
Information Technology and Control 2023/2/52562

Efficient and Accurate Vehicle 
Localization Based on LiDAR 
Place Recognition

ITC 2/52
Information Technology  
and Control
Vol. 52 / No. 2 / 2023
pp. 562-575
DOI 10.5755/j01.itc.52.2.32690

Efficient and Accurate Vehicle Localization Based on LiDAR Place Recognition

Received 2022/11/08 Accepted after revision 2022/12/13

HOW TO CITE: Qimin, X., Xin, Z., Longjie, L., Yameng, L., Na, L. (2023). Efficient and Accurate 
Vehicle Localization Based on LiDAR Place Recognition. Information Technology and Control, 52(2), 
562-575. https://doi.org/10.5755/j01.itc.52.2.32690

Corresponding author: jimmy.xqm@gmail.com

Xu Qimin
Key Laboratory of Technology on Intelligent Transportation Systems, Ministry of Transport, Beijing, China. 
School of Instrument Science and Engineering, Southeast University, Nanjing, China

Zhao Xin
School of Instrument Science and Engineering, Southeast University, Nanjing, China

Liao Longjie 
School of Instrument Science and Engineering, Southeast University, Nanjing, China

Li Yameng, Li Na
Key Laboratory of Technology on Intelligent Transportation Systems, Ministry of Transport, Beijing, China

An efficient and accurate LiDAR place recognition methodology is proposed for vehicle localization. First, the 
Iris-LOAM is proposed to overcome the disadvantages of low accuracy of loop-closure detection and low effi-
ciency of map construction in the existing LOAM-series methods. The method integrates the LiDAR-Iris glob-
al descriptor and Normal Distribution Transform (NDT) registration method into the loop-closure detection 
module of LiDAR Odometry and Mapping (LOAM), thereby improving the accuracy and efficiency of map con-
struction. For the shortcomings of low map loading and matching efficiency, the Random Sample Consensus 
method is used to remove the ground point cloud information. The Voxel Grid method is used to down sample 
the loaded map. Finally, the NDT method is adopted for point cloud map matching to obtain the position infor-
mation. Show that the Iris-LOAM has higher efficiency than the SC-LeGO-LOAM. The average time of point 
cloud map matching is reduced by 39.5%. The place recognition can be executed to achieve accuracy vehicle 
localization.
KEYWORDS: Intelligent Transportation System (ITS), LiDAR-based SLAM, Iris-LOAM, NDT matching.
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1. Introduction
Accuracy vehicle position information is one of the 
basic key technologies for the effective operation of 
the ITS [1, 12]. The traditional methods of vehicle 
positioning are mainly based on the Global Naviga-
tion Satellite System (GNSS), including Beidou of 
China, Global Positioning System (GPS) of the Unit-
ed States, and Global Navigation Satellite System 
(GLONASS) of Russia [6]. However, affected by tall 
buildings, trees, interchanges, tunnels, etc., GNSS 
always cannot achieve good performance when the 
satellite signals are blocked [15]. The GNSS/Iner-
tial Navigation System (INS) integrated position-
ing method is often utilized to provide continuous 
position information during GNSS outages [3, 8]. 
However, in complex environments, frequent signal 
occlusion of GNSS and severe accumulative errors 
of the INS make it difficult to guarantee the position-
ing accuracy of the traditional GNSS/INS integrated 
system. 
Recent years, with the reduction of LiDAR cost and 
the rise of Simultaneous Localization and Mapping 
(SLAM) technology, LiDAR-based SLAM technolo-
gy has earned more and more attentions. The tradi-
tional SLAM technology uses the characteristics of 
the external environments to calculate the relative 
motion and resulting in the high requirements for 
the external environments. When the environmental 
features are sparse, the extracting of feature points 
or calculating of relative motion may fail. The posi-
tioning accuracy will also decrease with the increase 
of vehicle driving distance. However, the method of 
place recognition is less affected by the external en-
vironments. The accurate point cloud map is estab-
lished in advance, then, the position information is 
achieved by map matching. The place recognition 
method [7] is very suitable for the localization task 
in factory, industrial park, and other areas with 
pre-defined route.
For the mapping method, the LOAM [17] is one of the 
famous methods to use the LiDAR point cloud to solve 
the problem of constructing a 3D map in SLAM. How-
ever, LOAM suffers from accumulative errors because 
it does not have loop-closure detection part. Light-
weight and Groud-Optimized LiDAR Odometry and 
Mapping (LeGO-LOAM) [11] is an upgrade version of 

