
53Information Technology and Control 2024/1/53

Enhanced Two-Stream Bayesian
Hyper Parameter Optimized
3D-CNN Inception-v3 Based
Drop-ConvLSTM2D Deep
Learning Model for Human
Action Recognition

ITC 1/53
Information Technology
and Control
Vol. 53 / No. 1 / 2024
pp. 53-70
DOI 10.5755/j01.itc.53.1.32625

Enhanced Two-Stream Bayesian Hyper Parameter Optimized 3D-CNN
Inception-v3 Based Drop-ConvLSTM2D Deep Learning Model for Human

Action Recognition

Received 2022/10/29 Accepted after revision 2023/02/22

HOW TO CITE: Jeyanthi, A., Visumathi, J., Heltin Genitha, C. (2024). Enhanced Two-Stream
Bayesian Hyper Parameter Optimized 3D-CNN Inception-v3 Based Drop-ConvLSTM2D Deep
Learning model for Human Action Recognition. Information Technology and Control, 53(1), 53-70.
https://doi.org/10.5755/j01.itc.53.1.32625

Corresponding author: jeyanthisuresh22@outlook.com

A. Jeyanthi
Department of Computer Science and Engineering, Misrimal Navajee Munoth Jain Engineering College,
Chennai, 600097, India

J. Visumathi
Department of Computer Science and Engineering, VelTech Rangarajan Dr. Sagunthala R&D Institute of
Science and Technology, Chennai, India

C. Heltin Genitha
Department of Information Technology, St. Joseph’s College of Engineering, Chennai, India

Human Action Recognition (HAR) has grown to be the toughest and attractive concern in the domains of computer
vision, communication between a person and the surroundings, and video surveillance. In variation to the conven-
tional methods that usually make use of the Long Short Term Memory model (LSTM) for training, this work de-
signed dropout variant Drop-ConvLSTM2D, to provide more effectiveness in regularization for deep Convolution
Neural Networks (CNNs). In addition, to speed up the runtime performance of the Deep Learning model, Bayesian

Information Technology and Control 2024/1/5354

Hyper Parameter Optimization (BHPO) is also introduced to autonomously optimize, the hyper parameters of the
trained architecture. In this study, a two-stream Bayesian Hyper Parameter optimized Drop-ConvLSTM2D model
is designed for HAR to overcome the current research deficiencies. In one stream, an Inception-v3 model extracts
the temporal characteristics from the optical frames which are generated through the dense flow process. In an-
other stream, a 3D-CNN involves the mining of the spatial-temporal characteristics from the RGB frames. Finally,
the features of Inception-v3 and 3D-CNN are fused using which the Drop-ConvLSTM2D model is trained to rec-
ognize human behavior. On perceptive public video datasets UCF-101, HMDB51, the quantitative assessments are
conducted on the Drop-ConvLSTM2D BHPO model. For all hyper parameters, the built model explicitly obtains
optimized values in this process, which can save time and improve performance. The experimental outcome shows
that with a precision of at least 3%, the designed model beats the traditional two-stream model.
KEYWORDS: Human Action Recognition, Convolution Neural Networks, Drop-ConvLSTM2D, Bayesian Hy-
per Parameter Optimization.

1. Introduction
HAR by traditional hand-crafted feature extraction
[21, 33, 34] was extremely difficult due to the exis-
tence of obstacles like varying object sizes in different
frames, the existence of noise, and also the swiftness
of activities. Thus, even though in recent times, sever-
al significant research studies have been implement-
ed using Deep CNN [1, 23, 28, 39], the technique to
precisely make out HAR from the RGB videos contin-
ues to be an exigent problem.
Nowadays deep learning has grown-up swiftly and
has attracted many research efforts [7, 20, 24] in
video analysis, natural language processing, and
complicated aspects of data processing, to achieve
unprecedented achievements. Deep learning may
decrease the workload of feature design, unlike the
conventional technique of HAR. In addition, through
the end-to-end neural network, high-level and more
complicated clues can be taught. Furthermore, for
unsupervised incremental learning, the deep learning
architecture will be suitable by stacking many layers
of clues. Several researchers have sought deep learn-
ing in video-based behavior recognition, owing to its
fare on extracting frame features [4, 14, 15, 19, 22].
In HAR, hybrid models with CNN and LSTM are
taken for research by majority of researchers [1, 25].
LSTM concentrates on the pattern features and cap-
tures the dynamic time dependency of various move-
ments. Furthermore, owing to the various parameters
that necessitate an alteration in the course of the
training period, the LSTM requires a longer training
time. CNN is more capable of learning the key char-
acteristics found in recursive patterns compared to
LSTM [26]. However, in the convolution process, the

mainstream of CNNs has a single parameter config-
uration, which radically restricts the model’s flexi-
bility. A larger convolution kernel can also be useful
for gathering more data, although it raises the cost of
CNN calculation. These challenges lead researchers
to launch effective recognition strategies that can ef-
fectively solve these problems with expected recogni-
tion accuracy and low computational complexity.
We are provoked by the observation that, a dual-stream
3D-CNN [30] is always a suitable preference for con-
stituting the Spatio-temporal clues of action videos.
This study attempts to build and implement an inno-
vative two-stream Bayesian Hyper Parameter opti-
mized 3D-CNN Inception-based Drop-ConvLSTM2D
model, considering the deficiencies identified in the
present research. In one stream, an Inception-v3 mod-
el extracts the temporal characteristics over the opti-
cal frames which are generated using the dense flow
process. In the remainder, a 3D-CNN mines spatial
characteristics from the RGB frames. In the end, the
feature maps of Inception- v3 and 3D-CNN are fused
using which the Drop-ConvLSTM2D architecture is
taught to understand human behavior.

2. Related Work
In this section, we discuss various previous works
[35, 36] on HAR using dual-channel CNN. Karen et
al. [26] crafted an architecture that uses separate
Spatio-temporal recognition channels based on Con-
vNets capable of giving better performance even with
less training data. The approach averages the pre-

55Information Technology and Control 2024/1/53

dicted outcomes from RGB frames and a set of ten
optical flow snapshots after running them via iden-
tical ConvNets tuned on ImageNet. This study is the
basis for the majority of two-stream CNN designs.
Here the flow stream has an adapted input Conv layer
with twice as many input channels as flow frames be-
cause the flow has two channels, horizontal and ver-
tical. Carreira et al. [11], introduced a very deep mod-
el codenamed “Two-Stream Inflated 3D ConvNets”
(I3D) that proves the boost in outcome using transfer-
ability of features by pre-training on Kinetics dataset
and fine-tuning to UCF-101[27]/HMDB-51 [13] data-
set. They also redesigned many cutting-edge HAR
architectures, to understand their transfer behavior
and proved that the recognition rate exceeds all re-de-
signed pre-trained and finely tuned models. In [40],
authors discovered the notion of composing details
over long-duration videos. The work introduced a fea-
ture pooling methodology to procedure each snapshot
independent of other snapshots and used maxpool on
local info for decoupling image-level features. They
investigated the use of RNN using LSTM units those
are merged to the final layers in the CNN.
In [36], the authors proved the procedure of batch nor-
malization, dropout, and pre-training as acceptable
methods. The work merged the temporal pooling net-
work with LSTM in order for it to process snapshots
of variable length for enhancing the two-stream mod-
el. They discovered a model to mine shorter-length
snippets based on the video by using sparse samples
rather than dense samples. The snippets are sent to
spatial-temporal ConvNets. Finally, the outcomes of
those ConvNets are merged for final prediction. In
[41], authors applied a MotionNet that generates op-
tical flow using successive snapshots. The outcome of
the MotionNet is fused with a temporal channel CNN
to correlate the optical flows to target classes. It also
has a spatial channel CNN which is merged with the
temporal channel CNN with late fusion.
In [38], the authors first created the optimized video
by only taking into account the action regions with the
highest levels of activity. The human skeleton and RGB
clues were then mined using a two-stream CNN to re-
inforce the deep representation of humans for robust
processing and expand the receptive field of feature ex-
traction. In [10], the authors used the Kalman filter and
the Gaussian mixture model to infer human motion
from each video frame, which consists of a series of

brief frames that only show a moving subject. To infer
the pertinent features, these inputs are then sent into
the hidden layer of the Gated Recurrent Neural Net-
works model. The action is then predicted using the
training and testing phase by the prediction module.
The authors of [18] presented an adaptive sub-graph
convolution module that can learn the relationships
among sub-graphs and adaptively infer the high-level
spatial characteristics of each sub-graph. They cre-
ated a two-stream architecture to combine bone and
joint characteristics, which improves the model’s ca-
pacity for recognition. The channel attention mech-
anism and the spatial attention mechanism make up
the Convolution Block Attention Module. The chan-
nel attention mechanism enables the model to focus
on the channel characteristics with more information
by teaching it how to change the weight parameters
of each channel. By learning the weights of pixels in
various spatial positions, the spatial attention mecha-
nism improves the properties of significant positions.
The works mentioned above exploited dual-channel
CNN streams to enhance the recognition rate of HAR.
However, the majority of works apply two similar 3D
CNNs for both the streams (temporal and spatial).
Due to this, the efficient mixtures of features like RGB
snapshot, optical flow, depth, and skeleton data, re-
main an unsolved issue in HAR.
In this paper, we investigate how the dual-stream
CNN could enhance the recognition rate with differ-
ent CNNs for each stream. The need for modeling our
architecture is, that when two streams with identical
CNNs are tuned and fused, it may yield a huge num-
ber of redundant features due to horizontal and verti-
cal components of optical flow frames mined over the
RGB frame.
In our experimentation, we apply the 3D-CNN model
only to mine spatial characteristics from RGB frames
and we apply the Inception-v3 model to mine motion
characteristics from optical flow as we found Incep-
tion models produce better feature extraction and
performance than other network models with our ex-
periments [18].
The Inception models are the flavors of the CNN
crafted by Google, particularly for image classifica-
tion. An Inception model differs from conventional
CNNs; as the inception models convolute the same in-
put tensor with many filters and merge the outcomes,
whereas conventional CNNs do a single convolution

Information Technology and Control 2024/1/5356

operation on each tensor. The parameters are thus de-
creased and the complexity in terms of computation
is reduced as compared to 3D-CNN.
In the proposed model, mined Spatio-temporal fea-
tures are decoupled using Conv-fusion, and as a tech-
nical contribution of work, we apply the above clues
to train an innovative Drop-ConvLSTM2D design to
build more stable and effective regularized deep CNNs.
Finally, using BHPO, the trained model is optimized;
which is another noteworthy hallmark that highlights
our work from previous models where hyper-param-
eters are tuned using painstaking trial and error. In
short, the overarching summary in this paper:
In short, the overarching summary in this paper:
1 In contrast to conventional two-stream mod-

els, this model uses two different CNN over two
streams; a state-of-the-art 3D-CNN for spatial fea-
ture mining and an Inception-v3 model for tempo-
ral feature mining.

2 To reduce variations with respect to mean and
variance, the decoupled features are taught using
Drop-ConvLSTM2D.

3 A ConvNet architecture search is conducted across
multiple dimensions using BHPO by training on
the UCF-101, HMDB51 to get heterogeneous Deep
Learning architecture.

3. Methodology of the Proposed
Framework
This section describes the 3D-CNN architecture, the
optical flow method and also describes the Drop-Con-
vLSTM2D, then a Bayesian optimization method.
The discussed model is composed of five modules as
shown in Figure 1. They are:
1 Video Data Preprocessing
2 Feature representation and mining

Spatial feature mining
Temporal feature mining

3 Spatial-Temporal Feature fusion
4 Training the Drop-ConvLSTM2D model with

Bayesian Hyper Parameter optimization
5 Action Classification using a trained model

3.1. Data Preprocessing
Global Contrast Normalization (GCN) through zero
component analysis (ZCA) whitening is applied to
preprocess the input video which can preclude the
frames from viewing different contrast levels. The
average frame value is subtracted and the image is
resized to maintain the standard deviation as a con-
stant value across frames [39]. The whitening method

Figure 1
Proposed 3D-CNN Inception-v3 based Drop-ConvLSTM2D model

 Figure 1: Proposed 3D-CNN Inception-v3 based Drop-ConvLSTM2D model

 Figure 2: 3D-CNN Architecture.

Identified Action

Inception
-v3

Model

Spatial
Features

Temporal
Features

Feature
Fusion

3D
CNN

Model

Optical Flow

Pr
e

pr
oc

es
sin

g

 RGB Video

Input Video

Trained
Model

Feature
Extraction
and Fusion

Bayesian
Hyper

Parameter

Drop-
Conv

LSTM2DD

 RGB Video

Spatial
Feature Map

 3
DC

NN

Re

LU

 M
AX

 P
OO

LIN
G

 3
DC

NN

 M
AX

 P
OO

LIN
G

 R

eL
U

57Information Technology and Control 2024/1/53

of Zero Component Analysis emphasizes facilitating
the average covariance, which is maximal between
the whitened pixel and the first frame. For example,
eliminating neighboring correlations in neighboring
pixels makes the data with a reduced amount of re-
dundant information.

3.2. Feature Mining
3.2.1. Spatial Feature Extraction
The 3D-CNN architecture makes use of the pre-pro-
cessed RGB frames as input for the extraction of spa-
tial features.

3D CNN Architecture
Every given input map is transformed by a shift win-
dow with (N,N) kernel to produce an unique pixel in
an individual output feature map. In addition, the 3D
convolution layers are exploited to acquire move-
ment information out from aggregate stacked frames.
Equations (1)-(2) define the Nth 3D feature map per-
taining to the i-th convolution layer.

