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Human Action Recognition (HAR) has grown to be the toughest and attractive concern in the domains of computer 
vision, communication between a person and the surroundings, and video surveillance. In variation to the conven-
tional methods that usually make use of the Long Short Term Memory model (LSTM) for training, this work de-
signed dropout variant Drop-ConvLSTM2D, to provide more effectiveness in regularization for deep Convolution 
Neural Networks (CNNs). In addition, to speed up the runtime performance of the Deep Learning model, Bayesian 
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Hyper Parameter Optimization (BHPO) is also introduced to autonomously optimize, the hyper parameters of the 
trained architecture. In this study, a two-stream Bayesian Hyper Parameter optimized Drop-ConvLSTM2D model 
is designed for HAR to overcome the current research deficiencies. In one stream, an Inception-v3 model extracts 
the temporal characteristics from the optical frames which are generated through the dense flow process. In an-
other stream, a 3D-CNN involves the mining of the spatial-temporal characteristics from the RGB frames. Finally, 
the features of Inception-v3 and 3D-CNN are fused using which the Drop-ConvLSTM2D model is trained to rec-
ognize human behavior. On perceptive public video datasets UCF-101, HMDB51, the quantitative assessments are 
conducted on the Drop-ConvLSTM2D BHPO model. For all hyper parameters, the built model explicitly obtains 
optimized values in this process, which can save time and improve performance. The experimental outcome shows 
that with a precision of at least 3%, the designed model beats the traditional two-stream model.
KEYWORDS: Human Action Recognition, Convolution Neural Networks, Drop-ConvLSTM2D, Bayesian Hy-
per Parameter Optimization.

1. Introduction 
HAR by traditional hand-crafted feature extraction 
[21, 33, 34] was extremely difficult due to the exis-
tence of obstacles like varying object sizes in different 
frames, the existence of noise, and also the swiftness 
of activities. Thus, even though in recent times, sever-
al significant research studies have been implement-
ed using Deep CNN [1, 23, 28, 39], the technique to 
precisely make out HAR from the RGB videos contin-
ues to be an exigent problem.  
Nowadays deep learning has grown-up swiftly and 
has attracted many research efforts [7,  20, 24] in 
video analysis, natural language processing, and 
complicated aspects of data processing, to achieve 
unprecedented achievements. Deep learning may 
decrease the workload of feature design, unlike the 
conventional technique of HAR. In addition, through 
the end-to-end neural network, high-level and more 
complicated clues can be taught. Furthermore, for 
unsupervised incremental learning, the deep learning 
architecture will be suitable by stacking many layers 
of clues. Several researchers have sought deep learn-
ing in video-based behavior recognition, owing to its 
fare on extracting frame features [4, 14, 15, 19, 22].
In HAR, hybrid models with CNN and LSTM are 
taken for research by majority of researchers [1, 25]. 
LSTM concentrates on the pattern features and cap-
tures the dynamic time dependency of various move-
ments. Furthermore, owing to the various parameters 
that necessitate an alteration in the course of the 
training period, the LSTM requires a longer training 
time. CNN is more capable of learning the key char-
acteristics found in recursive patterns compared to 
LSTM [26]. However, in the convolution process, the 

mainstream of CNNs has a single parameter config-
uration, which radically restricts the model’s flexi-
bility. A larger convolution kernel can also be useful 
for gathering more data, although it raises the cost of 
CNN calculation. These challenges lead researchers 
to launch effective recognition strategies that can ef-
fectively solve these problems with expected recogni-
tion accuracy and low computational complexity.
We are provoked by the observation that, a dual-stream 
3D-CNN [30] is always a suitable preference for con-
stituting the Spatio-temporal clues of action videos. 
This study attempts to build and implement an inno-
vative two-stream Bayesian Hyper Parameter opti-
mized 3D-CNN Inception-based Drop-ConvLSTM2D 
model, considering the deficiencies identified in the 
present research. In one stream, an Inception-v3 mod-
el extracts the temporal characteristics over the opti-
cal frames which are generated using the dense flow 
process. In the remainder, a 3D-CNN mines spatial 
characteristics from the RGB frames. In the end, the 
feature maps of Inception- v3 and 3D-CNN are fused 
using which the Drop-ConvLSTM2D architecture is 
taught to understand human behavior.

2. Related Work
In this section, we discuss various previous works 
[35, 36] on HAR using dual-channel CNN.  Karen et 
al. [26] crafted an architecture that uses separate 
Spatio-temporal recognition channels based on Con-
vNets capable of giving better performance even with 
less training data. The approach averages the pre-
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dicted outcomes from RGB frames and a set of ten 
optical flow snapshots after running them via iden-
tical ConvNets tuned on ImageNet. This study is the 
basis for the majority of two-stream CNN designs. 
Here the flow stream has an adapted input Conv layer 
with twice as many input channels as flow frames be-
cause the flow has two channels, horizontal and ver-
tical. Carreira et al. [11], introduced a very deep mod-
el codenamed “Two-Stream Inflated 3D ConvNets” 
(I3D) that proves the boost in outcome using transfer-
ability of features by pre-training on Kinetics dataset 
and fine-tuning to UCF-101[27]/HMDB-51 [13] data-
set. They also redesigned many cutting-edge HAR 
architectures, to understand their transfer behavior 
and proved that the recognition rate exceeds all re-de-
signed pre-trained and finely tuned models. In [40], 
authors discovered the notion of composing details 
over long-duration videos. The work introduced a fea-
ture pooling methodology to procedure each snapshot 
independent of other snapshots and used maxpool on 
local info for decoupling image-level features. They 
investigated the use of RNN using LSTM units those 
are merged to the final layers in the CNN.
In [36], the authors proved the procedure of batch nor-
malization, dropout, and pre-training as acceptable 
methods. The work merged the temporal pooling net-
work with LSTM in order for it to process snapshots 
of variable length for enhancing the two-stream mod-
el. They discovered a model to mine shorter-length 
snippets based on the video by using sparse samples 
rather than dense samples. The snippets are sent to 
spatial-temporal ConvNets. Finally, the outcomes of 
those ConvNets are merged for final prediction. In 
[41], authors applied a MotionNet that generates op-
tical flow using successive snapshots. The outcome of 
the MotionNet is fused with a temporal channel CNN 
to correlate the optical flows to target classes. It also 
has a spatial channel CNN which is merged with the 
temporal channel CNN with late fusion.
In [38], the authors first created the optimized video 
by only taking into account the action regions with the 
highest levels of activity. The human skeleton and RGB 
clues were then mined using a two-stream CNN to re-
inforce the deep representation of humans for robust 
processing and expand the receptive field of feature ex-
traction. In [10], the authors used the Kalman filter and 
the Gaussian mixture model to infer human motion 
from each video frame, which consists of a series of 

