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This paper puts forward a brain computer interface (BCI) system to realize the hand and wrist control using the 
Asea Brown Boveri (ABB) Mechanical Arm. This BCI system gathers four kinds of motor imaginary (MI) tasks 
(hand grasp, hand spread, wrist flexion and wrist extension) electroencephalogram (EEG) signals from 30 elec-
trodes. It utilizes two fifth-order Butterworth Band-Pass Filter (BPF) with different bandwidths and normaliza-
tion method to achieve the raw MI tasks EEG signals preprocessing. The main challenge of feature extraction is 
to analyze the MI task intention from the preprocessed EEG signals. Therefore, the proposed BCI system extracts 
eleven kinds of features in time domain and time-frequency domain and uses mutual information method to re-
duce the large dimension of the extracted features. In addition, the BCI system applies a single convolutional lay-
er Convolutional neural networks (CNN) with 30 filters to implement the quaternary classification of MI tasks. 
Compared with existing research, the classification accuracy of this BCI system is increased by about 32%-35%. 
The actual mechanical arm grasping control experiments verifies that this BCI system has good adaptability. 
KEYWORDS: Brain Computer Interface; Motor Imagery; Convolutional Neural Network; Quaternary Classi-
fication.
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1. Introduction
Stroke is one of serious neurological injury that can 
disrupt blood supply to brain, leading to brain tasks 
injury, specifically motor deficit, such as loss of func-
tion in the arm, wrist or hands. The majority of pa-
tients with loss of upper limb motor function have 
amputations below the elbow [10]. The impulsive 
responses to motor tasks after stroke were found to 
be associated with activity feedback in the primary 
motor cortex and the quality of life (QoF) of stroke 
patients is affected as a result. Patients can improve 
their communication, daily life and exercise ability 
through some intelligent auxiliary methods or devic-
es [2, 21]. 
Brain computer interface (BCI) systems gather elec-
troencephalogram (EEG) signals to establish com-
munication between spontaneous brain electrical 
activities and controlled devices [1]. They have been 
used in the rehabilitation field to help people with dis-
abilities or motor deficit [8] including recovery of mo-
tor function of the upper limb [12] and stroke patients 
rehabilitation [3], etc. BCI system can be implement-
ed in different ways, such as P300 [13], Steady-State 
Visual-Evoked Potential (SSVEP) [16] and Motor 
Imaginary (MI) [18], etc. 
MI is one of the most studied types of EEG in the field 
of BCI. In fact, real movement, MI and somatosensory 
stimuli can regulate μ rhythm (8-13 Hz). MI and so-
matosensory stimuli can lead to the decay of Event 
Related Desychronization (ERD) and the increase of 
Event Related Synchronization (ERS). The most im-
portant fact for BCI is that the ERDs can be caused 
by MI in healthy people and intentional activity in 
disabled people. Since MI is independent of external 
stimuli, it has the higher potential for application. 
Grigorev et al. had realized vibrotactile neurofeed-
back training [7]. Wang et al. had used the multifractal 
detrended fluctuation analysis (MF-DFA) method to 
detect driver fatigue [20]. Palumbo et al. had provid-
ed state-of-the-art applications of wheelchair control 
and movement [17]. Shi et al. had utilized Common 
Spatial Pattern (CSP) and Convolutional Neural Net-
work (CNN) to realized the low speed multi-rotor 
aircraft control [19]. Mwata-Velu et al. had employed 
Bidirectional Long Short-Term Memory (BiLSTM) 
network to carry out finger movements decoding [14]. 
Nann et al. had determined the link between BCI con-

trol performance over time and heart rate variability 
(HRV) and implemented assistive hand exoskeleton 
control [15], etc.
This proposed BCI system is constructed based on 
the EEG feature analysis of hand grasp, hand spread, 
wrist flexion and wrist extension MI tasks collected 
from 30 electrodes. Feature extraction is utilized to 
acquired the regular patterns of the brain activities 
and the effectiveness of feature extraction direct-
ly affects the final classification results. The Power 
Spectral Density (PSD) is unstable and sensitive to 
electrode position changes. The traditional Common 
Spatial Pattern (CSP) algorithm [9], and CSP-based 
algorithms are sensitive to noise [6, 5]. The Wavelet 
Transform (WT) is difficult to select suitable wavelet. 
To overcome these challenges, this BCI system utiliz-
es eleven kinds of time and time-frequency domain 
hybrid features to classify MI tasks. Before feature 
extraction and classification, this BCI system utilizes 
a notch filter and two kinds of fifth-order Butterworth 
Band-Pass Filters (BPFs) with different bandwidths 
to eliminate the different frequencies noises and ar-
tifacts and applies normalization method to to elim-
inate the absolute amplitude and remain the relative 
amplitudes from the raw MI tasks EEG signals. The 
BCI system employs the mutual information meth-
od to reduce the dimension of the extracted features. 
Finally, it uses a single convolutional layer Convolu-
tional Neural Networks (CNN) with 30 filters to im-
plement MI tasks classification.
The rest of this study is organized as that: Methods 
are explained in Section 2. Sections 3 and Section 4 
describe the actual mechanical arm control experi-
ment results and discussions. Section 5 describes the 
conclusion.

2. Methods
2.1. Brain Computer Interface System
Figure 1 shows the overall structure of this pro-
posed BCI system. The calibration experiment 
system is utilized to realize calibration training for 
subjects by simulating the actual hand and wrist 
movements. It is designed by Visual Studio 2019 
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and OpenGL 4.6, and displayed on a 21-inch Liq-
uid Crystal Display (LCD) monitor with the first 
person perspective. This BCI system is applied to 
realize grasping/spreading of objects and forward/
backward movement of wrist for Asea Brown Boveri 
(ABB) mechanical arm using the hand grasp, hand 
spread, wrist flexion and wrist extension MI tasks 
respectively. The raw MI tasks EEG signals are re-
corded by 30 electrodes and preprocessed to elim-
inate the different frequencies noises and artifacts 
via two fifth-order BPFs with different bandwidths. 
The eleven kinds of features in time and time-fre-
quency domain are extracted from the prepro-
cessed EEG signals. After that, a forward stepwise 
searching feature selection strategy based on Cor-
relation-based Feature Selection (CFS) and Classi-
fier Subset Evaluation (CSE) is used to reduce the 
large dimension of the extracted features. A single 
convolutional layer CNN with 30 filters is adopts 
to implement the quaternary classification of MI 
tasks. The final classification output is converted 
into control command and sent to the mechanical 
arm via TCP.

