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Seaborne crude oil remains the main source of energy in the modern world in terms of volume, accounting for 
nearly half of all internationally traded crude oil. The shipping market is already characterized by high vola-
tility, coupled with the impact of COVID-19 lockdown and geopolitics events. Price forecasting has become 
a necessary and challenging task for shipowners and other stakeholders. In the shipping market forecasting 
literature, the usual focus is on the newbuilding ship price or freight rate. A limited number of literature is for 
secondhand tanker price. On the other hand, there is few literature that use wavelet neural networks based on 
adaptive genetic algorithm (AGA-WNN) to predict shipping market. This paper mainly studies the application 
of the hybrid model to secondhand price prediction of 5 kinds of tanker sizes. The performance of AGA-WNN 
on time series of 10 and 15 years is compared with the basic performance provided by the six benchmark mod-
els, using three error metrics and two statistical tests. We can point out that AGA-WNN provides encouraging 
and promising results, outperforming the baseline models in both accuracy and robustness. It can be said that 
AGA-WNN gives the best overall predictive performance.
KEYWORDS: Secondhand Tanker Price, Forecasting, Wavelet Neural Networks, Adaptive Genetic Algo-
rithm.
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1. Introduction
The characteristics of high volatility in shipping mar-
ket can be attributed to intrinsic characteristics and 
external environment uncertainty [41], for example, 
economy cycle, trade war, national policies, black 
swan events and so on. Recently, the Russia-Ukraine 
conflict has made a significant impact on the oil and 
tanker markets, with geopolitical events affecting a 
range of factors including energy prices, tanker mar-
kets and seaborne oil trading patterns. Tanker freight 
rates on ex-Russia routes spiked since late February 
2022. Aframax earnings on the Baltic-UKC route 
surged to over $230,000/day in early March, com-
pared to an average of $10,000/day in Jan-Feb [11]. 
The price of secondhand ships can fluctuate by mil-
lions of dollars a month.
Under the backdrop of rising oil prices and COVID-19 
lockdown, trade situation is volatile and policy may 
change further, making forecast difficult. Newbuild-
ing price, secondhand price, charter rate and scrap 
value are four important markets that influence and 
determine investment decisions, costs and profits in 
the shipping industry [18]. An accurate judgment of 
the inflection point in time series trends allows ship-
owners to buy low and sell high, achieving better prof-
its. Hence, shipowners need to make more prudent 
decisions.
Many researchers have done a lot of work in shipping 
market forecasting. [36] applies the support vector 
regression (SVR) model, a novel and innovative fore-
casting framework, to the empirical study of new-
building ship (dry bulk and tanker) price forecasts for 
the first time. [33] considers two alternative neural 
networks specifications, NN-MLP and NN-RBF, to 
predict the period charter rates of VLCC. The results 
show that the neural networks can provide better 
per- formance than the traditional method (ARIMA) 
in dealing with tanker period or spot charter rates, 
thus confirming the previous empirical evidence for 
the spot market from [28] and [30]. The usual focus in 
literature is on the newbuilding ship price or freight 
rate while a limited number of literature is for sec-
ondhand ship price. Sale-and-purchase transactions 
of secondhand ships is a main source of profit for 
shipowners whose profitability depends on the de-

cision-making occasion [9]. Consequently, second-
hand ship market plays an important economic role 
in shipping industry. In this paper, the existing efforts 
are predominantly aimed at the secondhand tanker 
market and the results will have practical significance 
for relevant stakeholders, such as investors who need 
to determine the appropriate time of investment and 
withdrawal.
The purpose of our forecasting work is to learn linear 
or nonlinear functions of historical prices and to give 
reliable predictions of unseen data. All the models 
we propose are based on the fact that the temporal 
patterns of secondhand tanker price contain useful 
information for predicting their future movements. 
It is known to all that the shipping market is highly 
dynamic. Therefore, it is difficult to accurately model 
such highly volatile features with traditional models. 
In order to overcome this limitation, a hybrid model 
consisting of two algorithms (wavelet neural net-
works and adaptive genetic algorithm) is proposed. 
This machine learning model has shown significant 
success in a variety of applications, but not yet in the 
shipping market.
Several contributions of this paper are summarized 
as follows: 1) To the author’s best knowledge, wavelet 
neural networks based on adaptive genetic algorithm 
(AGA-WNN) is applied to secondhand tanker market 
prediction for the first time. 2) In terms of accuracy, 
the result of AGA-WNN is much better than the tradi-
tional linear models and slightly better than the exist-
ing machine learning models. In terms of robustness, 
the result of AGA-WNN is superior to all the baseline 
models proposed. 3) All model errors are established 
according to out-of-sample accuracy. 4) In traditional 
shipping markets, shipowners often make decisions 
based on intuition and past experience. However, the 
volatility of shipping market and the uncertainty of 
economic development bring high degree of unreli-
ability to the empirical decisions. Data-driven deci-
sion-making can objectively and accurately predict 
the shipping assets value and maritime business risk, 
which will enable shipping companies to determine 
better investment options and enter or exit the mar-
ket at the right time.
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The rest of this paper is organized as follows. Section 
2 gives a literature review on shipping market, espe-
cially the secondhand tanker market, as well as fore-
casting methods. Section 3 briefly presents the base-
line models used in this article, and introduces the 
hybrid prediction model combining WNN and AGA 
in detail. Data description and pre-processing steps 
are described in Section 4. Then, based on three error 
metrics and two statistical tests, we simulated each 
model in different time series test sets. Comparison 
results are shown in Section 5. Finally, the results are 
summarized. Conclusions, limitations and future re-
search directions are briefly proposed.

2. Literature Review
Forecasting is a common research task. Research in 
[26] examines the weak form of market efficiency of 
Indian stock market from April 1, 1997 to March 31, 
2010 with the efficient market hypothesis (EMH). 
The findings reveal that the stock prices fully reflect 
all information of the past. Therefore, revenues are 
not independent of time. In fact, nonlinear auto-cor-
relation exists in most time series data. For shipping 
economics literature, freight rate, charter rate, new-
building price, secondhand price, scrap value, ship-
ping index, ship energy efficiency, carbon emission, 
etc., are frequently considered as research objects.
Research in [25] first studied the determinants of tank-
er freight rates through a supply-demand model. Later, 
[2, 6, 23] put forward a theoretical model in which the 
freight market and ship market are in an interdepen-
dent framework and secondhand ships are regarded 
as capital assets. Studies in [3, 4] apply this model to 
the world dry cargo market and tanker market, respec-
tively, estimating an aggregated econometric model in 
which freight rate, newbuilding and secondhand price, 
and fleet size are jointly and dynamically determined. 
However, Tsolakis et al. criticizes the view of Been-
stock. Newbuilding prices are driven more by supply 
factors, whereas secondhand prices are driven more 
by demand. In other words, newbuilding prices do not 
respond as quickly to changes in market conditions 
as secondhand ones. A simple present value equation, 
such as the Norwegian models, will suffice. Econo-
metric models often have statistical defects that make 
their estimates biased. In order to overcome this prob-
lem, [38] provides a theoretical Error Correction mod-
el for secondhand ship prices.