LOAM. It utilizes lightweight feature extraction and 
adds the loop-closure detection part. Besides, Kim 
Giseop et al. combined the Scan Context (SC) and 
Lego-LOAM to propose SC-LeGO-LOAM [14]. This 
method retains the original features of the point cloud 
to improve the robustness and loop-closure detection 
speed of LeGO-LOAM. SC-LeGO-LOAM has the ad-
vantages of good global consistency and computa-
tional efficiency. However, the method only uses the 
maximum height information of the point cloud and 
ignore other useful information.
In this paper, an efficient and accurate vehicle lo-
calization methodology is proposed by using LiDAR 
place recognition. First, an improved Iris-LOAM 
method is proposed to construct the point cloud map 
with good global consistency and high accuracy. The 
LiDAR-Iris global descriptor is adopted to filter out 
several loop-closure frames and then the NDT reg-
istration method [10] is used to determine the true 
loop-closure frame. Thus, the efficiency of loop-clo-
sure detection can be improved. After that, in order 
to improve the matching speed while ensuring the 
matching accuracy, the point cloud map is gridded 
and voxelized when loading, and the Random Sam-
ple Consensus (RANSAC) algorithm is adopted to 
remove the ground point cloud information. 
The main contribution of this paper can be summa-
rized as the following: The efficiency of traditional Li-
DAR place recognition is improved from two aspects 
of map construction and matching. LiDAR-Iris based 
loop-closure detection is introduced into the con-
struction procedure of point cloud map. Besides, the 
point cloud matching and positioning is optimized 
through efficient map loading and ground point cloud 
removing. Meanwhile, the accuracy of vehicle local-
ization is maintained at a high level. 
The organization of the paper is as follows. Section 2 
explains the detailed implementation of Iris-LOAM 
based point cloud map construction. Section 3 de-
scribes the procedure of vehicle localization based on 
point cloud map matching. Section 4 presents the re-
sults of experimental validation while Section 5 pres-
ents the concluding remarks.
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2. Iris-LOAM Based Point Cloud Map 
Construction
The construction of a high-precision 3D map using the 
point cloud collected by LiDAR is an important basis 
for the accurate estimation of vehicle localization. A 
high-precision 3D point cloud map can record the scene 
information in detail, which is beneficial to the subse-
quent map-based matching and positioning process.
In this section, a novel map construction algorithm 
called Iris-LOAM is proposed. This algorithm has the 
advantages of high efficiency and accuracy, the frame-
work is shown in Figure 1. The algorithm uses the ac-
curate and efficient LiDAR-Iris as the scene descrip-
tor to filter out multiple keyframes for loop-closure. 
Further, the NDT alignment algorithm determines 
the loop closure keyframes.

2.1. Iris-based Loop Closure Detection
Incremental map using laser point clouds in large-
scale environment inevitably generates accumulative 
errors. Loop closure detection is a core step towards 
robust map building by correlating global data based 
on whether the LIDAR has reached a historical scene. 
Loop closure detection can significantly reduce the 
accumulative errors and produce the point cloud map 
with global consistency [16].
During the loop closure detection, it is crucial to find 
effective and concise global descriptors. This paper 

Figure 1 
The Framework of Iris-LOAM
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2.1 Iris-based Loop Closure Detection 

Incremental map using laser point clouds in large-
scale environment inevitably generates 
accumulative errors. Loop closure detection is a 
core step towards robust map building by 
correlating global data based on whether the 
LIDAR has reached a historical scene. Loop closure 
detection can significantly reduce the accumulative 
errors and produce the point cloud map with global 
consistency [16]. 