2.2. MI Tasks Data Acquisition
Two males and four females, aged 21.4 ± 3.3 years (sub-
jects 1-6), had participated in the calibration experi-
ment. They sat comfortably in an armchair attaching 
with the Neuroscan (NuAmps) cap were closely at-
tached to the scalp by 40 channels Ag/AgCl electrodes 
in accordance with the international 10-20 system. 
The linked ears electrodes were used as the reference 

Figure 1
Simplified BCI system structure
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2.2 MI Tasks Data Acquisition 
Two males and four females, aged 21.4 ± 3.3 years 
(subjects 1-6), had participated in the calibration 
experiment. They sat comfortably in an armchair 
attaching with the Neuroscan (NuAmps) cap were 
closely attached to the scalp by 40 channels 
Ag/AgCl electrodes in accordance with the 
international 10-20 system. The linked ears 
electrodes were used as the reference and the MI 
tasks were continuously recorded at 250 Hz with 22 
bit from FP1, FP2, F7, F3, FZ, F4, F8, FT7, FC3, FCZ, 
FC4, FT8, T3, C3, CZ, C4, T4, TP7, CP3, CPZ, CP4, 
TP8, T5, P3, PZ, P4, T6, O1, OZ and O2 electrodes. 
They were told not to make any movements or 
sounds and looked at the 21-inch LCD screen for a 
rest period of 3 min. This calibration experiment 
was run on the DELLXPS8940 with i7-11700 CPU, 
RTX 3060Ti graphics card and 32 GB RAM. It was 
consisted of MI tasks orderly training and random 

training. The subjects were required to complete 
each of the four MI tasks three times in each group 
of experiments with a total of 12 tasks. Each subject 
completed 10 groups on the same day and the 
interval between each group was 5 min. This study 
was approved by the Human Research Protections 
Program of University of Science and Technology 
Liaoning. Meanwhile, it was performed in 
accordance with the Declaration of Helsinki. All 
subjects were asked to read and sign an informed 
consent form before this study. 
The timing schemes of acquisition the effective 
single MI task and continuous MI tasks EEG signals 
are shown in Figures 2(a) and 2(b), respectively. To 
remove the delay and signal instability, the single 
MI task was sampled in 2-5 s. Because MI task may 
be performed for a long time, it is necessary to 
divide the collected continuous MI task into 
multiple data segments. 
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Figure 2 
Timing schemes of acquisition the effective single MI task 
and continuous MI tasks EEG signals

(a) single MI task

(b) continuous MI tasks
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and the MI tasks were continuously recorded at 250 
Hz with 22 bit from FP1, FP2, F7, F3, FZ, F4, F8, FT7, 
FC3, FCZ, FC4, FT8, T3, C3, CZ, C4, T4, TP7, CP3, 
CPZ, CP4, TP8, T5, P3, PZ, P4, T6, O1, OZ and O2 elec-
trodes. They were told not to make any movements or 
sounds and looked at the 21-inch LCD screen for a 
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rest period of 3 min. This calibration experiment was 
run on the DELLXPS8940 with i7-11700 CPU, RTX 
3060Ti graphics card and 32 GB RAM. It was consist-
ed of MI tasks orderly training and random training. 
The subjects were required to complete each of the 
four MI tasks three times in each group of experi-
ments with a total of 12 tasks. Each subject completed 
10 groups on the same day and the interval between 
each group was 5 min. This study was approved by the 
Human Research Protections Program of University 
of Science and Technology Liaoning. Meanwhile, it 
was performed in accordance with the Declaration of 
Helsinki. All subjects were asked to read and sign an 
informed consent form before this study.
The timing schemes of acquisition the effective sin-
gle MI task and continuous MI tasks EEG signals are 
shown in Figures 2(a) and 2(b), respectively. To remove 
the delay and signal instability, the single MI task was 
sampled in 2-5 s. Because MI task may be performed 
for a long time, it is necessary to divide the collected 
continuous MI task into multiple data segments.

2.3. MI Tasks Preprocessing
Before feature extraction, the collected MI tasks raw 
EEG signals need to eliminate the different frequen-
cies noises and artifacts. Firstly, a notch filter was 
applied to get rid of the power-line interference at 50 
Hz. Senondly, the fifth-order BPF in range of 1-100 Hz 
was utilized to remove the baseline drift and high 
frequency noises. Nextly, another fifth-order BPF in 
range of 8-30 Hz was also used to get the μ rhythm (8-
13 Hz) and β rhythm (14-30 Hz) EEG signals. Then, 
the acquired EEG signals are normalized to eliminate 
the absolute amplitude and remain the relative ampli-
tudes by using the Equation (1) [4].

(a) single MI task                        (b) continuous MI tasks 
Figure 2  

Timing schemes of acquisition the effective single MI task and continuous MI tasks EEG signals
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𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = w𝑖𝑖𝑖𝑖−𝑤𝑤𝑤𝑤�
δ

,             (1) 

where 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 is the input EEG signal, 𝑤𝑤𝑤𝑤�  is the mean 
of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, δ is the standard deviation of of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 is 
the normalized EEG signal. Finally, EEG signals are 
segmented to extract epochs according to the 
timing schemes in Figure 2. 
 
2.4 MI Tasks Feature Extraction 
The main challenge of feature extraction is to 
extract enough representative features from MI 
tasks to classify them.  

 
2.4.1 Time Domain Feature Extraction 
In this step, five kinds of time domain features are 
extracted from the preproposed EEG signals. 
Define yj (1 ≤ j ≤ M) are samples in time domain, j is 
the index of current sample point, M is the number 
of samples, q is used to adjust the shape of 
probability distribution. The extracted time domain 
features can be described as that. 

1. Root Mean Square 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑀𝑀𝑀𝑀
∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1            

(2) 
2. Renyi Entropy 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦𝑅𝑅𝑅𝑅 = log ∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1

1−𝑞𝑞𝑞𝑞
           

(3) 
3. Hjorth Parameter 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = �
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

          (4) 

𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

        

(5) 
4. Waveform Length 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = ∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗−1�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗           (6) 

5. Mean Absolute Value 

𝜇𝜇𝜇𝜇 = 1
𝑀𝑀𝑀𝑀
∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1              (7) 

2.4.2 Time-frequency Domain Feature Extraction 
In this step, two Higher-order Statistics (HOS) 
features are extracted from the preproposed EEG 
signals and four kinds of time-frequency domain 
features are extracted using the four levels of 
Wavelet Packet Decomposition (WPD). Define N is 
the length of each sub-band, 𝑋𝑋𝑋𝑋{𝑐𝑐𝑐𝑐1,𝑐𝑐𝑐𝑐2, … , 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁} and 
𝑍𝑍𝑍𝑍{𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, … , 𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁} are the two adjacent sub-bands after 
WPD. 

1. Absolute Mean of Coefficients 

𝜇𝜇𝜇𝜇 = 1
𝑁𝑁𝑁𝑁
∑ |𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (8) 

2. Average Power of Coefficients 

𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �1
𝑁𝑁𝑁𝑁
∑ 𝑐𝑐𝑐𝑐2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (9) 

3. Standard Deviation of the Coefficients 

𝜎𝜎𝜎𝜎 = 1
𝑁𝑁𝑁𝑁
∑ (𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝜇𝜇𝜇𝜇)2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              (10) 

4. Ratio of the Absolute Mean Values of 
Coefficients 

𝛾𝛾𝛾𝛾 =
1
𝑁𝑁𝑁𝑁
∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

1
𝑁𝑁𝑁𝑁
∑ |𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

                (11) 