Global Contrast Normalization (GCN) through zero component analysis (ZCA) 1
whitening is applied to preprocess the input video which can preclude the frames from viewing 2
different contrast levels. The average frame value is subtracted and the image is resized to 3
maintain the standard deviation as a constant value across frames [39]. The whitening method of 4
Zero Component Analysis emphasizes facilitating the average covariance, which is maximal 5
between the whitened pixel and the first frame. For example, eliminating neighboring 6
correlations in neighboring pixels makes the data with a reduced amount of redundant 7
information. 8
 9
 10

11
 12

 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25

Figure 1 Proposed 3D-CNN Inception-v3 based Drop-ConvLSTM2D model. 26
 27
3.2. Feature Mining 28

 29
3.2.1. Spatial Feature Extraction 30
The 3D-CNN architecture makes use of the pre-processed RGB frames as input for the extraction 31
of spatial features. 32
3D CNN Architecture 33
 Every given input map is transformed by a shift window with (N,N) kernel to produce an 34
unique pixel in an individual output feature map. In addition, the 3D convolution layers are 35
exploited to acquire movement information out from aggregate stacked frames. Equations (1)-(2) 36
define the Nth 3D feature map pertaining to the i-th convolution layer. 37

()N N N
i i iV W x b   , (1) 38

()N N N
j j i jV W v b  , (2) 39

Identified Action

Inception
-v3

Model

Spatial
Features

Temporal
Features

Feature
Fusion

3D
CNN

Model

Optical Flow

Pr
e

pr
oc

es
si

ng

 RGB Video

Input Video

Trained
Model

Feature
Extraction
and Fusion

Bayesian
Hyper

Parameter

Drop-
Conv

LSTM2D

(1)

Global Contrast Normalization (GCN) through zero component analysis (ZCA) 1
whitening is applied to preprocess the input video which can preclude the frames from viewing 2
different contrast levels. The average frame value is subtracted and the image is resized to 3
maintain the standard deviation as a constant value across frames [39]. The whitening method of 4
Zero Component Analysis emphasizes facilitating the average covariance, which is maximal 5
between the whitened pixel and the first frame. For example, eliminating neighboring 6
correlations in neighboring pixels makes the data with a reduced amount of redundant 7
information. 8
 9
 10

11
 12

 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25

Figure 1 Proposed 3D-CNN Inception-v3 based Drop-ConvLSTM2D model. 26
 27
3.2. Feature Mining 28

 29
3.2.1. Spatial Feature Extraction 30
The 3D-CNN architecture makes use of the pre-processed RGB frames as input for the extraction 31
of spatial features. 32
3D CNN Architecture 33
 Every given input map is transformed by a shift window with (N,N) kernel to produce an 34
unique pixel in an individual output feature map. In addition, the 3D convolution layers are 35
exploited to acquire movement information out from aggregate stacked frames. Equations (1)-(2) 36
define the Nth 3D feature map pertaining to the i-th convolution layer. 37

()N N N
i i iV W x b   , (1) 38

()N N N
j j i jV W v b  , (2) 39

Identified Action

Inception
-v3

Model

Spatial
Features

Temporal
Features

Feature
Fusion

3D
CNN

Model

Optical Flow

Pr
e

pr
oc

es
si

ng

 RGB Video

Input Video

Trained
Model

Feature
Extraction
and Fusion

Bayesian
Hyper

Parameter

Drop-
Conv

LSTM2D

(2)

where, W stands for the weights of filter, x stands for
the input frame, δ is the Convolution operation and b
is the bias.
The pooling layer is taken into account in reducing
the size of feature map and parameters. There are two
widely accepted methods of pooling: maximum and
average. The max-pooling operation is deployed in

this study, since by offering an abstracted form of the
clues, max-pooling aids in reducing over-fitting. Addi-
tionally, it lowers the computational cost by lowering
the number of parameters to learn. It is determined by
the utmost value achieved between nearby inputs as
represented in Equation (3).

where, W stands for the weights of filter, x stands for the input frame,  is the Convolution 1
operation and b is the bias. 2

The pooling layer is taken into account in reducing the size of feature map and 3
parameters. There are two widely accepted methods of pooling: maximum and average. The 4
max-pooling operation is deployed in this study, since by offering an abstracted form of the 5
clues, max-pooling aids in reducing over-fitting. Additionally, it lowers the computational cost 6
by lowering the number of parameters to learn. It is determined by the utmost value achieved 7
between nearby inputs as represented in Equation (3). 8

max ()j j
i r R i T rP c   , (3) 9

where, R describes the size of pooling, T denotes the pooling stride, and C is output of 10
convolution layer. 11
 12
 13
 14

 15
 16
 17

 18
 19
 20
 21

Figure 2 3D-CNN Architecture. 22
This sparse connection network can remarkably diminish the parameter size by stacking 23

convolution and the pooling layers in mining the significant clues of the input. The Restricted 24
Linear Unit (ReLU) [9] is used to improve the transformation in terms of non-linearity in the 25
network. 26

With Conv3D and MaxPooling 3D layers, the Keras Sequential API is employed. In 27
particular, two 3DCNN layers of (3,3,3) kernel each with 8,16 filters are utilized. ReLU 28
activation functions are added to the uniform Keras initializer. A three-dimensional max-pooling 29
layer of (2,2,2) pool sizes is deployed to down-sample the feature maps, which can save valuable 30
computational resources. The stride and padding are sizes of (1,1,1). 31

In this layout, as seen in Figure 2, the 30 frames considered by the 3D-CNN model are of 32
size ‘112x112’ centered on the present frame. A group of hardwired kernels is initially utilized to 33
build larger information channels from the input frames. 64-sample batch size is adopted, which 34
can make every time 64 samples are fed forward through the model, creating predictions, 35
optimization, and computation of loss. 36

By maintaining the spatial clues of the frames, the 3D-CNN method can extract the 37
temporal characteristics which can be employed in action recognition. Since the preponderance 38
of the actions are likely to have 32-50 frames per gesture, this 3D-CNN model may not be 39
feasible for a thorough analysis. This necessitates for another network to acquire long-term 40
temporal individuality that is essential. The mixture of the Optical flow Inception-based 3D-41

 RGB Video

Spatial
Feature Map

 3
D

C
N

N

R
eL

U

M

A
X

 P
O

O
L

IN
G

 3

D
C

N
N

M

A
X

 P
O

O
L

IN
G

 R
eL

U

(3)

where, R describes the size of pooling, T denotes the
pooling stride, and C is output of convolution layer.
This sparse connection network can remarkably di-
minish the parameter size by stacking convolution
and the pooling layers in mining the significant clues
of the input. The Restricted Linear Unit (ReLU) [9]
is used to improve the transformation in terms of
non-linearity in the network.
With Conv3D and MaxPooling 3D layers, the Keras
Sequential API is employed. In particular, two
3DCNN layers of (3,3,3) kernel each with 8,16 filters
are utilized. ReLU activation functions are added to
the uniform Keras initializer. A three-dimensional
max-pooling layer of (2,2,2) pool sizes is deployed to
down-sample the feature maps, which can save valu-
able computational resources. The stride and padding
are sizes of (1,1,1).
In this layout, as seen in Figure 2, the 30 frames con-
sidered by the 3D-CNN model are of size ‘112x112’
centered on the present frame. A group of hardwired
kernels is initially utilized to build larger information
channels from the input frames. 64-sample batch size
is adopted, which can make every time 64 samples are

Figure 2
3D-CNN Architecture

 Figure 1: Proposed 3D-CNN Inception-v3 based Drop-ConvLSTM2D model

 Figure 2: 3D-CNN Architecture.

Identified Action

Inception
-v3

Model

Spatial
Features

Temporal
Features

Feature
Fusion

3D
CNN

Model

Optical Flow

Pr
e

pr
oc

es
sin

g

 RGB Video

Input Video

Trained
Model

Feature
Extraction
and Fusion

Bayesian
Hyper

Parameter

Drop-
Conv

LSTM2DD

 RGB Video

Spatial
Feature Map

 3
DC

NN

Re

LU

 M
AX

 P
OO

LIN
G

 3
DC

NN

 M
AX

 P
OO

LIN
G

 R

eL
U

Information Technology and Control 2024/1/5358

fed forward through the model, creating predictions,
optimization, and computation of loss.
By maintaining the spatial clues of the frames, the
3D-CNN method can extract the temporal character-
istics which can be employed in action recognition.
Since the preponderance of the actions are likely to
have 32-50 frames per gesture, this 3D-CNN model
may not be feasible for a thorough analysis. This ne-
cessitates for another network to acquire long-term
temporal individuality that is essential. The mixture
of the Optical flow Inception-based 3D-CNN algo-
rithm with the Drop-ConvLSTM2D network was
suggested to help to understand the long-time tempo-
ral features.
A cross-entropy loss function has been used by CNN
model training which is quantified by Equation (4),

CNN algorithm with the Drop-ConvLSTM2D network was suggested to help to understand the 1
long-time temporal features. 2

A cross-entropy loss function has been used by CNN model training which is quantified 3

by Equation (4), 0 , ,
1 1

1(,) [log()]
cNM

m m m k m k
i k

E x y y q
M  

  , (4) 4

where xm represents the training set, qm,k is the recognized label of the mth sample kth data, 5
ym,k is a one-hot vector representing the category of the mth sample kth data, M is the sample size, 6
and Nc is the count of output category labels. 7
 8
3.2.2 Temporal Feature Extraction 9
Optical flow is a pertinent computer vision technique in estimating motion, tracking objects, and 10
identifying actions. The distribution of the apparent swiftness of movement of the brightness 11
model is called optical flow of an image. The key techniques of the optical flow approach are 12
dense and sparse optical flow. A stream vector is utilized in dense optical flow, while each 13
feature in the stream, e.g., the edges or corners of an object, is employed as sparse vectors in 14
sparse. As a result, dense optical flow has a higher precision with higher discriminative power 15
than sparse optical flow, but it has a higher computational cost. For each pixel in an optical flow, 16
an optical frame vector is measured [6]. 17

This work calculates the optical stream vector of human actions, 𝜇𝜇 = (𝜇𝜇𝐿𝐿, 𝜇𝜇𝐻𝐻) at each 18
frame using Equation (5) as: 19

0L L H H tI I I    , (5) 20

where 𝐼𝐼𝐿𝐿 = 𝜕𝜕𝐼𝐼/𝜕𝜕𝜕𝜕, 𝐼𝐼𝐻𝐻 = 𝜕𝜕𝐼𝐼/𝜕𝜕𝜕𝜕, 𝐼𝐼𝑡𝑡 = 𝜕𝜕𝐼𝐼/𝜕𝜕𝑡𝑡, 𝜇𝜇𝐿𝐿 = 𝑑𝑑𝜕𝜕/𝑑𝑑𝑡𝑡, and 𝜇𝜇𝐻𝐻 = 𝑑𝑑𝜕𝜕/𝑑𝑑𝑡𝑡, where (𝜕𝜕, 𝜕𝜕, 𝑡𝑡) is the frame 21
in pixel (x,y) at time 𝑡𝑡, where I(x,y,t) is the intensity in pixel (x,y) at time t, and 𝜇𝜇𝐿𝐿, 𝜇𝜇𝐻𝐻 are the 22
horizontal and vertical velocities in pixel (x, y). 23
 Local optical flow vector OT is calculated using equation (6) as: 24

[,]T L HO O O 25

1,1 1,18 4,1 4,18

1,1 1,18 4,1 4,18

[,..., ,..., ,...,]

[,..., ,..., ,...,]
L L L L L

H H H H H

O O O O O

O O O O O




,
 (6) 26

where, OL,OH is the optical flow sum in longitudinal and the optical flow info sum in transverse 27
in 36 subareas respectively. An algorithm to compute dense optical flow is provided using Open-28
cv for all the points in the frame based on Gunner Farneback's two-frame motion estimate 29
algorithm [6]. 30
 31
3.2.3. Inception-v3 Deep Learning Model 32
For temporal feature extraction, Inception-v3 [29] is employed on optical flow input. Inception-33
v3 is a large GoogleLeNet network. Inception-v3 is designed as an initial GoogLeNet model that 34
combines several convolutionary filters of various sizes in a new filter. 35

(4)

where xm represents the training set, qm,k is the recog-
nized label of the mth sample kth data, ym,k is a one-hot
vector representing the category of the mth sample kth
data, M is the sample size, and Nc is the count of out-
put category labels.

3.2.2. Temporal Feature Extraction
Optical flow is a pertinent computer vision technique
in estimating motion, tracking objects, and identify-
ing actions. The distribution of the apparent swiftness
of movement of the brightness model is called optical
flow of an image. The key techniques of the optical
flow approach are dense and sparse optical flow. A
stream vector is utilized in dense optical flow, while
each feature in the stream, e.g., the edges or corners of
an object, is employed as sparse vectors in sparse. As
a result, dense optical flow has a higher precision with
higher discriminative power than sparse optical flow,
but it has a higher computational cost. For each pixel in
an optical flow, an optical frame vector is measured [6].
This work calculates the optical stream vector of hu-
man actions, 𝜇 = (𝜇𝐿, 𝜇𝐻) at each frame using Equation
(5) as:

CNN algorithm with the Drop-ConvLSTM2D network was suggested to help to understand the 1
long-time temporal features. 2

A cross-entropy loss function has been used by CNN model training which is quantified 3

by Equation (4), 0 , ,
1 1

1(,) [log()]
cNM

m m m k m k
i k

E x y y q
M  

  , (4) 4

where xm represents the training set, qm,k is the recognized label of the mth sample kth data, 5
ym,k is a one-hot vector representing the category of the mth sample kth data, M is the sample size, 6
and Nc is the count of output category labels. 7
 8
3.2.2 Temporal Feature Extraction 9
Optical flow is a pertinent computer vision technique in estimating motion, tracking objects, and 10
identifying actions. The distribution of the apparent swiftness of movement of the brightness 11
model is called optical flow of an image. The key techniques of the optical flow approach are 12
dense and sparse optical flow. A stream vector is utilized in dense optical flow, while each 13
feature in the stream, e.g., the edges or corners of an object, is employed as sparse vectors in 14
sparse. As a result, dense optical flow has a higher precision with higher discriminative power 15
than sparse optical flow, but it has a higher computational cost. For each pixel in an optical flow, 16
an optical frame vector is measured [6]. 17

This work calculates the optical stream vector of human actions, 𝜇𝜇 = (𝜇𝜇𝐿𝐿, 𝜇𝜇𝐻𝐻) at each 18
frame using Equation (5) as: 19

0L L H H tI I I    , (5) 20

where 𝐼𝐼𝐿𝐿 = 𝜕𝜕𝐼𝐼/𝜕𝜕𝜕𝜕, 𝐼𝐼𝐻𝐻 = 𝜕𝜕𝐼𝐼/𝜕𝜕𝜕𝜕, 𝐼𝐼𝑡𝑡 = 𝜕𝜕𝐼𝐼/𝜕𝜕𝑡𝑡, 𝜇𝜇𝐿𝐿 = 𝑑𝑑𝜕𝜕/𝑑𝑑𝑡𝑡, and 𝜇𝜇𝐻𝐻 = 𝑑𝑑𝜕𝜕/𝑑𝑑𝑡𝑡, where (𝜕𝜕, 𝜕𝜕, 𝑡𝑡) is the frame 21
in pixel (x,y) at time 𝑡𝑡, where I(x,y,t) is the intensity in pixel (x,y) at time t, and 𝜇𝜇𝐿𝐿, 𝜇𝜇𝐻𝐻 are the 22
horizontal and vertical velocities in pixel (x, y). 23
 Local optical flow vector OT is calculated using equation (6) as: 24

[,]T L HO O O 25

1,1 1,18 4,1 4,18

1,1 1,18 4,1 4,18

[,..., ,..., ,...,]

[,..., ,..., ,...,]
L L L L L

H H H H H

O O O O O

O O O O O




,
 (6) 26

where, OL,OH is the optical flow sum in longitudinal and the optical flow info sum in transverse 27
in 36 subareas respectively. An algorithm to compute dense optical flow is provided using Open-28
cv for all the points in the frame based on Gunner Farneback's two-frame motion estimate 29
algorithm [6]. 30
 31
3.2.3. Inception-v3 Deep Learning Model 32
For temporal feature extraction, Inception-v3 [29] is employed on optical flow input. Inception-33
v3 is a large GoogleLeNet network. Inception-v3 is designed as an initial GoogLeNet model that 34
combines several convolutionary filters of various sizes in a new filter. 35

(5)

where 𝐼𝐿 = 𝜕𝐼/𝜕𝑥, 𝐼𝐻 = 𝜕𝐼/𝜕𝑦, 𝐼𝑡 = 𝜕𝐼/𝜕𝑡, 𝜇𝐿 = 𝑑𝑥/𝑑𝑡, and
𝜇𝐻 = 𝑑𝑦/𝑑𝑡, where (𝑥, 𝑦, 𝑡) is the frame in pixel (x,y) at

time 𝑡, where I(x,y,t) is the intensity in pixel (x,y) at
time t, and 𝜇𝐿, 𝜇𝐻 are the horizontal and vertical veloc-
ities in pixel (x, y).
Local optical flow vector OT is calculated using equa-
tion (6) as:

CNN algorithm with the Drop-ConvLSTM2D network was suggested to help to understand the 1
long-time temporal features. 2

A cross-entropy loss function has been used by CNN model training which is quantified 3

by Equation (4), 0 , ,
1 1

1(,) [log()]
cNM

m m m k m k
i k

E x y y q
M  

  , (4) 4

where xm represents the training set, qm,k is the recognized label of the mth sample kth data, 5
ym,k is a one-hot vector representing the category of the mth sample kth data, M is the sample size, 6
and Nc is the count of output category labels. 7
 8
3.2.2 Temporal Feature Extraction 9
Optical flow is a pertinent computer vision technique in estimating motion, tracking objects, and 10
identifying actions. The distribution of the apparent swiftness of movement of the brightness 11
model is called optical flow of an image. The key techniques of the optical flow approach are 12
dense and sparse optical flow. A stream vector is utilized in dense optical flow, while each 13
feature in the stream, e.g., the edges or corners of an object, is employed as sparse vectors in 14
sparse. As a result, dense optical flow has a higher precision with higher discriminative power 15
than sparse optical flow, but it has a higher computational cost. For each pixel in an optical flow, 16
an optical frame vector is measured [6]. 17

This work calculates the optical stream vector of human actions, 𝜇𝜇 = (𝜇𝜇𝐿𝐿, 𝜇𝜇𝐻𝐻) at each 18
frame using Equation (5) as: 19

0L L H H tI I I    , (5) 20

where 𝐼𝐼𝐿𝐿 = 𝜕𝜕𝐼𝐼/𝜕𝜕𝜕𝜕, 𝐼𝐼𝐻𝐻 = 𝜕𝜕𝐼𝐼/𝜕𝜕𝜕𝜕, 𝐼𝐼𝑡𝑡 = 𝜕𝜕𝐼𝐼/𝜕𝜕𝑡𝑡, 𝜇𝜇𝐿𝐿 = 𝑑𝑑𝜕𝜕/𝑑𝑑𝑡𝑡, and 𝜇𝜇𝐻𝐻 = 𝑑𝑑𝜕𝜕/𝑑𝑑𝑡𝑡, where (𝜕𝜕, 𝜕𝜕, 𝑡𝑡) is the frame 21
in pixel (x,y) at time 𝑡𝑡, where I(x,y,t) is the intensity in pixel (x,y) at time t, and 𝜇𝜇𝐿𝐿, 𝜇𝜇𝐻𝐻 are the 22
horizontal and vertical velocities in pixel (x, y). 23
 Local optical flow vector OT is calculated using equation (6) as: 24

[,]T L HO O O 25

1,1 1,18 4,1 4,18

1,1 1,18 4,1 4,18

[,..., ,..., ,...,]

[,..., ,..., ,...,]
L L L L L

H H H H H

O O O O O

O O O O O



 ,
 (6) 26

where, OL,OH is the optical flow sum in longitudinal and the optical flow info sum in transverse 27
in 36 subareas respectively. An algorithm to compute dense optical flow is provided using Open-28
cv for all the points in the frame based on Gunner Farneback's two-frame motion estimate 29
algorithm [6]. 30
 31
3.2.3. Inception-v3 Deep Learning Model 32
For temporal feature extraction, Inception-v3 [29] is employed on optical flow input. Inception-33
v3 is a large GoogleLeNet network. Inception-v3 is designed as an initial GoogLeNet model that 34
combines several convolutionary filters of various sizes in a new filter. 35

(6)

1where, OL,OH is the optical flow sum in longitudinal
and the optical flow info sum in transverse in 36 sub-
areas respectively. An algorithm to compute dense op-
tical flow is provided using Open-cv for all the points
in the frame based on Gunner Farneback’s two-frame
motion estimate algorithm [6].

3.2.3. Inception-v3 Deep Learning Model
For temporal feature extraction, Inception-v3 [29]
is employed on optical flow input. Inception-v3 is a
large GoogleLeNet network. Inception-v3 is designed
as an initial GoogLeNet model that combines several
convolutionary filters of various sizes in a new filter.
The parameters are thus decreased and the complex-
ity in terms of computation is reduced as compared
to 3D-CNN. Figure 3 shows the fundamental archi-
tecture of Inception-v3. The various filter sizes help
the model to generalize the objects of different sizes
in that it offers a range of focus levels. It is noteworthy
that the 1x1 convolutions are featured with ‘3x3’ and
‘5x5’ twigs to diminish the computation expensive
also they reduce the tensor size by reducing the 3rd
dimension in a 3D tensor.

3.3. Spatial Temporal Feature Fusion
A fusion function [7] chords two feature maps and
yields a fused map, where the fusion function is in
Equation (7),

The parameters are thus decreased and the complexity in terms of computation is reduced 1
as compared to 3D-CNN. Figure 3 shows the fundamental architecture of Inception-v3. The 2
various filter sizes help the model to generalize the objects of different sizes in that it offers a 3
range of focus levels. It is noteworthy that the 1x1 convolutions are featured with ‘3x3’ and 4
‘5x5’ twigs to diminish the computation expensive also they reduce the tensor size by reducing 5
the 3rd dimension in a 3D tensor. 6

 7
 8

 9

 10

 11

 12

 13

 14

 15
Figure 3 Temporal feature mining utilizing Inception-v3 (compressed model) model. 16

 17
3.3 Spatial Temporal Feature Fusion 18
A fusion function [7] chords two feature maps and yields a fused map, where the fusion function 19
is in Equation (7), 20

: ,a bf X X O 21
a H W DX R   22

 b H W DX R   (7) 23
H H HH W DO R   , 24

where f can be fed at various layers in the network when it is employed for feedforward 25
ConvNet architectures that consist of convolutional, pooling, fully connected, and nonlinear 26
layers. Furthermore f is used for numerous types of fusion functions such as Sum-fusion, 27
Bilinear-fusion, Concatenation-fusion, Max-fusion, and Conv-fusion. Amongst these different 28
kinds of fusion functions, this model uses Conv-fusion because of its superior performance than 29
others sufficing entirely for HAR. 30
Conv-fusion: Initially, aX and bX are stacked at the points i,j followed by that the stacked data 31

are united with a filter bank 1 1 2D DB R    and biases Db R as depicted in Equation (8), 32

Inception-v3 Deep
CNN model

Optical flow video Temporal Feature Map

(7)

where f can be fed at various layers in the network
when it is employed for feedforward ConvNet archi-

59Information Technology and Control 2024/1/53

Figure 3
Temporal feature mining utilizing Inception-v3 (compressed model) model

Figure 3: Temporal feature mining utilizing Inception-v3 (compressed model) model.

Inception-v3 Deep
CNN model

Optical flow video Temporal Feature Map

tectures that consist of convolutional, pooling, ful-
ly connected, and nonlinear layers. Furthermore f
is used for numerous types of fusion functions such
as Sum-fusion, Bilinear-fusion, Concatenation-fu-
sion, Max-fusion, and Conv-fusion. Amongst these
different kinds of fusion functions, this model uses
Conv-fusion because of its superior performance
than others sufficing entirely for HAR.
Conv-fusion: Initially, aX and bX are stacked at the
points i,j followed by that the stacked data are united
with a filter bank 1 1 2D DB R × × ×∈ and biases Db R∈ as de-
picted in Equation (8),

*conv caty y B b  . (8) 1

The filter B is used with a desire to drop off the dimension by the multiples of two and it can 2
represent additive weighting of Xa, Xb especially at the same spatial position. 3
 4
3.4. Drop-ConvLSTM2D Model 5
Aggregated features mined with the 3D-CNN and Inception-v3 architecture are then fed into the 6
two stacks of Drop-ConvLSTM2D with 16 sizes of the unit, as depicted in Figure 4. A dropout 7
variant Drop-Conv2D, developed by Cai et al. [2], could result in more stable and effective 8
regularization for deep CNNs. Motivated by that, an innovative structurally more suited dropout 9
variant Drop-ConvLSTM2D is implemented. Dropout operations are conventionally performed 10
right between the convolution and BN layers which results in violent variations in terms of mean 11
and variance obtained by the layer of BN. By locating the dropout operations before every Conv 12
layer, as shown in the graphical overview Figure 4, the failure of conventional drop-neuron and 13
drop-channel has been overcome. When you apply the convolution operation after a drop 14
operation, you get a tiny variance and thus quick convergence. Drop-ConvLSTM2D 15
enhancement leverages greater model capacity, better drop-out training, and regularization for 16
enhanced training. More significantly, these upgrades incur negligible costs. 17
 Generally, the fully-connected LSTM is fed with vectorized features to explore the temporal 18
features. This yields the paucity of spatial similarity information during learning. Therefore, as 19
an innovative approach Drop-ConvLSTM2D is deployed in the proposed DNN to understand the 20
long-term spatiotemporal features. Formally, for the inputs X1, ...,Xt , the cell states C1, ...,Ct , the 21
hidden states H1, ...,Ht and the input gates it, forget gates ft, output gates ot, the key equations of 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 F

la
tt

en

 D

en
se

 F
la

tt
en

Fused Feature Map

 D
ro

pO
ut

C o
nv

L
ST

M
2D

 B
at

ch
N

or
m

R
eL

U

D
ro

p-
C

on
vL

ST
M

2D

D

ro
p-

C
on

vL
ST

M
2D

Fully Connected Layer

 SoftMax Layer

Identified

Action

(8)

The filter B is used with a desire to drop off the dimen-
sion by the multiples of two and it can represent addi-
tive weighting of Xa, Xb especially at the same spatial
position.

3.4. Drop-ConvLSTM2D Model
Aggregated features mined with the 3D-CNN and
Inception-v3 architecture are then fed into the
two stacks of Drop-ConvLSTM2D with 16 sizes of
the unit, as depicted in Figure 4. A dropout variant
Drop-Conv2D, developed by Cai et al. [2], could result
in more stable and effective regularization for deep

CNNs. Motivated by that, an innovative structurally
more suited dropout variant Drop-ConvLSTM2D is
implemented. Dropout operations are conventional-
ly performed right between the convolution and BN
layers which results in violent variations in terms of
mean and variance obtained by the layer of BN. By
locating the dropout operations before every Conv
layer, as shown in the graphical overview Figure 4, the
failure of conventional drop-neuron and drop-chan-
nel has been overcome. When you apply the convo-
lution operation after a drop operation, you get a tiny
variance and thus quick convergence. Drop-ConvL-
STM2D enhancement leverages greater model capac-
ity, better drop-out training, and regularization for
enhanced training. More significantly, these upgrades
incur negligible costs.
Generally, the fully-connected LSTM is fed with vec-
torized features to explore the temporal features. This
yields the paucity of spatial similarity information
during learning. Therefore, as an innovative approach
Drop-ConvLSTM2D is deployed in the proposed DNN
to understand the long-term spatiotemporal features.
Formally, for the inputs X1, ...,Xt, the cell states C1, ...,Ct,
the hidden states H1, ...,Ht and the input gates it, forget
gates ft, output gates ot, the key equations of ConvL-
STM [25] are shown below, where * denotes the con-
volution operator and ◦ the Hadamard product:

Information Technology and Control 2024/1/5360

Figure 4
Drop-ConvLSTM2d model for video action classification

 1
 2
 3

Figure 4 Drop-ConvLSTM2d model for video action classification. 4
ConvLSTM [25] are shown below, where * denotes the convolution operator and ◦ the Hadamard 5
product: 6

it = σ(Wxi*Xt +Whi * Ht−1 + bi), (9) 7
ft = σ (Wxf * Xt +Whf * Ht−1 + bf), (10) 8
ot = σ (Wxo * Xt +Who * Ht−1 + bo), (11) 9
Ct = ft ◦ Ct−1+ it ◦ tanh(Wxc* Xt+Whc*Ht−1+bc), (12) 10
Ht = ot ◦ tanh(Ct). (13) 11
Drop-ConvLSTM2D has been built using convolution kernel size (3,3) by associating 12

through the stride (1,1) as given in Figure 4. 13
The training phase of a DNN model is complicated by a change in the density function of 14

each layer's inputs with the parameter values of the preceding layer. To be able to prevent the 15
variation in the distribution of output data, a lower learning rate is used, which maximizes 16
training time. For resolving this issue, Batch Normalization (BN) is applied to normalize the 17
LSTM layers' values to ensure that the mean and variance of the total do not vary as the 18
underlying parameters are distributed, and also to isolate each layer's parameters from the other 19
layers effectively. 20

Given the hidden layer inputs of the network as x1, . . . , xk, the mean value μx and 21
variance  is computed using (14),(15). 22

1

1 k

ix
i

x
k




  , (14) 23

2

1
(1/) ()

k

i x
i

k x 


 
.
 (15) 24

Next, each dimension is normalized to x , 25

ˆ (/)i i xx x     . (16) 26

Parameters γ and β are added at each activation to reconstruct the value by scaling and 27
sliding the normalized value as follows: 28

,ˆ ()i i ix BN x      . (17) 29

Parameters  and  are learned throughout training to improve back propagation. 30

Dropout layer is adapted to every section of Drop-ConvLSTM2D with a value of 0.2 and 31
then determined the output probability using the Restricted Linear Unit (ReLU) function to 32
strengthen the DNN for nonlinear transformation. 33

Two stacks of BN, ReLU, Dropout, and ConvLSTM2D layers are constituted to 34
understand the fused spatial-temporal features of video input. A 'Flatten' layer is added between 35
the convolution layer and the FC layer to convert a two-dimensional matrix of features into a 36
vector that is supplied into a classifier. 37

(9)

 1
 2
 3

Figure 4 Drop-ConvLSTM2d model for video action classification. 4
ConvLSTM [25] are shown below, where * denotes the convolution operator and ◦ the Hadamard 5
product: 6

it = σ(Wxi*Xt +Whi * Ht−1 + bi), (9) 7
ft = σ (Wxf * Xt +Whf * Ht−1 + bf), (10) 8
ot = σ (Wxo * Xt +Who * Ht−1 + bo), (11) 9
Ct = ft ◦ Ct−1+ it ◦ tanh(Wxc* Xt+Whc*Ht−1+bc), (12) 10
Ht = ot ◦ tanh(Ct). (13) 11
Drop-ConvLSTM2D has been built using convolution kernel size (3,3) by associating 12

through the stride (1,1) as given in Figure 4. 13
The training phase of a DNN model is complicated by a change in the density function of 14

each layer's inputs with the parameter values of the preceding layer. To be able to prevent the 15
variation in the distribution of output data, a lower learning rate is used, which maximizes 16
training time. For resolving this issue, Batch Normalization (BN) is applied to normalize the 17
LSTM layers' values to ensure that the mean and variance of the total do not vary as the 18
underlying parameters are distributed, and also to isolate each layer's parameters from the other 19
layers effectively. 20

Given the hidden layer inputs of the network as x1, . . . , xk, the mean value μx and 21
variance  is computed using (14),(15). 22

1

1 k

ix
i

x
k




  , (14) 23

2

1
(1/) ()

k

i x
i

k x 


 
.
 (15) 24

Next, each dimension is normalized to x , 25

ˆ (/)i i xx x     . (16) 26

Parameters γ and β are added at each activation to reconstruct the value by scaling and 27
sliding the normalized value as follows: 28

