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For the traditional A* algorithm has problems such as long paths, large number of nodes, and the demand for 
dynamic obstacle cannot be avoided in complex environment. A mobile robot dynamic path avoidance method 
will be improved to improve the A* algorithm and improve DWA algorithm Two map environments are used for 
simulation verification. First, the evaluation function and key node selection strategy are optimized for the A* 
algorithm, and redundant nodes are deleted; then the dynamic obstacle distance evaluation function is added to 
the DWA algorithm which for the purpose of the obstacle avoidance performance can be enhanced. The results 
about the improved A* algorithm reduces 12.20% and 58.33% in path length and number of turning points re-
spectively compared with the traditional A* algorithm can be obviously grasped by the simulation experiment; 
by using the fusion algorithm whose purpose of using arcs instead of the straight lines is to turn more smoothly, 
and can be closest to the global optimum while avoiding dynamic obstacles to complete the search.
KEYWORDS: Improved evaluation function; key point selection strategy; dynamic obstacles; trajectory opti-
mization.

1. Introduction
In the area of research on multi-robot autonomous 
navigation, path planning occupies a significant place. 
For illustration, the Dynamic windowing approach 
(DWA), artificial potential field method, genetic algo-

rithm, etc. Based on local path planning, greedy algo-
rithm, A* algorithm, Dijkstra algorithm, D* algorithm 

(a variant of Dijkstra algorithm), etc. [1–5]. Based on 
global planning. Numerous clever algorithms exist as 
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well, such as the Tenebrae whisker and Ant colony al-
gorithms [6]. A* algorithm is the most widely used be-
cause of its simplicity, high efficiency, fast response, 
and high accuracy. Bai et al. [1] introduced the artifi-
cial potential field method into the A* algorithm, the 
sharp nodes in the path are smoothed by three uni-
form B spline curves and the tracking control strate-
gy is designed based on the model predictive control 
theory to achieve accurate tracking of the planned 
path [7]. Liu et al. [11] used the jump point search 
method to optimize the A* algorithm, which integrat-
ed the DWA algorithm to enhance path smoothness 
and avoid unknown dynamic obstacles, but the path 
length is still too long. In Erke et al. [4], to strength-
en the method’s stability, a variable step size A* algo-
rithm was recommended. Sa et al. [16] introduced the 
cosine function and added the exponential distance 
adjustment factor and the information of the node 
heuristic function of the parent node to the heuristic 
function and designed a rotation prediction method 
to optimize the bidirectional smoothing of the path.
The dynamic window algorithm is applied consider-
ing the situation where there is an unknown obstacle 
when the robot is work in [7]. This algorithm for path 
planning can improve the obstacle avoidance ability 
of the robot, and the path is smoother [9-10]. Howev-
er, it is easy to fall into the optimal local solution and 
cannot reach the specified goal along the global opti-
mum. Niu et al. [14] Improved evaluation function of 
A* combined with the DWA algorithm, the car could 
perform dynamic obstacle avoidance. However, the 
path is still too long. Liu et al. [9] Smoother trajecto-
ries and more timely collision avoidance by introduc-
ing evaluation factors on orientation change into the 
DWA algorithm path evaluation function.
For the issues of poor planning efficiency, numerous 
redundancy points, and turns in the traditional A* 
and the Dynamic windowing approach algorithms, 
which can lead to local optimum and lengthy paths. 
In practice, due to the complexity and variability of 
the scenario, it is difficult to meet the requirements of 
real-time and completeness by using global path plan-
ning or local path planning alone. Therefore, a better 
path planning result can be achieved by improving 
and integrating the two algorithms [10]. This paper 
proposes to optimize the two algorithms and fuse 
them so that the obtained path can ensure global opti-
mization and avoid random dynamic obstacles.

2. Global Planning
2.1. Environment Description
The 2D map environment described in this paper uses 
the raster method, and the search direction chosen is 
an 8-neighborhood search, in which the algorithm 
searches the eight neighboring nodes of the current 
node each time, as shown in Figure 1.