During the loop closure detection, it is crucial to 
find effective and concise global descriptors. This 
paper uses iris [2] as the global descriptor to make 
sufficient and efficient use of the point cloud 
information. The generation process of iris is 
depicted as follows: 

First, the pre-processed laser point cloud is 
converted into an iris image. Taking the square area 
of 80×80 m2 around the LiDAR as the horizontal 
field of view, the point clouds 

 are divided into 80×360 grids 
according to the radial resolution of 1m and the 
angular resolution of .Each grid is denoted by 
, where . For the mechanically 

rotating LiDAR with line number N, the 
horizontal field of view of 360°, and the 
vertical field of view range of , its 
maximum scanning height in the vertical 
direction (z-axis) is , and the 
minimum scanning height is . 
Following the range of , the point 
clouds are linearly discretized again into 8 
lattices in the vertical direction of , where 
each lattice is . The  is 
1 when there is at least one point cloud data in 

, and vice versa, . According to the 
above encoding method, the pre-processed 
laser point cloud is projected as an iris image 
of size 80×360, and the pixels in row  and 
column  of the image is . This encoding 
method is more efficient as it does not need to 
calculate each point cloud in each grid. 

To further enhance the feature representation 
in iris images, the LoG-Gabor filter is applied 
to extract features from point cloud iris 
images. The LoG-Gabor filter [9] processes the 
images in a similar process to the human eye 
vision system. The iris images are 

uses iris [2] as the global descriptor to make sufficient 
and efficient use of the point cloud information. The 
generation process of iris is depicted as follows:
First, the pre-processed laser point cloud is converted 
into an iris image. Taking the square area of 80×80 m2 
around the LiDAR as the horizontal field of view, the 
point clouds  are divided into 
80×360 grids according to the radial resolution of 1m 
and the angular resolution of .Each grid is denoted 
by , where . For the mechani-
cally rotating LiDAR with line number N, the horizon-
tal field of view of 360°, and the vertical field of view 
range of , its maximum scanning height in 
the vertical direction (z-axis) is , and the 
minimum scanning height is . Follow-
ing the range of , the point clouds are linearly 
discretized again into 8 lattices in the vertical direc-
tion of , where each lattice is . 
The  is 1 when there is at least one point cloud data 
in , and vice versa, . According to the above 
encoding method, the pre-processed laser point cloud 
is projected as an iris image of size 80×360, and the 
pixels in row  and column  of the image is . This 
encoding method is more efficient as it does not need 
to calculate each point cloud in each grid.
To further enhance the feature representation in iris 
images, the LoG-Gabor filter is applied to extract fea-
tures from point cloud iris images. The LoG-Gabor 
filter [9] processes the images in a similar process 
to the human eye vision system. The iris images are 
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decomposed into binary feature maps with different 
resolutions. The features with the same location and 
resolution are matched, thus the accuracy of loop clo-
sure feature matching is improved.
When the vehicles pass through the same position, 
the spatial rotation relations of the point clouds ob-
tained twice are projected as pixel translation rela-
tions in the image. However, the spatial translation 
relationship between loop closure point clouds can-
not be handled using only the projected image. In 
other words, the projected image is not rotationally 
invariant. Considering that the Fourier transform 
can estimate the rotation, translation, and scaling in 
the image, the iris feature points transformed by the 
LoG-Gabor are processed by the Fourier transform 
method to get the spatial rotation and translation re-
lations between the loop closure point clouds.
Suppose the point cloud  is consistent with  after 
the rank transformation , that is

. (1)

The Fourier transform form of the above equation is

. (2)

The corresponding mutual power density spectrum is

, (3)

where the inverse Fourier transform of C is

, (4)

where the mutual power density spectrum  
at the iris image  is not zero only when 

. Thus, the transforma-

tion relation  between the iris images obtained 
from the projection of the point clouds at the loop clo-
sure place can be determined.

