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In the current state of medical research, the diagnosis of heart disease has become a challenging medical ob-
jective. This diagnosis is dependent on a thorough and accurate review of the detailed medical test results and 
medical background of the patient. With the aid of the internet of things (IoT) and the huge advancements in the 
field of deep learning, researchers aim to produce intelligent monitoring systems that assist physicians in both 
predicting and diagnosing disorders. In this context, this work proposes a novel prediction model based on deep 
learning and Internet-of-Medical-Things for the efficient and real-time diagnosis of heart disease. In this work, 
data from the Cleveland dataset is used for training the proposed model and further the data that is gathered 
from the sensors in the IoMT environment is used for testing the prediction capability of the model. Chaotic 
Harris Hawk optimization algorithm is employed for the feature extraction from the data and these extracted 
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features are further passed on to the classification stage where Enhanced Convolutional Neural Networks are 
utilized to classify whether the patient is affected by heart disease or not. In order to evaluate the performance 
of the proposed model, it is compared with the Machine learning models such as Support Vector Machine with 
Ant Colony Optimization(SVM-ACO), Random Forest with Particle Swarm Optimization(RF-PSO), Naive 
Bayes with Harris Hawk Optimization(NB-HHO), K Nearest Neighbor with Spiral Optimization (KNN-SPO). 
Moreover, the proposed model is compared against deep learning architectures such as VGG-16, ResNet, Alex-
Net, ZDNet. Further, the proposed model also outperforms two existing works taken from the literature, Faster 
R-CNN-ALO, and MDCNN-AEHO, with a higher accuracy of 99.2%.
KEYWORDS: Heart disease prediction, Convolutional neural networks, Deep learning, Optimization algo-
rithms, Internet-of-Medical Things.

1. Introduction
The World Health Organization (WHO) reports that 
cardiovascular disease causes 18.3 million deaths 
annually, making it one of the world’s top causes of 
mortality. The main causes of heart disease include 
a number of harmful behaviors, including high blood 
pressure, obesity, a rise in triglyceride levels, and blood 
cholesterol [13]. Heart disease risk factors include 
sleep issues, increased heart rate, bloated legs, and, in 
certain cases, weight gain of 1 to 2 kg each day [4]. The 
right diagnosis is challenging because all these symp-
toms are typical of many illnesses that will cause death 
in the near future. Smart healthcare offers medical sys-
tems that connect patients, companies, and individ-
uals to health evidence and resource connections via 
IoT, activity trackers, and high-speed internet access. 
Some of the smart healthcare networks utilized in 
disease diagnosis, and clinical science include the In-
ternet of Things, Artificial Intelligence, data analytics, 
cloud computing, 5G, and beyond technologies [26].
In addition to IoT, the Internet of Medical Things 
(IoMT) is very important in the healthcare indus-
try for time prediction and diagnosing chronic ill-
nesses, as was earlier mentioned. When it comes to 
making a diagnosis and making a prognosis for many 
illnesses, the amount of information needed by the 
healthcare industry, security considerations, pro-
cessing speed, and information accuracy is crucial 
[10]. Previous studies have employed machine learn-
ing-based algorithms to boost the accuracy of patient 
data and address these issues. IoMT is a brand-new 
network-based method for integrating medical equip-
ment and its applications to healthcare IT platforms. 
Through the development of intelligent sensing de-
vices, smart gadgets, and cutting-edge lightweight 
routing algorithms, IoMT offers medical diagnosis 

without human assistance [22]. IoMT-based health-
care includes enhanced chronic illness management, 
remote monitoring, ingestible sensor monitoring, 
smart hospitals, and more.
With the world’s expanding population in the mod-
ern era, a better healthcare system is the key obstacle. 
The goal of the Internet of Medical Things (IoMT) 
is to offer a more advanced and widespread system 
for health monitoring [19]. The Internet of Medical 
Things (IoMT) enables device-to-device (D2D) com-
munication by unifying surgical equipment with Wi-
Fi technology. The time required for microservices 
was the most difficult problem in recent decades. 
As a result of modern technological advancements, 
even three-dimensional videos can be downloaded 
intermittently. Acquired large amounts of data can 
be measured accurately with less delay. Also, the de-
vice resource allocation capabilities are improved 
and give heterogeneous networks faster speeds. The 
Internet of Things (IoMT) is made up of a variety of 
heterogeneous networks, including Wi-Fi and Blue-
tooth as well as ZigBee [30]. The core component of 
the IoMT technology, with its exceptional efficiency 
and dependability, is Device-to-Device communica-
tion. Minimal latency, high bandwidth, and resilience 
are the key characteristics of an intelligent health-
care system, and these qualities are crucial for an ac-
curate and successful diagnosis and consultation [3]. 
The crucial period assessment is the most important 
factor to take into consideration for applications in 
emergency healthcare. Through IoT-driven wearable 
electronics, extremely dependable, delay-tolerant 
data exchange and distribution was made possible.
In recent years, machine learning has become increas-
ingly used in the healthcare sector to analyze huge 
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data for early disease prediction, resulting in an im-
provement in the standard of healthcare [20]. Complex 
health problems can be resolved using machine learn-
ing, which also produces reliable outcomes. One of the 
main industries where machine learning has proven 
useful is the healthcare sector. The functionality of 
machine learning algorithms is greatly influenced 
by the creation of precise and complex datasets [6]. 
IoMT makes it possible for healthcare organizations 
and goods to exchange real-time data, thus producing 
a large amount of data for machine learning. Huge vol-
umes of research information and patient cases are 
now available. Research can be done to employ com-
puter technology for patient identification and precise 
disease diagnosis in order to stop the mortality due to 
these diseases. There are several open sources for ac-
quiring access to patient records [18]. 
Artificial Intelligence (AI) and machine learning 
(ML) are now widely acknowledged to play important 
roles in the healthcare sector, and a variety of ML and 
DL models can be used to categorize and diagnose ill-
nesses or forecast outcomes [12]. It is simple to do a 
thorough examination of genome data using several 
machine-learning methods. In the current digital era, 
the healthcare industry produces a lot of patient data. 
Manual management of these data is challenging for 
doctors, but IoT can manage the generated data very 
effectively [11]. IoT generates massive amounts of 
data and is capable of diagnosing illnesses using com-
puter algorithms in order to apply various ML tech-
niques to the generated data. For the initial prediction 
of heart illness in relation to IoT, an ML technique is 
suggested in [12].
Large amounts of medical data collected by the IoT are 
managed and supervised by cardiac image process-
ing techniques derived from DL. A unified DL and IoT 
platform called Deep IoMT is in charge of accurately 
extracting cardiac imaging data from common equip-
ment and devices. To make healthcare more accessible 
and inexpensive, wearable technology must be reliable 
(i.e., have a longer battery life), energy-efficient, and 
valid. A new effective strategy based on the consciously 
enhanced efficient-aware approach (EEA) of self-adap-
tive power control is suggested in [24] to reduce energy 
consumption while enhancing validity and battery life. 
A new standard DL-IoMT framework (DL-based lay-
ered architecture for IoMT) has also been developed for 
remote cardiac imaging of elderly patients.

In the partitioning clustering techniques, a dataset is 
divided into groups according to the particular mea-
sure taken into account as a fitness function [16]. 
This function has a bigger influence on the nature 
of constructing these groups. The partitioning pro-
cedure is transformed into an optimization problem 
once the right fitness function is chosen. In this case, 
partitioning is carried out in N-dimensional space 
by either optimizing the frequency or decreasing the 
distance between the patterns. An appropriate choice 
of optimization algorithm is also essential to build a 
highly predictive model. In this work, a novel deep 
learning approach combined with optimization algo-
rithms to make predictions on data collected from the 
IoMT framework is proposed.
The main contributions of this work are as follows,
a To present a novel hybrid heart disease prediction 

system with an Internet-of-Medical Things frame-
work. the novelty of the work lies in selecting opti-
mal features using a metaheuristic framework. 

b To implement a meta heuristic-based optimiza-
tion algorithm, Chaotic Harris Hawk optimization 
algorithm, to extract insightful features from the 
complex healthcare data

c To make predictions using Enhanced Convolu-
tional Neural Networks on real-time data collected 
through the IoMT framework.

