their
interpolation results. otw is odometer translation
weight and orw is odometer rotation weight of the
odometer. The main implementation steps are shown
as follows.

Algorithm 1. The procedure of calculating
constraints for FOSLAM

problem.AddResidualBlock (CostFunction, Cauchy
kernel,

global_submap, global_node);
transform::Rigid3d begin_odometer =

OdometerInterpolate(global_submap.time);
transform::Rigid3d end_odometer =

OdometerInterpolate(global_node.time);
transform::Rigid3d loro =

begin_odometer ->inverse() * end_odometer;
ceres::AutoDiffCostFunction CostFunction(loro, otw,
orw)
{ template <typename T>

bool operator()(start_pose, end_pose, T* residual)
const
{ComputeUnscaledResidual(loro, start_pose,
end_pose);

 residual[0] * otw;
 residual[1] * otw;
 residual[2] * orw;
 return true;}}
Ceres::Solver::Summary summary;
Ceres::Solve(options, &problem, &summary);

Step 1: Create the cost function and set the residu-
al block. According to the time, the odometer data
are interpolated to obtain the local poses at the be-
ginning and the end of a period of time, which are
begin_odometer and end_odometer respectively.
The relative change between these two coordinates
is loro, which is a constraint relation. Then, the au-
tomatic differential cost function in Ceres is created
and the variables need to be optimized are passed in.
In that procedure, the global_submap corresponds
to start_pose and the global_node corresponds to
end_pose, which is another constraint relation. Thus,

the residual term between these two constraints is
able to be calculated. The residual built has the same
structure as the three-dimensional pose vector T[x-
,y,ɵ]. There is a transformation between two different
poses in global coordinate system. Then, by using the
odometer data, another transformation between the
same two poses can be discovered. As a result, a set
of residuals is created based on these two coordinate
transformations. In the algorithm, transformation is
calculated as Equation (11), where R is the rotation
matrix and t is the translation matrix.

interpolation results. otw is odometer translation weight
and orw is odometer rotation weight of the odometer. The
main implementation steps are shown as follows.

Algorithm 1 The procedure of calculating constraints for
FOSLAM

problem.AddResidualBlock (CostFunction, Cauchy kernel,
global_submap, global_node);

transform::Rigid3d begin_odometer =
OdometerInterpolate(global_submap.time);

transform::Rigid3d end_odometer =
OdometerInterpolate(global_node.time);

transform::Rigid3d loro =
begin_odometer ->inverse() * end_odometer;

ceres::AutoDiffCostFunction CostFunction(loro, otw, orw)
{ template <typename T>

bool operator()(start_pose, end_pose, T* residual) const
{ComputeUnscaledResidual(loro, start_pose, end_pose);

 residual[0] * otw;
 residual[1] * otw;
 residual[2] * orw;
 return true;}}
Ceres::Solver::Summary summary;
Ceres::Solve(options, &problem, &summary);

Step 1: Create the cost function and set the residual block.
According to the time, the odometer data are interpolated
to obtain the local poses at the beginning and the end of a
period of time, which are begin_odometer and
end_odometer respectively. The relative change between
these two coordinates is loro, which is a constraint relation.
Then, the automatic differential cost function in Ceres is
created and the variables need to be optimized are passed
in. In that procedure, the global_submap corresponds to
start_pose and the global_node corresponds to end_pose,
which is another constraint relation. Thus, the residual
term between these two constraints is able to be calculated.
The residual built has the same structure as the three-
dimensional pose vector T[x,y,ɵ]. There is a
transformation between two different poses in global
coordinate system. Then, by using the odometer data,
another transformation between the same two poses can be
discovered. As a result, a set of residuals is created based
on these two coordinate transformations. In the algorithm,
transformation is calculated as Equation (11), where R is
the rotation matrix and t is the translation matrix.








 





10
)(12

1
12

1
1

2
1

112
ttRRR

TTT (11)

Step 2: The LMF optimization approach is used to
construct the optimization issue that needs to be solved.
Use the automatic differential cost function to determine
the Jacobi.
Step 3: Create a residual block and add a loss function. The
Cauchy kernel function is used to reduce the negative
impact of mismatching between global constraints and
odometer constraints on the final optimization result.
Cauchy loss function is as Equation (12) shown, where s is
the square of the residual.

)1log()(ss  (12)

Step 4: The final residual block is added to Ceres to solve
the least square problem with variable constraints.
Figure 3
(a) Cartographer mapping result on ROS in a 30 m*100 m
area; (b) FOSLAM mapping result on ROS in a 30 m*100
m area

The mapping results of a 30 m*100 m area from the
conventional Cartographer algorithm and FOSLAM are
shown in Figure 3. It can be found that FOSLAM
performed better than Cartographer in terms of
expressiveness. The items were deformed and their
outlines were not discernible at positions 2 and 3 of Figure
3(a). However, in Figure 3(b), the objects' forms were
more regular and FOSLAM lessened the effect of external
noise during the mapping process. Furthermore, at the 1, 4,
5 and 6 places and edges in Figure 3, the FOSLAM
mapping is far smoother and less jagged. The importation
of odometer data, which results in more precise poses of
scan matching in the front-end, is the primary cause of this
improvement.