Study in [24] compares the price risks between differ-
ent ship sizes in the tanker industry, using autoregres-
sive conditional heteroscedasticity (ARCH) models 
and presenting the fluctuation of shipping market as 
a time-varying process. Research in [1] tests the per-
formance of vector equilibrium correction models 
(VECM) in predicting spot and forward prices of ma-
jor shipping routes. A strong convergence between the 
forward rates and the spot rates is shown, i.e., the for-
ward rates do help predict the spot rates. Study in [20] 
focuses on spot price prediction from two aspects: (1) 
multivariate models (VAR and VECM) and (2) uni-
variate models (ARIMA, GARCH and E-GARCH), so 
as to obtain the best prediction model for each ship 
type (tankers and bulk carriers). In addition, the pre-
diction results are modified by combinatorial method 
theory. In [8, 37], a multivariate vector autoregressive 
model (VARX) containing exogenous variables is es-
tablished to improve the prediction accuracy of BDI. 
There are also other novel forecasting methods, for 
example, judgmental forecasting [14], copula-based 
multivariate models [42], fuzzy time series model-
ling approach [17] and popular machine learning al-
gorithms [19, 39]. Although it is convenient to use the 
linear or nonlinear methods mentioned above, there 
are certain restrictions on the number of dependent 
and independent variables. Artificial neural network 
allows parameter estimation based on a large number 
of independent and dependent variables and has good 
generalization performance.
Recently, artificial neural networks is one of the most 
widely used machine learning algorithms, whose 
most attractive feature is strong nonlinear process-
ing, self-learning and self-adaptation advantages. The 
generalization ability of ANN provides conditions for 
its potential in prediction. ANN cannot only be applied 
in shipping economy market [13, 15, 21, 31, 32, 40], but 
also provide help for ship technological design. Study 
in [5], respectively, uses ANN to estimate engine pow-
er and fuel consumption, and then estimate carbon di-
oxide emissions, for the recent tankers, bulk carriers 
and container ships built from 2015 to present.
Wavelet neural networks (WNN) is an improved 
version of BP neural networks, which combines the 
superiorities of wavelet analysis and neural net-
works. Therefore, WNN has strong approximation 
and fault-tolerance ability. According to the wavelet 
multiscale decomposition of time series, [27] reveals 
different time frequency variation patterns of dry 
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bulk shipping indices, and uses the wavelet as the ac-
tivation function of neural networks. The initial time 
series is decomposed, predicted and combined to ob-
tain the final predicted value. The application effect 
of neural networks in empirical research is always 
inspiring.

3. Methodologies
3.1. Research Framework
Firstly, the baseline models are introduced and the 
wavelet neural network based on adaptive genetic 
algorithm is described in detail. Then SARIMA in 
the baseline model is applied to obtain the autocor-
relation order of all time series. The initial data set 
is transformed into a standard form with input inde-
pendent variables and output dependent variables. 
After data pre-processing, all prediction models are 
simulated, three prediction error measures are calcu-
lated and two statistical tests are performed to com-
pare the advantages and disadvantages of each model. 
Finally, the results are analyzed and the limitations 
are proposed.
To reiterate, the main purpose of this paper is to 
prove the effectiveness and superiority of the target 
algorithm for prediction. Time series prediction can 
be roughly divided into two types. If only the previ-
ous values of time series are used to predict its future 
values, it is called univariate time series prediction. If 
we use variables other than time series (i.e. exogenous 
variables) for prediction, it is called multivariable 
time series prediction. Considering our purpose, data 
acquisition and final results, we choose the former 
and determine that the information of time series is 
sufficient for prediction. The latter can be further dis-
cussed in future studies.

3.2. Brief Introduction of Baseline Models
Firstly, we suppose that the target time series is tφ  
where t = 1, 2, . . . , N . Our prediction task is to calculate 
the values of 
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parameters ψ and θ need to be estimated, and order p, 
q, P and Q need to be optimized. The value of seasonal 
cycle π generally equal one year.
Holt–Winters: Basing on exponential smoothing with 
two parameters presented by Holt, Winter had made 
improvement and constructed Holt–Winters expo-
nential smoothing with three parameters in order to 
smooth linear trend and seasonal variation. The multi-
plicative seasonality model is defined as the following: 
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where tr  and ts  represent trend factor and season 
factor, respectively, whose initial value can be deter-
mined through several ways. α, β and γ all range from 
0 to 1. The smoothing parameters are constantly iter-
ated to adapt non-stationary time series and to pre-
dict short-term future.
Support Vector Regression (SVR): SVR belongs 
to machine learning algorithms. Given sample data 
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where U
iξ , L

iξ  denote slack variables and C  de-
notes regularization constant. With regard to op-
timization parameters ω  and b , by introducing 
Lagrange multipliers Uλ , Lλ , Uµ , Lµ , the primal 
problem with constraints is transformed into the 
primal problem without constraints. On the other 
hand, this convex optimization problem meet KKT 
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Random forest: Random forest is a new ma-
chine learning algorithm with high flexibility, 
which has been widely used in various classi-
fication and regression fields. Random forest 
adopts the Bagging idea to aggregate a series 
of decision trees into a forest. To be more spe-
cific, random forest constructs multiple inde-
pendent decision trees, each tree being con-
sidered as an evaluator. Then, after obtaining 
samples, decision tree divides the input space 
into disjoint areas by the way where the in-
formation gain or Gini coefficient decreases 
fastest. At last, the number of forecast is as 
same as the number of decision trees and av-
erage forecast is regarded as the final output. 
Random forest algorithm can not only effec-
tively reduce the over-fitting situation, but al-
so realize the parallel operation when there is 
a large amount of training data. 

BP neural networks: BP neural networks 
have not only relatively simple network 
structure and high computational accuracy, 
but also efficient non-linear mapping ability. 
Through the activation function, the hidden 
layer nodes transmit the value of input layer 
after nonlinear transformation to the output 
layer. Then we can obtain the output through 
the calculation of another activation function. 
The loss function is defined as the difference 
between the output value and the actual val-
ue. Once the information propagates from the 
input layer to the output layer, the loss can be 
computed. BP neural network learns the 
weights w and biases b of all layers in a su-
pervised way, which means the back propa-
gation algorithm is used to optimize the 
weights w and biases b of all layers. The 
whole process is constantly iterated to make 
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which has been widely used in various classi-
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sidered as an evaluator. Then, after obtaining 
samples, decision tree divides the input space 
into disjoint areas by the way where the in-
formation gain or Gini coefficient decreases 
fastest. At last, the number of forecast is as 
same as the number of decision trees and av-
erage forecast is regarded as the final output. 
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tively reduce the over-fitting situation, but al-
so realize the parallel operation when there is 
a large amount of training data. 
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have not only relatively simple network 
structure and high computational accuracy, 
but also efficient non-linear mapping ability. 
Through the activation function, the hidden 
layer nodes transmit the value of input layer 
after nonlinear transformation to the output 
layer. Then we can obtain the output through 
the calculation of another activation function. 
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between the output value and the actual val-
ue. Once the information propagates from the 
input layer to the output layer, the loss can be 
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pervised way, which means the back propa-
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iξ  denote slack variables and C  de-
notes regularization constant. With regard to op-
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chine learning algorithm with high flexibility, 
which has been widely used in various classi-
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adopts the Bagging idea to aggregate a series 
of decision trees into a forest. To be more spe-
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pendent decision trees, each tree being con-
sidered as an evaluator. Then, after obtaining 
samples, decision tree divides the input space 
into disjoint areas by the way where the in-
formation gain or Gini coefficient decreases 
fastest. At last, the number of forecast is as 
same as the number of decision trees and av-
erage forecast is regarded as the final output. 
Random forest algorithm can not only effec-
tively reduce the over-fitting situation, but al-
so realize the parallel operation when there is 
a large amount of training data. 