Figure 1 
Node search direction
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2.3. Improving the A* Algorithm
2.3.1. Optimization Heuristic Function
The A* algorithm is a heuristic search algorithm [13] 
whose performance is primarily directly affected by 
heuristic functions.
When the estimated cost of the heuristic function< 
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be obtained; when the estimated cost of the heuristic 
function > the actual cost, there are few search nodes, 
and the optimal path cannot be obtained; when the 
estimated cost of the heuristic function= the actual 
cost, the search performance is optimal. In order to 
prevent the estimation value is immense and falling 
into the local optimum, the weight α  of should be ap-
propriately adjusted. In summary, this paper designs 
a heuristic function:
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where, d is the distance between the current node and 
the starting place; l is the distance between the cur-
rent node and the destination; L is  the distance be-
tween the starting place and the destination.

2.3.2. Key Node Selection Strategy
To address the problem, the paths planned by the A* 
algorithm have more redundant points and turning 
points, which can lead to lower efficiency of the robot 
while working. In this paper, an optimized key node 
selection strategy is designed to remove redundant 
points and improve the search efficiency of the path 
[12]. The specific steps of key node selection are as 
follows:
Let the set of path nodes be { },1iU S i n= ≤ ≤ , and the 
position of each node is known. where 1S is the start-
ing point and nS  is the end point [10]. Set ( )1 1 1,S x y , 
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cuss the following two cases:
If the slope 

1 2S Sk  
is equal to 

1 3S Sk , then it means that 
S1, S2, S3 three points are on the same line and the S2 
is a redundant common line node, delete the node, as 
shown in Figure 2.

Figure 2
Key points of the common line

If the slope and are not equal, it means that S1, S2, S3  
three points are not on the same line, solve the equa-
tion of the line, determine whether there is an obsta-
cle within a predetermined safe distance between 
the line and the obstacle, if there is no obstacle, it is 
determined to be a redundant turning point, delete, as 
shown in Figure 3a; if there is an obstacle, it is a nec-
essary turning point, need to be retained, as shown in 
Figure 3b.
Next, the above steps are repeated from the beginning, 
and the set of nodes on the path after eliminating the 
redundant nodes must be updated continuously un-
til all nodes are finished operating according to the 
above steps. Eliminating redundant points using the 
key node selection strategy makes the ideal path iden-
tified by the enhanced A* algorithm planning contain 
only the starting point, necessary nodes, and target 
points, effectively reducing the robot’s path length. 
The procedure of the improved A* algorithm is given 
in Algorithm 1.
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3. Local Planning
The DWA algorithm belongs to the category of robot lo-
cal path planning. The dynamic window method sam-
ples multiple sets of velocities in a velocity vector space 
consisting of velocities and accelerations [11], taking 
into account the constraints of velocity and acceler-
ation/deceleration performance. Then, the motion 
model of the robot is used to simulate the trajectory of 
these speeds over a while. Then the obtained trajecto-
ry is evaluated according to the evaluation index [11]. 
The trajectory with the highest score is finally selected, 
and the corresponding velocities and accelerations are 
used as the travel speed parameters of the robot.

3.1. Robot Motion Model
It is supposed that the linear velocity of the mobile 
robot and its angular velocity at the time are denot-
ed as v(t), w(t), and the heading angle of the robot is 
denoted as ( )tθ . The sampling period is t∆ , then the 
mathematical expression of the motion model of the 
robot is [22]:
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where, tv is the linear velocity at the moment; tw is the 
angular velocity at the moment; maxvda denotes the max-
imum deceleration in the linear velocity [16-17]; maxvia
denotes the maximum acceleration in the linear velocity; 
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angular velocity.  
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( , )d dx y , and the coordinates of the trajec-
tory point predicted by the algorithm at the time are

(5)

3.2. Speed Sampling
In the two-dimensional space of velocities ( , )v w , 
there are a large number of velocity groups [14], but 
the robot is constrained in its motion.
1 own maximum velocity, minimum velocity con-

straints [7]:

Figure 3 
Key points do not share a line. (a) Point can be removed. (b) 
point must be retained

(a)

(b)