The remainder of the paper is organized as follows. 
Section 2 discusses the works related to heart disease 
prediction in the existing literature. Section 3 focuses 
on the proposed hybrid deep model detailing the dif-
ferent phases involved in the architecture. Section 4 
discusses the results obtained on executing the pro-
posed models. Section 5 compares the performance of 
the proposed model against existing models. Section 
6 concludes the work. 

2. Related Works
This section presents the existing works for heart 
disease diagnosis using the Internet-of-Things, Inter-
net-of-Medical Things, Machine learning, and Deep 
learning algorithms. 
Many researchers have been continually engaged in 
this subject as a result of recent developments in ma-
chine learning and medical data processing. Data on 
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cardiac illnesses, which have attracted the interest of 
many academics, are among the most difficult medical 
data. Recursive neural networks (RNN) and decision 
trees (DT) were claimed to have achieved the best 
results in [8, 23], where a variety of machine learn-
ing algorithms were investigated for the prediction 
of cardiac disorders. In [20], a neural network with a 
convolution layer was employed for categorizing clin-
ical data that was unbalanced. For greater accuracy 
in classifying unbalanced data, this work employs a 
double-step strategy that includes feature weighting 
based on the minimum relative shrinkage and screen-
ing activator (LASSO) and then identifying essential 
features based on a secret ballot.
In order to examine people with heart failure, Ab-
del-Basset et al. [31] presented a system that utilized 
IoT and digital diagnosis, using data from numerous 
sources. At first, users’ smartphones used Bluetooth 
technology to collect data from the body sensors con-
cerning heart failure symptoms, which were then sent 
by a sophisticated gateway to a central repository. Cli-
nicians divided the patients into various groupings 
based on the symptoms they exhibit [27]. Finally, the 
Internet of Medical Things (IoMT) and the multi-cri-
teria strategic planning (MCSP) methodology were 
used to quickly and cheaply diagnose, monitor, and 
treat heart problems. The results of the experiential 
assessment supported the high-level system’s perfor-
mance [25].
An extensible three-layer framework was suggested 
by Kumar and Gandhi [3] for processing and storing 
enormous amounts of mobile sensing data. Layer 1 
was in charge of gathering the data from the inte-
grated sensor devices. In order to efficiently store 
the integrated Sensor data in a virtualized environ-
ment, Layer 2 used Apache HBase. In order to create 
the logistic-regression-based prediction system for 
heart disease, Layer 3 used Apache Mahout. Finally, 
to identify the important clinical markers of heart 
disease, an operating characteristic analysis was per-
formed [21].
A computer-aided diagnosis paradigm for the recog-
nition of cardiac disease was introduced by Al et al. [3]. 
The data were split into training and test datasets af-
ter texture features had been normalized. The trained 
data was then subjected to sampling and feature eval-
uation using a statistical framework. The framework 
used the same subset of features for testing the data 

that it had used for training [27]. A network used the 
training data with fewer characteristics to do train-
ing. Using the test data, the trained model’s perfor-
mance was evaluated.
An IoMT-based server design was proposed by Gup-
ta et al. [9]. The system used embedded equipment 
sensors rather than smartphones or wearable sensors 
to store the values of the fundamental health-related 
indicators. This architecture made use of XML Web 
services to facilitate quick and safe data transfer [1]. 
It can appear that the total response between the local 
database server and the data center is nearly in line 
with the increase in users.
A function for identifying the ideal weights based 
on population heterogeneity and tweaking param-
eters was introduced by Vijayashree and Sultana 
[28]. Additionally, an objective function for particle 
swarm optimizations (PSOs) using support vector 
machines was created using the framework that was 
described (SVMs). Six distinguishing characteris-
tics for classifying heart illness were identified using 
the PSO-SVM feature selection algorithm: gender, 
maximal pulse rate, fasting blood glucose level, rest-
ing Electrocardiogram, multiple main arteries, and 
aerobic activity angina [9]. The effectiveness of the 
proposed PSO-SVM system was compared to that 
of a number of other techniques. It has been demon-
strated that the suggested methodology outperforms 
the alternatives. 
Though several works exist in the literature for heart 
disease prediction using Machine Learning and Deep 
Learning algorithms [29, 14], it has been employed to 
standard datasets collected from repositories. In this 
work, a real-time prediction of heart disease is pro-
posed based on the data collected through sensors from 
the IoMT framework. In addition to this improved op-
timization algorithm such as Chaotic Harris Hawk is 
used in combination with Enhanced Convolutional 
Neural Networks for classification purposes. 

3. Proposed Methodology
The proposed methodology comprises four phases as 
depicted in Figure 2. In the first phase, the data is col-
lected through the sensors placed in the patient. The 
Cleveland dataset is used to train the model and the 
real-time data obtained from the IoMT framework is 
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used for testing purposes and to make predictions. In 
the second phase, the data obtained is preprocessed 
in order to prepare the data for making it parsable by 
the model. In the third phase, Chaotic Harris Hawk 
Optimization (C-HHO) is applied for the feature se-
lection process, and in the fourth phase, the classifica-
tion of heart disease is implemented using Enhanced 
Convolutional Neural Networks (E-CNN). 
The classification is carried out through training and 
testing processes. The dataset used in the proposed 
work is taken from the UCI Machine Learning Re-
pository. This repository hosts several datasets from 
VA Long Beach, Switzerland as well as Cleveland. 
The Cleveland dataset is employed for the diagnosis 
of heart disease in this work. This dataset consists of 
303 instances and almost all the data in this dataset 
are complete in nature. Preprocessing of the Cleve-
land dataset will be performed during the training 
phase. After this, the feature selection is executed 
using the C-HHO algorithm followed by the classifi-
cation using E-CNN on the selected features. During 
the testing phase, real-time data collected from the 
sensors through Narrow Band IoT is tested using 
the proposed model to classify whether the patient 
is affected or not by heart disease. For the affected 
patients, an immediate alert is transmitted to the 
healthcare professional to take necessary action to 
treat the patients. 

3.1. Data Collection Phase
This layer involves the Internet of Medical Things 
Framework for the data collection process. The ar-
chitecture of the IoMT framework is depicted in 
Figure 1. The acquisition layer is used to gather data 
from the objects placed on the patients where signals 
are acquired and converted for medical analysis. The 
access layer is responsible to transmit the acquired 
data to the network layer using technologies like Wi-
Fi, Zigbee as well as Bluetooth. The network layer is 
one of the most important layers in the IoMT frame-
work. This layer is responsible for the synchronous 
transfer of data using mobile networks and other 
heterogeneous networks. The application layer is 
the layer in which the analysis of the data and man-
agement of data takes place in order to aid intelligent 
decision-making and predictions. From this layer, the 
data is taken for preprocessing, feature selection, and 
classification purposes.

3.2. Data Preprocessing Phase
This is the initial stage in which three important 
tasks are executed for the preparation of the data be-
fore forwarding it to the next phase which is feature 
selection.
Task 1: Handling Missing Values
The missing values in certain attributes are replaced 
by the values that are present for the corresponding 
records by analyzing the whole dataset. There were 
missing values for attributes such as cholesterol and 
blood pressure in the Cleveland dataset. The missing 
values in these attributes are replaced by suitable val-
ues by analyzing the records of all patients based on 
the age attribute. The records with maximum match-
ing values are chosen for filling the missing values in 
the attributes of Cholesterol and blood pressure. 

Figure 1
IoMT framework

Figure 2
Proposed Architecture

  

An IoMT-based server design was proposed by Gupta et 
al. [9]. The system used embedded equipment sensors 
rather than smartphones or wearable sensors to store the 
values of the fundamental health-related indicators. This 
architecture made use of XML Web services to facilitate 
quick and safe data transfer [1]. It can appear that the 
total response between the local database server and the 
data center is nearly in line with the increase in users. 
A function for identifying the ideal weights based on 
population heterogeneity and tweaking parameters was 
introduced by Vijayashree and Sultana [28]. 
Additionally, an objective function for particle swarm 
optimizations (PSOs) using support vector machines was 
created using the framework that was described (SVMs). 
Six distinguishing characteristics for classifying heart 
illness were identified using the PSO-SVM feature 
selection algorithm: gender, maximal pulse rate, fasting 
blood glucose level, resting Electrocardiogram, multiple 
main arteries, and aerobic activity angina [9]. The 
effectiveness of the proposed PSO-SVM system was 
compared to that of a number of other techniques. It has 
been demonstrated that the suggested methodology 
outperforms the alternatives.  
Though several works exist in the literature for heart 
disease prediction using Machine Learning and Deep 
Learning algorithms [29, 14], it has been employed to 
standard datasets collected from repositories. In this 
work, a real-time prediction of heart disease is proposed 
based on the data collected through sensors from the 
IoMT framework. In addition to this improved 
optimization algorithm such as Chaotic Harris Hawk is 
used in combination with Enhanced Convolutional 
Neural Networks for classification purposes.  

