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Heterogeneous graph embedding, aiming to learn the low-dimensional representations of nodes, is effec-
tive in many tasks, such as link prediction, node classification, and community detection. Most existing 
graph embedding methods conducted on heterogeneous graphs treat the heterogeneous neighbours equally. 
Although it is possible to get node weights through attention mechanisms mainly developed using expen-
sive recursive message-passing, they are difficult to deal with large-scale networks. In this paper, we pro-
pose R-WHGE, a relation-aware weighted embedding model for heterogeneous graphs, to resolve this issue. 
R-WHGE comprehensively considers structural information, semantic information, meta-paths of nodes 
and meta-path-based node weights to learn effective node embeddings. More specifically, we first extract 
the feature importance of each node and then take the nodes’ importance as node weights. A weighted ran-
dom walks-based embedding learning model is proposed to generate the initial weighted node embeddings 
according to each meta-path. Finally, we feed these embeddings to a relation-aware heterogeneous graph 
neural network to generate compact embeddings of nodes, which captures relation-aware characteristics. 
Extensive experiments on real-world datasets demonstrate that our model is competitive against various 
state-of-the-art methods.
KEYWORDS: Heterogeneous graphs, weighted random walks, graph neural networks, graph embedding.
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1. Introduction
Heterogeneous graphs are widely used to construct 
and organize various complex systems in which the 
objects are interrelated or interacted, such as aca-
demic networks, e-commerce and social networks 
[20, 24]. A heterogeneous graph consists of many 
types of entities with different relationships among 
them.
As shown in Figure 1, a heterogeneous academic 
graph instance consists of four types of entities: au-
thors (A), papers (P), venues (V) and organizations 
(O). There are five relationships among different 
types of entities: affiliating/ affiliated-to (O A/A

O), coauthor (A A), writing/written-by (A
P/P A), citing/cited (P P) and publishing/pub-
lished-in (V P/P V). Recently, one popular tool 
to analyze heterogeneous graphs is the meta-paths, 
which could better preserve relationship informa-
tion between different types of entities. As shown in  

Figure 2, the meta-path author-paper-author (abbre-
viated as APA) indicates that two authors coauthor 
the same paper, while the meta-path APVPA conveys 
the information that two papers written by some au-
thors are published in the same journal.
Heterogeneous graph embedding aims to map nodes 
of graphs into a low-dimensional vector space. The 
main goal of embedding learning is to improve the ef-
fectiveness of feature learning from a heterogeneous 
graph. The learned features can, in turn, improve 
tasks such as node classification [4, 30] and link pre-
diction [1, 16, 29]. However, it is a challenge to achieve 

Figure 1 
A heterogeneous academic graph instance (a) and its 
graph schema (b). The red dotted lines represent coauthor 
relationships, and the blue dotted lines denote citation 
relationships

(a) A heterogeneous academic graph instance

(b) A graph schema of the academic graph instance

Figure 2
Examples of meta-paths for the heterogeneous academic 
graph instance. (a) APA: it means that authors collaborate 
on the same paper, and the examples of the meta-path 
instances are a1-p1-a3, a3–p2-a4, and a3-p3-a4, etc.  
(b) APV: it means that authors publish papers at a venue, 
and the examples of the meta-path instances are a1–p1–
VLDB, a3-p2–VLDB, and a4–p3-ACM, etc. (c) APVPA: it 
means that authors publish papers on the same venue, and 
the examples of the meta-path instances are a1–p1–VLDB-
p2-a3   , a3-p1-VLDB-p2-a4, and a4-p3-ACM-p3-a3, etc.  
(d) OAPVPAO: it means that authors affiliated to the same 
or different organizations publish papers on the same venue, 
and the examples of the meta-path instances are IBM-a1-p1-
VLDB-p2-a3-UI, UI-a3-p1-VLDB-p2-a4-UC, and UC-a4-p3-
ACM-p3-a3-UI, etc.

(a) APA (b) APV

(c) APVPA (d) OAPVPAO
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this goal in heterogeneous graphs. Based on the num-
ber of neural network layers, the existing methods can 
be divided into two categories.
The first category consists of shallow models. For 
homogeneous networks, there exist a few classical 
models, such as DeepWalk [19], Line [25], and Node-
2Vec [8], which learn node embeddings using the 
Skip-gram model [17]. Metapath2vec [4], HERec [23] 
and HIN2Vec [5] are the three early works on hetero-
geneous graph embedding learning. However, these 
shallow models only consider the graph topology 
structure and cannot incorporate  (heterogeneous) 
features of nodes [15] (e.g. text or image), resulting in 
inferior performance.
The second category consists of deep graph models 
basing on graph neural networks (GNNs) [15, 26], 
which extract the graph’s structure and the heteroge-
neous nodes’ features for graph embedding learning. 
Some of the GNNs were designed for node embedding 
learning in homogeneous graphs, including GCN [15], 
GraphSAGE [9] and GAT [26]. When dealing with 
heterogeneous graphs, the different types of nodes 
are divided into multiple-homogeneous subgraphs, 
losing some of the relational semantic information 
of heterogeneous graphs. Besides, several heteroge-
neous graph embedding methods have been designed 
based on GNNs. HetGNN [33] jointly considers node 
heterogeneous features encoding, type-based neigh-
bours aggregation, and heterogeneous types combi-
nation. HetSANN [11] learns node embeddings in a 
heterogeneous graph by considering the heteroge-
neous structural information and each node’s hetero-
geneous feature information. Specifically, the hetero-
geneous information is projected in low-dimensional 
entity spaces by means of an attention mechanism. 
HGT [13] is used to model web-scale heterogeneous 
graphs. To model heterogeneity, node- and edge-type 
dependent parameters are designed to characterize 
the heterogeneous attention over each edge, empow-
ering HGT to maintain dedicated representations for 
different types of nodes and edges. Recently, R-HGNN 
[31] exploits the role of relations and collaboratively 
learns relation-aware node embeddings as well as se-
mantic embeddings of relations. Different from these 
existing methods, in this paper, we propose model 
R-WHGE, a novel relation-aware weighted embed-
ding model for heterogeneous graphs, which com-
bines weighted random walks and weighted-based 