,ˆ ()i i ix BN x      . (17) 29

Parameters  and  are learned throughout training to improve back propagation. 30

Dropout layer is adapted to every section of Drop-ConvLSTM2D with a value of 0.2 and 31
then determined the output probability using the Restricted Linear Unit (ReLU) function to 32
strengthen the DNN for nonlinear transformation. 33

Two stacks of BN, ReLU, Dropout, and ConvLSTM2D layers are constituted to 34
understand the fused spatial-temporal features of video input. A 'Flatten' layer is added between 35
the convolution layer and the FC layer to convert a two-dimensional matrix of features into a 36
vector that is supplied into a classifier. 37

(10)

 1
 2
 3

Figure 4 Drop-ConvLSTM2d model for video action classification. 4
ConvLSTM [25] are shown below, where * denotes the convolution operator and ◦ the Hadamard 5
product: 6

it = σ(Wxi*Xt +Whi * Ht−1 + bi), (9) 7
ft = σ (Wxf * Xt +Whf * Ht−1 + bf), (10) 8
ot = σ (Wxo * Xt +Who * Ht−1 + bo), (11) 9
Ct = ft ◦ Ct−1+ it ◦ tanh(Wxc* Xt+Whc*Ht−1+bc), (12) 10
Ht = ot ◦ tanh(Ct). (13) 11
Drop-ConvLSTM2D has been built using convolution kernel size (3,3) by associating 12

through the stride (1,1) as given in Figure 4. 13
The training phase of a DNN model is complicated by a change in the density function of 14

each layer's inputs with the parameter values of the preceding layer. To be able to prevent the 15
variation in the distribution of output data, a lower learning rate is used, which maximizes 16
training time. For resolving this issue, Batch Normalization (BN) is applied to normalize the 17
LSTM layers' values to ensure that the mean and variance of the total do not vary as the 18
underlying parameters are distributed, and also to isolate each layer's parameters from the other 19
layers effectively. 20

Given the hidden layer inputs of the network as x1, . . . , xk, the mean value μx and 21
variance  is computed using (14),(15). 22

1

1 k

ix
i

x
k




  , (14) 23

2

1
(1/) ()

k

i x
i

k x 


 
.
 (15) 24

Next, each dimension is normalized to x , 25

ˆ (/)i i xx x     . (16) 26

Parameters γ and β are added at each activation to reconstruct the value by scaling and 27
sliding the normalized value as follows: 28

,ˆ ()i i ix BN x      . (17) 29

Parameters  and  are learned throughout training to improve back propagation. 30

Dropout layer is adapted to every section of Drop-ConvLSTM2D with a value of 0.2 and 31
then determined the output probability using the Restricted Linear Unit (ReLU) function to 32
strengthen the DNN for nonlinear transformation. 33

Two stacks of BN, ReLU, Dropout, and ConvLSTM2D layers are constituted to 34
understand the fused spatial-temporal features of video input. A 'Flatten' layer is added between 35
the convolution layer and the FC layer to convert a two-dimensional matrix of features into a 36
vector that is supplied into a classifier. 37

(11)

 1
 2
 3

Figure 4 Drop-ConvLSTM2d model for video action classification. 4
ConvLSTM [25] are shown below, where * denotes the convolution operator and ◦ the Hadamard 5
product: 6

it = σ(Wxi*Xt +Whi * Ht−1 + bi), (9) 7
ft = σ (Wxf * Xt +Whf * Ht−1 + bf), (10) 8
ot = σ (Wxo * Xt +Who * Ht−1 + bo), (11) 9
Ct = ft ◦ Ct−1+ it ◦ tanh(Wxc* Xt+Whc*Ht−1+bc), (12) 10
Ht = ot ◦ tanh(Ct). (13) 11
Drop-ConvLSTM2D has been built using convolution kernel size (3,3) by associating 12

through the stride (1,1) as given in Figure 4. 13
The training phase of a DNN model is complicated by a change in the density function of 14

each layer's inputs with the parameter values of the preceding layer. To be able to prevent the 15
variation in the distribution of output data, a lower learning rate is used, which maximizes 16
training time. For resolving this issue, Batch Normalization (BN) is applied to normalize the 17
LSTM layers' values to ensure that the mean and variance of the total do not vary as the 18
underlying parameters are distributed, and also to isolate each layer's parameters from the other 19
layers effectively. 20

Given the hidden layer inputs of the network as x1, . . . , xk, the mean value μx and 21
variance  is computed using (14),(15). 22

1

1 k

ix
i

x
k




  , (14) 23

2

1
(1/) ()

k

i x
i

k x 


 
.
 (15) 24

Next, each dimension is normalized to x , 25

ˆ (/)i i xx x     . (16) 26

Parameters γ and β are added at each activation to reconstruct the value by scaling and 27
sliding the normalized value as follows: 28

,ˆ ()i i ix BN x      . (17) 29

Parameters  and  are learned throughout training to improve back propagation. 30

Dropout layer is adapted to every section of Drop-ConvLSTM2D with a value of 0.2 and 31
then determined the output probability using the Restricted Linear Unit (ReLU) function to 32
strengthen the DNN for nonlinear transformation. 33

Two stacks of BN, ReLU, Dropout, and ConvLSTM2D layers are constituted to 34
understand the fused spatial-temporal features of video input. A 'Flatten' layer is added between 35
the convolution layer and the FC layer to convert a two-dimensional matrix of features into a 36
vector that is supplied into a classifier. 37

(12)

 1
 2
 3

Figure 4 Drop-ConvLSTM2d model for video action classification. 4
ConvLSTM [25] are shown below, where * denotes the convolution operator and ◦ the Hadamard 5
product: 6

it = σ(Wxi*Xt +Whi * Ht−1 + bi), (9) 7
ft = σ (Wxf * Xt +Whf * Ht−1 + bf), (10) 8
ot = σ (Wxo * Xt +Who * Ht−1 + bo), (11) 9
Ct = ft ◦ Ct−1+ it ◦ tanh(Wxc* Xt+Whc*Ht−1+bc), (12) 10
Ht = ot ◦ tanh(Ct). (13) 11
Drop-ConvLSTM2D has been built using convolution kernel size (3,3) by associating 12

through the stride (1,1) as given in Figure 4. 13
The training phase of a DNN model is complicated by a change in the density function of 14

each layer's inputs with the parameter values of the preceding layer. To be able to prevent the 15
variation in the distribution of output data, a lower learning rate is used, which maximizes 16
training time. For resolving this issue, Batch Normalization (BN) is applied to normalize the 17
LSTM layers' values to ensure that the mean and variance of the total do not vary as the 18
underlying parameters are distributed, and also to isolate each layer's parameters from the other 19
layers effectively. 20

Given the hidden layer inputs of the network as x1, . . . , xk, the mean value μx and 21
variance  is computed using (14),(15). 22

1

1 k

ix
i

x
k




  , (14) 23

2

1
(1/) ()

k

i x
i

k x 


 
.
 (15) 24

Next, each dimension is normalized to x , 25

ˆ (/)i i xx x     . (16) 26

Parameters γ and β are added at each activation to reconstruct the value by scaling and 27
sliding the normalized value as follows: 28

,ˆ ()i i ix BN x      . (17) 29

Parameters  and  are learned throughout training to improve back propagation. 30

Dropout layer is adapted to every section of Drop-ConvLSTM2D with a value of 0.2 and 31
then determined the output probability using the Restricted Linear Unit (ReLU) function to 32
strengthen the DNN for nonlinear transformation. 33

Two stacks of BN, ReLU, Dropout, and ConvLSTM2D layers are constituted to 34
understand the fused spatial-temporal features of video input. A 'Flatten' layer is added between 35
the convolution layer and the FC layer to convert a two-dimensional matrix of features into a 36
vector that is supplied into a classifier. 37

(13)

Drop-ConvLSTM2D has been built using convolution
kernel size (3,3) by associating through the stride (1,1)
as given in Figure 4.
The training phase of a DNN model is complicated by
a change in the density function of each layer’s inputs
with the parameter values of the preceding layer. To
be able to prevent the variation in the distribution
of output data, a lower learning rate is used, which
maximizes training time. For resolving this issue,
Batch Normalization (BN) is applied to normalize the
LSTM layers’ values to ensure that the mean and vari-
ance of the total do not vary as the underlying param-

*conv caty y B b  . (8) 1

The filter B is used with a desire to drop off the dimension by the multiples of two and it can 2
represent additive weighting of Xa, Xb especially at the same spatial position. 3
 4
3.4. Drop-ConvLSTM2D Model 5
Aggregated features mined with the 3D-CNN and Inception-v3 architecture are then fed into the 6
two stacks of Drop-ConvLSTM2D with 16 sizes of the unit, as depicted in Figure 4. A dropout 7
variant Drop-Conv2D, developed by Cai et al. [2], could result in more stable and effective 8
regularization for deep CNNs. Motivated by that, an innovative structurally more suited dropout 9
variant Drop-ConvLSTM2D is implemented. Dropout operations are conventionally performed 10
right between the convolution and BN layers which results in violent variations in terms of mean 11
and variance obtained by the layer of BN. By locating the dropout operations before every Conv 12
layer, as shown in the graphical overview Figure 4, the failure of conventional drop-neuron and 13
drop-channel has been overcome. When you apply the convolution operation after a drop 14
operation, you get a tiny variance and thus quick convergence. Drop-ConvLSTM2D 15
enhancement leverages greater model capacity, better drop-out training, and regularization for 16
enhanced training. More significantly, these upgrades incur negligible costs. 17
 Generally, the fully-connected LSTM is fed with vectorized features to explore the temporal 18
features. This yields the paucity of spatial similarity information during learning. Therefore, as 19
an innovative approach Drop-ConvLSTM2D is deployed in the proposed DNN to understand the 20
long-term spatiotemporal features. Formally, for the inputs X1, ...,Xt , the cell states C1, ...,Ct , the 21
hidden states H1, ...,Ht and the input gates it, forget gates ft, output gates ot, the key equations of 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 F

la
tt

en

 D

en
se

 F
la

tt
en

Fused Feature Map

 D
ro

pO
ut

C o
nv

L
ST

M
2D

 B
at

ch
N

or
m

R
eL

U

D
ro

p-
C

on
vL

ST
M

2D

D

ro
p-

C
on

vL
ST

M
2D

Fully Connected Layer

 SoftMax Layer

Identified

Action

eters are distributed, and also to isolate each layer’s
parameters from the other layers effectively.
Given the hidden layer inputs of the network as x1, . . . ,
xk, the mean value μx and variance ς is computed using
(14),(15).

 1
 2
 3

Figure 4 Drop-ConvLSTM2d model for video action classification. 4
ConvLSTM [25] are shown below, where * denotes the convolution operator and ◦ the Hadamard 5
product: 6

it = σ(Wxi*Xt +Whi * Ht−1 + bi), (9) 7
ft = σ (Wxf * Xt +Whf * Ht−1 + bf), (10) 8
ot = σ (Wxo * Xt +Who * Ht−1 + bo), (11) 9
Ct = ft ◦ Ct−1+ it ◦ tanh(Wxc* Xt+Whc*Ht−1+bc), (12) 10
Ht = ot ◦ tanh(Ct). (13) 11
Drop-ConvLSTM2D has been built using convolution kernel size (3,3) by associating 12

through the stride (1,1) as given in Figure 4. 13
The training phase of a DNN model is complicated by a change in the density function of 14

each layer's inputs with the parameter values of the preceding layer. To be able to prevent the 15
variation in the distribution of output data, a lower learning rate is used, which maximizes 16
training time. For resolving this issue, Batch Normalization (BN) is applied to normalize the 17
LSTM layers' values to ensure that the mean and variance of the total do not vary as the 18
underlying parameters are distributed, and also to isolate each layer's parameters from the other 19
layers effectively. 20

Given the hidden layer inputs of the network as x1, . . . , xk, the mean value μx and 21
variance  is computed using (14),(15). 22

1

1 k

ix
i

x
k




  , (14) 23

2

1
(1/) ()

k

i x
i

k x 


 
.
 (15) 24

Next, each dimension is normalized to x , 25

ˆ (/)i i xx x     . (16) 26

Parameters γ and β are added at each activation to reconstruct the value by scaling and 27
sliding the normalized value as follows: 28

,ˆ ()i i ix BN x      . (17) 29

Parameters  and  are learned throughout training to improve back propagation. 30

Dropout layer is adapted to every section of Drop-ConvLSTM2D with a value of 0.2 and 31
then determined the output probability using the Restricted Linear Unit (ReLU) function to 32
strengthen the DNN for nonlinear transformation. 33

Two stacks of BN, ReLU, Dropout, and ConvLSTM2D layers are constituted to 34
understand the fused spatial-temporal features of video input. A 'Flatten' layer is added between 35
the convolution layer and the FC layer to convert a two-dimensional matrix of features into a 36
vector that is supplied into a classifier. 37

(14)

 1
 2
 3

Figure 4 Drop-ConvLSTM2d model for video action classification. 4
ConvLSTM [25] are shown below, where * denotes the convolution operator and ◦ the Hadamard 5
product: 6

it = σ(Wxi*Xt +Whi * Ht−1 + bi), (9) 7
ft = σ (Wxf * Xt +Whf * Ht−1 + bf), (10) 8
ot = σ (Wxo * Xt +Who * Ht−1 + bo), (11) 9
Ct = ft ◦ Ct−1+ it ◦ tanh(Wxc* Xt+Whc*Ht−1+bc), (12) 10
Ht = ot ◦ tanh(Ct). (13) 11
Drop-ConvLSTM2D has been built using convolution kernel size (3,3) by associating 12

through the stride (1,1) as given in Figure 4. 13
The training phase of a DNN model is complicated by a change in the density function of 14

each layer's inputs with the parameter values of the preceding layer. To be able to prevent the 15
variation in the distribution of output data, a lower learning rate is used, which maximizes 16
training time. For resolving this issue, Batch Normalization (BN) is applied to normalize the 17
LSTM layers' values to ensure that the mean and variance of the total do not vary as the 18
underlying parameters are distributed, and also to isolate each layer's parameters from the other 19
layers effectively. 20

Given the hidden layer inputs of the network as x1, . . . , xk, the mean value μx and 21
variance  is computed using (14),(15). 22

1

1 k

ix
i

x
k




  , (14) 23

2

1
(1/) ()

k

i x
i

k x 


  . (15) 24

Next, each dimension is normalized to x , 25

ˆ (/)i i xx x     . (16) 26

Parameters γ and β are added at each activation to reconstruct the value by scaling and 27
sliding the normalized value as follows: 28

,ˆ ()i i ix BN x      . (17) 29

Parameters  and  are learned throughout training to improve back propagation. 30

Dropout layer is adapted to every section of Drop-ConvLSTM2D with a value of 0.2 and 31
then determined the output probability using the Restricted Linear Unit (ReLU) function to 32
strengthen the DNN for nonlinear transformation. 33

Two stacks of BN, ReLU, Dropout, and ConvLSTM2D layers are constituted to 34
understand the fused spatial-temporal features of video input. A 'Flatten' layer is added between 35
the convolution layer and the FC layer to convert a two-dimensional matrix of features into a 36
vector that is supplied into a classifier. 37