2.2. Point Cloud Map Construction
The map construction module matches the feature 
set  in  with its surrounding global point 
cloud feature map , and obtains the best posi-
tional transformation between  and  by Lev-

enberg-Marquardt (LM) Optimization. The process 
is specified as follows.
Suppose the global point cloud map at moment  
is

. (5)

The pose of the LiDAR sensor in each feature set is 
used as the node of the pose map, and  is used 
as the measurement value. Selecting k feature sets 
from  to construct 

. (6)

Then, the pose constraints between  and 
 are obtained by the LM optimization method 

and added to the pose map.
Finally, the Iris-based loop closure detection meth-
od is used to eliminate the drift during the map con-
struction process, and the constraint  between 
the current frame and the loop closure frame is added 
to the pose map. The back-end optimization process 
is implemented by Georgia Tech Smoothing and Map-
ping (GTSAM) [5].

3. Vehicle Localization Based on 
Point Cloud Map Matching
After the construction of point cloud map, when the 
vehicle drives into the map area again, the accurate 
position can be obtained by matching the current 
point cloud information with the existing map. How-
ever, the traditional point cloud map matching meth-
od has the problem of slow matching speed. In this pa-
per, the RANSAC method [4] is adopted to remove the 
ground point cloud in the current frame. The point 
clod map constructed by Iris-LOAM has the problems 
of large data volume and low loading efficiency. In this 
paper, the constructed map is gridded and down-sam-
pled, then the NDT matching method is used to match 
the processed current point cloud with the construct-
ed point cloud map to obtain the current position of 
the vehicle. The framework of vehicle position esti-
mation based on point cloud map matching is shown 
in Figure 2.
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The initial manuscript and all the edited versions, 
if there will be any, should be uploaded by using the 
same paper ID and a specific user name and pass-
word. Papers that are simply sent to our e-mail but not 
uploaded on the website, will not be considered.

3.1. RANSAC-based ground Point Cloud 
Removal Method
The point cloud acquired by LiDAR contains a large 
amount of ground information, which has strong sim-
ilarities and has limit effect on positioning. Tradition-
al point cloud map matching methods do not remove 
the ground point cloud, and the matching efficiency 
is low. The effect of ground point cloud on matching 
efficiency is more severe in complex motion states. To 
improve the efficiency of point cloud map matching, 
the RANSAC method is adopted to remove the ground 
point cloud.
RANSAC uses an iterative approach to estimate the 
ground model parameters from the point cloud frames 
containing ground point cloud and non-ground point 
cloud data. The RANSAC method is easy to imple-
ment and operates efficiently for removing ground 
point clouds. The specific implementation steps are 
as follows:
1 Select three points from the current point cloud 

frame to estimate the ground model.
2 Calculate the ground model based on the three se-

lected points:

, (7)

where , , , and  are the coefficients of the 
plane equation, and  denotes the 3D 
coordinates of the laser point.

Figure 2 
The framework for vehicle location estimation based on point cloud map

3 Calculate the distance  from all points in the 
current point cloud frame to the ground model

, (8)

where  is the 3D coordinate of the la-
ser point. For the distance threshold , if 

, the point is considered to be inside the 
ground and the number of ground points that are 
inside the ground model is counted.

4 Compare the number of ground points in the cur-
rent ground model with the number of ground 
points in the historical ground model, and record 
the model parameters with the largest number of 
ground points and the number of ground points; 

5 Repeat steps (1)~(4) until the end of the iteration; 
6 Remove all ground points from the current point 

cloud frame.

3.2. 3D NDT-based Point Cloud Map 
Matching Method

The NDT method is efficient and robust in point 
cloud matching. The 3D NDT method is insensitive 
to subtle transformations in the environment. Thus, 
the NDT method is used to obtain the location of the 
vehicle.
The completed point cloud map constructed by Iris-
LOAM occupies a large storage space. If the complet-
ed point cloud map is loaded directly, it will consume 
a lot of time and reduce the matching efficiency. Thus, 
the completed map is gridded to reduce the loading 
time. In this paper, the whole map is divided into m 
sub-maps with  meter size.