BP neural networks: BP neural networks 
have not only relatively simple network 
structure and high computational accuracy, 
but also efficient non-linear mapping ability. 
Through the activation function, the hidden 
layer nodes transmit the value of input layer 
after nonlinear transformation to the output 
layer. Then we can obtain the output through 
the calculation of another activation function. 
The loss function is defined as the difference 
between the output value and the actual val-
ue. Once the information propagates from the 
input layer to the output layer, the loss can be 
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pervised way, which means the back propa-
gation algorithm is used to optimize the 
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iξ  denote slack variables and C  de-
notes regularization constant. With regard to op-
timization parameters ω  and b , by introducing 
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problem with constraints is transformed into the 
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If introducing the kernel trick, SVR will transform 
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Random forest: Random forest is a new machine 
learning algorithm with high flexibility, which has 
been widely used in various classification and regres-
sion fields. Random forest adopts the Bagging idea to 
aggregate a series of decision trees into a forest. To be 
more specific, random forest constructs multiple in-
dependent decision trees, each tree being considered 
as an evaluator. Then, after obtaining samples, deci-
sion tree divides the input space into disjoint areas 
by the way where the information gain or Gini coeffi-
cient decreases fastest. At last, the number of forecast 
is as same as the number of decision trees and aver-
age forecast is regarded as the final output. Random 
forest algorithm can not only effectively reduce the 
over-fitting situation, but also realize the parallel op-
eration when there is a large amount of training data.
BP neural networks: BP neural networks have not 
only relatively simple network structure and high 
computational accuracy, but also efficient non-linear 
mapping ability. Through the activation function, the 
hidden layer nodes transmit the value of input layer 
after nonlinear transformation to the output layer. 
Then we can obtain the output through the calcula-
tion of another activation function. The loss function 
is defined as the difference between the output value 
and the actual value. Once the information propagates 
from the input layer to the output layer, the loss can 
be computed. BP neural network learns the weights w 
and biases b of all layers in a supervised way, which 
means the back propagation algorithm is used to op-
timize the weights w and biases b of all layers. The 
whole process is constantly iterated to make the loss 
achieve gradient descent.
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3.3. Wavelet Neural Networks Based on 
Adaptive Genetic Algorithm
Wavelet neural networks (WNN) is an improved ver-
sion of BP neural networks, which replaces hidden 
layer’s Sigmoid activation function with basic wave-
let function. WNN combines wavelet transform’s 
excellent character—time precision in high frequen-
cy domain and frequency precision in low frequency 
domain with BP neural network’s self-learning and 
self-adaptation advantages. Therefore, WNN has 
strong approximation and fault-tolerance ability.
With WNN being applied wider, its defects appear. 
For example, the number of hidden layer nodes is dif-
ficult to determine and initial values of parameters 
have a great impact on network performance. Genetic 
algorithm (GA) is a globally random search algorithm 
referring to natural evolutionary mechanism. It is 
suitable for dealing with complex nonlinear optimi-
zation problems that are difficult to be solved by tra-
ditional search algorithms. Therefore, the hybrid pre-
diction model combining WNN and GA is presented 
to search a globally near-optimal combination of net-
work pa- rameters, which can improves the accuracy 
of WNN. [22, 29, 34, 35] have attained preferable re-
sults in training neural networks with GA, but there 
are few studies on WNN with adaptive GA in shipping 
market.

3.3.1. Wavelet Transform
The essence of continuous wavelet transform is an in-
tegral transform between different parameter spaces. 
It is a conjugate function ( )ˆ tψ  after different transla-
tions b and scales a  that does inner product with the 
sequence ( )f t waiting to be analyzed [16].
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In practice, discrete wavelet transform can 
usually get better results. Equation (8) is dis-
cretized as follows: 
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where K represents the number of basis 
wavelet functions. The original time series 
can be fitted by linear superposition of 
weighted basis wavelet functions. 
 

3.3.2 Wavelet Neural Networks 

Wavelet transform and neural networks can 
be combined in two ways. 

Loose type: The original data is processed by 
wavelet transform to extract the feature vec-
tors which are targeted at the input of neural 
network, and then we carry out the whole 
process of neural network. 

Compact type: We replaces hidden layer’s 
Sigmoid activation function with basic wave-
let function. The training mode and learning 
pattern of WNN still adopt the idea of BP 
neural network. 

In this paper, the main research object is 
compact WNN. Hidden layer’s activation 
function uses Morlet wavelet function 
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are [ ]1 2, , ..., lO O O O= ′ . The weight matrix be-
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ed as 1W  while the weight matrix between 
hidden layer and output layer is denoted as 

2W . 
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Hidden layer’s translations b and scales a are de-
noted, respectively, as [ ]1 2, , ..., lb b b b= ′ and 

[ ]1 2, , ..., la a a a= ′ . Then, hidden layer’s input and 
output are expressed, respectively, as the following:
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Similarly, output layer’s input and output are ex-
pressed, respectively, as the following:

 
 

 

 

( )

( )

1 1 1

11 12 1

1 1 1

1 1 21 22 2

1 1 1

1 2

2 2 2

11 12 1

2 2 2

2 2 21 22 2

2 2 2

1 2

m

m

ji

l l lm l m

l

l

kj

n n nl n l

W

W

ω ω ω

ω ω ω
ω

ω ω ω

ω ω ω

ω ω ω
ω

ω ω ω

×

×

…

…
= =

…

…

…
= =

…

 
 
 
 
 
 

 
 
 
 
 
 

  

  

 (10) 

 

Figure 1 

The flow chart of compact WNN 
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Similarly, output layer’s input and output are ex-
pressed, respectively, as the following: 
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The error between the network output Z  and the 
expected output Y  is defined as Equation (13): 
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The iterative formulae of weights, transla-
tions and scales are calculated as follows: 

(12)

The error between the network output Z  and the ex-
pected output Y  is defined as Equation (13):

 
 

 

 

( )

( )

1 1 1

11 12 1

1 1 1

1 1 21 22 2

1 1 1

1 2

2 2 2

11 12 1

2 2 2

2 2 21 22 2

2 2 2

1 2

m

m

ji

l l lm l m

l

l

kj

n n nl n l

W

W

ω ω ω

ω ω ω
ω

ω ω ω

ω ω ω

ω ω ω
ω

ω ω ω

×

×

…

…
= =

…

…

…
= =

…

 
 
 
 
 
 

 
 
 
 
 
 

  

  

 (10) 

 

Figure 1 

The flow chart of compact WNN 

 
Hidden layer’s translations b  and scales a  are 
denoted, respectively, as [ ]1 2, , ..., lb b b b= ′  and 

[ ]1 2, , ..., la a a a= ′ . Then, hidden layer’s input and 
output are expressed, respectively, as the follow-
ing: 

2

1

1

/ 2

/

  
5 )

 
( ) cos(1.7

 
,

     1, 2, ,

j

m

j ji i j j
i

net

j j j

net x b a

O Morlet net net e
j l

ω
=

−

= −

= =

= …

∑（ ）

 (11) 

Similarly, output layer’s input and output are ex-
pressed, respectively, as the following: 
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The error between the network output Z  and the 
expected output Y  is defined as Equation (13): 
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The iterative formulae of weights, translations and 
scales are calculated as follows:
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where 1η  and 2η  represent the learning rate of 
weight parameters and wavelet parameters, re-
spectively. 