(11)

Step 2: The LMF optimization approach is used to
construct the optimization issue that needs to be
solved. Use the automatic differential cost function to
determine the Jacobi.
Step 3: Create a residual block and add a loss func-
tion. The Cauchy kernel function is used to reduce
the negative impact of mismatching between global
constraints and odometer constraints on the final op-
timization result.
Cauchy loss function is as Equation (12) shown,
where s is the square of the residual.

interpolation results. otw is odometer translation weight
and orw is odometer rotation weight of the odometer. The
main implementation steps are shown as follows.

Algorithm 1 The procedure of calculating constraints for
FOSLAM

problem.AddResidualBlock (CostFunction, Cauchy kernel,
global_submap, global_node);

transform::Rigid3d begin_odometer =
OdometerInterpolate(global_submap.time);

transform::Rigid3d end_odometer =
OdometerInterpolate(global_node.time);

transform::Rigid3d loro =
begin_odometer ->inverse() * end_odometer;

ceres::AutoDiffCostFunction CostFunction(loro, otw, orw)
{ template <typename T>

bool operator()(start_pose, end_pose, T* residual) const
{ComputeUnscaledResidual(loro, start_pose, end_pose);

 residual[0] * otw;
 residual[1] * otw;
 residual[2] * orw;
 return true;}}
Ceres::Solver::Summary summary;
Ceres::Solve(options, &problem, &summary);

Step 1: Create the cost function and set the residual block.
According to the time, the odometer data are interpolated
to obtain the local poses at the beginning and the end of a
period of time, which are begin_odometer and
end_odometer respectively. The relative change between
these two coordinates is loro, which is a constraint relation.
Then, the automatic differential cost function in Ceres is
created and the variables need to be optimized are passed
in. In that procedure, the global_submap corresponds to
start_pose and the global_node corresponds to end_pose,
which is another constraint relation. Thus, the residual
term between these two constraints is able to be calculated.
The residual built has the same structure as the three-
dimensional pose vector T[x,y,ɵ]. There is a
transformation between two different poses in global
coordinate system. Then, by using the odometer data,
another transformation between the same two poses can be
discovered. As a result, a set of residuals is created based
on these two coordinate transformations. In the algorithm,
transformation is calculated as Equation (11), where R is
the rotation matrix and t is the translation matrix.








 





10
)(12

1
12

1
1

2
1

112
ttRRR

TTT (11)

Step 2: The LMF optimization approach is used to
construct the optimization issue that needs to be solved.
Use the automatic differential cost function to determine
the Jacobi.
Step 3: Create a residual block and add a loss function. The
Cauchy kernel function is used to reduce the negative
impact of mismatching between global constraints and
odometer constraints on the final optimization result.
Cauchy loss function is as Equation (12) shown, where s is
the square of the residual.

)1log()(ss  (12)

Step 4: The final residual block is added to Ceres to solve
the least square problem with variable constraints.
Figure 3
(a) Cartographer mapping result on ROS in a 30 m*100 m
area; (b) FOSLAM mapping result on ROS in a 30 m*100
m area

The mapping results of a 30 m*100 m area from the
conventional Cartographer algorithm and FOSLAM are
shown in Figure 3. It can be found that FOSLAM
performed better than Cartographer in terms of
expressiveness. The items were deformed and their
outlines were not discernible at positions 2 and 3 of Figure
3(a). However, in Figure 3(b), the objects' forms were
more regular and FOSLAM lessened the effect of external
noise during the mapping process. Furthermore, at the 1, 4,
5 and 6 places and edges in Figure 3, the FOSLAM
mapping is far smoother and less jagged. The importation
of odometer data, which results in more precise poses of
scan matching in the front-end, is the primary cause of this
improvement.

(12)

Step 4: The final residual block is added to Ceres to
solve the least square problem with variable con-
straints.
The mapping results of a 30 m*100 m area from the
conventional Cartographer algorithm and FOSLAM
are shown in Figure 3. It can be found that FOSLAM
performed better than Cartographer in terms of ex-
pressiveness. The items were deformed and their
outlines were not discernible at positions 2 and 3
of Figure 3(a). However, in Figure 3(b), the objects’
forms were more regular and FOSLAM lessened the
effect of external noise during the mapping process.
Furthermore, at the 1, 4, 5 and 6 places and edges in
Figure 3, the FOSLAM mapping is far smoother and
less jagged. The importation of odometer data, which
results in more precise poses of scan matching in the
front-end, is the primary cause of this improvement.
The front-end scan matching analysis was also done to
confirm the accuracy of the results. The robot was set

Information Technology and Control 2024/2/53590

Figure 3
(a) Cartographer mapping result on ROS in a 30 m*100 m area;
(b) FOSLAM mapping result on ROS in a 30 m*100 m area