GNN to learn node embeddings effectively.
In reality, each node has different importance [10, 18] 
in graphs. The importance of a node is an inherently 
objective matter, which depends on the node contents 
and its position in the graph. Specifically, the more 
important a node is, the more nodes will establish 
direct connections with it. The networks generated 
by this law are scale-free networks whose degree dis-
tribution of nodes follows a power law. For example, 
the degree distributions of e-commerce and academic 
networks are power-law. It is important to character-
ize the power-law feature of node degree distribution 
in scale-free networks.
Taking the importance aggregation of a heteroge-
neous academic network instance, shown in Figure 
3, each author1 equally gives his/her importance to 
papers according to the meta-path APA. Then the pa-
pers aggregate these importances in the step of AP. 
Papers written by more authors or more important 
authors have more importance. Similarly, each paper 
shares its importance equally with the authors, and 
then the authors aggregate the importances in the 
step of PA. As a result, authors who write more papers 
or whose papers have more importances [18] possess 
more importances. In the academic network example, 
Han and Sun have more importances since they write 
more papers. Similarly, GenClus has more impor-
tance than NetClus since GenClus is written by more 
authors or more important authors than NetClus. It 
can be seen that these nodes’ importances are an es-
sential feature of embedding learning, and the repre-
sentation vectors of nodes without such importances 
are incomplete. However, these existing embedding 
methods are not able to cope with the importances of 
nodes. 
In order to integrate heterogeneous information con-
sidering the weight, some models [2, 11, 14, 16, 28] ag-
gregate information by means of an attention mech-
anism in heterogeneous networks. But the attention 
mechanism is implemented through an expensive 
recursive message-passing mechanism and is hard to 
cope with large-scale networks.
To tackle the above-identified problems, in this pa-
per, we propose R-WHGE, a novel relation-aware 
weighted heterogeneous graph embedding. Specifi-
cally, we first explore het-PageRank to generate node 

1 https://www.aminer.cn/ranks/home
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importances, then combine it with meta-paths to 
generate weighted random walks sequences, which 
are fed to MetaPath2Vec to get the initial weighted 
node embeddings. Finally, the initial weighted node 
embeddings will be given to GNNs, a relation-aware 
heterogeneous graph neural network, to generate the 
final node embeddings. Extensive experiments are 
conducted on node classification tasks, and the re-
sults show that our approach outperforms existing 
methods consistently among four real-world hetero-
geneous graph datasets. The contributions of this pa-
per are summarized as follows:
 _ We propose the algorithm het-PageRank to capture 

the importance of each node in a heterogeneous 
graph.

 _ Taking the importance of each node in a 
heterogeneous graph as node weights, we propose 
the algorithm of a weighted random walks-based 
embedding learning (WRWE) to better encode the 
relationship semantics among nodes into initial 
weighted node embeddings.

 _ Finally, R-HGNN, which received the initial 
weighted node embeddings, generates the multiple 

Figure 3
The weight aggregation for an academic network example according to the meta-path APA. Step of AP: each author gives 
its importance to nodes of papers equally, and then the papers aggregate their importances; Step of PA: each paper shares 
its importance equally with nodes of authors, and then authors aggregate their importances. Iteration(0) and Iteration 
( ) are the first and last convergent iterations in which the node’s importances distribute and aggregate in the academic 
network according to the meta-path APA

relations-aware node embeddings for each node, 
which are fused into a compact node embedding.

The rest of the paper is organized as follows. Section 2 
discusses related work. We provide some definitions 
and problem formulation in Section 3.
Section 4 presents in detail our proposed R-WHGE 
framework. We then show experimental results in 
Section 5 before concluding the paper in Section 6.

2. Related Work
In the last few years, a large number of graph embed-
ding models have been proposed to learn node embed-
ding in graphs efficiently. The methods of embedding 
learning are mainly shallow graph models and deep 
graph models. In this section, we briefly review relat-
ed work in these two categories.
Shallow graph models. The shallow graph models 
can better extract multiple relational semantic fea-
tures of heterogeneous graphs. Metapath2vec [4] 
uses a heterogeneous Skip-Gram to learn the node 
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embeddings in heterogeneous networks. HERec [23] 
thoroughly mines latent structure features of users 
and items using a random walk strategy based on me-
ta-paths to derive more meaningful node sequences 
for network embedding. HIN2Vec [5] exploits rich 
semantics of relationships and the network structure 
details to learn nodes’ embeddings using a random 
walk strategy based on meta-paths in heterogeneous 
networks. However, the above methods only learn 
graph structure features and do not consider hetero-
geneous features of nodes. Many graph datasets have 
rich, heterogeneous feature information, which can 
potentially be informative in the embedding encoding 
process.
Deep graph models. The deep graph model based on 
GNNs can fetch the graph structure and heteroge-
neous features of nodes. GCN [15] uses an efficient 
layer-wise propagation mechanism and learns local 
graph topology structure and node features based on 
the first-order approximation of spectral convolu-
tions on graphs. GraphSAGE [9] generates embed-
dings leveraging topology structure and node feature 
information (e.g., text attributes). The topology struc-
ture features are fetched via sampling and aggregat-
ing features from node neighbourhoods. GAT [26] 
enables implicitly specifying different weights to dif-
ferent nodes in neighbourhoods of a node, leveraging 
masked self-attentional layers. RGCN [22] models 
relational data in knowledge graphs by employing 
specialized transformation matrices for each relation 
type, which is effective at encoding features of local 
and structured neighbourhoods. RSHN [34] builds 
an edge-centric coarsened line graph to describe re-
lation semantic information and then integrates the 
graph and its coarsened line graph to embed both 
nodes and edges without requiring of meta-path. 
HGT [13] models Web-scale heterogeneous graphs by 
learning the features of different nodes and relations 
with type-specific parameters based on the architec-
ture of the Transformer [32]. HetGNN [33] incorpo-
rates heterogeneous graph topology structure infor-
mation and heterogeneous contents information of 
each node. MAGNN [6] aggregates features including 
node-attributes, intermediate semantic nodes along 
meta-paths and messages from multiple meta-paths. 
R-HGNN [31] exploits the relation-aware charac-
teristics and learns node representations on hetero-
geneous graphs. Besides, quite a few other literature 

reviews [3, 7, 27] provide a comprehensive, up-to-date 
review of the state-of-the-art of various graph em-
bedding models and explain their differences. They 
cover early work on preserving graph structure and a 
new surge of incorporating heterogeneous features of 
nodes. The node-importance feature reflects the sta-
tus and importance of nodes in the network. Never-
theless, none of them comprehensively consider the 
graph structure, heterogeneous features of nodes and 
node’s importance when learning node embeddings.