 
3.3.3 Adaptive Genetic Algorithm 

Genetic algorithm cannot directly deal with the 
parameters of the problem space. First, the feasible 
solutions of the problem space need to be ex-

pressed as chromosomes of the genetic space. 
Then the initial population is randomly gen-
erated. Each individual in the population rep-
resents a solution to the problem. The quality 
of the individual is measured by the fitness 
function. Through a series of genetic opera-
tions, such as selection, recombination, muta-
tion and evolutionary reversal, the father 
generation produces offspring in which the 
excellent individuals with high fitness are 
more likely to be selected to form new popu-
lation. In the process of iteration, the excellent 
individual’s information is preserved and 
constantly exchanged to ensure the diversity 
of the population. Finally, the remaining in-
dividuals converge around the optimal solu-
tion and the optimal individual is selected as 
the solution of the problem. The process of 
WNN based on AGA is shown in Figure 2.
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individual i  being selected is defined as the 
following: 

(15)

where 1η  and 2η  represent the learning rate of weight 
parameters and wavelet parameters, respectively.
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Similarly, output layer’s input and output are ex-
pressed, respectively, as the following: 
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The error between the network output Z  and the 
expected output Y  is defined as Equation (13): 
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tions and scales are calculated as follows: 



343Information Technology and Control 2023/2/52

as chromosomes of the genetic space. Then the ini-
tial population is randomly generated. Each indi-
vidual in the population represents a solution to the 
problem. The quality of the individual is measured 
by the fitness function. Through a series of genetic 
operations, such as selection, recombination, muta-
tion and evolutionary reversal, the father generation 
produces offspring in which the excellent individu-
als with high fitness are more likely to be selected to 
form new population. In the process of iteration, the 
excellent individual’s information is preserved and 
constantly exchanged to ensure the diversity of the 
population. Finally, the remaining individuals con-
verge around the optimal solution and the optimal 
individual is selected as the solution of the prob-
lem. The process of WNN based on AGA is shown in 
Figure 2.
Encode parameters: Before conducting search-
es, the parameters that need to be encoded include 
(1) weights 1ω , 2ω  (2) translations b (3) scales a. 
Given that the number of input layer neurons and 
output layer neurons are m  and n , respectively, 
the number of hidden layer neurons can be set to 
( )2 1m + . The total of the encoded parameters equals

2(2 )2 5 +2m mn m n+ + + . Each of the parameters is 
coded with ten binary numbers.
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where 1η  and 2η  represent the learning rate of 
weight parameters and wavelet parameters, re-
spectively. 
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tions including selection, recombination, mutation 
and reversal. The purpose of selection is to filter 
elite individuals from the current population. The 
individuals with higher fitness scores (1 / WNNMSE ) 
in the father generation have a higher probability to 
reproduce offspring. This process reflects “the fittest 
can survive” in the biological world. In this paper, 
roulette-wheel selection is applied to establish the 
offspring. The probability of an individual i  being se-
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where 
i

F  represents fitness score of the individual 
i  and N  is the capacity of parent population. 
Both single-point crossover and adaptive mutation 
are applied to diversify the population so as to 
find a globally near-optimal solution. Single-point 
crossover refers that randomly selected two parent 
members exchange or combine chromosomes at a 
random position to pass on excellent characteris-
tics to their offspring. For each individual in the 
offspring, if a random number generated between 
0 and 1 is less than the mutation probability mP , 
binary conversion is performed at its random posi-
tion. In this study, mP  adaptively adjusts according 

to the heterogeneity of the population (1 / Chromσ ), 

where Chromσ  represents the standard deviation 
of the parent’s fitness scores. A small Chromσ  
means high homogeneity in the population, so a 
high mutation probability is applied to diversify 
the chromosomes. In order to improve the local 
searching ability of AGA, continuous evolutionary 
reversal operations i.e. swapping numbers in two 
random positions, are introduced after selection, 
recombination and adaptive mutation operation. 
Only individuals with improved fitness are ac-
cepted. Finally, the inferior members of the parent 
population are replaced by the elite members of 
the offspring generation to form a new population. 
The whole AGA process is iterated repeatedly un-
til the terminal condition is satisfied. 

Generally speaking, AGA-WNN has four ad-
vantages compared with the baseline models,  

1. Strong nonlinear approximation, self-learning 
and self-adaptation ability. 

2. Permission to parameter estimation based on a 
large number of variables. 

3. Excellent generalization ability. 

4. Fast convergence and inaccessibility to fall into 
the local optimal trap. 

 
4. Data 
4.1 Data Description 
All secondhand tanker price data is collected from 
the Clarkson Shipping Intelligence Network [10]. 
This paper aims to research the application effect 
of the hybrid prediction model — wavelet neural 
networks based on adaptive genetic algorithm in 

the tanker market. Attributing to the wide 
distribution of ship sizes of tankers, only the 
most representative tanker types are selected 
for empirical study. The predominant tankers 
selected carry major global crude oil trade, 
including Handysize, Panamax, Aframax, 
Suezmax and VLCC. Therefore, the method 
and its prediction results can effectively in-
terpret the market situation of second-hand 
tankers. In this section, we give a concise de-
scription of each tanker type, followed by de-
scriptive statistics of its datasets. 

Handysize tankers refer to small-sized crude 
oil tankers with a deadweight tonnage rang-
ing between 10,000 and 50,000 tons. It is be-
cause of its strong flexibility and uncon-
strained draft that handysize tankers can play 
an important role in many fields, for example 
offshore waters and offshore drilling plat-
forms, forming a complement to large tank-
ers. Its sales have increased gradually in re-
cent years. In this paper, handysize tankers of 
37K DWT are selected for empirical study. 

Panamax tankers are subject to the navigation 
conditions of Panama Canal as the upper lim-
its, in other words, they need to meet some 
restrictions about the ship’s width, draft and 
so on. Generally, several main indicators are 
limited as follows: the tanker’s total length 
should not be longer than 274.32 meters, the 
tanker’s width should not be wider than 32.30 
meters and the tanker’s deadweight tonnage 
should range between 60,000 and 80,000 tons. 
The main routes include the Far East to Ja-
pan, the Far East to India and Singapore to 
Japan. In this paper, Panamax tankers of 73K 
DWT are selected for empirical study. 

Aframax tankers refer to medium-sized crude 
oil tankers with a deadweight tonnage rang-
ing between 80,000 and 120,000 tons. Howev-
er, considering the operating costs, their ac-
tual deadweight tonnage generally vary from 
70,000 to 110,000 tons, having an average car-
go-carrying capacity of approximately 
750,000 barrels [12]. Many non-OPEC oil ex-
porting countries have port facilities that are 
difficult to accommodate VLCC or ULCC, so 
that there is a high demand for Aframax 
tankers, owing to their advantageous size. 
With the highest average freight index 
(AFRA) and the best economy, Aframax 
tankers are the ideal choice for short to medi-
um-haul oil trades, which are also known as 
the ”workhorse” of the world’s tanker fleet. 
The main routes include the Middle East to 

,
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F  represents fitness score of the individual 
i  and N  is the capacity of parent population. Both 
single-point crossover and adaptive mutation are ap-
plied to diversify the population so as to find a glob-
ally near-optimal solution. Single-point crossover 
refers that randomly selected two parent members 
exchange or combine chromosomes at a random po-
sition to pass on excellent characteristics to their 
offspring. For each individual in the offspring, if a 
random number generated between 0 and 1 is less 
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than the mutation probability Pm, binary conversion 
is performed at its random position. In this study, Pm 
adaptively adjusts according to the heterogeneity of 
the population (1 / Chromσ

), where Chromσ
 represents 

the standard deviation of the parent’s fitness scores. 
A small Chromσ

 means high homogeneity in the pop-
ulation, so a high mutation probability is applied to 
diversify the chromosomes. In order to improve the 
local searching ability of AGA, continuous evolution-
ary reversal operations i.e. swapping numbers in two 
random positions, are introduced after selection, re-
combination and adaptive mutation operation. Only 
individuals with improved fitness are accepted. Fi-
nally, the inferior members of the parent population 
are replaced by the elite members of the offspring 
generation to form a new population. The whole AGA 
process is iterated repeatedly until the terminal con-
dition is satisfied.
Generally speaking, AGA-WNN has four advantages 
compared with the baseline models, 
1 Strong nonlinear approximation, self-learning and 

self-adaptation ability.
2 Permission to parameter estimation based on a 

large number of variables.
3 Excellent generalization ability.
4 Fast convergence and inaccessibility to fall into the 

local optimal trap.

4. Data
4.1. Data Description

All secondhand tanker price data is collected from the 
Clarkson Shipping Intelligence Network [10]. This 
paper aims to research the application effect of the 
hybrid prediction model — wavelet neural networks 
based on adaptive genetic algorithm in the tanker 
market. Attributing to the wide distribution of ship 
sizes of tankers, only the most representative tanker 
types are selected for empirical study. The predom-
inant tankers selected carry major global crude oil 
trade, including Handysize, Panamax, Aframax, Suez-
max and VLCC. Therefore, the method and its predic-
tion results can effectively interpret the market situ-
ation of second-hand tankers. In this section, we give 
a concise description of each tanker type, followed by 
descriptive statistics of its datasets.