(15)

Next, each dimension is normalized to x,

 1
 2
 3

Figure 4 Drop-ConvLSTM2d model for video action classification. 4
ConvLSTM [25] are shown below, where * denotes the convolution operator and ◦ the Hadamard 5
product: 6

it = σ(Wxi*Xt +Whi * Ht−1 + bi), (9) 7
ft = σ (Wxf * Xt +Whf * Ht−1 + bf), (10) 8
ot = σ (Wxo * Xt +Who * Ht−1 + bo), (11) 9
Ct = ft ◦ Ct−1+ it ◦ tanh(Wxc* Xt+Whc*Ht−1+bc), (12) 10
Ht = ot ◦ tanh(Ct). (13) 11
Drop-ConvLSTM2D has been built using convolution kernel size (3,3) by associating 12

through the stride (1,1) as given in Figure 4. 13
The training phase of a DNN model is complicated by a change in the density function of 14

each layer's inputs with the parameter values of the preceding layer. To be able to prevent the 15
variation in the distribution of output data, a lower learning rate is used, which maximizes 16
training time. For resolving this issue, Batch Normalization (BN) is applied to normalize the 17
LSTM layers' values to ensure that the mean and variance of the total do not vary as the 18
underlying parameters are distributed, and also to isolate each layer's parameters from the other 19
layers effectively. 20

Given the hidden layer inputs of the network as x1, . . . , xk, the mean value μx and 21
variance  is computed using (14),(15). 22

1

1 k

ix
i

x
k




  , (14) 23

2

1
(1/) ()

k

i x
i

k x 


 
.
 (15) 24

Next, each dimension is normalized to x , 25

ˆ (/)i i xx x     . (16) 26

Parameters γ and β are added at each activation to reconstruct the value by scaling and 27
sliding the normalized value as follows: 28

,ˆ ()i i ix BN x      . (17) 29

Parameters  and  are learned throughout training to improve back propagation. 30

Dropout layer is adapted to every section of Drop-ConvLSTM2D with a value of 0.2 and 31
then determined the output probability using the Restricted Linear Unit (ReLU) function to 32
strengthen the DNN for nonlinear transformation. 33

Two stacks of BN, ReLU, Dropout, and ConvLSTM2D layers are constituted to 34
understand the fused spatial-temporal features of video input. A 'Flatten' layer is added between 35
the convolution layer and the FC layer to convert a two-dimensional matrix of features into a 36
vector that is supplied into a classifier. 37

(16)

Parameters γ and β are added at each activation to re-
construct the value by scaling and sliding the normal-
ized value as follows:

,ˆ ()i i ix BN x      . (17) (17)

61Information Technology and Control 2024/1/53

Parameters β and η are learned throughout training
to improve back propagation.
Dropout layer is adapted to every section of Drop-Con-
vLSTM2D with a value of 0.2 and then determined
the output probability using the Restricted Linear
Unit (ReLU) function to strengthen the DNN for non-
linear transformation.
Two stacks of BN, ReLU, Dropout, and ConvLSTM2D
layers are constituted to understand the fused spa-
tial-temporal features of video input. A ‘Flatten’ lay-
er is added between the convolution layer and the FC
layer to convert a two-dimensional matrix of features
into a vector that is supplied into a classifier.
The last layer of the architecture requires a softmax
standardized exponential function for forecasting the
commensurate probability distribution of performing
various activities using the classifier. It converts neu-
ron output values between 0 and 1, which is known
to predict behavior likelihood, and the greatest one is
the outcome of categorization.
A number of neurons in softmax layer are equal to the
class count. The approach is described as,

The last layer of the architecture requires a softmax standardized exponential function for 1
forecasting the commensurate probability distribution of performing various activities using the 2
classifier. It converts neuron output values between 0 and 1, which is known to predict behavior 3
likelihood, and the greatest one is the outcome of categorization. 4

A number of neurons in softmax layer are equal to the class count. The approach is 5
described as, 6

1

exp()

exp()
ck N

k

pq
p






, (18) 7

where, c is the activity class and Nc is the count of activity classes. 8
 9
4. Bayesian Parameter Optimization 10
 In the DNN, the parameters like learning rate, number of neurons for the various layers, 11
the dropout, scale of the mini-batch, etc. unleash a recognition rate. Those parameters are called 12
hyper parameters. Choosing the best hyper parameters [32] in the training phase is an 13
optimization problem. The hyper parameter optimization is formulated using 14

X*= x € X min f(x), (19) 15
where, x is the set of hyper parameters, 16

X is the range of values of x, 17
f(x) is the objective function to diminish the error value estimated with the testing data . 18
In this proposed work Bayesian optimization [32,37] is exploited for tuning hyper 19

parameters like learning rate, the number of filters, the drop-out layer, and the batch size in the 20
network in Drop-ConvLSTM2D. 21

The theory of Bayesian optimization is Bayes’ theorem; according to which, given the 22
observations D1:k, the posterior distribution of a model A, P(A|D1:k) is proportional to the 23
likelihood of D1:k given A, multiplied by the prior probability of A 24
 P(A|D1:k)= P(D1:k|A)P(A), (20) 25
 26

 27
 28
 29

 30
 31

Figure 5 Framework of Bayesian optimization for DNN model. 32
 33
Bayesian optimization picks out the smallest amount of a function, f(y), on a bounded set, 34

Y. Bayesian optimization is exploited to investigate the perfect measure of sample values where 35
the function appears to be small, as shown in Figure 5. With more trials for function f(y), the 36
DNN model is more likely to make better decisions. This research achieved the optimum 37

Choose the
optimizing
parameters

Evaluate
the

objective
function

Use optimized
Parameters in

test set

Select the best
Optimized

values

Using the
optimized

Parameters in
test set

(18)

where, c is the activity class and Nc is the count of ac-
tivity classes.

4. Bayesian Parameter Optimization
In the DNN, the parameters like learning rate, number
of neurons for the various layers, the dropout, scale of

the mini-batch, etc. unleash a recognition rate. Those
parameters are called hyper parameters. Choosing
the best hyper parameters [32] in the training phase
is an optimization problem. The hyper parameter op-
timization is formulated using

The last layer of the architecture requires a softmax standardized exponential function for 1
forecasting the commensurate probability distribution of performing various activities using the 2
classifier. It converts neuron output values between 0 and 1, which is known to predict behavior 3
likelihood, and the greatest one is the outcome of categorization. 4

A number of neurons in softmax layer are equal to the class count. The approach is 5
described as, 6

1

exp()

exp()
ck N

k

pq
p






, (18) 7

where, c is the activity class and Nc is the count of activity classes. 8
 9
4. Bayesian Parameter Optimization 10
 In the DNN, the parameters like learning rate, number of neurons for the various layers, 11
the dropout, scale of the mini-batch, etc. unleash a recognition rate. Those parameters are called 12
hyper parameters. Choosing the best hyper parameters [32] in the training phase is an 13
optimization problem. The hyper parameter optimization is formulated using 14

X*= x € X min f(x), (19) 15
where, x is the set of hyper parameters, 16

X is the range of values of x, 17
f(x) is the objective function to diminish the error value estimated with the testing data . 18
In this proposed work Bayesian optimization [32,37] is exploited for tuning hyper 19

parameters like learning rate, the number of filters, the drop-out layer, and the batch size in the 20
network in Drop-ConvLSTM2D. 21

The theory of Bayesian optimization is Bayes’ theorem; according to which, given the 22
observations D1:k, the posterior distribution of a model A, P(A|D1:k) is proportional to the 23
likelihood of D1:k given A, multiplied by the prior probability of A 24
 P(A|D1:k)= P(D1:k|A)P(A), (20) 25
 26

 27
 28
 29

 30
 31

Figure 5 Framework of Bayesian optimization for DNN model. 32
 33
Bayesian optimization picks out the smallest amount of a function, f(y), on a bounded set, 34

Y. Bayesian optimization is exploited to investigate the perfect measure of sample values where 35
the function appears to be small, as shown in Figure 5. With more trials for function f(y), the 36
DNN model is more likely to make better decisions. This research achieved the optimum 37

Choose the
optimizing
parameters

Evaluate
the

objective
function

Use optimized
Parameters in

test set

Select the best
Optimized

values

Using the
optimized

Parameters in
test set

(19)

where, x is the set of hyper parameters, X is the range
of values of x, f(x) is the objective function to diminish
the error value estimated with the testing data.
In this proposed work Bayesian optimization [32,37]
is exploited for tuning hyper parameters like learn-
ing rate, the number of filters, the drop-out layer,
and the batch size in the network in Drop-ConvL-
STM2D.
The theory of Bayesian optimization is Bayes’ theo-
rem; according to which, given the observations D1:k,
the posterior distribution of a model A, P(A|D1:k) is
proportional to the likelihood of D1:k given A, multi-
plied by the prior probability of A

The last layer of the architecture requires a softmax standardized exponential function for 1
forecasting the commensurate probability distribution of performing various activities using the 2
classifier. It converts neuron output values between 0 and 1, which is known to predict behavior 3
likelihood, and the greatest one is the outcome of categorization. 4

A number of neurons in softmax layer are equal to the class count. The approach is 5
described as, 6

1

exp()

exp()
ck N

k

pq
p






, (18) 7

where, c is the activity class and Nc is the count of activity classes. 8
 9
4. Bayesian Parameter Optimization 10
 In the DNN, the parameters like learning rate, number of neurons for the various layers, 11
the dropout, scale of the mini-batch, etc. unleash a recognition rate. Those parameters are called 12
hyper parameters. Choosing the best hyper parameters [32] in the training phase is an 13
optimization problem. The hyper parameter optimization is formulated using 14

X*= x € X min f(x), (19) 15
where, x is the set of hyper parameters, 16

X is the range of values of x, 17
f(x) is the objective function to diminish the error value estimated with the testing data . 18
In this proposed work Bayesian optimization [32,37] is exploited for tuning hyper 19

parameters like learning rate, the number of filters, the drop-out layer, and the batch size in the 20
network in Drop-ConvLSTM2D. 21

The theory of Bayesian optimization is Bayes’ theorem; according to which, given the 22
observations D1:k, the posterior distribution of a model A, P(A|D1:k) is proportional to the 23
likelihood of D1:k given A, multiplied by the prior probability of A 24
 P(A|D1:k)= P(D1:k|A)P(A), (20) 25
 26

 27
 28
 29

 30
 31

Figure 5 Framework of Bayesian optimization for DNN model. 32
 33
Bayesian optimization picks out the smallest amount of a function, f(y), on a bounded set, 34

Y. Bayesian optimization is exploited to investigate the perfect measure of sample values where 35
the function appears to be small, as shown in Figure 5. With more trials for function f(y), the 36
DNN model is more likely to make better decisions. This research achieved the optimum 37

Choose the
optimizing
parameters

Evaluate
the

objective
function

Use optimized
Parameters in

test set

Select the best
Optimized

values

Using the
optimized

Parameters in
test set

(20)

Bayesian optimization picks out the smallest amount
of a function, f(y), on a bounded set, Y. Bayesian opti-
mization is exploited to investigate the perfect mea-
sure of sample values where the function appears to
be small, as shown in Figure 5. With more trials for
function f(y), the DNN model is more likely to make
better decisions.
This research achieved the optimum network ar-
chitecture by reducing the validation error that was
identified with Bayesian optimization [2] as exposed
in Figure 6.

The last layer of the architecture requires a softmax standardized exponential function for 1
forecasting the commensurate probability distribution of performing various activities using the 2
classifier. It converts neuron output values between 0 and 1, which is known to predict behavior 3
likelihood, and the greatest one is the outcome of categorization. 4

A number of neurons in softmax layer are equal to the class count. The approach is 5
described as, 6

1

exp()

exp()
ck N

k

pq
p






, (18) 7

where, c is the activity class and Nc is the count of activity classes. 8
 9
4. Bayesian Parameter Optimization 10
 In the DNN, the parameters like learning rate, number of neurons for the various layers, 11
the dropout, scale of the mini-batch, etc. unleash a recognition rate. Those parameters are called 12
hyper parameters. Choosing the best hyper parameters [32] in the training phase is an 13
optimization problem. The hyper parameter optimization is formulated using 14

X*= x € X min f(x), (19) 15
where, x is the set of hyper parameters, 16

X is the range of values of x, 17
f(x) is the objective function to diminish the error value estimated with the testing data . 18
In this proposed work Bayesian optimization [32,37] is exploited for tuning hyper 19

parameters like learning rate, the number of filters, the drop-out layer, and the batch size in the 20
network in Drop-ConvLSTM2D. 21

The theory of Bayesian optimization is Bayes’ theorem; according to which, given the 22
observations D1:k, the posterior distribution of a model A, P(A|D1:k) is proportional to the 23
likelihood of D1:k given A, multiplied by the prior probability of A 24
 P(A|D1:k)= P(D1:k|A)P(A), (20) 25
 26

 27
 28
 29

 30
 31

Figure 5 Framework of Bayesian optimization for DNN model. 32
 33
Bayesian optimization picks out the smallest amount of a function, f(y), on a bounded set, 34

Y. Bayesian optimization is exploited to investigate the perfect measure of sample values where 35
the function appears to be small, as shown in Figure 5. With more trials for function f(y), the 36
DNN model is more likely to make better decisions. This research achieved the optimum 37

Choose the
optimizing
parameters

Evaluate
the

objective
function

Use optimized
Parameters in

test set

Select the best
Optimized

values

Using the
optimized

Parameters in
test set

Figure 5
Framework of Bayesian optimization for DNN model

Information Technology and Control 2024/1/5362

4.1. Parameters Setting
4.1.1. Number of Filters in Drop-ConvLSTM2D
Layer
The analyses have been carried out, to validate the
control of the filter count in the Drop-ConvLSTM2D
model on the recognition accuracy as shown in Figure
6. It exhibits that the accuracy will be at the minimum
when each Drop-ConvLSTM2D contains only eight
filters. The network lacks the capacity for learning
and data processing due to the fewer filters, which
yields a low-performance rate. The recognition rate
improves with the filter count. As the filter count in-
creases, the layered architecture will become more
complicated, and the model’s training fastness would
have been hampered. When the filter count is 32, the
recognition accuracy reaches 95.8%; hence the filter
count 32 is chosen in this architecture.