3. Proposed Methodology 
The proposed methodology comprises four phases as 
depicted in Figure 2. In the first phase, the data is 
collected through the sensors placed in the patient. The 
Cleveland dataset is used to train the model and the real-
time data obtained from the IoMT framework is used for 
testing purposes and to make predictions. In the second 
phase, the data obtained is preprocessed in order to 
prepare the data for making it parsable by the model. In 
the third phase, Chaotic Harris Hawk Optimization (C-
HHO) is applied for the feature selection process, and in 
the fourth phase, the classification of heart disease is 
implemented using Enhanced Convolutional Neural 
Networks (E-CNN).  
The classification is carried out through training and 
testing processes. The dataset used in the proposed work 
is taken from the UCI Machine Learning Repository. 
This repository hosts several datasets from VA Long 
Beach, Switzerland as well as Cleveland. The Cleveland 
dataset is employed for the diagnosis of heart disease in 
this work. This dataset consists of 303 instances and 
almost all the data in this dataset are complete in nature. 
Preprocessing of the Cleveland dataset will be performed 

during the training phase. After this, the feature 
selection is executed using the C-HHO algorithm 
followed by the classification using E-CNN on the 
selected features. During the testing phase, real-
time data collected from the sensors through 
Narrow Band IoT is tested using the proposed 
model to classify whether the patient is affected or 
not by heart disease. For the affected patients, an 
immediate alert is transmitted to the healthcare 
professional to take necessary action to treat the 
patients.  

3.1 Data Collection Phase 

This layer involves the Internet of Medical Things 
Framework for the data collection process. The 
architecture of the IoMT framework is depicted in 
Figure 1. The acquisition layer is used to gather data 
from the objects placed on the patients where signals 
are acquired and converted for medical analysis. The 
access layer is responsible to transmit the acquired 
data to the network layer using technologies like Wi-
Fi, Zigbee as well as Bluetooth. The network layer is 
one of the most important layers in the IoMT 
framework. This layer is responsible for the 
synchronous transfer of data using mobile networks 
and other heterogeneous networks. The application 
layer is the layer in which the analysis of the data and 
management of data takes place in order to aid 
intelligent decision-making and predictions. From 
this layer, the data is taken for preprocessing, feature 
selection, and classification purposes. 
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3.2 Data Preprocessing Phase 

This is the initial stage in which three important tasks are 
executed for the preparation of the data before forwarding 
it to the next phase which is feature selection. 

Task 1: Handling Missing Values 

The missing values in certain attributes are replaced by the 
values that are present for the corresponding records by 
analyzing the whole dataset. There were missing values for 
attributes such as cholesterol and blood pressure in the 
Cleveland dataset. The missing values in these attributes 
are replaced by suitable values by analyzing the records of 
all patients based on the age attribute. The records with 
maximum matching values are chosen for filling the 
missing values in the attributes of Cholesterol and blood 
pressure.  

Task 2:  Elimination of Redundant Values 

Redundant values increase the number of records in the 
dataset used for training the model which in turn affects 
the time taken to train the model. Secondly, presence of 
redundant values prohibits the model from producing 
accurate predictions as the repeated values are provided 
high importance. Both these factors directly have adverse 
effects on the performance of the model during the testing 
phase.  

Task 3: Segregation of Data 

During the execution of this task, the patients are 
segregated into four categories depending on the category 
of chest pain experienced by the patient. The four 
categories of chest pain are tabulated in Table 1. 
 
Table 1 
Categories of Chest pain 

 

Chest pain categories Chest pain Name 

Category 1 Asymptomatic chest pain 

Category 2 Non-anginal chest pain 

Category 3 Typical angina chest pain 

Category 4 Atypical angina chest pain 

 
3.3 Feature Selection Phase  
The feature selection of the proposed work is 
implemented using the Chaotic Harris Hawk 
Optimization algorithm. The mathematical 
modeling of the C-HHO algorithm is discussed in 
detail in this section. The main intuition behind this 
modeling is determining a suitable strategy to seize 
the target. The probabilistic strategy used in this 
technique is the formulation of a plan to identify 
the food and acquire it without the knowledge of 
the target. Consider the probability of acquiring the 
target on each trial as p which is also dependent on 
the closeness of the other members in the group. 
Two Equations (1) and (2) are formulated for 
conditions when p<0.5 and p>=0.5 respectively.  
For p>=0.5, 
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  

=  𝐴𝐴������ (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
−  𝑖𝑖�
×  𝑖𝑖𝑎𝑎𝑎𝑎(𝐴𝐴������ (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  

−2 × 𝑖𝑖� × 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (1) 
 
For p<0.5, 

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 
�𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)� 𝑖𝑖� ×
�𝑙𝑙����� + 𝑖𝑖� × (𝑢𝑢����� − 𝑙𝑙�����)�, (2) 
 
where 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  denotes hawk’s 
position in consecutive iteration, 
𝐴𝐴������ (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes hawk’s that are 
selected in random, 𝑖𝑖�,𝑖𝑖�,𝑖𝑖� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑖𝑖�are values 
that are chosen in random between 0 and 1. These 
values under alteration in every iteration which is 
determined by the bound values 
𝑢𝑢����� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑙𝑙����� . 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 
denotes the position in which the target is located. 
𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the average location 
of the hawk and it is determined using the Equation 
(3) as, 
 
𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =
 �� �∑���� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 
 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position 
after consecutive iteration and T denotes the 
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Task 2: Elimination of Redundant Values
Redundant values increase the number of records in 
the dataset used for training the model which in turn 
affects the time taken to train the model. Secondly, 
presence of redundant values prohibits the model 
from producing accurate predictions as the repeated 
values are provided high importance. Both these fac-
tors directly have adverse effects on the performance 
of the model during the testing phase. 
Task 3: Segregation of Data
During the execution of this task, the patients are seg-
regated into four categories depending on the catego-
ry of chest pain experienced by the patient. The four 
categories of chest pain are tabulated in Table 1.

Table 1
Categories of Chest pain

Chest pain categories Chest pain Name

Category 1 Asymptomatic chest pain

Category 2 Non-anginal chest pain

Category 3 Typical angina chest pain

Category 4 Atypical angina chest pain

3.3. Feature Selection Phase 
The feature selection of the proposed work is imple-
mented using the Chaotic Harris Hawk Optimization 
algorithm. The mathematical modeling of the C-HHO 
algorithm is discussed in detail in this section. The 
main intuition behind this modeling is determining a 
suitable strategy to seize the target. The probabilistic 
strategy used in this technique is the formulation of 
a plan to identify the food and acquire it without the 
knowledge of the target. Consider the probability of 
acquiring the target on each trial as p which is also de-
pendent on the closeness of the other members in the 
group. Two Equations (1) and (2) are formulated for 
conditions when p<0.5 and p>=0.5 respectively. 
For p>=0.5,
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3.2 Data Preprocessing Phase 

This is the initial stage in which three important tasks are 
executed for the preparation of the data before forwarding 
it to the next phase which is feature selection. 

Task 1: Handling Missing Values 

The missing values in certain attributes are replaced by 
the values that are present for the corresponding records 
by analyzing the whole dataset. There were missing 
values for attributes such as cholesterol and blood 
pressure in the Cleveland dataset. The missing values in 
these attributes are replaced by suitable values by 
analyzing the records of all patients based on the age 
attribute. The records with maximum matching values are 
chosen for filling the missing values in the attributes of 
Cholesterol and blood pressure.  