Handysize tankers refer to small-sized crude oil 
tankers with a deadweight tonnage ranging between 
10,000 and 50,000 tons. It is because of its strong flex-
ibility and unconstrained draft that handysize tank-
ers can play an important role in many fields, for ex-
ample offshore waters and offshore drilling platforms, 
forming a complement to large tankers. Its sales have 
increased gradually in recent years. In this paper, 
handysize tankers of 37K DWT are selected for em-
pirical study.
Panamax tankers are subject to the navigation con-
ditions of Panama Canal as the upper limits, in other 
words, they need to meet some restrictions about the 
ship’s width, draft and so on. Generally, several main 
indicators are limited as follows: the tanker’s total 
length should not be longer than 274.32 meters, the 
tanker’s width should not be wider than 32.30 meters 
and the tanker’s deadweight tonnage should range 
between 60,000 and 80,000 tons. The main routes in-
clude the Far East to Japan, the Far East to India and 
Singapore to Japan. In this paper, Panamax tankers of 
73K DWT are selected for empirical study.
Aframax tankers refer to medium-sized crude oil 
tankers with a deadweight tonnage ranging between 
80,000 and 120,000 tons. However, considering the 
operating costs, their actual deadweight tonnage 
generally vary from 70,000 to 110,000 tons, having 
an average cargo-carrying capacity of approximately 
750,000 barrels [12]. Many non-OPEC oil exporting 
countries have port facilities that are difficult to ac-
commodate VLCC or ULCC, so that there is a high 
demand for Aframax tankers, owing to their advan-
tageous size. With the highest average freight index 
(AFRA) and the best economy, Aframax tankers are 
the ideal choice for short to medium-haul oil trades, 
which are also known as the ”workhorse” of the 
world’s tanker fleet. The main routes include the Mid-
dle East to the Far East, the Mediterranean region to 
the West Coast of the United States, the Caribbean to 
the West Coast of the United States, and the Caribbe-
an to Europe. In this paper, Aframax tankers of 105K 
DWT are selected for empirical study.
Suezmax tankers are the largest vessels that can meet 
the traffic restrictions of Suez Canal, with a dead-
weight tonnage ranging between 120,000 and 200,000 
tons. In 2009, the Suez Canal was expanded from 18 
meters to 20.1 meters to allow a Suezmax tanker with 
up to 200,000 deadweight tonnage. The main routes 
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include the Persian Gulf to the Far East, the Caribbe-
an to North America, West Africa to North America, 
West Africa to the Mediterranean region. In this pa-
per, Suezmax tankers of 150K DWT are selected for 
empirical study.
Very Large Crude Carriers (VLCC) and Ultra Large 
Crude Carriers (ULCC) are the main type of long-dis-
tance crude oil transportation, compared with other 
types of tankers with higher performance and econo-
mies of scale. VLCC have a deadweight tonnage rang-
ing between 200,000 and 320,000 tons and ULCC 
have a deadweight tonnage more than 320,000 tons. 
The main routes are deployed around the Persian 
Gulf, the Far East, North America, Northern Europe, 
Indian subcontinent and West Africa. In this paper, 
VLCC of 300K DWT are selected for empirical study.
The monthly data analyzed are based on 10-year-old 
and 15-year-old secondhand tanker prices for the 
five tanker types mentioned above. The longest se-
quence starts in July 1989 and the shortest sequence 
is from October 2012. All series end on April 2022. 
The numbers of data points vary from 115 to 394. Ta-
ble 1 summarizes the detailed statistics. For the av-
erage price level, large tankers are higher than small 
ones and 10YO vessels are higher than 15YO ones. 
The standard deviation also follows a similar pattern. 
Most distributions are right-skewed and leptokurtic. 

Jarque-Bera statistics can test whether a set of sam-
ples is normally distributed. Under the null hypothe-
sis of normal distribution, the JB statistics calculated 
according to Equation (17) follows 2χ  distribution 
with 2 degrees of freedom.
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The result demonstrates that the price se-
quences for all tanker types and ages do not 
follow a normal distribution at significance 
level 0.05α = .

 
Table 1 

Descriptive statistics of the datasets 

 Start Stop Length Max Min Median Mean Std  Kurtosis Skewness JB P-value 

10YO’s Handysize Jul-1989 Apr-2022 394 37.00 9.50 14.75 15.91 5.80 5.36 2.33 811.0284 0.001 

15YO’s Handysize Oct-2012 Apr-2022 115 12.00 8.00 9.00 9.23 1.09 -0.31 0.61 7.5939 0.028 

10YO’s Panamax Nov-2001 Apr-2022 246 52.00 14.00 21.00 24.66 10.06 0.77 1.37 81.7490 0.001 

15YO’s Panamax Apr-2008 Apr-2022 169 39.00 9.00 12.50 13.62 5.56 13.46 3.54 1542.6200 0.001 

10YO’s Aframax Nov-2001 Apr-2022 246 64.00 16.00 26.50 30.95 12.80 0.12 1.17 55.8548 0.001 

15YO’s Aframax
 Mar-2008 Apr-2022 170 44.00 8.00 14.50 15.64 6.65 8.75 2.78 721.7264 0.001 

10YO’s Suezmax Jan-1990 Apr-2022 388 85.00 19.00 30.44 35.30 14.79 2.54 1.80 308.9113 0.001 

15YO’s Suezmax Mar-2008 Apr-2022 170 64.00 14.00 21.00 22.85 9.43 7.10 2.49 506.0935 0.001 

10YO’s VLCC Jan-1990 Apr-2022 388 135 30.23 44.30 51.90 21.20 3.45 1.94 426.3524 0.001 

15YO’s VLCC Jul-2010 Apr-2022 142 45.00 21.00 30.00 30.09 5.47 -0.27 0.47 5.6020 0.0495 
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According to Figure 3, the overall pattern of 
secondhand tanker price series is quite obvious. 
Especially from 2005 to 2009, the data reflects an 
unprecedented fluctuation. The factor decomposi-

tion of the price series of 10YO secondhand 
Aframax is taken as an example, as is demon-
strated in Figure 4, which is divided into four 
parts from top to bottom. The first part is the 
original observations; the second part is the 
estimated long-term trend which is increas-
ing initially and then decreasing, cyclically, 
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Figure 3
Time series chart of secondhand tanker prices for various ship types

Figure 4
Decomposition of 10YO’s Aframax

 
 

 

and also shows anomalies in the period 2005-2009; 
the third part is the estimated seasonal fluctuation; 
the last part is the estimated random variation 
which fluctuates around zero. On the whole, Fig-
ure 4 is consistent with the information in the orig-
inal sequence diagram. Given that the temporal 

patterns of all sequences are highly similar, 
they are non-stationary time series with sea-
sonal variation and periodic trend, suitable 
for order determination by SARIMA model.
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Table 2 shows the autocorrelation orders and un-
derlying network structures of 10 time series, us-
ing the forecast  package in R library. Then, ma-
chine learning methods can be applied to analyze 

modified datasets with standard forms of in-
put independent variables and output de-
pendent variables
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Table 2 

Order determination and underlying structures of all time series 

the estimated seasonal fluctuation; the last part is the 
estimated random variation which fluctuates around 
zero. On the whole, Figure 4 is consistent with the 
information in the original sequence diagram. Given 
that the temporal patterns of all sequences are highly 
similar, they are non-stationary time series with sea-
sonal variation and periodic trend, suitable for order 
determination by SARIMA model.

forecast package in R library. Then, machine learning 
methods can be applied to analyze modified datasets 
with standard forms of input independent variables 
and output dependent variables