Figure 4
(a) The average score of scan matching in each submap; (b) The maximum score, minimum score and average score of four
algorithms in front-end scan matching

up in the same location. The global map was created by gen-
erating a total of 10 submaps. The scan matching of FOSLAM
saves the matching score of the node pose to back end. The
average scan matching score for each submap during the ex-
periment was obtained from the algorithm’s back-end.
For comparison, the two conventional laser SLAM algo-
rithms Karto [18] and Hector [17] were also involved in the
experiments. The results are shown in Figure 4,

(a)

(a)

(b)

(b)

Tables 1 and 2. Based on the information in
Figure 4(a) and Table 1, Cartographer has the
maximum score of 67.5% and the minimum
score of 52.3% during the initial mapping
phase, which is the construction of the first
four submaps, with a difference of 15.2%. While
the maximum score of FOSLAM is 65.6% and
the minimum score is 56.2%, with a differ-
ence of 9.3%. According to the above analysis,
the variation of scan matching score of FOS-
LAM is 9.3%, which is 5.9% less than the one
of Cartographer in the initial mapping phase.
In order to make the global poses more accu-
rate, the FOSLAM integrates the odometer
data into the back end for constraint construc-
tion when estimating the poses. Therefore,
the prior poses used by FOSLAM scan match-
ing is closer to the real value. That results in
a smoother transition proceduire between
the neighboring two frames of laser data, and
avoiding the distortion of the mapping caused
by the large fluctuation in the scan matching.
Thus, the performance of FOSLAMin the ini-
tial mapping stage is more stable.
Moreover, Figure 4(a) and Table 1 show the
changing trend of the scan matching scores
during the entire process. After the fourth sub-
map, FOSLAM had a score range between 57.7%
and 61.1% with a difference of 3.4%. The Car-

591Information Technology and Control 2024/2/53

Table 1
The average score of scan matching for each submap

Submap
number

The average score of
FOSLAM for scan matching

The average score of
Cartographer for scan matching

The average score of
Karto for scan matching

The average score of
Hector for scan matching

1 56.8% 52.3% 43.6% 42.7%

2 65.6% 67.5% 49.8% 46.8%

3 61.8% 59.3% 47.2% 46.4%

4 56.2% 55.3% 45.7% 43.7%

5 61.1% 57.2% 46.8% 44.3%

6 58.3% 63.7% 50.2% 44.9%

7 57.7% 54.5% 44.5% 46.1%

8 60.3% 58.6% 46.4% 45.4%

9 60.1% 59.5% 46.1% 45.7%

10 60.1% 59.3% 46.2% 45.6%

tographer received a score range from 54.5% to 63.7%
with a 9.2% difference. These data clearly showed that
FOSLAM scan matching has stronger convergence
ability than Cartographer. Furthermore, it can be seen
from Figure 4(a) that the scan matching curve of FO-
SLAM at the later stage of mapping has a more gentle
variation. In particular, between submap 6 and sub-
map 7, the score of FOSLAM changed by only 0.6%,
while that of Cartographer changed by 9.2%. This also
resulted in distorted and jagged map on Cartographer,
as evidenced by position 2 and position 3 in Figure 3.
The two-dimensional map created by FOSLAM was
smoother in Figure 3 due to the significant conver-
gence. It can also be clearly seen in Figure 4(a) and Ta-
ble 1 that the scan matching results of FOSLAM out-
performs those of conventional Karto and Hector.
The average matching score for FOSLAM is 57.56%,
nearly the same as Cartographer’s, but 12.22% and

Table 2
The maximum score, minimum score and average score of four algorithms

maximum score minimum score average score

FOSLAM 71.37% 48.11% 57.56%

Cartographer 70.91% 48.11% 57.59%

Karto 62.35% 37.72% 45.34%

Hector 49.62% 32.65% 42.91%

14.65% higher than that for Karto and Hector, respec-
tively. The scan matching process of FOSLAM was
made easier to be convergent by including odometer
data in the constraint building, resulting in a smooth-
er map and less jagged edges.
The space and time complexity of the algorithms
were further checked to confirm whether FOSLAM
can be implemented on lightweight embedded devic-
es. The experiments primarily compared the mapping
performance and speed of FOSLAM with Cartogra-
pher, Karto and Hector. The four methods unified the
timestamp in ROS environment and output the log.
Under the same experimental scenario, FOSLAM and
Cartographer needed five stages to complete the map-
ping, meanwhile Karto and Hector needed six stages.
Table 3 displays the mapping degree and time con-
sumption for entire mapping process.
Under the identical circumstances, FOSLAM took
48 s on average for mapping, compared to 46 s on aver-