3. Problem Definition
In this section, we present the necessary formal defi-
nitions and formulate our research problem.
Definition 1. (Heterogeneous Information Graph). 
A heterogeneous graph (HG) is defined as G = (V, E, 
T, R). Each node v∈V represents an entity. |V| is the 
total number of nodes in G. Each edge e∈E (e = (v, v’)) 
denotes a relation. T = {T1, T2, ..., T|T|} denotes a set of 
entity type, where |T| is the total number of entity 
type. R = {r1, r2, ..., r|R|} denotes a set of relation types, 
where |R| is the total number of relation types. Es-
pecially, R(v) denotes a set of relation types that v is 
associated with. In a HG, every node and every edge 
are associated with their mapping functions ϕ: V   T,  
ψ: E  R and the inverse functions ϕ–1: T   V, ψ–1:  
R  E, where in |T| + |R| > 2.
For example, as shown in Figure 1, we represent a het-
erogeneous academic graph instance and its graph 
schema, with the entity type T = {A, P, V, O} wherein 
A represents authors, P represents papers, V repre-
sents venues, and O represents organizations, respec-
tively. The nodes V = {IBM, UI, UC, a1, a2, a3, a4, p1, p2, 
p3, VLDB, ACM} are entities, and the set of entity re-
lation types R is indicated by the relationship types 
of all edges of affiliating/affiliated-to (O→A/A→O), 
coauthor (A→A), writing/ written-by (A→P/P→A), 
citing/cited (P → P) and publishing/published-in 
(V→P/P→V), that is R = {O→A, A→O, A→A, A→P, 
P→A, P→P, V→P, P→V}. For instance, the node types 
of a1 and p1 can be calculated by ϕ(a1) = A and ϕ(p1) = 
P. The node type of other nodes can be obtained sim-
ilarly. The node-sets of type A and P can be obtained 
by the functions ϕ–1(A) = {a1, a2, a3, a4} and ϕ–1(P) = 
{p1, p2, p3}. Because the relation type of p1 → a1, p1 → 
a3 and p1 → a4 belongs to P→A and the relation type of  
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p1 → VLDB belongs to P→V, so R(p1) = {P→A, P→V}.
Definition 2. (Graph Schema). A graph schema is 
defined as SG = (T, R), which is a meta template for  
G = (V, E, T, R) with the object type mappings ϕ: V   T,   
and ψ: E  R. The graph schema specifies type con-
straints on both entities and relationships, guiding 
the semantics explorations of heterogeneous graphs. 
An example is shown in Figure 1.
Definition 3. (Meta-path). A meta-path  is a se-
quence of object types that characterize heterogene-
ous information graphs. Given a graph schema  = 
(T, R), a meta-path  is the form of     
…  , abbreviated as  = … , wherein L 
denotes the length of a meta-path ,  and 

 (1 ≤ 1 ≤ L).  R = r1 ° r2 °... ° rL–1describes a compos-
ite relation between node types  and , “°” denotes 
the composition operator on relations. All meta-paths 
are represented as ,   

, where  is the total number of meta-paths.
If there is a meta-path  where  =  and  

 =  ( ), we call the meta-path sat-
isfies symmetry. We assume that the meta-paths in 
this paper are symmetric.
For example, as shown in Figure 2, we explore some 
meta-paths and their meta-path instances based on 
a given graph schema, wherein  = APA,  = APV,  

 = APVPA,  = OAPVPAO and  = {APA, APV, 
APVPA, OAPVPAO}.
Definition 4. (Meta-path Instance). A meta-path in-
stance ρ is defined as a node sequence, following the 
meta-path , in the HG, as shown in Figure 2.
Definition 5. (Meta-path-based Neighbours). The 
meta-path-based neighbours Nv

l+1 of a node vl is the 
set of nodes that directly connect with node vl via 
meta-path instances, wherein “l” indicates the en-
tity-type of a node, and “l + 1” indicates the next en-
tity-type according to a meta-path . Especially, 
the neighbour nodes of a node v include itself when 
adjacent entities on a meta-path  are of the same 
entity type (for example, when  = AA, neighbour 
nodes Na1

A={a1, a2, a4} of the node a1 include a1 itself ).
Taking for example the meta-path  = APA, the 
current node p1 and the “l” of current node type, the 
mapping function  ϕ computing the current node 
type is “l” = ϕ(p1) = P and the neighbour nodes type is  
“l+1” = ϕ�Np1

l+1� = A, wherein Np1
A = {a1, a2, a3} according 

to meta-path APA, as shown in Figure 1(a).

Definition 6. (Heterogeneous Graph Embedding). 
Given a heterogeneous graph G = (V, E, T, R), we aim 
to learn a mapping function    ( ) 
for . The purpose of the function f is to save the 
node similarity into a low dimensional feature vector . 
 z→vThe log-likelihood objective is shown as follows:

,

where u ∈Nℛ(v) means u is the neighbourhood of node 
v and is visited by the strategy ℛ of a combination of 
weighted random walks and graph neural network in 
the heterogeneous graph G. The similarity between 
nodes u and v reflects the node’s similarity with a 
given graph’s structural properties and attribute fea-
tures.

4. Our Method
In this section, we first introduce the framework of 
the proposed model and then introduces each compo-
nent step by step.

4.1. Framework of the Proposed Model
The framework of the proposed model R-WHGE is 
shown in Figure 4. R-WHGE consists of two com-

Figure 4
Overview of the framework R-WHGE. (a) Raw input: a 
heterogeneous information graph G and all meta-paths  
= { , , …, }, wherein  = … . (b) The 
algorithm of het-PageRank generates the importance of 
each node in G. (c) WRWE: Taking the importance of each 
node as node’s weights, node sequences are sampled by 
weighted random walks according to a meta-path  and 
input these node sequences into MetaPath2Vec [4] which 
generates the weighted random walks-based embedding 
learning (WRWE). (d) A relation-aware heterogeneous graph 
neural network that catches relation-aware characteristics of 
neighbours to get compact embeddings. (e) The model output
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ponents: weighted random walks-based embedding 
learning (WRWE) and relation-aware heterogeneous 
graph neural network (R-HGNN). Originally, an al-
gorithm of het-PageRank is proposed to capture the 
importance of each node in a heterogeneous graph 
which is taken as each node’s weight. The first com-
ponent WRWE extracts spatial-topology features 
for each node (Section 4.2). The second component 
R-HGNN catches relational semantic features of 
heterogeneous neighbours and finally fuses the rela-
tion-aware node embeddings (Section 4.3).   

4.2. WRWE
We propose the WRWE algorithm (as shown in Algo-
rithm 1) to sample node sequences and generate the 
weighted random walks-based embeddings for each 
node v in heterogeneous graphs.
Node Weight Coefficient. First, we define a node’s 
weighted vector  consisting of the weighted co-
efficients of all nodes in a heterogeneous graph G.
In order to obtain the vector , we update the Pag-
eRank [10, 18] algorithm according to a  named 
het-PageRank. The algorithm of het-PageRank gen-
erates the importance [10, 18] of each node according 
to the  in G. We take the importance of each node 
as node weights, and all the node’s importance of the 
G compose the weighted vector  = ( , , 
…, ), where |V| is the number of nodes in G,  
represents a meta-path, and  (0  i < |V|) repre-
sents a node weight.
The first step of het-PageRank is to obtain a relational 
matrix set  = ( , , …, ) of G according 
to meta-paths . Each element δ(vj, vi, ) of the 

 ( m ∈ [1, ]) is generated under the guidance 
of a meta-path  and defined as follows:

(1)

where l and l+1 indicate the current node (entity) type 
and next node (entity) type of the .
From Equation (1),  = 0 denotes that 
nodes vi

l and vj do not directly connected under a 
metapath  and  = 1 means that nodes  

vi
l and vj are neighbours under a . So the relation-

al matrix  reflects the neighbour’s relationship 
among nodes according to a . The matrix  is 
a symmetric matrix because the  is symmetric 
(refer to Definition 3) in our algorithm het-PageRank. 
For example, Table 1 is the relational matrix δAPA ac-
cording to the heterogeneous academic graph in-
stance (as shown in Figure 1) and the  = APA (as 
shown in Figure 2).