567Information Technology and Control 2023/2/52

To further improve the efficiency of point cloud map 
matching, the point cloud map is down sampled us-
ing the Voxel Grid (VG) [13] method, which can re-
tain sufficient point cloud shape features while re-
ducing the amount of point cloud data. The voxel is 
an extension of a two-dimensional pixel in three-di-
mensional space and is a set of cubic cells distribut-
ed in an orthogonal grid. The input point cloud map 
is divided into a 3D voxel grid with side length . 
The voxel  contains  data points, and its cen-
ter of mass  is used as the representative,  can 
be calculated as:

, (9)

In order to obtain the location of the vehicle, the start-
ing position and attitude of the vehicle should be cal-
ibrated. 
It is worth to mention here that the pitch and roll an-
gles of the vehicle generally change little, while the 
heading angle changes a lot. Thus, the initial value of 
the heading angle plays a decisive role in the accura-
cy of the NDT matching results. After obtaining the 
initial longitude, latitude, and altitude parameters of 
the vehicle, the initial position of the vehicle in the 
local horizontal coordinate system can be obtained 
through coordinate transformation. 
The 3D NDT method is used to match the point 
cloud at moment k with the global point cloud map 
and the translation matrix  and rotation matrix 

 of the vehicle relative to the moment  can 
be obtained. Then the position of the vehicle at mo-
ment k can be obtained through the position trans-
formation:

, (10)

where 

4. Experimental Validation
To evaluate the localization performance of the pro-
posed methodology, extensive experiments were con-
ducted in Nanjing and Wuxi, China. Representative 
trajectories were chosen to show in this paper.

The 32-line LiDAR from Velodyne were mounted 
on the top of the vehicle. The data acquisition and 
processing platform is ARK-3520 industrial control 
computer produced by Advantech. Moreover, an ac-
curate and reliable NovAtel SPAN-CPT system was 
used as a reference for quantitative comparison. The 
horizontal position accuracy of SPAN-CPT system 
was 0.01 m without GPS outages.

4.1. Performance Evaluation of the Point 
Cloud Map Construction Based on  
Iris-LOAM

After eliminating the noise points and outliers and re-
moving the distortion in the point clouds, SC-LeGO-
LOAM and Iris-LOAM are conducted to construct the 
point cloud map for comparative analysis. Analysis 
of the point cloud map construction based on Iris-
LOAM
Figure 3(a)-(b) are two frames of point clouds 
scanned by LiDAR when passing the same position 
with different attitudes. Figure 3(c)-(d) are the Li-
DAR-Iris descriptors of the two frames. It can be 
seen from Figure 3 that there are rotation and trans-
lation transformations between the two frames of 
point clouds, and the corresponding iris descriptors 
are also globally unique. The LoG-Gabor filter and 
thresholding operation are adopted to further ex-
tract features from the iris descriptors, and the re-
sulting binary feature map is shown in Figure 4. It 
can be seen from Figure 4 that the feature texture 
in the binary map extracted by the LoG-Gabor filter 
is similar to the human iris. The Fourier transform 
method is adopted to calculate the transformation 
relation between the two LiDAR-Iris descriptors 
in Figure 4 and the relation is applied to the iris de-
scriptors. The obtained iris descriptors before and 
after the Fourier transformation are shown in Fig-
ure 5 Among them, the pictures in first and second 
rows are the iris descriptors of point cloud 1 and 
point cloud 2 before Fourier transformation, and the 
picture in the third row is the iris descriptor of point 
cloud 2 after Fourier transformation. 
By comparing the pictures in the first row and the 
third row, the iris descriptor consistency of two 
frames is improved after Fourier transformation. 
Thus, it can be concluded that the iris descriptor can 
detect the loop-closure frames accurately.
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Figure 3 
The point cloud frame and its iris descriptor when the vehicle enters the loop-closure position with different attitudes

(a) point cloud 1 at loop-closure position (b) point cloud 2 at loop-closure position

(c) LiDAR-Iris descriptor for point cloud 1 (d) LiDAR-Iris descriptor for point cloud 2