Information Technology and Control 2024/2/53592

age for Cartographer. Table 3 shows the total mapping
degree at the end of each phase. For example, at the
end of Stage 3, the FOSLAM mapping degree is 57.81%,
while Hector had mapped only 49.72%. The incremen-
tal mapping degrees for each stage were calculated and
shown in Table 4, FOSLAM was mapped at 13.42%,
21.24%, 23.15%, 24.16% and 18.03%, respectively. The
mapping degrees of Cartographer for each of the five
phases were 14.71%, 20.39%, 22.22%, 25.7% and 16.98%,
respectively. Thus, FOSLAM and Cartographer had
similar mapping degree at each stage. The efficiency of
the mapping completion at each stage is also compara-
ble. Karto and Hector took 54 s and 58 s on average to
map the same area, respectively. Due to the fact that the
integration of the odometer data does not increase the
computing load, the mapping time consumption of FO-
SLAM was still comparable to that of Cartographer.
The scan matching process continuously saves the
successfully matched node data to the back end during

Table 3
Mapping degree and time consumption for entire mapping process

Stage FOSLAM’s
mapping degree

Cartographer’s mapping
degree

Karto’s
mapping degree

Hector’s
mapping degree

1 13.42% 14.71% 10.27% 9.56%

2 34.66% 35.10% 28.09% 26.31%

3 57.81% 57.32% 50.75% 49.72%

4 81.97% 83.02% 69.39% 69.14%

5 100.00% (48s) 100.00% (46s) 84.71% 83.62%

6 Completed Completed 100.00% (54s) 100.00% (58s)

Table 4
Mapping degree for each stage

Stage FOSLAM’s incremental
mapping degree for each stage

Cartographer’s incremental
mapping degree for each stage

Karto’s incremental map-
ping egree for each stage

Hector’s incremental map-
ping degree for each stage

1 13.42% 14.71% 10.27% 9.56%

2 21.24% 20.39% 17.82% 16.75%

3 23.15% 22.22% 22.66% 23.41%

4 24.16% 25.70% 18.64% 19.42%

5 18.03% 16.98% 15.32% 14.48%

6 Completed Completed 15.29% 16.38%

SLAM mapping. Thus, besides comparing the time
complexity, the experiments also tested their memory
consumption of nodes and submaps. The testing pro-
cesses were excuted in the same 30 m*100 m area. In
the test, the total number of submaps and nodes con-
sumed were extracted from the back end of the algo-
rithm. Ten submaps were constructed for each algo-
rithm to facilitate analysis. All data generated during
the mapping process were saved to the dataset corre-
sponding to the 10 submaps. The results were shown in
Figure 5. The global map was made up of these 10 sub-
maps and Tables 5 and 6 display the data.
As shown in Figure 5(a), during the process of creat-
ing the first 7 submaps, the total number of pose nodes
produced by FOSLAM and Cartographer gradually
increased with comparatively constant growth rate.
During the process of creating the last 3 submaps, the
node growth rate is relatively slow and the number of
nodes tends to be stable. This is mainly due to the fact

593Information Technology and Control 2024/2/53

(a) (b)

that the driving route of robot in the experiment is a
loop. The nodes generated overlapped with some of
the ones at the beginning when the robot travelled to
the end of the loop. To reduce computation, duplicate
nodes are no longer saved to the back end. According
to the Table 5, FOSLAM generated a total of 426 pose
nodes during the entire mapping process compared
with 417 nodes made by Cartographer.
From the perspective of memory consumption, the
considerable improvement of FOSLAM in the map-
ping performance is only at the cost of the more mem-
ory consumption of 9 nodes. According to Table 7, the
incremental mapping degree for each submap of FOS-
LAM is 10.79%, 14.56%, 11.5%, 11.5%, 13.62%, 14.08%,
13.15%, 7.27%, 2.35% and 1.18%, respectively, which
are nearly same to Cartographer. The most difference

occurs in the third submap, FOSLAM generated only
1.91% of the additional cost. This results showed that
involving of odometer constraint in the back end does
not increase the space complexity of the submap ob-
servably, but improves the accuracy of mapping.
The number of nodes generated by Karto and Hector
are fewer, but they cannot complete the high-pre-
cision mapping tasks. The space complexity of FO-
SLAM is also reflected in the number of pose nodes
contained in each submap. The number of nodes in
each submap is a factor in the space complexity of
algorithms in addition to the changing trend of the
total number of nodes shown in Figure 5. Only FOS-
LAM and Cartographer are taken into account here
because Karto and Hector are rarely used in practical
engineering. As shown in Figure 6.