Table 1
A relational matrix  δAPA of the heterogeneous academic 
graph instance (as shown in Figure 1(a)) based on the 
meta-path APA (as shown in Figure 2). We can see that the 
meta-path-based neighbours (Definition 5) of a3 are p1, p2, 
p3, the meta-path-based neighbours of p1 are {a1, a3, a4}, the 
meta-path-based neighbours of p2 are {a2, a3, a4} and so on

entity a1 a2 a3 a4 p1 p2 p3

a1 0 0 0 0 1 0 0

a2 0 0 0 0 0 1 0

a3 0 0 0 0 1 1 1

a4 0 0 0 0 1 1 1

p1 1 0 1 1 0 0 0

p2 0 1 1 1 0 0 0

p3 0 0 1 1 0 0 0

The second step of het-PageRank is to obtain the 
weighted vector  = ( , , …, ) of G 
according to a , wherein the   is the weight 
of a node  (1  i  |V|). The vector  is iteratively 
computed using the following Equation (2):

(2)

where  denotes a hyperparametric constant 
and p = 2 is a parameter of the L2-normalization. We 
initialize  = (0.3, 0.3, …, 0.3) for the first iteration 
and the n, n+1 denote two adjacent iterations.
Sampling Quantity. Before discussing the sampling 
quantity of meta-path instances, we first define the 
concepts of sampling trees and sampling forests. A 
sampling tree can be constructed as follows. 
1 Given a meta-path , the first node 

 is chosen as the root node of the sam-
pling tree.
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2 If the type index l of the node vl in the  is less 
than L, then we take the meta-path-based neigh-
bours  (see Definition 5, and Equation (1)) as 
child nodes of the node vl, otherwise the iteration 
terminates.

3 The child nodes  of the vl are taken as the new 
root nodes. Go back to step 2 and process for anoth-
er iteration guided by the .

For example, in the heterogeneous academic graph 
instance (see Figure 1) according to a meta-path  

= T1 T2 T3 =APA, the root nodes can be obtained 
by . By querying 
the relational matrix  shown in Table 1, the sam-
pling trees of Tree(a1), Tree(a2), Tree(a3) and Tree(a4) 
can be constructed (refer to Figure 5). Taking Tree(a3) 
(refer to Figure 5c) as an example, {p1, p2, p3} are the 
child node-set of a3 by querying Table 1. In a same 
manner, we can find the child node-set {a1, a3, a4} of 
p1, the child node-set {a2, a3, a4} of p2  and the child 
node-set {a3, a4} of p3. Finally, all the sampling trees of 
Tree(a1), Tree(a2), Tree(a3) and Tree(a4) form a meta-
path-based (APA) sampling forest.
The sampling quantity of meta-path instances, brief-
ly named sampling quantity, refers to the number of 
paths from the root node v1 to the leaf node in a sam-
pling tree Tree(v1). The sampling quantity  of 
meta-path instances can be expressed as follows.

(3)

where  denotes a meta-path, v1 represents the 
starting node of a meta-path or the root-node of a 

Tree(v1),  indicates the root-node weights of 
a Tree(v1), κ is an amplification coefficient, and  
means upwards to the nearest integer.
As the weight of a meta-path starting node v1 is ob-
tained by aggregating neighbour-node weights it-
eratively in a sampling tree Tree(v1) according to 
Equation (2), and the weight of v1 can reflect the im-
portance of Tree(v1), we acquire the sampling quan-
tity of meta-path instances by the weight multiple of 
v1. All sampling quantities of a sampling forest are de-
fined as the following set:

(4)

Taking Figure 5 as an example, we compute the sam-
pling quantity of each sampling tree in the sampling 
forest as follows:

If κ = 17, the sampling quantity of each sampling tree 
is calculated as { 2.618 , 2.618 , 7.854 , 7.854 } 
= {3, 3, 8, 8}.
Transition Probability of Meta-path-based Ran-
dom Walks. According to a , a transition probabil-
ity matrix  consists of the transition probabilities 
between every two nodes of a graph G under certain 
conditions. We define  = , , …, , 

. When random walks travel to a node vi
l, 

the transition probability is defined as follows:

Figure 5
A meta-path-based (APA) sampling forest

(d) Tree(a4)(c) Tree(a3)(a) Tree(a1) (b) Tree(a2)
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(5)

where  is a meta-path, l and l+1 are entity types 
in the ,  (refer to Definition 5) denotes 
the meta-path-based neighbours of node , and 

 (refer to Equation (2)) is the weight of node 
.

For example, when random walks travel to a node 
p2

P, P is the entity type of node p2, as shown in Figure 
5, the meta-path-based neighbours of node p2

P are 
, and the proba-

bilities of transition to the subsequent nodes are com-
puted as follows: 

WRWE. Given the sampling quantity of meta-path 
instances and the transition probability of meta-
path-based random walks, the algorithm of WRWE is 
presented in Algorithm 1.
Algorithm 1 has three parameters , , 
and L.  is a set where-
in each element  (1 m ) is a meta-path 

 defining the entity types and re-
lational semantics between nodes of random walks. 

 is a starting node-set of random walks-based 
paths. L is the length of the meta-path , the length of 
the sample meta-path instances, and the length of ran-
dom walks-based paths. Shown in Algorithm 1, the algo-
rithm of WRWE outputs embedding_dict (line 18 of Al-
gorithm 1), which is an initial weighted embedding-set of 
nodes  and is input to R-HGNN (shown in Section 4.3). 
The embedding_dict is generated by the model MetaPa-
th2Vec [4] (line 17), which is a graph embedding model 
based on random walks for a heterogeneous graph. 
The first loop (line 3) selects a meta-path  and 
ensures the consistency of sampling node sequences 
and the meta-path node types. Line 4 is used to com-

pute a transition probability matrix  according 
to Equation (5). Line 5 calculates the sampling quan-
tity according to Equation (3). The second loop (line 
6) traverses every sampling quantity  (Equa-
tion (3)) in the sampling forest  (Equation (4)). 
In line 8, we take the node v ( ) as the first 
node of every sample meta-path instances ρ. The 
third and fourth loops are used to sample meta-path 
instances for every meta-path according to the tran-
sition probability matrix  (Equation (5)). In line 
17,  the sample-path set X is fed to MetaPath2Vec to 
get the initial weighted node embedding embedding_
dict, which will be given to GNNs. 