5. Skewness of the Coefficients 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)3

𝜎𝜎𝜎𝜎3
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1               

(12) 
6. Kurtosis of the Coefficients 

𝐾𝐾𝐾𝐾 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)34

𝜎𝜎𝜎𝜎34
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              

(13) 
2.5 MI Tasks Feature Selection 
To reduce the large dimension of the extracted time 
domain and time-frequence domain features, the 
mutual information method was adopted. It is 
mainly used to measure the degree of nonlinear 
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another fifth-order BPF in range of 8-30 Hz was 
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2.4.2 Time-frequency Domain Feature Extraction 
In this step, two Higher-order Statistics (HOS) 
features are extracted from the preproposed EEG 
signals and four kinds of time-frequency domain 
features are extracted using the four levels of 
Wavelet Packet Decomposition (WPD). Define N is 
the length of each sub-band, 𝑋𝑋𝑋𝑋{𝑐𝑐𝑐𝑐1,𝑐𝑐𝑐𝑐2, … , 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁} and 
𝑍𝑍𝑍𝑍{𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, … , 𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁} are the two adjacent sub-bands after 
WPD. 
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6. Kurtosis of the Coefficients 
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(13) 
2.5 MI Tasks Feature Selection 
To reduce the large dimension of the extracted time 
domain and time-frequence domain features, the 
mutual information method was adopted. It is 
mainly used to measure the degree of nonlinear 
dependence between two random variables and 

. (4)

(a) single MI task                        (b) continuous MI tasks 
Figure 2  

Timing schemes of acquisition the effective single MI task and continuous MI tasks EEG signals

 
2.3 MI Tasks Preprocessing 
Before feature extraction, the collected MI tasks raw 
EEG signals need to eliminate the different 
frequencies noises and artifacts. Firstly, a notch 
filter was applied to get rid of the power-line 
interference at 50 Hz. Senondly, the fifth-order BPF 
in range of 1-100 Hz was utilized to remove the 
baseline drift and high frequency noises. Nextly, 
another fifth-order BPF in range of 8-30 Hz was 
also used to get the μ rhythm (8-13 Hz) and β 
rhythm (14-30 Hz) EEG signals. Then, the acquired 
EEG signals are normalized to eliminate the 
absolute amplitude and remain the relative 
amplitudes by using the Equation (1) [4]. 

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = w𝑖𝑖𝑖𝑖−𝑤𝑤𝑤𝑤�
δ

,             (1) 

where 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 is the input EEG signal, 𝑤𝑤𝑤𝑤�  is the mean 
of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, δ is the standard deviation of of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 is 
the normalized EEG signal. Finally, EEG signals are 
segmented to extract epochs according to the 
timing schemes in Figure 2. 
 
2.4 MI Tasks Feature Extraction 
The main challenge of feature extraction is to 
extract enough representative features from MI 
tasks to classify them.  

 
2.4.1 Time Domain Feature Extraction 
In this step, five kinds of time domain features are 
extracted from the preproposed EEG signals. 
Define yj (1 ≤ j ≤ M) are samples in time domain, j is 
the index of current sample point, M is the number 
of samples, q is used to adjust the shape of 
probability distribution. The extracted time domain 
features can be described as that. 
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𝑗𝑗𝑗𝑗=1              (7) 

2.4.2 Time-frequency Domain Feature Extraction 
In this step, two Higher-order Statistics (HOS) 
features are extracted from the preproposed EEG 
signals and four kinds of time-frequency domain 
features are extracted using the four levels of 
Wavelet Packet Decomposition (WPD). Define N is 
the length of each sub-band, 𝑋𝑋𝑋𝑋{𝑐𝑐𝑐𝑐1,𝑐𝑐𝑐𝑐2, … , 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁} and 
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3. Standard Deviation of the Coefficients 
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2.5 MI Tasks Feature Selection 
To reduce the large dimension of the extracted time 
domain and time-frequence domain features, the 
mutual information method was adopted. It is 
mainly used to measure the degree of nonlinear 
dependence between two random variables and 

. (5)
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Timing schemes of acquisition the effective single MI task and continuous MI tasks EEG signals

 
2.3 MI Tasks Preprocessing 
Before feature extraction, the collected MI tasks raw 
EEG signals need to eliminate the different 
frequencies noises and artifacts. Firstly, a notch 
filter was applied to get rid of the power-line 
interference at 50 Hz. Senondly, the fifth-order BPF 
in range of 1-100 Hz was utilized to remove the 
baseline drift and high frequency noises. Nextly, 
another fifth-order BPF in range of 8-30 Hz was 
also used to get the μ rhythm (8-13 Hz) and β 
rhythm (14-30 Hz) EEG signals. Then, the acquired 
EEG signals are normalized to eliminate the 
absolute amplitude and remain the relative 
amplitudes by using the Equation (1) [4]. 

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = w𝑖𝑖𝑖𝑖−𝑤𝑤𝑤𝑤�
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where 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 is the input EEG signal, 𝑤𝑤𝑤𝑤�  is the mean 
of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, δ is the standard deviation of of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 is 
the normalized EEG signal. Finally, EEG signals are 
segmented to extract epochs according to the 
timing schemes in Figure 2. 
 
2.4 MI Tasks Feature Extraction 
The main challenge of feature extraction is to 
extract enough representative features from MI 
tasks to classify them.  

 
2.4.1 Time Domain Feature Extraction 
In this step, five kinds of time domain features are 
extracted from the preproposed EEG signals. 
Define yj (1 ≤ j ≤ M) are samples in time domain, j is 
the index of current sample point, M is the number 
of samples, q is used to adjust the shape of 
probability distribution. The extracted time domain 
features can be described as that. 
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𝑗𝑗𝑗𝑗=1              (7) 

2.4.2 Time-frequency Domain Feature Extraction 
In this step, two Higher-order Statistics (HOS) 
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mutual information method was adopted. It is 
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dependence between two random variables and 

. (6)

5 Mean Absolute Value

(a) single MI task                        (b) continuous MI tasks 
Figure 2  

Timing schemes of acquisition the effective single MI task and continuous MI tasks EEG signals

 
2.3 MI Tasks Preprocessing 
Before feature extraction, the collected MI tasks raw 
EEG signals need to eliminate the different 
frequencies noises and artifacts. Firstly, a notch 
filter was applied to get rid of the power-line 
interference at 50 Hz. Senondly, the fifth-order BPF 
in range of 1-100 Hz was utilized to remove the 
baseline drift and high frequency noises. Nextly, 
another fifth-order BPF in range of 8-30 Hz was 
also used to get the μ rhythm (8-13 Hz) and β 
rhythm (14-30 Hz) EEG signals. Then, the acquired 
EEG signals are normalized to eliminate the 
absolute amplitude and remain the relative 
amplitudes by using the Equation (1) [4]. 

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = w𝑖𝑖𝑖𝑖−𝑤𝑤𝑤𝑤�
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the normalized EEG signal. Finally, EEG signals are 
segmented to extract epochs according to the 
timing schemes in Figure 2. 
 
2.4 MI Tasks Feature Extraction 
The main challenge of feature extraction is to 
extract enough representative features from MI 
tasks to classify them.  