brief frames that only show a moving subject. To infer 
the pertinent features, these inputs are then sent into 
the hidden layer of the Gated Recurrent Neural Net-
works model. The action is then predicted using the 
training and testing phase by the prediction module.
The authors of [18] presented an adaptive sub-graph 
convolution module that can learn the relationships 
among sub-graphs and adaptively infer the high-level 
spatial characteristics of each sub-graph. They cre-
ated a two-stream architecture to combine bone and 
joint characteristics, which improves the model’s ca-
pacity for recognition. The channel attention mech-
anism and the spatial attention mechanism make up 
the Convolution Block Attention Module. The chan-
nel attention mechanism enables the model to focus 
on the channel characteristics with more information 
by teaching it how to change the weight parameters 
of each channel. By learning the weights of pixels in 
various spatial positions, the spatial attention mecha-
nism improves the properties of significant positions.
The works mentioned above exploited dual-channel 
CNN streams to enhance the recognition rate of HAR. 
However, the majority of works apply two similar 3D 
CNNs for both the streams (temporal and spatial). 
Due to this, the efficient mixtures of features like RGB 
snapshot, optical flow, depth, and skeleton data, re-
main an unsolved issue in HAR.
In this paper, we investigate how the dual-stream 
CNN could enhance the recognition rate with differ-
ent CNNs for each stream. The need for modeling our 
architecture is, that when two streams with identical 
CNNs are tuned and fused, it may yield a huge num-
ber of redundant features due to horizontal and verti-
cal components of optical flow frames mined over the 
RGB frame. 
In our experimentation, we apply the 3D-CNN model 
only to mine spatial characteristics from RGB frames 
and we apply the Inception-v3 model to mine motion 
characteristics from optical flow as we found Incep-
tion models produce better feature extraction and 
performance than other network models with our ex-
periments [18].
The Inception models are the flavors of the CNN 
crafted by Google, particularly for image classifica-
tion. An Inception model differs from conventional 
CNNs; as the inception models convolute the same in-
put tensor with many filters and merge the outcomes, 
whereas conventional CNNs do a single convolution 
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operation on each tensor. The parameters are thus de-
creased and the complexity in terms of computation 
is reduced as compared to 3D-CNN.
In the proposed model, mined Spatio-temporal fea-
tures are decoupled using Conv-fusion, and as a tech-
nical contribution of work, we apply the above clues 
to train an innovative Drop-ConvLSTM2D design to 
build more stable and effective regularized deep CNNs.
Finally, using BHPO, the trained model is optimized; 
which is another noteworthy hallmark that highlights 
our work from previous models where hyper-param-
eters are tuned using painstaking trial and error. In 
short, the overarching summary in this paper:
In short, the overarching summary in this paper:
1 In contrast to conventional two-stream mod-

els, this model uses two different CNN over two 
streams; a state-of-the-art 3D-CNN for spatial fea-
ture mining and an Inception-v3 model for tempo-
ral feature mining.

2 To reduce variations with respect to mean and 
variance, the decoupled features are taught using 
Drop-ConvLSTM2D.    

3 A ConvNet architecture search is conducted across 
multiple dimensions using BHPO by training on 
the UCF-101, HMDB51 to get heterogeneous Deep 
Learning architecture.

3. Methodology of the Proposed 
Framework
This section describes the 3D-CNN architecture, the 
optical flow method and also describes the Drop-Con-
vLSTM2D, then a Bayesian optimization method.
The discussed model is composed of five modules as 
shown in Figure 1. They are:
1 Video Data Preprocessing
2 Feature representation and mining

Spatial feature mining
Temporal feature mining

3 Spatial-Temporal Feature fusion
4 Training the Drop-ConvLSTM2D model with 

Bayesian Hyper Parameter optimization
5 Action Classification using a trained model

3.1. Data Preprocessing
Global Contrast Normalization (GCN) through zero 
component analysis (ZCA) whitening is applied to 
preprocess the input video which can preclude the 
frames from viewing different contrast levels. The 
average frame value is subtracted and the image is 
resized to maintain the standard deviation as a con-
stant value across frames [39]. The whitening method 

Figure 1
Proposed 3D-CNN Inception-v3 based Drop-ConvLSTM2D model
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of Zero Component Analysis emphasizes facilitating 
the average covariance, which is maximal between 
the whitened pixel and the first frame. For example, 
eliminating neighboring correlations in neighboring 
pixels makes the data with a reduced amount of re-
dundant information.

3.2. Feature Mining  
3.2.1. Spatial Feature Extraction
The 3D-CNN architecture makes use of the pre-pro-
cessed RGB frames as input for the extraction of spa-
tial features.