Task 2:  Elimination of Redundant Values 

Redundant values increase the number of records in the 
dataset used for training the model which in turn affects 
the time taken to train the model. Secondly, presence of 
redundant values prohibits the model from producing 
accurate predictions as the repeated values are provided 
high importance. Both these factors directly have adverse 
effects on the performance of the model during the 
testing phase.  
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(2)

Where A(iteration+1) denotes hawk’s position in con-
secutive iteration, Arandom(iteration) denotes hawk’s 
that are selected in random, a1, a2, a3 and a4, are val-
ues that are chosen in random between 0 and 1. These 
values under alteration in every iteration which 
is determined by the bound values ubound and lbound.  
Atarget(iteration) denotes the position in which the 
target is located. Aavg(iteration) denotes the average 
location of the hawk and it is determined using the 
Equation (3) as,  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
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�

�, (11) 

 
where 
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�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(3)

Where Ak(iteration) denotes the hawk’s position af-
ter consecutive iteration and T denotes the aggregate 
number of hawks.
Movement of the hawks between the exploration 
and the exploitation stage is wholly controlled by the 
energy exhibited by the target to escape and is deter-
mined using Equation (4) as,

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����
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�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��
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�(���
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)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(4)

Where Renergy denotes the restraint energy and Senergy  
denotes the energy in the starting stage which ranges 
between -1 and 1. iterationhigh denotes the utmost iter-
ations taken.
The updated locations of the hawks is determined us-
ing the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by Et is also important for the 
transition from the exploration and the exploitation 
stage. For this Et value in range Et >=0.5, the hawk will 
perform a soft attack on the target. 

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����
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�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��
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�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(5)
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𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
�

�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(6)

Where Δ A(iteration) denotes the variation in the 
present location of the target and hawk. 
Benergy denotes the bounce energy which undergoes a 
modification in every iteration and is computed as 

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
�

�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(7)

Where a5 is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will per-
form a hard attack on the target for Et < 0.5.

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
�

�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(8)

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
�

�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(9)

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
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�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

, (10)

Where FFpath and Pd denotes the path of the fractal 
flight and dimensionality of the problem respectively.
FFpath(Pd) is formulated based on the rules represent-
ed in Equations (11)-(12) as,

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
�

�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

, (11)

where

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
�

�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

, (12)

where γ and δ are values that are chosen in random 
between 0 and 1 whereas σ is a value that is set to hold 
a constant value of 0.5.
At this point of time, the target gains required energy 
and the hawk performs an attack on the target based 
on the Race Levy flight process as shown in Equation 
(13) which is a soft attack. 

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
�

�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(13)

C; if func(C) <func(A(iteration))

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
�

�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(14)

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
�

�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(15)

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in Equa-
tion (16). 

  

𝐴𝐴���(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) =  �
�

�∑�
��� 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (3) 

 
where 𝐴𝐴�(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) denotes the hawk’s position after 
consecutive iteration and T denotes the aggregate 
number of hawks. 
 
Movement of the hawks between the exploration and 
the exploitation stage is wholly controlled by the energy 
exhibited by the target to escape and is determined 
using Equation (4) as, 
 

𝑅𝑅������ = 2 × 𝑆𝑆������ × �1 − ���������
�������������

�, (4) 

 
where 𝑅𝑅������  denotes the restraint energy and 
𝑆𝑆������  denotes the energy in the starting stage which 
ranges between -1 and 1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖���� denotes the 
utmost iterations taken. 
The updated locations of the hawks is determined using 
the Equation (5). The success rate of acquiring the 
target by the hawks is dependent on the strategy used 
by the hawk to acquire the target and the restraint 
energy exhibited by the target to escape. The escape 
transpose represented by 𝐸𝐸� is also important for the 
transition from the exploration and the exploitation 
stage. For this 𝐸𝐸�  value in range 𝐸𝐸� >=0.5, the hawk 
will perform a soft attack on the target.  
 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) = 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) (5) 

 
𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = �𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�, (6) 
 
where 𝛥𝛥 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  denotes the variation in the 
present location of the target and hawk.  
𝐵𝐵������ denotes the bounce energy which undergoes a 
modification in every iteration and is computed as  

 
𝐵𝐵������ = (1 − 𝑖𝑖�), (7) 

 
where 𝑖𝑖� is a value chosen in random between 0 and 1. 
When the target becomes fatigued, the hawk will 
perform a hard attack on the target for 𝐸𝐸�< 0.5. 

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)  =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑅𝑅������ ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝛥𝛥𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(8) 

 
𝐵𝐵 = 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ 𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))   (9) 

 
𝐶𝐶 = 𝐵𝐵 + 𝐹𝐹𝐹𝐹����(𝑃𝑃�), (10) 

 

where 𝐹𝐹𝐹𝐹���� 𝑖𝑖𝑖𝑖𝑎𝑎 𝑃𝑃�  denotes the path of the 
fractal flight and dimensionality of the problem 
respectively. 

 
𝐹𝐹𝐹𝐹�� (𝑃𝑃�)  is formulated based on the rules 
represented in Equations (11)-(12) as, 

 

𝐹𝐹𝐹𝐹����(𝑖𝑖) = 0.01 ����

|�|
�
�

�, (11) 

 
where 

 

𝛿𝛿 =  (
�(���)×���(��

� )

�(���
� )×�×�(���

� )
)

�
�,(12) 

 
where 𝛾𝛾 𝑖𝑖𝑖𝑖𝑎𝑎 𝛿𝛿 are values that are chosen in 
random between 0 and 1 whereas 𝜎𝜎 is a value that 
is set to hold a constant value of 0.5. 
At this point of time, the target gains required 
energy and the hawk performs an attack on the 
target based on the Race Levy flight process as 
shown in Equation (13) which is a soft attack.  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(13) 

 
𝐶𝐶;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶)  < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))  

 
𝐵𝐵′ =  𝐴𝐴������(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸 ×
𝑖𝑖𝑎𝑎𝑎𝑎(𝐵𝐵������ �������(���������)�����(���������))(14) 

 
 
𝐶𝐶′ =  𝐵𝐵′ + 𝐹𝐹𝐹𝐹����(𝑃𝑃�). (15) 
 

Now, the hawks are very near to the target and thus 
executes a hard attack on the target as shown in 
Equation (16).  

 
𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1) =  𝐵𝐵′;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐵𝐵′) <
𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))(16) 
 

𝐶𝐶�;  𝑖𝑖𝑖𝑖 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓(𝐶𝐶�) < 𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓�𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)�.  
 

The pseudocode of the C-HHO algorithm is 
depicted in Algorithm 1as shown below. 

 
Algorithm 1 
Chaotic Harris Hawk Optimization(C-HHO) 
algorithm  
 
Input: population q for iterations m 
Output: Target location and its fitness value 
Population Initialization 𝑄𝑄�(𝑘𝑘 = 1,2,3,4, . . . . . , 𝑞𝑞) 

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����) 
Compute best fitness of hawks 

(16)

The pseudocode of the C-HHO algorithm is depicted 
in Algorithm 1as shown below.
Algorithm  1. Chaotic Harris Hawk Optimiza-
tion(C-HHO) algorithm 
Input: population q for iterations m
Output: Target location and its fitness value
Population Initialization Qk(k = 1, 2, 3, 4, … ,q) 
while(iterationhigh)
Compute best fitness of hawks
Assign Atarget as the optimal target location
 for each Hawk(Qk)
Set start energy as Senergy
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3.4 Classification Phase 
Convolutional Neural Networks (CNN) is a 
widely adopted technique based on deep 
architectures that is used for classification 
purposes. This architecture consists of a 
convolution layer which is linear in nature and 
also comprises fully connected layers. In addition 
to the linear functions it also consists of an 
activation function in the hidden layers which are 
nonlinear in nature. These nonlinear activation 
functions are used to reduce the dimensionality of 
the final output. Several perceptrons are used to 
build the CNN architecture which takes inputs 
and combines it with weights as well as bias. 
CNN uses a localized domain with spatial features 
and the parameters are distributed among every 
node. In the proposed work an improved version 
of CNN named Enhanced Convolutional Neural 
Networks (E-CNN) is used. There are five 
different layers in E-CNN architecture which are 
discussed in detail in this section along with the 
E-CNN algorithm. 
 

3.4.1 Convolution Layer 

The main operation performed in this layer is the 
convolution to obtain the feature extracted maps 
which are passed on to the successive layers. This 
operation is executed on the input data using the 
filter matrix by incorporating multiple mathematical 
computations. Multiplication is performed on all the 
elements that are available in the input as well as 
filter matrix. For any input matrix X and filter 
matrix M, the feature map is computed as shown in 
Equation (17), 
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(17) 

3.4.2 Pooling Layer 

The next consecutive layer after the convolution 
layer is the pooling layer which is used to reduce 
the dimensionality of the input domain which in 
turn will reduce the number of computations 
performed. The size of the kernel in the pooling 
layer is generally fixed to a size of 2x2 along with 
the stride value being set to 2. 