Algorithm 1

Algorithm: Improving the A*algorithm

1 Initialize
2 Open list        start node
3 Closed list      0
4 While (current node ∼= target node)
5 current =node in Open list with the smallest f(n);
6 remove current from Open list;
7 add current to Closed list;
8 If
9 current node== target node;
10 return success;

11 for each node that n is adjacent to current do;
12 If
13 g(n) > g(current)+ cost of edge from n to current);
14 g(n) = g(current)+ cost of edge from n to current;
15 f(n)=g(n) + a*h(n);
16 n. parent =current;
17 add n to Closed list;
18 If
19 Open list = Null;
20 return No-Path;
21  The optimal path from start to goal is obtained.
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where, tv is the linear velocity at the moment; tw is the 
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where, tv is the linear velocity at the moment; tw is the 
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where, ( , )t tdist v w  denotes the distance between 
the robot and the nearest obstacle at the speed 
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where, tv is the linear velocity at the moment; tw is the 
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where, tv is the linear velocity at the moment; tw is the 
angular velocity at the moment; maxvda denotes the max-
imum deceleration in the linear velocity [16-17]; maxvia
denotes the maximum acceleration in the linear velocity; 

maxwda denotes the maximum deceleration in the angular 
velocity; and maxwia is the maximum acceleration in the 
angular velocity.  
(3) Binding of braking distance.  
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where, ( , )t tdist v w denotes the distance between the ro-
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where, tv is the linear velocity at the moment; tw is the 
angular velocity at the moment; maxvda denotes the max-
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denotes the maximum acceleration in the linear velocity; 

maxwda denotes the maximum deceleration in the angular 
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( , )d dx y , and the coordinates of the trajec-
tory point predicted by the algorithm at the time are

(12)

Let the coordinates of the unknown dynamic obsta-
cle be ( , )d dx y , and the coordinates of the trajecto-
ry point predicted by the algorithm at the time are
( , )t tx y .The closest distance between the simulated 
trajectory point and dynamic obstacle at the moment 
is Dd [8]. Vt is the velocity of the robot at the moment 
of time [25]. L is the motion path of the mobile robot 
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in time t∆ , and considering that the robot will appear 
to change acceleration and deceleration in practical 
applications, so expand to 1.2L  on the basis [22]. The 
formula of the function _ ( , )Dist D v w  is:
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[8]. tV is the velocity of the robot at the moment of time 
[25]. L is the motion path of the mobile robot in time t∆
, and considering that the robot will appear to change ac-
celeration and deceleration in practical applications, so 
expand to1.2L on the basis [22]. The formula of the 
function _ ( , )Dist D v w  is: 
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In summary, the improved DWA evaluation function is 
[10]: 

( , ) ( , ) ( , )
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P v w Head v w DistS v w
Vel v w Dist D v w

α β
γ η

= ⋅ + ⋅
+ ⋅ + ⋅
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where, η is the weighting coefficient the ( , )P v w  repre-
sents the maximum speed of the robot at a guaranteed 
safe distance from the obstacle [26]. The procedure of the 
improved dynamic window approach algorithm is given 
in Algorithm 2. 
Algorithm 2 

Algorithm: DWA algorithm 
1 Initialization; 
2 Obtain the kinematics model of the robot; 
3 While not reach the target location 
4 { 
5 Speed sampling of robot 
6 Simulate motion trajectories; 
7 Use the evaluation function improved by the global 

[11]; 
8 path information obtained by the improving the A∗ al-

gorithm to; 
9 select the optimal trajectory; 
10 Robot follows the optimal trajectory to move; 
11 } 
12 Get the optimal path; 

4. Algorithm Fusion 
In this paper, the traditional A* algorithm and DWA algo-
rithm are improved, respectively. However, it is still evi-
dent that there are twists and turns in the improved A* al-
gorithm path. The improved A* algorithm cannot avoid 
obstacles in time for the unknown dynamic obstacles in the 
complex environment [18]. The improved DWA algorithm 
is still prone to the optimum local situation in a complex 
environment. According to the above problems, it is pro-
posed to fuse the two improved algorithms, i.e., to extract 
the key points on the path of the improved A* algorithm as 

the intermediate target points of the DWA algorithm 
for path planning. The process is shown in Figure 4. 