3D CNN Architecture 
Every given input map is transformed by a shift win-
dow with (N,N) kernel to produce an unique pixel in 
an individual output feature map. In addition, the 3D 
convolution layers are exploited to acquire move-
ment information out from aggregate stacked frames. 
Equations (1)-(2) define the Nth 3D feature map per-
taining to the i-th convolution layer.
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where, W stands for the weights of filter, x stands for 
the input frame, δ  is the Convolution operation and b 
is the bias.
The pooling layer is taken into account in reducing 
the size of feature map and parameters. There are two 
widely accepted methods of pooling: maximum and 
average. The max-pooling operation is deployed in 

this study, since by offering an abstracted form of the 
clues, max-pooling aids in reducing over-fitting. Addi-
tionally, it lowers the computational cost by lowering 
the number of parameters to learn. It is determined by 
the utmost value achieved between nearby inputs as 
represented in Equation (3).

 

where, W stands for the weights of filter, x stands for the input frame,   is the Convolution 1 
operation and b is the bias. 2 

The pooling layer is taken into account in reducing the size of feature map and 3 
parameters. There are two widely accepted methods of pooling: maximum and average. The 4 
max-pooling operation is deployed in this study, since by offering an abstracted form of the 5 
clues, max-pooling aids in reducing over-fitting. Additionally, it lowers the computational cost 6 
by lowering the number of parameters to learn. It is determined by the utmost value achieved 7 
between nearby inputs as represented in Equation (3). 8 

max ( )j j
i r R i T rP c   ,  (3) 9 

where, R describes the size of pooling, T denotes the pooling stride, and C is output of 10 
convolution layer.  11 
 12 
 13 
 14 

 15 
 16 
 17 

 18 
 19 
 20 
 21 

Figure 2 3D-CNN Architecture. 22 
This sparse connection network can remarkably diminish the parameter size by stacking 23 

convolution and the pooling layers in mining the significant clues of the input. The Restricted 24 
Linear Unit (ReLU) [9] is used to improve the transformation in terms of non-linearity in the 25 
network. 26 

With Conv3D and MaxPooling 3D layers, the Keras Sequential API is employed. In 27 
particular, two 3DCNN layers of (3,3,3) kernel each with 8,16 filters are utilized. ReLU 28 
activation functions are added to the uniform Keras initializer. A three-dimensional max-pooling 29 
layer of (2,2,2) pool sizes is deployed to down-sample the feature maps, which can save valuable 30 
computational resources. The stride and padding are sizes of (1,1,1). 31 

In this layout, as seen in Figure 2, the 30 frames considered by the 3D-CNN model are of 32 
size ‘112x112’ centered on the present frame. A group of hardwired kernels is initially utilized to 33 
build larger information channels from the input frames. 64-sample batch size is adopted, which 34 
can make every time 64 samples are fed forward through the model, creating predictions, 35 
optimization, and computation of loss. 36 

By maintaining the spatial clues of the frames, the 3D-CNN method can extract the 37 
temporal characteristics which can be employed in action recognition. Since the preponderance 38 
of the actions are likely to have 32-50 frames per gesture, this 3D-CNN model may not be 39 
feasible for a thorough analysis. This necessitates for another network to acquire long-term 40 
temporal individuality that is essential. The mixture of the Optical flow Inception-based 3D-41 

 
     RGB Video 

   

Spatial   
Feature Map 

   
   

   
   

 3
D

C
N

N
 

   
   

   
   

R
eL

U
 

   
M

A
X

 P
O

O
L

IN
G

 

   
   

   
  3

D
C

N
N

 

   
M

A
X

 P
O

O
L

IN
G

 

   
   

   
   

 R
eL

U
 

(3)

where, R describes the size of pooling, T denotes the 
pooling stride, and C is output of convolution layer. 
This sparse connection network can remarkably di-
minish the parameter size by stacking convolution 
and the pooling layers in mining the significant clues 
of the input. The Restricted Linear Unit (ReLU) [9] 
is used to improve the transformation in terms of 
non-linearity in the network.
With Conv3D and MaxPooling 3D layers, the Keras 
Sequential API is employed. In particular, two 
3DCNN layers of (3,3,3) kernel each with 8,16 filters 
are utilized. ReLU activation functions are added to 
the uniform Keras initializer. A three-dimensional 
max-pooling layer of (2,2,2) pool sizes is deployed to 
down-sample the feature maps, which can save valu-
able computational resources. The stride and padding 
are sizes of (1,1,1).
In this layout, as seen in Figure 2, the 30 frames con-
sidered by the 3D-CNN model are of size ‘112x112’ 
centered on the present frame. A group of hardwired 
kernels is initially utilized to build larger information 
channels from the input frames. 64-sample batch size 
is adopted, which can make every time 64 samples are 

Figure 2
3D-CNN Architecture

                                 Figure 1: Proposed 3D-CNN Inception-v3 based Drop-ConvLSTM2D model  

 

 

 

 

 

 

 

 

 

 

 

              
 
 

                                                        Figure 2: 3D-CNN Architecture. 
 

 

            
             
             
             
             
             
              

 
 
 
    
 
 
 
 
 
 
 
 

Identified Action  

Inception
-v3 

Model 

Spatial   
Features 

Temporal 
Features 

Feature  
Fusion 

3D 
CNN 

Model 

Optical Flow 

 

 

   
   

   
   

   
   

Pr
e 

pr
oc

es
sin

g 
    

  

    RGB Video 

Input Video 

 
Trained 
Model 

Feature 
Extraction 
and Fusion 

Bayesian 
Hyper 

Parameter 

Drop-
Conv 

LSTM2DD

 
     RGB Video 

 

Spatial   
Feature Map 

   
   

   
   

 3
DC

NN
 

    
    

    
Re

LU
 

   M
AX

 P
OO

LIN
G 

    
    

   3
DC

NN
 

   M
AX

 P
OO

LIN
G 

    
    