 
2.4.1 Time Domain Feature Extraction 
In this step, five kinds of time domain features are 
extracted from the preproposed EEG signals. 
Define yj (1 ≤ j ≤ M) are samples in time domain, j is 
the index of current sample point, M is the number 
of samples, q is used to adjust the shape of 
probability distribution. The extracted time domain 
features can be described as that. 
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mainly used to measure the degree of nonlinear 
dependence between two random variables and 
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2.4.2. Time-frequency Domain Feature Extraction
In this step, two Higher-order Statistics (HOS) fea-
tures are extracted from the preproposed EEG signals 
and four kinds of time-frequency domain features are 
extracted using the four levels of Wavelet Packet De-
composition (WPD). Define N is the length of each 
sub-band, X{x1, x2, …, xN} and Z{z1 ,z2, …, zN} are the two 
adjacent sub-bands after WPD.
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2.3 MI Tasks Preprocessing 
Before feature extraction, the collected MI tasks raw 
EEG signals need to eliminate the different 
frequencies noises and artifacts. Firstly, a notch 
filter was applied to get rid of the power-line 
interference at 50 Hz. Senondly, the fifth-order BPF 
in range of 1-100 Hz was utilized to remove the 
baseline drift and high frequency noises. Nextly, 
another fifth-order BPF in range of 8-30 Hz was 
also used to get the μ rhythm (8-13 Hz) and β 
rhythm (14-30 Hz) EEG signals. Then, the acquired 
EEG signals are normalized to eliminate the 
absolute amplitude and remain the relative 
amplitudes by using the Equation (1) [4]. 
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the normalized EEG signal. Finally, EEG signals are 
segmented to extract epochs according to the 
timing schemes in Figure 2. 
 
2.4 MI Tasks Feature Extraction 
The main challenge of feature extraction is to 
extract enough representative features from MI 
tasks to classify them.  

 
2.4.1 Time Domain Feature Extraction 
In this step, five kinds of time domain features are 
extracted from the preproposed EEG signals. 
Define yj (1 ≤ j ≤ M) are samples in time domain, j is 
the index of current sample point, M is the number 
of samples, q is used to adjust the shape of 
probability distribution. The extracted time domain 
features can be described as that. 
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2.4.2 Time-frequency Domain Feature Extraction 
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the length of each sub-band, 𝑋𝑋𝑋𝑋{𝑐𝑐𝑐𝑐1,𝑐𝑐𝑐𝑐2, … , 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁} and 
𝑍𝑍𝑍𝑍{𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, … , 𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁} are the two adjacent sub-bands after 
WPD. 

1. Absolute Mean of Coefficients 

𝜇𝜇𝜇𝜇 = 1
𝑁𝑁𝑁𝑁
∑ |𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (8) 

2. Average Power of Coefficients 

𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �1
𝑁𝑁𝑁𝑁
∑ 𝑐𝑐𝑐𝑐2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (9) 

3. Standard Deviation of the Coefficients 

𝜎𝜎𝜎𝜎 = 1
𝑁𝑁𝑁𝑁
∑ (𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝜇𝜇𝜇𝜇)2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              (10) 

4. Ratio of the Absolute Mean Values of 
Coefficients 

𝛾𝛾𝛾𝛾 =
1
𝑁𝑁𝑁𝑁
∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

1
𝑁𝑁𝑁𝑁
∑ |𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

                (11) 

5. Skewness of the Coefficients 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)3

𝜎𝜎𝜎𝜎3
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1               

(12) 
6. Kurtosis of the Coefficients 

𝐾𝐾𝐾𝐾 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)34

𝜎𝜎𝜎𝜎34
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              

(13) 
2.5 MI Tasks Feature Selection 
To reduce the large dimension of the extracted time 
domain and time-frequence domain features, the 
mutual information method was adopted. It is 
mainly used to measure the degree of nonlinear 
dependence between two random variables and 

. (8)

2 Average Power of Coefficients

(a) single MI task                        (b) continuous MI tasks 
Figure 2  

Timing schemes of acquisition the effective single MI task and continuous MI tasks EEG signals

 
2.3 MI Tasks Preprocessing 
Before feature extraction, the collected MI tasks raw 
EEG signals need to eliminate the different 
frequencies noises and artifacts. Firstly, a notch 
filter was applied to get rid of the power-line 
interference at 50 Hz. Senondly, the fifth-order BPF 
in range of 1-100 Hz was utilized to remove the 
baseline drift and high frequency noises. Nextly, 
another fifth-order BPF in range of 8-30 Hz was 
also used to get the μ rhythm (8-13 Hz) and β 
rhythm (14-30 Hz) EEG signals. Then, the acquired 
EEG signals are normalized to eliminate the 
absolute amplitude and remain the relative 
amplitudes by using the Equation (1) [4]. 

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = w𝑖𝑖𝑖𝑖−𝑤𝑤𝑤𝑤�
δ

,             (1) 

where 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 is the input EEG signal, 𝑤𝑤𝑤𝑤�  is the mean 
of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, δ is the standard deviation of of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 is 
the normalized EEG signal. Finally, EEG signals are 
segmented to extract epochs according to the 
timing schemes in Figure 2. 
 
2.4 MI Tasks Feature Extraction 
The main challenge of feature extraction is to 
extract enough representative features from MI 
tasks to classify them.  

 
2.4.1 Time Domain Feature Extraction 
In this step, five kinds of time domain features are 
extracted from the preproposed EEG signals. 
Define yj (1 ≤ j ≤ M) are samples in time domain, j is 
the index of current sample point, M is the number 
of samples, q is used to adjust the shape of 
probability distribution. The extracted time domain 
features can be described as that. 

1. Root Mean Square 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑀𝑀𝑀𝑀
∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1            

(2) 
2. Renyi Entropy 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦𝑅𝑅𝑅𝑅 = log ∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1

1−𝑞𝑞𝑞𝑞
           

(3) 
3. Hjorth Parameter 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = �
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

          (4) 

𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

        

(5) 
4. Waveform Length 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = ∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗−1�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗           (6) 

5. Mean Absolute Value 

𝜇𝜇𝜇𝜇 = 1
𝑀𝑀𝑀𝑀
∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1              (7) 

2.4.2 Time-frequency Domain Feature Extraction 
In this step, two Higher-order Statistics (HOS) 
features are extracted from the preproposed EEG 
signals and four kinds of time-frequency domain 
features are extracted using the four levels of 
Wavelet Packet Decomposition (WPD). Define N is 
the length of each sub-band, 𝑋𝑋𝑋𝑋{𝑐𝑐𝑐𝑐1,𝑐𝑐𝑐𝑐2, … , 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁} and 
𝑍𝑍𝑍𝑍{𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, … , 𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁} are the two adjacent sub-bands after 
WPD. 