4.3. Relation-aware Heterogeneous Graph 
Neural Network (R-HGNN)
The initial weighted node embeddings generated by 
the WRWE (shown in Algorithm 1) are input into a 
relation-aware heterogeneous graph neural network 
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(R-HGNN) [31]. R-HGNN is a GNNs [21], which is 
used to further learn the relational semantic features 
of heterogeneous neighbours by propagation mech-
anism, then outputs final node embedding for each 
node v ∈ G. R-HGNN learns node embeddings in four 
steps (shown in Fig. 6): (1) multiple relations sub-
graphs generating, (2) relation-aware node embed-
ding learning, (3) relation embedding learning and (4) 
relation-aware embedding fusing.
Multiple Relations Sub-graphs Generating. The 
heterogeneous graph G is decomposed into multiple 
relations-specific sub-graphs Gr(r ∈ R) based on the 
relation types R.
Taking the sampled graph G = (V, E, T, R) as an exam-
ple  (shown in Figure 6(1)), the relation type R of tar-
get node P1 is shown by R = {r1, r2, r3} , where r1 = {A → 
P, P → A}, r2 = {P → P} and r3 = {F → P, P → F}. The 
sub-graph set is Gr = {Gr1

, Gr2, Gr3}.
Relation-aware Node Embedding Learning. Rela-
tion-aware node embedding learning is implement-
ed by relation-specific node embedding learning and 
cross-relation message passing. Relation-specific node 
embedding learning is realized by a dedicated graph 
convolution module designed to learn node embed-
dings from each relation-specific sub-graph Gr(r ∈ R). 
Cross-relation message passing amends relation-spe-
cific node embedding by considering the interaction ef-
fects of the different relations associated with the node.

Figure 6 
Framework of R-HGNN for Learning Node Embedding 

Taking Figure 6 as an example, according to the sub-
graphs Gr1

, Gr2 and Gr3, P1 node embeddings hL
P1, r1

, hL
P2, r2 

and hL
P3, r3

 are obtained by relation-aware node embed-
ding learning.
Relation Embedding Learning. The target node’s 
relation embeddings are learned layer-wise by the 
propagation mechanism., which can be formalized as

(6)

where  and  are the trainable pa-
rameters to update the embeddings h for relation ψ(e)  
at layer l.
In Figure 6, hL

r1, hL
r2 and hL

r3  are the relation embed-
dings of node P1. The ψ(e) of node P1 indicates one of,  
ψ(A2→ P1) = r1, ψ(A1→ P1) = r1, ψ(P3→ P1) = r2,  
ψ(P2→ P1) = r2,  ψ(F2→ P1) = r3  and ψ(F1→ P1) = r3.
Relation-aware Embeddings Fusing. R(v) (refer to 
Definition 1) is a relation type set that node v associates 
with, and L means aggregating information to node v 
from multi-hop neighbours by stacking L layers GNNs. 
So a relation-aware embedding fusing aggregates the 
relation-aware node embeddings hL

v,r(r ∈R(v)) into a 
compact embedding via the following equations,

(7)
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(8)

where  denotes the learned importance of rela-
tion r to final node embedding hv. Vr is the transforma-
tion matrix of node embedding hL

v, r and Er is the trans-
formation matrix of relation embedding hL

r (r ∈ R(v)).
Taking Figure 6 as an example, R(P1) = {r1, r2, r3),   
hL

v, r ∈ {hL
P1, r1

, hL
P1, r2

, hL
P1, r3

} and  hL
r ∈ {hL

r1
, hL

r2
, hL

r3
}.

4.4. Loss Function
After finishing the ultimately model training, we feed 
the learned node embeddings into a classifier (e.g., a 
single-layer neural network) to predict the node clas-
sification. The purpose of the classifier is to minimize 
the following cross-entropy loss:

(9)

where C is the node class set, Vlabel represents the set 
of labelled nodes, 

 
 

 

(R-HGNN) [31]. R-HGNN is a GNNs [21], which is 
used to further learn the relational semantic features 
of heterogeneous neighbours by propagation 
mechanism, then outputs final node embedding for 
each node 𝑣𝑣𝑣𝑣 ∈ 𝐺𝐺𝐺𝐺. R-HGNN learns node embeddings 
in four steps (shown in Fig. 6): (1) multiple relations 
sub-graphs generating, (2) relation-aware node 
embedding learning, (3) relation embedding 
learning and (4) relation-aware embedding fusing. 

Multiple Relations Sub-graphs Generating. The 
heterogeneous graph G is decomposed into multiple 
relations-specific sub-graphs 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅) based on the 
relation types R. 
Taking the sampled graph G = (V, E, T, R) as an 
example  (shown in Figure 6(1)), the relation type R 
of target node 𝑃𝑃𝑃𝑃1 is shown by 𝑅𝑅𝑅𝑅 = {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3}, where 
𝑟𝑟𝑟𝑟1 =  {𝐴𝐴𝐴𝐴 → 𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃 → 𝐴𝐴𝐴𝐴} , 𝑟𝑟𝑟𝑟2 =  {𝑃𝑃𝑃𝑃 → 𝑃𝑃𝑃𝑃}  and 𝑟𝑟𝑟𝑟3 =  {𝐹𝐹𝐹𝐹 →
𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃 → 𝐹𝐹𝐹𝐹}. The sub-graph set is 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 = {𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟1 ,𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟2 ,𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟3}. 

Relation-aware Node Embedding Learning. 
Relation-aware node embedding learning is 
implemented by relation-specific node embedding 
learning and cross-relation message passing. 
Relation-specific node embedding learning is 
realized by a dedicated graph convolution module 
designed to learn node embeddings from each 
relation-specific sub-graph 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅) . Cross-
relation message passing amends relation-specific 
node embedding by considering the interaction 
effects of the different relations associated with the 
node. 
Taking Figure 6 as an example, according to the sub-
graphs 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟1 , 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟2  and 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟3 , 𝑃𝑃𝑃𝑃1 node embeddings ℎ𝐴𝐴𝐴𝐴1,𝑟𝑟𝑟𝑟1

𝐿𝐿𝐿𝐿 ,
ℎ𝐴𝐴𝐴𝐴2,𝑟𝑟𝑟𝑟2
𝐿𝐿𝐿𝐿  and ℎ𝐴𝐴𝐴𝐴3,𝑟𝑟𝑟𝑟3

𝐿𝐿𝐿𝐿  are obtained by relation-aware node 
embedding learning. 

Relation Embedding Learning. The target node's 
relation embeddings are learned layer-wise by the 
propagation mechanism., which can be formalized 
as 

  (6) 

where  and  are the trainable 
parameters to update the embeddings h for relation 
𝜓𝜓𝜓𝜓(𝑒𝑒𝑒𝑒) at layer l. 
In Figure 6, ℎ𝑟𝑟𝑟𝑟1

𝐿𝐿𝐿𝐿 , ℎ𝑟𝑟𝑟𝑟2
𝐿𝐿𝐿𝐿  and ℎ𝑟𝑟𝑟𝑟3

𝐿𝐿𝐿𝐿  are the relation 
embeddings of node 𝑃𝑃𝑃𝑃1 . The 𝜓𝜓𝜓𝜓(𝑒𝑒𝑒𝑒)  of node 𝑃𝑃𝑃𝑃1 
indicates one of, 𝜓𝜓𝜓𝜓(𝐴𝐴𝐴𝐴2 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟1 , 𝜓𝜓𝜓𝜓(𝐴𝐴𝐴𝐴1 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟1 , 

𝜓𝜓𝜓𝜓(𝑃𝑃𝑃𝑃3 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟2 , 𝜓𝜓𝜓𝜓(𝑃𝑃𝑃𝑃2 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟2 , 𝜓𝜓𝜓𝜓(𝐹𝐹𝐹𝐹2 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟3 
and 𝜓𝜓𝜓𝜓(𝐹𝐹𝐹𝐹1 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟3. 