    
 R

eL
U 



Information Technology and Control 2024/1/5358

fed forward through the model, creating predictions, 
optimization, and computation of loss.
By maintaining the spatial clues of the frames, the 
3D-CNN method can extract the temporal character-
istics which can be employed in action recognition. 
Since the preponderance of the actions are likely to 
have 32-50 frames per gesture, this 3D-CNN model 
may not be feasible for a thorough analysis. This ne-
cessitates for another network to acquire long-term 
temporal individuality that is essential. The mixture 
of the Optical flow Inception-based 3D-CNN algo-
rithm with the Drop-ConvLSTM2D network was 
suggested to help to understand the long-time tempo-
ral features.
A cross-entropy loss function has been used by CNN 
model training which is quantified by Equation (4),

 

CNN algorithm with the Drop-ConvLSTM2D network was suggested to help to understand the 1 
long-time temporal features. 2 

A cross-entropy loss function has been used by CNN model training which is quantified 3 

by Equation (4), 0 , ,
1 1
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m m m k m k
i k
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where xm represents the training set, qm,k is the recognized label of the mth sample kth data, 5 
ym,k is a one-hot vector representing the category of the mth sample kth data, M is the  sample size, 6 
and Nc is the count of output category labels.  7 
 8 
3.2.2 Temporal Feature Extraction  9 
Optical flow is a pertinent computer vision technique in estimating motion, tracking objects, and 10 
identifying actions. The distribution of the apparent swiftness of movement of the brightness 11 
model is called optical flow of an image. The key techniques of the optical flow approach are 12 
dense and sparse optical flow. A stream vector is utilized in dense optical flow, while each 13 
feature in the stream, e.g., the edges or corners of an object, is employed as sparse vectors in 14 
sparse. As a result, dense optical flow has a higher precision with higher discriminative power 15 
than sparse optical flow, but it has a higher computational cost. For each pixel in an optical flow, 16 
an optical frame vector is measured [6]. 17 

This work calculates the optical stream vector of human actions, 𝜇𝜇 = (𝜇𝜇𝐿𝐿, 𝜇𝜇𝐻𝐻) at each 18 
frame using Equation (5) as: 19 
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 Local optical flow vector OT is calculated using equation (6) as: 24 
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where, OL,OH is the optical flow sum in longitudinal and the  optical flow info sum in transverse 27 
in 36 subareas respectively. An algorithm to compute dense optical flow is provided using Open-28 
cv for all the points in the frame based on Gunner Farneback's two-frame motion estimate 29 
algorithm [6]. 30 
 31 
3.2.3. Inception-v3 Deep Learning Model  32 
For temporal feature extraction, Inception-v3 [29] is employed on optical flow input. Inception-33 
v3 is a large GoogleLeNet network. Inception-v3 is designed as an initial GoogLeNet model that 34 
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The filter B is used with a desire to drop off the dimen-
sion by the multiples of two and it can represent addi-
tive weighting of Xa, Xb especially at the same spatial 
position.

3.4. Drop-ConvLSTM2D Model     
Aggregated features mined with the 3D-CNN and 
Inception-v3 architecture are then fed into the 
two stacks of Drop-ConvLSTM2D with 16 sizes of 
the unit, as depicted in Figure 4. A dropout variant 
Drop-Conv2D, developed by Cai et al. [2], could result 
in more stable and effective regularization for deep 

CNNs. Motivated by that, an innovative structurally 
more suited dropout variant Drop-ConvLSTM2D is 
implemented. Dropout operations are conventional-
ly performed right between the convolution and BN 
layers which results in violent variations in terms of 
mean and variance obtained by the layer of BN. By 
locating the dropout operations before every Conv 
layer, as shown in the graphical overview Figure 4, the 
failure of conventional drop-neuron and drop-chan-
nel has been overcome. When you apply the convo-
lution operation after a drop operation, you get a tiny 
variance and thus quick convergence. Drop-ConvL-
STM2D enhancement leverages greater model capac-
ity, better drop-out training, and regularization for 
enhanced training. More significantly, these upgrades 
incur negligible costs.
Generally, the fully-connected LSTM is fed with vec-
torized features to explore the temporal features. This 
yields the paucity of spatial similarity information 
during learning. Therefore, as an innovative approach 
Drop-ConvLSTM2D is deployed in the proposed DNN 
to understand the long-term spatiotemporal features. 
Formally, for the inputs X1, ...,Xt, the cell states C1, ...,Ct, 
the hidden states H1, ...,Ht and the input gates it, forget 
gates ft, output gates ot, the key equations of  ConvL-
STM [25] are shown below, where * denotes the con-
volution operator and ◦ the Hadamard product:
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ConvLSTM [25] are shown below, where * denotes the convolution operator and ◦ the Hadamard 5 
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Ct = ft ◦ Ct−1+ it ◦ tanh(Wxc* Xt+Whc*Ht−1+bc),   (12) 10 
Ht = ot ◦ tanh(Ct).          (13) 11 
Drop-ConvLSTM2D has been built using convolution kernel size (3,3) by associating 12 

through the stride (1,1) as given in Figure 4. 13 
The training phase of a DNN model is complicated by a change in the density function of 14 

each layer's inputs with the parameter values of the preceding layer. To be able to prevent the 15 
variation in the distribution of output data, a lower learning rate is used, which maximizes 16 
training time. For resolving this issue, Batch Normalization (BN) is applied to normalize the 17 
LSTM layers' values to ensure that the mean and variance of the total do not vary as the 18 
underlying parameters are distributed, and also to isolate each layer's parameters from the other 19 
layers effectively.  20 

Given the hidden layer inputs of the network as x1, . . . , xk, the mean value μx and 21 
variance  is computed using (14),(15). 22 