Figure 5
(a) The total number of nodes generated with the creation of the submaps; (b) The mapping completion degree with the
creation of submaps

Table 5
The total number of nodes generated by the creation of the submaps

1 2 3 4 5 6 7 8 9 10

FOSLAM 46 108 157 206 264 324 380 411 421 426

Cartographer 43 104 144 198 249 309 365 403 413 417

Karto 33 76 118 162 203 239 281 309 323 328

Hector 28 61 103 139 162 198 242 277 286 291

Information Technology and Control 2024/2/53594

Table 6
The mapping degree generated by the creation of submaps for entire mapping process

1 2 3 4 5 6 7 8 9 10

FOSLAM 10.79% 25.35% 36.85% 48.35% 61.97% 76.05% 89.20% 96.47% 98.82% 100%

Cartographer 10.31% 24.94% 34.53% 47.48% 59.71% 74.10% 87.53% 96.64% 99.04% 100%

Karto 12.38% 23.80% 31.42% 42.85% 56.19% 66.66% 80.95% 90.47% 96.19% 100%

Hector 12.27% 22.11% 30.82% 43.38% 56.50% 64.17% 78.69% 88.47% 95.13% 100%

Table 7
The incremental mapping degree for each submap

1 2 3 4 5 6 7 8 9 10

FOSLAM 10.79% 14.56% 11.50% 11.50% 13.62% 14.08% 13.15% 7.27% 2.35% 1.18%

Cartographer 10.31% 14.63% 9.59% 12.95% 12.23% 14.39% 13.43% 9.11% 2.40% 0.96%

Karto 12.38% 11.42% 7.62% 11.43% 13.34% 10.47% 14.29% 9.52% 5.72% 3.81%

Hector 12.27% 9.84% 8.71% 12.56% 13.12% 7.67% 14.52% 9.78% 6.66% 4.87%

Figure 6 shows the number of nodes for each submap
of FOSLAM and Cartographer. The third submap of
FOSLAM contains 9 more nodes than the ones of
Cartographer. Furthermore, from the whole process,
the number of nodes contained in each submap are
also consistent with the data in Table 4. Thus, it also
shows that FOSLAM does not increase memory us-
age too much. The above analysis results show that
FOSLAM does not occupy much computing resourc-
es and cost less memory. Thus, it is suitable to be run
on lightweight embedded.

Figure 6
Number of nodes contained in each submap

devices with high accuracy and smoother map. Final-
ly, do supplemental verification of the 3D point cloud
mapping produced by FOSLAM, as illustrated in Fig-
ure 7. The findings demonstrate that FOSLAM also
has strong stability when it comes to 3D SLAM and
also can achieve high accuracy when building dense
point clouds of nearby objects.
According to the performance under the above exper-
imental scenarios, the advantages of FOSLAM can be
found. In the 2DSLAM field nowadays, the popular
methods are Hector, Karto and Cartographer. Cartog-
rapher is considered to be the most commonly imple-
mented method among these three methods in engi-
neering. For the new FOSLAM method proposed in
this paper, it involves real-time local pose relationship
obtained by front-end odometer to construct con-
straint terms. The constraint relationship between
poses is strengthened and the convergence of scan
matching score is improved. Therefore, compared
with the state-of-the-art Cartographer algorithm,
FOSLAM performed smoother and less jaggedly due
to strong constraints between neighbouring poses. In
terms of the time consumption under the same scene,
FOSLAM has the advantage of time consumption
compared with Hector and Karto, and its mapping
efficiency is higher. Moreover, through algorithm
complexity analysis, all these improvements will not

595Information Technology and Control 2024/2/53

Figure 7
3D point cloud mapping

increase time and space consumption much and the
method is able to be lightweight implementation.
In order to verify the performance of FOSLAM un-
der real environment, a teaching building with high
complexity and diverse details for global mapping is
selected as the testing scene. The original laboratory
equipment and objects are kept without moving. In
this experiment, FOSLAM is performed compared
with Cartographer, involving mapping, scan matching
and accuracy. The global mapping effect of FOSLAM
and Cartographer is shown in Figure 8.
As shown in Figure 8, it can be found that the mapping
result of Cartographer showed map drift and overlap.
Ten mapping tests were carried out by Cartographer
under the same scenario, the robot path and speed
were kept unchanged. On average, eight out of ten
mapping tests resulted in drift and overlap as shown
in Figure 8(b). However, the mapping result of FOS-
LAM can always reflect the accurate size of the map.
This is because FOSLAM introduces the real-time
pose data acquired by the front-end odometer to con-
struct residual terms as constraint conditions.
During the experiment, FOSLAM generated 9815
pose nodes in global mapping while Cartographer
generated 9748. In order to estimate the influence of
the odometer constraint fusion on the front-end scan

Figure 8
Mapping results of a floor of the teaching building (a)
FOSLAM mapping result; (b) Cartographer mapping result

(a) (a)

matching procedure, the number of nodes in each in-
terval of the scan matching scores was counted. Fig-
ure 9 shows the number of pose nodes in each score
interval acquired by these two methods at the front-
end of SLAM. The matching scores from FOSLAM
were mostly between [0.58,0.64], while those of Car-
tographer were mostly between [0.55,0.58]. This indi-

Information Technology and Control 2024/2/53596

Figure 9
The number of pose nodes contained in each score interval
of scan matching at the front-end of SLAM