3.4.3 Fully Connected Layer 
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3.4 Classification Phase 
Convolutional Neural Networks (CNN) is a 
widely adopted technique based on deep 
architectures that is used for classification 
purposes. This architecture consists of a 
convolution layer which is linear in nature and 
also comprises fully connected layers. In addition 
to the linear functions it also consists of an 
activation function in the hidden layers which are 
nonlinear in nature. These nonlinear activation 
functions are used to reduce the dimensionality of 
the final output. Several perceptrons are used to 
build the CNN architecture which takes inputs 
and combines it with weights as well as bias. 
CNN uses a localized domain with spatial features 
and the parameters are distributed among every 
node. In the proposed work an improved version 
of CNN named Enhanced Convolutional Neural 
Networks (E-CNN) is used. There are five 
different layers in E-CNN architecture which are 
discussed in detail in this section along with the 
E-CNN algorithm. 
 

3.4.1 Convolution Layer 

The main operation performed in this layer is the 
convolution to obtain the feature extracted maps 
which are passed on to the successive layers. This 
operation is executed on the input data using the 
filter matrix by incorporating multiple mathematical 
computations. Multiplication is performed on all the 
elements that are available in the input as well as 
filter matrix. For any input matrix X and filter 
matrix M, the feature map is computed as shown in 
Equation (17), 
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(17) 

3.4.2 Pooling Layer 

The next consecutive layer after the convolution 
layer is the pooling layer which is used to reduce 
the dimensionality of the input domain which in 
turn will reduce the number of computations 
performed. The size of the kernel in the pooling 
layer is generally fixed to a size of 2x2 along with 
the stride value being set to 2. 

3.4.3 Fully Connected Layer 
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3.4 Classification Phase 
Convolutional Neural Networks (CNN) is a 
widely adopted technique based on deep 
architectures that is used for classification 
purposes. This architecture consists of a 
convolution layer which is linear in nature and 
also comprises fully connected layers. In addition 
to the linear functions it also consists of an 
activation function in the hidden layers which are 
nonlinear in nature. These nonlinear activation 
functions are used to reduce the dimensionality of 
the final output. Several perceptrons are used to 
build the CNN architecture which takes inputs 
and combines it with weights as well as bias. 
CNN uses a localized domain with spatial features 
and the parameters are distributed among every 
node. In the proposed work an improved version 
of CNN named Enhanced Convolutional Neural 
Networks (E-CNN) is used. There are five 
different layers in E-CNN architecture which are 
discussed in detail in this section along with the 
E-CNN algorithm. 
 

3.4.1 Convolution Layer 

The main operation performed in this layer is the 
convolution to obtain the feature extracted maps 
which are passed on to the successive layers. This 
operation is executed on the input data using the 
filter matrix by incorporating multiple mathematical 
computations. Multiplication is performed on all the 
elements that are available in the input as well as 
filter matrix. For any input matrix X and filter 
matrix M, the feature map is computed as shown in 
Equation (17), 
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3.4.2 Pooling Layer 

The next consecutive layer after the convolution 
layer is the pooling layer which is used to reduce 
the dimensionality of the input domain which in 
turn will reduce the number of computations 
performed. The size of the kernel in the pooling 
layer is generally fixed to a size of 2x2 along with 
the stride value being set to 2. 

3.4.3 Fully Connected Layer 
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3.4 Classification Phase 
Convolutional Neural Networks (CNN) is a 
widely adopted technique based on deep 
architectures that is used for classification 
purposes. This architecture consists of a 
convolution layer which is linear in nature and 
also comprises fully connected layers. In addition 
to the linear functions it also consists of an 
activation function in the hidden layers which are 
nonlinear in nature. These nonlinear activation 
functions are used to reduce the dimensionality of 
the final output. Several perceptrons are used to 
build the CNN architecture which takes inputs 
and combines it with weights as well as bias. 
CNN uses a localized domain with spatial features 
and the parameters are distributed among every 
node. In the proposed work an improved version 
of CNN named Enhanced Convolutional Neural 
Networks (E-CNN) is used. There are five 
different layers in E-CNN architecture which are 
discussed in detail in this section along with the 
E-CNN algorithm. 
 

3.4.1 Convolution Layer 

The main operation performed in this layer is the 
convolution to obtain the feature extracted maps 
which are passed on to the successive layers. This 
operation is executed on the input data using the 
filter matrix by incorporating multiple mathematical 
computations. Multiplication is performed on all the 
elements that are available in the input as well as 
filter matrix. For any input matrix X and filter 
matrix M, the feature map is computed as shown in 
Equation (17), 
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3.4.2 Pooling Layer 

The next consecutive layer after the convolution 
layer is the pooling layer which is used to reduce 
the dimensionality of the input domain which in 
turn will reduce the number of computations 
performed. The size of the kernel in the pooling 
layer is generally fixed to a size of 2x2 along with 
the stride value being set to 2. 

3.4.3 Fully Connected Layer 
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3.4 Classification Phase 
Convolutional Neural Networks (CNN) is a 
widely adopted technique based on deep 
architectures that is used for classification 
purposes. This architecture consists of a 
convolution layer which is linear in nature and 
also comprises fully connected layers. In addition 
to the linear functions it also consists of an 
activation function in the hidden layers which are 
nonlinear in nature. These nonlinear activation 
functions are used to reduce the dimensionality of 
the final output. Several perceptrons are used to 
build the CNN architecture which takes inputs 
and combines it with weights as well as bias. 
CNN uses a localized domain with spatial features 
and the parameters are distributed among every 
node. In the proposed work an improved version 
of CNN named Enhanced Convolutional Neural 
Networks (E-CNN) is used. There are five 
different layers in E-CNN architecture which are 
discussed in detail in this section along with the 
E-CNN algorithm. 
 

3.4.1 Convolution Layer 

The main operation performed in this layer is the 
convolution to obtain the feature extracted maps 
which are passed on to the successive layers. This 
operation is executed on the input data using the 
filter matrix by incorporating multiple mathematical 
computations. Multiplication is performed on all the 
elements that are available in the input as well as 
filter matrix. For any input matrix X and filter 
matrix M, the feature map is computed as shown in 
Equation (17), 
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3.4.2 Pooling Layer 

The next consecutive layer after the convolution 
layer is the pooling layer which is used to reduce 
the dimensionality of the input domain which in 
turn will reduce the number of computations 
performed. The size of the kernel in the pooling 
layer is generally fixed to a size of 2x2 along with 
the stride value being set to 2. 
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of CNN named Enhanced Convolutional Neural 
Networks (E-CNN) is used. There are five 
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discussed in detail in this section along with the 
E-CNN algorithm. 
 

3.4.1 Convolution Layer 
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convolution to obtain the feature extracted maps 
which are passed on to the successive layers. This 
operation is executed on the input data using the 
filter matrix by incorporating multiple mathematical 
computations. Multiplication is performed on all the 
elements that are available in the input as well as 
filter matrix. For any input matrix X and filter 
matrix M, the feature map is computed as shown in 
Equation (17), 
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3.4.2 Pooling Layer 

The next consecutive layer after the convolution 
layer is the pooling layer which is used to reduce 
the dimensionality of the input domain which in 
turn will reduce the number of computations 
performed. The size of the kernel in the pooling 
layer is generally fixed to a size of 2x2 along with 
the stride value being set to 2. 

3.4.3 Fully Connected Layer 
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3.4.2. Pooling Layer
The next consecutive layer after the convolution layer 
is the pooling layer which is used to reduce the dimen-
sionality of the input domain which in turn will reduce 
the number of computations performed. The size of 
the kernel in the pooling layer is generally fixed to a 
size of 2x2 along with the stride value being set to 2.

3.4.3. Fully Connected Layer
This layer is the result of the replication that happens 
due to the convolution operation. The dimensionality 
of this layer is in the form T1xT2 where the T1 and T2 
are generally used to represent the input as the out-
put units in the network. A dropout may be added af-
ter this layer if the overfitting problem occurs. In this 
way weights will be reassigned to all the nodes in the 
network to tackle this issue.

3.4.4. Output Layer
This is the final layer in the network which is used 
to produce the classification output. The activation 
function most prominently used in this layer is the 
softmax function. This function assigns a probabilis-
tic value to all the possible classifications in the range 
0 to 1. The class value with the highest probability is 
chosen as the final classification. 