4.2.2. Normalization
In the field of machine learning, normalization is a 
common basic operation of data pre-processing. A 
proper normalization can help neural network mod-
el produce more accurate results. Its advantages can 
be embodied in two aspects. On the one hand, in some 
network structures we set above, independent vari-
ables have multiple dimensions and different features 
may range in different scales. In this case, features 
with higher absolute level will play a more important 
role, which even affect the final output. In order to 
solve this problem, when the relative importance of 
each feature is unclear, normalization makes each in-
put feature in the same magnitude or similar distribu-
tion, which is suitable for comparative evaluation. In 
the network training process, we can ensure that all 
features are treated equally (meaning we set the same 
learning rate, initial weight, and activation function). 
On the other hand, in this paper, the training speed 
of BP neural networks and wavelet neural networks 
is determined by the speed of gradient descent algo-
rithm. After data normalization, the contour surface 
of the loss function’s probability distribution is ap-

Table 2 shows the autocorrelation orders and under-
lying network structures of 10 time series, using the   
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Table 2
Order determination and underlying structures of all time series
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4.2.2 Normalization 

In the field of machine learning, normalization is a 
common basic operation of data pre-processing. A 
proper normalization can help neural network 
model produce more accurate results. Its ad-
vantages can be embodied in two aspects. On the 
one hand, in some network structures we set 
above, independent variables have multiple di-
mensions and different features may range in dif-
ferent scales. In this case, features with higher ab-
solute level will play a more important role, which 
even affect the final output. In order to solve this 
problem, when the relative importance of each fea-
ture is unclear, normalization makes each input 
feature in the same magnitude or similar distribu-
tion, which is suitable for comparative evaluation. 
In the network training process, we can ensure 
that all features are treated equally (meaning we 
set the same learning rate, initial weight, and acti-

vation function). On the other hand, in this 
paper, the training speed of BP neural net-
works and wavelet neural networks is deter-
mined by the speed of gradient descent algo-
rithm. After data normalization, the contour 
surface of the loss function’s probability dis-
tribution is approximately circular. The gra-
dient descent direction points toward the cen-
ter of the circle, resulting in faster conver-
gence and fewer iterations. 

Hereby, the max-min normalization is put in-
to practice as Equation (18):  
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proximately circular. The gradient descent direction 
points toward the center of the circle, resulting in 
faster convergence and fewer iterations.
Hereby, the max-min normalization is put into prac-
tice as Equation (18): 
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4.2.2 Normalization 

In the field of machine learning, normalization is a 
common basic operation of data pre-processing. A 
proper normalization can help neural network 
model produce more accurate results. Its ad-
vantages can be embodied in two aspects. On the 
one hand, in some network structures we set 
above, independent variables have multiple di-
mensions and different features may range in dif-
ferent scales. In this case, features with higher ab-
solute level will play a more important role, which 
even affect the final output. In order to solve this 
problem, when the relative importance of each fea-
ture is unclear, normalization makes each input 
feature in the same magnitude or similar distribu-
tion, which is suitable for comparative evaluation. 
In the network training process, we can ensure 
that all features are treated equally (meaning we 
set the same learning rate, initial weight, and acti-

vation function). On the other hand, in this 
paper, the training speed of BP neural net-
works and wavelet neural networks is deter-
mined by the speed of gradient descent algo-
rithm. After data normalization, the contour 
surface of the loss function’s probability dis-
tribution is approximately circular. The gra-
dient descent direction points toward the cen-
ter of the circle, resulting in faster conver-
gence and fewer iterations. 

Hereby, the max-min normalization is put in-
to practice as Equation (18):  

  
max i

min

m n
normalized

x x
x

x x−

−
= , (18) 

where maxx  and minx  represent the maximum 
and minimum of the original sequence x . 

 normalizedx  denotes the normalized sequence, 
which ranges in [0, 1]. 

,
(18)

where maxx  and minx  represent the maximum and 
minimum of the original sequence x .  normalizedx  de-
notes the normalized sequence, which ranges in [0, 1].

5. Empirical Results
5.1. Hyper-parameter Optimization

The sample data of the 10 time series (actually 19) is 
randomly divided into training set and test set. The 
optimal hyper-parameters make the validation set 
separated from the training set get the best perfor-
mance, that is, the minimum error. Then the test set 
is retrained based on the optimal hyper-parameters. 
Hyper-parameters contained in traditional machine 
learning models are optimized through cross-vali-



Information Technology and Control 2023/2/52348

dation. BP neural networks adopt Levenberg-Mar-
quardt algorithm while wavelet neural networks use 
adaptive genetic algorithm to optimize hyper-param-
eters, iteratively searching for the approximately op-
timal parameter combination until the termination 
condition is satisfied. The fitting effects of all models 
are measured by MSE, MAE and MAPE.
SVR and random forest are simulated using the 
Sklearn  package from Python library, where 

cross-validation is implemented through the 
_model selection  module. 5CV = . BP neural net-

works are simulated by neural network toolbox in 
MATLAB. The values of training epochs, training 
goal and learning rate equal 2000, 610−  and 0.01
, respectively. For wavelet neural networks, the ac-
tivation function is set to basis wavelet function in 
hidden layer as well as linear function purelin in out-
put layer. The hyper- parameters of adaptive genet-
ic algorithm are presupposed as follows: maximum 
iteration 50MaxGen = , population size 150NIND = , 
precision of variables 10PRECI = , generation gap 

0.95GGAP = , crossover probability 0.7xP = .

5.2. Comparison with Baseline Models
The performance of 7 models on 10 time series (19 
structures) is compared based on two perspectives.

1 Error measures.
Three kinds of prediction error measures are calcu-
lated to judge the superiority and inferiority of these 
prediction models. Common prediction error indica-
tors include mean square error (MSE), mean absolute 
error (MAE) and mean absolute percentage error 
(MAPE), which are defined as follows:
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where n  is the number of samples in the test 
set. iy and ˆ

iy  represent raw data and the 
prediction, respectively. 

MSE, MAE and MAPE of all test sets are 
demonstrated in Tables 3-5, respectively. The 
numbers in bold indicate that the correspond-
ing model performs best on the correspond-
ing time series. For sequences with multiple 
structures, we select the better one and mark 
it with a checkmark (“√”). As a result, 10 
structures corresponding to 10 sequences still 
remain.

Table 3 

MSE compared on all structures 

 Seasonal 
Naive 

SARIMA Holt -Winters SVR Random 
forest 

BP 
neural net-

works 
AGA-WNN 

10YO’s Handysize   
structure1 (√) 10.0434 0.4979 0.4192 2.4039 0.3256 15.7060 0.3349 
structure2 (×) 21.8814 1.6327 1.9767 2.0644 0.4601 24.0407 0.8800 

15YO’s Handysize 1.2083 114.1502 0.1626 0.1662 0.1343 2.3390 0.1235 
10YO’s Panamax 43.5490 3.1156 3.2066 8.9880 2.6004 71.5110 2.0859 

15YO’s Panamax   
structure1 (√) 27.1827 0.9340 1.6208 26.7814 2.5547 8.4017 0.5563 
structure2 (×) 3.1591 45.5823 9.9325 1.1812 0.9386 22.7605 0.6047 
structure3 (×) 5.3068 40.5541 24.6567 1.2212 0.5996 9.6743 0.9577 

10YO’s Aframax 156.2703 12.1383 12.9038 2.6719 3.8613 62.3163 5.0925 

15YO’s Aframax 
  

structure1 (×) 22.3750 7.0320 3.7788 1.2925 3.2285 45.3370 0.8221 
structure2 (×) 7.4659 48.4879 18.9533 3.0849 2.8113 53.7523 1.5444 
structure3 (√) 9.2045 1.0825 1.2391 1.2761 1.0943 22.2193 0.8341 

, (19)
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where n  is the number of samples in the test 
set. iy and ˆ

iy  represent raw data and the 
prediction, respectively. 