1

1 k

ix
i

x
k




  ,  (14) 23 

2

1
(1/ ) ( )

k

i x
i

k x 


 
.
 (15) 24 

Next, each dimension is normalized to x , 25 
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Parameters γ and β are added at each activation to reconstruct the value by scaling and 27 
sliding the normalized value as follows: 28 
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Parameters   and   are learned throughout training to improve back propagation. 30 

Dropout layer is adapted to every section of Drop-ConvLSTM2D with a value of 0.2 and 31 
then determined the output probability using the Restricted Linear Unit (ReLU) function to 32 
strengthen the DNN for nonlinear transformation.  33 

Two stacks of BN, ReLU, Dropout, and ConvLSTM2D layers are constituted to 34 
understand the fused spatial-temporal features of video input. A 'Flatten' layer is added between 35 
the convolution layer and the FC layer to convert a two-dimensional matrix of features into a 36 
vector that is supplied into a classifier. 37 
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kernel size (3,3) by associating through the stride (1,1) 
as given in Figure 4.
The training phase of a DNN model is complicated by 
a change in the density function of each layer’s inputs 
with the parameter values of the preceding layer. To 
be able to prevent the variation in the distribution 
of output data, a lower learning rate is used, which 
maximizes training time. For resolving this issue, 
Batch Normalization (BN) is applied to normalize the 
LSTM layers’ values to ensure that the mean and vari-
ance of the total do not vary as the underlying param-
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eters are distributed, and also to isolate each layer’s 
parameters from the other layers effectively. 
Given the hidden layer inputs of the network as x1, . . . , 
xk, the mean value μx and variance ς  is computed using 
(14),(15).
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Parameters γ and β are added at each activation to re-
construct the value by scaling and sliding the normal-
ized value as follows:

,ˆ ( )i i ix BN x      . (17) (17)
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Parameters β  and η  are learned throughout training 
to improve back propagation.
Dropout layer is adapted to every section of Drop-Con-
vLSTM2D with a value of 0.2 and then determined 
the output probability using the Restricted Linear 
Unit (ReLU) function to strengthen the DNN for non-
linear transformation. 
Two stacks of BN, ReLU, Dropout, and ConvLSTM2D 
layers are constituted to understand the fused spa-
tial-temporal features of video input. A ‘Flatten’ lay-
er is added between the convolution layer and the FC 
layer to convert a two-dimensional matrix of features 
into a vector that is supplied into a classifier.
The last layer of the architecture requires a softmax 
standardized exponential function for forecasting the 
commensurate probability distribution of performing 
various activities using the classifier. It converts neu-
ron output values between 0 and 1, which is known 
to predict behavior likelihood, and the greatest one is 
the outcome of categorization.
A number of neurons in softmax layer are equal to the 
class count. The approach is described as,
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where, x is the set of hyper parameters, X is the range 
of values of x, f(x) is the objective function to diminish 
the error value estimated with the testing data.
In this proposed work Bayesian optimization [32,37] 
is exploited for tuning hyper parameters like learn-
ing rate, the number of filters, the drop-out layer, 
and the batch size in the network in Drop-ConvL-
STM2D.
The theory of Bayesian optimization is Bayes’ theo-
rem; according to which, given the observations D1:k, 
the posterior distribution of a model A, P(A|D1:k) is 
proportional to the likelihood of D1:k  given A,  multi-
plied by the prior probability of A
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Bayesian optimization picks out the smallest amount 
of a function, f(y), on a bounded set, Y. Bayesian opti-
mization is exploited to investigate the perfect mea-
sure of sample values where the function appears to 
be small, as shown in Figure 5. With more trials for 
function f(y), the DNN model is more likely to make 
better decisions. 
This research achieved the optimum network ar-
chitecture by reducing the validation error that was 
identified with Bayesian optimization [2] as exposed 
in Figure 6.

 

The last layer of the architecture requires a softmax standardized exponential function for 1 
forecasting the commensurate probability distribution of performing various activities using the 2 
classifier. It converts neuron output values between 0 and 1, which is known to predict behavior 3 
likelihood, and the greatest one is the outcome of categorization. 4 

A number of neurons in softmax layer are equal to the class count. The approach is 5 
described as, 6 

1

exp( )

exp( )
ck N

k

pq
p






, (18) 7 

where, c is the activity class and Nc is the count of activity classes.  8 
 9 
4. Bayesian Parameter Optimization  10 
 In the DNN, the parameters like learning rate, number of neurons for the various layers, 11 
the dropout, scale of the mini-batch, etc. unleash a recognition rate. Those parameters are called 12 
hyper parameters. Choosing the best hyper parameters [32] in the training phase is an 13 
optimization problem. The hyper parameter optimization is formulated using 14 

X*= x € X min f(x), (19) 15 
where, x is the set of hyper parameters,  16 

X is the range of values of x, 17 
f(x) is the objective function to diminish the error value estimated with the testing data . 18 
In this proposed work Bayesian optimization [32,37] is exploited for tuning hyper 19 

parameters like learning rate, the number of filters, the drop-out layer, and the batch size in the 20 
network in Drop-ConvLSTM2D. 21 

The theory of Bayesian optimization is Bayes’ theorem; according to which, given the 22 
observations D1:k, the posterior distribution of a model A, P(A|D1:k) is proportional to the 23 
likelihood of D1:k  given A,  multiplied by the prior probability of A 24 
  P(A|D1:k)= P(D1:k|A)P(A), (20) 25 
 26 

 27 
 28 
 29 

 30 
 31 

Figure 5 Framework of Bayesian optimization for DNN model. 32 
 33 
Bayesian optimization picks out the smallest amount of a function, f(y), on a bounded set, 34 

Y. Bayesian optimization is exploited to investigate the perfect measure of sample values where 35 
the function appears to be small, as shown in Figure 5. With more trials for function f(y), the 36 
DNN model is more likely to make better decisions. This research achieved the optimum 37 