3.4.5. Working of E-CNN
Consider the input values X = X1, X2, X3, … ,Xn and the 
corresponding output values as Y = Y1,Y2,Y3,…,Yn, for 
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these input and output values the task is to map the 
values appropriately during the training process. This 
is formulated as a mathematical equation based on 
probability as in (18),
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value with the highest probability is chosen as the final 
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appropriately during the training process. This is 
formulated as a mathematical equation based on 
probability as in (18), 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑋𝑋, 𝑃𝑃, 𝑃𝑃�)|𝑃𝑃𝑃𝑌𝑌, 𝑃𝑃, 𝑃𝑃�))(18) 

The function to extract the contextual information is 
represented in Equation (19), 
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Softmax function is used mainly to perform multi class 
predictions and is denoted as in (20), 
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𝑦𝑦� represents the probability for the prediction of output 
component y. 
The pseudo code of the E-CNN algorithm is depicted in 
Algorithm 2as shown below. 
 
Algorithm 2 
Enhanced Convolutional Neural Networks(E-CNN) algorithm  
 
Step 1: Assume feature vectors and corresponding weight 
vectors 
 

𝐹𝐹𝐹𝐹� 𝑋 [𝐹𝐹𝐹𝐹�, 𝐹𝐹𝐹𝐹�, 𝐹𝐹𝐹𝐹�, . . . . . , 𝐹𝐹𝐹𝐹�] 
𝑊𝑊𝐹𝐹� 𝑋 [𝑊𝑊𝐹𝐹�,𝑊𝑊𝐹𝐹�,𝑊𝑊𝐹𝐹�, . . . . . ,𝑊𝑊𝐹𝐹�] 

 
Step 2: Multiply feature vectors and weight vectors and 
find the aggregated sum 𝑆𝑆𝑓𝑓𝑓𝑓��� 
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Step 3: Compute the value of the nonlinear 
activation function using 𝑀𝑀�  which is the 
exponential of 𝐹𝐹𝐹𝐹� 
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Step 4: Compute outcome of hidden layer using 
bias value 𝐵𝐵𝐹𝐹 
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Step 5: Compute final output 𝑂𝑂𝐹𝐹� 
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Step 6: Compare obtained output and output present 
in data and represent as Err 
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Step 7: Determine the function to backpropagate 
and correct the weights to reduce error by 
multiplying momentum value𝑋𝛾𝛾 and error with the 
feature vector 
 
𝑊𝑊𝐹𝐹���� 𝑋𝑋 𝑋𝛾𝛾𝑋𝐸𝐸𝑃𝑃𝑃𝑃(𝐹𝐹𝐹𝐹�) 
 

4 Results and Discussion 
This section discusses the results obtained by 
conducting extensive experiments to measure and 
compare the performance of the proposed model 
against the existing machine learning models, deep 
learning architectures and other existing works. 

4.1 Dataset Used 

The dataset collected from UCI repository which is 
the Cleveland dataset is used for the experimental 
purposes for training the proposed model. This 
dataset is available in the following url, 

https://archive.ics.uci.edu/ml/datasets/heart+Disease 

The total number of attributes in this dataset is close 
to 76 and also consists of samples upto 303.Out of 
the 76 attributes available in the dataset only the 
most contributing attributes for the heart disease 
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The function to extract the contextual information is 
represented in Equation (19),
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Softmax function is used mainly to perform multi class 
predictions and is denoted as in (20), 
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𝑦𝑦� represents the probability for the prediction of output 
component y. 
The pseudo code of the E-CNN algorithm is depicted in 
Algorithm 2as shown below. 
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Softmax function is used mainly to perform multi 
class predictions and is denoted as in (20),
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𝑦𝑦� represents the probability for the prediction of output 
component y. 
The pseudo code of the E-CNN algorithm is depicted in 
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yi represents the probability for the prediction of out-
put component y.
The pseudo code of the E-CNN algorithm is depicted 
in Algorithm 2as shown below.
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works(E-CNN) algorithm 
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𝑦𝑦� represents the probability for the prediction of output 
component y. 
The pseudo code of the E-CNN algorithm is depicted in 
Algorithm 2as shown below. 
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Enhanced Convolutional Neural Networks(E-CNN) algorithm  
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vectors 
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4 Results and Discussion 
This section discusses the results obtained by 
conducting extensive experiments to measure and 
compare the performance of the proposed model 
against the existing machine learning models, deep 
learning architectures and other existing works. 

4.1 Dataset Used 

The dataset collected from UCI repository which is 
the Cleveland dataset is used for the experimental 
purposes for training the proposed model. This 
dataset is available in the following url, 

https://archive.ics.uci.edu/ml/datasets/heart+Disease 

The total number of attributes in this dataset is close 
to 76 and also consists of samples upto 303.Out of 
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This layer is the result of the replication that happens due 
to the convolution operation. The dimensionality of this 
layer is in the form T1xT2 where the T1 and T2 are 
generally used to represent the input as the output units in 
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𝑦𝑦� represents the probability for the prediction of output 
component y. 
The pseudo code of the E-CNN algorithm is depicted in 
Algorithm 2as shown below. 
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the network. A dropout may be added after this layer if 
the overfitting problem occurs. In this way weights will 
be reassigned to all the nodes in the network to tackle this 
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3.4.4 Output Layer 

This is the final layer in the network which is used to 
produce the classification output. The activation function 
most prominently used in this layer is the softmax 
function. This function assigns a probabilistic value to all 
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𝑦𝑦� represents the probability for the prediction of output 
component y. 
The pseudo code of the E-CNN algorithm is depicted in 
Algorithm 2as shown below. 
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4 Results and Discussion 
This section discusses the results obtained by 
conducting extensive experiments to measure and 
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against the existing machine learning models, deep 
learning architectures and other existing works. 
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The dataset collected from UCI repository which is 
the Cleveland dataset is used for the experimental 
purposes for training the proposed model. This 
dataset is available in the following url, 

https://archive.ics.uci.edu/ml/datasets/heart+Disease 

The total number of attributes in this dataset is close 
to 76 and also consists of samples upto 303.Out of 
the 76 attributes available in the dataset only the 
most contributing attributes for the heart disease 

Step 4: Compute outcome of hidden layer using bias 
value BV

  

This layer is the result of the replication that happens due 
to the convolution operation. The dimensionality of this 
layer is in the form T1xT2 where the T1 and T2 are 
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the network. A dropout may be added after this layer if 
the overfitting problem occurs. In this way weights will 
be reassigned to all the nodes in the network to tackle this 
issue. 

3.4.4 Output Layer 
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produce the classification output. The activation function 
most prominently used in this layer is the softmax 
function. This function assigns a probabilistic value to all 
the possible classifications in the range 0 to 1. The class 
value with the highest probability is chosen as the final 
classification.  
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4 Results and Discussion 
This section discusses the results obtained by 
conducting extensive experiments to measure and 
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4.1 Dataset Used 

The dataset collected from UCI repository which is 
the Cleveland dataset is used for the experimental 
purposes for training the proposed model. This 
dataset is available in the following url, 

https://archive.ics.uci.edu/ml/datasets/heart+Disease 

The total number of attributes in this dataset is close 
to 76 and also consists of samples upto 303.Out of 
the 76 attributes available in the dataset only the 
most contributing attributes for the heart disease 

4. Results and Discussion
This section discusses the results obtained by con-
ducting extensive experiments to measure and com-
pare the performance of the proposed model against 
the existing machine learning models, deep learning 
architectures and other existing works.

4.1. Dataset Used
The dataset collected from UCI repository which is 
the Cleveland dataset is used for the experimental 
purposes for training the proposed model. This data-
set is available in the following url,
https://archive.ics.uci.edu/ml/datasets/heart+Disease
The total number of attributes in this dataset is close 
to 76 and also consists of samples upto 303.Out of the 
76 attributes available in the dataset only the most 
contributing attributes for the heart disease predic-
tion which is around 14 attributes are also chosen for 
training the proposed model.The top most attributes 
chosen from the dataset are described in Table 2.
The experiment executed for the performance mea-
sure of the proposed model employed a 10 fold cross 
validation. Out of the total data available, 80% was 
used for training purposes, 10% was utilized for test-
ing purposes and the remaining 10% for validation 
purposes. Once the model is trained it is also tested 
using the data received from the IoMT framework. 