1. Absolute Mean of Coefficients 

𝜇𝜇𝜇𝜇 = 1
𝑁𝑁𝑁𝑁
∑ |𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (8) 

2. Average Power of Coefficients 

𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �1
𝑁𝑁𝑁𝑁
∑ 𝑐𝑐𝑐𝑐2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (9) 

3. Standard Deviation of the Coefficients 

𝜎𝜎𝜎𝜎 = 1
𝑁𝑁𝑁𝑁
∑ (𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝜇𝜇𝜇𝜇)2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              (10) 

4. Ratio of the Absolute Mean Values of 
Coefficients 

𝛾𝛾𝛾𝛾 =
1
𝑁𝑁𝑁𝑁
∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

1
𝑁𝑁𝑁𝑁
∑ |𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

                (11) 

5. Skewness of the Coefficients 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)3

𝜎𝜎𝜎𝜎3
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1               

(12) 
6. Kurtosis of the Coefficients 

𝐾𝐾𝐾𝐾 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)34

𝜎𝜎𝜎𝜎34
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              

(13) 
2.5 MI Tasks Feature Selection 
To reduce the large dimension of the extracted time 
domain and time-frequence domain features, the 
mutual information method was adopted. It is 
mainly used to measure the degree of nonlinear 
dependence between two random variables and 

. (9)
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3 Standard Deviation of the Coefficients

(a) single MI task                        (b) continuous MI tasks 
Figure 2  

Timing schemes of acquisition the effective single MI task and continuous MI tasks EEG signals

 
2.3 MI Tasks Preprocessing 
Before feature extraction, the collected MI tasks raw 
EEG signals need to eliminate the different 
frequencies noises and artifacts. Firstly, a notch 
filter was applied to get rid of the power-line 
interference at 50 Hz. Senondly, the fifth-order BPF 
in range of 1-100 Hz was utilized to remove the 
baseline drift and high frequency noises. Nextly, 
another fifth-order BPF in range of 8-30 Hz was 
also used to get the μ rhythm (8-13 Hz) and β 
rhythm (14-30 Hz) EEG signals. Then, the acquired 
EEG signals are normalized to eliminate the 
absolute amplitude and remain the relative 
amplitudes by using the Equation (1) [4]. 

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = w𝑖𝑖𝑖𝑖−𝑤𝑤𝑤𝑤�
δ

,             (1) 

where 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 is the input EEG signal, 𝑤𝑤𝑤𝑤�  is the mean 
of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, δ is the standard deviation of of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 is 
the normalized EEG signal. Finally, EEG signals are 
segmented to extract epochs according to the 
timing schemes in Figure 2. 
 
2.4 MI Tasks Feature Extraction 
The main challenge of feature extraction is to 
extract enough representative features from MI 
tasks to classify them.  

 
2.4.1 Time Domain Feature Extraction 
In this step, five kinds of time domain features are 
extracted from the preproposed EEG signals. 
Define yj (1 ≤ j ≤ M) are samples in time domain, j is 
the index of current sample point, M is the number 
of samples, q is used to adjust the shape of 
probability distribution. The extracted time domain 
features can be described as that. 

1. Root Mean Square 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑀𝑀𝑀𝑀
∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1            

(2) 
2. Renyi Entropy 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦𝑅𝑅𝑅𝑅 = log ∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1

1−𝑞𝑞𝑞𝑞
           

(3) 
3. Hjorth Parameter 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = �
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

          (4) 

𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

        

(5) 
4. Waveform Length 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = ∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗−1�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗           (6) 

5. Mean Absolute Value 

𝜇𝜇𝜇𝜇 = 1
𝑀𝑀𝑀𝑀
∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1              (7) 

2.4.2 Time-frequency Domain Feature Extraction 
In this step, two Higher-order Statistics (HOS) 
features are extracted from the preproposed EEG 
signals and four kinds of time-frequency domain 
features are extracted using the four levels of 
Wavelet Packet Decomposition (WPD). Define N is 
the length of each sub-band, 𝑋𝑋𝑋𝑋{𝑐𝑐𝑐𝑐1,𝑐𝑐𝑐𝑐2, … , 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁} and 
𝑍𝑍𝑍𝑍{𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, … , 𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁} are the two adjacent sub-bands after 
WPD. 

1. Absolute Mean of Coefficients 

𝜇𝜇𝜇𝜇 = 1
𝑁𝑁𝑁𝑁
∑ |𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (8) 

2. Average Power of Coefficients 

𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �1
𝑁𝑁𝑁𝑁
∑ 𝑐𝑐𝑐𝑐2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (9) 

3. Standard Deviation of the Coefficients 

𝜎𝜎𝜎𝜎 = 1
𝑁𝑁𝑁𝑁
∑ (𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝜇𝜇𝜇𝜇)2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              (10) 

4. Ratio of the Absolute Mean Values of 
Coefficients 

𝛾𝛾𝛾𝛾 =
1
𝑁𝑁𝑁𝑁
∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

1
𝑁𝑁𝑁𝑁
∑ |𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

                (11) 

5. Skewness of the Coefficients 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)3

𝜎𝜎𝜎𝜎3
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1               

(12) 
6. Kurtosis of the Coefficients 

𝐾𝐾𝐾𝐾 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)34

𝜎𝜎𝜎𝜎34
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              

(13) 
2.5 MI Tasks Feature Selection 
To reduce the large dimension of the extracted time 
domain and time-frequence domain features, the 
mutual information method was adopted. It is 
mainly used to measure the degree of nonlinear 
dependence between two random variables and 

. (10)

4 Ratio of the Absolute Mean Values of Coefficients

(a) single MI task                        (b) continuous MI tasks 
Figure 2  

Timing schemes of acquisition the effective single MI task and continuous MI tasks EEG signals

 
2.3 MI Tasks Preprocessing 
Before feature extraction, the collected MI tasks raw 
EEG signals need to eliminate the different 
frequencies noises and artifacts. Firstly, a notch 
filter was applied to get rid of the power-line 
interference at 50 Hz. Senondly, the fifth-order BPF 
in range of 1-100 Hz was utilized to remove the 
baseline drift and high frequency noises. Nextly, 
another fifth-order BPF in range of 8-30 Hz was 
also used to get the μ rhythm (8-13 Hz) and β 
rhythm (14-30 Hz) EEG signals. Then, the acquired 
EEG signals are normalized to eliminate the 
absolute amplitude and remain the relative 
amplitudes by using the Equation (1) [4]. 

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = w𝑖𝑖𝑖𝑖−𝑤𝑤𝑤𝑤�
δ

,             (1) 

where 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 is the input EEG signal, 𝑤𝑤𝑤𝑤�  is the mean 
of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, δ is the standard deviation of of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 is 
the normalized EEG signal. Finally, EEG signals are 
segmented to extract epochs according to the 
timing schemes in Figure 2. 
 
2.4 MI Tasks Feature Extraction 
The main challenge of feature extraction is to 
extract enough representative features from MI 
tasks to classify them.  

 
2.4.1 Time Domain Feature Extraction 
In this step, five kinds of time domain features are 
extracted from the preproposed EEG signals. 
Define yj (1 ≤ j ≤ M) are samples in time domain, j is 
the index of current sample point, M is the number 
of samples, q is used to adjust the shape of 
probability distribution. The extracted time domain 
features can be described as that. 

1. Root Mean Square 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑀𝑀𝑀𝑀
∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1            

(2) 
2. Renyi Entropy 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦𝑅𝑅𝑅𝑅 = log ∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1

1−𝑞𝑞𝑞𝑞
           

(3) 
3. Hjorth Parameter 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = �
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

          (4) 

𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

        

(5) 
4. Waveform Length 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = ∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗−1�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗           (6) 

5. Mean Absolute Value 

𝜇𝜇𝜇𝜇 = 1
𝑀𝑀𝑀𝑀
∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1              (7) 

2.4.2 Time-frequency Domain Feature Extraction 
In this step, two Higher-order Statistics (HOS) 
features are extracted from the preproposed EEG 
signals and four kinds of time-frequency domain 
features are extracted using the four levels of 
Wavelet Packet Decomposition (WPD). Define N is 
the length of each sub-band, 𝑋𝑋𝑋𝑋{𝑐𝑐𝑐𝑐1,𝑐𝑐𝑐𝑐2, … , 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁} and 
𝑍𝑍𝑍𝑍{𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, … , 𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁} are the two adjacent sub-bands after 
WPD. 