Figure 4  
Algorithm flow chart. 

 
 

5. Simulation Experiments 
5.1 Simulation Experimental Environment 
To verify the optimisation of the algorithm pro-
posed in this paper.MATLAB2016a experimental 
platform was used to simulate and verify the tradi-
tional A* algorithm, the improved A* algorithm, 
and the fusion algorithm [19]. The experimental en-
vironment was run on a CPU with 8GB memory 
and a 64-bit WIN10 system, and two different 2D 
raster map environments were designed for simula-
tion. In the 21×21 simple environment map 1, the 
starting point S (5,16) and the ending point T 
(19,3); in the 21×21 maze environment map 2, the 
starting point S (2,20) and the ending point T 
(19,3). The coefficients involved in the improved 
DWA algorithm are =0.2, =0.1, =0.3, and =0.4. The 
motion parameters of the simulated experimental 
robot are shown in Table 1. 
Table 1  
Values of robot motion parameters 
Parameters Value 
Initial line speed 0m/s 
Max. linear speed 2m/s 
Max. linear acceleration 0.4 m/s² 
Initial azimuth angle -п/2 
Angular speed fractional variability 1°/s 
Initial angular velocity 0 °/s 
Max. angular velocity 40 °/s 
Max. angular acceleration 60 °/s² 
Linear speed resolution 0.01m/s 

t∆  0.1s 
Initial angular velocity 0 °/s 
 
5.2 Improved A* Algorithm Simulation Experiments 

In two raster map contexts, the traditional A* method 
and the enhanced A* algorithm are simulated, as 
shown in Figure 5. The simulation data and perfor-
mance comparison of the algorithms are shown in 
Table 2. 
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Table 1 
Values of robot motion parameters

Parameters Value

Initial line speed 0m/s

Max. linear speed 2m/s

Max. linear acceleration 0.4 m/s2

Initial azimuth angle -п/2

Angular speed fractional variability 1°/s

Initial angular velocity 0 °/s

Max. angular velocity 40 °/s

Max. angular acceleration 60 °/s2

Linear speed resolution 0.01m/s
t∆ 0.1s

Initial angular velocity 0 °/s

5.2. Improved A* Algorithm Simulation 
Experiments
In two raster map contexts, the traditional A* method 
and the enhanced A* algorithm are simulated, as shown 
in Figure 5. The simulation data and performance com-
parison of the algorithms are shown in Table 2.
From Figure 5 and Table 2, we can see that the global 
paths planned by the improved A* algorithm are bet-
ter than the traditional A* algorithm, mainly optimiz-
ing the number of turning points and path length. In 
the simple environment map 1, the improved A* algo-
rithm turning points are optimized by 75% on average 
over the traditional A* algorithm, moreover, the route 
length of the enhanced A* algorithm is 15.48% shorter 
than that of the traditional A* algorithm [25].
For the complex maze environment Map 2, the num-
ber of turning points and path length of the [2] im-

(a)

(c)

(b)

(d)

Figure 5 
Comparison of two kinds of map simulation experiments. (a) Map 1 traditional A* algorithm. (b) Map 1 improved A* 
algorithm. (c) Map 2 traditional A* algorithm. (d) Map 2 improved A* algorithm
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proved algorithm is optimized on average 58.33% and 
17.18%, respectively, compared to the traditional al-
gorithm. In addition, the path planned by the conven-
tional A* algorithm is closer to the obstacle [23], and 
the improved algorithm path is safer. Therefore, it can 
be shown that applying the revised approach present-
ed in this work shortens the path and improves its 
smoothness and safety.

5.3. Simulation Experiment of the Fusion 
Algorithm
The fusion algorithm is based on the improved A* al-
gorithm [25], adding one unknown dynamic obstacle 
and two unknown dynamic obstacles in both map en-
vironments for experimental comparison, as show in 
Figures 6-7. The path velocity variation curve with 
the bit pose is shown in Figure 8.