Choose the 
optimizing 
parameters 
 

Evaluate 
the 

objective 
function 

 

Use optimized 
Parameters in 

test set 

Select the best 
Optimized 

values 
 

Using the 
optimized 

Parameters in  
test set 

Figure 5
Framework of Bayesian optimization for DNN model



Information Technology and Control 2024/1/5362

4.1. Parameters Setting
4.1.1. Number of Filters in Drop-ConvLSTM2D 
Layer 
The analyses have been carried out, to validate the 
control of the filter count in the Drop-ConvLSTM2D 
model on the recognition accuracy as shown in Figure 
6. It exhibits that the accuracy will be at the minimum 
when each Drop-ConvLSTM2D contains only eight 
filters. The network lacks the capacity for learning 
and data processing due to the fewer filters, which 
yields a low-performance rate. The recognition rate 
improves with the filter count. As the filter count in-
creases, the layered architecture will become more 
complicated, and the model’s training fastness would 
have been hampered. When the filter count is 32, the 
recognition accuracy reaches 95.8%; hence the filter 
count 32 is chosen in this architecture.

Figure 6
Recognition accuracy Vs Number of Filters

Figure 7
Recognition accuracy Vs Learning Rate

 

network architecture by reducing the validation error that was identified with Bayesian 1 
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4.1.2. Learning Rates 
The learning rate is the most vital hyper parame-
ter in designing the deep architecture. It decides the 
learning capacity of the deep learning network to 
understand the problem. It determines the amount 
of weight by which the network should be updated in 
the course of training. If the learning rate is high the 
result oscillates in training iterations; else if it is too 
low, the network may be trapped in a suboptimal goal 
state. The design is probed at different learning rates 
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rate of 0.002 is adapted in this model.

4.1.3. Batch Size
The batch size is the number of samples passed to the 
model for updating the network parameters which 
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determines how accurately the error gradient [16] 
can be estimated in deep learning architecture. With-
in a suitable range, increasing the size of the batch 
can determine the gradient descent direction more 
accurately and cause less training fluctuation. Recog-
nition effects are seen in Figure 8. The average iden-
tification rate is 95.8% for batches of 64 observations. 
Consequently, 64 is recommended as the appropriate 
batch in this review.

4.1.4. Regularization 
Drop out is the methodology for regularization that 
enables a DNN to study the most discriminative fea-
tures which are needed with relevance to various 
subsets of the other neural units. Drop out must have 
an optimal value, as the loss function will not be af-
fected if it is zero, and if it is high, it will remove the 
potency of the neural units in a layer that may lead to 
poor training. The Drop out of 0.02 is adopted in this 
design since the recognition rate is high at this value 
as depicted in Figure 9. Table 1 shows the hyper pa-
rameters of the design, Table 2 shows Hyper param-
eter values throughout the training phase and Table 3 
shows the best observed optimal points, respectively.

Table 1
The choosen hyper parameters

Table 2
Hyper parameter values during training

Hyper parameters Initial Value Final Value

Learning Rate 0 1

Number of filterss in 
Drop-ConvLSTM2D 10 50

Batch Size 16 512

Regularization-Dropout 0 1

I Learning 
Rate

Number of filters 
in Drop-ConvL-

STM2D

Batch 
Size

Regularization 
Dropout

1 0 32 512 0.4

2 0.05 128 128 0.3

3 0.01 64 64 0.5

4 0.1 256 256 0.8

5 0.002 32 36 0.2

Table 3
Best observed feasible points

I Learning 
Rate

Number of filters 
in Drop-ConvLST-

M2D

Batch 
Size

Regulariza-
tion -Dropout

1 0.002 32 64 0.2

The precision of the model before tuning of hyper pa-
rameters is 87.2% and after 100 iterations the accura-
cy of the model hits 95.8%. The experimental parame-
ters of the designed model are depicted in Table 4.

Table 4
Experimental parameters of Drop-ConvLSTM2D on UCF-101

Parameters Value

Input Vector Size 112×112×30

Convolution Kernal size Conv3D -3×3×3
ConvLSTM2D-1×3

Number of Filter Conv3D-8,16
ConvLSTM2D-32,32

Pool size 3×3

Activation Function ReLu

Drop-ConvLSTM Layer 2

Dropout 0.2

Learning Rate 0.002

Batch size 64

Epoch 100

5.  Experimental Information on the 
UCF-101 and HMDB51 Dataset 
5.1. Datasets
The UCF-101 and HMDB51 are two datasets used for 
evaluating the experiment, which is very common in 
the field of HAR research. There are 13320 videos in 
UCF101 from 101 YouTube video collections. There 
are 25 classes of between 4-7 videos per category. 
The categories of behavior may consist of five types: 
Human-Object Interactions, Body-Motion Only, Hu-
man-Human Interaction, Playing Musical Instru-
ments, and Sports. HMDB51 includes 6766 videos, 
categorized by 51, including five types of behavior: 
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gestures of the face, facial actions with object interac-
tions, movements of the body, and movements of the 
body by touching the objects. 9.5K training videos are 
included in each UCF-101 split; 3.7K training videos 
are included in the HMDB51 split. With ‘320x240’ 
spatial resolution and 30fps frame rate, HMDB51 has 
fewer groups and images than UCF-101. In this study 
“Google Colab” is utilized to execute the programs. 
It supports nearly 25 GB of RAM and variable GPU 
based on the network traffic. Sample action catego-
ries of UCF-101 and HMDB51 data sets are depicted 
in Figure10. 