Figure 10
The APE situation of Cartographer method. (a) Global APE error between the estimated trajectory from the Cartographer
laser odometer and the actual trajectory (b) The change curve of the APE error over time

cates that the pose nodes of FOSLAM are more well-
matched to the map, and the same conclusion can also
be found in Figure 8.
For large-scale mapping, the cumulative errors of the
laser odometer at the front-end of SLAM will be con-
stantly superimposed, resulting in reduction of the
track accuracy. The odometer constraint construc-
tion method continuously obtains the pose of the con-
structed trajectory for optimization and feeds it back
to the front-end of SLAM for subsequent scan match-
ing. For error evaluation, APE (Absolute Pose Error),
RPE (Relative Pose Error) and RMSE (Root Mean
Square Error) error indexes are the commonly used
evaluating indicators [23, 34]. Figure 10 (a) shows the
global APE error between the laser odometer of Car-
tographer after back-end pose optimization and the

(a) (b)

actual trajectory of the robot in a large scene. Figure
10 (b) shows the change curve of that APE error over
time. In the same way, Figure 11 shows the APE situa-
tion of FOSLAM method.

The comparative results for other APE error indi-
cators are shown in Table 8. In the case of the same
trajectory, the comparative results of RPE error are
shown in Table 9.

597Information Technology and Control 2024/2/53

Figure 11
The APE situation of FOSLAM method. (a) Global APE error between the estimated trajectory from the FOSLAM laser
odometer and the actual trajectory (b) The change curve of the APE error over time

(a) (b)

Table 8
The MEAN error, RMSE and standard deviation data of
APE evaluation criteria from Cartographer and FOSLAM
performance under large applicaition scene, respectively

MEAN (m) RMSE (m) STD (m)

Cartographer 0.569705 0.610834 0.220350

FOSLAM 0.385600 0.452806 0.217372

Table 9
The MEAN error, RMSE and standard deviation data of
RPE evaluation criteria from Cartographer and FOSLAM
performance under large applicaition scene, respectively

MEAN (m) RMSE (m) STD (m)

Cartographer 0.002238 0.003228 0.002376

FOSLAM 0.002185 0.002965 0.001945

According to the experimental results, the FOSLAM’s
estimated trajectories are more accurate than Cartog-
rapher’s. The global evaluation results of APE showed
that the trajectory acquired by the FOSLAM is more
globally consistent. Its mean error is about 0.18 m low-
er than Cartographer’s and its root mean square error
was about 0.16 m lower than Cartographer. However,
the traditional back-end optimization algorithms, such
as Cartographer, lack the real-time front-end pose in-
formation and the constraints between pose nodes are
relatively simple. Therefore, their laser odometer es-
timated results fed back to the front-end function are
less accurate than FOSLAM. These results can also be
found in the RPE evaluation of the trajectory. Further-
more, FOSLAM can enhance the constraint between
nodes without sacrificing too much running time and
memory space, improve the convergence of the front-
end scan matching score of the SLAM system and then
make the mapping performance smoother and more
accurate than Cartographer. FOSLAM is also more ef-
ficient than Hector and Karto.

Information Technology and Control 2024/2/53598

5. Conclusion
In this paper, we introduced a FOSLAM method which
fuse the front-end two-wheel differential odometer
data into the back-end pose graph optimization and
use the Ceres nonlinear least square library to con-
struct residual. The advantage of the algorithm was
verified on a dataset of 30 m*100 m area by experi-
ments. Global optimization of node pose is performed
by using Ceres method. The optimized global pose
makes the prior data of the front-end more accurate
and the scan matching process smoother.
The data analysis results show that FOSLAM does
not increase the redundant time and space complex-
ity compared to the traditional method Cartographer.
Furthermore, it optimized the convergence of front-
end scan matching and improved the robustness of
the mapping process. Moreover, FOSLAM achieves
smoother in terms of rendering and its match per-
formance is better than some popular laser SLAM al-
gorithms, such as Hector and Karto. In experiments,
FOSLAM is evaluated against Cartographer, state-of-
the-art 2D laser SLAM algorithm, in a floor scenario

with higher environmental complexity. FOSLAM’s
mapping results are consistently better than Cartog-
rapher’s and its front-end laser odometer trajectory
estimation is also more accurate than Cartographer’s.
FOSLAM is suitable to be applied on indoor robot for
cleaning and inspection and can be further deployed
on autonomous unmanned vehicals. Although the
lack of visual information makes its performance
slightly insufficient when facing complex environ-
ments, its low cost, relatively high reliability and
rapid response capabilities make it more suitable for
large-scale deployments, especially under econom-
ical environments and harsh working conditions. In
the future, the addition of neuro-heuristic algorithms
may further increase its performance.