Relation-aware Embeddings Fusing. R(v) (refer to 
Definition 1) is a relation type set that node v 
associates with, and L means aggregating 
information to node v from multi-hop neighbours 
by stacking L layers GNNs. So a relation-aware 
embedding fusing aggregates the relation-aware 
node embeddings hv,r

L  (r ∈ R(v))  into a compact 
embedding via the following equations, 

 (7) 

   (8) 

where  denotes the learned importance of 
relation r to final node embedding ℎ𝑣𝑣𝑣𝑣 . 𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟  is the 
transformation matrix of node embedding ℎ𝑣𝑣𝑣𝑣,𝑟𝑟𝑟𝑟

𝐿𝐿𝐿𝐿   and 
𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟  is the transformation matrix of relation 
embedding ℎ𝑟𝑟𝑟𝑟 

𝐿𝐿𝐿𝐿  (𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅(𝑣𝑣𝑣𝑣). 
Taking Figure 6 as an example, 𝑅𝑅𝑅𝑅(𝑃𝑃𝑃𝑃1) = {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟 3} , 
ℎ𝑣𝑣𝑣𝑣,𝑟𝑟𝑟𝑟 
𝐿𝐿𝐿𝐿 ∈ {ℎ𝐴𝐴𝐴𝐴1,𝑟𝑟𝑟𝑟1 

𝐿𝐿𝐿𝐿 , ℎ𝐴𝐴𝐴𝐴1,𝑟𝑟𝑟𝑟2 
𝐿𝐿𝐿𝐿 , ℎ𝐴𝐴𝐴𝐴1,𝑟𝑟𝑟𝑟3 

𝐿𝐿𝐿𝐿 } and ℎ𝑟𝑟𝑟𝑟 
𝐿𝐿𝐿𝐿 ∈ {ℎ𝑟𝑟𝑟𝑟1 

𝐿𝐿𝐿𝐿 , ℎ𝑟𝑟𝑟𝑟2 
𝐿𝐿𝐿𝐿 , ℎ𝑟𝑟𝑟𝑟3 

𝐿𝐿𝐿𝐿 }. 

44..44  LLoossss  FFuunnccttiioonn  

After finishing the ultimately model training, we 
feed the learned node embeddings into a classifier 
(e.g., a single-layer neural network) to predict the 
node classification. The purpose of the classifier is to 
minimize the following cross-entropy loss: 

  (9) 

where C is the node class set, V𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  represents the set 
of labelled nodes, 𝒴𝒴𝒴𝒴𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐 denotes the ground truth, and 
𝒴𝒴𝒴𝒴�𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐 denotes the predicted value of the classifier for 
node v.  

55.. EExxppeerriimmeennttss  
This section describes the datasets and baseline 
models and evaluates the performance of the 
proposed method by experiments on node 
classification tasks. 

55..11  DDaattaasseettss  

 denotes the ground truth, and 

 
 

 

(R-HGNN) [31]. R-HGNN is a GNNs [21], which is 
used to further learn the relational semantic features 
of heterogeneous neighbours by propagation 
mechanism, then outputs final node embedding for 
each node 𝑣𝑣𝑣𝑣 ∈ 𝐺𝐺𝐺𝐺. R-HGNN learns node embeddings 
in four steps (shown in Fig. 6): (1) multiple relations 
sub-graphs generating, (2) relation-aware node 
embedding learning, (3) relation embedding 
learning and (4) relation-aware embedding fusing. 

Multiple Relations Sub-graphs Generating. The 
heterogeneous graph G is decomposed into multiple 
relations-specific sub-graphs 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅) based on the 
relation types R. 
Taking the sampled graph G = (V, E, T, R) as an 
example  (shown in Figure 6(1)), the relation type R 
of target node 𝑃𝑃𝑃𝑃1 is shown by 𝑅𝑅𝑅𝑅 = {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟3}, where 
𝑟𝑟𝑟𝑟1 =  {𝐴𝐴𝐴𝐴 → 𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃 → 𝐴𝐴𝐴𝐴} , 𝑟𝑟𝑟𝑟2 =  {𝑃𝑃𝑃𝑃 → 𝑃𝑃𝑃𝑃}  and 𝑟𝑟𝑟𝑟3 =  {𝐹𝐹𝐹𝐹 →
𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃 → 𝐹𝐹𝐹𝐹}. The sub-graph set is 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 = {𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟1 ,𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟2 ,𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟3}. 

Relation-aware Node Embedding Learning. 
Relation-aware node embedding learning is 
implemented by relation-specific node embedding 
learning and cross-relation message passing. 
Relation-specific node embedding learning is 
realized by a dedicated graph convolution module 
designed to learn node embeddings from each 
relation-specific sub-graph 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅) . Cross-
relation message passing amends relation-specific 
node embedding by considering the interaction 
effects of the different relations associated with the 
node. 
Taking Figure 6 as an example, according to the sub-
graphs 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟1 , 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟2  and 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟3 , 𝑃𝑃𝑃𝑃1 node embeddings ℎ𝐴𝐴𝐴𝐴1,𝑟𝑟𝑟𝑟1

𝐿𝐿𝐿𝐿 ,
ℎ𝐴𝐴𝐴𝐴2,𝑟𝑟𝑟𝑟2
𝐿𝐿𝐿𝐿  and ℎ𝐴𝐴𝐴𝐴3,𝑟𝑟𝑟𝑟3

𝐿𝐿𝐿𝐿  are obtained by relation-aware node 
embedding learning. 

Relation Embedding Learning. The target node's 
relation embeddings are learned layer-wise by the 
propagation mechanism., which can be formalized 
as 

  (6) 

where  and  are the trainable 
parameters to update the embeddings h for relation 
𝜓𝜓𝜓𝜓(𝑒𝑒𝑒𝑒) at layer l. 
In Figure 6, ℎ𝑟𝑟𝑟𝑟1

𝐿𝐿𝐿𝐿 , ℎ𝑟𝑟𝑟𝑟2
𝐿𝐿𝐿𝐿  and ℎ𝑟𝑟𝑟𝑟3

𝐿𝐿𝐿𝐿  are the relation 
embeddings of node 𝑃𝑃𝑃𝑃1 . The 𝜓𝜓𝜓𝜓(𝑒𝑒𝑒𝑒)  of node 𝑃𝑃𝑃𝑃1 
indicates one of, 𝜓𝜓𝜓𝜓(𝐴𝐴𝐴𝐴2 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟1 , 𝜓𝜓𝜓𝜓(𝐴𝐴𝐴𝐴1 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟1 , 

𝜓𝜓𝜓𝜓(𝑃𝑃𝑃𝑃3 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟2 , 𝜓𝜓𝜓𝜓(𝑃𝑃𝑃𝑃2 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟2 , 𝜓𝜓𝜓𝜓(𝐹𝐹𝐹𝐹2 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟3 
and 𝜓𝜓𝜓𝜓(𝐹𝐹𝐹𝐹1 → 𝑃𝑃𝑃𝑃1) = 𝑟𝑟𝑟𝑟3. 