5.2. Performance Metrics Obtained for 
Proposed Model
We benchmarked our model using accuracy, preci-
sion, recall, F1-score.
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The proposed model's classification accuracy is compared to the front running models with 35 
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Action Precision Recall F1-score 
Apply_EyeMakeup 0.99 0.97 0.98 
Apply_Lipstick 0.87 0.87 0.87 
Archery 0.95 0.96 0.95 
Baby_Crawling 0.86 0.95 0.90 
Balance_Beam 0.95 0.96 0.95 
Band_Marching 0.92 0.95 0.93 
Base_BallPitch 0.89 0.90 0.89 
BasketBall 0.98 0.99 0.99 
BasketBall_Dunk 0.97 0.95 0.96 
Bench_Press 0.96 0.91 0.94 
Biking 0.97 0.93 0.95 
Billiards    0.99 0.92 0.95 

Action Precision Recall F1-score 
Brush_hair 0.85 0.79 0.82 
Cartwheel 0.80             0.87 0.83 
Chew 0.81          0.86 0.84 
Clim_stairs 0.84             0.84 0.84 
Draw_sword 0.92               0.85 0.88 
Catch                  0.80 0.84 0.82 
Clap      0.82 0.83 0.83 
Climb  0.82 0.83 0.83 
Dive             0.94 0.86 0.90 
Dribble        0.84 0.78 0.81 
Drink               0.74 0.85 0.79 
Eat              0.73 0.77 0.75 
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F1 Score = 2*(Recall * Precision) / (Recall + Precision) (23)

The Precision, Recall, and F1-score of the proposed 
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Bruch Hair

Wave

Skiing

Diving

Ice Dancing

Drumming

Golf

Smile

Horse Riding

Surfing

Eat

Basketball

Shake Hands

Playing Piano

Throw

Sword

Biking

Tennis Swing

Table 5
Performance metrics for proposed model on UCF-101 
data set

Action Precision Recall F1-score

Apply_EyeMakeup 0.99 0.97 0.98

Apply_Lipstick 0.87 0.87 0.87

Archery 0.95 0.96 0.95

Baby_Crawling 0.86 0.95 0.90

Balance_Beam 0.95 0.96 0.95

Band_Marching 0.92 0.95 0.93

Base_BallPitch 0.89 0.90 0.89

BasketBall 0.98 0.99 0.99

BasketBall_Dunk 0.97 0.95 0.96

Bench_Press 0.96 0.91 0.94

Biking 0.97 0.93 0.95

Billiards   0.99 0.92 0.95

network for the UCF-101, HMDB51 data set on 12 
classes are included in Tables 5-6. 
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Table 6 
Performance metrics for proposed model on HMDB51 data set

5.3. Confusion Matrix of Proposed Model: 
UCF-101 and HMDB51 Data Set
The recognition rate of the DL architecture is mon-
itored with the help of the confusion matrix which 
exhibits how to update parameters of the deep learn-
ing model designed by identifying errors in training 
process. Figures 11, Figure 12 project the confusion 

Action Precision Recall F1-score

Brush_hair 0.85 0.79 0.82

Cartwheel 0.80 0.87 0.83

Chew 0.81 0.86 0.84

Clim_stairs 0.84 0.84 0.84

Draw_sword 0.92 0.85 0.88

Catch                  0.80 0.84 0.82

Clap     0.82 0.83 0.83

Climb 0.82 0.83 0.83

Dive            0.94 0.86 0.90

Dribble       0.84 0.78 0.81

Drink              0.74 0.85 0.79

Eat             0.73 0.77 0.75

Figure 11
Confusion matrix on UCF- 101 for 12 classes
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Figure 11 Confusion matrix on UCF- 101 for 12 classes 2 
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Figure 12 Confusion matrix on HMDB51 for 12 classes 4 
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Table 7 Comparing Proposed Model Test Results on UCF-101 and HMDB51 data sets 6 

 Method UCF-101 HMDB51 

matrices for 12 classes in the UCF-101 dataset and 
HMDB51 dataset.

5.4. Recognition Accuracy (%) of Proposed 
Model in Assessment with State-of-the-Art 
Models on UCF- 101 Data Set and HMDB51
The proposed model’s classification accuracy is com-
pared to the front running models with respect to av-
erage accuracy as exposed in Table 7. 
Here, the top 1 accuracy is accounted in, as most of 
the models in this comparison do not specify the top 
5 accuracy. As shown in this table, the two-stream 
Drop-convLSTM2D gets the highest top 1 recogni-
tion accuracy among all methods, which is 95.8% on 
UCI-101 and 70.5% on HMDB-51. Compared with the 
two-stream VGG model, the designed model exceeds 
by 3.3% on UCI-101 and 5% on HMDB-51. The hand-
crafted model (IDT) achieves 85.9% accuracy, which 
is 10% less than our proposed model on UCI-101 and 
13% on HMDB-51. This work has achieved compa-
rable results with other front running models [3, 17, 
31] of HAR. Benefitting from the advanced tempo-
ral stream, the proposed model can also have higher 
recognition accuracy than most of these methods. In 
summary, the proposed model accomplishes higher 
recognition accuracies in both the spatial stream and 
the temporal stream than the traditional two-stream 
CNN model and the other state-of-the art approaches.

Figure 12
Confusion matrix on HMDB51 for 12 classes
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Table 7
Comparing Proposed Model Test Results on UCF-101 and HMDB51 data sets

Method UCF-101 HMDB51

Handcrafted [34] Improved Dense Trajectories 85.9% 57.2%

2D CNN [12] Slow-Fusion 65.4% -

3D CNN [30] Res3D (fine tuned) 85.8% 54.9%

Multi-stream 
2D CNN

[5] LRCN (RGB)
[5] LRCN (Flow)
[5] LRCN (fusion)

68.19%
77.46%
82.66%

-
-
-

[26] Spatial Stream
[26] Temporal Stream
[26] Two-Stream (avg)
[26] Two-stream (SVM)
[7] Two-Stream VGG

73%
83.7%
86.9%
88.0%
92.5%

40.5%
54.6%
58.0%
59.4%
65.4%

Temporal  segment network [31] Spatio-Temporal VLAD 95.6% 71.4%

Two stream [3] Spatio-Temporal
Heterogeneous two streaam network 93.3% 65.9%

TSCN [17] Temporal segment connection network 94.2% 70.3%

Proposed method TwoStreamDrop-ConvLSTM2D 95.8% 70.5%

The overarching summary of the observations is
1  Only spatial features can be extracted by 3D-CNN. 
2 Introducing Inception to mine temporal features 

from optical flow improves the recognition rate.
3 A heterogeneous Drop-ConvLSTM2D can reduce 

gradient variance and thus faster convergence.