Acknowledgement
This project is supported by the Natural Science Foun-
dation of Fujian Province in China (2022J01609), the
Outstanding Youth Fund of Fujian Agriculture and
Forestry University (XJQ201820) and the Science and
Technology Innovation Special Fund of Fujian Agri-
culture and Forestry University (CXZX2020132B)

References
1. Ahmed, M. F., Masood, K., Fremont, V., Fantoni, I. Active

SLAM: A Review on Last Decade. Sensors, 2023, 23(19).
https://doi.org/10.3390/s2319809

2. Aloise, I., Grisetti, G. Chordal Based Error Function
for 3-D Pose-Graph Optimization. IEEE Robotics and
Automation Letters, 2019, 5(1), 274-281.https://doi.
org/10.1109/LRA.2019.2956456

3. Bao, Y. Q., Yang, Z., Pan, Y., Huan, R. H. Semantic-Di-
rect Visual Odometry. IEEE Robotics and Automation
Letters, 2022, 7(3), 6718-6725. https://doi.org/10.1109/
LRA.2022.3176799

4. Chou, C. C., Chou, C. F. Efficient and Accurate Tight-
ly-Coupled Visual-Lidar SLAM. IEEE Transactions on
Intelligent Transportation Systems, 2022, 23(9), 14509-
14523. https://doi.org/10.1109/TITS.2021.3130089

5. Dong, N., Qin, M. H., Chang, J. F., Wu, C. H., Ip, W. H.,
Yung, K. L. Weighted Triplet Loss Based on Deep Neural
Networks for Loop Closure Detection in VSLAM. Com-
puter Communications, 2022, 186, 153-165. https://doi.
org/10.1016/j.comcom.2022.01.013

6. Eckenhoff, K., Paull, L., Huang, G. Decoupled, Consistent
Node Removal and Edge Sparsification for Graph-Ba-
sed SLAM. 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016, 3275-
3282. https://doi.org/10.1109/IROS.2016.7759505

7. Gao, L., Dong, C., Liu, X., Ye, Q., Zhang, K., Chen, X. Im-
proved 2D Laser SLAM Graph Optimization Based on
Cholesky Decomposition. 2022 8th International Con-
ference on Control, Decision and Information Techno-
logies (CoDIT), 2022, 659-662. https://doi.org/10.1109/
CoDIT55151.2022.9803938

8. Geng, X. X., Huang, G., Zhao, W. X. Almost Sure Conver-
gence of Randomised-Difference Descent Algorithm
for Stochastic Convex Optimisation. IET Control The-
ory and Applications, 2021, 15(17), 2183-2194. https://
doi.org/10.1049/cth2.12184

9. Gong, Z., Li, J., Luo, Z. P., Wen, C. L., Wang, C., Zelek, J.
Mapping and Semantic Modeling of Underground Parking
Lots Using a Backpack LiDAR System. IEEE Transacti-
ons on Intelligent Transportation Systems, 2021, 22(2),
734-746. https://doi.org/10.1109/TITS.2019.2955734

599Information Technology and Control 2024/2/53

10. He, S. H., Li, Y. Z., Lu, Y. K., Liu, Y. S. Design of Visual Iner-
tial State Estimator for Autonomous Systems via Mul-
ti-Sensor Fusion Approach. Mechatronics, 2023, 95.
https://doi.org/10.1016/j.mechatronics.2023.103066

11. Hess, W., Kohler, D., Rapp, H., Andor, D. Real-Time Loop
Closure in 2D LIDAR SLAM. 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016,
1271-1278. https://doi.org/10.1109/ICRA.2016.7487258

12. Jamaludin, A., Yatim, N. M., Noh, Z. M., Buniyamin, N.
Rao-Blackwellized Particle Filter Algorithm Integrated
with Neural Network Sensor Model Using Laser Dis-
tance Sensor. Micromachines, 2023, 14(3). https://doi.
org/10.3390/mi14030560

13. Jeong, H., Lee, H. C. CNN-Based Fault Detection of Scan
Matching for Accurate SLAM in Dynamic Environ-
ments. Sensors, 2023, 23(6). https://doi.org/10.3390/
s23062940

14. Jia, Z., Leng, J. Mobile Robot Vision Odometer Ba-
sed on Point-Line Features and Graph Optimizati-
on. 2018 Chinese Control and Decision Conference
(CCDC), 2018, 3398-3403. https://doi.org/10.1109/
CCDC.2018.8407711

15. Jurić, A., Kendeš, F., Marković, I., Petrović, I. A Com-
parison of Graph Optimization Approaches for Pose
Estimation in SLAM. 2021 44th International Con-
vention on Information, Communication and Electro-
nic Technology (MIPRO), 2021, 1113-1118. https://doi.
org/10.23919/MIPRO52101.2021.9596721

16. Kachurka, V., Rault, B., Muñoz, F. I. I., Roussel, D., Bo-
nardi, F., Didier, J. Y., et al. WeCo-SLAM: Wearable
Cooperative SLAM System for Real-Time Indoor
Localization Under Challenging Conditions. IEEE
Sensors Journal, 2022, 22(6), 5122-5132. https://doi.
org/10.1109/JSEN.2021.3101121

17. Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U. A
Flexible and Scalable SLAM System with Full 3D Mo-
tion Estimation. 2011 IEEE International Symposium
on Safety, Security, and Rescue Robotics, 2011, 155-160.
https://doi.org/10.1109/SSRR.2011.6106777