Relation-aware Embeddings Fusing. R(v) (refer to 
Definition 1) is a relation type set that node v 
associates with, and L means aggregating 
information to node v from multi-hop neighbours 
by stacking L layers GNNs. So a relation-aware 
embedding fusing aggregates the relation-aware 
node embeddings hv,r

L  (r ∈ R(v))  into a compact 
embedding via the following equations, 

 (7) 

   (8) 

where  denotes the learned importance of 
relation r to final node embedding ℎ𝑣𝑣𝑣𝑣 . 𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟  is the 
transformation matrix of node embedding ℎ𝑣𝑣𝑣𝑣,𝑟𝑟𝑟𝑟

𝐿𝐿𝐿𝐿   and 
𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟  is the transformation matrix of relation 
embedding ℎ𝑟𝑟𝑟𝑟 

𝐿𝐿𝐿𝐿  (𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅(𝑣𝑣𝑣𝑣). 
Taking Figure 6 as an example, 𝑅𝑅𝑅𝑅(𝑃𝑃𝑃𝑃1) = {𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑟𝑟𝑟𝑟 3} , 
ℎ𝑣𝑣𝑣𝑣,𝑟𝑟𝑟𝑟 
𝐿𝐿𝐿𝐿 ∈ {ℎ𝐴𝐴𝐴𝐴1,𝑟𝑟𝑟𝑟1 

𝐿𝐿𝐿𝐿 , ℎ𝐴𝐴𝐴𝐴1,𝑟𝑟𝑟𝑟2 
𝐿𝐿𝐿𝐿 , ℎ𝐴𝐴𝐴𝐴1,𝑟𝑟𝑟𝑟3 

𝐿𝐿𝐿𝐿 } and ℎ𝑟𝑟𝑟𝑟 
𝐿𝐿𝐿𝐿 ∈ {ℎ𝑟𝑟𝑟𝑟1 

𝐿𝐿𝐿𝐿 , ℎ𝑟𝑟𝑟𝑟2 
𝐿𝐿𝐿𝐿 , ℎ𝑟𝑟𝑟𝑟3 

𝐿𝐿𝐿𝐿 }. 

44..44  LLoossss  FFuunnccttiioonn  

After finishing the ultimately model training, we 
feed the learned node embeddings into a classifier 
(e.g., a single-layer neural network) to predict the 
node classification. The purpose of the classifier is to 
minimize the following cross-entropy loss: 

  (9) 

where C is the node class set, V𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  represents the set 
of labelled nodes, 𝒴𝒴𝒴𝒴𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐 denotes the ground truth, and 
𝒴𝒴𝒴𝒴�𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐 denotes the predicted value of the classifier for 
node v.  
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This section describes the datasets and baseline 
models and evaluates the performance of the 
proposed method by experiments on node 
classification tasks. 
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5. Experiments
This section describes the datasets and baseline mod-
els and evaluates the performance of the proposed 
method by experiments on node classification tasks.

5.1. Datasets
We consider the following real-world graph datasets: 
a small-scale dataset (IMDB), two large-scale data-
sets, OAG (OAG-Venue, OAG-L1-Field) and OGB, 
shown in Table 2.
The Internet Movie Database (IMDB)2 is the world’s 
most popular and authoritative data source for movie, 
TV and celebrity content. To test our model, we ex-
tract a subset of IMDB and construct a heterogeneous 
graph containing three types of entities (movies (M), 
directors (D) and actors (A)) and two types of rela-
tions (a movie ”is directed by“ a director and a movie 
”is acted by“ actors). The dataset is split by the ran-
dom split strategy following reference [28].
The Open Academic Graph (OAG)3 is the largest pub-

2  https://developer.imdb.com
3  www.openacademic.ai/oag

Table 2 
Statistics of the real-world heterogeneous graph datasets

                      Datasets
Name

-- OAG OGB

IMDB Venue L1-Field MAG

Nodes

Movie (M): 4,076 Paper (P): 166,065 Paper (P): 119,483 Paper (P): 736,389

Director (D): 1,999 Author (A): 510,189 Author (A): 510,189 Author (A): 1,134,649

Actor (A): 5,069 Field (F): 45,717 Venue (V): 6,934 Field (F): 59,965

Institution (I): 9,079 Institution (I): 9,079 Institution (I): 8,740

Edges

MD: 4,076 PA: 477,676 PA: 340,959 PA: 7,145,660

MA: 12,228 PP: 851,644 PP: 329,703 PP: 5,416,271

PF: 1,700,497 PV: 119,483 PF: 7,505,078

AI: 612,872 AI: 612,872 AI: 1,043,998

Split Strategy Random Split Time-based Split Time-based Split Time-based Split

Split Sets

Train: 817 Train: 106,058 Train: 81,071 Train: 629,571

Validation: 407 Validation: 24,255 Validation: 16,439 Validation: 64,879

Test: 2,852 Test: 35,752 Test: 21,973 Test: 41,939

meta-paths MDM, MAM PPP, APA, AIA, PFP APA, AIA, PVP, PPP PPP, APA, AIA, PFP
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licly available heterogeneous academic graph, con-
sisting of more than 178 million nodes and 2.236 bil-
lion edges. All papers in OAG are associated with their 
publication dates, spanning from 1900 to 2019.
We construct two domain-specific subgraphs from 
OAG [13, 31] (OAG-Venue and OAG-L1-Field). 
OAG-Venue [31] is a heterogeneous graph in the Com-
puter Science (CS) domain and consists of four types 
of entities (paper (P), authors (A), fields (F) and insti-
tutions (I)), four types of entity-relations (a paper “is 
written by” an author, a paper “cites” a paper, a paper 
”has a topic of” a field of study and an author “is affiliat-
ed with” an institution). OAG-L1-Field [31] is another 
heterogeneous graph in the CS domain, which contains 
four types of entities (papers (P), authors (A), venues 
(V) and institutions (I)) and four types of entity-rela-
tions (a paper “is written by” an author, a paper “cites” 
a paper, a paper “is published in” a venue and an author 
“is affiliated with” an institution). The split strategy in 
OAG-L1-Field is the same as in OAG-Venue.
The Open Graph Benchmark (OGB)4 is a collection of 
realistic, large-scale, and diverse benchmark datasets 
for machine learning on graphs. The OGB [12] includes 
OGB-PRODUCTS, OGB-PROTEINS, OGB-ARXIV, 
OGB-PAPERS100M and OGB-MAG, where OGB-
MAG is a heterogeneous academic graph extracted 
from the Microsoft Academic Graph (MAG), consist-
ing of four types of entities (paper (P), authors (A), 
fields (F) and institutions (I)). Four types of directed re-
lations in OGB-MAG are the same in OAG-Venue. For 
experiments, we use MAM and MDM as meta-paths 
on IMDB, PPP, APA, AIA and PFP as meta-paths on 
OAG-Venue and OGB-MAG, and APA, AIA, PVP and 
PPP as meta-paths on OAG-L1-Field.