Table 2
Experimental results of two kinds of maps

Map Algorithm Turning point 
number/pc

Turning Point 
optimization  ratio Path length /m Path length 

optimization ratio

Map 1
Traditional A* algorithm 8 – 24.4879 –

Improving the A*algorithm 2 75% 21.0280 15.48%

Map 2
Traditional A* algorithm 12 – 30.3848 –

Improving the A*algorithm 5 58.33% 25.1659 17.18%

Figure 6 
Map 1 fusion algorithm dynamic obstacle avoidance path simulation results. (a) Obstacles being avoided.  (b) Single 
dynamic obstacle. (c) Second dynamic obstacle being avoided. (d) Dual dynamic obstacles

(a)

(c)

(b)

(d)
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It proves obvious that in two maps of simple and 
complex environments with one and two random dy-
namic obstacles, respectively, the fused algorithms in 
Figure 6(a)-(c) and Figure 7(a)-(c) are avoiding the 
obstacles, the obstacles in Figure 6(b)-(d) and Figure 
7(c)-(d) move from left to right, and the improved A* 
algorithm collide with the obstacles, which the fused 
algorithms can avoid perfectly and successfully reach 
the target point [23].
As can be seen from Table 3, the path lengths planned by 
the fusion algorithm [21] are 21.0337m and 21.5279m 
in the simple environment of Map 1, which are 15.46% 
and 13.47% less than the traditional A* algorithm path 
lengths, respectively. The path lengths planned by the 
fusion algorithm are 26.1942m and 26.6783m in the 
complex environment of Map 2, which are 13.79% and 
12.20% optimized. 26.6783m, optimized by 13.79% and 

Figure 7 
Map 2 fusion algorithm dynamic obstacle avoidance path simulation results.(a) Positive avoidance of a single obstacle.(b) 
Single dynamic obstacle.(c) Second dynamic obstacle being avoided.(d) Dual dynamic obstacles

(a)

(c)

(b)

(d)

Figure 8
Changes in robot line speed
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12.20%. As shown in Figure 8, when the robot motion is 
performed with two dynamic random obstacles avoid-
ance that the number of control nodes ranges from 
400-600, there is a significant decrease in the linear 
and angular velocities of the robot, which will increase 
the algorithm search time. However, over all the im-
proved fusion of the two algorithms is good at avoiding 
the random dynamic obstacles and obtaining the global 
optimal route during path planning. The achievement 
of a more effective global path planning for real-time 
obstacle avoidance [24].

6. Conclusion
In this paper, an improved method is proposed for the 
traditional A* algorithm and DWA algorithm, and the 

Map

Number 
of random 
dynamic 
obstacles

Path 
length 

/m

Path length op-
timization ratio 
(traditional A* 

algorithm)

Avoid 
dynamic 
obstacles

Map1
one 21.0337 15.46% Yes

two 21.5279 13.47% Yes

Map2
one 26.1942 13.79% Yes

two 26.6783 12.20% Yes

Table 3 
Fusion algorithm path data of maps

fusion method is designed and the calculation flow 
of the algorithm is developed. By designing two map 
environments, the traditional A* algorithm and the 
improved A* algorithm are simulated experimental-
ly. The improved fusion algorithm is also simulated 
by adding a different number of dynamic obstacles. 
The simulated experimental data shows that the im-
proved A* algorithm and the fused algorithm optimize 
the path length by 15.48%, 15.46% (map1), 17.18%, 
13.79% (map2) turning points by 75% (map1), 58.33% 
(map2) compared to the traditional path length. In 
addition, the fused improved algorithm can avoid 
dynamic obstacles completely. Experiments verify 
the superiority and timeliness of the improved A* al-
gorithm and DWA algorithm, and the obtained path 
reaches the end point safely while the length is short-
er and the number of turning points is reduced, which 
achieves the expected effect. It can fuse algorithms to 
optimize robot path length, safety performance and 
smoothness to meet the optimization of robots in 
complex dynamic environments, and fuse algorithms 
to optimize robot path length, safety performance and 
smoothness to meet the requirements of robot path 
planning in complex dynamic environments.
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