1. Absolute Mean of Coefficients 

𝜇𝜇𝜇𝜇 = 1
𝑁𝑁𝑁𝑁
∑ |𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (8) 

2. Average Power of Coefficients 

𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �1
𝑁𝑁𝑁𝑁
∑ 𝑐𝑐𝑐𝑐2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (9) 

3. Standard Deviation of the Coefficients 

𝜎𝜎𝜎𝜎 = 1
𝑁𝑁𝑁𝑁
∑ (𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝜇𝜇𝜇𝜇)2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              (10) 

4. Ratio of the Absolute Mean Values of 
Coefficients 

𝛾𝛾𝛾𝛾 =
1
𝑁𝑁𝑁𝑁
∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

1
𝑁𝑁𝑁𝑁
∑ |𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

                (11) 

5. Skewness of the Coefficients 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)3

𝜎𝜎𝜎𝜎3
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1               

(12) 
6. Kurtosis of the Coefficients 

𝐾𝐾𝐾𝐾 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)34

𝜎𝜎𝜎𝜎34
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              

(13) 
2.5 MI Tasks Feature Selection 
To reduce the large dimension of the extracted time 
domain and time-frequence domain features, the 
mutual information method was adopted. It is 
mainly used to measure the degree of nonlinear 
dependence between two random variables and 

. (11)

5 Skewness of the Coefficients

(a) single MI task                        (b) continuous MI tasks 
Figure 2  

Timing schemes of acquisition the effective single MI task and continuous MI tasks EEG signals

 
2.3 MI Tasks Preprocessing 
Before feature extraction, the collected MI tasks raw 
EEG signals need to eliminate the different 
frequencies noises and artifacts. Firstly, a notch 
filter was applied to get rid of the power-line 
interference at 50 Hz. Senondly, the fifth-order BPF 
in range of 1-100 Hz was utilized to remove the 
baseline drift and high frequency noises. Nextly, 
another fifth-order BPF in range of 8-30 Hz was 
also used to get the μ rhythm (8-13 Hz) and β 
rhythm (14-30 Hz) EEG signals. Then, the acquired 
EEG signals are normalized to eliminate the 
absolute amplitude and remain the relative 
amplitudes by using the Equation (1) [4]. 

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = w𝑖𝑖𝑖𝑖−𝑤𝑤𝑤𝑤�
δ

,             (1) 

where 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 is the input EEG signal, 𝑤𝑤𝑤𝑤�  is the mean 
of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, δ is the standard deviation of of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 is 
the normalized EEG signal. Finally, EEG signals are 
segmented to extract epochs according to the 
timing schemes in Figure 2. 
 
2.4 MI Tasks Feature Extraction 
The main challenge of feature extraction is to 
extract enough representative features from MI 
tasks to classify them.  

 
2.4.1 Time Domain Feature Extraction 
In this step, five kinds of time domain features are 
extracted from the preproposed EEG signals. 
Define yj (1 ≤ j ≤ M) are samples in time domain, j is 
the index of current sample point, M is the number 
of samples, q is used to adjust the shape of 
probability distribution. The extracted time domain 
features can be described as that. 

1. Root Mean Square 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑀𝑀𝑀𝑀
∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1            

(2) 
2. Renyi Entropy 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦𝑅𝑅𝑅𝑅 = log ∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1

1−𝑞𝑞𝑞𝑞
           

(3) 
3. Hjorth Parameter 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = �
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

          (4) 

𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

        

(5) 
4. Waveform Length 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = ∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗−1�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗           (6) 

5. Mean Absolute Value 

𝜇𝜇𝜇𝜇 = 1
𝑀𝑀𝑀𝑀
∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1              (7) 

2.4.2 Time-frequency Domain Feature Extraction 
In this step, two Higher-order Statistics (HOS) 
features are extracted from the preproposed EEG 
signals and four kinds of time-frequency domain 
features are extracted using the four levels of 
Wavelet Packet Decomposition (WPD). Define N is 
the length of each sub-band, 𝑋𝑋𝑋𝑋{𝑐𝑐𝑐𝑐1,𝑐𝑐𝑐𝑐2, … , 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁} and 
𝑍𝑍𝑍𝑍{𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, … , 𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁} are the two adjacent sub-bands after 
WPD. 

1. Absolute Mean of Coefficients 

𝜇𝜇𝜇𝜇 = 1
𝑁𝑁𝑁𝑁
∑ |𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (8) 

2. Average Power of Coefficients 

𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �1
𝑁𝑁𝑁𝑁
∑ 𝑐𝑐𝑐𝑐2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (9) 

3. Standard Deviation of the Coefficients 

𝜎𝜎𝜎𝜎 = 1
𝑁𝑁𝑁𝑁
∑ (𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝜇𝜇𝜇𝜇)2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              (10) 

4. Ratio of the Absolute Mean Values of 
Coefficients 

𝛾𝛾𝛾𝛾 =
1
𝑁𝑁𝑁𝑁
∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

1
𝑁𝑁𝑁𝑁
∑ |𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

                (11) 

5. Skewness of the Coefficients 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)3

𝜎𝜎𝜎𝜎3
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1               

(12) 
6. Kurtosis of the Coefficients 

𝐾𝐾𝐾𝐾 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)34

𝜎𝜎𝜎𝜎34
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              

(13) 
2.5 MI Tasks Feature Selection 
To reduce the large dimension of the extracted time 
domain and time-frequence domain features, the 
mutual information method was adopted. It is 
mainly used to measure the degree of nonlinear 
dependence between two random variables and 

. (12)

6 Kurtosis of the Coefficients

(a) single MI task                        (b) continuous MI tasks 
Figure 2  

Timing schemes of acquisition the effective single MI task and continuous MI tasks EEG signals

 
2.3 MI Tasks Preprocessing 
Before feature extraction, the collected MI tasks raw 
EEG signals need to eliminate the different 
frequencies noises and artifacts. Firstly, a notch 
filter was applied to get rid of the power-line 
interference at 50 Hz. Senondly, the fifth-order BPF 
in range of 1-100 Hz was utilized to remove the 
baseline drift and high frequency noises. Nextly, 
another fifth-order BPF in range of 8-30 Hz was 
also used to get the μ rhythm (8-13 Hz) and β 
rhythm (14-30 Hz) EEG signals. Then, the acquired 
EEG signals are normalized to eliminate the 
absolute amplitude and remain the relative 
amplitudes by using the Equation (1) [4]. 

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 = w𝑖𝑖𝑖𝑖−𝑤𝑤𝑤𝑤�
δ

,             (1) 

where 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 is the input EEG signal, 𝑤𝑤𝑤𝑤�  is the mean 
of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, δ is the standard deviation of of 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖, 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 is 
the normalized EEG signal. Finally, EEG signals are 
segmented to extract epochs according to the 
timing schemes in Figure 2. 
 
2.4 MI Tasks Feature Extraction 
The main challenge of feature extraction is to 
extract enough representative features from MI 
tasks to classify them.  