Figure 4 
Binary feature maps of iris descriptors of point cloud

(a) Binary feature map of point cloud 1 (b) Binary feature map of point cloud 2
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To validate the efficiency improvement of iris descrip-
tor, this paper uses the iris descriptor and the SC de-
scriptor to perform 100 loop-closure detections respec-
tively and the time-consuming comparison is shown in 
Figure 6. The maximum time-consuming is 1853.57ms 
and minimum time-consuming is 237.34ms for Li-
dar-Iris descriptor. While the maximum time-con-
suming is 2405.87ms and minimum time-consuming 
is 730.12ms for Scan Context descriptor. The average 
time taken for 100 loop-closure detections using Scan 

Figure 5 
The point cloud frame and its iris descriptor when the vehicle enters the loop-closure position with different attitudes

before 
Fourier 
transform

after 
Fourier 
transform

Context descriptor and iris descriptor is 1505.6ms and 
574.03ms, respectively. The average time using the iris 
descriptor is reduced by 61.9%. It can be concluded 
that using the iris descriptor for loop-closure detec-
tions takes less time and performs more efficiently
Figure 7 shows the point cloud maps constructed by 
SC-LeGO-LOAM and Iris-LOAM, respectively. It can 
be seen that the map constructed by the Iris-LOAM 
contains more detailed environmental information 
and are more precise than SC-LeGO-LOAM

Figure 6 
Time-consuming comparison of loop closure detection by Iris and SC
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Figure 7 
The point cloud maps of the test park constructed by Iris-LOAM and SC-LeGO-LOAM

(a) Map constructed by Iris-LOAM (b) Map constructed by SC-LeGO-LOAM

4.2. Performance Evaluation of the Vehicle 
Localization Based on Point Cloud Map 
Matching
The test platform and scene of vehicle localization 
experiments based on point cloud map matching are 
consistent with the point cloud map construction ex-
periments based on Iris-LOAM.
Figure 8 shows the effect of removing the ground 
point cloud based on the RANSAC method. It can be 
seen that the RANSAC method can effectively remove 

Figure 8 
Comparison of maps before and after removing the ground point cloud

the ground point cloud. The consuming-time of map 
matching in the case of removing the ground point 
cloud and not removing the ground point cloud was 
counted, and the results are shown in Figure 9. The 
average time taken for map matching before and af-
ter removing the ground point cloud is 209.23ms and 
126.50ms, respectively. The average map matching 
time after removing the ground point cloud is reduced 
by 39.5%. It can be concluded that the matching effi-
ciency is improved after removing the ground point 
cloud.

(a) Before removing the ground point cloud (b) After removing the ground point cloud
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Figure 9 
Time-consuming comparison of point cloud map matching

Figure 10 
The results before and after processing the point cloud maps of test park

(a) map of raw point cloud (b) map after gridding (c) map after down-sampling

Figure 10 shows the results before and after process-
ing the point cloud map. The griding operation is 
used to spatially divide the point cloud map. In order 
to display the result of gridded map, different colors 
are used to represent different submaps in Figure 
10(b), and its side length is set to 50 meters during 
the experiments. The time taken for loading the point 
cloud map before and after gridding is 41704.1ms and 
1851.81ms, respectively. The loading efficiency after 
gridding is improved by more than 22 times. It can be 
seen that using the grid method to process large-scale 
maps will greatly improve the point cloud map match-
ing efficiency. In order to further improve the point 
cloud map matching efficiency, the Voxel Grid (VG) 
method is used to down sample the loaded gridded 

map, which can reduce the number of point clouds 
while retaining the map features. The down sampled 
map is shown in Figure 10(c).
After determining the initial position and attitude 
of the vehicle, NDT method is used to calculate the 
vehicle position. Figure 11 shows the point cloud 
map matching results of vehicle in the process of 
going straight and turning. The gray point cloud 
in the figure constitutes the historical point cloud 
map, while the colored point cloud constitutes the 
current point cloud frame. It can be seen from Fig-
ure 11 that the proposed localization method can 
achieve well point cloud map matching both during 
the straight-forward where the point cloud features 
change relatively gently and during the turning 
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Figure 11 
Point cloud map matching results of vehicle in the process of driving

(a) Point cloud map matching during the straight driving (b) Point cloud map matching during turning