Figure 6
Recognition accuracy Vs Number of Filters

Figure 7
Recognition accuracy Vs Learning Rate

network architecture by reducing the validation error that was identified with Bayesian 1
optimization [2] as exposed in Figure 6. 2

 3

 4
 Figure 6 Recognition accuracy Vs Number of Filters. Figure 7 Recognition accuracy Vs Learning Rate 5
 6
4.1. Parameters Setting 7
 8
4.1.1. Number of Filters in Drop-ConvLSTM2D Layer: 9
The analyses have been carried out, to validate the control of the filter count in the Drop-10
ConvLSTM2D model on the recognition accuracy as shown in Figure 6. It exhibits that the 11
accuracy will be at the minimum when each Drop-ConvLSTM2D contains only eight filters. The 12
network lacks the capacity for learning and data processing due to the fewer filters, which yields 13
a low-performance rate. The recognition rate improves with the filter count. As the filter count 14
increases, the layered architecture will become more complicated, and the model’s training 15
fastness would have been hampered. When the filter count is 32, the recognition accuracy 16
reaches 95.8%; hence the filter count 32 is chosen in this architecture. 17

 18
 Figure 8 Recognition accuracy Vs Batch Size. Figure 9 Recognition accuracy Vs Dropout 19
. 20
 21
4.1.2. Learning Rates 22
The learning rate is the most vital hyper parameter in designing the deep architecture. It decides 23
the learning capacity of the deep learning network to understand the problem. It determines the 24

network architecture by reducing the validation error that was identified with Bayesian 1
optimization [2] as exposed in Figure 6. 2

 3

 4
 Figure 6 Recognition accuracy Vs Number of Filters. Figure 7 Recognition accuracy Vs Learning Rate 5
 6
4.1. Parameters Setting 7
 8
4.1.1. Number of Filters in Drop-ConvLSTM2D Layer: 9
The analyses have been carried out, to validate the control of the filter count in the Drop-10
ConvLSTM2D model on the recognition accuracy as shown in Figure 6. It exhibits that the 11
accuracy will be at the minimum when each Drop-ConvLSTM2D contains only eight filters. The 12
network lacks the capacity for learning and data processing due to the fewer filters, which yields 13
a low-performance rate. The recognition rate improves with the filter count. As the filter count 14
increases, the layered architecture will become more complicated, and the model’s training 15
fastness would have been hampered. When the filter count is 32, the recognition accuracy 16
reaches 95.8%; hence the filter count 32 is chosen in this architecture. 17

 18
 Figure 8 Recognition accuracy Vs Batch Size. Figure 9 Recognition accuracy Vs Dropout 19
. 20
 21
4.1.2. Learning Rates 22
The learning rate is the most vital hyper parameter in designing the deep architecture. It decides 23
the learning capacity of the deep learning network to understand the problem. It determines the 24

4.1.2. Learning Rates
The learning rate is the most vital hyper parame-
ter in designing the deep architecture. It decides the
learning capacity of the deep learning network to
understand the problem. It determines the amount
of weight by which the network should be updated in
the course of training. If the learning rate is high the
result oscillates in training iterations; else if it is too
low, the network may be trapped in a suboptimal goal
state. The design is probed at different learning rates
as showed in Figure 7. As the learning rate of 0.002
is leveraging the model’s recognition rate, a learning
rate of 0.002 is adapted in this model.

4.1.3. Batch Size
The batch size is the number of samples passed to the
model for updating the network parameters which

Figure 8
Recognition accuracy Vs Batch Size

Figure 9
Recognition accuracy Vs Dropout

network architecture by reducing the validation error that was identified with Bayesian 1
optimization [2] as exposed in Figure 6. 2

 3

 4
 Figure 6 Recognition accuracy Vs Number of Filters. Figure 7 Recognition accuracy Vs Learning Rate 5
 6
4.1. Parameters Setting 7
 8
4.1.1. Number of Filters in Drop-ConvLSTM2D Layer: 9
The analyses have been carried out, to validate the control of the filter count in the Drop-10
ConvLSTM2D model on the recognition accuracy as shown in Figure 6. It exhibits that the 11
accuracy will be at the minimum when each Drop-ConvLSTM2D contains only eight filters. The 12
network lacks the capacity for learning and data processing due to the fewer filters, which yields 13
a low-performance rate. The recognition rate improves with the filter count. As the filter count 14
increases, the layered architecture will become more complicated, and the model’s training 15
fastness would have been hampered. When the filter count is 32, the recognition accuracy 16
reaches 95.8%; hence the filter count 32 is chosen in this architecture. 17

 18
 Figure 8 Recognition accuracy Vs Batch Size. Figure 9 Recognition accuracy Vs Dropout 19
. 20
 21
4.1.2. Learning Rates 22
The learning rate is the most vital hyper parameter in designing the deep architecture. It decides 23
the learning capacity of the deep learning network to understand the problem. It determines the 24

DNN model is more likely to make better decisions. This research achieved the optimum 1
network architecture by reducing the validation error that was identified with Bayesian 2
optimization [2] as exposed in Figure 6. 3

 4

 5
 Figure 6 Recognition accuracy Vs Number of Filters. Figure 7 Recognition accuracy Vs Learning Rate 6
 7
4.1. Parameters Setting 8
 9
4.1.1. Number of Filters in Drop-ConvLSTM2D Layer: 10
The analyses have been carried out, to validate the control of the filter count in the Drop-11
ConvLSTM2D model on the recognition accuracy as shown in Figure 6. It exhibits that the 12
accuracy will be at the minimum when each Drop-ConvLSTM2D contains only eight filters. The 13
network lacks the capacity for learning and data processing due to the fewer filters, which yields 14
a low-performance rate. The recognition rate improves with the filter count. As the filter count 15
increases, the layered architecture will become more complicated, and the model’s training 16
fastness would have been hampered. When the filter count is 32, the recognition accuracy 17
reaches 95.8%; hence the filter count 32 is chosen in this architecture. 18

 19
 Figure 8 Recognition accuracy Vs Batch Size. Figure 9 Recognition accuracy Vs Dropout 20
. 21
 22
4.1.2. Learning Rates 23

63Information Technology and Control 2024/1/53

determines how accurately the error gradient [16]
can be estimated in deep learning architecture. With-
in a suitable range, increasing the size of the batch
can determine the gradient descent direction more
accurately and cause less training fluctuation. Recog-
nition effects are seen in Figure 8. The average iden-
tification rate is 95.8% for batches of 64 observations.
Consequently, 64 is recommended as the appropriate
batch in this review.

4.1.4. Regularization
Drop out is the methodology for regularization that
enables a DNN to study the most discriminative fea-
tures which are needed with relevance to various
subsets of the other neural units. Drop out must have
an optimal value, as the loss function will not be af-
fected if it is zero, and if it is high, it will remove the
potency of the neural units in a layer that may lead to
poor training. The Drop out of 0.02 is adopted in this
design since the recognition rate is high at this value
as depicted in Figure 9. Table 1 shows the hyper pa-
rameters of the design, Table 2 shows Hyper param-
eter values throughout the training phase and Table 3
shows the best observed optimal points, respectively.

Table 1
The choosen hyper parameters

Table 2
Hyper parameter values during training

Hyper parameters Initial Value Final Value

Learning Rate 0 1

Number of filterss in
Drop-ConvLSTM2D 10 50

Batch Size 16 512

Regularization-Dropout 0 1

I Learning
Rate

Number of filters
in Drop-ConvL-

STM2D

Batch
Size

Regularization
Dropout

1 0 32 512 0.4

2 0.05 128 128 0.3

3 0.01 64 64 0.5

4 0.1 256 256 0.8

5 0.002 32 36 0.2

Table 3
Best observed feasible points

I Learning
Rate

Number of filters
in Drop-ConvLST-

M2D

Batch
Size

Regulariza-
tion -Dropout

1 0.002 32 64 0.2

The precision of the model before tuning of hyper pa-
rameters is 87.2% and after 100 iterations the accura-
cy of the model hits 95.8%. The experimental parame-
ters of the designed model are depicted in Table 4.

Table 4
Experimental parameters of Drop-ConvLSTM2D on UCF-101

Parameters Value

Input Vector Size 112×112×30

Convolution Kernal size Conv3D -3×3×3
ConvLSTM2D-1×3

Number of Filter Conv3D-8,16
ConvLSTM2D-32,32

Pool size 3×3

Activation Function ReLu

Drop-ConvLSTM Layer 2

Dropout 0.2

Learning Rate 0.002

Batch size 64

Epoch 100

5. Experimental Information on the
UCF-101 and HMDB51 Dataset
5.1. Datasets
The UCF-101 and HMDB51 are two datasets used for
evaluating the experiment, which is very common in
the field of HAR research. There are 13320 videos in
UCF101 from 101 YouTube video collections. There
are 25 classes of between 4-7 videos per category.
The categories of behavior may consist of five types:
Human-Object Interactions, Body-Motion Only, Hu-
man-Human Interaction, Playing Musical Instru-
ments, and Sports. HMDB51 includes 6766 videos,
categorized by 51, including five types of behavior:

Information Technology and Control 2024/1/5364

gestures of the face, facial actions with object interac-
tions, movements of the body, and movements of the
body by touching the objects. 9.5K training videos are
included in each UCF-101 split; 3.7K training videos
are included in the HMDB51 split. With ‘320x240’
spatial resolution and 30fps frame rate, HMDB51 has
fewer groups and images than UCF-101. In this study
“Google Colab” is utilized to execute the programs.
It supports nearly 25 GB of RAM and variable GPU
based on the network traffic. Sample action catego-
ries of UCF-101 and HMDB51 data sets are depicted
in Figure10.

5.2. Performance Metrics Obtained for
Proposed Model
We benchmarked our model using accuracy, preci-
sion, recall, F1-score.

We benchmarked our model using accuracy, precision, recall, F1-score. 1
Accuracy = TP+TN/(TP+FP+TN+FN), (20) 2
Precision = TP/(TP+FP), (21) 3
Recall = TP/(TP+FN), (22) 4
F1 Score = 2*(Recall * Precision) / (Recall + Precision) (23) 5
 6

 The Precision, Recall, and F1-score of the proposed network for the UCF-101, HMDB51 data 7
set on 12 classes are included in Tables 5-6. 8
 9
Table 5 Performance metrics for proposed model Table 6 Performance metrics for proposed model on 10
UCF-101 data set. on HMDB51 data set. 11

 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27

5.3 Confusion Matrix of Proposed Model: UCF-101 and HMDB51 Data Set 28

The recognition rate of the DL architecture is monitored with the help of the confusion matrix 29
which exhibits how to update parameters of the deep learning model designed by identifying 30
errors in training process. Figures 11, Figure 12 project the confusion matrices for 12 classes in 31
the UCF-101 dataset and HMDB51 dataset. 32

5.4. Recognition Accuracy (%) of Proposed Model in Assessment with State-of-the-Art 33
Models on UCF- 101 Data Set and HMDB51 34
The proposed model's classification accuracy is compared to the front running models with 35
respect to average accuracy as exposed in Table 7. 36
 37

Action Precision Recall F1-score
Apply_EyeMakeup 0.99 0.97 0.98
Apply_Lipstick 0.87 0.87 0.87
Archery 0.95 0.96 0.95
Baby_Crawling 0.86 0.95 0.90
Balance_Beam 0.95 0.96 0.95
Band_Marching 0.92 0.95 0.93
Base_BallPitch 0.89 0.90 0.89
BasketBall 0.98 0.99 0.99
BasketBall_Dunk 0.97 0.95 0.96
Bench_Press 0.96 0.91 0.94
Biking 0.97 0.93 0.95
Billiards 0.99 0.92 0.95

Action Precision Recall F1-score
Brush_hair 0.85 0.79 0.82
Cartwheel 0.80 0.87 0.83
Chew 0.81 0.86 0.84
Clim_stairs 0.84 0.84 0.84
Draw_sword 0.92 0.85 0.88
Catch 0.80 0.84 0.82
Clap 0.82 0.83 0.83
Climb 0.82 0.83 0.83
Dive 0.94 0.86 0.90
Dribble 0.84 0.78 0.81
Drink 0.74 0.85 0.79
Eat 0.73 0.77 0.75

(20)

We benchmarked our model using accuracy, precision, recall, F1-score. 1
Accuracy = TP+TN/(TP+FP+TN+FN), (20) 2
Precision = TP/(TP+FP), (21) 3
Recall = TP/(TP+FN), (22) 4
F1 Score = 2*(Recall * Precision) / (Recall + Precision) (23) 5
 6

 The Precision, Recall, and F1-score of the proposed network for the UCF-101, HMDB51 data 7
set on 12 classes are included in Tables 5-6. 8
 9
Table 5 Performance metrics for proposed model Table 6 Performance metrics for proposed model on 10
UCF-101 data set. on HMDB51 data set. 11

 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27

5.3 Confusion Matrix of Proposed Model: UCF-101 and HMDB51 Data Set 28

The recognition rate of the DL architecture is monitored with the help of the confusion matrix 29
which exhibits how to update parameters of the deep learning model designed by identifying 30
errors in training process. Figures 11, Figure 12 project the confusion matrices for 12 classes in 31
the UCF-101 dataset and HMDB51 dataset. 32

5.4. Recognition Accuracy (%) of Proposed Model in Assessment with State-of-the-Art 33
Models on UCF- 101 Data Set and HMDB51 34
The proposed model's classification accuracy is compared to the front running models with 35
respect to average accuracy as exposed in Table 7. 36
 37

Action Precision Recall F1-score
Apply_EyeMakeup 0.99 0.97 0.98
Apply_Lipstick 0.87 0.87 0.87
Archery 0.95 0.96 0.95
Baby_Crawling 0.86 0.95 0.90
Balance_Beam 0.95 0.96 0.95
Band_Marching 0.92 0.95 0.93
Base_BallPitch 0.89 0.90 0.89
BasketBall 0.98 0.99 0.99
BasketBall_Dunk 0.97 0.95 0.96
Bench_Press 0.96 0.91 0.94
Biking 0.97 0.93 0.95
Billiards 0.99 0.92 0.95

Action Precision Recall F1-score
Brush_hair 0.85 0.79 0.82
Cartwheel 0.80 0.87 0.83
Chew 0.81 0.86 0.84
Clim_stairs 0.84 0.84 0.84
Draw_sword 0.92 0.85 0.88
Catch 0.80 0.84 0.82
Clap 0.82 0.83 0.83
Climb 0.82 0.83 0.83
Dive 0.94 0.86 0.90
Dribble 0.84 0.78 0.81
Drink 0.74 0.85 0.79
Eat 0.73 0.77 0.75

(21)

We benchmarked our model using accuracy, precision, recall, F1-score. 1
Accuracy = TP+TN/(TP+FP+TN+FN), (20) 2
Precision = TP/(TP+FP), (21) 3
Recall = TP/(TP+FN), (22) 4
F1 Score = 2*(Recall * Precision) / (Recall + Precision) (23) 5
 6

 The Precision, Recall, and F1-score of the proposed network for the UCF-101, HMDB51 data 7
set on 12 classes are included in Tables 5-6. 8
 9
Table 5 Performance metrics for proposed model Table 6 Performance metrics for proposed model on 10
UCF-101 data set. on HMDB51 data set. 11

 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27

5.3 Confusion Matrix of Proposed Model: UCF-101 and HMDB51 Data Set 28

The recognition rate of the DL architecture is monitored with the help of the confusion matrix 29
which exhibits how to update parameters of the deep learning model designed by identifying 30
errors in training process. Figures 11, Figure 12 project the confusion matrices for 12 classes in 31
the UCF-101 dataset and HMDB51 dataset. 32

5.4. Recognition Accuracy (%) of Proposed Model in Assessment with State-of-the-Art 33
Models on UCF- 101 Data Set and HMDB51 34
The proposed model's classification accuracy is compared to the front running models with 35
respect to average accuracy as exposed in Table 7. 36
 37

Action Precision Recall F1-score
Apply_EyeMakeup 0.99 0.97 0.98
Apply_Lipstick 0.87 0.87 0.87
Archery 0.95 0.96 0.95
Baby_Crawling 0.86 0.95 0.90
Balance_Beam 0.95 0.96 0.95
Band_Marching 0.92 0.95 0.93
Base_BallPitch 0.89 0.90 0.89
BasketBall 0.98 0.99 0.99
BasketBall_Dunk 0.97 0.95 0.96
Bench_Press 0.96 0.91 0.94
Biking 0.97 0.93 0.95
Billiards 0.99 0.92 0.95