 
2.4.1 Time Domain Feature Extraction 
In this step, five kinds of time domain features are 
extracted from the preproposed EEG signals. 
Define yj (1 ≤ j ≤ M) are samples in time domain, j is 
the index of current sample point, M is the number 
of samples, q is used to adjust the shape of 
probability distribution. The extracted time domain 
features can be described as that. 

1. Root Mean Square 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑀𝑀𝑀𝑀
∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1            

(2) 
2. Renyi Entropy 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦𝑅𝑅𝑅𝑅 = log ∑ 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗2𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1

1−𝑞𝑞𝑞𝑞
           

(3) 
3. Hjorth Parameter 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = �
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

          (4) 

𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗′)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗)

        

(5) 
4. Waveform Length 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = ∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗−1�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗           (6) 

5. Mean Absolute Value 

𝜇𝜇𝜇𝜇 = 1
𝑀𝑀𝑀𝑀
∑ �𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗�𝑀𝑀𝑀𝑀
𝑗𝑗𝑗𝑗=1              (7) 

2.4.2 Time-frequency Domain Feature Extraction 
In this step, two Higher-order Statistics (HOS) 
features are extracted from the preproposed EEG 
signals and four kinds of time-frequency domain 
features are extracted using the four levels of 
Wavelet Packet Decomposition (WPD). Define N is 
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𝑍𝑍𝑍𝑍{𝑧𝑧𝑧𝑧1, 𝑧𝑧𝑧𝑧2, … , 𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁} are the two adjacent sub-bands after 
WPD. 

1. Absolute Mean of Coefficients 

𝜇𝜇𝜇𝜇 = 1
𝑁𝑁𝑁𝑁
∑ |𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
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2. Average Power of Coefficients 

𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �1
𝑁𝑁𝑁𝑁
∑ 𝑐𝑐𝑐𝑐2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1                (9) 

3. Standard Deviation of the Coefficients 
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𝑁𝑁𝑁𝑁
∑ (𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 𝜇𝜇𝜇𝜇)2𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              (10) 

4. Ratio of the Absolute Mean Values of 
Coefficients 

𝛾𝛾𝛾𝛾 =
1
𝑁𝑁𝑁𝑁
∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

1
𝑁𝑁𝑁𝑁
∑ |𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖|𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1

                (11) 

5. Skewness of the Coefficients 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)3

𝜎𝜎𝜎𝜎3
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1               

(12) 
6. Kurtosis of the Coefficients 

𝐾𝐾𝐾𝐾 = 1
𝑁𝑁𝑁𝑁
∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇)34

𝜎𝜎𝜎𝜎34
𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1              

(13) 
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mainly used to measure the degree of nonlinear 
dependence between two random variables and 
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describe as that:
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and 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) is the joint entropy of X and Y. 
 
2.6 MI Tasks Classification 
A single convolutional layer CNN with 30 filters 
includes the convolution layer, pooling layer, fully 
connected layer and activation functions was 
utilized to complete the quaternary classification. 
The extracted features were set as the input and the 
Rectified Linear Units (ReLU) was used as the 
activation function. After that, the pooling layer 
was adopted to reduce the feature dimension 
without changing the number of features and apply 
the max-pooling with pool size and step of 2. Final 
output features are converted to a one-dimensional 
array and fed into the fully connected layers. 
Meantime, the softmax activation function was 
applied in the output layer. The initial learning rate 
was set as 0.4. A total of 1440 trials are obtained in 
the calibration experiment, including 720 trials of 
orderly training and 720 trials of random training. 
In orderly training and random training, the 480 
trials are used as training set and the other 240 
trials are utilized as testing set respectively. 
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3.1 Experiment Setup 
To verify the adaptability and control stability of 
this BCI system, twelve healthy subjects (subjects 
1-6 had participated in the calibration experiment; 
three males and three females, aged 22.1 ± 4.2 years, 
had not participated in the calibration experiment 
(subjects 7-12)) were accomplished this experiment 

at the School of Innovation and entrepreneurship, 
University of Science and Technology Liaoning, 
Anshan, Liaoning, China. Subjects accomplishes 
the experiment on the same day.  
The MI tasks preprocessing, MI tasks feature 
extraction, MI tasks feature selection and MI tasks 
classification algorithms were run on the 
DELLXPS8940 with i7-11700 CPU, RTX 3060Ti 
graphics card and 32 GB RAM. Before this 
experiment, subjects attached electrode caps and 
sat comfortably in an armchair to relax for 5 min. 
3.2 Mechanical Arm Grasping Control 
The subjects manually use the hand grasp and 
hand spread MI tasks to realize the grasping and 
spreading of objects and utilize the wrist flexion 
and wrist extension MI tasks to implement the 
forward and backward movement via the ABB 
mechanical arm. During this experiment, three 
object grasping positions in the vertical direction 
are separated by 30 cm from each other. The 
captured objects are green cube hard sponge block 
placed horizontally with the side length of 10 cm. 
The middle object grasping position is set as the 
initial position of the mechanical arm and the 
default height of the mechanical arm is 20 cm. The 
subjects perform the hand grasp MI task to lower 
the mechanical arm height. When the mechanical 
arm reaches the height of the object, it will 
automatically complete the grasping movement. 
On the contrary, the subjects perform the hand 
spread MI tasks to execute the spreading 
movement and control the mechanical arm return 
to the default height. The subjects are required to 
complete all three grasping tasks in any order. A 
bottom facing cameras is above the fingers of the 
mechanical arm and it transmits the real-time video 
by WIFI. The communication between the BCI 
system and the ABB mechanical arm is realized by 
TCP. Figure3 shows the objects positions. The black 
box is the experimental area and the dotted lines 
are the three object positions. 
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ear Units (ReLU) was used as the activation function. 
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of features and apply the max-pooling with pool size 
and step of 2. Final output features are converted to a 
one-dimensional array and fed into the fully connect-
ed layers. Meantime, the softmax activation function 
was applied in the output layer. The initial learning 
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3.1. Experiment Setup
To verify the adaptability and control stability of this 
BCI system, twelve healthy subjects (subjects 1-6 
had participated in the calibration experiment; three 
males and three females, aged 22.1 ± 4.2 years, had 
not participated in the calibration experiment (sub-
jects 7-12)) were accomplished this experiment at the 
School of Innovation and entrepreneurship, Univer-
sity of Science and Technology Liaoning, Anshan, Li-
aoning, China. Subjects accomplishes the experiment 
on the same day. 
The MI tasks preprocessing, MI tasks feature ex-
traction, MI tasks feature selection and MI tasks clas-
sification algorithms were run on the DELLXPS8940 
with i7-11700 CPU, RTX 3060Ti graphics card and 32 
GB RAM. Before this experiment, subjects attached 
electrode caps and sat comfortably in an armchair to 
relax for 5 min.