MSE, MAE and MAPE of all test sets are 
demonstrated in Tables 3-5, respectively. The 
numbers in bold indicate that the correspond-
ing model performs best on the correspond-
ing time series. For sequences with multiple 
structures, we select the better one and mark 
it with a checkmark (“√”). As a result, 10 
structures corresponding to 10 sequences still 
remain.

Table 3 
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Naive 
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forest 

BP 
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works 
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structure2 (×) 3.1591 45.5823 9.9325 1.1812 0.9386 22.7605 0.6047 
structure3 (×) 5.3068 40.5541 24.6567 1.2212 0.5996 9.6743 0.9577 

10YO’s Aframax 156.2703 12.1383 12.9038 2.6719 3.8613 62.3163 5.0925 
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structure3 (√) 9.2045 1.0825 1.2391 1.2761 1.0943 22.2193 0.8341 

, (21)

where n  is the number of samples in the test set. iy and 
ˆ

iy  represent raw data and the prediction, respectively.
MSE, MAE and MAPE of all test sets are demonstrat-
ed in Tables 3-5, respectively. The numbers in bold 
indicate that the corresponding model performs best 
on the corresponding time series. For sequences with 
multiple structures, we select the better one and mark 
it with a checkmark (“√”). As a result, 10 structures 
corresponding to 10 sequences still remain.

Table 3
MSE compared on all structures

Seasonal 
Naive SARIMA Holt-

Winters SVR Random 
forest

BP neural 
networks AGA-WNN

10YO’s Handysize  
structure1 (√) 10.0434 0.4979 0.4192 2.4039 0.3256 15.7060 0.3349

structure2 (×) 21.8814 1.6327 1.9767 2.0644 0.4601 24.0407 0.8800

15YO’s Handysize 1.2083 114.1502 0.1626 0.1662 0.1343 2.3390 0.1235

10YO’s Panamax 43.5490 3.1156 3.2066 8.9880 2.6004 71.5110 2.0859

15YO’s Panamax 
structure2 (×)

structure1 (√) 27.1827 0.9340 1.6208 26.7814 2.5547 8.4017 0.5563

structure2 (×) 3.1591 45.5823 9.9325 1.1812 0.9386 22.7605 0.6047

structure3 (×) 5.3068 40.5541 24.6567 1.2212 0.5996 9.6743 0.9577

10YO’s Aframax 156.2703 12.1383 12.9038 2.6719 3.8613 62.3163 5.0925

15YO’s Aframax 
structure2 (×)

structure1 (×) 22.3750 7.0320 3.7788 1.2925 3.2285 45.3370 0.8221

structure2 (×) 7.4659 48.4879 18.9533 3.0849 2.8113 53.7523 1.5444

structure3 (√) 9.2045 1.0825 1.2391 1.2761 1.0943 22.2193 0.8341

structure4 (×) 10.4545 0.4195 2.0019 1.6585 0.9329 12.1958 5.3153
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Seasonal 
Naive SARIMA Holt-

Winters SVR Random 
forest

BP neural 
networks AGA-WNN

10YO’s Suezmax 59.4843 5.1193 5.5852 2.7341 3.4265 100.7711 2.1241

15YO’s Suezmax 
structure2 (×)

structure1 (×) 52.5385 8.2474 9.7118 26.0564 7.0189 67.8454 4.4440

structure2 (×) 69.5481 23.1119 5.2875 69.5337 17.3315 429.2047 7.7149

structure3 (√) 37.5104 34.0081 37.9286 2.6998 2.4625 42.8727 2.3490

10YO’s VLCC 177.0710 3.3135 3.8989 60.5313 10.3000 262.6474 4.4867

15YO’s VLCC 
structure1 (×)

structure1 (×) 48.1818 3.0838 2.0531 4.8042 3.8642 57.3450 1.5329

structure2 (√) 33.9524 1.4360 3.7300 2.6101 3.6991 37.3826 1.0255

      
  
Standard deviation

on the selected structures ( )σ 58.1720 33.6080 10.8640 18.0808 2.7263 72.7867 1.6273

Table 4
MAE compared on all structures

Seasonal 
Naive SARIMA Holt -Winters SVR Random 

forest
BP neural 
networks AGA-WNN

10YO’s Handysize 
structure1 (√) 2.2839 0.4644 0.4968 0.6317 0.3412 17.9148 0.4142 

structure2 (×) 2.5754 0.8709 0.9817 0.6746 0.4631 24.8626 0.8189

15YO’s Handysize 0.8056 7.4406 0.1711 0.2281 0.1917 3.9216 0.2635

10YO’s Panamax 4.7770 1.2495 0.0568 1.5885 1.1508 33.4315 1.1397

15YO’s Panamax 
structure2 (×)

structure1 (√) 2.5962 0.7049 0.9031 1.8416 0.8762 10.4205 0.5931

structure2 (×) 1.3636 4.0366 2.4107 0.8644 0.7823 18.6808 0.6528

structure3 (×) 1.8864 4.2262 3.7039 0.8756 0.5208 9.6922 0.8220

10YO’s Aframax 9.0270 2.7064 2.7393 1.2273 1.4413 35.2682 1.7478

15YO’s Aframax 
structure2 (×)

structure1 (×) 3.5962 1.7993 1.6427 0.8149 0.8927 22.4614 0.7466

structure2 (×) 2.2045 5.0490 3.6010 1.3282 1.3036 28.3095 1.0059

structure3 (√) 2.2273 0.6848 0.9075 0.8009 0.7316 15.6608 0.6068

structure4 (×) 2.5455 0.4719 0.8402 0.8638 0.8203 12.7344 1.8327

10YO’s Suezmax 5.3828 1.6643 1.8155 1.1877 1.3644 55.2468 1.1067

15YO’s Suezmax 
structure2 (×)

structure1 (×) 5.0000 2.2703 2.4213 1.9161 1.5509 29.4822 1.7770

structure2 (×) 5.4038 2.8861 1.7637 3.2871 1.7097 43.0683 1.9766

structure3 (√) 4.5208 4.4267 4.6894 1.3091 1.1103 23.4216 1.1465

10YO’s VLCC 7.7695 1.0596 1.1145 4.1012 1.7070 79.7420 1.6255

15YO’s VLCC 
structure1 (×)

structure1 (×) 5.2273 1.2851 0.8746 1.3355 1.4260 25.3621 0.9491

structure2 (√) 4.9524 0.9211 1.5232 1.2584 1.5002 20.0925 0.7817

      
  
Standard deviation

on the selected structures ( ) 2.4403 2.1048 1.3223 0.9975 0.4764 21.6918 0.4715
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Table 5
MAPE compared on all structures