5.5. Loss and Accuracy During Training and 
Testing 
The loss aids in the optimization of the deep learning 
algorithm, while the accuracy aids in the assessment 
of the algorithm’s efficiency.
The graph Figure 13 exhibits the training and vali-
dation accuracy on the UCI 101 data set for every 20 
epochs up to 100 epochs. Both the graphs increase 
over time, specifically the training accuracy increases 
gently whereas validation accuracy rises with ripples 
over time.
The graph Figure 14 exhibits the training and valida-
tion loss on the UCI 101 data set for every 20 epochs 
up to 100 epochs. The training loss consistently de-

Figure 13
Training accuracy Vs Validation accuracy on UCI-101
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Model Training Time  
(minutes) 

Classifying  Time 
(seconds) 

3DCNN 17 15  
3DCNN+LSTM 29 30  
Two-Stream network 
[26] 

12 23  

Proposed model 11  10  

clines with the iterations, but the validation loss in-
creases and falls throughout the procedure.
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Figure 14
Training loss Vs Validation loss on UCI-101
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5.6. Runtime Analysis on UCI-101
In order to show the persuasiveness of the proposed 
work, the run time of the work is compared with the 
run time of various CNN configurations. Table 8 rep-
resents the evaluation of the processing time of the 
proposed work and various CNN configurations for 
training with 200 epochs and classifying the video. 
This procedure was repeated ten times and the av-
erage processing time for each best trained model is 
presented in Table 8. All the experiments were car-
ried out on Google Colab which can provide 25GB of 
internal RAM with GPU-Tensor through a Cloud en-
vironment. 
The architecture of 3D-CNN used for experimen-
tation is as follows: Two Conv3D and MaxPooling 
3D layers, of (3,3,3) kernel each with 8, 16 filters are 
utilized. ReLU activation functions are added to 

the uniform Keras initializer. A three-dimensional 
max-pooling layer of (2,2,2) pool sizes is deployed to 
down-sample the feature maps, which can save valu-
able computational resources. The stride and padding 
are sizes of (1,1,1).
For the second configuration, in addition to the above 
3D-CNN architecture, the LSTM with 100 units fol-
lowed by Drop out and Dense layer is used for exper-
imentation. As spotted in Table 8, the proposed work 
is faster than other methods in terms of training and 
classification.

5.7. Ablation Study of Dropout Layer
We conducted experiments using a proposed model 
with and without the Dropout layer on a UCI-101 data 
set. As in Table 9, the presence of Dropout improves 
the recognition rate due to its job of leveraging greater 
model capacity and regularization.

Table 8
Runtime Analyze on UCI-101

Model Training Time  
(minutes)

Classifying  Time
(seconds)

3DCNN 17 15 

3DCNN+LSTM 29 30 

Two-Stream network [26] 12 23 

Proposed model 11 10 

Table 9
Recognition rate with and without dropout layer on UCI-101

Model Recognition rate

Proposed model with  
ConvLSTM2D 86.1%

Proposed model with Drop-
ConvLSTM2D 95.8%

6. Conclusion and Future 
Improvements
The aim of this work is to construct a hybrid two-
stream deep learning architecture for HAR. In the 
designed architecture, a novel Drop-ConvLSTM2D 
model is developed in two stream 3D-CNN Incep-
tion-v3 based network. In the first stream, 3D-CNN 
mines spatial-temporal features through RGB 
frames. In the other stream, Inception-v3 extracts 
temporal features from Optical flow images that are 
obtained using dense optical flow [33]. The obtained 
spatiotemporal features are fused using Conv-fusion 
to train the Drop-ConvLSTM2D model. Finally, the 
Drop-ConvLSTM2D model is optimized using Bayes-
ian Hyper Parameter Optimization. An examination 
of UCF101 and HMDB51 datasets reveals that the 
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original two steam networks were outperformed by 
the integrated model. The outcomes obtained illus-
trate the benefit of integrating the flow stream with 
the RGB stream using two different CNNs. Further-
more, to the to the fullest of  our discernment, the 
novel Drop-ConvLstm2D model is the heterogeneous 
combination of 3D-CNN over RGB frames and the 
Inception-v3 over optical flow frames to acknowledge 
human activity. Finally, the result of the experiments 
emphasizes that, in identifying and classifying human 
behaviors from videos, the suggested model achieved 
substantial benefits. Although with this approach, we 
exhibit encouraging outcomes on both UCF-101 and 
HMDB51 datasets, the performance is quite far from 
precise. The proposed model has more time needs; 
and there is still scope for change. Future research 
will focus on more efficient methods to reduce the 
time complexity, so that the model would be applied 
for real-time human action prediction.

Data Availability
The video datasets UCF-101, HMDB51 used to sup-
port the findings of this study are included in the arti-
cle in reference section [27], [13] in page no 18.

UCF-101 data set is available at 
https://www.crcv.ucf.edu/data/UCF101.php

HMDB51 data set is available at
h t t p s : //s e r r e - l a b. c l p s .b r o w n . e d u /r e s o u r c e /
hmdb-a-large-human-motion-database/#Down-
loads
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