18. Konolige, K., Grisetti, G., Kümmerle, R., Burgard,
W., Limketkai, B., Vincent, R. Efficient Sparse Pose
Adjustment for 2D Mapping. 2010 IEEE/RSJ In-
ternational Conference on Intelligent Robots and
Systems, 2010, 22-29. https://doi.org/10.1109/
IROS.2010.5649043

19. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K.,
Burgard, W. g2o: A General Framework for Graph Op-
timization. 2011 IEEE International Conference on

Robotics and Automation, 2011, 3607-3613. https://doi.
org/10.1109/ICRA.2011.5979949

20. Li, L., Bano, S., Deprest, J., David, A. L., Stoyanov, D.,
Vasconcelos, F. Globally Optimal Fetoscopic Mosaicking
Based on Pose Graph Optimisation With Affine Cons-
traints. IEEE Robotics and Automation Letters, 2021, 6(4),
7831-7838. https://doi.org/10.1109/LRA.2021.3100938

21. Pfeifer, T., Lange, S., Protzel, P. Advancing Mixture Mo-
dels for Least Squares Optimization. IEEE Robotics
and Automation Letters, 2021, 6(2), 3941-3948. https://
doi.org/10.1109/LRA.2021.3067307

22. Qi, L., Shen, M., Wang, D., Wang, S. Robust Cauchy Ker-
nel Conjugate Gradient Algorithm for Non-Gaussian
Noises. IEEE Signal Processing Letters, 2021, 28, 1011-
1015. https://doi.org/10.1109/LSP.2021.3081381

23. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cre-
mers, D. A Benchmark for the Evaluation of RGB-D
SLAM Systems. 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2012, 573-
580. https://doi.org/10.1109/IROS.2012.6385773

24. Su, P., Luo, S. Y., Huang, X. C. Real-Time Dynamic
SLAM Algorithm Based on Deep Learning. IEEE Ac-
cess, 2022, 10, 87754-87766. https://doi.org/10.1109/
ACCESS.2022.3199350

25. Tan, C. H., Bin Shaiful, D. S., Tang, E., Soh, G. S., Foong,
S. Flydar: A Passive Scanning Flying Lidar Sensing Sys-
tem for SLAM Using a Single Laser. IEEE Sensors Jo-
urnal, 2022, 22(2), 1746-1755. https://doi.org/10.1109/
JSEN.2021.3131209

26. Vallvé, J., Solà, J., Andrade-Cetto, J. Pose-Graph SLAM
Sparsification Using Factor Descent. Robotics and Au-
tonomous Systems, 2019, 119, 108-118. https://doi.or-
g/10.1016/j.robot.2019.06.004

27. Von Stumberg, L., Wenzel, P., Yang, N., Cremers,
D. LM-Reloc: Levenberg-Marquardt Based Direct
Visual Relocalization. 2020 International Confe-
rence on 3D Vision, 2020. https://doi.org/10.1109/
3DV50981.2020.00107

28. Wang, C., Li, Z. B., Kang, Y. F., Li, Y. Z. Applying SLAM
Algorithm Based on Nonlinear Optimized Monocular
Vision and IMU in the Positioning Method of Power
Inspection Robot in Complex Environment. Mathema-
tical Problems in Engineering, 2022, 2022. https://doi.
org/10.1155/2022/3378163

29. Wang, X. H., Ma, X., Li, Z. W. Research on SLAM and
Path Planning Method of Inspection Robot in Com-
plex Scenarios. Electronics, 2023, 12(10). https://doi.
org/10.3390/electronics12102178

Information Technology and Control 2024/2/53600

30. Yang, A., Cao, Y., Liu, Y., Zeng, Q. C., Xiu, F. Q. AGV Ro-
bot for Laser-SLAM Based Method Testing in Automa-
ted Container Terminal. Industrial Robot-the Interna-
tional Journal of Robotics Research and Application,
2023, 50(6), 969-980. https://doi.org/10.1108/IR-04-
2023-0063

31. Yang, J. D., Song, H. M., Li, X. X., Hou, D. Block Mirror
Stochastic Gradient Method for Stochastic Optimi-
zation. Journal of Scientific Computing, 2023, 94(3).
https://doi.org/10.1007/s10915-023-02110-y

32. Yoo, W., Kim, H., Hong, H., Lee, B. H. Scan Similari-
ty-Based Pose Graph Construction Method for Graph

SLAM. 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, 131-136.
https://doi.org/10.1109/IROS.2018.8593605

33. Zhang, H., Chen, N., Fan, G., Yang, D. An Improved
Scan Matching Algorithm in SLAM. 2019 6th Inter-
national Conference on Systems and Informatics
(ICSAI), 2019, 160-164. https://doi.org/10.1109/IC-
SAI48974.2019.9010259

34. Zhang, Z., Scaramuzza, D. A Tutorial on Quantitative
Trajectory Evaluation for Visual (-Inertial) Odometry.
2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2018, 7244-7251.
https://doi.org/10.1109/IROS.2018.8593941

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