Seasonal 
Naive SARIMA Holt-

Winters SVR Random 
forest

BP neural 
networks AGA-WNN

10YO’s Handysize  
structure1 (√) 0.1408 0.0303 0.0330 0.0300 0.0207 1.1853 0.0284 

structure2 (×) 0.1552 0.0567 0.0635 0.0362 0.0304 1.6571 0.0562

15YO’s Handysize 0.0818 0.8046 0.0177 0.0232 0.0199 0.4183 0.0293

10YO’s Panamax 0.1807 0.0569 0.0568 0.0565 0.0497 1.3921 0.0518

15YO’s Panamax 
structure2 (×)

structure1 (√) 0.2012 0.0557 0.0718 0.0705 0.0498 0.8306 0.0446

structure2 (×) 0.1199 0.3408 0.2121 0.0708 0.0653 1.5513 0.0570 

structure3 (×) 0.1662 0.3494 0.3167 0.0713 0.0441 0.7761 0.0681

10YO’s Aframax 0.3252 0.0968 0.0966 0.0458 0.0530 1.2949 0.0636

15YO’s Aframax 
structure2 (×)

structure1 (×) 0.2767 0.1302 0.1283 0.0662 0.0643 1.6745 0.0545

structure2 (×) 0.1773 0.4050 0.3213 0.1088 0.1142 2.3808 0.0860

structure3 (√) 0.1795 0.0499 0.0670 0.0632 0.0530 1.1377 0.0423

structure4 (×) 0.2033 0.0357 0.0604 0.0711 0.0650 0.9453 0.1483  

10YO’s Suezmax 0.1547 0.0514 0.0566 0.0392 0.0417 1.7389 0.0366

15YO’s Suezmax 
structure2 (×)

structure1 (×) 0.2293 0.1010  0.1126 0.0593 0.0578 1.1666 0.0856

structure2 (×) 0.2619 0.1093 0.0848 0.0855 0.0609   1.5664 0.0778

structure3 (√) 0.2448 0.2395 0.2555 0.0705 0.0593 1.2916 0.0624

10YO’s VLCC 0.1546 0.0197 0.0211 0.0682 0.0307 1.5036 0.0340

15YO’s VLCC 
structure1 (×)

structure1 (×) 0.1951 0.0404 0.0298 0.0412 0.0441 0.8072 0.0301

structure2 (√) 0.1657 0.0299 0.0522 0.0414 0.0468 0.6191 0.0242

      
  
Standard deviation

on the selected structures ( )σ 0.0619 0.2285 0.0650 0.0165 0.0143 0.3862 0.0132

The prediction model — WNN based on adaptive 
genetic algorithm (AGA-WNN) is superior to other 
prediction models on most datasets, and even im-
prove significantly on certain time series. Taking the 
15-year-old Suezmax secondhand prices (structure 
3) as an example, AGA-WNN’s accuracy is up to about 
93 percent higher than that of SARIMA while about 
13 percent higher than that of SVR regarding MSE. 
For time series where AGA-WNN does not rank first, 

the performance is still competitive and remains at 
the forefront of rankings. For instance, SVR reach-
es the minimum MAPE for the 10-year-old Aframax 
secondhand price, but AGA-WNN ranks top 3 with a 
narrow gap, only 1.78%. These two examples are visu-
alized in Figures 5 and 7. Generally, AGA-WNN never 
worst perform, compared to the baseline models. It is 
reasonable to adopt AGA-WNN as the primary pre-
diction model for the secondhand tanker market.
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Figure 5
15YO’s Suezmax (structure 3): Comparison results on test set
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2. Statistical tests. 

The generalization ability of the models can be 
easily judged by comparing the error indicators 
directly. Meanwhile, in order to make the compar-
ison more convincing, we can conduct statistical 
tests on the remaining time series structures. In 
this paper, two kinds of statistical tests, Friedman  

test and Nemenyi  post-hoc test, are utilized 
to further confirm the significant differences 
among these models.  

The test statistics of the Friedman  test is 
shown in Equation (23): 
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where N  and k  denote the number of datasets 
and algorithms, respectively. iγ  is the average 
rank of the algorithm i . 

( )2( 1) / 2, ( 1) / 12i N k kγ ∼ + − . 

When both N  and k  are large, 2χτ  obeys the 2χ  
distribution with ( 1)k −  degrees of freedom. 
However, Fτ  is more frequently used. 

As calculated on our data, MSE’s 19.6364Fτ = , 
MAE’s 16.9794Fτ = , MAPE’s 22.5789Fτ = , which 

are all greater than ( )0.05 6,  54 2.2720F = . Thus we 
have adequate reasons to reject the null hypothesis 
that all algorithms have same performance, at the 
significance level 0.05α = . The above diagrams 
can also prove that machine learning methods 
generally prevail over traditional models. Howev-

er, we cannot directly determine whether the 
slight differences among AGA-WNN, SVR 
and random forest are significant based on 
three error metrics or Friedman  test. There-
fore, the Nemenyi  test is introduced to fur-
ther distinguish random two algorithms, 
providing a critical value ( CD ) of the differ-
ence between the average ranks. 
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rics are shown in Table 6, visualized in Fig-
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Figure 9
Nemenyi test diagram based on MSE
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Figure 10
Nemenyi test diagram based on MAE

Figure 11
Nemenyi test diagram based on MAPE

6. Discussion and Conclusion
The secondhand ship market offers shipowners and 
investors the chance to buy and sell ships directly, 
making it easier for them to enter or exit the freight 
market. Therefore, the key lies in the time of invest-
ment. Asset transactions in which buy low and sell 
high can generate considerable profits. High freight 
rate tend to be accompanied by high ship value. While 
this is a piece of bad news for new investors in terms 
of raising costs, it provides an opportunity for ship-
owners to make money, whether operating or selling 
their ships. It is essential to make accurate predic-
tions driven by data.
In this paper, a hybrid prediction model composed of 
wavelet neural networks and adaptive genetic algo-
rithm is proposed to forcast the secondhand tanker 
price for different ship types and ship ages. A series 
of time series datasets include 10 year-old and 15 
year-old Handysize, Panamax, Aframax, Suezmax 
and VLCC/ULCC. The proposed hybrid model is sim-
ulated and compared with common machine learning 
algorithms and traditional prediction models. Three 
kinds of prediction error metrics are calculated, and 
two kinds of post-hoc statistical tests based on the 
error are performed, in order to judge the overall per-
formance of AGA-WNN. The results demonstrate 
that AGA-WNN is the best model compared with the 
baseline models, with comparative superiority in ac-
curacy and robustness. Therefore, AGA-WNN can be 
considered as an applicable data-driven tool to help 
relevant stakeholders in the shipping market monitor 
market trends in time, make reasonable management 
or decisions, and avoid unnecessary loss caused by 
subjective judgment.
Although the hybrid prediction model has achieved 
remarkable success in multiple time series, it still has 
some limitations. Firstly, this paper mainly studies 
the prediction of nonlinear models, which have high-
er time complexity and slower running speed, com-
pared with linear models. It is necessary and chal-
lenging to develop new parameter efficiently iterative 
algorithms in neural networks. Secondly, in addition 
to the five types of tankers investigated in the empiri-
cal study, we will also study the performance of AGA-
WNN on other types of ships in the future, for exam-
ple, dry bulk and container market. Furthermore, in 
terms of data frequency, this paper researches the 

  

Figure 10 

Friedman test diagram based on MAE 

 

Figure 11 

Friedman test diagram based on MAPE 

The results of the Nemenyi  test show that alt-
hough AGA-WNN and random forest are the top 
two models, they are not significantly different 
from SVR, SARIMA and Holt-Winter. The NFL 
Theorem (No Free Lunch Theorem) can explain 
that the expected performance of all algorithms is 
same, in other words, one algorithm will not per-
form best in all problems. Therefore, for several al-
gorithms with similar accuracy on certain datasets, 
error variance becomes one of the most important 
factors. The error variance of AGA-WNN is small-
er than that of other models. As a result, AGA-
WNN is recommended to predict secondhand 
tanker price because of its robustness. 
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researches the low-frequency monthly data. 
In regards to variable dimension, only the in-
formation of time series itself is extracted for 
prediction. In the future, we can aim at the 
high-frequency data, incorporating more ex-
ogenous variables that affect decision-
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low-frequency monthly data. In regards to variable 
dimension, only the information of time series itself 
is extracted for prediction. In the future, we can aim 
at the high-frequency data, incorporating more ex-
ogenous variables that affect decision-making, for 
example, newbuilding ship price, time charter rates, 
scrap value and so on, to develop a predictive model 
with strong robustness. Last but not least, this article 
only adopts AGA to solve WNN’s shortcomings re-
garding slow convergence and accessibility to fall into 
the local optimal trap. We can also combine WNN and 
other intelligent search algorithms, such as particle 
swarm optimization algorithm [7].
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