3.2. Mechanical Arm Grasping Control
The subjects manually use the hand grasp and hand 
spread MI tasks to realize the grasping and spread-
ing of objects and utilize the wrist flexion and wrist 
extension MI tasks to implement the forward and 
backward movement via the ABB mechanical arm. 
During this experiment, three object grasping po-
sitions in the vertical direction are separated by 30 
cm from each other. The captured objects are green 
cube hard sponge block placed horizontally with the 
side length of 10 cm. The middle object grasping po-
sition is set as the initial position of the mechanical 
arm and the default height of the mechanical arm is 
20 cm. The subjects perform the hand grasp MI task 
to lower the mechanical arm height. When the me-
chanical arm reaches the height of the object, it will 
automatically complete the grasping movement. On 
the contrary, the subjects perform the hand spread MI 
tasks to execute the spreading movement and control 
the mechanical arm return to the default height. The 
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subjects are required to complete all three grasping 
tasks in any order. A bottom facing cameras is above 
the fingers of the mechanical arm and it transmits 
the real-time video by WIFI. The communication be-
tween the BCI system and the ABB mechanical arm is 
realized by TCP. Figure3 shows the objects positions. 
The black box is the experimental area and the dotted 
lines are the three object positions.

4. Results and Discussions
4.1. Results for MI Calibration Experiments
Figure 4 shows the classification accuracy (mean 
± S.D.) of subjects 1-6. In orderly training (OT), the 
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[4], Table 1 shows that the CNN method (Ours) is 
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Table 1 
Comparison of the classification accuracy (%)

Algo-
rithm 1 2 3 4 5 6 Aver-

age

TDP-
SRLDA

OT 55.67 55.33 56.67 57.95 58.17 56.67 56.74

RT 56.17 55.67 57.17 58.17 58.33 57.67 57.2

TT-
LSVM

OT 54.67 54.33 55.17 55.33 54.67 54.33 54.75

RT 54.95 54.67 55.33 55.33 54.95 54.67 54.99

Ours
OT 91.67 88.33 89.17 87.5 90 86.67 88.89

RT 91.67 89.17 90 89.17 90.83 88.33 89.86
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Table 2 
Comparison results of subject 1-12 using the BCI system to 
complete the mechanical arm grasping control experiment

4.2. Results for Actual Mechanical Arm 
Grasping Control Experiments
Table 2 shows the comparison of subjects 1-12 using 
this BCI system to implement the mechanical arm 
grasping control experiment (expected number of MI 
tasks (ENT), actual number of MI tasks (ANT), Time 
Cost (TC) and Classification Accuracy (CA)).

Subjects ENT (N) ANT (N) TC (s) CA (%)

1 40 43 199 93.02

2 40 44 208 90.91

3 40 44 214 90.91

4 40 44 218 90.91

5 40 43 204 93.02

6 40 44 224 90.91

7 40 48 335 83.33

8 40 47 294 85.11

9 40 47 302 85.11

10 40 49 324 81.63

11 40 49 342 81.63

12 40 46 279 86.97

To verify the good adaptability of this BCI system, the 
actual mechanical arm grasping control experiments 
is divided into two parts according to the time cost of 
subjects 7-12 in Table 2. Table 3 shows the time cost 

and classification accuracy comparison results of 
subjects 7-12 (ENT1/ENT2, ANT1/ANT2 and TC2/
CA2 are the performance parameters of the first and 
second part respectively). Except for subject 7, sub-
ject 10 and subject 11, the classification accuracy of 
other subjects was higher than 80%. It is known that 
subject 7, subject 10 and subject 11 are unfamiliar 
with the MI tasks and have strong psychological cues 
to complete the experiments. This resulted in a lower 
classification accuracy. Compared with the first part, 
the difference ENT2/ANT2 is less than ENT1/ANT1. 
The classification accuracy of the second part is im-
proved by about 6.18%-11.19%. 

5. Discussion
This paper proposed a novel BCI system to realize the 
mechanical hand and wrist control by using the four 
kinds of MI tasks e.g. hand grasp, hand spread, wrist 
flexion and wrist extension. In orderly training, the 
classification accuracies of all subjects are all higher 
than 86% and the subject 1 has the best classifica-
tion accuracy of 91.67%. Since the subjects had gone 
through the previous orderly training, their classifica-
tion accuracies are all higher than 88%. The classifi-
cation accuracy of the subjects in random training is 
about 0.97% higher on average than the classification 
accuracy in orderly training. Compared with the tra-
ditional classification method adopted by Lee et al. 
[10] and Attallah et al. [4], the CNN method is used to 
achieve MI tasks classification and the classification 
accuracy is improved by about 32%-35%.
As shown in Table 2, subjects 7-12 need to perform 
more MI tasks to complete the actual mechanical arm 
grasping control experiments. The time cost of sub-
jects 7-12 are about 1.25-1.71 times than subjects 1-6 
and the classification accuracy is reduced by about 
3.94%-11.39%. The subject 1 and subject 5 have the 
best experimental results. Subjects 1-6 have the bet-
ter time cost and classification accuracy and have a 
good consistency between ENC and ANC. The com-
mand errors of subjects 1-6 are only 3-4, but subjects 
7-12 are 6-9. This may be due to the following reasons: 
1) they were not familiar with MI tasks and partici-
pated in the actual mechanical arm grasping control 
experiments directly; 2) performance of the MI task 
was affected by the strong psychological cues to com-
plete the experiment.

Table 3 
Time cost and classification accuracy comparison results 
for subject 7-12

Sub-
jects

ENT1 
(N)

ANT1 
(N)

ENT2 
(N)

ANT2 
(N)

CA1 
(%)

CA2 
(%)

7 17 22 23 26 77.27 88.46

8 17 21 23 26 80.95 88.46

9 18 22 22 25 81.82 88.00

10 17 22 23 27 77.27 85.19

11 17 22 23 27 77.27 85.19

12 18 22 22 24 81.82 91.67
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Table 3 shows the two parts time cost and classifica-
tion accuracy comparison results for subjects 7-12. 
The command errors of ENC1/ANC1 and ENC2/
ANC2 are 4-5 and 2-4, respectively. The command er-
rors are significantly reduced. On the contrary, since 
the subjects experienced the first part of the actual 
mechanical arm grasping control experiments, they 
obtained a more ideal classification accuracy in the 
second part. The classification accuracy is improved 
by about 7.92%-11.19%. The average classification ac-
curacy of CA2 for subjects 7-12 is close to subjects 1-6. 
These verify that subjects can be familiar with the MI 
tasks and adapt to this BCI system in a short time.
Compared with the traditional classification method 
adopted by Lee et al. [10] and Attallah et al. [4], the 
CNN method is used to achieve MI tasks classifica-
tion and the classification accuracy is improved by 
about 32%-35%.

6. Conclusion
This paper puts forward a brain computer interface 
(BCI) system to realize the grasp control using the 
ABB Mechanical Arm. This BCI system collects MI 
tasks EEG signals from 30 electrodes, e.g. hand grasp, 
hand spread, wrist flexion and wrist extension. It em-
ploys two fifth-order BPF with different bandwidths 
and normalization method to achieve the raw MI 
tasks EEG signals preprocessing. This proposed BCI 
system extracts MI tasks features in time domain 
and time-frequency domain and uses the mutual in-
formation method to reduce the large dimension of 
the extracted features. In addition, it utilizes a single 
convolutional layer CNN with 30 filters to implement 
the quaternary classification of MI tasks. Compared 

with early researches, the classification accuracy of 
this BCI system is increased by about 32%-35%. The 
actual mechanical arm grasping control experiments 
verifies that this BCI system has good adaptability. 
In the future work, we will research the MI tasks of 
unilateral and bilateral upper limbs.
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