4  https://ogb.stanford.edu

5.2. Baselines
R-WHGE is an improved model based on R-HGNN 
[31], so I developed the WRWE algorithm (refer to 
Algorithm 1) based on R-HGNN to extract the het-
erogeneous graphs’ structural, semantic and node im-
portance features. To validate the performance of our 
approach, we leverage R-HGNN and MetaPath2Vec 
as baselines to compare with our model based on the 
data of R-HGNN (refer to Table 2).
R-HGNN learns node embeddings on heteroge-
neous graphs at a fine-grained level by considering 
relation-aware features. MetaPath2Vec [4] formal-
izes meta-path-based random walks to generate the 
node-sequence set, which is input into a heteroge-
neous skip-gram model to perform node embeddings 
of heterogeneous graphs.

5.3. Evaluation Metrics and Parameter Settings
Following [28], the dataset of IMDB is split into train-
ing sets, validation sets and testing sets with the ratio 
of 2:1:7 by the random split strategy. Following [12], 
the split strategy on OGB-MAG is based on the paper 
published years, where papers published before 2018, 
in 2018 and after 2018 are divided into training sets, 
validation sets and testing sets. Following [13], the 
split strategy on OAG-Venue and OAG-L1-Field is 
based on the paper published years. Papers published 
before 2015, between 2015 and 2016, and after 2016 
are divided into training, validation and testing sets. 
For experiments, we evaluate the effectiveness and 
efficiency of our model on the node classification task. 
It involves the prediction of the category of a movie 
(IMDB), the field that a paper belongs to (OAG-L1-

Table 3
Comparisons with different methods on the node classification task

-- -- OAG OGB

Methods Datasets
Metrics IMDB Venue L1-Field MAG

MetaPath2Vec
Accuracy 0.6334 0.2437 0.5673 0.4643
Macro-F1 0.6345 0.2045 0.3655 0.2644

R-HGNN
Accuracy 0.6419 0.2872 0.5897 0.5191
Macro-F1 0.6413 0.2579 0.3981 0.3213

R-WHGE
Accuracy 0.6475 0.2916 0.6032 0.5329
Macro-F1 0.6439 0.2618 0.4135 0.3392
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Field) and the published venue of a paper (OGB-MAG 
and OAG-Venue). We input the learned node em-
beddings into a classifier to get the final predictions, 
shown in Equation (9). We take Accuracy and Mac-
ro-F1 as evaluation metrics. The better models have 
higher evaluation metrics. We run all the models ten 
times and report the averaged performance in Table 3.

5.4. Experimental Results
The Accuracy and Macro-F1 over four datasets are 
shown in Table 3, from which several conclusions can 
be summarized.
R-WHGE outperforms the baselines on the four data-
sets. The improvements are more significant on large-
scale datasets. The main reason for the improvements 
is that the R-WHGE considers the weight of nodes 
when extracting structural features.
Specifically, R-WHGE achieves better effectiveness 

  

𝜅𝜅𝜅𝜅 . It can obtain the best performances when the 
values of 𝜅𝜅𝜅𝜅  continue to increase to critical values. 
After that, the performances increase very slowly or 
even stop growing with an increase of 𝜅𝜅𝜅𝜅 . In the 
subgraph (d) OGB-MAG of Figure 7, subtracting 
meta--path PPP has a slight influence on the 
classification effect of node-type Page, under the 
premise that all nodes of graph OGB-MAG can be 
trained in the experiment.  

66.. CCoonncclluussiioonn  aanndd  FFuuttuurree  WWoorrkk  
This paper has presented a practical graph 
embedding framework R-WHGE, which can easily 
incorporate heterogeneous topology features, 
relationship characteristics among heterogeneous 

nodes, and weights of heterogeneous nodes into 
graph embedding. To acquire weights of 
heterogeneous nodes, the algorithm of het-
PageRank based on meta-paths is designed to get 
the importance of the node’s location in the network, 
and then these importances are used as the node's 
weights. Utilizing the node's weights, we propose 
the algorithm of weighted random walks, which can 
extract topological and relation semantics features 
by fetching the meta-path instances. The initial 
weighted node embeddings are generated by 
MetaPath2Vec based on weighted random walks, 
which is the input of the algorithm of R-HGNN. R-
HGNN aggregates neighbour features considering 
the surrounding specific relations of each node and 
gets the final relation-aware node embeddings. 

Figure 7 
Results of parameter sensitivity analysis. 
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(d) OGB-MAG: The greeb dashed lines denote the 
results without considering the meta-path PPP

(a) IMDB (b) OAG-Venue

(c) OAG-L1-Field

over R-HGNN because R-WHGE fetches structural 
and semantic features of graph and node’s importance 
features by MetaPath2Vec with weighted random 
walks and generates the initial weighted node em-
bedding as initial input to GNNs. In summary, these 
results demonstrate the superiority of R-WHGE, as it 
considers the heterogeneity and weight of nodes.

5.5. Parameter Sensitivity Analysis

We further perform parameter sensitivity analysis 
in this section, and the results are summarized in  
Figure 7. Specifically, we estimate how different the 
values of κ can affect the classification results. Ac-
cording to Equation (3), the sampling quantity of 
meta-path instances is proportional to κ. As Shown 
in Figure 7, we can see that the performances of the 
R-WHGE grow with the increment of the values of  
κ. It can obtain the best performances when the val-

Figure 7
Results of parameter sensitivity analysis
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ues of κ continue to increase to critical values. After 
that, the performances increase very slowly or even 
stop growing with an increase of κ. In the subgraph 
(d) OGB-MAG of Figure 7, subtracting meta--path 
PPP has a slight influence on the classification effect 
of node-type Page, under the premise that all nodes of 
graph OGB-MAG can be trained in the experiment. 

6. Conclusion and Future Work
This paper has presented a practical graph embedding 
framework R-WHGE, which can easily incorporate 
heterogeneous topology features, relationship char-
acteristics among heterogeneous nodes, and weights 
of heterogeneous nodes into graph embedding. To ac-
quire weights of heterogeneous nodes, the algorithm 
of het-PageRank based on meta-paths is designed to 
get the importance of the node’s location in the net-
work, and then these importances are used as the 
node’s weights. Utilizing the node’s weights, we pro-
pose the algorithm of weighted random walks, which 

can extract topological and relation semantics fea-
tures by fetching the meta-path instances. The initial 
weighted node embeddings are generated by MetaP-
ath2Vec based on weighted random walks, which 
is the input of the algorithm of R-HGNN. R-HGNN 
aggregates neighbour features considering the sur-
rounding specific relations of each node and gets the 
final relation-aware node embeddings. Experimental 
results show the effectiveness of embedding vectors 
in node classification. In the future, we plan to de-
velop methods of automatically learning meta-paths 
and R-WHGE to exploit the heterogeneous structures 
more comprehensively. We will also study the appli-
cations of R-WHGE for other tasks, such as link pre-
diction and recommendation. 
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