Figure 12 
Localization results of the proposed methodology in trajectory 1

(a) Vehicle localization results

(b) Position errors before and after removing ground point cloud
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where the point cloud features change drastically. 
The robustness and practicability of the proposed 
method is validated.
Finally, two representative trajectories are chosen 
to show the localization performance. Trajectory 
1 is in the campus of Nanjing, while Trajectory 2 is 
in the National Intelligent Transportation Compre-
hensive Test Base in Wuxi. The localization results 
and Position errors are shown in Figure 12 and Fig-
ure 13, respectively. The statistics of position errors 
are illustrated in Table 1, including maximum, Mean 

Absolute (MA), and Root Mean Square (RMS) er-
rors. The reference is from the high-precision inte-
grated navigation system after Real-Time Kinematic 
(RTK) difference. It can be seen from Figures 12-13, 
and Table 1 that the vehicle position accuracy before 
and after removing the ground point cloud is simi-
lar, which indicates that removing the ground point 
cloud will not affect the accuracy of the positioning 
results. Therefore, the improved point cloud map 
matching algorithm in this paper can efficiently esti-
mate the localization information of the vehicle.

Figure 13 
Localization results of the proposed methodology in trajectory 2

(a) Vehicle localization results

(b) Position errors before and after removing ground point cloud
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Table 1
Statistics of position errors for the two trajectories

Errors(m)
Before removing the ground point cloud After removing the ground point cloud

Max MA RMS Max MA RMS

Trajectory 1
East position 0.313 0.129 0.135 0.332 0.134 0.141

North position 0.282 0.152 0.159 0.340 0.149 0.157

Trajectory 2
East position 0.292 0.118 0.122 0.245 0.093 0.095

North position 0.299 0.111 0.113 0.095 0.074 0.085

4.3. Discussion
1 The advantage of Lidar-Iris descriptor. The bird’s 

eye view of each point cloud frame scanned by 
the LiDAR is centered on the body of the vehicle 
and the surrounding point cloud is distributed in 
a circular pattern, which is similar to the iris of 
the human eye. In this paper, the texture features 
are extracted from Lidar-Iris descriptor through 
the LoG-Gabor filter. The extracted binary fea-
ture map is beneficial to improve the accuracy of 
loop-closure detection and mapping. However, the 
SC descriptor only encodes the maximum height 
information of the environment and neglects the 
feature extraction step for the height. Thus, the 
map constructed by Iris-LOAM has higher accura-
cy than that constructed by the SC-LeGO-LOAM.
In addition, the Lidar-Iris descriptor performs 
loop-closure detection by using the extracted bina-
ry feature, while the SC descriptor adopts a brute 
force matching method. The Iris-LOAM is less 
time-consuming and more efficient in loop-closure 
detection than using SC descriptor.

2 Whether to remove the ground point cloud when 
constructing the map. Removing the ground point 
cloud during the map matching procedure can im-
prove the efficiency without compromising accu-
racy. However, from the point of view of integrity, 
the ground point cloud should be retained when 
building the map, as they are also part of the map. 
If the point cloud map is dedicated to positioning, 
the ground point cloud can be removed during the 
construction procedure.

5. Conclusion
This paper improves the efficiency of vehicle localiza-
tion based on LiDAR place recognition from two as-
pects, i.e. map construction and map matching. First, 
the Iris-LOAM map construction method is proposed 
to improve the loop-closure detection module of 
LOAM by using the LiDAR-Iris global descriptor and 
NDT registration algorithm. Further, to improve the 
efficiency of the traditional NDT-based point cloud 
map matching method, the RANSAC algorithm is ad-
opted to remove the ground point cloud in the current 
frame, and the grid and voxelization operations are 
used for the large-scale point cloud map. The match-
ing speed can be greatly improved while ensuring the 
matching accuracy.
The experimental results show that the Iris-LOAM 
algorithm can efficiently and accurately construct the 
large-scale point cloud maps, and the improved NDT 
matching algorithm can efficiently estimate the vehi-
cle position. Future work will focus on fusing LiDAR 
with other sensors to improve the applicability of Li-
DAR place recognition to large scale traffic environ-
ments.
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