Action Precision Recall F1-score
Brush_hair 0.85 0.79 0.82
Cartwheel 0.80 0.87 0.83
Chew 0.81 0.86 0.84
Clim_stairs 0.84 0.84 0.84
Draw_sword 0.92 0.85 0.88
Catch 0.80 0.84 0.82
Clap 0.82 0.83 0.83
Climb 0.82 0.83 0.83
Dive 0.94 0.86 0.90
Dribble 0.84 0.78 0.81
Drink 0.74 0.85 0.79
Eat 0.73 0.77 0.75

(22)

F1 Score = 2*(Recall * Precision) / (Recall + Precision) (23)

The Precision, Recall, and F1-score of the proposed

Figure 10
Sample action categories of UCF-101 and HMDB51 Data sets

Table 4 Experimental parameters of Drop-ConvLSTM2D on UCF-101. 1
Parameters Value
Input Vector Size 112×112×30
Convolution Kernal size Conv3D -3×3×3

ConvLSTM2D-1×3
Number of Filter Conv3D-8,16

ConvLSTM2D-32,32
Pool size 3×3
Activation Function ReLu
Drop-ConvLSTM Layer 2
Dropout 0.2
Learning Rate 0.002
Batch size 64
Epoch 100

 2
5. Experimental Information on the UCF-101 and HMDB51 Dataset 3
5.1 Datasets 4
The UCF-101 and HMDB51 are two datasets used for evaluating the experiment, which is very 5
common in the field of HAR research. There are 13320 videos in UCF101 from 101 YouTube 6
video collections. There are 25 classes of between 4-7 videos per category. The categories of 7
behavior may consist of five types: Human-Object Interactions, Body-Motion Only, Human-8
Human Interaction, Playing Musical Instruments, and Sports. HMDB51 includes 6766 videos, 9
categorized by 51, including five types of behavior: gestures of the face, facial actions with 10
object interactions, movements of the body, and movements of the body by touching the objects. 11
9.5K training videos are included in each UCF-101 split; 3.7K training videos are included in the 12
HMDB51 split. With ‘320x240’ spatial resolution and 30fps frame rate, HMDB51 has fewer 13
groups and images than UCF-101. In this study “Google Colab” is utilized to execute the 14
programs. It supports nearly 25 GB of RAM and variable GPU based on the network traffic. 15
Sample action categories of UCF-101 and HMDB51 data sets are depicted in Figure10. 16

 17
Figure 10 Sample action categories of UCF-101 and HMDB51 Data sets. 18

 19
5.2. Performance Metrics Obtained for Proposed Model 20

Table 4 Experimental parameters of Drop-ConvLSTM2D on UCF-101. 1
Parameters Value
Input Vector Size 112×112×30
Convolution Kernal size Conv3D -3×3×3

ConvLSTM2D-1×3
Number of Filter Conv3D-8,16

ConvLSTM2D-32,32
Pool size 3×3
Activation Function ReLu
Drop-ConvLSTM Layer 2
Dropout 0.2
Learning Rate 0.002
Batch size 64
Epoch 100

 2
5. Experimental Information on the UCF-101 and HMDB51 Dataset 3
5.1 Datasets 4
The UCF-101 and HMDB51 are two datasets used for evaluating the experiment, which is very 5
common in the field of HAR research. There are 13320 videos in UCF101 from 101 YouTube 6
video collections. There are 25 classes of between 4-7 videos per category. The categories of 7
behavior may consist of five types: Human-Object Interactions, Body-Motion Only, Human-8
Human Interaction, Playing Musical Instruments, and Sports. HMDB51 includes 6766 videos, 9
categorized by 51, including five types of behavior: gestures of the face, facial actions with 10
object interactions, movements of the body, and movements of the body by touching the objects. 11
9.5K training videos are included in each UCF-101 split; 3.7K training videos are included in the 12
HMDB51 split. With ‘320x240’ spatial resolution and 30fps frame rate, HMDB51 has fewer 13
groups and images than UCF-101. In this study “Google Colab” is utilized to execute the 14
programs. It supports nearly 25 GB of RAM and variable GPU based on the network traffic. 15
Sample action categories of UCF-101 and HMDB51 data sets are depicted in Figure10. 16

 17
Figure 10 Sample action categories of UCF-101 and HMDB51 Data sets. 18

 19
5.2. Performance Metrics Obtained for Proposed Model 20

Table 4 Experimental parameters of Drop-ConvLSTM2D on UCF-101. 1
Parameters Value
Input Vector Size 112×112×30
Convolution Kernal size Conv3D -3×3×3

ConvLSTM2D-1×3
Number of Filter Conv3D-8,16

ConvLSTM2D-32,32
Pool size 3×3
Activation Function ReLu
Drop-ConvLSTM Layer 2
Dropout 0.2
Learning Rate 0.002
Batch size 64
Epoch 100

 2
5. Experimental Information on the UCF-101 and HMDB51 Dataset 3
5.1 Datasets 4
The UCF-101 and HMDB51 are two datasets used for evaluating the experiment, which is very 5
common in the field of HAR research. There are 13320 videos in UCF101 from 101 YouTube 6
video collections. There are 25 classes of between 4-7 videos per category. The categories of 7
behavior may consist of five types: Human-Object Interactions, Body-Motion Only, Human-8
Human Interaction, Playing Musical Instruments, and Sports. HMDB51 includes 6766 videos, 9
categorized by 51, including five types of behavior: gestures of the face, facial actions with 10
object interactions, movements of the body, and movements of the body by touching the objects. 11
9.5K training videos are included in each UCF-101 split; 3.7K training videos are included in the 12
HMDB51 split. With ‘320x240’ spatial resolution and 30fps frame rate, HMDB51 has fewer 13
groups and images than UCF-101. In this study “Google Colab” is utilized to execute the 14
programs. It supports nearly 25 GB of RAM and variable GPU based on the network traffic. 15
Sample action categories of UCF-101 and HMDB51 data sets are depicted in Figure10. 16

 17
Figure 10 Sample action categories of UCF-101 and HMDB51 Data sets. 18

 19
5.2. Performance Metrics Obtained for Proposed Model 20

Bruch Hair

Wave

Skiing

Diving

Ice Dancing

Drumming

Golf

Smile

Horse Riding

Surfing

Eat

Basketball

Shake Hands

Playing Piano

Throw

Sword

Biking

Tennis Swing

Table 5
Performance metrics for proposed model on UCF-101
data set

Action Precision Recall F1-score

Apply_EyeMakeup 0.99 0.97 0.98

Apply_Lipstick 0.87 0.87 0.87

Archery 0.95 0.96 0.95

Baby_Crawling 0.86 0.95 0.90

Balance_Beam 0.95 0.96 0.95

Band_Marching 0.92 0.95 0.93

Base_BallPitch 0.89 0.90 0.89

BasketBall 0.98 0.99 0.99

BasketBall_Dunk 0.97 0.95 0.96

Bench_Press 0.96 0.91 0.94

Biking 0.97 0.93 0.95

Billiards 0.99 0.92 0.95

network for the UCF-101, HMDB51 data set on 12
classes are included in Tables 5-6.

65Information Technology and Control 2024/1/53

Table 6
Performance metrics for proposed model on HMDB51 data set

5.3. Confusion Matrix of Proposed Model:
UCF-101 and HMDB51 Data Set
The recognition rate of the DL architecture is mon-
itored with the help of the confusion matrix which
exhibits how to update parameters of the deep learn-
ing model designed by identifying errors in training
process. Figures 11, Figure 12 project the confusion

Action Precision Recall F1-score

Brush_hair 0.85 0.79 0.82

Cartwheel 0.80 0.87 0.83

Chew 0.81 0.86 0.84

Clim_stairs 0.84 0.84 0.84

Draw_sword 0.92 0.85 0.88

Catch 0.80 0.84 0.82

Clap 0.82 0.83 0.83

Climb 0.82 0.83 0.83

Dive 0.94 0.86 0.90

Dribble 0.84 0.78 0.81

Drink 0.74 0.85 0.79

Eat 0.73 0.77 0.75

Figure 11
Confusion matrix on UCF- 101 for 12 classes

 1
Figure 11 Confusion matrix on UCF- 101 for 12 classes 2

 3
Figure 12 Confusion matrix on HMDB51 for 12 classes 4

 5
Table 7 Comparing Proposed Model Test Results on UCF-101 and HMDB51 data sets 6

 Method UCF-101 HMDB51

matrices for 12 classes in the UCF-101 dataset and
HMDB51 dataset.

5.4. Recognition Accuracy (%) of Proposed
Model in Assessment with State-of-the-Art
Models on UCF- 101 Data Set and HMDB51
The proposed model’s classification accuracy is com-
pared to the front running models with respect to av-
erage accuracy as exposed in Table 7.
Here, the top 1 accuracy is accounted in, as most of
the models in this comparison do not specify the top
5 accuracy. As shown in this table, the two-stream
Drop-convLSTM2D gets the highest top 1 recogni-
tion accuracy among all methods, which is 95.8% on
UCI-101 and 70.5% on HMDB-51. Compared with the
two-stream VGG model, the designed model exceeds
by 3.3% on UCI-101 and 5% on HMDB-51. The hand-
crafted model (IDT) achieves 85.9% accuracy, which
is 10% less than our proposed model on UCI-101 and
13% on HMDB-51. This work has achieved compa-
rable results with other front running models [3, 17,
31] of HAR. Benefitting from the advanced tempo-
ral stream, the proposed model can also have higher
recognition accuracy than most of these methods. In
summary, the proposed model accomplishes higher
recognition accuracies in both the spatial stream and
the temporal stream than the traditional two-stream
CNN model and the other state-of-the art approaches.

Figure 12
Confusion matrix on HMDB51 for 12 classes

 1
Figure 11 Confusion matrix on UCF- 101 for 12 classes 2

 3
Figure 12 Confusion matrix on HMDB51 for 12 classes 4

 5
Table 7 Comparing Proposed Model Test Results on UCF-101 and HMDB51 data sets 6

 Method UCF-101 HMDB51

Information Technology and Control 2024/1/5366

Table 7
Comparing Proposed Model Test Results on UCF-101 and HMDB51 data sets

Method UCF-101 HMDB51

Handcrafted [34] Improved Dense Trajectories 85.9% 57.2%

2D CNN [12] Slow-Fusion 65.4% -

3D CNN [30] Res3D (fine tuned) 85.8% 54.9%

Multi-stream
2D CNN

[5] LRCN (RGB)
[5] LRCN (Flow)
[5] LRCN (fusion)

68.19%
77.46%
82.66%

-
-
-

[26] Spatial Stream
[26] Temporal Stream
[26] Two-Stream (avg)
[26] Two-stream (SVM)
[7] Two-Stream VGG

73%
83.7%
86.9%
88.0%
92.5%

40.5%
54.6%
58.0%
59.4%
65.4%

Temporal segment network [31] Spatio-Temporal VLAD 95.6% 71.4%

Two stream [3] Spatio-Temporal
Heterogeneous two streaam network 93.3% 65.9%

TSCN [17] Temporal segment connection network 94.2% 70.3%

Proposed method TwoStreamDrop-ConvLSTM2D 95.8% 70.5%

The overarching summary of the observations is
1 Only spatial features can be extracted by 3D-CNN.
2 Introducing Inception to mine temporal features

from optical flow improves the recognition rate.
3 A heterogeneous Drop-ConvLSTM2D can reduce

gradient variance and thus faster convergence.

5.5. Loss and Accuracy During Training and
Testing
The loss aids in the optimization of the deep learning
algorithm, while the accuracy aids in the assessment
of the algorithm’s efficiency.
The graph Figure 13 exhibits the training and vali-
dation accuracy on the UCI 101 data set for every 20
epochs up to 100 epochs. Both the graphs increase
over time, specifically the training accuracy increases
gently whereas validation accuracy rises with ripples
over time.
The graph Figure 14 exhibits the training and valida-
tion loss on the UCI 101 data set for every 20 epochs
up to 100 epochs. The training loss consistently de-

Figure 13
Training accuracy Vs Validation accuracy on UCI-101

The graph Figure 14 exhibits the training and validation loss on the UCI 101 data set for 1
every 20 epochs up to 100 epochs. The training loss consistently declines with the iterations, but 2
the validation loss increases and falls throughout the procedure. 3

 4
 Figure 13 Training accuracy Vs Validation accuracy on UCI-101 Figure 14 Training loss Vs Validation loss on UCI-101 5
 6
5.6 Runtime Analysis on UCI-101 7
In order to show the persuasiveness of the proposed work, the run time of the work is compared 8
with the run time of various CNN configurations. Table 8 represents the evaluation of the 9
processing time of the proposed work and various CNN configurations for training with 200 10
epochs and classifying the video. This procedure was repeated ten times and the average 11
processing time for each best trained model is presented in Table 8. All the experiments were 12
carried out on Google Colab which can provide 25GB of internal RAM with GPU-Tensor 13
through a Cloud environment. 14

The architecture of 3D-CNN used for experimentation is as follows: Two Conv3D and 15
MaxPooling 3D layers, of (3,3,3) kernel each with 8, 16 filters are utilized. ReLU activation 16
functions are added to the uniform Keras initializer. A three-dimensional max-pooling layer of 17
(2,2,2) pool sizes is deployed to down-sample the feature maps, which can save valuable 18
computational resources. The stride and padding are sizes of (1,1,1). 19

For the second configuration, in addition to the above 3D-CNN architecture, the LSTM 20
with 100 units followed by Drop out and Dense layer is used for experimentation. As spotted in 21
Table 8, the proposed work is faster than other methods in terms of training and classification. 22

Table 8 Runtime Analyze on UCI-101 23
 24

 25

 26

 27

 28

Model Training Time
(minutes)

Classifying Time
(seconds)

3DCNN 17 15
3DCNN+LSTM 29 30
Two-Stream network
[26]

12 23

Proposed model 11 10

clines with the iterations, but the validation loss in-
creases and falls throughout the procedure.