4.2. IoMT Simulation
The simulation of the IoMT framework is implement-
ed using languages such as Java and Python on the 
Android platform. This framework is simulated by 
integrating several hardware components including 
micro controllers and the devices for aiding communi-
cation with the cloud network. The age of the patient 
along with the gender is accumulated in the cloud with 
a unique number allotted for each individual patient. 
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Table 2
Important Attributes of Cleveland dataset

Attribute 
Number

Attribute 
Name Attribute Specification

3 age Specifies the age of the patient in 
terms of years

4 sex
Specifies the gender of the patient 
denoted as 1 for male and 0 for fe-
male

9 cp
Specifies the category of chest 
pain(typical angina, atypical angina, 
non-anginal pain, asymptomatic)

10 trestbps Specifies the measure of resting 
chest pain denoted in mmHg

12 chol Specifies the measure of serum cho-
lesterol denoted in mg/dl

16 fbs
Specifies the measure of fasting 
blood sugar denoted in bool-
ean(true/false)

19 restecg
Specifies the measure of resting elec-
trocardiographic results denoted as 
0,1, 2 based on the severity

Chest pain parameter is filled with values generated 
in random between the ranges 1 to 4. FitVII wearable 
device is used to monitor the blood pressure of the pa-
tient in resting position. The values for the other two 
important parameters such as serum cholesterol and 
the levels of glucose are also produced through random 
numbers in a specified range. Certain parameters are 
also taken from the past medical history of the patient. 
Oldpeak, slope and heart rate are the features obtained 
from prior data. The other hardware components used 
in the simulation setup include transmitter and receiv-
er for LoRaWan, a personal computer with Intel i7 pro-
cessor, a Raspberry Pi kit with quadcore 64 bit ARM 
and also the analog devices. T4 graphic card is em-
ployed for Keras framework and Scikit-learn toolbox.

4.3. Performance Metrics
The performance evaluation metrics used in this ex-
periment are described as follows. The basic factors 
for the performance metrics are true positive (xp), true 
negative (xn), false positive (yp), false negative (yn).
a Accuracy (Acc):
Accuracy mostly depends on how the data is collect-
ed. Evaluation is based on comparing various mea-

sures from the same or different sources. It is repre-
sented as in (21).

  

collected. Evaluation is based on comparing various 
measures from the same or different sources. It is 
represented as in (21). 
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b) Disease Likelihood (DL): 
This is the likelihood that a person has the condition 
before a health examination. It is represented as in (22). 
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c) Positive Predictability (PP): 
This represents the likelihood that a patient who has a 
positive test result actually has the disease. It is also 
known as precision. It is represented as in (23). 
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d) Negative Predictability (NP): 
This represents the likelihood of locating a patient who 
is not at risk for heart disease. It is represented as in 
(24). 
 
𝑁𝑁𝑃𝑃𝐴 𝐴 𝐴 ��

�����
(24) 

 
e) Recall (Rec): 
This demonstrates the capability of identifying a patient 

at risk for heart disease. It is represented as in (25). 
 
𝑅𝑅𝑅𝑅𝐴𝐴𝐴 𝐴 𝐴 ��

�����
(25) 

 
f) F1 Score(F1): 
This measure is basically the value obtained on 

executing a harmonic mean on the values of precision as 
well as recall. It is represented as in (26). 

 
𝐹𝐹𝐹𝐴 𝐴 𝐴𝐹 𝐹 ��𝐹���𝐴

��
(25) 

 

4.4 Performance Evaluation 

The metric values exhibited by the proposed E-CNN 
algorithm with C-HHO optimization is calculated using 
the confusion matrix shown in Table 3. 
 
Table 3 
Confusion Matrix 
 

Outcome 

Heart 
Disease 
Present 

Heart 
Disease 

Not 
Present 

Calculation 

Positive 
Outcome 

𝑥𝑥� 𝑦𝑦� 𝑥𝑥�
𝑥𝑥� + 𝑦𝑦�

 

Negative 
Outcome 

𝑥𝑥� 𝑦𝑦� 𝑥𝑥�
𝑥𝑥� + 𝑦𝑦�

 

 
Figure 5 
Performance Evaluation for Cleveland data vs 
IoMT data 

 
 
The performance of the proposed algorithm is 
evaluated by applying E-CNN algorithm with C-
HHO optimization to both the Cleveland Dataset as 
well as the data that is obtained from the IoMT 
framework as shown in Figure 5. It is also tabulated 
in Table 4. It was observed that the model exhibited 
an accuracy upto 99.2% for the Cleveland Dataset 
and on the other hand exhibited 98.9% accuracy for 
the data collected through the sensors. Similarly the 
other values were also computed and the disease 
likelihood was found to be closer for the Cleveland 
data and Sensor data with 93% and 92% 
respectively. The Positive Predictability and the 
Negative Predictability for Cleveland dataset was 
97.5 and 92.1 whereas the same values for the data 
from IoMT sensors were 93.8 and 90.2. The Recall 
value was estimated to be 98.9 for Cleveland data 
and 95.9 for the Sensor data. F1-Score which is 
calculated based on Precision and Recall were 98.7 
and 90.6 for the Cleveland and Sensor data 
respectively. 
 
Table 4 
Performance Evaluation for Training vs Testing 
data 

. (21)

b Disease Likelihood (DL):
This is the likelihood that a person has the condition 
before a health examination. It is represented as in 
(22).

  

collected. Evaluation is based on comparing various 
measures from the same or different sources. It is 
represented as in (21). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 ��𝐴�𝐴��

�����������
(21) 

 
b) Disease Likelihood (DL): 
This is the likelihood that a person has the condition 
before a health examination. It is represented as in (22). 
 
𝐷𝐷𝐷𝐷𝐴 𝐴 𝐴 ��𝐴�𝐴��

�����������
(22) 

 
c) Positive Predictability (PP): 
This represents the likelihood that a patient who has a 
positive test result actually has the disease. It is also 
known as precision. It is represented as in (23). 
 
𝑃𝑃𝑃𝑃𝐴 𝐴 𝐴 ��

�����
(23) 

 
d) Negative Predictability (NP): 
This represents the likelihood of locating a patient who 
is not at risk for heart disease. It is represented as in 
(24). 
 
𝑁𝑁𝑃𝑃𝐴 𝐴 𝐴 ��

�����
(24) 

 
e) Recall (Rec): 
This demonstrates the capability of identifying a patient 

at risk for heart disease. It is represented as in (25). 
 
𝑅𝑅𝑅𝑅𝐴𝐴𝐴 𝐴 𝐴 ��

�����
(25) 

 
f) F1 Score(F1): 
This measure is basically the value obtained on 

executing a harmonic mean on the values of precision as 
well as recall. It is represented as in (26). 

 
𝐹𝐹𝐹𝐴 𝐴 𝐴𝐹 𝐹 ��𝐹���𝐴

��
(25) 

 

4.4 Performance Evaluation 

The metric values exhibited by the proposed E-CNN 
algorithm with C-HHO optimization is calculated using 
the confusion matrix shown in Table 3. 
 
Table 3 
Confusion Matrix 
 

Outcome 

Heart 
Disease 
Present 

Heart 
Disease 

Not 
Present 

Calculation 

Positive 
Outcome 

𝑥𝑥� 𝑦𝑦� 𝑥𝑥�
𝑥𝑥� + 𝑦𝑦�

 

Negative 
Outcome 

𝑥𝑥� 𝑦𝑦� 𝑥𝑥�
𝑥𝑥� + 𝑦𝑦�

 

 
Figure 5 
Performance Evaluation for Cleveland data vs 
IoMT data 

 
 
The performance of the proposed algorithm is 
evaluated by applying E-CNN algorithm with C-
HHO optimization to both the Cleveland Dataset as 
well as the data that is obtained from the IoMT 
framework as shown in Figure 5. It is also tabulated 
in Table 4. It was observed that the model exhibited 
an accuracy upto 99.2% for the Cleveland Dataset 
and on the other hand exhibited 98.9% accuracy for 
the data collected through the sensors. Similarly the 
other values were also computed and the disease 
likelihood was found to be closer for the Cleveland 
data and Sensor data with 93% and 92% 
respectively. The Positive Predictability and the 
Negative Predictability for Cleveland dataset was 
97.5 and 92.1 whereas the same values for the data 
from IoMT sensors were 93.8 and 90.2. The Recall 
value was estimated to be 98.9 for Cleveland data 
and 95.9 for the Sensor data. F1-Score which is 
calculated based on Precision and Recall were 98.7 
and 90.6 for the Cleveland and Sensor data 
respectively. 
 
Table 4 
Performance Evaluation for Training vs Testing 
data 

. (22)

c Positive Predictability (PP):
This represents the likelihood that a patient who has 
a positive test result actually has the disease. It is also 
known as precision. It is represented as in (23).

  

collected. Evaluation is based on comparing various 
measures from the same or different sources. It is 
represented as in (21). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 ��𝐴�𝐴��

�����������
(21) 

 
b) Disease Likelihood (DL): 
This is the likelihood that a person has the condition 
before a health examination. It is represented as in (22). 
 
𝐷𝐷𝐷𝐷𝐴 𝐴 𝐴 ��𝐴�𝐴��

�����������
(22) 

 
c) Positive Predictability (PP): 
This represents the likelihood that a patient who has a 
positive test result actually has the disease. It is also 
known as precision. It is represented as in (23). 
 
𝑃𝑃𝑃𝑃𝐴 𝐴 𝐴 ��

�����
(23) 

 
d) Negative Predictability (NP): 
This represents the likelihood of locating a patient who 
is not at risk for heart disease. It is represented as in 
(24). 
 
𝑁𝑁𝑃𝑃𝐴 𝐴 𝐴 ��

�����
(24) 

 
e) Recall (Rec): 
This demonstrates the capability of identifying a patient 

at risk for heart disease. It is represented as in (25). 
 
𝑅𝑅𝑅𝑅𝐴𝐴𝐴 𝐴 𝐴 ��

�����
(25) 

 
f) F1 Score(F1): 
This measure is basically the value obtained on 

executing a harmonic mean on the values of precision as 
well as recall. It is represented as in (26). 

 
𝐹𝐹𝐹𝐴 𝐴 𝐴𝐹 𝐹 ��𝐹���𝐴

��
(25) 

 

4.4 Performance Evaluation 

The metric values exhibited by the proposed E-CNN 
algorithm with C-HHO optimization is calculated using 
the confusion matrix shown in Table 3. 
 
Table 3 
Confusion Matrix 
 

Outcome 

Heart 
Disease 
Present 

Heart 
Disease 

Not 
Present 

Calculation 

Positive 
Outcome 

𝑥𝑥� 𝑦𝑦� 𝑥𝑥�
𝑥𝑥� + 𝑦𝑦�

 

Negative 
Outcome 

𝑥𝑥� 𝑦𝑦� 𝑥𝑥�
𝑥𝑥� + 𝑦𝑦�

 

 
Figure 5 
Performance Evaluation for Cleveland data vs 
IoMT data 

 
 
The performance of the proposed algorithm is 
evaluated by applying E-CNN algorithm with C-
HHO optimization to both the Cleveland Dataset as 
well as the data that is obtained from the IoMT 
framework as shown in Figure 5. It is also tabulated 
in Table 4. It was observed that the model exhibited 
an accuracy upto 99.2% for the Cleveland Dataset 
and on the other hand exhibited 98.9% accuracy for 
the data collected through the sensors. Similarly the 
other values were also computed and the disease 
likelihood was found to be closer for the Cleveland 
data and Sensor data with 93% and 92% 
respectively. The Positive Predictability and the 
Negative Predictability for Cleveland dataset was 
97.5 and 92.1 whereas the same values for the data 
from IoMT sensors were 93.8 and 90.2. The Recall 
value was estimated to be 98.9 for Cleveland data 
and 95.9 for the Sensor data. F1-Score which is 
calculated based on Precision and Recall were 98.7 
and 90.6 for the Cleveland and Sensor data 
respectively. 
 
Table 4 
Performance Evaluation for Training vs Testing 
data 

. (23)
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This represents the likelihood of locating a patient 
who is not at risk for heart disease. It is represented 
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Attribute 
Number

Attribute 
Name Attribute Specification

32 thalach Specifies the measure of maximum 
heart rate

38 exang
Specifies the measure of exercise 
induced angina denoted as 0 for no 
or 1 for yes

40 oldpeak Specifies the measure of ST depres-
sion

41 slope
Specifies the measure of peak exer-
cise ST segment denoted as upslop-
ing, flat, downsloping

44 ca Specifies the measure of major ves-
sels denoted in 0-3

51 thal
Specifies the measure of heart rate 
denoted as 3 for normal, 6 for fixed 
defect, 7 for reversible defect

58 num
Specifies the measure of heart disease 
status denoted as 0 for absence of dis-
ease, 1 to 4 for presence of disease
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S.No Performance 
Metric

Values obtained 
for Cleveland 

Dataset
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tained from 

IoMT Sensors

1 Accuracy 99.2 98.9

2 Disease 
Likelihood 93 92

3 Positive 
Predictability 97.5 93.8
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Predictability 92.1 90.2

5 Recall 98.9 95.9
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was 97.5 and 92.1 whereas the same values for the data 
from IoMT sensors were 93.8 and 90.2. The Recall 
value was estimated to be 98.9 for Cleveland data and 
95.9 for the Sensor data. F1-Score which is calculated 
based on Precision and Recall were 98.7 and 90.6 for 
the Cleveland and Sensor data respectively.

4.4. Performance Comparison with ML 
Models
The performance exhibited by the proposed model 
for the Cleveland data is compared against the Ma-
chine learning models in combination with Optimi-
zation algorithms as shown in Figure 6. The Machine 
learning algorithms and Optimization algorithms 
considered for the analysis include Support Vector 
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Table 6
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Algorithm Accuracy Precision Recall F1 Score

VGG-16 75.2 76.4 73.8 74.5

ResNeXt 78.4 78.2 77.3 77.6

AlexNet 85.6 87.4 84.2 83.9

ZFNet 82.7 84.9 81.1 80.9

E-CNN 99.2 97.5 98.9 98.7

4.6. Performance Comparison with Existing 
Works
Apart from the comparison of the proposed work 
with the Machine learning and deep learning mod-
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els, it is also compared with the models proposed by 
Mohammad et.al and Manimurugan et.al as in Ta-
ble 7. The work proposed by Manimurugan et.al in-
cludes a Faster R-CNN with SE-ResNeXt-101with 
ant lion optimization. Mohammad et.al have pro-
posed the MDCNN algorithm with Adaptive Ele-
phant Herd Optimization. Faster R-CNN-ALO has 
exhibited an accuracy of 98% whereas the accuracy 
produced by MDCNN-AEHO was 98.2%. However, 
the proposed model outperformed the considered 
existing works in the literature with an accuracy of 
99.2%. Thus, it is clearly evident from the perfor-
mance analysis of the proposed method that it ex-
hibits superior performance compared to the oth-
er machine learning and deep learning models for 
heart disease prediction.

Table 7 
Performance Comparison Existing works vs Proposed 
work

Algorithm Accuracy Precision Recall F1 Score

Faster R-CNN 
with SE-
ResNeXt-101 [26]

98 96.16 98.47 97.58

MDCNN [13] 98.2 95.1 97.8 95

E-CNN 99.2 97.5 98.9 98.7

6. Conclusion 
In this work, a novel deep learning model Enhanced 
Convolutional Neural Networks is proposed for the ef-
fective prediction and diagnosis of heart disease. The 
proposed method utilizes the dataset taken from UCI 
repository which is Cleveland dataset to train the mod-
el. Further, the real time prediction of heart disease is 
implemented by receiving data from the sensors con-
nected to the patients through the Internet-of-Med-
ical-Things framework. This data is used for testing 
the predictions made by the E-CNN model. Further, 
Chaotic Harris Hawk optimization is applied to extract 
insightful features from the data before it is forwarded 
to the heart disease classification using E-CNN model. 
The performance of the model is evaluated using the 
Cleveland data as well as the data collected through 
the sensors and the proposed model 99.2% accuracy 
for Cleveland data and 98.9% accuracy for sensor data. 
Moreover, the performance of the model to predict 
heart disease is compared against Machine Learning 
and Deep Learning models. In addition to this, two ex-
isting works from the literature Faster R-CNN-ALO 
and MDCNN-AEHO is also considered for the perfor-
mance evaluation against the proposed method. The 
proposed model performs better than the models taken 
for comparison and makes accurate predictions. As a 
part of future work, intelligent models can be devel-
oped for heart disease diagnosis using Artificial Intelli-
gence algorithms to improve the accuracy further.
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