67Information Technology and Control 2024/1/53

Figure 14
Training loss Vs Validation loss on UCI-101

The graph Figure 14 exhibits the training and validation loss on the UCI 101 data set for 1
every 20 epochs up to 100 epochs. The training loss consistently declines with the iterations, but 2
the validation loss increases and falls throughout the procedure. 3

 4
 Figure 13 Training accuracy Vs Validation accuracy on UCI-101 Figure 14 Training loss Vs Validation loss on UCI-101 5
 6
5.6 Runtime Analysis on UCI-101 7
In order to show the persuasiveness of the proposed work, the run time of the work is compared 8
with the run time of various CNN configurations. Table 8 represents the evaluation of the 9
processing time of the proposed work and various CNN configurations for training with 200 10
epochs and classifying the video. This procedure was repeated ten times and the average 11
processing time for each best trained model is presented in Table 8. All the experiments were 12
carried out on Google Colab which can provide 25GB of internal RAM with GPU-Tensor 13
through a Cloud environment. 14

The architecture of 3D-CNN used for experimentation is as follows: Two Conv3D and 15
MaxPooling 3D layers, of (3,3,3) kernel each with 8, 16 filters are utilized. ReLU activation 16
functions are added to the uniform Keras initializer. A three-dimensional max-pooling layer of 17
(2,2,2) pool sizes is deployed to down-sample the feature maps, which can save valuable 18
computational resources. The stride and padding are sizes of (1,1,1). 19

For the second configuration, in addition to the above 3D-CNN architecture, the LSTM 20
with 100 units followed by Drop out and Dense layer is used for experimentation. As spotted in 21
Table 8, the proposed work is faster than other methods in terms of training and classification. 22

Table 8 Runtime Analyze on UCI-101 23
 24

 25

 26

 27

 28

Model Training Time
(minutes)

Classifying Time
(seconds)

3DCNN 17 15
3DCNN+LSTM 29 30
Two-Stream network
[26]

12 23

Proposed model 11 10

5.6. Runtime Analysis on UCI-101
In order to show the persuasiveness of the proposed
work, the run time of the work is compared with the
run time of various CNN configurations. Table 8 rep-
resents the evaluation of the processing time of the
proposed work and various CNN configurations for
training with 200 epochs and classifying the video.
This procedure was repeated ten times and the av-
erage processing time for each best trained model is
presented in Table 8. All the experiments were car-
ried out on Google Colab which can provide 25GB of
internal RAM with GPU-Tensor through a Cloud en-
vironment.
The architecture of 3D-CNN used for experimen-
tation is as follows: Two Conv3D and MaxPooling
3D layers, of (3,3,3) kernel each with 8, 16 filters are
utilized. ReLU activation functions are added to

the uniform Keras initializer. A three-dimensional
max-pooling layer of (2,2,2) pool sizes is deployed to
down-sample the feature maps, which can save valu-
able computational resources. The stride and padding
are sizes of (1,1,1).
For the second configuration, in addition to the above
3D-CNN architecture, the LSTM with 100 units fol-
lowed by Drop out and Dense layer is used for exper-
imentation. As spotted in Table 8, the proposed work
is faster than other methods in terms of training and
classification.

5.7. Ablation Study of Dropout Layer
We conducted experiments using a proposed model
with and without the Dropout layer on a UCI-101 data
set. As in Table 9, the presence of Dropout improves
the recognition rate due to its job of leveraging greater
model capacity and regularization.

Table 8
Runtime Analyze on UCI-101

Model Training Time
(minutes)

Classifying Time
(seconds)

3DCNN 17 15

3DCNN+LSTM 29 30

Two-Stream network [26] 12 23

Proposed model 11 10

Table 9
Recognition rate with and without dropout layer on UCI-101

Model Recognition rate

Proposed model with
ConvLSTM2D 86.1%

Proposed model with Drop-
ConvLSTM2D 95.8%

6. Conclusion and Future
Improvements
The aim of this work is to construct a hybrid two-
stream deep learning architecture for HAR. In the
designed architecture, a novel Drop-ConvLSTM2D
model is developed in two stream 3D-CNN Incep-
tion-v3 based network. In the first stream, 3D-CNN
mines spatial-temporal features through RGB
frames. In the other stream, Inception-v3 extracts
temporal features from Optical flow images that are
obtained using dense optical flow [33]. The obtained
spatiotemporal features are fused using Conv-fusion
to train the Drop-ConvLSTM2D model. Finally, the
Drop-ConvLSTM2D model is optimized using Bayes-
ian Hyper Parameter Optimization. An examination
of UCF101 and HMDB51 datasets reveals that the

Information Technology and Control 2024/1/5368

original two steam networks were outperformed by
the integrated model. The outcomes obtained illus-
trate the benefit of integrating the flow stream with
the RGB stream using two different CNNs. Further-
more, to the to the fullest of our discernment, the
novel Drop-ConvLstm2D model is the heterogeneous
combination of 3D-CNN over RGB frames and the
Inception-v3 over optical flow frames to acknowledge
human activity. Finally, the result of the experiments
emphasizes that, in identifying and classifying human
behaviors from videos, the suggested model achieved
substantial benefits. Although with this approach, we
exhibit encouraging outcomes on both UCF-101 and
HMDB51 datasets, the performance is quite far from
precise. The proposed model has more time needs;
and there is still scope for change. Future research
will focus on more efficient methods to reduce the
time complexity, so that the model would be applied
for real-time human action prediction.

Data Availability
The video datasets UCF-101, HMDB51 used to sup-
port the findings of this study are included in the arti-
cle in reference section [27], [13] in page no 18.

UCF-101 data set is available at
https://www.crcv.ucf.edu/data/UCF101.php

HMDB51 data set is available at
h t t p s : //s e r r e - l a b. c l p s .b r o w n . e d u /r e s o u r c e /
hmdb-a-large-human-motion-database/#Down-
loads

Disclosure
The research neither received any funding nor is per-
formed as part of the employment.

Conflicts of Interest
We declare that there are no conflicts of interest.

References
1. Arif, S., Wang, J., U. I., Hassan, T., Fei, Z. 3D CNN Based

Used Feature Maps with LSTM Applied to Action Re-
cognition. Future Internet, 2019, 11(2), 42. https://doi.
org/10.3390/fi11020042

2. Cai, S., Shu, Y., Chen, G., Ooi, B. C., Wang, W., Zhang, M.
Effective and Efficient Dropout or Deep CNN, 2019.
arXiv preprint arXiv:1904.03392

3. Chen, E., Bai, X., Gao, L., Tinega, H. C., Ding, Y. A Spa-
tiotemporal Heterogeneous Two-Stream Network for
Action Recognition. IEEE Access, 2019, 7, 57267-75.
https://doi.org/10.1109/ACCESS.2019.2910604

4. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S. Behavior
Recognition via Sparse Spatio-Temporal Features. IEEE
International Workshop on Visual Surveillance and Per-
formance Evaluation of Tracking and Surveillance, 2019,
65-72. https://doi.org/10.1109/VSPETS.2005.1570899

5. Donahue, J., Anne Hendricks, L., Guadarrama, S., Ro-
hrbach, M., Venugopalan, S., Saenko, K., Darrell, T.
Long-term Recurrent Convolutional Networks for Vi-
sual Recognition and Description. Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 2015, 2625-2634. https://doi.org/10.1109/
CVPR.2015.7298878

6. Farnebäck, G. Two-Frame Motion Estimation Based
on Polynomial Expansion. Scandinavian Conferen-

ce on Image Analysis, 2003, 363-370. https://doi.or-
g/10.1007/3-540-45103-X_50

7. Feichtenhofer, C., Pinz, A., Zisserman, A. Convolutional
Two-Stream Network Fusion for Video Action Reco-
gnition. Proceedings of the IEEE Conference on Com-
puter Vision Pattern Recognition, 2016, 1933-1941.
https://doi.org/10.1109/CVPR.2016.213

8. Hammerla, N. Y., Halloran, S., Plötz, T. Deep Convo-
lutional and Recurrent Models for Human Activity
Recognition Using Wearable, 2016. arXiv preprint
arXiv:1604.08880

9. Hinton, G. E., Nair, V. Rectified Linear Units Improve
Restricted Boltzmann Machines. Proceedings of the
27th International Conference on Machine Learning
(ICML-10) 2010, 807-814.

10. Jaouedi, N., Boujnah, N., Bouhlel, M. S. A New Hybrid
Deep Learning Model for Human Action Recognition.
Journal of King Saud University-Computer and In-
formation Sciences, 2020, 32(4), 447-453. https://doi.
org/10.1007/s12530-020-09345-2

11. Joao, C., Zisserman, A. Quo Vadis Action Recognition? A
New Model and the Kinetics Dataset. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, 6299-6308. https://doi.org/10.1109/
CVPR.2017.502

69Information Technology and Control 2024/1/53

12. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthan-
kar, R., Fei-Fei, L. Large-Scale Video Classification with
Convolutional Neural Networks. Proceedings IEEE
Conference on CVPR, 2014, 1725-1732. https://doi.
org/10.1109/CVPR.2014.223

13. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre,
T. HMDB: A Large Video Database for Human Motion
Recognition. IEEE International Conference on Com-
puter Vision, 2011, 2556-2563. https://doi.org/10.1109/
ICCV.2011.6126543

14. Laptev, I. On Space-Time Interest Points. International
Journal of Computer Vision, 2005, 64, 107-123. https://
doi.org/10.1007/s11263-005-1838-7

15. Laptev, I., Lindeberg, T. Space-Time Interest Points.
Proceedings of 9th IEEE International Conferen-
ce Computer Vision, 2003, 1, 432-439. https://doi.
org/10.1109/ICCV.2003.1238378

16. Lecun, Y., Bottou, L., Bengio, Y., Haner, P. Gradient-Ba-
sed Learning Applied to Document Recognition.
Proceedings IEEE, 1998, 86, 2278-2324. https://doi.
org/10.1109/5.726791

17. Li, Q., Yang, W., Chen, X., Yuan, T., Wang, Y. Temporal
Segment Connection Network for Action Recogniti-
on. IEEE Access, 2020, 8, 179118-179127. https://doi.
org/10.1109/ACCESS.2020.3027386

18. Li, X., Meng, F., Zhao, F., Guo, D., Lou, F., Jing, R.
Two-Stream Adaptive-Attentional Subgraph Convo-
lution Networks for Skeleton-Based Action Recogni-
tion. Multimedia Tools and Applications, 2022, 81(4),
4821-4838. https://link.springer.com/article/10.1007/
S11042-021-11026-4 https://doi.org/10.1007/s11042-
021-11026-4

19. Liu, J., Luo, J., Shah, M. Recognizing Realistic Actions
from Videos in the Wild Recognizing Realistic Ac-
tions from Videos in the Wild. Proceedings of IEEE
CVPR, 2009, 1996-2003. https://doi.org/10.1109/
CVPR.2009.5206744

20. Niebles, J.C., Chen, C.W., Fei Fei, L. Modeling Tempo-
ral Structure of Decomposable Motion Segments for
Activity Classification. Proceedings of European Con-
ference Computer Vision, 2010, 392-405. https://doi.
org/10.1007/978-3-642-15552-9_29

21. Peng, X., Zou, C., Qiao, Y., Peng, Q. Action Recogniti-
on with Stacked Fisher Vectors. European Conferen-
ce on Computer Vision, 2014, 581-595. https://doi.
org/10.1007/978-3-319-10602-1_38

22. Qian, H., Mao, Y., Xiang, W., Wang, Z. Recognition of
Human Activities Using SVM Multi-Class Classifier.

Pattern Recognition, 2010, 31(2), 100-111. https://doi.
org/10.1016/j.patrec.2009.09.019

23. Radu, V., Tong, C., Bhattacharya, S., Lane, N.D., Masco-
lo, C., Marina, M.K., Kawsar, F. Multimodal Deep Le-
arning of Activity and Context Recognition. Procee-
dings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2018, 1(4), 1-27. https://doi.
org/10.1145/3161174

24. Ronao, C.A., Cho, S.B. Human Activity Recognition with
Smartphone Sensors Using Deep Learning Neural Ne-
tworks. Expert Systems with Applications, 2016, 59,
235-244. https://doi.org/10.1016/j.eswa.2016.04.032

25. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo,
W.C. Convolutional LSTM Network: A Machine Lear-
ning Approach for Precipitation Nowcasting. Advances
in Neural Information Processing Systems, 2015, 28

26. Simonyan, K., Zisserman, A. Two-Stream Convolutio-
nal Networks for Action Recognition in Videos. Advan-
ces in Neural Information Processing Systems, 2014,
568-576. https://doi.org/10.3837/tiis.2021.10.011

27. Soomro, K., Zamir, A.R., Shah, M., UC101: A Dataset of
101 Human Actions Classes from Videos in the Wild.
CRCV-TR-12-01, 2012, arXiv preprint arXiv:1212.0402

28. Sun, J., Wang, J., Yeh, T. C. Video Understanding: From
Video Classification to Captioning. Computer Vision
and Pattern Recognition, 2017, 1-9

29. Szegedy, C., Vanhoucke, V., Ioe, S., Shlens, J., Wojna, Z.
Rethinking the Inception Architecture on Computer
Vision. IEEE Conference on CVPR, 2016, 2818-2826.
https://doi.org/10.1109/CVPR.2016.308

30. Tran, D., Ray, J., Shou, Z., Chang, S.F., Paluri, M. Conv-
Net Architecture Search for Spatiotemporal Feature
Learning, 2017. arXiv preprint arXiv:1708.05038

31. Tu, Z., Li, H., Zhang, D., Dauwels, J., Li, B., Yuan, J. Ac-
tion-Stage Emphasized Spatiotemporal VLAD for Vi-
deo Action Recognition, IEEE Transactions on Ima-
ge Processing, 2019, 28(6), 2799-2812. https://doi.
org/10.1109/TIP.2018.2890749

32. Victoria, A.H., Maragatham, G. Automatic Tuning of
Hyperparameters Using Bayesian Optimization. Evol-
ving Systems, 2021, 217-223. https://doi.org/10.1007/
s12530-020-09345-2

33. Wang, H., Klaser, A., Schmid, C., Liu, C.L. Action Re-
cognition by Dense Trajectories. Proceedings of IEEE
CVPR, 2011, 3169-3176. https://doi.org/10.1109/
CVPR.2011.5995407

34. Wang, H., Schmid, C. Action Recognition with Impro-
ved Trajectories. Proceedings of the IEEE Internatio-

Information Technology and Control 2024/1/5370

nal Conference on Computer Vision, 2013, 3551-3558.
https://doi.org/10.1109/ICCV.2013.441

35. Wang, H., Ullah, M.M., Klaser, A., Laptevd, I., Schmid, C.
Evaluation of Local Spatio-Temporal Features for Ac-
tion Recognition, British Machine Vision Conference,
2009, 124.1-124.11. https://doi.org/10.5244/C.23.124

36. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X.,
Van Gool, L. Temporal Segment Networks: Towards
Good Practices for Deep Action Recognition. Procee-
dings of European Conference Computer Vision, Sprin-
ger, 2016, 20-36. https://doi.org/10.1007/978-3-319-
46484-8_2

37. Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., Deng,
S. H. Hyperparameter Optimization for Machine Lear-
ning Models Based on Bayesian Optimization. Journal
of Electronic Science and Technology, 2019, 26-40.
https://doi.org/10.11989/JEST.1674-862X.80904120

38. Xiong, X., Min, W., Han, Q., Wang, Q., Zha, C. Action Re-
cognition Using Action Sequences Optimization and
Two-Stream 3D Dilated Neural Network. Computati-
onal Intelligence and Neuroscience, 2022. https://doi.
org/10.1155/2022/6608448

39. Xu, C., Yang, J., Gao, J. Coupled Learning CNN for
Object Recognition. Multimedia Tools and Applicati-
ons, 2019, 78, 573-589. https://doi.org/10.1007/s11042-
017-5262-0

40. Yue-Hei, N. G. J., Hausknecht, M., Vijayanarasimhan, S.,
Vinyals, O., Monga, R. Toderici, G. Beyond Short Snippets:
Deep Networks for Video Classification. CVPR, 2015,
4694-4702. https://doi.org/10.1109/CVPR.2015.7299101

41. Zhu, Y., Lan, Z., Newsam, S., Hauptmann, A. Hidden
Two-Stream Convolutional Networks for Action Reco-
gnition. Springer International Publishing, 2018, 363-
378. https://doi.org/10.1007/978-3-030-20893-6_23

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

